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“Science and everyday life cannot and should not be separated.”
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Abstract

The imprecise identification of cancer characteristics can lead patient to aggressive and
unnecessary treatments. Therefore, it is crucial to identify tumor intrinsic characteris-
tics more precisely to propose individual-tailored treatment. In this work, we present
a brief explanation of fundamentals and researches in computer graph theory that seek
to solve problems of identification, classification, and characterization of certain cancer
types. We proposed a novel solution based on Network Science to find list of genes for
enrichment analysis in Breast and Ovarian cancer using proteogenomic information. In
our results, we show that our approach is capable of capturing biological processes and
sets of genes related to cancer and other processes, which opens a range of possibilities
for further studies.

Keywords: cancer, breast cancer, ovarian cancer, molecular biology, network analy-
sis.
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1

Introduction

Breast cancer is a heterogeneous disease with subtypes that present distinct bi-
ological characteristics. These differences affect the response to treatment and
can lead to different clinical outcomes [Yersal and Barutca, 2014]. One impor-

tant task is to determine the subtype of breast cancer to choose the right treatment.
Not rarely, one can find cases where low-risk patients receive aggressive or unresponsive
treatment.

Ovarian cancer is the most lethal malignancy of the female reproductive system.
It causes over 14,000 deaths in the US and 114,000 worldwide, annually [Pecorelli et al.,
2003]. Standard therapy results in complete response for 70% of patients. However,
most will relapse within 18 months because of chemoresistant disease [Ozols, 2005].
Thus, one task is to improve targeted therapies strategies to reduce mortality rates.

Perou et al. [1999] analyze breast tumor tissues to find patterns of gene expression
through gene expression micro-arrays, with good accuracy. Nowadays, his work is used
as consensus for Breast Cancer subtypes.

Mertins et al. [2016], Ozols [2005], Yersal and Barutca [2014] declare tumors with
similar clinical and pathological presentations may have different behavior. So, cancer
treatment should be specific and individual to each patient. Analyses of breast cancer
with new molecular techniques now hold promise for the development of more accurate
tests to predict recurrence [Yersal and Barutca, 2014].

The aim of this research is to propose and evaluate topological properties of Net-
work Science models for Enrichment Analysis in Breast and Ovarian cancer networks
built from gene expression data. We can use Enrichment Analysis to find list of genes
in a collection of annotated gene sets, related or not to cancer.

1



2 Chapter 1. Introduction

1.1 Motivation

Breast cancer subtypes lead to differences in patterns of response to various treatment
modalities [Yersal and Barutca, 2014]. The prediction of these therapies responses
using molecular attributes are key to cancer biology [Liu et al., 2014]. In this context,
several papers analyze efficient ways to characterize breast and ovarian cancer.

The 12◦ St. Gallen International Breast Cancer Conference (2011) classifies pa-
tients for therapeutic purposes based on the recognition of subtypes of Breast cancer
per spectrum [Goldhirsch et al., 2011]. Recommendations for systemic therapy fol-
low the subtype classification proposed by Perou et al. [2000]. This classification uses
biological markers or biomarkers in short, which are shown in Table 1.1, where the
expressions of each biomarker classify the tumors into subtypes. After this conference,
the experts reached a consensus on using this approach for primary treatment of Breast
Cancer.

Subtype IHC Biomarkers Therapy
Luminal A HR+/HER2-/Ki67low Endocrine therapy

Luminal B HR+/HER2-/Ki67high Endocrine therapy +- cytotoxic therapy
HR+/HER2+ Cytotoxics therapy + anti-HER2 + hormonal therapy

HER2-positive HR-/HER2+ Cytotoxics + anti-HER2 therapy
Triple negative (Basal) HR-/HER2- Cytotoxic therapy

Table 1.1: Classification accordingly to Perou et al. [2000], where the subtypes are
based in immunohistochemistry (IHC).

Although the consensus was established, current studies show how much fur-
ther research is needed to achieve an optimal model to classify Breast cancer sub-
types [Mertins et al., 2016]. The proposed models still have a significant percentage
of error when applied to subtypes that share almost same characteristics but have
different prognostic.

For Ovarian cancer, we still need better ways to refine cancer subtype charac-
teristics and treatments. Accordingly to biological analysis, breast cancer is more
consolidated in subtype manners. In our research, we use a gene expression dataset
containing breast cancer with consolidated subtypes in literature and ovarian cancer
without subtype specifications.

1.2 Problem

Types of cancer lead to differences in patterns of response to various treatment modal-
ities. The prediction of these therapies responses using molecular attributes are the
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key to cancer biology. One of the main challenges for those predictions is the “curse of
dimensionality”, this is when we have too many features for few samples. Because lack
of samples, machine learning may not be a good approach.

Although we may not use machine learning due to lack of samples and high num-
ber of features (genes and proteins), we can use the features for better characterization.
An idea is using enrichment analysis that identify classes of genes or proteins that are
over-represented in a large set of genes or proteins. One hypothesis is to extract char-
acteristics from networks, that provides a natural representation of a biological system,
and use them as inputs for enrichment analysis.

1.3 Objective

This research aims to propose and evaluate models for Breast and Ovarian cancer char-
acterization applying Enrichment Analysis in WCN (Weighted Correlation Network).
We use gene expression data from tumor tissues to build networks. For this purpose,
we define specific objectives, which include:

• To show the existence and quantify the statistical correlation between gene ex-
pression data;

• To evaluate the existence of patterns between groups of gene expression data for
Breast and Ovarian cancer;

• To evaluate communities from Community Detection as input for Enrichment
Analysis;

• To evaluate ranked lists of centrality measures as input for Enrichment Analysis.

1.4 Contributions

In this work, we use an approach for enrichment pathways analysis using network
science. We compared communities between Breast and Ovarian cancer networks. We
evaluated centrality measures as inputs to enrichment analysis.

The contributions of our work are: (i) community detection, applied to WCN, find
biologically cohesive group of genes; and (ii) we found that some centrality measures
can show cancer related gene sets in their ranked lists.
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1.5 Document Outline

In chapter 2 we present the theoretical basis necessary for the understanding of the
adopted methods and the related works, showing existing methods and the advance of
the most current researches. In Chapter 3 we present the proposed solution where we
explain our method. In chapter 4 we present the partial results achieved in this work.
Finally, in chapter 5 we discuss our conclusions and some future activities.



2

Fundamentals

In this chapter we present concepts necessary for the work development. We di-
vide the fundamentals in 4 sections: Biological Background, Weighted Correlation
Network, Network Analysis, and Related Works.
Section 2.1 shows an overview about Gene Expression Data and Gene Set Enrich-

ment Analysis, they are necessary for our understanding because it comprehends our
data format and our biological analysis. Section 2.2 presents the basis of our work as
structure, we analyze using properties of Network Analysis in section 2.3. Section 2.4
we present some related works and finally in section 2.5 present some discussion about
this chapter.

2.1 Biological Background

One of the major challenges of current cancer biology is the development of personalized
diagnostic and therapeutic strategies [Mirnezami et al., 2012]. In the last decades, the
increasing availability of data regarding genomic and proteomic profiles of cancer pa-
tients has provided a new source of essential information, which however needs efficient
theoretical frameworks, instruments, and computational tools to be exploited [Grau-
denzi et al., 2017].

2.1.1 Gene Expression Data

Gene expression data is the information of the process by which a gene is used in
the synthesis of a functional gene product. The advances in omic techniques provide
unprecedented capacity to measure gene expression data as RNA, protein, and post-
translational modification levels under different biological contexts such as time, cell

5



6 Chapter 2. Fundamentals

states, tissues or organisms [Consortium et al., 2012, Kundaje et al., 2015, Lonsdale
et al., 2013, Weinstein et al., 2013]. These precise information are important for our
study to reconstruct part of a network based on the central dogma of molecular biol-
ogy [Crick, 1970], three sets of information: CNA (Copy Number Alteration), RNA
(Ribonucleic Acid), and Proteins.

2.1.2 Gene Set

In our work, we define a Gene Set as a sorted list of genes responsible for a specific
biological function. For example, it could be cancer genes involved in a specific pathway
or specific biological occurrency. Gene sets are lists of genes that were studied in a
published work and annotated in a Database [Liberzon et al., 2011].

2.1.3 Enrichment Analysis

Enrichment analysis focus on identifying groups of genes that together act as biological
function, chromosomal location, or regulation. This analysis is important to identify
group of correlated genes, analysing its biological background [Khatri et al., 2012].
Then, it is possible to embody characteristics related to gene sets that are in cancer-
related data sets.

2.2 Weighted Correlation Network

A long-standing problem in biological systems is to infer causal, regulatory connections
among genes, proteins, and metabolines [Chasman et al., 2016]. A network provides a
natural representation of a complex cellular system with nodes representing the molec-
ular components and edges representing different connections. A simple solution to
create edges between nodes is by correlating them and use the coefficient values as
weight for edges. One of the most commonly used correlation methods for gene ex-
pression data is Pearson Correlation Coefficient [D’haeseleer, 2005], the reason is the
existence of a linear correlation in gene expression data. WCN is this network built
from correlation coefficients as edges and correlated variables as nodes.

Pearson Correlation Coefficient

Pearson Correlation Coefficient is a measure of linear correlation between two vari-
ables [Benesty et al., 2009], its properties are described below.
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• Measures the linear relationship between X and Y ;

• Range: −1 ≤ r ≤ 1;

• Correlation coefficient is a unitless index of strength of association between two
variables (+ = positive association, - = negative, 0 = no association).

Pearson Correlation Coefficient formula is:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√

Σn
i=1(xi − x̄)2Σn

i=1(yi − ȳ)2
, (2.1)

in which X and Y are the variables, r is the correlation coefficient of pair X and
Y , and n is the sample size.

The reason behind the WCN in cancer is to use network language to describe the
relationships between biomolecules. Although there are other statistical techniques for
the analysis of correlation matrices, the language of the network is particularly intuitive
for biologists and allows simple analyzes of the informative network. We can use
those networks to meet many analytical objectives, for example finding clusters of
interconnected biomolecules.

2.3 Network Analysis

Our network will have important topological properties to evaluate a vertex and their
connections. We call those properties as part of network analysis. In this work, we
are going to explore the network topology, communities of genes and important node
ranking, to evaluate as input for enrichment analysis.

In the following subsections, we present two concepts that are applied in our
Weigthed Correlation Network: Community Detection and Centrality Measures.

2.3.1 Community Detection

The process of discovering cohesive groups or clusters in a network is known as com-
munity detection. Detecting communities in biological networks can be useful in ap-
plications where the specific characteristics of each group are evaluated, for example,
recommending a certain biological process expressed in a community [Atay et al., 2017].
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Community Detection based in Clustering

The main objective of this approach is to detect clusters, cohesive groups or subgroups.
Among the innovators of community detection in this approach are Girvan and Newman
[2002], they proposed an algorithm using betweenness centrality (Explanation in item 5
of this work), in which vertexes with a greater value of this measure are used as
cutting vertexes for the construction of related components. Another concept defined
by Girvan and Newman [2002] was the measure known as ‘modularity’ to quantify
the quality of communities [Newman and Girvan, 2004]. Blondel et al. [2008] inspired
by modularity, created the ‘modularity of louvain’, which is an optimized method for
community detection. Modularity of louvain is a greedy heuristic algorithm that builts
communities and uses modularity as a metric to evaluate quality of the communities.

2.3.2 Centrality Measures

In order to identify the importance of entities, complex networks use a concept of
centrality measure, which are measures developed to determine the importance of ver-
texes and edges, using structural characteristics of networks. The following items in
this subsection list some methods and present some works that used it.

Weighted Degree Centrality

This measure is similar to the Degree Centrality measure, the difference being that this
measure takes into account the weight assigned to the edges. In the paper by Tang
et al. [2014], the authors show that it is possible to predict essential proteins using
Weighted Degree Centrality, the authors used Pearson correlation coefficient (PCC) for
the computation of the edge weights. As shown in Algorithm 1, the time complexity
of this algorithm is O(E) in which E is the number of edges.

Algorithm 1: Weighted_Degree(G,n)
1 begin

// will compute E times → O(E)

2 for each e ∈ G[E] do
3 e.from← e.from+ weight(e)
4 e.to← e.to+ weight(e)

5 end
6 end
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Eigenvector Centrality

This measure is similar to the measure Weighted Degree Centrality with a return: a
vertex receives the sum of the importance values of its neighbors. Then the importance
of a vertex is the weighted sum of the importance of the neighboring vertexes added
to its value of importance. The importance xi of a vertex i receives the weighted
sum of the importance of its neighbors: xi =

∑
j∈Vwjixj for each i ∈ V . In the

work of Borgatti [1995], the author explains that by using the Eigenvector Centrality
measure we are expanding the understanding of the risk of infection, since a person
A that has several people in the network has a great chance of infecting everyone else
who has a relationship, even if that relationship is only A. The time complexity of this
algorithm (shown in Algorithm 2) is O(E), in which E is the number of edges.

Algorithm 2: Eigenvector(G,n)
1 begin

// will compute 2× E times → O(E)

2 for each e ∈ G[E] do
3 V (e.from)← V (e.from) + weight(e)
4 V (e.to)← V (e.to) + weight(e)

5 end
6 for each e ∈ G[E] do
7 V (e.from)← V (e.from) + V (e.to)
8 V (e.to)← V (e.to) + V (e.from)

9 end
10 end

Closeness Centrality

It is a measure that computes the average distance from one vertex to all others,
the smaller this distance, the more important is the vertex. In the work of Okamoto
et al. [2008], the authors present a comparison of Closeness centrality with PageRank
centrality [Beveridge and Shan, 2016]. For the ranking systems, they show that the
Closeness centrality has a low computational expense compared to PageRank since the
measure needs to calculate the PageRank value of all vertexes, even if only a sample k
of elements is desired. The time complexity of this algorithm (shown in Algorithm 3)
is O(V 2E), in which E is the number of edges and V is the number of vertices.
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Algorithm 3: Closeness(G,n)
1 begin

// compute V times
2 for each v ∈ G[V ] do

// compute all short paths from v to all other nodes → V E

3 v ← shortest_path(v,G)÷ size(G[V ])

4 end
// will compute V × V × E → O(V 2E)

5 end

Betweenness Centrality

The idea of this centrality is to evaluate the importance of a node according to the
interposition of a vertex and the path between the other vertexes on the network.
Then, the importance of the node is due to the number of paths between two vertexes
that cross the chosen vertex. This measure calculates the frequency of trips that pass
through that vertex. The betweenness zi of a vertex i is given by

zi =
∑
j,k∈V

σjk(i)

σjk
, (2.2)

in which σjk is the number of (j,k) - smaller paths and σjk(i) the number of these
smaller paths that pass through the vertex i [Beveridge and Shan, 2016]. The work
of Leydesdorff [2007] has an interesting application using this measure, the author uses
Betweenness centrality as an indicator of interdisciplinary of scientific journals. The
time complexity of this algorithm (shown in Algorithm 4) is O(V 2E), in which E is
the number of edges and V is the number of vertices.

Algorithm 4: Betweenness(G,n)
1 begin

// compute V times
2 for each v ∈ G[V ] do

// compute all short paths from v to all other nodes → V E

3 shortest← shortest_path(v,G)

4 end
5 bet(G[V ])← frequency(shortest, G[V ])

// compute frequency of shortest paths through each node
// will compute V × V × E → O(V 2E)

6 end
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Clustering Rank

Mathematically, the Clustering Rank score si of node i is defined as:

si = f(ci)
∑
j∈τi

(kjout + 1), (2.3)

in which the term f(ci) accounts for the effect of i’s local clustering and the term
“+ 1” results from the contribution of j itself. Here f(ci) = 10−ci [Chen et al., 2013].
This centrality is a local ranking algorithm, which takes into account not only the
number of neighbors and the neighbors’ influences, but also the clustering coefficient.
The time complexity of this algorithm (shown in Algorithm 5) is O(V 2), in which E is
the number of edges and V is the number of vertices.

Algorithm 5: Clustering(G,n)
1 begin

// compute V times
2 for each v ∈ G[V ] do

// compute cluster rank from node to neighbors → V

3 for each nei ∈ neighborhood(v) do
4 cluster_rank(v)← cluster_rank(v) +degree(v, nei, loops(v, nei))
5 end
6 end

// will compute V × V → O(V 2)

7 end

Diffusion Degree

Diffusion degree CDD of node v is defined as:

CDD(v) = λv × CD(v) +
∑

i∈neighbors(v)

λi × CD(i), (2.4)

in which CD is degree of of vertex and λ is propagation probability of vertex. In
a diffusion process, a node v with propagation probability λv, can activate its neigh-
bor u with probability λv. When the diffusion process propagates to the next level,
active neighbors of v will try to activate their inactive neighbors. Thus the cumulative
contribution in the diffusion process by neighbors of v will be maximized when all of
its neighbors will be activated in the previous step [Pal et al., 2014]. As shown in
Algorithm 6, the time complexity of this algorithm is O(V 2) in which V is the number
of nodes.
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Algorithm 6: Diffusion(G,n)
1 begin

// apply probability λ for each E

2 d← degree(G[E])× λ
// compute V times

3 for each v ∈ G[V ] do
// compute diffusion from node to neighbors → V

4 for each nei ∈ neighborhood(v) do
5 dif(v)← dif(v) + d(v, nei)
6 end
7 end

// will compute E + V × V → O(V 2)

8 end

DMNC

One major task in the post-genome era is to reconstruct proteomic and genomic
interacting networks using high-throughput experiment data. To identify essential
nodes/hubs in these networks is a way to decipher the critical keys inside biochemical
pathways or complex networks. These essential nodes/hubs may serve as potential
drug-targets for developing novel therapy of human diseases, such as cancer or infec-
tious disease caused by emerging pathogens [Lin et al., 2008].

The Density of Maximum Neighborhood Component (DMNC) was developed for
exploring and identifying hubs/essential nodes from networks. The score of node v
using DMNC(v), is defined to be E

Nε :

|E(MNC(v))|
|V (MNC(v))|ε

, (2.5)

in which for some 1 ≤ ε ≤ 2, ε is set to be a value of neighborhood control, E is
the number of edges, V the number of vertices. MNC is the Maximum Neighborhood
Component in which the score of node v, MNC(v), is defined to be the size of the
maximum connected component of N(v), the neighborhood N(v) is the set of nodes
adjacent to v and does not contain node v. The time complexity of this algorithm
(shown in Algorithm 7) is O(V 2), in which V is the number of vertices.
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Algorithm 7: DMNC(G,epsilon)
1 begin

// clusters function costs O(V 2)

2 c← clusters(G)
// compute V times

3 for each v ∈ G[V ] do
4 sub← subgraph_neighborhood(v)
5 ec← edge_count(sub,max(c))
6 dmnc(v)← ec÷max(c)epsilon

7 end
// will compute V 2 + V → O(V 2)

8 end

Laplacian Centrality

The Laplacian centrality with respect to v is:

CL
v = (∆E)v = d2G(v) + dG(v) + 2

∑
vi∈N(v)

dG(vi), (2.6)

in which G is a graph of n vertices, N(v) is the set of neighbors of v in G and
dG(vi) is the degree of vi in G. Laplacian centrality is a simple centrality measure
that can be calculated in linear time. It is defined as the drop in the Laplacian energy
(i.e. sum of squares of the eigenvalues in the Laplacian matrix) of the graph when the
vertex is remove [Qi et al., 2012]. As shown in Algorithm 8, the time complexity of
this algorithm is O(V 2) in which V is the number of nodes.

Algorithm 8: Laplacian(G,n)
1 begin

// compute V times
2 for each v ∈ G[V ] do

// sum of neighbors degree V times (worst case)
3 for each nei ∈ neighborhood(v) do
4 deg_nei← deg_nei+ degree(nei)
5 end
6 deg ← degree(v)
7 laplacian(v)← deg2 + deg + 2× deg_nei
8 end

// will compute V × V → O(V 2)

9 end
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Leverage

Leverage centrality considers the degree of a node relative to its neighbors and operates
under the principle that a node in a network is central if its immediate neighbors rely
on that node for information. Leverage centrality of vertex i defined as:

li =
1

ki

∑
Ni

ki − kj
ki + kj

, (2.7)

in which ki is degree of a given node i, kj is degree of each of its neighbors andNi is
all neighbors. A node with negative leverage centrality is influenced by its neighbors,
as the neighbors connect and interact with far more nodes. A node with positive
leverage centrality, on the other hand, influences its neighbors since the neighbors tend
to have far fewer connections [Joyce et al., 2010]. As shown in Algorithm 9, the time
complexity of this algorithm is O(V 2) in which V is the number of nodes.

Algorithm 9: Leverage(G,n)
1 begin

// compute V times
2 for each v ∈ G[V ] do

// compute leverage from node to neighbors V times (worst case)
3 for each nei ∈ neighborhood(v) do
4 lev_rank(v)← lev_rank(v) + (degree(v)− degree(nei))÷

(degree(v) + degree(nei))
5 end
6 lev_rank(v)← lev_rank(v)÷ degree(v)

// will compute V × V → O(V 2)

7 end
8 end

Topological Coefficient

The topological coefficient is a relative measure for the extent to which a node shares
neighbors with other nodes. Topological coefficient Tn of a node n with kn neighbors
defined as:

Tn =
mean(J(n,m))

kn
, (2.8)

in which J(n,m) is defined for all nodesm that share at least one neighbor with n.
The value J(n,m) is the number of neighbors shared between the nodes n and m, plus
one if there is a direct link between n and m. Nodes that have one or no neighbors are
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assigned a topological coefficient of zero [Assenov et al., 2007]. The time complexity of
this algorithm (shown in Algorithm 10) is O(V 3), in which V is the number of vertices.

Algorithm 10: Topological(G,n)
1 begin

// compute V times
2 for each v ∈ G[V ] do
3 J ← 0

// compute node to neighbors V times (worst case)
4 for each nei1 ∈ neighborhood(v) do

// compute neighbor node to neighbors V times (worst case)
5 for each nei2 ∈ neighborhood(nei1) do
6 if nei2 ∈ neighborhood(v) then
7 J ← J + 1
8 end
9 end

10 end
11 J ← J ÷ shared_neighbors(v)
12 topological(v)← J ÷ size(neighborhood(v)

// will compute V × V × V → O(V 3)

13 end
14 end

2.4 Related Works

In this section, we show some works about cancer classification and characterization
that applied networks on their studies. Those related works are not only for breast and
ovarian cancer, it is interesting to analyze works not only applied for only one type of
cancer, as we are looking which methods are capable of characterizing general types of
cancer.

In Weigthed Correlation Network, usually the authors’ strategy is to correlate
molecules and find patterns that may be useful in discriminating some characteristics
of cancer. They construct the networks and use the topology of these networks to
identify discriminative characteristics.

2.4.1 State-of-the-art

Zhang et al. [2016] present a classification procedure for ovarian cancer and identify
networks and genes for each subtype by integrating multiple data sources, including
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mRNA expression, microRNA expression, number of copies variation and protein in-
teraction data. For each subtype of ovarian cancer, the authors explored the oncogenic
processes and the leading genes using a network-based approach. As results, they
present a computational framework to harness the full potential of large-scale genomic
data to discover the network modules of ovarian cancer subtypes and candidate genes
for therapy.

Chang et al. [2011] use a Transcriptomic Signature Network for identification of
lung cancer subtypes. During the study, they compared their model with a method us-
ing PCA-LDA (Principal Component Analysis and Linear Discriminant Analysis). As
a comparison, they showed that their method achieves a maximum of 95.2 % accuracy
while the PCA-LDA reaches 93.4%.

In multidimensional Fessler et al. [2016], the authors use a multidimensional net-
work to identify groups of molecules responsible for each subtype of colorectal cancer.
Thus, the authors defined a network-based approach that involves multiple molecu-
lar modalities such as gene expression, methylation levels, and microRNA expression
(miR). The authors then showed that the determination of regulatory networks, groups
of biomolecules that act as therapy, is a powerful strategy to define responsible groups
of different subtypes of cancer because they have the ability to identify subtype affili-
ation and to define biological behavior.

In the work of Yang et al. [2017], the authors seek to better characterize the
prostate cancer. For this, they used an approach of molecular networks and profiles of
somatic mutations. The results of this characterization are compared with clinical and
pathological results. The results obtained through molecular networks and mutation
profiles indicate that prostate cancers can be classified according to their pro-patents
of mutation and argue that these subtypes may help to improve the treatment of this
type of cancer in the future.

To identify subtypes of breast cancer, Hua et al. [2013] construct a network of
microRNA interactions where they apply a Silico method to perform the identification.
The authors show that the microRNAs present excellent topological properties and are
essential for unraveling their biological function. As results, they present a new Silico
method to predict candidate microRNAs of breast cancer subtypes.

Dutta et al. [2012] construct networks to identify genetic networks responsible for
subtypes of breast cancer. The authors are able to identify distinct genetic networks
that were responsible for the three most common subtypes of breast cancer. Finally,
they report that members of the triple-receptor-negative breast cancer (TNBC) genetic
networks increased the functional specificity of TNBC cell lines and had a greater
functional sensitivity compared to the genes selected only by differential expression,
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facilitating the distinction between subtypes.

Mertins et al. [2016], which described proteogenic analyzes of breast cancer sam-
ples available in the TCGA database (The Cancer Genome Atlas) that represent the
four major intrinsic subtypes of breast cancer. In one of their analyzes, the authors used
cluster analysis and molecular networks, using Pearson correlation to construct their
network. As a result, they demonstrate that the proteogenic analysis of breast cancer
elucidates the functional consequences of somatic mutations, narrows the indications
of the responsible genes in larger delimitations and identifies therapeutic targets.

2.4.2 Related Works Synthesis

In the work of Zhang et al. [2016], they built a network that represents a patient
similarity network. The nodes are the patients, whereas the edges are weighted by
similarity between patients. Chang et al. [2011] built a Transcriptional Network with
the bayesian networks framework [Chang and Ramoni, 2009], in which a model encodes
the dependence relation among the cancer subtype and genes. Yang et al. [2017] built
a protein-protein network using STRING database [Szklarczyk et al., 2014], STRING
Network, in which they use human protein-protein interaction data for network con-
struction. miRNAs Interaction Networks are networks built from miRNA Expression
Profiling, in which they infer large networks using mutual information, Hua et al. [2013]
describe this approach to identify breast cancer subtypes. Finally, Dutta et al. [2012],
Fessler et al. [2016], Mertins et al. [2016] built their networks applying Pearson Cor-
relation and using their coefficients as edges. In this work, we call this approach of
using correlation coefficients as edges as Weighted Correlation Network, described in
Section 2.2.

The Table 2.1 show a Synthesis of the related works, based on their network
approaches and the Cancer Type.

2.5 Chapter Discussion

This chapter presented a summary of fundamentals necessary for the work develop-
ment. Our approach follows a Weighted Correlation Network, Network Analysis, and
Biological concepts as tools to explore cancer characteristics.

Recently, with the advent of molecular biology, researchers can use gene expres-
sion data to reconstruct networks and find patterns that may be useful in discriminat-
ing some characteristics of cancer. They construct these networks and use the network
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Title Authors Approach Cancer Type
Identification of ovarian cancer
subtype-specific network modules
and candidate drivers through an
integrative genomics approach

Zhang et al. (2016) Similarity Networks Ovarian

A transcriptional network
signature characterizes lung
cancer subtypes

Chang et al. (2011) Transcriptional Network Lung

A multidimensional network
approach reveals microRNAs
as determinants of the mesenchymal
colorectal cancer subtype

Fessler et al. (2016) WCN - Pearson Colorectal

Molecular classification of prostate
adenocarcinoma by the integrated
somatic mutation profiles and
molecular network

Yang et al. (2017) STRING Networks Prostate

Identifying breast cancer subtype
related mirnas from two constructed
mirnas interaction networks in silico
method

Hua et al. (2013) miRNAs Interaction Networks Breast

A network-based, integrative study
to identify core biological pathways
that drive breast cancer clinical
subtypes

Dutta et al. (2012) WCN - Pearson Breast

Proteogenomics connects somatic
mutations to signalling in breast
cancer

Mertins et al. (2016) WCN - Pearson Breast

Table 2.1: Related works synthesis.

topology to identify discriminative characteristics that can be used as characteristics
vector of a biological method to be studied.

Therefore, we want to explore more network analysis than others works. We aim
to find some characteristics useful for biology analysis, extract information about the
network topology as we do in works with social networks for computational problems,
imagining each gene as a node that also have value grouping with other genes.

In the next chapters, we present our approach, the results of our approach and
conclusions.
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Proposed Approach

In this chapter, we describe the proposed approach, explain the layers’ correlation,
the network structure, and explore network centralities and community detection
to apply gene set enrichment analysis.

3.1 Overview

In Figure 3.1, we present an overview of our proposed solution. We divided in four
steps: Correlation Tables, Weighted Correlation Network, Network Analysis, and Gene
Set Enrichment Analysis.

In section 3.2, we show the first step of our approach, which consists in computing
the correlation between lists of our Gene Expression Data. This step is important for
section 2.2 in which we use the correlation coefficients to reconstruct our biological
network structure, using the correlation as weight for our edges.

For our analysis, presented in two steps (section 3.4 and 3.5), we apply centrality
measures and group genes in communities to analyze the topological information of
the network. We gather information inherited by the centralities and the communities
and use lists of genes as inputs to analyze the biological information using Gene Set
Enrichment Analysis.

3.2 Correlation Tables

The data that we use consists in gene expression data. In our work, we use three
main layers (CNA, RNA, and Protein). In each layer, we have columns representing
the samples and lines representing genes (CNA and RNA layers) or proteins (Protein

19
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Figure 3.1: Proposed Solution.

layer), as shown in Figure 3.2. For our method, we compute the correlation between
gene expression data, in order to explore the relations between genes and protein.

sample 1 ... sample 77

gene 1

... ... ... ...

gene n

sample 1 ... sample 77

protein 1

... ... ... ...

protein k

sample 1 ... sample 77

gene 1

... ... ... ...

gene m

CNA RNA

Protein

Figure 3.2: Layer’s data.

3.2.1 Multi Layer Correlation

Multiomics refers to a biological analysis approach in which the data sets are multiple
“omes”, such as the genome (CNA), transcriptome (RNA), and proteome (Protein),
in other words, the use of multiple omics technologies to apply in a study. In Multi
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Layer Correlation, we correlate all table data in the multiomic order (CNA ↔ RNA
↔ Protein), as shown in Figure 3.3. The definition of multiomic The purpose of this
correlation is to show the behavior of our multi layer network, connecting all three
layers of gene expression data. After the correlation process, we build two tables of
data correlation coefficients, CNA-RNA correlations and RNA-Protein correlations to
construct one network.

Figure 3.3: Correlate gene expression data between CNA, RNA and Protein.

3.2.2 Single Layer Correlation

In Single Layer Correlation, we correlate only the layers that can possibly induce his
kind, RNA and Protein. This correlation is important to show the interrelationship
between genes and proteins of same layer (RNA↔ RNA and Protein↔ Protein), shown
in Figure 3.4. CNA does not have a network because Copy Number Alteration does
not have relationship with its kind. At the end, we build two tables of data correlation
coefficients, RNA-RNA correlations and Protein-Protein correlations to construct two
networks.

Figure 3.4: Correlate gene expression data between RNA with RNA, and Protein with
Protein.
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3.3 Weighted Correlation Network

After we have the tables of data correlations coefficients, we build a network where the
genes/proteins are nodes and the correlation values are the weighted edges. To look
for more significant networks we filter the correlations by choosing threshold values.
In Figure 3.5, we could see a sketch example of connected nodes and disconnected
nodes from CNA, RNA, and Protein. In the example, the disconnected node ‘p1’ was
filtered by a threshold. Our edges values are correlation modules because we look for
correlation regardless the type: positive or negative. Besides that, this simplification
works better for computing centralities. Most of the centrality measures work with
positive edges, when we have a loop of negative edges the measures may fall in infinite
loop, having problems with their computations.

Once we defined our edges values, we apply the threshold to build the network.
This value can change by looking the different patterns shown when we apply network
centrality measures and community detection. Reconstructing a network is the first
step of our configurations, the correlation coefficients may not change but the network
structure can change by tuning the threshold.

Figure 3.5: Network structure.



3.4. Network Analysis 23

3.4 Network Analysis

Given the WCN built, we apply network centrality measures and community detection.
We apply centrality measures to evaluate influential nodes. The different edges’ values
will give different influential nodes, so we generate different ranks depending on the
centrality. In community detection, we can see how a group of nodes interact, which
clusters are formed, which node is the most influential one inside each community, etc.

Community Detection and Centrality Measures may not be a novel approach in
cancer analysis, but there are plenty of combinations using them that were not tested
yet. Our main purpose is to clarify important nodes, grouped or not, that have meaning
in the cancer characteristics. For that goal, we explore these network analysis through
comparison between different cancer data, removal of important groups to see how
important they were for the network, and others combinations that may show us some
meaningful importance of groups and individual nodes.

3.5 Enrichment Analysis

Once we have lists of genes ranked by centrality measures or grouped by communities,
we apply enrichment analysis to interpret our data. Thus, we can identify important
gene sets related to a group or a ranked list generated by our strategy.

To identify a gene set, in a collection of annotated gene sets, related to our list
is an important task. We can define the gene sets found as a characteristic for our
specific type of cancer.

3.6 Chapter Discussion

Each step of our approach have some configurations to decide: (a) the threshold that
filters the correlations for our Weighted Correlation Network; (b) centrality measures
used in our study; (c) community detection method applied and (d) collection of gene
sets compared.

After we decided each configuration for our studies, we approached our network-
based exploration using enrichment analysis. The experimental methodology and the
results of our exploration are described in chapter 4.
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Experiments

I n this chapter we show the experimental methodology, some experiments and
results achieved.

4.1 Experimental Methodology

Our database was provided by researcher collaborators from NYU Medical School.
It contains information about proteogenomic data from Breast cancer and Ovarian
cancer. The Breast cancer and Ovarian cancer data have 4 layers: CNA, RNA, and
Protein.

4.1.1 Gene Expression Data Format

A gene and protein expression can be represented by a real-valued. In this work, the
values presented in each layer are normalized using Z-score transformation with average
0 [Cheadle et al., 2003]. Our dataset is divided in tables, where each table organizes
data into m columns (samples) and n rows (genes, proteins).

4.1.2 Preprocess

In our project, we work with CNA, RNA, and Protein, this is because of the highly
missing data occurred in the Phosphoprotein layer. The miss information is a problem
for our project, so we decided to use only variables with 30% or less missing data for
each pairwise in correlation method. After we decided which layers would be used
and how the correlation method would deal with missing data, we cleaned the data.
The cleaning was based on samples that appear in the three layers (CNA, RNA, and
Protein) because we needed each sample as participant in all layers of our correlation
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tables. For example, samples that have only RNA gene expression data and did not
appear in both other tables. After this cleaning process, we ended with 77 samples for
Breast cancer data, and 173 samples in the Ovarian cancer data.

4.1.3 Correlation Tables

To construct correlation tables necessary for our networks, we applied Pearson corre-
lation (Section 2.2) for both Breast Ovarian cancer. The choice of the correlation was
based on the most used correlation in the related works presented in Section 2.4.

4.1.4 Weighted Correlation Network and Network Analysis

In all our experiments, we used R programming, to calculate all correlation coefficients
with respective p-values, to reconstruct our networks, and to apply network analysis.
For our network visualization, we used the software GEPHI [Bastian et al., 2009].

4.1.5 Enrichment Analysis

Identifying a gene set related to our lists of rankings or communities is an important
task to define characteristics for cancer. Different enrichment analysis methods can be
used for different inputs, depending on the information given in the input lists. In this
work, we used two enrichment analysis methods: PANTHER Classification and GSEA
PreRanked. Those enrichment analysis methods can work with list of genes sorted, in
GSEA PreRanked, or not, in PANTHER Classification, to identify biological related
set of genes.

PANTHER Classification

PANTHER Classification System [Mi et al., 2019] evaluates the lists of genes that
belong to a given gene or protein family or subfamily, have a given molecular function
or participate in a given biological process or pathway.

PANTHER Classification uses a statistical test method (Fisher’s exact test) [Ray-
mond and Rousset, 1995] for the PANTHER overrepresentation test. It consists in
compute whether the proportions of a gene list given is significantly present in gene
sets on PANTHER database.

We use this enrichment analysis in community detection gene lists because we do
not have ranked list of genes, this system only needs a list to match genes in specific
biological backgrounds.
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GSEA PreRanked

Among the most used methods for Enrichment Analysis, GSEA (Gene Set Enrichment
Analysis) [Subramanian et al., 2005]. It computes the Enrichment Score (ES) that is
a score given to a gene set when a ranked list is matching its genes. GSEA PreRanked
method is able to calculate all enrichment scores (ES) for all gene sets. These ES are
scores that increase when, in a ranked list of genes, each sorted element is found in the
ranked list or studied gene set in database, showing overrepresented extremes of the
gene list when it occurs. The extremes of the gene list are called “na_pos”, when in
the top of list, and “na_neg”, when in the bottom of list.

To measure each ranked list, the method computes an enrichment score (ES)
that reflects the degree to which a gene set S is overrepresented at the extremes (top
or bottom) of the entire ranked list L. The score is calculated by walking down the
ranked list L, increasing a running-sum statistic when the method encounters a gene
in S and decreasing it when encounters genes not in S [Subramanian et al., 2005]. In
this work, we focus on quantifying the gene sets found as enriched through ES. Hence,
GSEA method provides us a False Discovery Rate (FDR) value for each gene set.

The false discovery rate (FDR) is the estimated probability that a gene set with
a given enrichment represents a false positive finding. For example, an FDR of 25%
indicates that the gene sets found are likely to be valid 3 out of 4 times. The GSEA
analysis reports highlights enrichment gene sets with an FDR of less than 25% as those
most likely to generate interesting hypotheses of related gene sets and drive further
research, but provides analysis results for all analyzed gene sets.

The FDR is a ratio of two distributions: (1) the actual enrichment (ranked list
enrichment) versus the enrichment scores for all gene sets against all permutations of
the dataset and (2) the actual enrichment (ranked list enrichment) versus the enrich-
ment scores of all gene sets against the actual dataset. For example, if you analyze four
gene sets and run 1000 permutations, the first distribution contains 4000 data points
and the second contains 4. In our work, we use the FDR as gene set reliability control
for each gene set, that is the probability that our ranked list is wrong enriched for that
set.

This method was used in centrality measures gene lists because we have a ranked
list of genes. GSEA PreRanked only needs an ordered list to match genes in specific
biological backgrounds, matching them in a collection of annotated gene sets.
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4.2 Multi Layer - CNA/RNA/Protein

In this experiment, we connect multiomic gene expression data. This is, connect CNA
to RNA and RNA to Protein, following the interactions that represents the central
dogma of molecular biology [Crick, 1970]. This experiment is important to reconstruct
a molecular network that shows CNA, RNA, and protein layers.

The purpose of this experiment is to show the behavior of our multi layer network
when we apply community detection. From our knowledge in network science, this
method is a process of discovering cohesive groups in a network. The objective applying
this method is to reveal if the network is grouping genes and proteins from different
layers as a biological cohesive group.

In the following subsections, we present the Weighted Correlation Network, choos-
ing better thresholds to build our network, the network analysis, applying community
detection and comparing communities, and then a biological analysis, which consists
in evaluating highlighted communities.

4.2.1 Weighted Correlation Network

In Figure 4.1 and Figure 4.2, we observe the distribution of Breast Cancer correlation
coefficients for CNA-RNA and RNA-Protein. In Figure 4.3 and Figure 4.4, we observe
the distribution of Ovarian Cancer correlation coefficients for CNA-RNA and RNA-
Protein. For networks analysis, we must keep a trade-off between dense network with
low correlations (lower thresholds) and sparse network with high correlations (higher
thresholds). To this end, we choose moderate to high correlation coefficients (0.5, 0.6
and 0.7) [Mukaka, 2012].



4.2. Multi Layer - CNA/RNA/Protein 29

0 0 0 6870 123710
1107335

6725349

27042932

67804898

104368499

99790230

60067287

23297323

6354352

1756474
662027282010 78455 7512 870

25,000,000

50,000,000

75,000,000

100,000,000

−
1.

0

−
0.

9

−
0.

8

−
0.

7

−
0.

6

−
0.

5

−
0.

4

−
0.

3

−
0.

2

−
0.

1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Correlation Coefficient

F
re

qu
en

cy

Figure 4.1: Correlation distribution for Breast CNA-RNA Gene Set Data.
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Figure 4.2: Correlation distribution for Breast RNA-Protein Gene Set Data.
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Figure 4.3: Correlation distribution for Breast CNA-RNA Gene Set Data.
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Figure 4.4: Correlation distribution for Ovarian RNA-Protein Gene Set Data.
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4.2.2 Network Analysis

The purpose of this experiment is to study if we can capture biological processes from
a network built using all layers when we apply community detection.

For Breast Cancer, we can see that the first two networks (Figures 4.5a and 4.5b)
do not show dense communities as the third network (Figure 4.5c), this could be result
of the high number of new connections appearing from threshold 0.6 to 0.5.

(a) Network for threshold 0.7. (b) Network for threshold 0.6.

(c) Network for with threshold 0.5.

Figure 4.5: Breast Cancer Networks.
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For Ovarian Cancer, we can see a different outcome right in the first network
(Figure 4.6a). Although we do not have high dense communities, we see that a central
community starts to gather nodes. From the network 0.6 (Figure 4.6b) to network 0.5

(Figure 4.6c), visually we do not see a great difference from the threshold decrease,
but we see that the central community remains. Further explorations shows that the
central community is the biggest one.

(a) Network for threshold 0.7. (b) Network for threshold 0.6.

(c) Network for with threshold 0.5.

Figure 4.6: Ovarian Cancer Networks.
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To monitor the communities as we change threshold, Figure 4.7 shows how com-
munities behave through thresholds on both network cancers. We can highlight that as
we lower the threshold, the number of communities decreases as the larger community
emerges. The reason is that the number of edges increase, connecting more nodes and
creating new paths between nodes.
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Figure 4.7: Distribution of Community Size.

As a way of community analysis, we compare community intersections between
Ovarian and Breast cancer networks. For the study of the community intersections,
we used a R library called Circlize [Gu et al., 2014]. This tool can generate a circular
chart, where we can connect different sides of the chart and show the intersections
occurring between both sides. We exclude genes and proteins that appear in only one
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network (Breast or Ovarian) and identify genes and proteins that are in communities
from both networks.

In this comparison, each side of the chart contains the communities of a network
of a different cancer (Breast and Ovarian). We compared same thresholds of different
cancer, lowering the threshold in each comparison. When we lower the threshold below
0.6, we can see a highly dense community intersection between Breast and Ovarian
cancer.

Comparing Figures 4.8 and 4.9, we are able to see the difference as we lower
to Figure 4.10, comparing the intersections presented with threshold 0.5 and 0.6, the
biggest community intersection looks more consistent than networks with threshold
0.7.

In Figure 4.9 we clearly see a difference with their community intersection. A big
intersection between biggest communities in Breast and Ovarian began to emerge.

In Figure 4.10 we can see the same behavior shown on Figure 4.9. The biggest
intersection started to stand, gathering more intersected genes and proteins from both
networks.
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4.2.3 Enrichment Analysis

For this analysis, we took the biggest intersection between the communities from Breast
and Ovarian networks shown in Figure 4.10. From this intersection, we separate two
lists, one for RNA and other for Protein. CNA did not show expressive genes in the
intersection between the biggest community.

For the RNA analysis, shown in Figure 4.11, we took a total of 6,162 genes inside
the intersection from networks with threshold 0.5. From our analysis, we can highlight
two biological processes expressed in dark blue and gray (two talest bars). Those two
biological processes are responsible for cellular process and metabolic respectively.

RNA

Figure 4.11: PANTHER analysis for RNA list.

For the Protein analysis, shown in Figure 4.12, we took a total of 365 proteins
inside the intersection from networks with threshold 0.5. We can also highlight the same
two biological process expressed in dark blue and gray (two longest bars). Those two
biological processes are responsible for cellular and metabolic processes, respectively.
Those similar results between RNA and Protein, having same two biological processes
intersections, shows that our networks are mirroring the functioning of a cell. The
reason is that those processes need either RNA and Protein for their functioning, and
our community capture the biological analysis for both.
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Protein

Figure 4.12: PANTHER analysis for Protein list.

4.3 Single Layer - RNA/RNA and Protein/Protein

In these experiments, we connect single layer gene expression data. This is, we connect
data from same layer, connecting RNA to RNA in one experiment and Protein to Pro-
tein in the other. This experiment is important to show the interrelationship between
genes and proteins of same layer, experiments in other works also relate biomolecules of
same layer. CNA does not have a network because CNA genes do not have a biological
relation, connecting only with RNA as we did for the multi layer experiment.

This experiment analyzes a set of ranked lists of RNA-RNA and Protein-Protein
applying centrality measures as a way of sorting genes and proteins. Those ranked lists
will serve as inputs to enrichment analysis methods which need ranked genes for gene
set enrichment.

4.3.1 Weighted Correlation Network

The Figures 4.13 and 4.14 are the distribution of Breast Cancer correlation coefficients
for RNA-RNA and Protein-Protein. The Figures 4.15 and 4.16 are the distribution
of Ovarian Cancer correlation coefficients for RNA-RNA and Protein-Protein. We
learned from last experiment that we must keep a trade-off between dense network
with low correlations (lower thresholds) and sparse network with high correlations
(higher thresholds). For this reason, we choose moderate correlation coefficients (0.5,
0.6 and 0.7) [Mukaka, 2012].
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Figure 4.13: Correlation distribution for Breast RNA-RNA Gene Set Data.
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Figure 4.14: Correlation distribution for Breast Protein-Protein Gene Set Data.
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Figure 4.15: Correlation distribution for Ovarian RNA-RNA Gene Set Data.
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Figure 4.16: Correlation distribution for Ovarian Protein-Protein Gene Set Data.
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4.3.2 Network Analysis

Our purpose here is to analyze the values of centralities, using their measures as a
ranked list for enrichment analysis. In this step, we applied all centrality measures
shown in Chapter 2. It is important to follow the number of experiments shown in
next step, because we cross correlations with different networks.

We have a total of twelve networks as shown in Figure 4.17. There are 4 types
of network: Breast Protein, Breast RNA, Ovarian Protein and Ovarian RNA; and 3
correlation coefficients: 0.5, 0.6 and 0.7. We apply all 10 centralities for those twelve
networks, which provide us a total of 120 ranked lists for enrichment analysis.

Figure 4.17: Networks submitted to analysis, we have 4 types of networks and 3 corre-
lations.

For experiments in Enrichment Analysis, we set a maximum size of the ranked
list of 5,000 elements and removed all nodes with no connections. In Table 4.1, we
show the amount of elements left for enrichment analysis. We can see that most of
the networks reach the limit of elements but three networks, in RNA, are under 5,000
elements. These are: Breast RNA 0.6 and 0.7, and Ovarian RNA 0.7.

4.3.3 Enrichment Analysis

In this step, we analyze gene sets in our 120 ranked lists using GSEA method. The
Molecular Signatures Database (MSigDB) has annotated gene sets for use with GSEA
software. In our analysis, we use all gene sets from MSigDB, a total of 17,810 gene
sets. Then, we label gene sets, as shown in Table 4.2, as “not cancer”, “cancer”, “breast
cancer”, and “ovarian cancer” gene sets based on their description. For this, we imple-
mented a website crawler to get a description about each gene set and ran a script to
label as follows: (1) “cancer” for keywords cancer, cancinoma or tumour ; (2) as “breast
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Network Type Correlation Quantity of Elements

Breast Protein
0.5 5,000
0.6 5,000
0.7 5,000

Breast RNA
0.5 5,000
0.6 3,754
0.7 1,861

Ovarian Protein
0.5 5,000
0.6 5,000
0.7 5,000

Ovarian RNA
0.5 5,000
0.6 5,000
0.7 4,175

Table 4.1: Ranked List size for each Network Type and Correlation.

Gene Set Label Keywords Quantity of Gene Sets
Cancer {cancer, carcinoma, tumour} 3,079
- Breast Cancer {breast, mammary, mamma} 582
- Ovarian Cancer {ovarian, ovaries, ovary} 73
Not Cancer not in cancer 14,731

Table 4.2: Gene Set Labels showing Keywords and Quantity.

cancer” for “cancer” keywords and breast, mammary or mamma; (3) “ovarian cancer”
when inside “cancer” and for keywords ovarian, ovaries or ovary ; and (4) “not cancer”
when out of all previous sets. Based on our labels, we divided MSigDB in 3,079 gene
sets related to cancer, 582 related to Breast Cancer gene sets, and 73 related to Ovarian
Cancer gene sets.

We present one histogram for each type of network, as shown in Figure 4.18, in
which: (1) y axis presents the trusted gene sets, which are gene sets with FDR (False
Discovery Rate) less than 0.1; (2) x axis presents the centrality measures applied; and
(3) the color of each bar represents the correlation coefficient for that network, showing
three sets of bars for each centrality.

Cancer Only Gene Sets

The first set of histograms (Figure 4.18), shows the percentage of trusted gene sets
related to cancer (3,079 gene sets). Some centralities, for both cancers, are capable to
capture gene sets enriched in our ranked list. We can highlight that Protein networks
can capture more gene sets than RNA layer. We believe this result is a consequence of
RNA network being more sparse (disconnected) than Protein.
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We quantify the na_pos and na_neg, that are gene sets found in the extremes
of our ranked list (Figure 4.18). To show the difference in quantity, we separate each
bar in two shades of transparency. The most transparent, top of the bar, represents
the gene sets enriched at top list (na_pos), and the least transparent, bottom of the
bar, represents the gene sets enriched at the bottom (na_neg).

The enrichment analysis show that we find more gene sets in na_neg than in
na_pos in most networks. But at Breast RNA Network, we see centralities that found
gene sets in the top list and not at bottom. One hypothesis is the sparseness of Breast
RNA network. Not only we have less connected nodes through correlations but we also
have disconnected components that we take into account.

For each centrality, we can see some particularities: (1) betweenness is not mono-
tonic through correlations and network types, the disconnected components imply this,
but we highlight the na_pos in Protein networks; (2) closeness follows a uniform be-
havior and captures more gene sets as we increase the correlation, we highlight the
Breast Protein type where this centrality captured more gene sets; (3) clustering is not
monotonic through correlations, but is able to compete in amount of gene sets and we
highlight the Ovarian RNA where it captures more gene sets than other centralities;
(4) diffusion is monotonic and we highlight the uniformity in Ovarian RNA where
it captures more than 7.5% of gene sets; (5) dmnc looks not uniform in some net-
works through correlations but capture more na_pos than other centralities through
the network types; (6) eigenvector is monotonic through correlations thresholds and
we highlight Breast RNA and Ovarian Protein types where this centrality captured
more gene sets; (7) laplacian looks more monotonic in Ovarian networks; (8) leverage
is not uniform but able to capture more na_pos than other centralities in Ovarian Pro-
tein networks; (9) topological is not monotonic and unable to compete against other
centralities in amount of gene sets; (10) weighted is uniform and is able to compete in
quantity of gene sets.
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(a) Breast Protein
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(b) Breast RNA
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(c) Ovarian Protein
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(d) Ovarian RNA

Figure 4.18: Percentage of Cancer Only Histogram for MSigDB of Enriched Gene Sets
with FDR < 0.1.
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Cancer Type Only (Breast/Ovarian) Gene Sets

When we take a look on each cancer type, based on our labels, we have 582 Breast
Cancer gene sets and 73 Ovarian Cancer gene sets. Figure 4.19 shows percentage
histograms for each cancer type. Here we can also show that Protein Layer has better
percentage results. Additionally we highlight that in Breast Protein our centralities
can find almost 10% of all Breast Cancer related gene sets. This result could also be a
consequence of RNA network being more sparse (disconnected) than Protein.

We applied same analysis as we did for all cancer gene sets, as shown in Fig-
ure 4.19, quantifying the na_pos and na_neg, that are gene sets found in the extremes
of our ranked list. We separate each bar in two shades of transparency following as: the
most transparent, top of the bar, represents the gene sets enriched at top list (na_pos),
and the least transparent, bottom of the bar, represents the gene sets enriched at the
bottom (na_neg).

Most of the enrichment analysis show that we find more gene sets in na_neg
than in na_pos. The bottom of our ranked lists seem more important than the top
when we quantify the gene sets under FDR 0.1. Another analysis that we can look is
the quantity of Ovarian Cancer Gene Sets found in correlation 0.5 in RNA networks
(Figure 4.19d). Most centralities can barely capture a single gene set, but the dmnc
and weighted centralities are able to capture, and what is more interesting is that they
get the highest amount of gene sets with 0.5.

For each centrality, we can see some particularities: (1) betweenness is not mono-
tonic through correlations and network types, and we highlight the na_pos in Protein
networks; (2) closeness follows a uniform behavior, we highlight the Breast Protein
type where this centrality captured more gene sets; (3) clustering is not monotonic
through correlations, but is able to compete in amount of gene sets and we highlight
the Breast Protein where it captures more gene sets; (4) diffusion is monotonic and
we highlight the uniformity in Ovarian RNA where it capture more than 7.5% of gene
sets; (5) dmnc looks not uniform in some networks through correlations but capture
more na_pos in than other centralities through the network types, we highlight this
centrality in RNA networks where it captures more gene sets; (6) eigenvector is not
monotonic through correlations; (7) laplacian is monotonic in Ovarian networks; (8)
leverage is not uniform but able to capture more na_pos than other centralities in
Ovarian Protein networks; (9) topological is not monotonic and unable to compete
against other centralities in amount of gene sets; (10) weighted is uniform and is able
to compete in quantity of gene sets, we highlight Ovarian Protein where it gets more
gene sets.



4.3. Single Layer - RNA/RNA and Protein/Protein 51

0.0%

5.0%

10.0%

15.0%

20.0%

be
tw

ee
nn

es
s

clo
se

ne
ss

clu
ste

rin
g

dif
fu

sio
n

dm
nc

eig
en

ve
cto

r

lap
lac

ian

lev
er

ag
e

to
po

log
ica

l

weig
ht

ed

Centrality

Tr
us

te
d 

G
en

e 
S

et
s

Correlation

05

06

07

(a) Breast Protein
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(b) Breast RNA
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(c) Ovarian Protein
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Figure 4.19: Percentage of Cancer Type Only Histogram for MSigDB of Enriched Gene
Sets with FDR < 0.1.
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All Gene Sets from MSigDB

In Figure 4.20, we show absolute quantity of Trusted Gene sets, where we separate
each bar in three shades of transparency. From the most transparent to less, we divide
in: not cancer, cancer, and cancer type (Breast and Ovarian) gene sets.
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Figure 4.20: Histogram for MSigDB of Enriched Gene Sets with FDR < 0.1.
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This histograms show a comparison between not cancer gene sets found with
cancer gene sets and cancer type gene sets. This amount of gene sets found could
be a result of, not only cancer analysis, but also biological processes involved in our
network. We believe this “not cancer” related gene sets could be further explored.

4.4 Chapter Discussion

In this chapter, we describe experiments to capture biological processes and gene sets
for Breast and Ovarian cancer in our approach. For this reason, we proposed two types
of analysis: multi layer analysis, evaluating the groups in all layers (CNA, RNA and
Protein); and single layer analysis, evaluating ranked lists in networks of RNA and
Protein layers.

In our analysis for multi layer data, we applied Community Detection to separate
groups of gene expression data. We found out that the largest community of genes and
proteins shared by both cancers (Breast and Ovarian) is a group biologically related
to metabolic and cellular processes. We concluded that our network science approach
is mirroring the behavior of a cell.

For single layer data, we compared different centrality measures to produce inputs
for enrichment analysis. As a result, we could see that centralities can capture trusted
gene sets. The percentage histograms show that protein layer have more consistency
results through our centralities. Each centrality have individual behaviours through
our network types and correlations.





5

Conclusions

In this work, we proposed approaches of Network Science to characterize Breast
and Ovarian cancer evaluated through enrichment analysis. The challenge for this
work was the low number of samples, which made us avoid machine learning based

representation and select a network based approach.

In our approach, we explore network characteristics as inputs for Enrichment
Analysis. After we decided configurations as correlation thresholds, enrichment analysis
methods, centralities and communitiy detection methods, our work is ready to run with
any gene expression data.

5.1 Final Remarks

In multi layer data we could reply existing biological process. We could find gene lists
common in Breast and Ovarian cancer. Our community detection, unsupervised, could
find that the biggest group, present in both cancers, is biologically related to metabolic
and cellular process.

For single omic data, we applied centralities capable of producing inputs for
enrichment analysis. As a result, we could see not only that centralities are able to
capture trusted gene sets, but also that Protein layer shows more consistency to capture
those gene sets. To set different thresholds lead to more interesting results.

Finally, we identified gene sets, in a collection of studied gene sets, related to our
lists. This finding show us that extracting characteristics using Network Science for
Enrichment Analysis lead us to biological characteristics within Cancer type. Those
gene sets found could define characteristics for our specific type of cancer.
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5.2 Limitations

Working with the absolute value of the correlation coefficient for our edges can hide
some characteristics for low expressed genes and proteins. But as we said before,
this positive edges are necessary to work with some algorithms both for community
detection and centrality measures.

We did not experiment for all centrality measures, we chose only neighborhood
and distance based centralities, our hypothesis was that genes and proteins have path-
ways, leading us to distance based, and they also affect their surroundings, neighbor-
hood based. We did not explore all communities in multi layer experiment because
we only focused on the largest community from both cancers, maybe there are small
communities not responsible for expressive biological processes but they are captured
in our detection.

We did not evaluate healthy samples, it could help us to filter gene sets that are
related to normal cell process. Cancer networks do not represents only cancer gene
sets, we believe that healthy samples could lead us to a better understanding of what
is only cancer related.

5.3 Future Works

For future works, we could use our approach of characterization through network topol-
ogy to explore ways for characterize Ovarian Cancer subtypes. Breast cancer has its
subtypes studied and Ovarian cancer has some way to go for exploring his subtypes. As
we saw in our first experiment, even with heterogeneity of Breast and Ovarian cancer,
we are able to see intersections between their communities in multi omic. That is, even
with their diversity we were able to see some characteristics in both.

As a new approach of Ovarian Cancer subtypes, we could apply our knowledge
in network topology characterization and cluster samples in Ovarian that shares same
behavior as Breast samples labeled with their subtypes. After that, we could recon-
struct networks for each cluster of Ovarian to extract their characteristics following our
approach in this work, which we could embed as characteristics for these new subtypes.
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