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Resumo

Em análise de sobrevivência, os modelos de fração de cura são ferramentas

fundamentais em aplicações onde uma parcela significativa dos indivı́duos estudados

nunca experimentará o evento de interesse, mesmo se observados durante um longo

perı́odo de tempo. Esses modelos assumem implicitamente que todos os indivı́duos sob

estudo pertencem a uma população homogênea e incluem a suposição da existência

de uma variável aleatória não-observada, representando informações não diretamente

disponı́veis nos dados. Este trabalho está dividido em três capı́tulos, em que no primeiro

apresentamos uma introdução aos modelos de fração de cura. Nos capı́tulos seguintes

abordamos novas metodologias desenvolvidas neste trabalho no contexto de modelos

de análise de sobrevivência com fração de cura, considerando a distribuição Weibull

para o tempo de vida. No segundo capı́tulo, nossa proposta é estender o modelo

de fração de cura com causas competitivas em séries de potência, assumindo uma

mistura de duas causas competitivas provenientes dessa classe. A estimação dos

parâmetros é discutida através do método da máxima verossimilhança, via o algoritmo

do tipo EM (Expectation-Maximization). Estudos de Monte Carlo foram conduzidos

para avaliação das propriedades assintóticas. Ilustramos nossa metodologia por meio

de uma aplicação a um conjunto de dados reais de um estudo populacional de casos

incidentes de melanoma cutâneo diagnosticados no estado de São Paulo, Brasil. No

terceiro capı́tulo deste trabalho, apresentamos uma nova modelagem via fração de cura

considerando que o número de causas competitivas para o evento de interesse segue

um mistura das distribuições Poisson e Birnbaum-Saunders. Algumas propriedades

estatı́sticas são apresentadas. A estimação dos parâmetros é conduzida através do

método da máxima verossimilhança, utilizando um algoritmo do tipo EM (Expectation-

Maximization). Ensaios de Monte Carlo são estudados para avaliar as propriedades

assintóticas, bem como um estudo do poder do teste da razão de verossimilhanças.

Uma aplicação é discutida utilizando dados reais de um estudo populacional de casos

incidentes de câncer de mama no estado de São Paulo, Brasil.

palavras-chave: Misturas; Distribuição em série de potências, Poisson, Birnbaum-

Saunders, causas concorrentes; Algoritmo EM; Melanoma; Câncer de Mama.



Abstract

In survival analysis, cure fraction models are fundamental in applications where

a significant portion of the individuals studied will never experience the event of interest,

even if observed over a long period of time. These models implicitly assume that all

individuals under study belong to a homogeneous population and include the assump-

tion of the existence of an unobserved random variable, representing information not

directly available in the data. This work is divided into three chapters, in which in the

first we present an introduction to the cure rate models. In the following chapters we

address new methodologies developed in this work in the context of survival analysis

models with cure fraction, considering the Weibull distribution for lifetime. In the second

chapter our proposal is to extend the cure fraction model with competitive causes in

Power Series assuming a mixture of two competitive causes belonging from this class.

This mixture includes several well-known models as special cases. The estimation of

parameters is discussed using the maximum likelihood method, with the proposition of

an EM (Expectation-Maximization) type-algorithm. Monte Carlo studies were conducted

to evaluate the asymptotic properties. We illustrate our methodology through an appli-

cation to a set of medical data from a population study of incident cases of cutaneous

melanoma diagnosed in the state of São Paulo, Brazil. In the third chapter, we present a

new modeling via cure fraction considering that the number of competing causes for the

event of interest follows a mixture of the Poisson and Birnbaum-Saunders distributions.

Some statistical properties are presented, especially that the promotion time model

appears as a limiting case. Parameter estimation is conducted using the maximum

likelihood method, in which an EM (Expectation-Maximization) type-algorithm is pro-

posed for this purpose. Monte Carlo experiment are studied to evaluate the asymptotic

properties, as well as a study of the power of likelihood ratio test. An application is

discussed using real data from a population study of incident cases of breast cancer in

the state of São Paulo, Brazil.

keywords: Mixtures; Power series distribution, Poisson, Birnbaum-Saunders, competing

causes; EM algorithm; Melanoma; Breast cancer.
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CHAPTER 1

Introduction

In recent decades, studies on survival analysis have emerged as one of the areas

with the most significant growth within statistics. This area of research is dedicated

to analyzing data involving the time until the occurrence of a certain event of interest,

such as death, cure or recurrence of diseases, during a certain period, that is, from

a starting point to a predetermined end point. In addition to conveniently dealing with

situations where the data is completely observed, due to the occurrence of censorship.

However, in many situations, a significant portion of individuals will not experience the

event of interest during the observation period and this fact results in the emergence of

censorship in the data. In this case, the application of classical statistical techniques is

negatively affected, as they require complete information about the failure time.

The incorporation of information from censored data in statistical data analysis

makes survival analysis methods fundamental in the development of several areas of

knowledge, with applications in different areas of science, including medicine, epidemiol-

ogy, biology and public health studies. In medicine, for example, these models are often

used to analyze the effectiveness of certain treatments, the progression of diseases

and the patients survival, especially in the oncology field.
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In several situations studied, in databases produced in the context of survival, a

portion of individuals will never experience the event of interest, even after a long period

of follow-up. In medical oncology studies, for example, a patient considered “cured” of

cancer may not experience a recurrence of the tumor. In these cases, such individuals

are considered “immune” to the event of interest, and the existence of a cure rate is

assumed in this survival dataset to which these patients belong.

In this sense, models that deal with the existence of immune individuals are known

as cure rate models, play an important role in survival analysis studies due to significant

progress and advancements in treatment therapies, especially in scenarios where the

presence of sampling units immune to the event studied. In clinical investigations, this

event of interest may encompass several latent factors, causing the patient’s mortality

under follow-up or the recurrence of malignant tumors, resulting from tumor cells capable

of producing a metastatic tumor by remaining active after initial treatment, to these latent

factors we call it concurrent causes or competing causes to the event of interest.

In the field of oncology, cure rate models are fundamental to modeling patients

who are potentially cured of a certain type of cancer and those who are still at risk of

disease recurrence. These models are particularly useful for understanding the long-

term impact of treatments on different types of cancer, such as cutaneous melanoma

and breast cancer. Various statistical models for studying the number of cancer cells

have been used to analyze the lifetime of patients with an oncological diagnosis with the

aim of estimating the fraction of patients considered cured after a certain period without

recurrence of the disease, because it can analyze how specific variables for each type of

cancer influence the probability of cure. Among multimodal interventions, it is possible

to mention the combined use of surgery, radiotherapy, chemotherapy and target-directed

therapies or immunotherapies. All of these advances allow these models to become

more accurate and adaptive, in reflecting improvements in treatment and variations in

patient responses. By providing a more accurate estimate of the fraction of patients

who are potentially cured, these models help physicians personalize treatments and

provide prognoses based on solid evidence, improving clinical decisions and optimizing

healthcare resources.

Many studies have contributed to the theory of cure rate models, among which

16



Boag (1949) is the pioneer, in which the maximum likelihood method was used to

estimate the proportion of survivors in a population of 121 women with breast cancer

followed during 14 years. Based on Boag’s idea, Berkson and Gage (1952) proposed

a mixture model with the objective of estimate the proportion of people cured in a

population undergoing stomach cancer treatment. The latter emerging as perhaps the

best-known type of cure rate model. However, this model operates under the assumption

that only a single cause is responsible for the event of interest. Despite this, in clinical

studies, the event of interest, such as patient death, often arises from several competing

latent causes, complicating identification of the precise causal factor. Furthermore,

tumor recurrence, another crucial event in clinical research, can be attributed to the

persistence of tumor cells capable of metastasis after initial treatment. In this sense,

more complex long-term models, such as Yakovlev and Tsodikov (1996), Chen et al.

(1999) and Ibrahim et al. (2001) among others, emerged with the aim of better explaining

the biological effects involved, in which its structure is based on the assumption that the

cumulative hazard function is bounded because of the existence of cured individuals.

This complexity underscores the need for models that can accommodate multiple

latent competing causes. Their methodology operates under the premise that each

individual harbors an unobservable (latent) quantity, denoted as M , of cells, with each

possessing the capability to initiate the event of interest. Referred to in the literature as

the promotion time cure rate model, this approach has garnered significant attention in

research circles.

Rodrigues et al. (2009) proposed a comprehensive unification approach to long-

term survival modeling, which has since inspired numerous extensions and applications

in cure modeling, these models share a common underlying assumption: the initial

cells are responsible for triggering the event of interest. The literature addressing

modeling techniques that can effectively handle multiple latent competing causes is

vast and continuously evolving. Notable contributions in this domain include significant

insights from Castro et at. (2009) which delved into a cure rate model within a Bayesian

framework, employing a negative binomial distribution to account for competing causes

of the event of interest. Building upon this, Castro et at. (2010) utilized the Generalized

Additive Models for Location, Scale, and Shape (GAMLSS) framework to fit long-term

17



survival models. They further expanded on this with a flexible Bayesian approach in

Cancho et at. (2011). Cancho et at. (2012) offered another perspective by modeling

cure rate survival, assuming competing causes follow a geometric distribution and event

times adhere to a Birnbaum-Saunders distribution. Cancho et al. (2013) proposed The

Power Series Cure Rate Model, with estimation via direct maximization of likelihood

function. Ortega et al. (2015) presented A power series beta weibull regression model

for predicting breast carcinoma. Rodrigues et al. (2016) presented a relaxed cure

rate model, extending the Poisson cure rate model with an additional parameter for

enhanced flexibility. Gallardo et al. (2017) gives to the Cancho et al. (2013) a simplified

estimation procedure based on the em algorithm for the power series cure rate model,

using maximum likelihood estimation in closed form via Expectation-Maximization (EM)

algorithm. Among these advancements are notable works by various researchers.

Yule-Simon (Gallardo et al., 2017); Polylogarithm (Gallardo et al., 2018); Zero-modified

Geometric (ZMG) (Leão et al., 2020), compound Poisson (Gómez et al., 2023).

In this present work, we consider dataset from retrospective studies in oncologi-

cal field provided by the Oncology Foundation of São Paulo (FOSP) which is a public

institution associated with the State Health Secretariat that is responsible for the coordi-

nation of the state’s Hospital Cancer Registry. As cited in (De andrade et al., 2012), the

FOSP assists in the preparation and implementation of healthcare policies in the field of

oncology, and serves as an instrument so that oncology hospitals can prepare protocols

and improve care practices. With the aim of applying the new methodologies developed

in this work, two datasets from FOSP are considered. In the second chapter we study a

dataset related to cutaneous melanoma cancer and in the third chapter a dataset on

breast cancer is studied.

1.1 Objectives of the thesis

In recent years, a variety of models addressing competing causes have emerged

to improve estimation techniques in cure rate models. The primary aim of this thesis is

to propose diverse statistical models for survival data, focusing on cure rates and based

on a mixture of competing causes. The specific objectives include:

18



• To study concurrent causes supposing a mixture of competing causes in the class

of power series distribution;

• To study competitive causes assuming that they come from a mixture of Poisson

and Birnbaum-Baunders distributions.

1.2 Organization of the chapters

This thesis is organized is organized as follows. In Chapter 2, we presented the

cure rate models for heterogeneous competing causes, a new methodology that extends

the proposal of Cancho et al. (2013) to a mixture of competing causes and its properties

and several important characteristics, dealing with estimation via EM-algorithm with

close form for E-step, using the same idea propose by Gallardo et al. (2017), applying it

to a melanoma cutaneous data.

In Chapter 3, we introduced a novel modeling approach for cure rate models,

named the Poisson-Birnbaum-Saunders mixture cure rate model. This model builds

upon the Poisson-Birnbaum-Saunders mixture model proposed by Gonçalves et al.

(2022) within the context of cure rate models. Our proposition is inspired by the work of

Barreto-Souza (2015), where it was assumed that one of the components of the mixture

belongs to the Exponential Family (EF). We extend this assumption by replacing the

EF with the Birnbaum-Saunders (BS) distribution, Birnbaum and Saunders (1969). We

discuss an application to a breast cancer dataset.

1.3 Products of the thesis

This thesis allowed the following products to be obtained:

• Brandão, M., Leão, J., Gallardo, D., and Bourguignon, M. (2023). Cure rate models

for heterogeneous competing causes. Statistical Methods in Medical Research.

32:9, 1823-1841.
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• Gallardo, D., Brandão, M., Leão, J., Bourguignon, M., Calsavara, V. (2024) A new

mixture model with cure rate applied to breast cancer data. Biometrical Journal.

(Accepted for publication, in press.)
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CHAPTER 2

Cure rate models for heterogeneous competing causes

Resumo

Os modelos de fração de cura têm sido amplamente estudados para analisar

dados de tempo de vida com uma fração curada de pacientes, sob a abordagem de

causas competitivas. Neste tipo de modelo, o número de causas competitivas (uma

variável latente) é assumido como uma variável aleatória. Contudo, na prática, é natural

assumir que esta é diferente de indivı́duo para indivı́duo. Nossa proposta é assumir

que o número de causas concorrentes pertence a uma classe de mistura finita de

distribuições de causas competitivas. Em particular, assumimos que o número de

células malignas (causas concorrentes do evento de interesse) segue uma mistura

de duas distribuições de séries de potências e assumimos que o tempo de falha é

proveniente da distribuição Weibull. Consideramos a proporção do número de cu-

rados dependendo das covariáveis, permitindo uma modelagem direta da fração de

cura. O modelo proposto inclui vários modelos bem conhecidos como casos especi-

ais e define muitos novos modelos especiais (pelo menos dez novos casos). Alguns

modelos especiais da classe proposta são discutidos detalhadamente. A estimação
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dos parâmetros do modelo proposto é discutida por meio do método de estimação

de máxima verossimilhança. Um algoritmo do tipo EM (Expectation-Maximization) é

proposto para estimar os parâmetros, onde a etapa de esperança envolve o cálculo

do número esperado de causas concorrentes para cada indivı́duo. Um estudo de

simulação foi proposto com a finalidade de examinar a recuperação dos valores dos

parâmetros originais e a probabilidade de cobertura dos intervalos de confiança, com

uma discussão dos resultados obtidos. A fim de mostrar o potencial do nosso modelo na

prática, nós o aplicamos ao conjunto real de dados médicos de um estudo populacional

de casos incidentes de melanoma cutâneo diagnosticados no estado de São Paulo,

Brasil, ilustrando o fato de que o modelo proposto pode superar os modelos alternativos

tradicionais em termos de ajuste.

palavras-chave: Causas concorrentes; Algoritmo EM; Melanoma; Misturas; Distribuição

em série de potências.

Abstract

Cure rate models have been widely studied to analyze time-to-event data with

a cured fraction of patients under competitive causes approach. In this type of model,

the number of concurrent causes (a latent variable) is assumed to be a random vari-

able. However, in practice, it is natural to assume that the distribution of the number of

competing causes is different from individual to individual. Our proposal is to assume

that the number of competing causes belongs to a class of a finite mixture of competing

causes distributions. In particular, we assume the number of malignant cells (competing

causes of the event of interest) follows a mixture of two power series (PS) distributions

and assume that the time to the event of interest follows a Weibull distribution. We

consider the proportion of the cured number of competing causes depending on covari-

ates, allowing direct modeling of the cure rate through covariates. The proposed model

includes several well-known models as special cases and defines many new special

models (at least ten new special cases). Some special models of the proposed class

are discussed in detail. The parameter estimation of the proposed model is discussed
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through the maximum likelihood method. An EM algorithm is proposed for parameter

estimation, where the expectation step involves the computation of the expected number

of concurrent causes for each individual. A simulation study has been carried out to

examine the parameter recovery and coverage probabilities of the confidence intervals

with a discussion of the obtained results. In order to show the potential for the practice

of our model, we apply it to the real medical data set from a population-based study

of incident cases of cutaneous melanoma diagnosed in the state of São Paulo, Brazil,

illustrating the fact that the model proposed can outperform traditional alternative models

in terms of model fitting.

keywords: Concurrent causes; EM algorithm; Melanoma data set; Mixtures; Power

series distribution.

2.1 Introduction

With the development of medical and health sciences and new treatments in

recent years, it is expected that a proportion of patients responds favorably to a treatment,

thus improving overall survival. This proportion of patients is commonly known as cure

fraction. The models that can accommodate this feature are known in the literature as

long-term survival or cure rate models. It should be noted that these models do not

apply to overall survival because if a patient is cured of a disease, she/he remains at risk

of death from other diseases, being never possible to cure her/him from all diseases.

In these models, it can be assumed that the occurrence of the event of interest

might be a result of many competing causes, with the number of causes as well as

survival times associated with each cause being unknown, which leads to the so called

latent competing causes, and is assumed to be a random variable (not observable)

following some discrete distribution. The latent competing causes can be assigned to

metastasis-competent tumor cells left active after initial treatment, such as radiotherapy,

chemotherapy, surgery, among others; see, for example, Ibrahim et al. (2001). According

to Ortega et al. (2015), in a biological context, the idea behind these assumptions lies

within a latent competing cause structure, in the sense that the event of interest can be
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a tumor recurrence or the death of a patient, which can happen because of unknown

competing causes. From this, several authors investigated the implications in the study

of competitive causes. Two formulations of cure rate models have received attention

in the literature, namely the mixture cure model by (Berkson and Gage, 1952), and

the promotion time cure model by (Yakovlev and Tsodikov, 1996). The well-known

mixture cure model presumes the number of latent causes to follow a Bernoulli (BER)

distribution with at most one latent cause, while in the promotion time cure modeling

this number follows a Poisson (POI) distribution.

Rodrigues et al. (2009) introduced a unified approach for long-term survival

models by assuming that the number of competing causes associated with the event of

interest follows any positive discrete distribution that possesses a probability generating

function (Feller, 2008). This was significant in expanding the range of distributions

that can be assumed for the number of competing causes. For example, the negative

binomial distribution includes the Bernoulli (BER), binomial (Bin), Poisson (POI), and

Geometric (GEO) distributions as particular cases. Rodrigues et al. (2009a) used

the Conway-Maxwell Poisson (COMP-Poisson) distribution. Cancho et al. (2013)

proposed the PS cure rate model as flexible model for modeling survival data with

cure fraction. Ortega et al. (2015) employed the PS beta Weibull distribution, Gallardo

et al. (2017) considered the Yule-Simon distribution, Gallardo et al. (2018) considered

the polylogarithm distribution, Leão et al. (2020) studied the zero-modified geometric

distribution and Gallardo et al. (2021) employed the Bell (which we will denoted by

BELL) distribution. However, all the models cited above considered that the distribution

for the competing causes is the same for all the individuals in the study and then, it

is assumed the same biological process for all the observations. However, given the

heterogeneity of the individuals and mainly the absence of measurement of relevant

information, in practice such assumption might not be satisfied. Despite this, to the best

of our knowledge, a specific cure rate model assuming a different biological process for

all the observations has never been considered in the literature.

Based on the above discussion, the main aim of this chapter is to propose a

cure rate regression model that is tailored for situations where the number of competing

causes is different from individual to individual based on discrete PS distribution. In
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particular, we assume that the number of concurrent causes of the event of interest

follows a mixture of two PS distributions by including a mixing additional parameter. The

advantage of the proposed cure rate model is that the distribution of the number of

competing is different from individual to individual, i.e., different biological process for all

the observations. All the models cited above are not suitable for capturing this.

We note five motivations for the proposed model:

• We assume the number of malignant cells (competing causes of the event of

interest) to follow mixture of two PS distributions. From a practical point of view,

this generalization is based on the search for models that are more flexible in

such a way that they fit better to the lifetime data. Furthermore, the wide usage of

PS and the fact that the current generalization provides means of its continuous

extension to still more complex situations. The PS distribution is very flexible,

including several particular cases, such that, Bernoulli (the mixture model), Bell,

geometric, logarithmic (LOG), and Poisson (the promotion time cure model),

among others, and the probability generating function (PGF) can be expressed in

a simple form;

• We consider the proportion of cured of competing causes depending on covariates,

so allowing to a direct modeling of the cure rate through covariates. Thus, we

obtain a straightforward interpretation of the regression coefficients in terms of the

long-term survivors;

• The proposed model includes several well-known models as special cases, such

as the mixture cure models by (Berkson and Gage, 1952) and promotion time

cure rate model by (Yakovlev and Tsodikov, 1996) and defines many new special

models (at least ten new special cases);

• The estimation and inference for the new model are possibly based on the likeli-

hood paradigm (parametric approach), which can be easily computed using the R

software (R Core Team, 2024). In particular, we provide a simple EM-algorithm

which is more robust with regards to the estimation procedure, especially in situ-

ations with many covariates. Furthermore, the EM algorithm yields estimates of

the number of latent causes for each individual and the coefficients of covariates
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values, see (Gallardo et al., 2017). It has the big advantage that the maximization

step can be decomposed into separate maximizations of two lower-dimensional

functions of the regression and survival distribution parameters;

• The Monte Carlo simulations and empirical application show the good performance

of the proposed model (see Subsection 2.4.2). In fact, the new models fit the data

set well.

This chapter is organized as follows. Section 2.2 defines the proposed model and

discusses how to obtain the class of power series mixture competing causes (PSMCC).

In addition, some special cases are provided. The model parameters estimated via the

EM algorithm and inference are both supplied in Section 2.3. In Section 2.4, we yield a

numerical evaluation of the studied model where we evaluate the performance of the

EM estimators by Monte Carlo (MC) simulations. In addition, we illustrate the proposed

model and its diagnostics with a medical real-world data, comparing it to model studied

by Gallardo et al. (2017). Some concluding remarks, and possible future studies are

discussed in Section 2.5.

2.2 Model based on the mixture competing causes

In this section, we introduce the new cure rate model, its main properties and

some special cases.

2.2.1 Model formulation

Let Mi be the number of competing causes related to the occurrence of an event

of interest for the i-th individual in the population (in a cancer context Mi represents the

carcinogenic cells of the individual), where i = 1, . . . , n, and n denotes the sample size.

In a competing causes scenario, the number of competing causes Mi is unobserved

(latent) variables. It is natural to assume that the distribution of the number of concurrent
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causes is different from individual to individual. In this context, a finite mixture of

competing causes distributions can be used in order to describe situations in which one

(or more) of the latent variables separates the population in study into two (or more)

sub-populations. Here, we assume the distribution of Mji in the sub-population j, with

j = 1, 2, for each individual i is P (Mji = mij). These distributions do not have the

same functional form and different parameters, i.e., we assume that the number of

competing causes Mi follows a mixture of two random variables M1i and M2i in N, i.e.,

Mi = γM1i + (1− γ)M2i, where γ ∈ [0, 1] is the mixing probability. Let Wk, k = 1, . . . ,Mi

be the time to the k-th cell produces a detectable cancer. The Wk’s are supposed to

be independent and identically distributed with common (proper) survival function (SF)

S(ti;η) and probability density function (PDF) f(ti;η), where η denotes a vector of

unknown parameters. Moreover, we assume that Mji, is independent of W1, . . . ,Wmij
.

The observable time-to-event is defined as Ti = min{W1, . . . ,WMi
}, for Mi ≥ 1, and

Ti = ∞ for Mi = 0, leading to a cured fraction denoted by pi. Figure 2.1 illustrates this

interpretation

Consider two random variables M1i and M2i in Z+ non-negative integers, with

P (M1i = m1i; pi) and P (M2i = m2i; pi) probability mass functions, respectively, such

that P (Mi = 0; pi) = pi. The probability function of the mixture components Mi has

Z+, a subset of non-negative integers, as support. Then the random variable Mi has

probability mass function given by

P (Mi = mi; pi) = γ P (M1i = mi; pi) + (1− γ)P (M2i = mi; pi), mi = 0, 1, 2, . . . ,

where 0 ≤ γ ≤ 1 is the mixing parameter. Using the mixing parameter, it is possible

to obtain the population proportion of the number of cancerous cells that follows the

M1 or M2 distributions and the two specific models are particular cases for γ = 0 and

γ = 1, respectively. By construction, it is immediate that P (Mi = 0; pi) = pi. In a cure

rate models context, this is very important because P (Mi = 0; pi) is interpreted as the

cure rate and then, if the model is parameterized directly in terms of this expression,

then covariates can be introduced directly through it. The PGF of Mi, defined as
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M1i = 0 // Ti = +∞
(cured individuals)

Population 1:
M1i ∼ PS(θ1i, A1(·))

with prob. pi
//

with prob. 1−pi //M1i ≥ 1 // Ti = min(Wi1, . . . ,WiM1i
)

(susceptible individuals)

Individuals
in the population

with prob. γ

22

with prob. 1−γ
,,

M2i = 0 // Ti = +∞
(cured individuals)

Population 2:
M2i ∼ PS(θ2i, A2(·))

with prob. pi
//

with prob. 1−pi //M2i ≥ 1 // Ti = min(Wi1, . . . ,WiM2i
)

(susceptible individuals)

Figure 2.1: Representation of the mixture model in a diagrammatic form for each subject
in the population.

φMi
(si; pi, γ) = E[sMi

i ; pi], is given by

φM(si; pi, γ) = γ φM1i
(si; pi) + (1− γ)φM2i

(si; pi).

In this work, we focused in the PS distributions for Mji, for j = 1, 2 and i =

1, 2, . . . , n; because (i) it is a class including many well known distributions in the

literature; (ii) many of its particular cases were parameterized directly in the cure rate

in the literature and; (iii) a nice EM algorithm can be applied to the model to perform

parameter estimation. Specifically, we say that M1i and M2i have a PS(θ1i, A1(·)) and

PS(θ2i, A2(·)) distribution, respectively, such that

P (Mji = mji; θji) =
aj(mji) θ

mji

ji

Aj(θji)
, mji ∈ S, θji ∈ (0, s). (2.1)
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Table 2.1: Special cases for the distributions considered in the mixture of competing causes
scheme.

Distribution aj(m) Aj(θ) A
′
j(θ) A−1

j (θ) (0, s) Eθ[M
d] for d = 1, 2

Bernoulli I
(m)
{0,1} 1 + θ 1 θ − 1 (0,∞) θ

(1+θ)

Poisson (m!)−1 exp(θ) exp(θ) log(θ) (0,∞) θ + (1− d)θ2

Geometric 1 (1− θ)−1 (1− θ)−2 1− 1/θ (0, 1) θ
1−θ

(
1+θ
1−θ

)d−1

Logarithmic (m+ 1)−1 − log(1−θ)
θ

log(1−θ)

θ2
− 1

θ(1−θ)
1 +

W
(
−θ e−θ

)
θ

(0, 1)
(−1)dθ(1−2θ)d−1

(1−θ)d log(1−θ)
+ (−1)d

Bell Dm/m! exp(eθ − 1) exp(eθ − 1 + θ) log(1 + log(θ)) (0,∞) θ eθ(1 + θ(1 + eθ))d−1

NOTE: Dm = e−1
∑∞

k=0 k
m/k! denotes the Bell numbers. W (·) denotes the Lambert function.

The support S of Mji in (2.1) is a subset of Z+, aj(mji) ≥ 0 depends only on mji,

and there is s > 0 such that the normalizing constant Aj(θji) =
∑∞

mji=0 aj(mji) θ
mji

ji is

finite for all θji ∈ (0, s) (s can be ∞). Although we will always consider θji as a value

in (0, s), we will also assume that the PS for Aj(θji) converges, in fact, to a finite value

for θji ∈ (−s, s). If this is the case, then, Aj(θji) has derivatives of all orders in (−s, s)

and those derivatives can be obtained by differentiating the PS term to term. Since

aj(mji) ≥ 0 for all mji, Aj(θji) and all its derivatives will be positive in (0, s). When 0 ∈ S
and, from (2.1), pi = Pr(Mji = 0; θji) = aj(0)/Aj(θji). Thus, θji = θji(pi) = A−1

j (aj(0)/pi).

For more detail on the PS class of distributions, one can refer to Noak (1950).

The corresponding mean and variance of Mji are, respectively, represented as

Eθ(Mji) = θji
A

′
j(θji)

Aj(θji)
and Var(Mji) = θ2ji

(
A

′′
j (θji)

Aj(θji)
−

A
′
j(θji)

Aj(θji)

)
.

The PGF of M1i and M2i are given by φM1i
(si; pi) = A1(θ1isi)/A1(θ1i) and φM2i

(si; pi) =

A2(θ2isi)/A2(θ2i), respectively, and then

φMi
(si; pi, γ) = γ

A1(θ1isi)

A1(θ1i)
+ (1− γ)

A2(θ2isi)

A2(θ2i)
. (2.2)

Remark 2.2.1. When γ = 0 or γ = 0, the boundaries of γ’s parameter space, the

proposed model is reduced to the PS cure rate model (Ortega et al.,2015).

Table 2.1 provides some results for special cases to distributions considered on
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Figure 2.2: Variance of the number of competing causes as a function of the cure rate
for some models with (left) and without (right) mixing.

the mixing. Observe that, as shown earlier, θ can be denoted in function of the cure

rate through. Figure 2.2 presents the variance’s behavior of the number of competing

causes as a function of the cure rate for particular cases (left) and for two of these

distributions by using Poisson and Geometric distribution as particular case and mixing

both for different values of γ (right). Can be seen different behaviors for variances of

particular cases. Observe that given two models with one component, the mixture

of them presents variance’s behavior limited almost everywhere by the ones for the

particular case. Therefore, the variance of model for mixing concurrent causes is

influenced by the fixed value of γ. If the value of this parameter is low, it can be seen

that the variance of mixing model is next to the first component considered in the model,

in this case the Geometric one. If the value for of γ is high, the variance of second

component, in this case Poisson, has more weight on the estimation.

Following the relationship with PGF as in Rodrigues et al. (2009) (2009), the

population SF and PDF are given by

Spop(ti; pi,η, γ) = γ
A1 (θ1iS(ti;η))

A1 (θ1i)
+ (1− γ)

A2 (θ2iS(ti;η))

A2(θ2i)
, (2.3)
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and

fpop(ti; pi,η, γ) = f(ti;η)

[
γ θ1i

A
′
1 (θ1iS(ti;η))

A1 (θ1i)
+ (1− γ)θ2i

A
′
2 (θ2iS(ti;η))

A2(θ2i)

]
. (2.4)

Remark 2.2.2. Note that the inversion of coefficients a1(m1i) and a2(m2i) and the

functions A1(·) and A2(·) in Equation (2.1) will produce the same PGF in (2.2), with

mixing probability γ∗ = 1− γ. Therefore, based on the examples in Table 2.1, we are

introducing ten new cure rate models.

2.2.2 Special sub-models of the proposed model

Following the results presented in Table 2.1, we can obtain ten new cure rate

models. Below we present four of these sub-models. These cases were chosen

according to the best results obtained in the application to real data presented in

Subsection 2.4.2.

Bernoulli and Poisson: Consider A1(θ1i) = 1 + θ1i with θ1i = 1/pi − 1 and A2(θ2i) =

exp(θ2i) with θ2i = log(1/pi) in (2.3) and (2.4). The population SF and PDF are given by

Spop(ti; pi,η, γ) = γ (pi + (1− pi)S(ti;η)) + (1− γ)p
(1−S(ti;η))
i ,

and

fpop(ti; pi,η, γ) = f(ti,η)
[
γ(1− pi) + (1− γ) log(1/pi)p

(1−S(ti;η))
i

]
.

The BER-POI cure rate model includes the long-term survival models (Berkson

and Gage, 1952) when γ = 1 and the promotion time cure rate model (Yakovlev and

Tsodikov, 1996) when γ = 0.
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Poisson and geometric: As a second example, consider A1(θ1i) = exp(θ1i) with

θ1i = log(1/pi) and A2(θ2i) = (1− θ2i)
−1 with θ2i = 1− pi. In this case, the population SF

and PDF are given by

Spop(ti; pi,η, γ) = γ × p
1−S(ti;η)
i + (1− γ)

pi
1− S(ti;η) + piS(ti;η)

,

and

fpop(ti; pi,η, γ) = f(ti,η)
[
γpi (log(1/pi) log [log(1/pi)S(ti;η)])− p2i

]

Geometric and Bell: Now, let us consider A1(θ1i) = (1− θ1i)
−1 with θ1i = 1− pi and

A2(θ2i) = exp(exp(θ2i) − 1) with θ2i = log(1 − log pi). Then, we have that SF and PDF

are given by

Spop(ti; pi,η, γ) = γ
pi

1− S(ti;η) + piS(ti;η)
+ (1− γ)pi exp

[
(1− log pi)

S(ti;η) − 1
]
,

and

fpop(ti; pi,η, γ) = f(ti,η)

{
γ

pi(1− pi)

(1− S(ti;η) + piS(ti;η))2
+ (1− γ)pi(1− log pi)

× log(1− log pi) exp((1− log pi)
S(ti;η) − 1)

}
.

Bernoulli and Bell: In the last example, we consider A1(θ1i) = 1+θ1i with θ1i = 1/pi−1

and A2(θ2i) = exp(eθ2i − 1) with θ2i = log(1− log pi). Therefore, the survival population

function and probability are given by

Spop(ti; pi,η, γ) = γ (pi + (1− pi)S(ti;η)) + (1− γ)pi exp
[
(1− log pi)

S(ti;η) − 1
]
,

35



and

fpop(ti; pi,η, γ) = f(ti,η) {γpi(1− pi) + (1− γ)pi(1− log pi)

× log(1− log pi) exp((1− log pi)
S(ti;η) − 1)

}
.

For heterogeneous populations we can incorporate explanatory variables into

the parametric cure rate model through the cure parameter p. When these variables

are incorporated, we have a different cure rate parameter for each patient, which is

denoted by pi, with i = 1, . . . , n. In order to model the effect of the explanatory variables

on the cure rate, we can use different link functions. Let β = (β0, . . . , βr)
⊤ be the

vector of regression coefficients to be estimated of dimension q = (r + 1). Note that

β is related to explanatory variables with observed values for the patient i denoted by

xi = (1, x1i, . . . , xri)
⊤, which are associated with the cured fraction. Then, considering

the link logit function, we obtain

log

(
pi

1− pi

)
= x⊤

i β ⇔ pi =
exp(x⊤

i β)

1 + exp(x⊤
i β)

, i = 1, . . . , n. (2.5)

2.3 Estimation of model parameters

We assume that the data are obtained under a right censoring scheme. Thus,

the observed data for the ith individual can be represented by Ti = min(T ∗
i , Ci) and

δi = I(T ∗
i ≤ Ci), for i = 1, . . . , n, with T ∗

i and Ci denoting failure and censoring time,

respectively. Denote the observed data as Dobs = (t, δ,x), with t = (t1, . . . , tn)
⊤,

δ = (δ1, . . . , δn)
⊤, and x = (x1, . . . ,xn)

⊤, where xi = (1, xi1, . . . , xir)
⊤ is the covariate

vector of dimension (r+1)×1 related to the cure of the ith individual. For each individual,

let the latent number of causes Mi = γM1i + (1− γ)M2i, with Mji ∼ PS(θji, A(θji)) and

Wki be independent and identical distribution non-negative random variables with SF

S(·;η) for k = 1, . . . ,Mi, and Ti = minWk for, k = 0, . . . ,Mi and i = 1, . . . , n. Also,

let consider the vector of latent variables Y = (Y1, . . . , Yn)
⊤ indicating the group to

which belongs each individual. The influence of the covariates xi related to the cure
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of the individuals pi as in (2.5). On the other hand, Mj = (Mj1, . . . ,Mjn)
⊤, for j = 1, 2,

and Y = (Y1, . . . , Yn)
⊤ is non-observable and thus the complete data are denoted by

Dcomp = (t, δ,x,M1,M2,Y).

In order to obtain the estimates for ψ = (η⊤,β⊤, γ), with η⊤, we can use the ML

method by maximizing the observed likelihood function given by

ℓ(ψ|Dobs) =

n∑
i=1

{δi log[fpop(ti,η)] + (1− δi) log[Spop(ti,η)]}

=

n∑
i=1

{
δi

[
log[f(ti;η)] + log

(
γ θ1i

A′
1 (θ1iS(ti;η))

A1 (θ1i)
+ (1− γ)θ2i

A′
2 (θ2iS(ti;η))

A2(θ2i)

)]
+ (1− δi) log

(
γ
A1 (θ1iS(ti;η))

A1 (θ1i)
+ (1− γ)

A2 (θ2iS(ti;η))

A2(θ2i)

)}
. (2.6)

However, the maximization of (2.6) cannot be simple because the maximization

procedure need to be performed for ψ, i.e., for q + 3 parameters. To obtain a simplified

and more robust estimation procedure, we use a similar idea that Gallardo et al. (2017)

based on the EM algorithm for the PS cure rate model. According to the results in

the latter paper, even though the observed (marginal) likelihood is available in closed

form and all-purpose maximization algorithms such as the Newton-Raphson algorithm

exists that could be applied, convergence depends on the choice of starting values and

is guaranteed only to local maxima. Adapting the results presenting in Appendix of

Gallardo et al. (2017), we obtain

f(ti, δi,m1i,m2i, yi; pi,η, γ) =
{
S(ti;η)

m1i−δi [m1if(ti;η)]
δi
}yi {

S(ti;η)
m2i−δi [m2if(ti;η)]

δi
}1−yi

×
a1(m1i)θ

m1i
1i

A1(θ1i)

a2(m2i)θ
m2i
2i

A2(θ2i)
γyi(1− γ)1−yi ,

where θ1i = θ1i(pi) = A−1
1 (a0/pi) and θ2i = θ2i(pi) = A−1

2 (b0/pi). Therefore, up to a

constant that does not depend on ψ = (ηβ, γ)⊤, the vector of parameters, the complete

log-likelihood is given by

ℓc(ψ | Dcomp) = ℓ1c(η | Dcomp) + ℓ2c(β | Dcomp) + ℓ3c(γ | Dcomp), (2.7)
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where

ℓ1c(η | Dcomp) =
n∑

i=1

{[YiM1i + (1− Yi)M2i − δi] log[S(ti;η)] + δi log[f(ti;η)]} ,

ℓ2c(β | Dcomp) =
n∑

i=1

{M1i log(θ1i)− log[A1(θ1i)] +M2i log(θ2i)− log[A2(θ2i)]} , and

ℓ3c(γ | Dcomp) =
n∑

i=1

{Yi log γ + (1− Yi) log(1− γ)} .

When the estimation involves latent variables or missing data, the EM algorithm

is typically used to deal with the ML estimates of the parameters of interest by using

incomplete data to facilitate the process. The EM algorithm was proposed by Dempster

et al. (1977) and it uses the conditional distribution of the latent variables given the data

and current estimates of the parameters in the E-step to find the ML estimates of the

parameters interactively. Then, this conditional expectation is maximized on the M-step

to find ML of the unknown parameters.

The following proposition and corollary can be used to derive the formula for the

E-step. The proofs of the latter are given in the Appendix A.

Proposition 2.3.1. Define

EθjiS(ti;η)[M
d
ji] =

∞∑
mji=0

md
ji

aj(mji)(θjiS(ti;η))
mji

Aj(θjiS(ti;η))
with d, j = 1, 2.

For the PSMCC, the conditional distribution of the number of latent initial causes

Mji | yi, ti, δi, for j = 1, 2, is given by

P (M1i = m1i | yi, ti, δi) =
a1(m1i) (θ1i [S(ti;η)]

yi)
m1i

A1 (θ1i [S(ti;η)]
yi)

(
m1i

Eθ1iS(ti;η)[Mi]

)yiδi

, and

P (M2i = m2i | yi, ti, δi) =
a2(m2i)

(
θ2i [S(ti;η)]

1−yi
)m2i

A2

(
θ2i [S(yi;η)]

1−ti
) (

m2i

Eθ2iS(ti;η)[Mi]

)(1−yi)δi

.

In addition, the distribution for Yi | ti, δi is Bernoulli with success probability ωi/(1 + ωi),
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where

ωi =

(
Eθ1iS[ti;η][M1i]

Eθ2iS[ti;η][M2i]

)δi A1(θ1iS[ti;η])A2(θ2i)

A1(θ1i)A2(θ2iS[ti;η])

γ

(1− γ)
. (2.8)

The following Corollary 2.3.1 presents the expectation of the conditional distribu-

tion of M for the case of censored and uncensored data.

Corollary 2.3.1. The expected value for the number of initial causes Mji given (yi, ti, δi),

for j = 1, 2, can be written as

E[M1i | yi, ti, δi] =

(
Eθ1iS(ti;η)[M

1+δi
1i ]

Eθ1iS(ti;η)[M1i]δi

)yi

(Eθ1i [M1i])
1−yi , for yi, δi = 0, 1, and

E[M2i | yi, ti, δi] = (Eθ2i [M2i])
yi

[
Eθ2iS(ti;η)[M

1+δi
2i ]

Eθ2iS(ti;η)[M2i]δi

]1−yi

, for yi, δi = 0, 1.

Let ψ(k) be the estimate of ψ at the k-th iteration and Q(ψ | ψ(k)) denotes the

conditional expectation of ℓc(ψ | Dcomp) on Equation (2.7) given the observed data and

ψ(k). With these notations, we obtain

Q(ψ | ψ(k)) = Q1(η | ψ(k)) +Q2(β | ψ(k)) +Q3(γ | ψ(k)),

where

Q1(η | ψ(k)) =
n∑

i=1

{[
ỸiM1i

(k)

+

[
M̃2i

(k)
− ỸiM2i

(k)
]
− δi

]
log[S(ti;η)]

+δi log[f(ti;η)]} , (2.9)

Q2(β | ψ(k)) =
n∑

i=1

{
M̃1i

(k)
log(θ1i)− log[A1(θ1i)] + M̃2i

(k)
log(θ2i)

− log[A2(θ2i)]} , (2.10)
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and

Q3(γ | ψ(k)) =
n∑

i=1

{
Ỹi

(k)
log(γ) +

(
1− Ỹi

(k)
)
log(1− γ)

}
, (2.11)

where, for the components j = 1, 2, the expressions for M̃ji

(k)
= E

[
Mji | Dobs;ψ

(k)
]
,

Ỹi

(k)
= E

[
Yi | Dobs;ψ

(k)
]

and ỸiMji

(k)

= E
[
YiMji | Dobs;ψ

(k)
]
.

Therefore, the k-th iteration of the EM algorithm consists of the following steps:

• E-step: Given the observed data and the estimate for the vector of parameters at

the k − 1 iteration ψ(k−1), for i = 1, . . . , n, compute

M̃1i

(k)
= E

θ
(k)
1i
[M1i]

(
1− Ỹi

(k)
)
+

(
E

θ
(k)
1i S(ti;η(k))

[M1+δi
1i ]

E
θ
(k)
1i S(ti;η(k))

[M1i]δi

)
Ỹi

(k)
,

M̃2i

(k)
=

[
E

θ
(k)
2i S(ti;η(k))

[M1+δi
2i ]

E
θ
(k)
2i S(ti;η(k))

[M2i]δi

](
1− Ỹi

(k)
)
+ E

θ
(k)
2i
[M2i]Ỹi

(k)

ỸiM1i

(k)

=

(
E

θ
(k)
1i S(ti;η(k))

[M1+δi
1i ]

E
θ
(k)
1i S(ti;η(k))

[M1i]δi

)
Ỹi

(k)
,

ỸiM2i

(k)

= E
θ
(k)
2i
[M2i]Ỹi

(k)
, and (2.12)

Ỹi

(k)
=

(
ω
(k)
i

1 + ω
(k)
i

)
.

• M-step: Given M (k)
j = (M̃j1

(k)
, . . . , M̃jn

(k)
), YM (k)

j = (Ỹ1Mj1

(k)

, . . . , ỸnMjn

(k)

), for

j = 1, 2 and Y (k) = (Ỹ1

(k)
, . . . , Ỹn

(k)
). Find ψ(k) = (η(k),β(k), γ(k)), that maximize

(2.9), (2.10) and (2.11), respectively. Moreover, for γ such maximization provides

γ(k) =
1

n

n∑
i=1

Ỹi

(k)
.

The E- and M-steps are repeatedly alternated until a suitable convergence rule

is satisfied, that is, the difference in successive values of the estimates is less than a

pre-specified tolerance. On the other hand, SE corresponding to the estimator ψ̂ can
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be obtained from the Hessian matrix of the observed log-likelihood function in (2.6), i.e.,

Σ(ψ̂) = −
∂2ℓ(ψ|Dobs)

∂ψ∂ψ⊤

∣∣∣∣∣
ψ=ψ̂

.

Such matrix can be obtained using the hessian function included in the pracma (Borchers,

2022) package of R Core Team (2024). Under suitable regularity conditions, it can be

shown that in (Kalbfleisch and Prentice, 2002)

√
n
[
Σ̂(ψ)

]−1/2 (
ψ̂ −ψ

)
D→ Nq+3(0q+3, Iq+3), as n → ∞. (2.13)

It converges in distribution to the Normal distribution, where 0q+3 represents a vector

of zeros with dimension q + 3, and Iq+3 denotes the identity matrix of order (q + 3),

representing respectively the vector of means and the covariance matrix.

Remark 2.3.1. The expected values for the E-step have a simple form to the models

considered in Table 2.1. For instance, for the BER-POI model is obtained

Eθ1i [M1i] =
θ1i

1 + θ1i
, Eθ2i [M2i] = θ2i,

Eθ1iS(ti;η)[M
1+δi
1i ] =

θ1iS(ti;η)

1 + θ1iS(ti;η)
, Eθ2iS(ti;η)[M

1+δi
2i ] = θ2iS(ti;η) + δi (θ2iS(ti;η))

2 ,

Eθ1iS(ti;η)[M1i]
δi =

(
θ1iS(ti;η)

1 + θ1iS(ti;η)

)δi

, Eθ2iS(ti;η)[M2i]
δi = (θ2iS(ti;η))

2δi .

With those values it is possible to compute all the expressions in the E-step.

Remark 2.3.2. Up to this moment the procedure was developed without the specification

of S(ti;η) and f(ti;η). In practice, the Weibull distribution is a very suitable model in

this context. For this reason, we consider this model with parameterization S(ti;η) =

exp(−eαtνi ) and f(ti;η) = eανtν−1
i exp(−eαtνi ), where α ∈ R and ν ∈ R+. In this case,

η = (α, ν).

Remark 2.3.3. As mentioned previously, for γ = 1 is recovered the model assumed for

M1i (the first model in the mixture). This is a particular case of the PS cure rate model

introduced by Cancho et al. (2013), where an EM-type algorithm was developed by
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(Gallardo et al., 2017). Initial values for β and η in our proposal can be obtained based

on such model. In addition, we also can take an arbitrary value for γ. For instance, we

take γ(0) = 0.5. These initial values showed a satisfactory convergence in both, the

simulation studies and the application.

2.4 Numerical applications

In this section, we carry out a simulation study to evaluate the performance

of the ML based on EM estimators of the PSMCC model. The aim was to assess

how accurately the true parameters can be recovered by the proposed EM algorithm

procedure presented in Section 2.3. Then, we illustrate the proposed methodology

by applying it to a real-world medical data set. We compare the proposed model with

the model studied in Gallardo et al. (2017). Then, we find the one that provides an

adequate fit to the data.

2.4.1 Simulation study

This study was conducted as follows. The time-to-event values for the simulation

study were drawn from the Weibull distribution with fixed parameters α = −4 and ν = 1.8.

Since the PSMCC proposed model considers a mixture of two different distributions for

concurrent causes M1 and M2, we can have 10 possible combinations for this mixture

with distributions in Table 2.1. The following 6 combinations of models were used to

deal with the simulation study: Bernoulli and Geometric; Geometric and Logarithmic;

Poisson an Logarithmic; Bernoulli and Poisson; Poisson and Geometric; Geometric and

Bell. For each mixture, a MC study was conduced with 1,000 replications.

For each individual was considered two covariates. One of them was assumed

to be a dichotomous variable, that is, x1i, for i = 1, . . . , n where x1i was drawn from a

Bernoulli distribution with mean 0.5. The second one, x2i, for i = 1, . . . , n, was drawn

from an Uniform distribution between 0 and 10. With the vector of regression parameters
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fixed in β = (β0, β1, β2)
⊤ = (1.9,−1.5,−0.2)⊤ we compute pi in (2.5). For the distribution

of time-to-event, was fixed the parameters α = −4 and ν = 1.8. For the parameter that

set the mixture of concurrent causes was assumed that γ = 0.5. Finally, in all cases the

censoring times were drawn from the uniform distribution between 0 and 20, yielding on

average approximately 20% percentage of censoring. The values that were considered

for the parameters comes from the approximation of the estimates obtained for the

parameters of the proposed model in Gallardo et al. (2017).

For each value of the parameter, sample size and combinations of PSMCC, was

reported the empirical values for the estimated bias and root of the estimated mean

squared error (RMSE) and 95% coverage probability (CP) of the ML estimators based

on the asymptotic distribution of the ML estimators in (2.13) in Tables 2.5 and 2.6

presented in the Appendix B. The mean of the SE and the RMSE were obtained through

the Hessian matrix, considering the asymptotic distribution of maximum likelihood based

on EM estimators.

Some comments concerning the behavior of the maximum likelihood estimates

obtained in the simulation study are presented.

• From these tables, it is noted that for each model tested, as the sample size n

increases, the results of SE and RMSE of the EM estimators were became smaller,

showing us the efficiency of maximum likelihood estimates for each model tested

in this study.

• The average bias of the coefficients regression parameters in β for all of 6 consid-

ered combinations and samples size were reduced, showing that the maximum

likelihood estimates found for all combinations of models proposed were close

from the values fixed for all the parameters that generate the samples used for

each simulation study.

• The bias of the time-to-event distribution parameters α and ν became smaller as

the sample size n increased. Furthermore, it can be noted that these estimated

values are greater compared to the ones considered in the regression structure.

This happened because the values chosen for the simulation study were larger, in

absolute terms, than the ones for the β vector.
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• The coverage probabilities (CP’s) for all scenarios studied were next to the nominal

value (95%).

In general, the presented simulation study shows that the EM algorithm proposed in

this work presents consistent estimates asymptotically for a given set of parameters

in situations where a sample is generated from a cure fraction model with competitive

causes from a mixture of PS. Furthermore, the introduction of the regression structure

directly into the cure fraction produced consistent estimates for its coefficients, which is

interesting in practice, as there are many situations where covariates can better explain

the failure time behavior of a particular individual or object of interest. The simulation

study suggests good finite sample properties for all estimates of mixture models.

2.4.2 Application with a melanoma dataset

The observations provided by FOSP are from a retrospective survey of 7, 166

records of patients diagnosed with cutaneous melanoma in the State of São Paulo,

Brazil. Where the patients were registered on between years 2000 and 2014, with

follow-up conducted until 2018. Data from patients who did not die of melanoma during

the follow-up period were right-censored. After the removal of data from 417 patients

due to missing values for the observed covariates, the set contained data from 6, 749

patients. The death due to cancer was defined as the event of interest and the time to

event was defined as the period from the date of melanoma diagnosis time of death

due to cancer. Looking up for some aspects of the data, the observation that refers the

maximum time found was 18.54 years, and the median of follow-up time was about 5.24

years. The level of censorship is up to 71, 6%.

To have a regression structure on fitting, the explanatory variables measured at

baseline for i = 1, . . . , 6, 749 were Xi1 : surgery (0: no, n0 = 771; 1: yes, n1 = 5, 978),

Xi2 : education level (0: illiterate, n0 = 349; 1: elementary school, n1 = 2, 649; 2: high

school, n2 = 841; 3: college graduate, n3 = 667; 4: not informed, n4 = 2, 243), Xi3 :

clinical cancer stage (0: Stage I, n0 = 3, 011; 1: Stage II, n1 = 1, 541; 2: Stage III,

n2 = 1, 229; 3: Stage IV, n3 = 968), Xi4 : age at diagnosis (mean ± standard deviation,
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58.04 ± 16.36 years), Xi5 : sex (0: male, n0 = 3, 334; 1: female, n1 = 3, 415), Xi6 : service

category (0: service 1, n0 = 3, 128; 1: service 9, n1 = 3, 621), Xi7 : radiotherapy (0:

no, n0 = 6, 162; 1: yes, n1 = 587) and Xi8 : chemotherapy (0: no, n0 = 5, 645; 1: yes,

n1 = 1, 104). All of these variables were introduced on the cure fraction of the proposed

model.

The approach presented in Section 2.3 via EM algorithm was applied to obtain

ML estimates. The authors had developed a computer program in R language (R Core

Team, 2024) and it is available to community upon request. The estimates for the

Melanoma data obtained in the best fit obtained from the work proposed by Gómez et al.

(2021) were used in this one as initial values related to the parameters under estimation

of the model under estimation.

Table 2.2: AIC and BIC criteria for cure rate models with and without mixture of concur-
rent causes on PS applied to melanoma dataset.

Model Number of Log-likelihood AIC BICParameters
BER-GEO 17 −5,482.76 10,999.53 11,115.42
GEO-BELL 17 −5,482.91 10,999.82 11,115.71
POI-GEO 17 −5,483.93 11,001.86 11,117.75

BER-BELL 17 −5,504.97 11,043.95 11,159.85
BELL 16 −5,510.79 11,055.58 11,164.66

POI-BELL 17 −5,519.60 11,073.21 11,189.10
BER-POI 17 −5,521.47 11,076.95 11,192.84
BER-LOG 17 −5,546.43 11,126.86 11,242.75
POI-LOG 17 −5,546.50 11,127.00 11,242.89

POI 16 −5,553.20 11,140.41 11,249.49
GEO 16 −5,864.68 11,763.37 11,872.44

GEO-LOG 17 −5,876.26 11,786.52 11,902.41
LOG-BELL 17 −5,967.94 11,969.88 12,085.77

LOG 16 −5,978.38 11,990.77 12,099.84
BER 16 −6,160.02 12,354.05 12,463.12

The Table 2.2 compares the fitting of the proposed model to the dataset into the

one that deal with only one concurrent cause into the PS modelling (the particular case),

proposed by Gallardo et al. (2017), was obtained the two penalized likelihood criteria

Akaike information criterion (AIC), see Akaike, (1973) and Bayesian information criterion

(BIC), see Schwarz (1978). Although the proposed model has one more parameter than
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in the particular case, it is possible to observe that for the Melanoma dataset, four of

the proposed mixture models presented better performance than the fitting using the

particular case (Bell), they are Bernoulli-Poisson, Geometric-Bell, Poisson-Geometric

and Bernoulli-Bell, showing the flexibility of the proposed model on choosing the best

combination of distributions. The mixture considering the case where the competitive

causes come from the Bernoulli and Geometric distribution was chosen as the best fit.

The Weibull distribution was used to model the time to event of interest.

Table 2.3: ML estimates and SE obtained by fitting the four best combinations of PSMCC
model and for BELL model to melanoma dataset.

Parameter BER-GEO GEO-BELL POI-GEO BER-BELL BELL
ML SE ML SE ML SE ML SE ML SE

β0:Intercept 1.038 0.118 1.054 0.107 1.041 0.110 1.231 0.144 1.787 0.170
β1:Surgery 0.921 0.046 0.950 0.041 0.928 0.042 1.064 0.065 1.007 0.070
β2:Element. School 0.430 0.068 0.434 0.060 0.435 0.062 0.464 0.083 0.439 0.097
β2:High School 0.566 0.081 0.567 0.073 0.570 0.075 0.527 0.098 0.571 0.117
β2:Col. graduate 0.896 0.092 0.904 0.083 0.905 0.086 0.921 0.107 0.897 0.132
β2:Not Informed 0.548 0.070 0.554 0.062 0.554 0.065 0.551 0.085 0.578 0.101
β3:Stage II −1.333 0.050 −1.319 0.047 −1.327 0.048 −1.355 0.049 −1.283 0.069
β3:Stage III −2.323 0.050 −2.291 0.046 −2.310 0.047 −2.382 0.052 −2.197 0.069
β3:Stage IV −3.970 0.056 −3.989 0.051 −3.969 0.052 −6.606 0.083 −4.216 0.082
β4:Age −0.011 0.001 −0.011 0.001 −0.011 0.001 −0.019 0.001 −0.014 0.002
β5:Female 0.466 0.033 0.482 0.030 0.471 0.031 0.622 0.039 0.557 0.048
β6:Service 9 −0.254 0.034 −0.260 0.031 −0.256 0.032 −0.270 0.039 −0.292 0.049
β7:Radiotherapy −0.420 0.050 −0.472 0.044 −0.434 0.046 −1.051 0.071 −0.748 0.074
β8:Chemotherapy −0.175 0.042 −0.222 0.037 −0.195 0.039 −0.736 0.056 −0.511 0.061
α −2.670 0.030 −2.650 0.030 −2.659 0.030 −2.557 0.030 −2.226 0.031
ν 1.433 0.019 1.422 0.019 1.429 0.019 1.260 0.019 1.236 0.019
γ 0.036 0.021 0.857 0.028 0.057 0.019 0.228 0.117 - -
All coefficient were significant at 5% of significance level

Through the Table 2.3, the estimates and SE for the parameters of the five best

models chosen by the AIC and BIC selection criteria considered in Table 2.2 can be

better appreciated. As the AIC and BIC criterion pointed the BER-GEO model as the

best fit, let us focus on the interpretation of the results for the parameters estimated in

this case. All the covariates considered in the modeling have significant coefficients of

level 5%, which means that these variables contribute positively or negatively on lifetime

of patients with carcinogenic cutaneous melanoma. By the estimates obtained, it can

be inferred that patients who had surgery have 0.9212 times more chances to survive

than patients who did not. With each passing year, patients who are in stage IV of the

disease are 3.9696 times more likely to die compared with the ones on the initial stage.

The same can be observed with patients on the Stage III of disease, where the chances

of been cured 2.3233 times less. The higher the stage of the disease, the greater the
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negative impact on the lifetime of patients. The educational level of people considered

in modeling is a factor that contributes positively on the time of life. Those who have

college graduate have 0.8958 more lifetime years than people without a degree. The

study also reveals that the chances of women’s survival are 0.4663 times higher than

men’s. Another interesting fact is with patients who did radiotherapy and chemotherapy,

looking for the estimates of these parameters can be seen that lifetime is less in the

group who did only radiotherapy, than those who had also chemotherapy, but the impact

on time of life is not too significant.

For instance, for the BER-GEO model, looking for the estimate for γ, 3.6% of the

population of the number of carcinogenic cells follows a BER distribution, whereas 96.4%

of the population follows a GEO model. It can be observed that for all combinations

and for the particular case among the best models studied, all presented significant

coefficients at 5% of significance.

Table 2.4: Hypothesis test for γ = 0 and γ = 1 in different combinations for PSMCC
model in melanoma data set.

Mixture model H0 : γ = 0 LR p-value H0 : γ = 1 LR p-valueModel in H0 Model in H0

BER-GEO BER 1356.52 <0.001 GEO 765.84 <0.001
GEO-BELL GEO 765.56 <0.001 BELL 57.76 <0.001
POI-GEO POI 140.56 <0.001 GEO 763.52 <0.001

BER-BELL BER 1312.10 <0.001 BELL 13.64 <0.001

We also considered to test H0 : γ = 0 (γ = 1) versus H1 : γ > 0 (γ < 1) in the

four mixture models selected in Table 2.3 in order to select any of the particular models.

Note that the null hypothesis is at the boundary of the parameter space. Therefore, the

usual likelihood ratio test (LR) statistic, LR = 2(ℓML
1 − ℓML

0 ), where ℓML
i denotes the

log-likelihood function evaluated at the ML estimator under the hypothesis Hi, i = 0, 1,

does not have the usual chi-squared distribution with 1 degrees of freedom (χ2
(1)). In this

case, the asymptotic distribution is (1/2) + (1/2)χ2
(1); see, for instance Stram and Lee

(1994). Table 2.4 shows the p-value for such cases. We highlight that in all the cases

the particular models are rejected in favour of the general model with any traditional

significance level.

Figure 2.3 shows through the randomized quantile residuals (Dunn and Smyth,
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Figure 2.3: Randomized quantile residuals (left) for mixture of concurrent causes for
Bernoulli and Geometric model. Estimated SF (center) and P (Cured|T ≥ t) (right)
for BER-GEO and BELL models to patients with (Profile 1) and without (Profile 2)
chemotherapy, and both profiles considering that patients have made surgery, radiother-
apy, full primary school, were women and have Stage 1 of disease.

1996) that its behaviour is like a random sample from the standard normal distribution

for the model for mixture of BER-GEO of concurrent causes model, which seems to

yield an adequate fit to this data set. The estimated survival function for BER-GEO and

Bell models to patients with (Profile 1) and without (Profile 2) chemotherapy, and both

profiles considering that patients have made surgery, radiotherapy, completed primary

school, were women, receive the category 9 of service and was ate Stage 1 of disease

suggests a long-term survival model. In addition, there is evidence that patients who

have undergone chemotherapy are more likely to survive the first 5 years. Furthermore,

there are indications that the probability of individuals being cured is higher among

patients who underwent chemotherapy in the first years compared to those who did not

undergo chemotherapy throughout the study.

2.5 Concluding remarks

In this work, we proposed a new model for survival data assuming competing
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causes of the event of interest and following a mixture of two PS distributions. The

proposed methodology assumes that the distribution of the number of competing is

different from individual to individual. The proposed model includes several well-known

models as special cases and defines at least ten new special cases. We consider

covariates on the cure rate of M , so allowing a direct modeling for the cure rate through

covariates, facilitating the comparison with other models. We also supposed that the

time to the event of interest follow Weibull distribution. Special cases are studied in some

detail. Maximum likelihood inference is implemented straightforwardly for estimating the

model parameters. In particular, we proposed a simplified estimation procedure based

on the EM algorithm. A Monte Carlo simulation study has shown that the estimates

based on the EM method of the model parameters tend to their true values, whereas the

distributions of these estimators converge to normality, when the sample size increases,

as expected. Finally, an empirical illustration for the cutaneous melanoma diagnosed in

the state of São Paulo, Brazil, was analyzed by considering the models introduced here.

The sub-model chosen as the best fit through the information criterion suggest that

number of carcinogenic cells in cutaneous melanoma comes from a mixture of Bernoulli

and Geometric distributions, where it could be inferred that most cells come from

Geometric population, totalling 96.4%. The other 3.6% follow a Bernoulli distribution.

An interesting fact suggests that in cure fraction, patients that has made surgery has

more lifetime than those who has not. Albeit chemotherapy treatment reduces the time

of life of most patients, it invariably presents a higher probability of cure in comparison

with those patients who do not attend chemotherapy. The regression structure on the

cure fraction revealed relevant issues about the socioeconomic aspects of individuals

with cutaneous melanoma cancer. Women survive longer than men and the higher the

educational level, the longer the survival time. In addition, the higher the stage of the

disease, the greater the negative impact on patient’s survival time. The empirical results

showed the potentiality of this methodology and, particularly, the use of the diagnostic

tools derived in the work. In fact, the proposed model fits the data set well. Future work

should explore other estimation methods for the proposed cure rate model, for instance,

the Bayesian approach similarly as developed by Chen et al. (1999), and also consider

other parametric forms for promotion times, such as beta prime and gamma.
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Appendix A: Proofs

Proof of Proposition 3.1

Following Yakovlev and Tsodikov (1996), we have that

f(ti, δi,m1i,m2i, yi, pi,η, γ) = f(ti, δi, yi|M1i = m1i,M1i = m2i,η, γ)P (M1i = m1i; θ1i)

× P (M2i = m2i; θ2i)P (Yi = yi; γ)

=
{
S(ti;η)

m1i−δi [m1if(ti;η)]
δi
}yi

×
{
S(ti;η)

m2i−δi [m2if(ti;η)]
δi
}1−yi

× a1(m1i)θ
m1i
1i

A1(θ1i)

a2(m2i)θ
m2i
2i

A2(θ2i)
γyi(1− γ)1−yi, (2.14)

where m1i,m2i = δi, δi+1, . . .. Define Eθ1iS(ti;η)

[
Md

1i

]
=
∑∞

mji=0 m
d
1i

a1(m1i)(θ1iS(ti;η))
m1i

A1(θ1iS(ti;η))

and Eθ2iS(ti;η)

[
Md

2i

]
=
∑∞

m2i=0m
d
2i

a2(m2i)(θ2iS(ti;η))
m2i

A2(θjiS(ti;η))
. By using (2.14), we have that

f(ti, δi, yi, pi,η, γ) =

∞∑
m1i=0

∞∑
m2i=0

{
S(ti;η)

m1i−δi [m1if(ti;η)]
δiγ
}yi {

S(ti;η)
m2i−δi [m2if(ti;η)]

δi

×(1− γ)}1−yi a1(m1i)θ
m1i
1i

A1(θ1i)

a2(m2i)θ
m2i
2i

A2(θ2i)

=

[(
f(ti;η)

S(ti;η)

)δi A1(θ1iS[ti;η])

A1(θ1i)

∞∑
m1i=0

mδi
1i

a1(m1i)(θ1iS[ti;η])
m1i

A1(θ1iS[ti;η])
γ

]yi

×

[(
f(ti;η)

S(ti;η)

)δi A2(θ2iS[ti;η])

A2(θ2i)

∞∑
m2i=0

mδi
2i

a2(m1i)(θ2iS[ti;η])
m2i

A2(θ2iS[ti;η])
(1− γ)

]1−yi

= ωyi
i

(
f(ti;η)Eθ2iS(ti;η) [M2i]

S[ti;η]

)δi A2(θ2iS[ti;η])

A2(θ2i)
(1− γ). (2.15)

Therefore,

Yi | ti, δi ∼ BER
(

ωi

1 + ωi

)
. (2.16)

On the other hand, by definition, we have that

P (M1i = m1i,M2i = m2i | ti, δi, yi,η, γ) =
f(ti, δi,m1i,m2i, yi,η, γ)

f(ti, δi, yi,η, γ)
.
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Plugging the expressions (2.14) and (2.15) in the latter definition, we obtain

P (M1i = m1i,M2i = m2i | yi, ti, δi,η) =
a1(m1i) (θ1i [S(ti;η)]

yi)
m1i

A1 (θ1i [S(ti;η)]
yi)

(
m1i

Eθ1iS(ti;η)[M1i]

)yiδi

×
a2(m2i)

(
θ2i [S(ti;η)]

1−yi

)m2i

A2

(
θ2i [S(ti;η)]

1−yi

) (
m2i

Eθ2iS(ti;η)[M2i]

)(1−yi)δi

.

Therefore, M1i and M2i are conditionally independent given (Yi, ti, δi) such that

P (M1i = m1i | yi, ti, δi) =
a1(m1i) (θ1i [S(ti;η)]

yi)
m1i

A1 (θ1i [S(ti;η)]
yi)

(
m1i

Eθ1iS(ti;η)[M1i]

)yiδi

and (2.17)

P (M2i = m2i | yi, ti, δi) =
a2(m2i)

(
θ2i [S(ti;η)]

1−yi
)m2i

A2

(
θ2i [S(ti;η)]

1−yi
) (

m2i

Eθ2iS(ti;η)[M2i]

)(1−yi)δi

. (2.18)

Details for Corollary 3.1

In this section, some details are presented for E-step of the EM algorithm. Using

the conditional distribution found in the previous section for Mij given Dobs, for j = 1, 2,

on Equations (2.17) and (2.18) and the conditional distribution for Yi given ti, δi deduced

on Equation (2.16), the steps that are needed for E-step can be obtained in close form.

By definition, the expected value for the number of initial causes Mji given (yi, ti, δi), for

j = 1, 2, can be written in close form as

E[M1i | yi, ti, δi] =

(
Eθ1iS(ti;η)[M

1+δi
1i ]

Eθ1iS(ti;η)[M1i]δi

)yi

(Eθ1i [M1i])
1−yi , for yi, δi = 0, 1,

and

E[M2i | yi, ti, δi] = (Eθ2i [M2i])
yi

[
Eθ2iS(ti;η)[M

1+δi
2i ]

Eθ2iS(ti;η)[M2i]δi

]1−yi

, for yi, δi = 0, 1.

Note that the expressions above for E[M1i | yi, ti δi] and E[M2i | yi, ti δi] are in function

of the random variable Yi, here and after lets call them g1(Yi) and g2(Yi), respectively .
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Additional details for E-step

Since Yi ∼ BER
(

ωi

1+ωi

)
, where ωi is in the Equation (2.8), the only values that

Yi takes are 0 and 1. By using the definition of expected value of function of random

variables, it comes

E [M1i | Dobs] = E [g1(Yi) | Dobs] = g1(0)P (Yi = 0 | Dobs) + g1(1)P (Yi = 1 | Dobs)

=

(
1

1 + ωi

)
Eθ1i [M1i] +

(
ωi

1 + ωi

)[
δi
Eθ1iS(ti;η)[M

2
1i]

Eθ1iS(ti;η)[M1i]
+ (1− δi)Eθ1iS(ti;η)[M1i]

]
.

and

E [M2i | Dobs] = E [g2(Yi) | Dobs] = g2(0)P (Yi = 0 | Dobs) + g2(1)P (Yi = 1 | Dobs)

=

(
1

1 + ωi

)[
δi
Eθ2iS(ti;η)[M

2
2i]

Eθ2iS(ti;η)[M2i]
+ (1− δi)Eθ2iS(ti;η)[M2i]

]
+

(
ωi

1 + ωi

)
Eθ2i [M2i].

Separating the cases δi = 0 and δi = 1 and considering the convenient distri-

bution for each component of the mixture M1i and M2i, the result is obtained for

M̃1i

(k)
= E

[
M1i | Dobs,ψ

(k)
]

and M̃2i

(k)
= E

[
M2i | Dobs,ψ

(k)
]
. Similarly, by using the

same properties for ỸiMji

(k)

= E
[
YiMji | Dobs;ψ

(k)
]
, we have that

E [YiM1i | Dobs] = E [E (YiM1i | Dobs) | Dobs]

= E [YiE (M1i | Dobs) | Dobs] = E [YiE[g1(Yi)] | Dobs]

=

(
ωi

1 + ωi

)[
δi
Eθ1iS(ti;η)[M

2
1i]

Eθ1iS(ti;η)[M1i]
+ (1− δi)Eθ1iS(ti;η)[M1i]

]
(2.19)

and

E [YiM2i | Dobs] = E [E (YiM2i | Dobs) | Dobs]

= E [YiE (M2i | Dobs) | Dobs] = E [YiE[g2(Yi)] | Dobs]

=

(
ωi

1 + ωi

)
Eθ2i [M2i]. (2.20)

Similarly, by separating the cases δi = 0 and δi = 1 and considering the
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convenient distribution for each component of the mixture M1 and M2, the result

is obtained for the conditional expected values ỸiM1i

(k)

= E
[
YiM1i | Dobs;ψ

(k)
]

and

ỸiM2i

(k)

= E
[
YiM2i | Dobs;ψ

(k)
]
. For Ỹi

(k)
= E

[
Yi | Dobs;ψ

(k)
]

the result is straightfor-

ward of the expectation from the distribution of Yi | ti, δi deduced on Equation (2.16).

Since it is Bernoulli
(

ωi

1+ωi

)
, it follows

E [Yi | Dobs] =

(
ωi

1 + ωi

)
.
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Appendix B: Additional results for simulation study

Table 2.5: Empirical bias, SE, RMSE and CP of the ML estimators for the Weibull
distribution to time-to-event in the concurrent causes regression.

Distribution for
ψ Bias SE RMSE CP Bias SE RMSE CP

M1 and M2

n = 200 n = 400
BER and GEO β0 0.020 0.665 0.637 0.955 0.017 0.422 0.406 0.963

β1 −0.106 0.497 0.511 0.943 −0.044 0.323 0.319 0.962
β2 −0.015 0.084 0.084 0.953 −0.005 0.055 0.055 0.949
α −0.139 0.763 0.685 0.963 −0.078 0.499 0.472 0.948
ν 0.026 0.258 0.230 0.963 0.019 0.174 0.166 0.961
γ −0.007 0.503 0.311 0.956 −0.024 0.369 0.277 0.950

n = 600 n = 1000
β0 0.020 0.337 0.320 0.962 0.015 0.255 0.245 0.962
β1 −0.022 0.262 0.257 0.952 −0.015 0.200 0.198 0.949
β2 −0.005 0.045 0.043 0.958 −0.004 0.034 0.033 0.952
α −0.022 0.407 0.373 0.952 −0.013 0.312 0.284 0.956
ν −0.002 0.142 0.131 0.955 −0.001 0.106 0.100 0.961
γ −0.001 0.302 0.244 0.955 0.001 0.232 0.195 0.962

n = 200 n = 400
GEO and LOG β0 −0.006 0.510 0.515 0.959 0.033 0.351 0.336 0.957

β1 −0.030 0.350 0.341 0.951 −0.028 0.253 0.239 0.955
β2 −0.002 0.056 0.053 0.948 −0.005 0.041 0.039 0.955
α −0.242 0.665 0.788 0.968 −0.097 0.441 0.393 0.964
ν 0.086 0.249 0.262 0.948 0.037 0.178 0.166 0.964
γ −0.083 0.627 0.323 0.965 −0.043 0.452 0.306 0.930

n = 600 n = 1000
β0 −0.004 0.284 0.266 0.970 0.015 0.219 0.204 0.958
β1 0.001 0.205 0.192 0.965 −0.011 0.160 0.149 0.964
β2 −0.002 0.033 0.032 0.951 −0.003 0.026 0.024 0.959
α −0.082 0.356 0.331 0.961 −0.036 0.275 0.254 0.960
ν 0.023 0.141 0.136 0.951 0.013 0.112 0.104 0.957
γ −0.044 0.330 0.268 0.949 −0.018 0.294 0.223 0.951

n = 200 n = 400
POI and LOG β0 −0.010 0.524 0.531 0.967 0.009 0.356 0.352 0.947

β1 −0.024 0.368 0.358 0.951 −0.013 0.258 0.253 0.958
β2 −0.004 0.058 0.058 0.941 −0.003 0.041 0.041 0.949
α −0.259 0.692 0.865 0.943 −0.110 0.454 0.446 0.942
ν 0.087 0.248 0.273 0.949 0.034 0.167 0.171 0.943
γ −0.050 0.365 0.274 0.937 −0.030 0.264 0.221 0.932

n = 600 n = 1000
β0 0.008 0.285 0.268 0.961 0.012 0.218 0.215 0.950
β1 −0.008 0.209 0.203 0.953 −0.014 0.161 0.158 0.956
β2 −0.002 0.033 0.033 0.946 −0.001 0.026 0.026 0.955
α −0.063 0.364 0.350 0.956 −0.031 0.279 0.267 0.949
ν 0.020 0.135 0.135 0.957 0.009 0.103 0.101 0.950
γ −0.018 0.213 0.194 0.938 −0.010 0.165 0.154 0.959
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Table 2.6: Empirical bias, SE, RMSE and CP of the ML estimators for the Weibull
distribution to time-to-event in the concurrent causes regression.

Distribution for
ψ Bias SE RMSE CP Bias SE RMSE CP

M1 and M2

n = 200 n = 400
BER and POI β0 0.104 0.715 0.786 0.973 0.044 0.449 0.400 0.973

β1 −0.287 0.722 1.407 0.970 −0.084 0.382 0.611 0.970
β2 −0.039 0.119 0.264 0.972 −0.009 0.063 0.067 0.965
α −0.119 0.826 0.537 0.987 −0.033 0.573 0.375 0.991
ν 0.028 0.268 0.233 0.960 0.007 0.187 0.161 0.967
γ 0.004 1.224 0.362 0.996 0.013 0.874 0.333 0.999

n = 600 n = 1000
β0 0.028 0.350 0.312 0.969 0.006 0.267 0.236 0.967
β1 −0.037 0.283 0.279 0.961 −0.007 0.212 0.199 0.963
β2 −0.005 0.049 0.047 0.959 −0.003 0.037 0.035 0.958
α −0.031 0.446 0.310 0.987 −0.021 0.341 0.244 0.984
ν 0.015 0.148 0.136 0.952 0.005 0.111 0.103 0.966
γ 0.005 0.690 0.305 0.999 −0.011 0.538 0.265 0.999

n = 200 n = 400
POI and GEO β0 0.043 0.589 0.545 0.975 0.015 0.403 0.357 0.969

β1 −0.068 0.446 0.391 0.974 −0.030 0.309 0.286 0.965
β2 −0.012 0.076 0.072 0.966 −0.005 0.052 0.048 0.965
α −0.149 0.773 0.575 0.980 −0.054 0.549 0.368 0.983
ν 0.042 0.272 0.230 0.958 0.013 0.191 0.157 0.971
γ −0.012 1.007 0.352 0.995 0.007 0.747 0.324 0.997

n = 600 n = 1000
β0 0.011 0.324 0.289 0.969 0.005 0.245 0.217 0.975
β1 −0.024 0.247 0.225 0.961 −0.015 0.188 0.167 0.976
β2 −0.002 0.042 0.038 0.963 −0.002 0.032 0.030 0.959
α −0.029 0.433 0.300 0.987 −0.016 0.330 0.247 0.990
ν 0.001 0.150 0.127 0.973 0.002 0.114 0.099 0.979
γ −0.009 0.596 0.297 0.987 0.001 0.455 0.099 0.998

n = 200 n = 400
GEO and BELL β0 0.020 0.575 0.490 0.976 0.010 0.4003 0.316 0.982

β1 −0.069 0.422 0.382 0.970 −0.030 0.300 0.250 0.975
β2 −0.006 0.072 0.065 0.968 −0.003 0.052 0.045 0.964
α −0.147 0.706 0.489 0.987 −0.058 0.504 0.312 0.988
ν 0.048 0.276 0.224 0.973 0.019 0.201 0.149 0.978
γ 0.054 2.084 0.350 0.999 0.012 1.560 0.321 0.998

n = 600 n = 1000
β0 0.007 0.311 0.270 0.967 0.010 0.233 0.210 0.965
β1 −0.008 0.235 0.210 0.955 −0.002 0.177 0.162 0.969
β2 −0.002 0.041 0.036 0.961 −0.002 0.031 0.028 0.960
α −0.053 0.383 0.254 0.994 −0.023 0.284 0.193 0.993
ν 0.017 0.155 0.124 0.982 0.009 0.116 0.093 0.982
γ 0.013 1.171 0.302 0.985 −0.003 0.865 0.256 0.975
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Gallardo, D. I., de Castro, M. and Gómez, H. W. (2021) An alternative promotion

time cure model with overdispersed number of competing causes: An application to

melanoma data. Mathematics, 9(15):1815,
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CHAPTER 3

Poisson-Birnbaum-Saunders mixture cure rate model

Resumo

Introduzimos uma nova modelagem para modelos de sobrevivência de longa

duração, assumindo que o número de causas competitivas segue uma mistura da

distribuição Poisson e Birnbaum-Saunders (BS) (Gonçalves et al., 2022). Neste con-

texto, apresentamos algumas propriedades estatı́sticas e demonstramos que o modelo

do tempo de promoção surge como um caso limite. Aprofundamo-nos em discussões

detalhadas de modelos especı́ficos nesta classe. Particularmente, examinamos o

número esperado de causas concorrentes, o qual depende de covariáveis. Permitindo

uma modelagem direta da fração de cura como função destas covariáveis. Apresen-

tamos um algoritmo do tipo EM, com a finalidade de discutir estimação por máxima

verossimilhança e fornecer compreensão acerca da inferência dos parâmetros para

este modelo. Além disso, delineamos condições suficientes para garantir a consistência

e a normalidade assintótica dos estimadores de máxima verossimilhança. Para avaliar

o desempenho do nosso método de estimação, conduzimos uma simulação de MC

para estudar as propriedades assintóticas e examinamos o poder do teste da razão
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de verossimilhanças, contrastando nossa metodologia com o modelo por tempo de

promoção. Para demonstrar a relevância prática do nosso modelo, aplicamo-lo a um

conjunto de dados médicos reais de um estudo populacional sobre a incidência de

câncer de mama no estado de São Paulo, Brasil. Nossos resultados puderam ilustrar

que o modelo proposto pode superar as abordagens tradicionais em termos de ajuste,

destacando sua utilidade potencial em cenários do mundo real.

palavras-chave: Birnbaum-Saunders; Dados de câncer de mama; Causas concor-

rentes; Modelo de fração de cura; Algoritmo EM.

Abstract

We introduce a new modelling for long-term survival models, assuming that

the number of competing causes follows a mixture of Poisson and the BS distribution

(Gonçalves et al., 2022). In this context, we present some statistical properties of our

model and demonstrate that the promotion time model emerges as a limiting case.

We delve into detailed discussions of specific models within this class. Notably, we

examine the expected number of competing causes, which depends on covariates.

This allows for direct modeling of the cure rate as a function of covariates. We present

an EM algorithm for parameter estimation, to discuss the estimation via maximum

likelihood (ML) and provide insights into parameter inference for this model. Additionally,

we outline sufficient conditions for ensuring the consistency and asymptotic normal

distribution of ML estimators. To evaluate the performance of our estimation method,

we conduct a MC simulation to provide asymptotic properties and a power study of LR

test by contrasting our methodology against the promotion time model. To demonstrate

the practical applicability of our model, we apply it to a real medical dataset from a

population-based study of incidence of breast cancer in São Paulo, Brazil. Our results

illustrate that the proposed model can outperform traditional approaches in terms of

model fitting, highlighting its potential utility in real-world scenarios

keywords: Birnbaum-Saunders; Breast cancer data; Competing causes; Cure rate
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model; EM algorithm.

3.1 Introduction

Cancer represents a significant global public health issue, as it is a leading

cause of death and poses a major obstacle to the increase in life expectancy. In most

countries, it ranks as the first or second leading cause of premature death before the age

of 70. Both the incidence and mortality rates are rapidly increasing worldwide, driven

by demographic and epidemiological transitions (Sung et al., 2021). The significant

increase in disease rates directly reflects the lifestyle choices that most families have

been adopting over time. The adoption of certain behavioral and environmental changes,

such as dietary habits and exposure to environmental pollutants, contributes to the rise

in cancer incidence and mortality. These factors also impact mobility, recreation, and

overall structural conditions that influence health and quality of life (Wild et al., 2020).

Effective interventions have been implemented for the prevention, early detection,

and treatment of the disease in countries with high human development indices. These

efforts have had a substantial impact on reducing the incidence and mortality rates

associated with cancer (Sung et al., 2021). According to the Global Cancer Estimates

Observatory (GLOBOCAN), a web-based platform presenting global cancer statistics

prepared by the International Agency for Research on Cancer (IARC), the impact of

cancer on the world in 2020 was significant. There were 19.3 million new cancer cases

worldwide (18.1 million if cases of non-melanoma skin cancer are excluded). This

means that one in five individuals receive a cancer diagnosis during their lifetime (Ferlay

et al. (2013); Sung et al.(2021)).

The long-term survivors of breast cancer patient have significantly improved

over the past 50 years, due to advancements in the field of medical science and the

introduction of new treatment approaches. As a result, an increasing number of patients

are now considered “cured” or “immune” to the event of interest. It is anticipated

that a certain percentage of patients will respond positively to treatment, leading to

an improvement in overall survival. The long-term survival or cure rate models are

specifically designed to account for this characteristic. It is essential to understand that
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these models do not apply to overall survival since even if a patient is cured of a specific

disease, they remain vulnerable to other diseases, making it impossible to achieve a

complete cure for all illnesses.

Cure rate models are appropriate when there are individuals in the population

who will never experience the event of interest. The pioneering model in this context was

proposed by Berkson and Gage (1952), where it is assumed that there are two distinct

groups: those who are immune and those who are susceptible to the event of interest.

Chen et al. (1999) discussed an alternative model with a biological interpretation.

In this model, the authors assumed the existence of some carcinogenic cells (latent

variable), denoted as M for each individual. The classification of subjects into cured

and susceptible categories is determined by M = 0 and M ≥ 1, respectively. In their

initial proposal, the authors considered M to follow a Poisson distribution with mean θ

[M ∼ POI(θ)].

In the literature, various alternative models to M have been proposed. Notable

examples include the negative binomial (NB) as particular cases and some well-known

distributions such as the Bernoulli (BER), Binomial (Bin), Poisson (POI) and Geometric

(GEO) (Rodrigues et al., 2009); COM-Poisson (Rodrigues et al., 2009); Power Series

(PS) (Cancho et al., 2013); Yule-Simon (Gallardo et al., 2017); Polylogarithm (Gallardo

et al., 2018); Zero-modified Geometric (ZMG) (Leão et al., 2020), compound Poisson

(Gómez et al., 2023), mixture of power series (Brandão et al., 2023), among others.

An interesting class of models was discussed in Barreto-Souza (2015), where

it is assumed that, conditional on a latent variable Z, M | Z ∼ POI(θZ). The author

considered the Exponential Family (EF) of distributions for Z with mean 1, which

encompasses a wide class of models, including the gamma, inverse gaussian, and

generalized hyperbolic secant, among others. In this chapter, we explore a similar

concept, but we consider the BS distribution for Z. The BS model does not belong to

the EF, but possesses many interesting properties: it can be directly parameterized in

terms of the mean, it has a moment-generating function in a closed and simple form,

and it can be expressed as a mixture of distributions, among other characteristics. The

proposed model presents itself as a compelling alternative to the widely acknowledged

NB model. Both models exhibit the common feature of overdispersion of simultaneous
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causes in relation to the mean. This incorporation not only addresses overdispersion

but also introduces versatility to the array of modeling options at our disposal.

The chapter is organized as follows. In Section 3.2, we introduce the Poisson-

Birnbaum-Saunders (PBS) mixture cure rate model . Section 3.3 provides a compre-

hensive review of the maximization of the log-likelihood function for this model, and

we propose an estimation procedure based on the EM algorithm. The performance

of our proposed model is thoroughly examined in Section 3.4 through two simulation

studies. To illustrate the practical application of the methodology, in Section 3.5, we

analyze a dataset comprising survival times of patients with breast cancer in the state of

São Paulo, Brazil. Finally, in Section 3.6, we present a detailed discussion of the main

findings and implications of this study.

3.2 The proposed model

In this Section, we provide an overview of the BS distribution and introduce our

proposed modeling approach.

3.2.1 Birnbaum-Saunders model (BS)

The BS distribution has been widely considered in the literature due to its phys-

ical arguments, favourable statistical properties, and its connection with the normal

distribution. The BS model was proposed by Birnbaum and Saunders (1969) and has

been extensively applied for modelling failure times in engineering. However, novel

applications have emerged in biological, environmental and financial sciences as well;

for instance, Desmond (1985), Kotz et al. (2010), Saulo et al. (2013) and Leiva et al.

(2014a),Leiva et al. (2014b),Leiva et al. (2015a),Leiva et al. (2015b),Leiva et al. (2017).

In the context of the BS distribution, Santos-Neto et al. (2012) introduced

various parameterizations. One such parameterizations is defined by the parameters

µ = β(1 + α2/2) and ϕ = 2/α2, where α > 0 and β > 0 are the original BS parameters

(Birnbaum and Saunders, 1969), µ > 0 is a scale parameter and represents the mean

of the distribution, while ϕ > 0 acts as a shape and precision parameter. We use the
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notation Z ∼ BS(µ, ϕ) to denote a random variable (RV) Z following this distribution. If

Z ∼ BS(µ, ϕ), its PDF is as follows

fZ(z;µ, ϕ) =
exp(ϕ/2)

√
ϕ+ 1

4 z
3
2
√
πµ

(
z +

ϕµ

ϕ+ 1

)
× exp

(
−ϕ

4

(
z(ϕ+ 1)

ϕµ
+

ϕµ

z(ϕ+ 1)

))
, z > 0. (3.1)

For the particular case µ = 1 (which will be of our interest) and defining a = (ϕ+ 1)/2

and b = 1
2
ϕ2/(ϕ+ 1), we have that

fZ(z; 1, ϕ) =
1

2

exp(ϕ/2)(ϕ+ 1)1/2

2
√
π

z−
1
2 exp

(
−1

2
(za+ b/z)

)
+

1

2

exp(ϕ/2)(ϕ+ 1)1/2

2
√
π

z−
3
2

(
ϕ

ϕ+ 1

)
exp

(
−1

2
(za+ b/z)

)
=

1

2

[
GIG

(
a, b,

1

2

)
+ GIG

(
a, b,−1

2

)]
, (3.2)

where GIG(a, b, p) denotes the generalized inverse gamma distribution with PDF given

by

f(z; a, b, p) =
(a/b)p/2

2Kp(
√
ab)

zp−1 exp

(
−1

2
(az + b/z)

)
.

The result in (3.2) indicates that the BS model is a mixture of two GIG distributions. The

supposition on the distribution BS with µ = 1 and ϕ > 0 is done to ensure identifiability

to the model, which will be very useful in the estimation process that will be developed

and does not reduce the applicability of the model in practical cases. This results was

also presented in Equation (22) of Balakrishnan and Kundu (2019).

From (3.1) we can obtain the survival (SF) and hazard rate (HR) functions of Z

which are, respectively,

SZ(z;µ, ϕ) =
1

2
Φ
(
(z + ϕ(z − µ))/(2

√
z(1 + ϕ)µ)

)
, z > 0,

hZ(z;µ, ϕ) =
exp (−(−ϕµ+ ϕz + z)2/(4(ϕ+ 1)µz))(ϕµ+ ϕz + z)

(πµ(ϕ+ 1))
1
22µ

1
2 z

3
2Φ
(
(z + ϕ(z − µ))/(2

√
z(1 + ϕ)µ)

) , z > 0,
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where Φ is the N(0, 1) cumulative distribution function (CDF). Finally, the moment

generating function (MGF) for the BS distribution can be expressed as

MZ(t) =
1

2

(
1 +

√
ϕ+ 1

ϕ+ 1− 4tµ

)
exp

(
ϕ
(√

ϕ+ 1−
√
1 + ϕ− 4tµ

)
2
√
1 + ϕ

)
.

3.2.2 Poisson-Birnbaum-Saunders mixture model

In this subsection, we introduce a novel cure rate model based on a mixture of the

Poisson and BS distributions. The PBS mixture model was proposed by Gonçalves et al.

(2022). In addition to exploring its properties, we also discuss a method for generating

values from this model.

Let M be an unobserved variable denoting the initial number of competing causes

related to the occurrence of an event of interest. In a medical context, such as with

cancer patients, M represents the number of carcinogenic cells in patients undergoing

cancer treatment. We assume that, conditional on Z = z, M | Z = z ∼ POI(θz). We

further assume that Z ∼ BS(1, ϕ), i.e., E(Z) = 1 and Var(Z) = (2ϕ+ 5)/(ϕ+ 1)2. It is

straightforward to see that limϕ→∞ Var(Z) = 0 and then, Z is degenerated at 1 when

ϕ → ∞.

Under this scheme, E(M) = E(E(M |Z)) = θ and Var(M) = E(Var(M |Z)) +
Var(E(M |Z)) = E(θZ) + Var(θZ) = θ + θ2(2ϕ+ 5)/(ϕ+ 1)2 > θ, i.e., the distribution of

M is over-dispersed. Furthermore, we can readily compute the PGF of M as follows

GM(s) = E(sM) = E
(
eM log(s)

)
= MM(log s) = E(MM(log(s))|Z)

= E
(
eθZ(s−1)

)
= MZ(θ(s− 1))

=
1

2

(
1 +

√
ϕ+ 1

ϕ+ 1 + 4θ(1− s)

)
exp

ϕ
(√

ϕ+ 1−
√

1 + ϕ+ 4θ(1− s)
)

2
√
ϕ+ 1

 ,

where MM(·) represents the moment generating function of the distribution for the

variable M for competing causes.

The usual scheme here is the assumption that V1, . . . , Vm, the time to produce a

detectable cancer for each of the m carcinogenic cells, are conditionally independent
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given M = m with common SF S(·;η). In addition, if M = 0 the individual is considered

as cured an then it is defined P (V0 = ∞) = 1. With those notations, the time-to-event

for the individual can be represented as T = min(V0, V1, . . . , VM). Under this usual

competing risks framework, and per Theorem 2 in Rodrigues et al. (2009), we have that

the (improper) population SF and PDF of the PBS mixture cure rate model are given by

Spop(t; θ, ϕ,η) = Pr(T > t; θ, ϕ,η) = GM

(
S(t;η); θ, ϕ

)
=

1

2

(
1 +

√
1− 4θ(1− S(t;η))

ϕ+ 1 + 4θ(1− S(t;η))

)

× exp

{
ϕ

2

(
1−

√
ϕ+ 1 + 4θ(1− S(t;η))√

ϕ+ 1

)}
(3.3)

and

fpop(t; θ, ϕ,η) =
f(t;η)θu−3/2 exp

{
ϕ
2
[1−

√
u]
}

ϕ+ 1

[
1 +

ϕ

2
u(1 + u−1/2)

]
, (3.4)

where u = 4θ(1 − S(t;η))/(ϕ + 1) and S(t,η) and f(t,η) are the SF and PDF of

time-to-event and η denotes a vector of unknown parameters. We assume that the

time to the event of interest follows a Weibull distribution with η = (α, ν) unknown

parameter vector. An important detail concerning the relationship between the Poisson-

Birnbaum-Saunders mixture model and the Poisson model with mean θ is that when

the ϕ parameter from the BS distribution in our proposal tends to infinity, the population

SF in Equation (3.3), denoted as Spop(t; θ, ϕ,η), converges in the limit to the population

SF Spop(t; θ,η) of the Cure Rate Poisson model (also knows in the literature as the

promotion time cure rate model). In other words, lim
ϕ→∞

Spop(t; θ, ϕ,η) = e−θ(1−S(t;η)), as

described in Rodrigues et al. (2009). It is immediate that the cure rate of the model is

given by

p = lim
t→∞

Spop(t; θ, ϕ,η)

=
1

2

(
1 +

√
ϕ+ 1

ϕ+ 1 + 4θ

)
exp

(
ϕ
(√

ϕ+ 1−
√
1 + ϕ+ 4θ

)
2
√
1 + ϕ

)
. (3.5)
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For heterogeneous populations with varying characteristics, we can introduce

explanatory variables into the cure rate using the cure parameter θ from Poisson

distribution in our mixing approach for this model. When these factors are integrated,

a distinct cure rate parameter is assigned to each patient or subject, represented as

pi, where i ranges from 1 to n, being n the number of individuals or subjects in the

study. To capture the influence of these explanatory factors on the cure rate, different

link functions can be employed.

Remark 3.2.1. Hashimoto et al. (2014) present a model named Poisson Birnbaum-

Saunders. Such a model corresponds to considering M ∼ POI(θ) and S(t;η) as the SF

for the BS distribution. Despite the similarity in name, for our approach PBS mixture

model considers a very different assumption than in the aforementioned work, namely

M | Z = z ∼ POI(θz), Z ∼ BS(1, ϕ) and, up to this moment, any particular choice for

S(t;η).

3.3 Estimation

In this Section, we focus on estimating the model parameters. Let us consider

the situation when the time to an event is not completely observed and is subject to

right censoring. Let ci be the censoring time for the ith individual and t∗i being the failure

time. We observe ti = min(t∗i , ci) and δi = I(ti ≤ ci), where δi = 1 if ti is a time-to-event

and δi = 0 if ti is right-censored, for i = 1, . . . , n. Based on the observed vectors

Dobs = ((t1, δ1,x
⊤
1 )

⊤, . . . , (tn, δn,x
⊤
n )

⊤), where x⊤
i is the covariate vector of dimension

(q + 1) × 1 related to the cure of the ith individual. These covariates on the cure

fraction pi in (3.5) can be modeled via a link function g(·) in θi. In order to deal with the

effect of the explanatory variables on the cure, let β = (β0, . . . , βq)
⊤ be the vector of

regression coefficients to be estimated. Note that β is related to explanatory variables

with observed values for the patient i denoted by xi = (1, x1i, . . . , xqi)
⊤, which are

associated with the cured fraction. Observe that different kinds of link functions can be

considered, so that, the choice of the link function depends on the parameter space. In

this particular case, the transformation θi = exp(x⊤
i β) have been used to that end. The
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variables M = (M1, . . . ,Mn)
⊤, and Z = (Z1, . . . , Zn)

⊤ are non-observable and thus the

complete data are denoted through vector Dcomp = (t, δ,x,M,Z).

To obtain the estimates for ψ = (η⊤,β, ϕ), where η = (α, ν)⊤, we can use the

corresponding log-likelihood function method under uninformative censoring that is

expressed as

ℓ(ψ|Dobs) =
n∑

i=1

[δi log fpop(ti,ψ) + (1− δi) logSpop(ti,ψ)] . (3.6)

To obtain the ML estimators, it is necessary to maximize (3.6) in relation to ψ, i.e., a

maximization of dimension q + 3. In the following subsection, we discuss an EM-type

algorithm in order to provide a more attractive and robust estimation procedure.

3.3.1 EM algorithm

Let us focus on estimating the model parameters when it involves incomplete

data, latent variables or missing data by using the ML method proposed by Dempster

et al. (1977). The EM algorithm is commonly employed to handle ML estimates of the

parameters of interest. It uses incomplete data to deal with the estimation process. This

algorithm iteratively intend of the conditional distribution of the latent variables given the

observed data and actual parameter estimates in the E-step to obtain ML estimates of

the parameters. Thereafter, in the M-step, this conditional expectation is maximized to

obtain ML estimates of the parameters studied.

To derive the formula for the E-step, the following Proposition and Corollary can

be employed. The proofs of the latter can be found in Appendix A.

Proposition 3.3.1. For the PBS model, the conditional distribution of i) Mi | zi, ti, δi; ii)

Zi | yi, ti, δi and; iii) Yi | ti, δi are, respectively, given by

Mi − δi | zi, ti, δi ∼ POI (θiziS(ti;η)) ,

Zi | yi, ti, δi ∼ GIG (pi(yi), ai, bi) , and

Yi | ti, δi ∼ BER (ωi) ,
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with pi(yi) = δi − yi + 1/2, ai = ai(ϕ) = 2θi + (ϕ+ 1)/2, bi = bi(ϕ) = ϕ2/[2(ϕ+ 1)], and

ωi =
Kpi(1)(

√
aibi)

(
ϕ

ϕ+1

)1+pi(1)

Kpi(0)(
√
aibi)

(
ϕ

ϕ+1

)pi(0)
+Kpi(1)(

√
aibi)

(
ϕ

ϕ+1

)1+pi(1)
, (3.7)

where Kpi(·) is a modified Bessel function of the second kind Abramowitz and Stegun

(1972).

Corollary 3.3.1. The expected value for Yi, Zi, Z−1
i and Mi given (ti, δi) are respectively

E(Yi | ti, δi) = ωi,

E(Zi | ti, δi) =
√
biKpi(0)+1(

√
aibi)√

aiKpi(0)(
√
aibi)

(1− ωi) +

√
biKpi(1)+1(

√
aibi)√

aiKpi(1)(
√
aibi)

ωi,

E(Z−1
i | ti, δi) =

[√
aiKpi(0)+1(

√
aibi)√

biKpi(0)(
√
aibi)

− 2pi(0)

bi

]
(1− ωi) +

[√
aiKpi(1)+1(

√
aibi)√

biKpi(1)(
√
aibi)

− 2pi(1)

bi

]
ωi,

E(Mi | ti, δi) = δi + θiS(ti;η)E[Zi | ti, δi].

More details of the results presented above are provided in Appendix section.

The complete log-likelihood for ψ = (β,η, ϕ), with η = (α, ν)⊤ and and thus the

complete data are denoted by Dcomp = (t, δ,x,M,M2,Y) is given by

ℓ(ψ;Dcomp) = ℓ1(η;Dcomp) + ℓ2(β;Dcomp) + ℓ3(ϕ;Dcomp), (3.8)

where

ℓ1(η;Dcomp) =
n∑

i=1

[(Mi − δi) logS(ti;η) + δi log f(ti;η)] ,

ℓ2(β;Dcomp) =
n∑

i=1

[Mi log θi − Ziθi] , and

ℓ3(ϕ;Dcomp) =
n

2
[ϕ+ log(1 + ϕ)] +

n∑
i=1

Yi [log ϕ− log(1 + ϕ)]

− 1

4

n∑
i=1

[
(1 + ϕ)Zi +

ϕ2

Zi(1 + ϕ)

]
.
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Let ψ(k) be the estimate of ψ at the kth iteration and denote Q(ψ | ψ(k)) as the

conditional expectation of ℓ(ψ;Dcomp) in (3.8) given the observed data and ψ(k). Then

this conditional expectation can be decomposed as

Q(ψ | ψ(k)) = Q1(η | ψ(k)) +Q2(β | ψ(k)) +Q3(ϕ | ψ(k)),

with

Q1(η | ψ(k)) =
n∑

i=1

[(
M̃

(k)
i − δi

)
logS(ti;η) + δi log f(ti;η)

]
, (3.9)

Q2(β | ψ(k)) =
n∑

i=1

[
M̃

(k)
i log θi − Z̃

(k)
i θi

]
, (3.10)

Q3(ϕ | ψ(k)) =
n

2
[ϕ+ log(1 + ϕ)] +

n∑
i=1

Ỹ
(k)
i [log(ϕ)− log(1 + ϕ)]

− 1

4

n∑
i=1

[
(1 + ϕ)Z̃

(k)
i +

κ̃
(k)
i ϕ2

(1 + ϕ)

]
, (3.11)

where M̃
(k)
i = E(Mi | ti, δi,ψ = ψ̂(k)), Z̃(k)

i = E(Zi | ti, δi,ψ = ψ̂(k)), κ̃(k)
i = E(Z−1

i |
ti, δi,ψ = ψ̂(k)) and Ỹ

(k)
i = E(Yi | ti, δi,ψ = ψ̂(k)). Note that all the expected values

required can be computed using corollary 1 and the functions Q1, Q2 and Q3 depend

only on η, β and ϕ, respectively.

In short, the kth iteration of the EM algorithm is given by

• E-step: Following the Corollary 1, for i = 1, . . . , n, update the values of the following

latent variables: M̃ (k)
i , Z̃(k)

i , κ̃(k)
i and Ỹ

(k)
i .

• M-step: Given the actual values of M̃ (k)
i , Z̃(k)

i , κ̃(k)
i and Ỹ

(k)
i , find the values of

η(k), β(k) and ϕ(k) that maximizes (3.9), (3.10) and (3.11), in relation to η, β and ϕ,

respectively.

The E-step and M-step are performed iteratively until a predefined convergence

criterion is met, specifically when the difference between consecutive estimates reaches

a predetermined tolerance level. Conversely, the standard errors for the estimator ψ̂

can be derived from the Hessian matrix of the observed log-likelihood function in (3.6),
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which is given by

Σ(ψ̂) = −
∂2ℓ(ψ|Dobs)

∂ψ∂ψ⊤

∣∣∣∣∣
ψ=ψ̂

.

This matrix can be computed using the hessian function included in the pracma (Borchers,

2022) package of the R Core Team (2024) software. Under appropriated regularity con-

ditions, it was shown by Kalbfleisch and Prentice (2022) that the asymptotic distribution

of the estimator ψ̂ follows:

√
n
[
Σ̂(ψ)

]−1/2 (
ψ̂ −ψ

)
D→ Nq+3(0q+3, Iq+3), as n → ∞, (3.12)

where 0q represents a vector of zeros with a dimension of q, and Iq denotes the identity

matrix of order q. In addition, if σ̂2
ϕ denotes the estimated variance of ϕ̂, then by the delta

method (Hajek et al., 1999), for θ = g(ϕ) = (2ϕ+ 5)/(ϕ+ 1)2, it is obtained

√
n
(
ϕ̂− ϕ

)(
ϕ̂+ 1

)2
√
2σ̂ϕ

√
(ϕ̂+ 1)2 − (2ϕ̂+ 5)(ϕ̂+ 1)

D→ N (0, 1) . (3.13)

Results in Eq. (3.12) and (3.13) allows to build confidence intervals for each parameter

and/or θ.

3.4 Monte Carlo simulation studies

In this Section, we present the results of two simulation studies. The first is

related to assessing the performance of the ML estimates for the PBS model through

the EM algorithm. The second study is devoted to evaluating the performance of the

likelihood ratio (LR) test to decide between the PBS model and the traditional promotion

time cure rate model.
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3.4.1 Asymptotic properties

In this study, we assess the effectiveness of parameter estimation using the EM

algorithm by recovering parameter values for simulated datasets. To facilitate the study’s

conduction, the following data structure was created. The time-to-event values were

drawn from the Weibull distribution with fixed parameters α = −3.52 and ν = 1.4. As

our investigation involves studying covariates within the cure fraction, we generated a

sample for the number of competing causes using the PBS mixture model, with fixed

regression coefficients β0 = −1.67, β1 = 1.21, β2 = 2.53, and ϕ = 1.63, which provides

Var(Z) = 1.38. To evaluate different sample sizes (n), set at 200, 400, 600, 800, 1000,

1200, 1400, 1600 and 5000, we conducted a MC study comprising 1,000 replications

for each size.

For each individual, a categorical covariate with three levels was considered.

This variable was denoted as x11i, x12i, and x13i for i = 1, . . . , n. The values of these

covariates were sampled from a Multinomial distribution with probabilities 0.15, 0.26,

and 0.59, respectively. The censoring times for all sample sizes were drawn from a

Uniform distribution between 0 and 20, resulting in an average censoring percentage

of approximately 20%. The selected parameter values were approximated from the

estimates obtained for the application of our proposed model in the next section.

For each parameter value and sample size, we presented the empirical estimates

for the standard deviation of ψ = (β0, β1, β2, α, ν, ϕ)
⊤, as well as the estimated bias and

root mean squared error (RMSE) of the ML estimators and and the CP of the asymptotic

95% confidence intervals, all based on the asymptotic distribution given by Equation

(3.12). The results are shown in Table 3.1. The standard error used to compute the

RMSE was obtained using the Hessian matrix computed using the hessian function

included in the pracma package (Borchers ,2022) of R Core Team (2024), considering

the asymptotic distribution of the ML estimators based on EM estimates.

The performance evaluation of the proposed model is based on results obtained

in a MC study. Table 3.1 summarizes the simulation study of model parameter estimates

from 1,000 replicates of experiments. Evaluating the estimates as the sample size

increases, the biases and the RMSEs decrease for most cases. This shows us the

efficiency of the ML estimates of the proposed model. The estimate of variance for the
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Table 3.1: Empirical standard deviation (SD), Bias, Root of MSE and CP of the ML
estimators for PBS mixture model using the Weibull distribution to time-to-event in the
concurrent causes regression.

Sample Parameter β0 β1 β2 α ν ϕ V ar(Z)
size Real Value −1.7 1.21 2.53 −3.52 1.40 1.36 1.386

200

Bias −0.157 0.300 0.446 −0.331 0.088 8.626 0.333
RMSE 1.440 1.520 1.585 0.807 0.237 32.488 1.167
EM SD 1.432 1.490 1.521 0.736 0.220 31.322 1.118
CP 0.994 0.971 0.970 0.940 0.961 0.809 0.749

400

Bias −0.009 0.072 0.141 −0.155 0.042 5.194 0.141
RMSE 0.448 0.492 0.592 0.577 0.167 20.010 0.947
EM SD 0.448 0.487 0.575 0.556 0.162 19.324 0.936
CP 0.983 0.971 0.956 0.920 0.945 0.855 0.729

600

Bias −0.023 0.026 0.067 −0.064 0.021 3.726 0.019
RMSE 0.361 0.390 0.473 0.457 0.133 13.470 0.810
EM SD 0.360 0.389 0.469 0.452 0.131 12.944 0.810
CP 0.974 0.961 0.952 0.927 0.948 0.892 0.724

800

Bias −0.010 0.023 0.041 −0.040 0.015 2.426 0.024
RMSE 0.316 0.347 0.412 0.392 0.111 11.095 0.714
EM SD 0.316 0.346 0.410 0.390 0.110 10.826 0.714
CP 0.962 0.950 0.954 0.941 0.955 0.898 0.749

1000

Bias −0.024 0.037 0.041 −0.032 0.012 1.796 0.001
RMSE 0.274 0.299 0.360 0.349 0.096 7.792 0.656
EM SD 0.273 0.297 0.357 0.348 0.095 7.583 0.656
CP 0.968 0.961 0.959 0.947 0.949 0.920 0.757

1200

Bias −0.011 0.023 0.020 −0.017 0.007 1.290 −0.018
RMSE 0.254 0.272 0.325 0.317 0.093 6.452 0.602
EM SD 0.254 0.271 0.324 0.317 0.092 6.321 0.602
CP 0.960 0.955 0.958 0.949 0.940 0.925 0.759

1400

Bias −0.014 0.016 0.015 −0.012 0.005 0.932 −0.035
RMSE 0.228 0.252 0.319 0.297 0.083 3.955 0.570
EM SD 0.228 0.252 0.319 0.297 0.083 3.843 0.569
CP 0.969 0.954 0.944 0.960 0.952 0.933 0.767

1600

Bias −0.008 −0.001 −0.004 0.003 0.001 0.774 −0.038
RMSE 0.209 0.225 0.274 0.276 0.077 3.621 0.535
EM SD 0.208 0.225 0.273 0.276 0.077 3.537 0.534
CP 0.960 0.959 0.956 0.957 0.951 0.944 0.771

5000

Bias 0.002 −0.006 −0.007 −0.002 0.002 0.112 −0.016
RMSE 0.117 0.131 0.159 0.153 0.043 0.501 0.300
EM SD 0.117 0.131 0.159 0.153 0.043 0.488 0.300
CP 0.958 0.956 0.960 0.963 0.962 0.962 0.829

random variable Z, which is a function only of the ϕ parameter, is more efficient for

estimating the dispersion of data generated from the model, yielding favorable results

across all studied sample sizes. When analyzing all the regression coefficient estimates,

the average bias approaches zero as the sample size increases.

The standard deviation (SD) and the root mean squared error (RMSE) are closer

to each other, it suggests that the standard errors of parameters are well estimated.

The biases of the time-to-event distribution parameters α and ν become smaller as the

sample size n increases. Furthermore, it can be noted that these estimated values are

greater compared to the ones considered in the regression structure. This happened
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because the values chosen for the simulation study were larger, in absolute terms, than

the ones for the β vector of regression parameters. Last but not least, Despite the

estimated values for Var(Z), which are greatly influenced by the estimated values for ϕ,

the CP’s for all scenarios studied were close to the nominal value (95%). Additional MC

simulation results for different set of parameters can be found in Tables 3.8 and 3.7 of

Appendix B.

In addition to the simulation study presented in Table 3.1 above and considering

the relationship between the PBS mixture model and the promotion time model through

the parameter values ϕ, a more challenging scenario for parameter estimation can be

observed in Table 3.2. In this study, 1000 MC replicates were generated for fixed sample

sizes n = 5000, varying the true values of ϕ in {0.5, 1, 5, 10} while fixing the other model

parameters at β0 = −1.67, β1 = 1.21, β2 = 2.53, α = −3.52, and ν = 1.40. With the

obtained EM estimated values, it was observed that, as expected, the estimation of the

precision parameter ϕ becomes more biased as the values of ϕ increase.

Additionally, the standard deviation (SD) and the root mean squared error (RMSE)

are closer to each other, suggesting that the standard errors of parameters are well

estimated. Each simulated scenario for the values of ϕ considered in the study had CP’s

close to the nominal level (95%). The study suggests that the estimates of the other

parameters were not relatively affected as the parameter ϕ increases.

3.4.2 Hypothesis testing

In this subsection, a MC study was conducted to evaluate the performance of the

LR test in comparing the proposed PBS mixture model with the Poisson model when

the parameter ϕ increases. The main purpose of this simulation study is to assess the

performance of our proposed model for different values for ϕ within the parameter space.

Drawing inspiration from the findings of Barreto-Souza (2015), where the promotion

model is presented as a limiting case, the focus here is on investigating the model’s

efficacy through the likelihood ratio (LR) test. Our exploration centers on testing the
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Table 3.2: Empirical Bias, Root of MSE, standard deviation (SD) and CP of the ML
estimators for PBS mixture model using the Weibull distribution to time-to-event in the
concurrent causes regression for variations of ϕ parameter.

Real value Estimates ϕ β0 β1 β2 α ν

ϕ = 0.5

Bias 0.022 −0.009 0.004 −0.001 0.003 0.000
RMSE 0.125 0.136 0.154 0.160 0.131 0.041
EM SD 0.123 0.136 0.154 0.160 0.131 0.041

CP 0.985 0.957 0.948 0.973 0.978 0.975

ϕ = 1

Bias 0.072 −0.010 0.005 0.004 0.006 −0.001
RMSE 0.336 0.122 0.134 0.156 0.152 0.042
EM SD 0.329 0.121 0.134 0.156 0.152 0.042

CP 0.972 0.957 0.956 0.968 0.972 0.969

ϕ = 5

Bias 1.480 −0.005 0.009 0.017 −0.010 0.003
RMSE 5.946 0.111 0.117 0.149 0.144 0.039
EM SD 5.759 0.111 0.117 0.148 0.144 0.039

CP 0.908 0.948 0.948 0.953 0.951 0.945

ϕ = 10

Bias 3.864 0.002 0.011 0.021 −0.024 0.006
RMSE 14.368 0.100 0.109 0.133 0.124 0.033
EM SD 13.839 0.100 0.109 0.131 0.121 0.032

CP 0.859 0.970 0.960 0.960 0.947 0.969

hypothesis:

H0 : the POI model is the true ,

H1 : the PBS mixture model is the true .

The LR test allows to discern substantial deviations from the null hypothesis,

positing the PBS mixture model as the true model. Through this study, the aim is

to gauge the power of the LR test in identifying significant deviations from the null

hypothesis. Notably, the null hypothesis above lies at the boundary of the parameter

space for ϕ, making the usual LR test statistic, denoted as LR = 2(ℓML
1 −ℓML

0 ), where ℓML
i

represents the log-likelihood function evaluated at the ML estimator under hypothesis Hi,

i = 0, 1, unable to follow the standard chi-squared distribution with 1 degree of freedom

(χ2
(1)). Instead, in this scenario, the asymptotic distribution is given by (1/2) + (1/2)χ2

(1),

as demonstrated by Stram and Lee (1994).

The simulation scenario used consists of the following configuration: In the data

generation we consider the case when the alternative hypothesis is true, that is, the
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competitive causes comes from the PBS mixture model. The time-to-event values were

sampled from the Weibull distribution with fixed parameters α = −4 and ν = 1.8. We

generated a sample for the number of competing causes using the PBS mixture model,

with fixed regression coefficients in β0 = 1.9, β1 = −1.5, β2 = −0.2, and to analyse those

significant deviation of the null hypothesis mentioned later, varying the ϕ parameter at

ϕ ∈ {0.6, 1, 10, 25, 100}. The sample sizes were defined in n ∈ {200; 400; 600; 1, 000}.

The significance levels were set at ξ ∈ {0.01, 0.05, 0.1}. The percentage of rejection of

the null hypothesis for the fixed cases are displayed in Table 3.3.

Table 3.3: Power (%) of LR Test for different values of ϕ and sample sizes.

ϕ
Significance level (%) and Sample size (n)

1% 5% 10%
200 400 600 1000 200 400 600 1000 200 400 600 1000

0.6 0.253 0.438 0.641 0.857 0.508 0.706 0.838 0.963 0.631 0.826 0.898 0.986
1 0.209 0.364 0.495 0.763 0.437 0.631 0.778 0.915 0.616 0.741 0.872 0.960

10 0.040 0.053 0.084 0.129 0.177 0.190 0.225 0.297 0.285 0.271 0.345 0.464
25 0.026 0.028 0.033 0.048 0.117 0.104 0.119 0.127 0.198 0.178 0.208 0.254
100 0.020 0.017 0.011 0.012 0.078 0.059 0.061 0.066 0.127 0.124 0.133 0.139

From Table 3.3, we can deduce that the power of the LR test rises proportionally

with larger sample sizes, as anticipated. For small values of ϕ, the study shows that

the test is more powerful in identifying the PBS mixture model as the best fit, indicating

its effectiveness in detecting significant deviations from the null hypothesis. It is also

possible to observe that as the value of ϕ increases, the percentage of rejection of the

LR test decreases, indicating that for large values of ϕ, the Poisson model is the most

adequate to adjust data with this feature, as expected.

All the scenarios chosen for this simulations study have a considered compu-

tational effort to compute these rejection percentages. The higher the values of ϕ

parameters and the sample sizes considered in this study, the greater the computational

effort employed in obtaining the calculated percentages.

3.5 Application with breast cancer data

In this section, we present a real data problem related to melanoma cancer in the

state of São Paulo, Brazil. Female breast cancer is the most incidence in the world, with

2.3 million new cases (11.7%), followed by lung cancer with 2.2 million cases (11.4%).
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Additionally, colon and rectum cancer accounted for 1.9 million cases (10.0%), prostate

cancer for 1.4 million cases (7.3%), and non-melanoma skin cancer for 1.2 million cases

(6.2%) (INCA, 2022). Like in the rest of the world, cancer plays a significant role in public

health in Brazil, contributing to a substantial number of deaths and placing pressure

on the public healthcare system’s costs. Among the various prevalent types of cancer

in the country, breast cancer stands out as a prominent contributor to this increasing

mortality trend. Globally, it is estimated that 70% of breast cancer deaths occur in

women from low- and middle-income countries (Goss et al., 2013). According to data

from the National Cancer Institute, in the State of São Paulo, Brazil, the estimated crude

and adjusted incidence rates per 100,000 inhabitants, as well as the number of new

cancer cases for the year 2023, were 97.72 and 58.90 cases, respectively.

Swaminathan et al. (2023) conducted a comprehensive assessment of treat-

ments aimed at improving survival rates for breast cancer. Therapeutic decisions are

typically based on the recognition of the unique characteristics of tumours. In cases

of non-metastatic breast cancer, the standard approach involves surgical excision and

the removal of axillary lymph nodes, followed by postoperative radiotherapy as a local

therapy. In essence, the primary procedures for treating non-metastatic breast cancer

include removing the tumour and regional lymph nodes from the breast and preventing

metastatic recurrence. Surgery and radiotherapy are commonly employed as regional

approaches for early-stage tumours. Chemotherapy is considered a gold-standard treat-

ment strategy, utilizing combinations of cytotoxic drugs to either destroy or reduce the

growth of breast cancer cells. The selection or combination of these medical approaches

depends on the overall condition of the patients.

As cited in the Introduction section, in this chapter, we utilize a dataset from the

Oncology Foundation of São Paulo (FOSP), São Paulo, Brazil. The dataset comprises

observations from a retrospective survey involving patients diagnosed with breast cancer

in the State of São Paulo, Brazil, during the years 2009 to 2016, with follow-up conducted

until 2021. The event of interest was defined as death due to breast cancer, and the

time-to-event was calculated as the period between the date of diagnosis and the date

of death attributed to cancer. Patients who did not experience cancer-related mortality

during the follow-up period were considered as right-censored observations. The
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dataset contains a total of 59, 300 patients and the explanatory variables considered in

our analysis are as follows: X1: Clinical cancer stage (Stage I: n = 14, 988 (25.3%); Stage

II: n = 21, 987 (37.1%); Stage III: n = 16, 094 (27.1%); and Stage IV, n = 6, 231 (10.5%)),

patient’s treatment, being X2: Surgery (Yes: n = 45, 719 (77.1%)), X3: Radiotherapy

(Yes: n = 26, 479 (44.7%)), X4: Chemotherapy (Yes: n = 39, 747 (67%)), and X4:

Age at diagnosis in years (mean± standard deviation, 56.3±13.62). The maximum

observed follow-up time was 13.85 years. The median and mean follow-up times

were approximately 5.27 and 5.35 years, respectively. The percentage of censored

observations was 77.67%.
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Figure 3.1: Estimated SF obtained from the Kaplan-Meier (KM) estimator for over-
all patients diagnosed with breast cancer, by clinical stage, surgery, radiotherapy,
chemotherapy and combinations of treatments.

Figure 3.1 shows the estimated KM curves associated with the clinical stage and

type of treatment. Higher survival rates were observed in early clinical stages (I and II),

while poorer prognoses were noted in advanced clinical Stage IV. Notably, higher survival

rates were observed in patients who underwent surgery, received radiotherapy, and did

not receive chemotherapy. For patients undergoing chemotherapy, better survival rates

were observed within the first 2 years, with improved long-term survival for those who

did not receive chemotherapy. This result is expected, as a significant percentage of
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patients at clinical stages III and IV received chemotherapy (80.8%), which typically

presents a more challenging prognosis.

A hypothesis test proposed by Maller and Zhou (1992) available in the package

npcure López et al. (2022) of R Core Team (2024) was carried out with the aim of

verifying whether there are presence of “immune” individuals in the study, this estimated

value is used to test whether the study has enough follow-up time. Based on the results

for this application, the test has provided evidences through p-value < 0.0001, that

there is presence of immune individuals and that the follow-up time is sufficient at 5%

significance level. The same characteristic for long-term survivals in the KM-curves in

data for patients with breast cancer were discussed in Rodrigues et al. (2016), Makdissi

et al. (2019) and S. Pal (2021).

In this section, we fitted the proposed model as well as various cure rate models

from the existing literature to the real breast cancer data presented in the previous

section. The event of interest was defined as death due to breast cancer. Our objective

was to assess the effect of variables such as age at diagnosis, clinical stage, surgery,

radiotherapy, and chemotherapy on survival rates.

We obtained ML estimates by employing the EM algorithm, as detailed in Section

3.3.1. The EM algorithm has been implemented in the R language (R Core Team, 2024)

and is available to the community upon request. Furthermore, we computed the ML

estimates for the parameters of the compared models, including NB, POI and BER

(standard mixture) using the EM.PScr function included in the PScr (Gallardo and Azimi,

2023) package of R software.

It is important to emphasize that, in our proposal, the time-to-event distribution

chosen for individuals at risk is the Weibull distribution, following parameterizations as

detailed in Table 2 of Gallardo et al. (2017) for both S(t,η) and f(t,η), survival and den-

sity functions, which are defined by η = (α, ν) parameters. These values differ from the

typical Weibull distribution included in the PScr Package used to compute EM estimates

for the models under comparison, which are parameterized by η = (ν(PScr), σ(PScr)),

where ν(PScr) and σ(PScr) are the conventional shape and scale parameters, respectively.

We conducted a comparative analysis of the proposed PBS mixture model against

the NB, POI and BER (standard mixture) models to evaluate their fitting performances
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Table 3.4: AIC, BIC and BF values obtained by fitting the PBS mixture, NB, POI and
BER (standard mixture) models to the breast cancer dataset.

Estimated
Models AIC BIC Log-likelihood BF
PBS mixture 92,666.60 92,765.53 −46,322.32 −
NB 92,705.90 92,804.77 −46,341.94 39.24
POI 93,144.70 93,234.56 −46,562.33 469.02
BER (Std. Mixture) 95,413.70 95,503.65 −47,696.87 2738.1

on the dataset, considering that the time-to-event comes from the Weibull distribution.

In Table 3.4, values for Akaike information criterion (AIC), as introduced by Akaike

(1973), Bayesian information criterion (BIC), proposed by Schwarz (1978), and Bayes

factor (BF) are provided. We use the BF to evaluate the magnitude of the difference

between two BIC values; see Kass and Raftery (1995). We compute the AIC and BIC in

all models but the BF is obtained for the comparison between the PBS versus NB, PBS

versus POI and PBS versus BER. Decision about the best fit is made according to the

interpretation of the BF presented in Table 6 of Leiva et al. (2015b). Table 3.4 indicates

that the PBS mixture model provides the best overall fit in terms of AIC, BIC and BF.

The ML estimates of the model parameters, accompanied by their corresponding

standard errors and p-values for each model, can be found in Table 3.5. Given that both

AIC and BIC criteria have indicated our proposal as the most suitable among the four

fitted models, the interpretation of the results will be based on the estimated parameters

of this specific model.

Based on the results provided in Table 3.5, all covariates included in the analysis

are statistically significant associated (at the 5% significance level) with the time-to-

event, except for the chemotherapy, which can be considered significant at 8%. Positive

estimated regression coefficients were obtained for the clinical stage and age at diag-

nosis, indicating that higher clinical stages and older age at diagnosis are associated

with worse survival rates. Conversely, negative estimated values were obtained for the

surgery and radiotherapy indicating that patients who undergo surgery and radiotherapy

have better survival rates compared to those who did not receive surgery and radiother-

apy. Examining the fitted values for chemotherapy treatment, notable variations in the

estimated coefficient values emerge, particularly in the model fitted through the Bernoulli
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Table 3.5: ML estimates, standard error (SE) and respective p-value obtained by fitting
of cure rate models for PBS mixture, NB, POI and BER (standard mixture) applied to
breast cancer.

Parameter
PBS NB POI BER

ML SE ML SE ML SE ML SE
β0:Intercept −1.673 0.092 −1.477 0.154 −1.905 0.081 −2.649 0.092
p-value < 0.001 < 0.001 < 0.001 < 0.001
β1:Stage II 1.219 0.050 1.194 0.048 1.119 0.046 1.169 0.050
p-value < 0.001 < 0.001 < 0.001 < 0.001
β2:Stage III 2.533 0.055 2.4216 0.051 2.219 0.045 2.562 0.051
p-value < 0.001 < 0.001 < 0.001 < 0.001
β3:Stage IV 4.086 0.075 3.986 0.064 3.361 0.046 7.953 0.830
p-value < 0.001 < 0.001 < 0.001 < 0.001
β4: Surgery −0.755 0.030 −0.748 0.028 −0.561 0.020 −0.732 0.038
p-value < 0.001 < 0.001 < 0.001 < 0.001

β5: Radiotherapy −0.327 0.024 −0.326 0.023 −0.252 0.018 −0.319 0.030
p-value < 0.001 < 0.001 < 0.001 < 0.001

β6:Chemotherapy 0.052 0.030 0.026 0.030 0.091 0.023 0.357 0.039
p-value 0.080 0.459 < 0.001 < 0.001
β7: Age 0.008 0.001 0.008 0.001 0.006 0.001 0.009 0.001
p-value < 0.001 < 0.001 < 0.001 < 0.001

α −3.526 0.070 – – – – – –
ν and ν(PScr) 1.396 0.019 1.331 0.016 1.182 0.012 1.167 0.009

σ(PScr) – – 17.233 1.497 12.499 0.795 5.006 0.057
ϕ 1.358 0.141 – – – – – –
q – – 1.120 0.080 – – – –

(standard mixture). Despite its relevance to the estimated model, this discrepancy may

arise from the observations associated with this variable. Furthermore, it is possible to

note that the adjustment for the Bernoulli model presents a very unsatisfactory result for

the estimated value of the log-likelihood presenting in Table 3.4, which is much lower

than the other models compared. This fact may be impacting the estimated values for

the parameters, making them to differ from the other settings.

All of the findings in this study are consistent with observations made in routine

clinical practice. Clinical stage and age at diagnosis have previously been reported as

prognostic factors, indicating that younger patients in early clinical stages who undergo

surgery and radiotherapy tend to have a better prognosis (Makdissi et al., 2019).

The estimated long-term survivors for Equation (3.5) considering patients with

fixed ages at diagnosis of 20, 56 (the average age of patients), and 70 years, undergoing
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Table 3.6: ML estimates of cure rate and 95% Confidence Interval (IC) obtained by
Delta Method for PBS mixture cure rate model applied to breast cancer dataset through
Stage of disease and treatments.

Age: 20 years old
Stages of disease Stage I Stage II Stage III Stage IV

No treatment Estimate 0.826 0.593 0.278 0.046
IC 95% (0.802; 0.849) (0.555; 0.631) (0.243; 0.314) (0.036; 0.055)

Surgery Estimate 0.908 0.751 0.457 0.129
IC 95% (0.896; 0.921) (0.724; 0.778) (0.418; 0.496) (0.107; 0.152)

Radiotherapy Estimate 0.867 0.666 0.353 0.075
IC 95% (0.848; 0.886) (0.632 0.701) (0.314; 0.392) (0.061; 0.089)

Chemotherapy Estimate 0.818 0.581 0.267 0.042
IC 95% (0.795; 0.842) (0.546; 0.615) (0.236; 0.298) (0.034; 0.050)

Surgery and Estimate 0.932 0.806 0.537 0.183
radiotherapy IC 95% (0.922; 0.941) (0.784; 0.828) (0.499; 0.575) (0.155; 0.212)
Surgery and Estimate 0.904 0.742 0.444 0.122
chemotherapy IC 95% (0.892; 0.917) (0.717; 0.766) (0.410; 0.479) (0.103; 0.141 )
Radiotherapy and Estimate 0.861 0.655 0.341 0.070
chemotherapy IC 95% (0.842; 0.880) (0.623; 0.687) (0.306; 0.375) (0.057; 0.082)
Surgery, radiotherapy Estimate 0.929 0.798 0.525 0.174
and chemotherapy IC 95% (0.919; 0.938) (0.778; 0.817) (0.492; 0.558) (0.149; 0.199)

Age: 56 years old
Stages of disease Stage I Stage II Stage III Stage IV

No treatment Estimate 0.784 0.528 0.221 0.028
IC 95% (0.759; 0.810) (0.487; 0.568) (0.192; 0.250) (0.023; 0.034)

Surgery Estimate 0.884 0.699 0.390 0.093
IC 95% (0.870; 0.898) (0.672; 0.726) (0.355; 0.425) (0.077; 0.109)

Radiotherapy Estimate 0.833 0.605 0.290 0.050
IC 95% (0.813; 0.854) (0.572; 0.639) (0.257; 0.323) (0.040; 0.059)

Chemotherapy Estimate 0.776 0.515 0.211 0.026
IC 95% (0.749; 0.802) (0.481; 0.549) (0.185; 0.237) (0.021; 0.031)

Surgery and Estimate 0.913 0.761 0.471 0.138
radiotherapy IC 95% (0.902; 0.924 (0.738; 0.783) (0.436; 0.505) (0.116; 0.159)
Surgery and Estimate 0.878 0.688 0.378 0.087
chemotherapy IC 95% (0.864 0.893 (0.663; 0.713) (0.346 0.409) (0.073; 0.101)
Radiotherapy and Estimate 0.826 0.593 0.279 0.046
chemotherapy IC 95% (0.805; 0.847 (0.561; 0.625) (0.249; 0.309) (0.037; 0.054)
Surgery, radiotherapy Estimate 0.909 0.752 0.458 0.130
and chemotherapy IC 95% (0.898; 0.920) (0.730; 0.773) (0.426; 0.489) (0.111; 0.149)

Age: 70 years old
Stages of disease Stage I Stage II Stage III Stage IV

No treatment Estimate 0.766 0.502 0.201 0.023
IC 95% (0.739; 0.794) (0.459; 0.545) (0.174; 0.228) (0.018; 0.028)

Surgery Estimate 0.873 0.677 0.365 0.080
IC 95% (0.857; 0.888) (0.649; 0.705) (0.330; 0.399) (0.066; 0.095)

Radiotherapy Estimate 0.818 0.581 0.267 0.042
IC 95% (0.796; 0.841) (0.546; 0.615) (0.235; 0.299) (0.034; 0.050)

Chemotherapy Estimate 0.757 0.489 0.191 0.021
IC 95% (0.729; 0.786) (0.454; 0.524) (0.166; 0.216) (0.017; 0.025)

Surgery and Estimate 0.904 0.742 0.444 0.122
Radiotherapy IC 95% (0.892; 0.916) (0.718; 0.766) (0.409; 0.479) (0.102; 0.142)
Surgery and Estimate 0.867 0.666 0.352 0.075
Chemotherapy IC 95% (0.851; 0.883) (0.639; 0.693) (0.321; 0.384) (0.062; 0.087)
Radiotherapy and Estimate 0.811 0.568 0.256 0.038
Chemotherapy IC 95% (0.787; 0.834) (0.535; 0.602) (0.227; 0.285) (0.031; 0.046)
Surgery, radiotherapy Estimate 0.900 0.732 0.432 0.115
and chemotherapy IC 95% (0.887; 0.912) (0.709; 0.755) (0.399; 0.464) (0.097; 0.132)
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various types of treatments across the four clinical stages are shown in Table 3.6. The

study revels that estimated long-term survivors decrease as age increases, indicating

that younger patients have better survival rates when diagnosed early. As expected,

patients in clinical stage IV exhibited a poorer prognosis, regardless of their age at

diagnosis and the type of treatment received. In some cases, physicians have opted

for submitting the patients to more than one treatment, providing in some cases higher

probability of cure than a specific treatment isolated.
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Figure 3.2: Normalized randomized quantile residuals for PBS mixture applied to breast
cancer dataset. Estimated SF for PBS Mixture, for patients with 20, 56 and 70 years
old, who underwent radiotherapy and chemotherapy through stages of disease: Stage I
(black), Stage II (red), Stage III (green) and Stage IV (blue).

Figure 3.2 shows the quantile versus quantile plot of the normalized randomized

quantile residuals (Dunn and Smyth, 1996) for the PBS mixture model, which suggests

that the proposed model shows a good agreement with the expected standard normal

distribution. Figure 3.2 also illustrated the estimated survival curve associated to patients

who underwent radiotherapy and chemotherapy for three different ages through the

stage of disease. These estimates also indicate that younger patients in all clinical

stages who undergo radiotherapy and chemotherapy tend to have a better prognosis.

Furthermore, the estimated survival decays for all ages studied as the clinical stage
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grows up. in all scenarios, older patients had worse cure rates.

3.6 Concluding Remarks

In this chapter, we propose a new model for long-term survival data, assuming

that the number of concurrent causes for event of interest is a mixture of the Poisson and

BS distributions. This approach represents a significant innovation, as the BS model

does not belong to the exponential family, presenting several interesting properties

and applications in medical and biological research. A distinguishing feature of the

proposed model is the existence of closed-form equations for all conditional expectations,

allowing an efficient estimation via ML. In addition, the developed estimation algorithm

is remarkably simple to implement, as all the steps are completely defined. This model

emerges as a competitive alternative to the NB model, which is widely recognized in the

literature. Both models share the characteristic of overdispersion of concurrent causes

relative to the mean. However, our model utilizes the BS as an innovative and popular

alternative in recent literature, adding versatility to the available modeling options.

The simulation study suggests that the ML estimators have good performance in

terms of bias, RMSE, and CP, despite the heightened complexities inherent in modeling

with small samples, particularly concerning the estimation of the ϕ parameter and in

terms of overall fitting. Through the power study for the likelihood test, the authors

have estimated the statistical test through samples generated from the model under

investigation contrasting these results with the Poisson model. The study has shown

great percentages of rejection of the Poisson model for minor values of the dispersion

parameter ϕ, in addition to a decrease in this percentage according to the higher values

set for this parameter. This result is expected as the authors have argued in Section 3.2

for the development of the proposed model.

The proposed methodology has fitted well the dataset provided by FOSP with a

retrospective survey with 59,300 patients diagnosed with breast cancer in the State of

São Paulo, Brazil. Criterion’s, AIC, BIC and BF have shown that the PBS mixture cure

rate model had a better fit as compared to the POI, NB and BER models. Furthermore,

had well-fitting through the normalized randomized quantiles residuals.
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In short, our methodology was able to yield more precise inferences regarding

the impact of disease stages, different types of applied treatments, and patient ages

than the commonly used promotion time model in survival data analysis with cure

fraction, in addition to the NB and the standard mixture models. Furthermore, This study

underscores the significance of early disease detection in achieving treatment success,

emphasizing the importance of both breast self-examination and regular screening

examinations in enhancing treatment efficacy and attaining higher rates of recovery

through therapeutic interventions.
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Appendix A

In this Section, we provide details for Proposition 3.1 and Corollary 3.1.

A.1. Proof of Proposition 3.3.1

Using the results in Gallardo et al. (2017), we obtain For mi = 0, 1, . . . , zi >

0, yi = 0, 1.

f(ti, δi,mi, zi, yi) = S(ti;η)
mi−δi [mif(ti;η)]

δi
(θizi)

mie−θizi

mi!

× exp(ϕ/2)
√
ϕ+ 1

4
√
π

z
−yi+

1
2
−1

i

(
ϕ

ϕ+ 1

)yi

× exp

{
−1

2

[
(ϕ+ 1)zi

2
+

ϕ2

2zi(ϕ+ 1)

]}
.

f(mi, zi, yi | ti, δi) ∝
(θiziS(ti;η))

mi−δi)

(mi − δi)!
z
pi(yi)−1
i exp

{
−1

2

[
aizi +

bi
zi

]}(
ϕ

ϕ+ 1

)yi

,

∝ (θiziS(ti;η))
mi−δie−θiziS(ti;η)

(mi − δi)!︸ ︷︷ ︸
f(mi−δi|zi,ti,δi)

× (a/b)pi(yi)/2

2Kpi(yi)(
√
aibi)

z
pi(yi)−1
i exp

{
−1

2

[
aizi +

bi
zi

]}
︸ ︷︷ ︸

f(zi|yi,ti,δi)

×Kpi(yi)(
√

aibi)

(
ϕ

ϕ+ 1

)yi

×
(
bi
ai

)p(yi)/2

︸ ︷︷ ︸
f(yi|ti,δi)

,

with mi = δi, δi + 1, . . . , zi > 0, yi = 0, 1,, furthermore, pi(yi) = δi − yi + 1/2, ai = ai(ϕ) =

2θiF (ti; η) + (ϕ+ 1)/2, bi = bi(ϕ) = ϕ2/[2(ϕ+ 1)]. The result is obtained recognizing the

distributions in each case.
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A.2. Proof of Proposition 3.3.1

As described later, if the conditional distribution of Zi | yi, ti, δi ∼ GIG(ai, bi, pi(yi)),

we have the following results

E[Zi | yi, ti, δi] =
√
biKpi(yi)+1(

√
aibi)√

aiKpi(yi)(
√
aibi)

= g1(yi),

E[Z−1
i | yi, ti, δi] =

√
aiKpi(yi)+1(

√
aibi)√

biKpi(yi)(
√
aibi)

− 2pi(yi)

bi
= g3(yi).

Using the properties of conditional expectation, it is easy to see that

E[Zi | ti, δi] = E[E(Zi | yi, ti, δi) | ti, δi].

Since the distribution of Yi | ti, δi ∼ BER(ωi) with ωi defined in Equation (3.7) and

using the expressions calculated later it is straightforward that

E[Zi | ti, δi] = E[g1(Yi)|ti, δi] = g1(0)P[Yi = 0|ti, δi] + g1(1)P[Yi = 1|ti, δi]

=

√
biKpi(0)+1(

√
aibi)√

aiKpi(0)(
√
aibi)

(1− ωi) +

√
biKpi(1)+1(

√
aibi)√

aiKpi(1)(
√
aibi)

ωi;

E[Z−1
i | ti, δi] = E[g3(Yi)|ti, δi] = g3(0)P[Yi = 0|ti, δi] + g3(1)P[Yi = 1|ti, δi]

=

[√
aiKpi(0)+1(

√
aibi)√

biKpi(0)(
√
aibi)

− 2pi(0)

bi

]
(1− ωi)

[√
aiKpi(1)+1(

√
aibi)√

biKpi(1)(
√
aibi)

− 2pi(1)

bi

]
ωi.

From the Proposition 3.3.1 conditional distribution for Mi−δi | zi, ti, δi ∼ POI(θiziS(ti;η))

so that its expected value is E[Mi − δi | zi, ti, δi] = θiziS(ti;η). Similary, using the

properties of conditional expectation, we have that

E[Mi | zi, ti] = E[E(Mi | zi, ti, δi) | zi, ti] = E[δi + θiZiS(ti;η) | zi, ti]

= δi + θiS(ti;η)E[Zi | ti, δi].
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Appendix B: Simulation Study

Table 3.7: Empirical, Bias, Root of MSE, standard error (SE) and CP of the ML estimators
for PBS mixture model using the Weibull distribution to time-to-event in the concurrent
causes regression.

Sample size Parameter β0 β1 β2 α ν ϕ Var(Z)
Real Value −0.81 1.26 2.64 −3.93 1.43 0.94 1,8

400

Bias −0.036 0.024 0.005 0.004 0.004 2.153 −0.120
RMSE 0.399 0.422 0.485 0.512 0.145 12.717 0.737
SE 0.462 0.442 0.579 0.685 0.174 6.036 0.985
CP 0.968 0.960 0.958 0.949 0.955 0.980 0.788

600

Bias −0.017 −0.001 −0.015 0.012 0.001 0.662 −0.091
RMSE 0.316 0.332 0.379 0.389 0.116 4.046 0.580
SE 0.368 0.357 0.471 0.557 0.143 3.029 0.761
CP 0.971 0.961 0.962 0.963 0.968 0.977 0.836

800

Bias −0.019 −0.001 −0.020 0.021 −0.004 0.366 −0.090
RMSE 0.283 0.293 0.341 0.358 0.110 2.147 0.536
SE 0.318 0.307 0.406 0.479 0.123 1.879 0.695
CP 0.971 0.962 0.961 0.964 0.955 0.979 0.841

1000

Bias −0.035 0.010 −0.011 0.035 −0.006 0.376 −0.084
RMSE 0.253 0.263 0.299 0.328 0.095 3.278 0.492
SE 0.282 0.276 0.364 0.426 0.110 1.038 0.636
CP 0.968 0.958 0.969 0.958 0.950 0.982 0.858

1200

Bias −0.002 −0.008 −0.013 0.009 0.000 0.180 −0.048
RMSE 0.237 0.243 0.280 0.299 0.090 0.858 0.448
SE 0.259 0.251 0.333 0.392 0.101 0.639 0.600
CP 0.967 0.949 0.962 0.964 0.957 0.972 0.885

1400

Bias −0.012 0.000 −0.006 0.007 0.002 0.121 −0.047
RMSE 0.217 0.226 0.252 0.251 0.077 0.495 0.381
SE 0.238 0.233 0.308 0.361 0.093 0.494 0.504
CP 0.965 0.955 0.979 0.969 0.971 0.987 0.893

1600

Bias −0.013 0.001 −0.012 0.017 −0.004 0.101 −0.046
RMSE 0.190 0.203 0.235 0.228 0.069 0.421 0.345
SE 0.223 0.218 0.288 0.338 0.087 0.446 0.454
CP 0.977 0.963 0.972 0.979 0.975 0.991 0.899

5000

Bias 0.0003 −0.006 −0.008 0.006 −0.002 0.024 −0.015
RMSE 0.101 0.115 0.123 0.109 0.038 0.160 0.168
SE 0.125 0.122 0.163 0.190 0.049 0.216 0.224
CP 0.982 0.958 0.977 0.980 0.980 0.997 0.950

88



Table 3.8: Empirical, Bias, Root of MSE, standard error (SE) and CP of the ML estimators
for PBS mixture model using the Weibull distribution to time-to-event in the concurrent
causes regression.

Sample Parameter β0 β1 β2 α ν ϕ Var(Z)
size (n) Real Value 1.9 −1.5 −0.2 −4 1.8 0.6 2.42

400

Bias 0.017 −0.015 −0.002 −0.043 0.019 1.554 −0.105
RMSE 0.672 0.346 0.052 0.535 0.181 10.714 0.971
SE 0.760 0.366 0.055 0.602 0.202 5.854 2.244
CP 0.942 0.933 0.950 0.947 0.952 0.896 0.843

600

Bias 0.022 −0.010 −0.002 −0.032 0.016 0.462 −0.064
RMSE 0.539 0.280 0.042 0.439 0.152 3.385 0.785
SE 0.631 0.302 0.045 0.497 0.166 1.723 1.801
CP 0.957 0.945 0.948 0.954 0.953 0.930 0.885

800

Bias 0.013 −0.011 −0.002 −0.022 0.009 0.263 −0.064
RMSE 0.451 0.231 0.036 0.360 0.123 1.699 0.665
SE 0.551 0.262 0.039 0.432 0.145 0.952 1.494
CP 0.964 0.962 0.967 0.965 0.966 0.937 0.915

1000

Bias 0.023 −0.018 −0.001 −0.024 0.008 0.143 −0.031
RMSE 0.444 0.221 0.034 0.348 0.118 0.685 0.642
SE 0.493 0.235 0.035 0.386 0.129 0.522 1.475
CP 0.953 0.951 0.952 0.957 0.957 0.919 0.924

1200

Bias 0.019 −0.013 −0.002 −0.019 0.008 0.118 −0.030
RMSE 0.382 0.193 0.030 0.294 0.102 0.798 0.548
SE 0.449 0.213 0.032 0.352 0.118 0.473 1.243
CP 0.964 0.967 0.953 0.969 0.965 0.947 0.941
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