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Resumo

Sistemas de localização em ambientes fechados (IPSs) são essenciais para vi-

abilizar serviços baseados em localização, como varejo, saúde e logística. No

entanto, os IPSs existentes frequentemente exigem etapas de fingerprinting offline

que são trabalhosas e demoradas, limitando a escalabilidade e a adaptabilidade

em cenários internos dinâmicos. Esta tese apresenta o OPTIMAPS, uma solu-

ção inovadora independente de coleta de fingerprints que utiliza a tecnologia

Bluetooth Low Energy (BLE). O OPTIMAPS emprega um modelo de perda de

percurso logarítmica, cujos parâmetros são automaticamente determinados a

partir da geometria do cenário e da análise de diversidade de sinal, eliminando

assim a necessidade de coleta prévia de RSSI em campo. Durante a operação

online, o sistema combina uma estimativa baseada no vizinho mais próximo



(NN) — escolhida por sua eficiência computacional e robustez como estima-

dor inicial — com Programação Sequencial de Mínimos Quadrados (SLSQP)

para otimização com restrições não-lineares, refinando as estimativas de posição

dentro de um círculo de restrição empiricamente ajustado à granularidade do

cenário experimental. Uma das principais inovações do OPTIMAPS é a adoção

da métrica de Chebyshev para quantificar a dissimilaridade entre vetores de

RSSI, que, juntamente com a análise da média das distâncias par-a-par, fornece

melhor discriminação de sinais e aumenta a acurácia da localização. O sistema

foi rigorosamente validado em um cenário real de larga escala — um cenário

de 720 m² com 15 pontos de acesso BLE e 148 locais de teste — utilizando um

conjunto de dados publicamente disponível. O OPTIMAPS alcançou um erro

médio de localização (APE) de 2.65 metros, competitivo com o estado-da-arte,

e superou métodos similares sem fingerprinting considerando-se a métrica de

erro normalizado por densidade de pontos de acesso. Ademais, o OPTIMAPS

demonstrou escalabilidade computacional linear em relação à área do cenário de

testes, uma vantagem crítica sobre abordagens meta-heurísticas, como algorit-

mos genéticos, que apresentam crescimento quadrático ou maior em relação à

demanda por recursos computacionais. A análise de desempenho espacial reve-

lou que o refinamento via SLSQP proporciona os maiores ganhos em ambientes

complexos e ricos em multipercurso, com reduções de erro superiores a 30% nas

salas mais desafiadoras e impacto irrisório em espaços abertos. A quantificação

do "efeito de tamanho" e testes estatísticos adicionais reforçaram a robustez e a

aplicabilidade prática do OPTIMAPS. De modo geral, o OPTIMAPS se mostra

uma solução escalável, precisa e eficiente em consumo de energia, que elimina a

necessidade de coleta de fingerprints e se posiciona como uma proposta altamente



promissora para implantação em cenários de ambientes fechados reais, diversos

e dinâmicos.

Palavras chave: Bluetooth low-energy, Localização em ambientes fechados, Mo-

delo de perda de percurso, RSSI, Otimização.
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Abstract

Indoor positioning systems (IPSs) are essential for enabling location-based ser-

vices in complex environments such as retail, healthcare, and logistics. However,

existing IPSs often require labor-intensive and time-consuming offline finger-

printing phases that limit scalability and adaptability in dynamic indoor settings.

This thesis presents OPTIMAPS (Optimized Positioning Technique Integrating

Model-based and Pairwise Selection), a novel site survey-free solution leveraging

Bluetooth Low Energy (BLE) technology. OPTIMAPS utilizes a log-distance path

loss model, with parameters automatically identified from scenario geometry

and signal diversity analysis, thus eliminating the need for pre-deployment RSSI

collection. During online operation, the system combines a nearest-neighbor

(NN) estimation — chosen for its computational efficiency and robustness as



an initializer — with Sequential Least Squares Programming (SLSQP) for con-

strained nonlinear optimization, refining position estimates within a restriction

circle empirically matched to testbed granularity. A major innovation in OP-

TIMAPS is the adoption of the Chebyshev metric for quantifying RSSI vector

dissimilarity, which, together with mean pairwise distance analysis, leads to

superior signal discrimination and enhances positioning accuracy. The system

was rigorously validated in a large-scale real-world scenario — a 720 m² testbed

with 15 BLE access points and 148 testing locations — using a publicly avail-

able dataset. OPTIMAPS achieved an average positioning error (APE) of 2.65

meters, competitive with state-of-the-art techniques, and outperformed compa-

rable survey-free methods on anchor density-normalized error. Furthermore,

OPTIMAPS demonstrated linear computational scaling with environmental size,

a critical advantage over metaheuristic optimization approaches such as ge-

netic algorithms, which exhibit quadratic or worse growth in resource demand.

Spatially resolved performance analysis revealed that the SLSQP refinement

yields the greatest improvements in complex, multipath-rich environments, with

error reductions surpassing 30% in the most challenging rooms, and negligible

overhead in open spaces. Effect size quantification and statistical testing fur-

ther established OPTIMAPS’ robustness and practical deployability. Overall,

OPTIMAPS proves to be a scalable, accurate, and energy-efficient solution that

eliminates the need for site surveys, positioning it as a highly promising option

for real-world deployment across diverse and dynamic indoor scenarios.

Keywords: Bluetooth low-energy, Indoor positioning, Path loss model, RSSI, Opti-

mization.
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1

1 Introduction

1.1 Context
Indoor positioning systems (IPSs) remain a prominent research area driven by the

demand for location-based services as retail, healthcare, and logistics. In contrast

to outdoor systems that use satellite signals like the Global Positioning System

(GPS), indoor environments pose challenges due to signal obstructions and

multipath propagation. As a result, researchers have investigated technologies to

improve indoor positioning accuracy, with Bluetooth Low Energy (BLE) standing

out for its low power consumption and widespread use in mobile devices (Abed

et al., 2022; Xiao et al., 2024; Zhuang et al., 2022).

Traditional IPS methodologies often involve offline training phases, such

as Wi-Fi and BLE fingerprinting, where extensive data collection is required

to create a radio map. However, these approaches can be time-consuming and

impractical in dynamic environments where conditions frequently change (Jang

and Kim, 2019). Hybrid positioning systems that integrate both Wi-Fi and BLE

technologies have been proposed to leverage the strengths of each method.

By combining the high accuracy of Wi-Fi with the low power consumption

of BLE, these systems can provide robust indoor positioning solutions. For

example, a hybrid approach may use Wi-Fi for precise localization in areas with
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dense AP coverage while employing BLE for broader coverage in less dense

areas (Amr et al., 2021). This flexibility allows for improved performance across

various indoor environments without the need for extensive pre-training. Recent

innovations have emphasized fully online systems based on path loss models,

removing the necessity for prior training (Ali et al., 2019; Assayag et al., 2023).

Furthermore, advanced algorithms like genetic algorithms and optimiza-

tion techniques are being explored to enhance indoor positioning systems (Wang

et al., 2022; Xie et al., 2023; Zhao et al., 2024). These methods optimize position-

ing parameters, enhancing accuracy and efficiency while reducing extensive

offline training needs. Integrating these algorithms with machine learning mod-

els has demonstrated promising results in boosting indoor positioning system

performance.

Based on the aforementioned topics, this thesis presents OPTIMAPS (Op-

timized Positioning Technique Integrating Model-based and Pairwise Selection),

a novel indoor positioning solution that utilizes a path loss model and Sequen-

tial Least Squares Programming (SLSQP) to enhance real-time accuracy with

BLE technology. The newly site survey-free approach overcomes the limitations

of conventional methods, offering a more adaptable indoor positioning solu-

tion. Also, the deployed system is validated in a large-scale real-world scenario,

demonstrating its practical feasibility. Specifically, a log-distance path loss model

is employed to estimate distances from Received Signal Strength Indicator (RSSI)

values from BLE access points (APs), with parameters adjusted for signal diver-

sity. Additionally, SLSQP continuously refines position estimates, adapting to

real-time changes in the indoor environment without extensive pre-collected

data. This approach enhances positioning accuracy and demonstrates efficient
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online processing in complex indoor settings.

1.2 Problem
Although fingerprint-based systems are usually accurate, the offline or training

phase is very labor-intensive and time-consuming, since it demands a significant

amount of time to gather reliable and enough RSSI samples for every selected

point in large, indoor scenarios (Liu et al., 2020).

To partially overcome the problem of intensive site-survey effort, some

solutions rely on the log-distance path loss models, which describe, on average,

the signal propagation throughout an indoor environment (Rappaport, 2002).

Geometrical approaches, such as trilateration and multilateration techniques,

are very efficient in this regard but have lower accuracy (Subedi and Pyun,

2020; Zafari et al., 2019). Probability-based approaches, in turn, are usually more

accurate than geometrical ones, but they are not as precise as fingerprint methods

for larger and more complex environments (Man et al., 2020).

As one can see, the efficiency in the site-survey effort is essential for the

feasibility of IPSs, notably regarding time spent on training and energy consump-

tion. Naturally, many studies are concerned with continuously improving classic

solutions from an innovative perspective while keeping the positioning error at

competitive levels.



1.3. OBJECTIVES 4

1.3 Objectives
The primary objective is to develop a novel positioning system that eliminates

the need for a time-consuming training phase while maintaining competitive

accuracy and online processing time compared to existing solutions in similar

scenarios. To achieve this, several specific objectives are outlined:

1. Formulate a novel approach for determining log-distance path loss model

parameters exclusively through analysis of scenario geometry and RSSI

dissimilarity, eliminating any reliance on on-site signal fingerprinting;

2. Design and implement an adaptive, two-stage positioning pipeline that

leverages both pairwise signal diversity metrics and constrained nonlinear

optimization (SLSQP), enabling real-time positional refinement in dynamic,

multipath-rich indoor environments;

3. Perform a detailed error and sensitivity analysis across spatial sub-regions,

environmental conditions, and algorithmic parameters, identifying the

scenarios where the survey-free approach excels or presents limitations,

and proposing guidelines for practical deployment.

4. Demonstrate the scalability of the proposed framework by validating it in

a large-scale, labeled testbed with diverse device placements, and estab-

lishing open-source resources for future research reproducibility.
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1.4 Structure of the Thesis
The remainder of this paper is organized as follows. Chapter 2 presents the

related work. Chapter 3 expresses the background theory needed to understand

the fundamental parts of our system. Chapter 4 outlines the proposed method,

including the characterization of the experimental testbed. Chapter 5 presents

the results and discussions. Chapter 6 draws the conclusion and presents the

expectations for the next steps of the research.
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2 Related Work

Recent advancements in BLE-based IPSs are attributed to lower power consump-

tion and global infrastructure proliferation. Solutions range from fingerprinting

methods to less time-consuming training techniques, depending on the appli-

cation and permissible positioning error. This section reviews the literature on

these methodologies, outlining the infrastructure, techniques employed, and

achieved accuracy.

Subhan et al. (2019) present an experimental study on RSSI for distance

and position estimation in indoor environments. Conducted in a 100 m2 indoor

area with four fixed BLE modules, the study collected extensive RSSI data at

100 grid points. By applying the logarithmic path loss model and adjusting

radio propagation constants, the authors aimed to reduce distance estimation

errors. They compared position estimation techniques, including fingerprinting-

based K-Nearest Neighbor (KNN), multilateration, and MinMax, finding KNN

achieved the highest accuracy with an average error of 1.02 meters, followed by

MinMax at 2.12 meters and multilateration at 3.18 meters. The study highlights

the importance of optimizing RSSI measurements and environmental constants

for accurate BLE-based indoor positioning.

Ho and Chan (2020) present a decentralized indoor positioning system

using BLE, eliminating the need for pre-training. It employs RSSI-based distance
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estimation but improves it with a continuous on-the-fly training process that

updates signal propagation parameters during beacon communication. A key

innovation is the dynamic adjustment of distance estimation models without

predefined calibration. Experiments in real indoor environments show an aver-

age positioning error (APE) of 1.5 meters, with 80% of results under 2 meters

and 90% under 3 meters.

Nikodem and Szeliński (2021) introduce a BLE-based indoor positioning

method that leverages channel diversity by utilizing extended advertisements

to improve positioning accuracy. Their system integrates channel diversity and

selection with the log-distance path loss model and Weighted Multilateration

algorithm for optimal performance. The authors demonstrate that employing 40

channels substantially improves positioning accuracy compared to only using 3

primary channels. In a 100 m2 test area, the IPS achieves an average error of 1.77

meters, though it necessitates a calibration phase.

Daniş et al. (2023) propose a probabilistic framework for indoor track-

ing using BLE beacons, employing Hidden Markov Models and the forward

algorithm for position estimation based on RSSI data from stationary sensors.

The study involves constructing probabilistic radio-frequency maps through

fingerprinting and histogram interpolation, and modeling state transitions with

Gaussian blur masks. An offline phase collects RSSI measurements to calibrate

the maximal filter, which preprocesses data to mitigate multipath effects. Exper-

iments in a 364 m2 office environment with twelve BLE sensors showed that

the maximal filter significantly improved accuracy, achieving mean position

estimation errors as low as 2.14 meters. The findings demonstrate the method’s

effectiveness in real-world scenarios, making it a valuable contribution to the
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field of indoor positioning.

Szyc et al. (2023) present three RSSI-based positioning algorithms (Ring,

Sectional, and Mass) designed for large industrial areas with limited infrastruc-

ture. These algorithms estimate device positions without relying on fingerprint-

ing or propagation models. The experimental testbed is a 1,600 m2 cowshed

divided into sections, with 10 BLE anchors and approximately 100 cows each

wearing BLE devices. The Ring B algorithm achieves the best positioning accu-

racy with an average error of 7.89 meters, while the Sectional algorithm excels in

section localization with an average Chebyshev error of 0.93 sections. The system

operates in real-time using aggregated RSSI measurements, without significant

offline training, and demonstrates improved positioning accuracy compared to

traditional methods.

Beigi and Shah-Mansouri (2024) propose a comprehensive indoor posi-

tioning algorithm that integrates Wi-Fi and BLE devices to achieve high accuracy.

The system utilizes RSSI-based localization, enhanced by a Kalman filter for

denoising, and categorizes the filtered RSSI values into distinct classes using the

KNN algorithm. These processed data are then fed into a recurrent neural net-

work to estimate positions with high precision. The experimental setup involves

a 28 m2 room with two BLE beacons and one Wi-Fi access point, collecting RSSI

data using ESP32 devices. The proposed algorithm achieves an APE of 61.29

cm, demonstrating a 56% improvement over existing methods. The system effec-

tively captures the complex interactions between RSSI and positions, providing

a robust solution for accurate indoor positioning.

Pinto and Oliveira (2024) introduce SeALS (Selection Strategy of Access

Points with Least Squares Estimation), an innovative RSSI-based indoor posi-
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tioning system utilizing BLE access points. SeALS reduces training and enhances

accuracy by selecting the strongest RSSI components and combining them with

the Least Squares (LS) estimation method. Validated in a large-scale, real-world

scenario with a 45 m × 16 m area, 15 access points, and 148 testing locations,

SeALS demonstrated an APE of 2.88 meters. The system showed up to 13%

improvement in accuracy over pure OLS and up to 30% over the KNN technique.

The system’s efficiency is particularly notable in environments with high AP

density, making it a viable solution for scenarios requiring minimal training

effort and high accuracy.

Wu et al. (2024) evaluate various BLE-based indoor positioning tech-

niques, including KNN, Weighted K-Nearest Neighbor (WKNN), Naïve Bayes

(NB), RSSI-based Neural Network, and a novel Convolutional Neural Network

(CNN) method. The study involves a training phase where RSSI data from eight

BLE beacons installed in a 12m x 6m office space are collected at 28 training

points and 12 testing points. The CNN approach, which transforms RSS data

into an image-like format for feature extraction, achieved the best performance

with an average positioning accuracy of 1.22 meters. The experimental setup

and results demonstrate the potential of deep learning, particularly CNNs, to

enhance the accuracy of indoor positioning systems using BLE technology.

Assayag et al. (2024b) propose an innovative indoor positioning system

that employs Particle Swarm Optimization (PSO) and signal propagation models

to improve positioning accuracy of mobile devices using BLE. Unlike traditional

fingerprint-based IPSs, the MIPS-PSO system requires no prior training or pa-

rameter knowledge, eliminating extensive offline data collection. The system

achieves an APE of 2.57 meters, a 40% improvement over trilateration-based IPSs.
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The experimental testbed, on the second floor of a school covering an area of

720 m2, includes 15 fixed anchor nodes (ANs) and approximately 150 reference

points spaced 2 meters apart. This setup allowed the collection of 15,000 signal

samples using 11 different mobile devices to validate the system’s performance.

Another contribution from the authors (Assayag et al., 2024c) details a new

IPS leveraging BLE technology and RSSI in a log-distance signal propagation

model optimized with a genetic algorithm to improve mobile device positioning

accuracy. The GASP-IPS system requires minimal pre-deployment efforts and

no prior signal data collection, depending only on the floor plan layout and

fixed AN coordinates. This system achieves an APE of 2.52 meters, exceeding the

performance of traditional approaches using fixed propagation model values.

The experimental framework remains consistent with their previous paper.

In summary, the reviewed literature on BLE indoor positioning methods

reveals various RSSI data collection approaches, some bypassing the training

phase. These studies employ machine learning, deep learning, multilateration,

genetic optimization, and adaptive modeling techniques, achieving positioning

errors typically between 1 to 3 meters, depending on validation scenario features.

This indicates a trend towards more efficient and accurate BLE-based indoor

positioning solutions.

Table 1 depicts the main features regarding the aforementioned position-

ing systems, from which The proposed OPTIMAPS is compared with. For a fair

analysis, the accuracy measure proposed by Morgan (2024) is utilized, which

takes into account infrastructure parameters such as testbed size and the number

of APs, in addition to the pure position error:
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%EAD = E2
ABS × NA

A
× 100 (2.1)

where %EAD is the Anchor Density (AD) percentage error, EABS is the absolute

error, NA is the number of anchor nodes (access points), and A is the testbed area.

A lower value for %EAD indicates higher system accuracy.

The table presents a comparison of the methods utilized, validation sce-

nario size, number of APs, site-survey effort, APE, and AD percentage error.

The system designated as "hybrid" employs a combination of range-free and

model-based methodologies. Training effort is classified as "low" or "high" based

on the average number of offline training points gathered relative to the indoor

area. In this context, high training effort refers to a scenario in which fingerprints

are collected uniformly across the entire area, whereas low training effort is char-

acterized by selecting specific points within the scenario. An effortless training

scenario is then defined as one in which no fingerprint collection occurs.

Table 1 – Performance comparison among BLE-based indoor positioning sys-
tems.

System Method Testbed Size Number of APs Training Effort(1) Average Error %EAD
(2)

Subhan et al. (2019) Fingerprinting 100 m2 4 High 1.02 m 4.16
Nikodem and Szeliński (2021) Model-based 100 m2 4 Low 1.77 m 12.53
Daniş et al. (2023) Fingerprinting 364 m2 12 High 2.14 m 15.10
Szyc et al. (2023) Hybrid 1,600 m2 10 Low 7.89 m 38.91
Beigi and Shah-Mansouri (2024) Fingerprinting 28 m2 3 High 0.61 m 3.99
Pinto and Oliveira (2024) Model-based 720 m2 15 Low 2.88 m 17.28
Wu et al. (2024) Fingerprinting 72 m2 8 High 1.22 m 16.54
Assayag et al. (2024b) Model-based 720 m2 15 None 2.57 m 13.76
Assayag et al. (2024c) Model-based 720 m2 15 None 2.52 m 13.23

OPTIMAPS Model-based 720 m2 15 None 2.65 m 14.63

(1) Data collection effort in the offline phase
(2) Anchor density percentage error

One can verify that OPTIMAPS outperforms nearly all systems with

low training profiles concerning the AD percentage error metric. Only two
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fingerprinting-based methods exhibit higher accuracy but require significant

training efforts during the offline phase. Furthermore, OPTIMAPS achieved

comparable APE results across all studies presented that utilized the same RSSI

dataset and indoor scenario. This underscores the feasibility and competitiveness

of the proposed solution within BLE technology, particularly in relation to the

constraints of site-survey efforts.

Among the approaches that require no specific training effort and uti-

lize the same experimental testbed, it is noteworthy that, while some methods

surpass OPTIMAPS in terms of average positioning error, they do so at a sig-

nificantly higher computational cost during the estimation phase. Specifically,

both methods proposed by Assayag et al. employ genetic algorithms, whose

typical computational complexity is O(k × p × np), with k denoting the number

of iterations, p the number of particles, and np the number of optimized param-

eters. As the scenario size increases, both k and p tend to scale proportionally,

potentially leading to an overall quadratic or even worse runtime. In contrast,

OPTIMAPS utilizes a nearest-neighbor (NN) step with complexity O(n), where

n is the number of reference points (which scales with the area), followed by

SLSQP, which runs at O(k × n3
p) with k iterations and a small np. This means

that, as the environment grows, OPTIMAPS maintains an essentially linear com-

plexity with respect to area, representing a considerable advantage in terms of

computational efficiency, energy consumption, and practical deployment on

resource-constrained hardware.
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3 Theoretical Background

This chapter presents the theoretical background upon which the proposed solu-

tion is based. Firstly, commonly deployed indoor positioning technologies are

described, focusing on those based on Wi-Fi and BLE. Additionally, the main

aspects of the log-distance path loss model are highlighted, which typically

describes how the RSSI behaves in indoor environments. Subsequently, several

metrics are introduced to characterize RSSI diversity in a given scenario. Posi-

tioning estimation methods are also discussed, emphasizing Nearest-Neighbor

(NN), KNN, and LS approaches. Finally, some standard optimization techniques

are presented, with particular attention given to the SLSQP algorithm.

3.1 Indoor Positioning Technologies
The inability of Global Navigation Satellite Systems (GNSS), such as GPS, to

operate effectively indoors has catalyzed extensive research into Indoor Position-

ing Systems (IPS). An IPS is any system that attempts to determine the location

of an object or person within a building or other enclosed space (Zafari et al.,

2019). While numerous technologies exist (e.g., Ultra-Wideband, magnetic fields,

computer vision), those based on Radio Frequency (RF) signals from commodity
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hardware are particularly attractive due to their low cost and ease of deployment.

The most prevalent paradigm for RF-based IPS is fingerprinting, which

typically involves two distinct phases:

1. Offline (Training) Phase: This is a labor-intensive calibration phase where

a detailed "radio map" of the target environment is constructed. A sur-

veyor systematically moves through the area, stopping at a grid of known

locations, termed Reference Points (RPs). At each RP, the device collects

RSSI measurements from all detectable transmitters (e.g., Wi-Fi APs, BLE

beacons). This data, often comprising the mean and other statistics of the

RSSI values from each transmitter, is stored in a database. The resulting

entry for each RP is a vector of signal strength indicators, which serves as a

unique "fingerprint" for that physical location.

2. Online (Positioning) Phase: In this operational phase, a user with a mobile

device wishes to determine their location. The device scans for nearby

RF signals and measures their current RSSI values, forming a real-time

fingerprint. This measured fingerprint is then passed to a positioning

algorithm, which compares it against the pre-computed fingerprints in the

radio map database. By finding the best match or combination of matches,

the algorithm estimates the user’s current coordinates.

3.1.1 Wi-Fi-based Positioning

The widespread deployment of IEEE 802.11 (Wi-Fi) networks in commercial and

residential buildings makes Wi-Fi a de facto infrastructure for indoor positioning.

The RADAR system was a pioneering work that demonstrated the feasibility
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of using Wi-Fi fingerprinting for accurate room-level localization (Bahl and

Padmanabhan, 2000).

The primary advantage of Wi-Fi is leveraging existing infrastructure, thus

minimizing deployment costs. However, Wi-Fi-based positioning faces signif-

icant challenges. RSSI values are notoriously unstable due to complex indoor

propagation phenomena such as multipath fading (where the signal reaches the

receiver via multiple paths, causing constructive and destructive interference),

shadowing from static and dynamic obstacles (e.g., walls, furniture, people),

and Non-Line-of-Sight (NLOS) conditions. Furthermore, device heterogeneity

poses a problem, as different Wi-Fi chipsets and antenna orientations can result

in disparate RSSI readings at the same location.

3.1.2 Bluetooth Low Energy (BLE)-based Positioning

Introduced as part of the Bluetooth 4.0 specification, BLE was engineered for

short-range communication with minimal power consumption. This has made it

a compelling technology for granular indoor positioning. The typical architec-

ture involves deploying small, battery-powered transmitters known as beacons,

which periodically broadcast advertising packets on specific channels. These

packets contain a unique identifier and can be detected by any BLE-enabled

device, such as a smartphone.

Compared to Wi-Fi, BLE offers several advantages. The low power profile

allows beacons to operate for years on a single coin-cell battery, simplifying

deployment and maintenance. Their low cost enables dense deployments, which

can lead to higher spatial resolution and accuracy (Faragher and Harle, 2012).
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However, BLE is not without its drawbacks. Its signals, typically in the 2.4 GHz

band, are also susceptible to multipath, shadowing, and interference. The lower

transmission power and shorter range mean that human body absorption can

significantly attenuate the signal, introducing considerable variance.

3.2 Radio Propagation Modeling
Understanding the relationship between distance and signal strength is funda-

mental to both model-based positioning (like multilateration) and interpreting

the data used in fingerprinting. While indoor environments are too complex for

perfect deterministic models, empirical models provide a valuable approxima-

tion.

3.2.1 The Log-distance Path Loss Model

The log-distance path loss model is a widely used mathematical model that

estimates the attenuation or loss of signal strength as it travels from a transmitter

to a receiver over a distance. It takes into account factors such as the distance

between the transmitter and receiver, the frequency of the wireless signal, and

the environment in which the signal propagates. The model is based on the em-

pirical observation that signal strength decreases logarithmically with distance

(Rappaport, 2002).

In the context of indoor localization, the log-distance path loss model

is applied to estimate the distance between a transmitter (e.g., an access point

or a beacon) and a receiver (e.g., a mobile device). By measuring the received
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signal strength and using the log-distance path loss model, it becomes possible

to estimate the distance between the transmitter and receiver. This distance

estimation is then used as input for localization algorithms such as the ones

which triangulate or trilaterate the position of the receiver within the indoor

environment.

The log-distance path loss model is typically represented by the following

equation:

r = Pt − ρ0 − 10αL log
(

d

d0

)
+ Xσ (3.1)

In this equation, r is the received signal strength indicator (RSSI), mea-

sured in dBm, d is the distance between the transmitter and receiver, d0 is a

reference distance, Pt is the AP transmitted power, ρ0 is the path loss at the

reference distance, αL is the path loss exponent, and Xσ represents additional

factors such as shadowing or fading.

One can summarize the main parameters of the model as follows:

• Path loss exponent (αL): The path loss exponent αL is a parameter that char-

acterizes the rate at which the signal strength decreases with distance. It is

typically determined through empirical measurements or simulation stud-

ies specific to the indoor environment under consideration. The value of αL

depends on various factors, including the frequency of the wireless signal,

the nature of the indoor environment (e.g., presence of walls, furniture),

and the propagation characteristics of the wireless technology used (e.g.,

Wi-Fi, Bluetooth).

• Reference distance (d0) and path loss at reference distance (ρ0): The reference

distance d0 is a predefined distance at which the path loss is known or
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assumed. The path loss at the reference distance ρ0 is the path loss value

corresponding to the reference distance. These values are typically obtained

through calibration or measurement campaigns in the specific indoor envi-

ronment of interest.

• Additional factors (Xσ): The additional factors Xσ in the log-distance path

loss model account for variations or deviations from the idealized path

loss behavior. These factors may include shadowing, fading, or other en-

vironmental conditions that affect the signal propagation in indoor envi-

ronments. The specific form and inclusion of these factors depend on the

model being used and the characteristics of the environment.

It is important to note that the log-distance path loss model provides a

simplified representation of signal propagation in indoor environments and may

not capture all the intricacies of real-world conditions (Vallet García, 2020). Hence,

researchers often combine the path loss model with other techniques, such as

fingerprinting, angle-of-arrival, or time-of-flight measurements, to improve the

accuracy of indoor positioning systems.

3.3 RSSI Diversity and Characterization
The temporal and spatial variability of RSSI is a double-edged sword. While it

creates unique fingerprints, its instability is a primary source of error. Therefore,

characterizing this diversity using statistical metrics is crucial for building robust

positioning systems (Kaemarungsi and Krishnamurthy, 2004). For a set of RSSI

samples collected at a single point over time, the following metrics are essential:
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• Mean (µ): The arithmetic average of the RSSI samples. It is the most com-

mon feature used in a fingerprint, representing the central tendency of the

signal strength at a location.

• Standard Deviation (σ) and Variance (σ2): These metrics quantify the

dispersion or volatility of the signal. A high variance indicates an unstable

signal, possibly due to dynamic multipath or interference. This information

is valuable; for instance, in a positioning algorithm, measurements from

transmitters with high historical variance can be down-weighted, as they

are less reliable.

• Higher-Order Moments: Skewness measures the asymmetry of the RSSI

distribution, while kurtosis measures its "tailedness." A non-zero skewness

might indicate persistent NLOS conditions, while high kurtosis could sug-

gest infrequent but strong interference spikes. These can be used to build

more sophisticated signal models beyond a simple Gaussian assumption.

While the statistical metrics described above are essential for characteriz-

ing the RSSI distribution at a single reference point and building a robust radio

map, their primary utility in a fingerprinting system is to form the basis for

comparison during the online positioning phase. When a mobile device captures

a real-time RSSI vector, the fundamental task of the positioning algorithm is to

determine which of the pre-recorded fingerprints in the radio map it most closely

resembles.

This resemblance is not evaluated subjectively but is quantified math-

ematically using pairwise distance metrics. These metrics operate in the N-

dimensional signal space, where N is the number of observed transmitters, and
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compute a scalar value that represents the dissimilarity between the live measure-

ment and each stored fingerprint. The selection of an appropriate distance metric

is a critical design choice, as it dictates how "closeness" is defined and directly

impacts the system’s accuracy and robustness to signal noise. The following

subsections detail the most common metrics employed for this purpose.

3.3.1 Pairwise Distance Metrics in Signal Space

In the context of RSSI fingerprinting, a core task of the online positioning phase is

to quantify the dissimilarity between a newly measured RSSI vector and the set

of pre-recorded fingerprint vectors stored in the radio map. This quantification

is achieved using a distance metric, which calculates a scalar value representing

the "distance" between two vectors in the N-dimensional signal space, where

N is the number of transmitters (e.g., Access Points). The choice of metric is

critical as it directly influences which reference points are considered "close" and,

consequently, the final position estimate. These metrics are a specific application

of the more general Minkowski distance, or Lp norm, which is defined for two

vectors x and y as Lp = (∑N
i=1 |xi − yi|p)1/p (Duda et al., 2012). In the following

subtopics, the two most common instances used in localization will be discussed:

Euclidean (p = 2) and Chebyshev (p → ∞).

Let the real-time measured RSSI vector be r = (r1, r2, . . . , rN) and a stored

fingerprint vector from the j-th reference point be sj = (sj1, sj2, . . . , sjN).
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3.3.1.1 Euclidean Distance

The Euclidean distance is the most widely used metric in fingerprinting systems,

largely due to its intuitive geometric interpretation as the straight-line or "as-the-

crow-flies" distance between two points in signal space (Bahl and Padmanabhan,

2000). It is the L2 norm of the difference between the two vectors. The Euclidean

distance, DE , between the live vector r and a stored vector sj is calculated as:

DE(r, sj) =

√√√√ N∑
i=1

(ri − sji)2 = ||r − sj||2 (3.2)

The metric squares the difference for each transmitter’s RSSI, sums these

squares, and takes the square root. This process ensures that all transmitters con-

tribute to the final distance value. A key characteristic of the Euclidean distance

is its sensitivity to the magnitude of errors. A large deviation in the RSSI from a

single transmitter will result in a large squared term, significantly increasing the

overall distance. While this provides a holistic measure of dissimilarity, it also

makes the metric susceptible to outlier measurements, where a single spurious

reading can dominate the distance calculation and potentially lead to an incorrect

match.

3.3.1.2 Chebyshev Distance

The Chebyshev distance, also known as the maximum value distance or the L∞

norm, offers an alternative perspective on dissimilarity. Instead of aggregating

the differences across all dimensions, it defines the distance between two vectors

as the single greatest difference along any coordinate dimension (Youssef and

Agrawala, 2003). The Chebyshev distance, DC , is calculated as:
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DC(r, sj) = max
i

|ri − sji| = ||r − sj||∞ (3.3)

This metric effectively identifies the "worst-case" deviation between the

live RSSI vector and a stored fingerprint. Its primary advantage is its robust-

ness to a situation where multiple transmitters show small deviations but one

transmitter shows a large, anomalous deviation. The Euclidean distance would

be heavily skewed by this single large error, whereas the Chebyshev distance

would simply report that maximum error. Conversely, its main drawback is

that it completely ignores the information from all other transmitters. If two

fingerprints have the same maximum deviation from the live vector but one

is much closer on all other dimensions, the Chebyshev distance will consider

them equally dissimilar. The choice between Euclidean and Chebyshev, therefore,

depends on the expected noise characteristics of the environment and the desired

behavior of the matching algorithm.

3.4 Positioning Estimation Methods
After collecting a real-time RSSI vector, an algorithm must process it to pro-

duce a coordinate estimate. This section details three fundamental deterministic

algorithms.

3.4.1 Nearest-Neighbor (NN)

The Nearest-Neighbor algorithm is the most straightforward fingerprinting

method. It compares the live RSSI vector with every fingerprint in the radio
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map and identifies the single RP that is "closest" in signal space. The physical

coordinates of this best-matching RP are then returned as the estimated position.

The notion of "closeness" is defined by a distance metric, with the Euclidean

distance being the most common:

Dj =
(

N∑
i=1

(ri − sij)2
)1/2

(3.4)

where Dj is the signal distance to the j-th RP, N is the number of transmitters in

the fingerprint, ri is the live RSSI from transmitter i, and sij is the stored mean

RSSI from transmitter i at RP j. While simple and computationally fast in the

online phase, NN is highly susceptible to noise and outliers; a single erroneous

RSSI reading can cause it to select the wrong RP.

3.4.2 K-Nearest Neighbors (KNN)

The K-Nearest Neighbors algorithm is a robust extension of NN that mitigates

its sensitivity to outliers (Bahl and Padmanabhan, 2000). Instead of relying on

a single best match, KNN identifies the K reference points with the smallest

signal space distances to the live measurement. The final position estimate is then

computed as the coordinate corresponding to the mode of these K neighbors.

A more refined version is the Weighted K-Nearest Neighbors (WKNN)

algorithm. In WKNN, the contribution of each of the K neighbors is weighted,

typically by the inverse of its signal distance. This gives more influence to closer

neighbors in signal space, further improving accuracy. The estimated position

(x̂, ŷ) is calculated as:
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(x̂, ŷ) =
K∑

j=1
wj(xj, yj), where wj = 1/Dj∑K

k=1 1/Dk

(3.5)

Here, (xj, yj) are the coordinates of the j-th nearest neighbor and Dj is

its signal distance. The choice of K is a critical tuning parameter, representing a

trade-off between noise suppression and localization resolution.

3.4.3 Least Squares (LS)

Unlike fingerprinting, the Least Squares method is a model-based approach

that falls under the category of multilateration. It first attempts to convert RSSI

measurements into distance estimates using an inverted form of the path loss

model (Equation 3.1). With distance estimates di from M transmitters at known

locations (xi, yi), the user’s unknown location (x, y) must satisfy a system of

geometric equations:

(x − xi)2 + (y − yi)2 = d2
i , for i = 1, . . . , M (3.6)

Due to the high error in RSSI-to-distance conversion, this system is typi-

cally inconsistent. The LS method seeks to find the location (x, y) that best fits

the equations by minimizing the sum of the squared errors (residuals). The

Non-Linear Least Squares (NLLS) formulation is:

minimize
x,y

M∑
i=1

(√
(x − xi)2 + (y − yi)2 − di

)2
(3.7)

This is a non-convex optimization problem that requires an iterative

solver. A common simplification involves linearizing the system, which allows
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for a closed-form solution but can amplify errors. The NLLS approach, while

more complex, is generally more accurate.

3.5 Optimization Techniques
Positioning, particularly using model-based approaches like LS, is fundamentally

an optimization problem: we seek to find the parameters (coordinates) that best

minimize a cost function (e.g., the sum of squared errors) subject to certain

constraints (e.g., the user must be within the building’s boundaries).

3.5.1 Broyden–Fletcher–Goldfarb–Shanno (BFGS)

The BFGS algorithm is one of the most popular quasi-Newton methods for

unconstrained nonlinear optimization (Nocedal and Wright, 2006). Newton’s

method finds the minimum of a function by using its second derivatives (the

Hessian matrix), but computing the Hessian can be expensive. Quasi-Newton

methods, like BFGS, circumvent this by iteratively building an approximation of

the inverse Hessian matrix using only first-derivative (gradient) information.

At each iteration, BFGS performs the following steps:

1. Compute a search direction pk = −B−1
k ∇f(xk), where Bk is the current

approximation of the Hessian.

2. Perform a line search to find an optimal step size αk and update the position:

xk+1 = xk + αkpk.
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3. Update the inverse Hessian approximation B−1
k+1 using the change in posi-

tion and the change in the gradient.

BFGS is known for its superlinear convergence rate and is highly effective for

smooth, unconstrained problems. While the basic algorithm is for unconstrained

problems, variants like L-BFGS-B can handle simple box constraints (bounds),

making it applicable to positioning problems where the search space is a known

rectangle.

3.5.2 Trust-Region Reflective (TRF) Algorithm

Trust-region methods are another class of powerful algorithms for nonlinear

optimization. Instead of choosing a search direction and then a step size (like line

search methods), a trust-region method defines a "region" around the current

iterate where a model of the objective function (typically quadratic) is considered

trustworthy. It then takes a step to the minimizer of the model within this trust

region (Conn et al., 2000).

The Trust-Region Reflective (TRF) algorithm is a specific implementation

designed for large-scale, bound-constrained problems. At each step, it solves a

trust-region subproblem. If the proposed step hits a boundary, it is "reflected"

back into the feasible domain. The size of the trust region is adjusted based on

the agreement between the model and the actual objective function. If the model

was a good predictor, the region is expanded; if not, it is shrunk. This makes the

method robust, especially for ill-conditioned problems. It is a common choice for

solving non-linear least-squares problems subject to bounds.
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3.5.3 Particle Swarm Optimization (PSO)

PSO is a population-based stochastic optimization technique inspired by the

social behavior of bird flocking or fish schooling (Kennedy and Eberhart, 1995).

The algorithm maintains a population, or "swarm," of candidate solutions, called

"particles." Each particle "flies" through the multi-dimensional search space,

adjusting its position based on its own best-known position and the entire

swarm’s best-known position.

The velocity and position of each particle are updated in each iteration.

The velocity update for a particle is influenced by three components:

• Its current inertia (tendency to maintain its current direction).

• The "cognitive" component: the particle is drawn towards its own personal

best position found so far (pbest).

• The "social" component: the particle is drawn towards the global best

position found by any particle in the swarm (gbest).

PSO is a metaheuristic, meaning it makes few assumptions about the problem

being optimized and can search large spaces. This makes it suitable for complex,

non-convex, and non-differentiable cost functions like those found in positioning,

where traditional gradient-based methods might get stuck in local minima.

3.5.4 Simulated Annealing (SA)

Simulated Annealing (SA) is a probabilistic metaheuristic for global optimization,

inspired by the process of annealing in metallurgy, where a material is heated
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and then slowly cooled to increase the size of its crystals and reduce its defects

(Kirkpatrick et al., 1983).

The algorithm starts with a random solution and an initial high "tempera-

ture." In each iteration, it considers a move to a neighboring solution. If the new

solution is better, the move is always accepted. If the new solution is worse, it

may still be accepted with a certain probability, which is a function of the current

temperature and the magnitude of the worsening. This probability of accept-

ing worse solutions is the key feature of SA: it allows the algorithm to escape

local optima, especially at high temperatures. As the algorithm progresses, the

temperature is gradually decreased according to a "cooling schedule." At lower

temperatures, the probability of accepting worse moves decreases, causing the

algorithm to converge towards a good solution. Its main strength is its proven

convergence to the global optimum (given a sufficiently slow cooling schedule),

but it can be computationally slow.

3.5.5 Differential Evolution (DE)

Differential Evolution (DE) is another powerful population-based metaheuristic,

similar in spirit to genetic algorithms, designed for global optimization over

continuous spaces (Storn and Price, 1997). DE works by maintaining a population

of candidate solutions and creating new candidates by combining existing ones.

For each member of the population (the "target vector") in each generation,

a "mutant vector" is created by taking three other random members from the

population, say xr1, xr2, xr3. The mutant is generated as v = xr1 + F · (xr2 − xr3),

where F is a scaling factor. Then, a "trial vector" is created by "crossover," mixing
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the parameters of the mutant vector with the target vector. If this trial vector

yields a better value of the objective function than the target vector, it replaces

the target in the next generation. This simple yet powerful mechanism of using

population differences to perturb solutions makes DE very effective at navigating

complex search spaces and finding global optima.

3.5.6 Sequential Least Squares Programming (SLSQP)

Sequential Least Squares Programming (also known as Sequential Quadratic

Programming) is a state-of-the-art iterative method for solving constrained Non-

Linear Programming (NLP) problems (Nocedal and Wright, 2006). It is designed

to handle problems of the general form:

minimize
x

f(x) (3.8)

subject to gj(x) ≥ 0, j = 1, . . . , J (inequality constraints) (3.9)

hk(x) = 0, k = 1, . . . , K (equality constraints) (3.10)

The core idea of the algorithm, originally proposed by Kraft (Kraft, 1988),

is to solve the complex non-linear problem by iteratively solving a sequence of

simpler subproblems. At each iteration k, the algorithm approximates the origi-

nal problem with a Quadratic Program (QP). It does this by forming a quadratic

approximation of the problem’s Lagrangian function and a linear approximation

of the constraints around the current iterate xk. This QP subproblem can be

solved efficiently to find a search direction pk. A line search is then performed

along this direction to find a step size αk that makes sufficient progress in re-

ducing the objective function or a merit function, leading to the next iterate:

xk+1 = xk + αkpk.
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For the NLLS positioning problem (Equation 3.7), SLSQP is particularly

well-suited. The objective function is the sum of squared residuals, and we can

add inequality constraints to ensure the estimated position lies within the known

physical boundaries of the building (e.g., xmin ≤ x ≤ xmax). Its robustness and

ability to handle both equality and inequality constraints make it a powerful tool

for refining location estimates.

3.6 Statistical Analysis of Location Errors in IPSs
The rigorous evaluation of IPS performance necessitates sophisticated statistical

methodologies to quantify measurement uncertainty and establish meaningful

comparisons between competing approaches. Location error analysis presents

unique challenges due to the inherently spatial nature of positioning data, poten-

tial correlations between measurements, and the need to distinguish between

systematic and random error components. This section presents a comprehensive

statistical framework that addresses these challenges while providing robust

methods for performance assessment and comparative analysis.

The fundamental question underlying any comparative study in indoor

positioning concerns whether observed performance differences between meth-

ods represent genuine systematic variations or merely reflect random measure-

ment variability. Traditional statistical approaches, when applied without consid-

eration of the spatial and paired nature of positioning data, may lead to incorrect

conclusions regarding system performance. This analysis framework addresses

these concerns through appropriate test selection, assumption validation, and

effect size quantification.
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3.6.1 Experimental Design Considerations

The validity and power of statistical comparisons in indoor positioning research

depend critically on experimental design decisions, particularly regarding the

spatial configuration of test locations and the temporal sequence of measure-

ments. Two primary design paradigms emerge from the literature: independent

sampling designs and paired comparison designs.

Paired Experimental Design

Pi

Pi

Pi Pi

Pi

Pi

Pi
Pi

Method A
Method B

Identical reference positions

Independent Sampling Design

Method A Method B

Distinct reference positions

Figure 1 – Comparative illustration of experimental design paradigms in indoor
positioning research.

Paired comparison designs, wherein both positioning methods are eval-

uated at identical spatial locations, offer several theoretical and practical ad-

vantages. The elimination of location-specific confounding factors substantially

increases statistical power by reducing between-subject variability. This design

paradigm enables the isolation of method-specific effects from spatial hetero-

geneity, leading to more precise estimates of performance differences.

In contrast, independent sampling designs, where different spatial loca-

tions are used for each method evaluation, may provide broader generalizability

but at the cost of reduced statistical power and potential introduction of location-
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related bias. The choice between these paradigms involves fundamental tradeoffs

between internal validity and external generalizability.

The temporal aspects of data collection present additional considerations.

Sequential measurements at the same location may introduce temporal correla-

tion due to environmental changes, infrastructure modifications, or equipment

drift. Randomized measurement sequences can mitigate some of these effects,

while repeated measurements can provide estimates of temporal variability.

3.6.2 Statistical Inference for Paired Comparisons

When positioning methods are evaluated using paired experimental designs, the

statistical analysis focuses on the distribution of pairwise differences rather than

the individual error distributions. This approach offers substantial advantages

in terms of statistical power and interpretability.

For each location i, the performance difference between methods is quan-

tified as:

Di = d1i − d2i (3.11)

where d1i and d2i represent the positioning errors for methods 1 and 2 at location

i, respectively. The central question in paired analysis concerns whether the

expected value of these differences differs significantly from zero.

Under the assumption that the differences Di follow a normal distribution,

the paired t-test provides an optimal testing framework (Student, 1908). The test

statistic is constructed as:
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t = D̄ − µ0

sD/
√

n
(3.12)

where D̄ represents the sample mean of differences, sD denotes the sample

standard deviation of differences, n is the number of paired observations, and

µ0 = 0 under the null hypothesis of no difference between methods.
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Figure 2 – Statistical decision regions for the paired t-test under a two-tailed
alternative hypothesis.

This test statistic follows a t-distribution with (n − 1) degrees of freedom

under the null hypothesis. The confidence interval for the mean difference

provides both point and interval estimates of the performance differential:

D̄ ± tα/2,n−1 · sD√
n

(3.13)

where α is the significance level.

The validity of the paired t-test depends on several critical assumptions:

normality of the difference distribution, independence of paired observations,
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and absence of extreme outliers. Violation of these assumptions may necessitate

alternative approaches.

When the normality assumption is violated, non-parametric alternatives

provide robust inference procedures. The Wilcoxon signed-rank test evaluates

whether the median of the differences differs significantly from zero without

requiring distributional assumptions beyond symmetry around the median

(Wilcoxon, 1945).

The test procedure involves ranking the absolute values of non-zero dif-

ferences and computing the sum of ranks corresponding to positive differences:

W + =
∑

Di>0
Ri (3.14)

where Ri represents the rank of |Di| among all absolute differences. For large

sample sizes, the test statistic can be standardized using a normal approximation:

Z = W + − µW +

σW +
(3.15)

where µW + = n(n+1)
4 and σW + =

√
n(n+1)(2n+1)

24 .

The sign test provides the most robust non-parametric alternative, requir-

ing only that the differences be independent and that the probability of positive

and negative differences be equal under the null hypothesis. The test statistic

simply counts the number of positive differences:

S = |{i : Di > 0}| (3.16)
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Under the null hypothesis, this statistic follows a binomial distribution

with parameters n and p = 0.5.

3.6.3 Effect Size Analysis

Effect size quantification provides a measure of practical significance beyond sta-

tistical significance, particularly crucial when comparing algorithm performance

with large sample sizes where even trivial differences may achieve statistical

significance (Cohen, 1988; Lakens, 2013).

3.6.3.1 Cohen’s d for Paired Comparisons

For paired algorithm comparisons, we employ Cohen’s d for dependent samples:

d = d̄

sd

(3.17)

where d̄ represents the mean of paired differences and sd is the standard deviation

of these differences. Cohen’s conventional interpretation guidelines classify effect

sizes as small (d = 0.2), medium (d = 0.5), and large (d = 0.8).

3.6.3.2 Contextual Effect Analysis

Effect sizes are calculated both globally and within spatial subregions to identify

areas where algorithmic improvements are most pronounced. This approach

reveals whether performance gains are consistent across the deployment en-
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vironment or concentrated in specific scenarios. The combination of statistical

significance testing and effect size quantification ensures that algorithm selection

is based on both detectability and practical relevance of performance differences.

3.6.4 Statistical Decision Framework

The selection of appropriate statistical methods depends on several key factors

that must be carefully evaluated for each comparative study. A systematic deci-

sion framework emerges from the theoretical considerations presented above.

The primary decision point concerns the experimental design: whether

positioning methods are evaluated at identical spatial locations (enabling paired

analysis) or at different locations (requiring independent sample methods). This

fundamental design choice has profound implications for statistical power, re-

quired sample sizes, and the validity of conclusions.

Secondary decisions involve the verification of distributional assump-

tions. Normality testing of error differences (for paired designs) or individual

error distributions (for independent designs) determines whether parametric or

non-parametric methods are appropriate. The Shapiro-Wilk test provides good

performance for smaller samples (n < 50), while the Kolmogorov-Smirnov test

is more appropriate for larger samples (Massey, 1951; Shapiro and Wilk, 1965).

Homoscedasticity (equal variances) represents an additional assumption

for independent sample comparisons. Levene’s test and Bartlett’s test provide

formal procedures for variance equality assessment, though visual inspection

through box plots or residual plots often provides valuable diagnostic informa-

tion.
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Figure 3 – Statistical decision framework for method comparison in indoor posi-
tioning research.

3.6.5 Synthesis and Recommendations

The statistical analysis of location errors in indoor positioning systems requires

careful consideration of multiple interacting factors. The paired experimental

design emerges as the preferred approach when feasible, offering substantial

advantages in terms of statistical power, control of confounding variables, and

precision of effect size estimates.

The theoretical framework presented here demonstrates that appropriate
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statistical method selection depends critically on experimental design character-

istics, distributional properties of positioning errors, and the specific research

questions under investigation. Parametric methods (paired t-test, two-sample

t-test) provide optimal power when their assumptions are satisfied, while non-

parametric alternatives (Wilcoxon signed-rank test, Mann-Whitney U test) offer

robust alternatives when distributional assumptions are violated.

Effect size quantification and confidence interval estimation provide es-

sential information beyond traditional hypothesis testing, enabling assessment

of practical significance and precision of estimates.

The spatial and temporal complexities inherent in positioning data ne-

cessitate careful attention to assumptions of independence and the potential

presence of outliers.

The integration of appropriate experimental design, statistical method

selection, and effect size quantification provides a foundation for advancing the

scientific understanding of indoor positioning technology performance.
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4 System Overview

This chapter presents the proposed solution, from fundamentals to application.

It outlines the proposed system’s steps, and depicts the experimental testbed

based on a real-world indoor layout.

4.1 Proposed Method
The so-called OPTIMAPS consists of offline and online phases. In the offline

phase, parameters of the log-distance path loss model are established to reflect

the average propagation characteristics of the environment. For each test point

requiring location estimation, expected RSSI vectors are calculated using the

established model. Notably, this offline phase demands only the AP ground-

truth positions along the floor plan, with no RSSI data collection for training. In

the online phase, a nearest-neighbor estimation algorithm is optimized through

SLSQP to generate the final position estimate.

Figure 4 illustrates the data flow diagram. Each step is described in the

subsequent topics.
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Figure 4 – Positioning system pipeline divided into an offline phase and an
online phase.

4.1.1 Offline phase

IPSs typically utilize this phase for fingerprint collection; however, the presented

system focuses on configuring log-distance path loss model parameters during

the offline phase. While fingerprint-based schemes require significant time and

effort for site surveys, the aim is to eliminate this inconvenience entirely.

Having presented the model fundamentals in the previous section, the

goal is to identify suitable pairs for ρ0 and αL to characterize the signal, given

that the transmitter power Pt of each BLE beacon is fixed by the hardware at 0

dBm. Typically, these parameters are estimated using regression techniques on

offline collected RSSI samples (Zafari et al., 2019). Still, the proposed solution is

to determine these parameters based solely on the geometric characteristics of

the scenario and the hypothesis of RSSI dissimilarity.

The geometric features are defined by the physical dimensions and coor-

dinates of each access point. Using the log-distance path loss model, the expected
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RSSI at each test point can be calculated, with the expected value of the model’s

random variable being zero – Xσ ∼ N (µ, σ2). Each component of the resulting

vector corresponds to the signal received by a specific access point.

The RSSI dissimilarity hypothesis asserts that increased distances between

expected RSSI result in more accurate location estimation. In a nearest-neighbor

approach, for instance, the nearest RSSI vector is more distinct under varied

signal conditions than when signals are similar. An appropriate dissimilarity

measure enables the selection of a suitable combination (ρ0, αL), ultimately yield-

ing a more accurate estimation. A common method to calculate this measure

is centered on the pairwise distances between RSSI vectors (Zerzucha and Wal-

czak, 2012). Therefore, an indicator of the distribution of these distances should

identify the most effective pair (ρ̂0, α̂L).

Candidate pairs (ρ0, αL) are established with 40 dB ≤ ρ0 ≤ 80 dB, and

1 ≤ αL ≤ 7, which consist of intervals sufficiently large to encompass typical

reported values in the literature concerning the previously mentioned hardware

constraints (Assayag et al., 2024b; Seidel and Rappaport, 1992). Subsequently, the

pairwise distances for each set of parameters are calculated. In this context, the

pdist function from the SciPy library (Virtanen et al., 2020) is employed. The

relevant metric parameters considered include the Euclidean and Chebyshev

distances, as outlined in the previous section.

Essentially, the Euclidean metric quantifies the straight-line distance

between two points in Euclidean space. For two n-dimensional points X =

(x1, x2, ..., xn) and Y = (y1, y2, ..., yn), the Euclidean distance is defined as:

dEuc(X, Y ) =
√

(x1 − y1)2 + (x2 − y2)2 + ... + (xn − yn)2 (4.1)
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This metric meets the axioms of a metric space, making it the standard for

evaluating true physical distances without anisotropic distortions or obstructions.

Many IPS algorithms, such as fingerprinting and ranging-based localization, use

Euclidean distance to assess the "closeness" between measured signal charac-

teristics (RSSI values in the system) from an unknown position and a reference

database (Torres-Sospedra et al., 2015).

The Chebyshev distance between two vectors X and Y is defined as the

maximum absolute difference along any coordinate dimension. Mathematically:

dCheb(X, Y ) = max{|x1 − y1|, |x2 − y2|, ..., |xn − yn|} (4.2)

Unlike the Euclidean metric, the Chebyshev distance prioritizes the

largest coordinate difference. It is especially beneficial when movement or error

propagation is constrained along orthogonal axes. In IPS applications, particu-

larly in grid-based localization or maze-like propagation models, the Chebyshev

metric provides a simplified error measure. For instance, if obstacles constrain

movement to horizontal or vertical paths, using the maximum deviation as a

metric can effectively represent worst-case errors (Pu and You, 2018).

After selecting a metric, a diversity measure is required to quantify the

distance between RSSI vectors. In this context, the mean of pairwise distances is

selected as a metric for the average distances. A higher mean indicates greater

dissimilarity among the expected RSSI vectors.

The offline phase concludes with the determination of maximum signal

diversity or dissimilarity, along with the associated (ρ0, αL) recovered. For the

mean, the maximum indicates the most dissimilar average RSSI vectors.
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4.1.2 Online phase

By using the theoretically most effective pair (ρ̂0, α̂L) and the corresponding

expected RSSI vectors for each test point, the initial online location is estimated

based on the received RSSI vector. A nearest-neighbor (NN) algorithm for this

estimation is employed, although other methods can be also applicable.

The use of the NN as the initial estimation in the online phase is primarily

motivated by its conceptual simplicity and computational efficiency. The NN

method rapidly identifies the candidate position whose model-based RSSI vector

is most similar to the current observation, exhibiting linear complexity relative

to the number of reference points. This characteristic makes it highly suitable for

real-time applications and scalable indoor environments.

Furthermore, when integrated with a scenario-specific path loss model

and signal diversity maximization, NN provides a reliable and robust starting

point for further optimization. It is less prone to initialization errors or con-

vergence instability compared to more complex methods, ensuring that the

subsequent SLSQP refinement begins from a physically meaningful and plau-

sible location estimate. This synergy between a straightforward, well-founded

initial guess and an adaptive optimization phase enhances both the speed and

accuracy of the OPTIMAPS system.

The objective of this optimization step is to improve accuracy by utilizing

the initial position estimation from the nearest-neighbor algorithm as input, in

conjunction with a constraint circle to limit the search for the optimized solution.

In particular, the SLSQP search is restricted to a circular area centered at (x̂0, ŷ0),

which denotes the initial estimation derived from the offline phase, with a radius

R of 2 meters.
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A circular (Euclidean) constraint more accurately reflects physical dis-

tances in real indoor environments, where signal propagation and movement are

not biased to grid axes. The log-distance path loss model and most spatial RSSI

diversity metrics (e.g., Euclidean, Chebyshev) are inherently isotropic. By confin-

ing the search area to a circular region, we ensure that all directions surrounding

the initial estimate are considered equally, thereby reducing the potential for

directional bias that may arise from a square or Manhattan (axis-aligned) restric-

tion.

The value of 2 meters was selected based on the empirical spacing be-

tween test points in the experimental setup, which is approximately 2 meters.

This choice ensures that the likely true position, even in the worst-case scenario

(initial NN error), falls within the specified range. This approach reduces the risk

of overlooking the correct location while simultaneously maintaining a compact

optimization area, thereby enhancing the speed of convergence.

Optimization using SLSQP requires an objective function for minimiza-

tion. For a robust estimation, the online RSSI must closely match the expected

RSSI from the offline phase, which leads to:

fobj(ρ0, αL, xk, yk) =
√√√√ n∑

j=1

(
rj + ρ0 + 10αL log10

(√
(xk − xj)2 + (yk − yj)2 + H2

))2

(4.3)

where rj is the online RSSI from the j − th AP, (xj, yj) denotes the coordinates of

the j − th AP, n indicates the total number of APs, (xk, yk) specifies the candidate

locations within the restriction circle (xk − x̂0)2 + (yk − ŷ0)2 ≤ R2 and the scenario

dimensions, with k signifying the number of iterations executed by the optimiza-
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tion algorithm, (x̂0, ŷ0) representing the initial online estimation, and H denoting

the vertical distance between the receiver and transmitter devices. Regarding

the algorithm implementation, the minimize function from the SciPy library is

used, with the corresponding metric parameter set to "slsqp".

It is worth mentioning that the SLSQP algorithm aims to identify the

optimal 4-tuple (ρ0, αL, xk, yk) that minimizes the objective function. During the

optimization process, the parameters ρ0 and αL are continuously estimated for

each online RSSI, which may not correspond with the pair (ρ̂0, α̂L) estimated

offline. The final location estimation is then expressed as:

(x̂, ŷ) = argmin
(xk,yk)

{fobj(ρ0, αL, xk, yk)} (4.4)

4.2 Experimental framework
To evaluate the system, a large-scale real-world testbed was employed, with RSSI

data collected from real BLE devices. The corresponding dataset can be accessed

in (Assayag et al., 2024a). This article describes the conception, implementation,

and distribution of a comprehensive indoor positioning dataset created with BLE

technology, based on RSSI measurements. The dataset was gathered to fill critical

gaps in existing positioning resources, particularly the lack of real-world, large-

scale RSSI data with explicit spatial labeling and anchor metadata, supporting

both model-based and fingerprinting localization research.
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4.2.1 Scenario

The experiments were conducted in a school facility in Manaus, Brazil (GPS:

-3.088334, -59.964559), spanning about 720 m2. The environment features 11 class-

rooms and 3 halls, with varied room dimensions and substantial wall partitions,

replicating actual signal attenuation and multipath conditions typical of indoor

scenarios.

4.2.2 Testbed and Data Acquisition

• Test Points and Layout: 148 unique positions, roughly 2 m apart, distributed

throughout all rooms and halls. Placement started at 0.5 m from corner walls

and extended linearly.

• Mobile BLE Devices: 10 manufactured beacons, identical in hardware/components,

positioned variably (on arm, pocket, backpack) to represent practical use cases.

• Access Points: 15 fixed BLE nodes, mostly ceiling-mounted at 3.0 m, with

some hall anchors at 2.5 m, installed to reflect realistic wiring and accessibility

constraints. Access points locations are explicitly mapped and provided as

metadata.

4.2.3 Data Collection Protocol

At each test point, every beacon transmitted BLE advertising packets at a fre-

quency of 100 ms. The 15 access points, acting as BLE scanners, listened and

measured RSSI on all three BLE advertising channels, forwarding the results to a
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central gateway using a 900 MHz wireless connection. Each second, an average

RSSI measurement was recorded per anchor, per device, per location—producing

robust, noise-suppressed data. The team exclusively handled the environment

during collection to avoid confounding influences.

4.2.4 Dataset Content and Structure

Each device has a corresponding CSV file, with rows describing:

• RSSI values for each of the 15 access points (WAP-#ID, dBm);

• Test point label (“LABEL”, 150 unique IDs);

• X, Y coordinates (meters, origin defined on the floor map);

• Device ID;

• Room or hall ID.

4.2.5 Experimental Design and System Architecture

The physical infrastructure was purpose-built for energy efficiency (BLE beacons

avoid WiFi), and designed for realistic operational challenges, such as power

access and unobtrusive anchor installation. The research team opted to avoid

WiFi dependencies, instead transmitting anchor data by sub-GHz wireless links

to a central server (Intel i7, 16GB RAM). All 10 beacons were built to identical

standards, ensuring data comparability.

Bluetooth advertising events on channels 37, 38, and 39 facilitated compre-

hensive signal scanning, while the anchors’ storage bus enabled high-frequency
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packet capture. To eliminate transient noise, each RSSI vector reflects averaging

over ten BLE packets (1 s duration at 100 ms intervals).

4.2.6 Research Value and Utility

The dataset is a versatile resource for the scientific community:

• Enables fingerprinting and propagation modeling with high-precision ground

truth;

• Supports comparative studies of positioning algorithms, error modeling, and

spatial analysis;

• Facilitates machine learning applications in regression and classification for

device localization;

• Allows studies involving device heterogeneity, environmental variability, and

real-world deployment constraints.

4.2.7 Experiment Visualization and Summary

Figure 5 displays the testbed floor plan: a 45 m × 16 m area with 11 rooms and

3 halls. The infrastructure is based on BLE technology, consisting of scanners

(access points) and beacons (wearables) that transmit at 0 dBm, as depicted in

Figure 6. There are 148 points, spaced 2 meters apart and uniformly distributed,

to collect RSSI samples from 15 APs. Each point represents a specific location

on the floor plan. Also, approximately 100 samples using 10 different receiver

devices are collected in each point (sample counts range from 7 to 20 per device
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per testing location).
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Figure 5 – Experimental testbed floor plan: 11 rooms, 3 halls, 15 access points,
and 148 testing locations (adapted from Assayag et al. (2024a)).

Figure 6 – Hardware utilized for collecting RSSI data: receiver devices (a) and
transmitter devices (b) (Assayag et al., 2024a).

Extract, Load, and Transform (ELT) processes, system modeling, and tests

were conducted using Python 3.11.11 on an HP Pro Mini Desktop (Windows 11

Pro, 64-bit; 2.30 GHz Intel i3-12300T; 8 GB RAM). The code developed for this

thesis is stored in a repository on GitHub (Pinto, 2025). It contains all Jupyter

notebooks required to reproduce the results presented in this thesis.
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5 Results and Discussions

This chapter presents the main results of the proposed method, utilizing the

APE for comparison with other techniques. The analysis examines how distance

error varies with the α − ρ0 parameter combinations, demonstrating the superior

performance of the SLSQP algorithm in enhancing the reference model. Addition-

ally, the APE performance is assessed across the metric combinations employed

for the pairwise distances in each pair αL − ρ0. The cumulative error distribution

for the most effective performances is then highlighted as an alternative means

of visualizing positioning accuracy. Finally, the proposed system is compared to

similar methods from recent literature to evaluate its applicability.

5.1 Choice of optimization algorithm
Among various optimization methods, the SLSQP algorithm is notable for its

efficiency in execution time, as the average error remains comparable across

the different approaches. For the purpose of comparison, Table 2 illustrates the

overall APE and execution time for each of the listed optimization algorithms

employed to enhance positioning accuracy. The APE is calculated across all test

points and all BLE beacons, while execution time is expressed as the average
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processing time per test point and per device.

Table 2 – Performance comparison among optimization algorithms with parame-
ters (ρ0, αL) = (55, 4.25).

Optimization Algorithm APE (m) Time Complexity Execution Time (ms)

PSO 2.68 O(p × k × np) 298.61
SA 2.72 O(k × np) 617.09
DE 2.65 O(p × k × np) 1,587.97
TRF 2.72 O(k × n2

p) 255.47
L-BFGS-B 2.65 O(k × n2

p) 360.59
SLSQP 2.65 O(k × n3

p) 30.47

p: Population size (number of particles/individuals, for population-based algorithms);
k: Number of iterations (generations, cooling steps, or optimizer steps);
np: Number of parameters or variables being optimized (e.g., spatial coordinates, model parameters).

Under the same conditions, specifically under identical constraints and

with a maximum number of iterations set to 100 (where applicable), the SLSQP

algorithm produces the smallest APE and the shortest execution time. This

indicates a performance that is more than eight times faster than that of the

second-best algorithm, TRF. Although the processing time differences for posi-

tioning might not pose a problem, the SLSQP algorithm is the superior choice in

terms of power consumption.

A closer examination of time complexity reveals that population-based

metaheuristics, such as PSO and DE, require increasingly vast computational

resources as the size of the environment, the number of anchors, or the dimen-

sionality of the search space grows. This often renders these methods impractical

for real-time, large-scale indoor positioning. In contrast, gradient-based algo-

rithms such as TRF, BFGS, and particularly SLSQP, maintain high efficiency

provided the number of optimization parameters remains small — typically four

in this application. Notably, SLSQP excels in handling constrained nonlinear

problems, offering both rapid convergence and robust constraint management,
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and is especially effective when started from a strong initial estimate within a

limited search region.

5.2 Optimization with the SLSQP algorithm
One important consideration when utilizing the SLSQP algorithm is the set of

parameters passed to the corresponding Python function as arguments. The

initial guess for the position estimate is derived from the estimation provided by

the NN algorithm during the offline phase. There is also the option of incorpo-

rating the non-linear constraint, represented by the restriction circle mentioned

previously. To illustrate the possible implementation scenarios, Table 3 depicts

the APE results considering the log-distance parameters (ρ0, αL) = (55, 4.25). The

SLSQP(-) denotes the algorithm without the restriction circle, whereas SLSQP(+)

incorporates it.

Table 3 – Performance comparison among estimation techniques with parame-
ters (ρ0, αL) = (55, 4.25).

Technique APE (m) Execution time (ms)

NN 2.89 1.15
SLSQP(-) 2.82 34.59
SLSQP(+) 2.65 30.47

One can verify that SLSQP(+) yields the best performance, indicating that

the refinement of the position estimate with SLSQP enhances system accuracy.

Furthermore, the restriction circle plays a critical role in reducing the APE. In

terms of execution time, a single position estimate using SLSQP(+) takes a total

of 30.47 ms.
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For varying parameter sets αL and ρ0 in the path loss model, the reference

model, such as the nearest-neighbor algorithm, will yield different APEs, as

the expected RSSI vector at each test point varies. Visualizing APE behavior

against the combination αL −ρ0 is crucial for examining the relationship between

parameters and average error, and for evaluating how the SLSQP(+) algorithm

improves system accuracy. This is illustrated by Figure 7, where positioning

errors are calculated for each model parameter combination αL from 1 to 7 (0.25

steps) and ρ0 from 40 to 80 dB (2.5 dB steps). To improve the readability of the

graphics, ρ0 is presented at each 5 dB step.
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Figure 7 – Positioning Error Comparison: Nearest-Neighbor vs SLSQP Optimiza-
tion by log-distance path loss parameters (ρ0: 40-80 dB, steps of 5 dB);
αL: 1-7.

For extreme parameter combinations, such as αL = 1.0 and 40 ≤ ρ0 ≤ 60
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(dB), the accuracy of both NN and SLSQP(+) exceeds 15 meters. As ρ0 increases,

positioning error decreases, allowing for a broader range of αL. This supports

the concept that a greater ρ0 necessitates a smaller αL to effectively represent

potential signal loss.

Furthermore, with an APE below 3 meters being considered desirable,

the SLSQP(+) consistently outperforms the reference model – NN across all

scenarios. It is noteworthy that by providing the SLSQP algorithm with an initial

location estimation from the NN, the optimization technique typically achieves

enhanced position estimation, particularly with suitable combinations of ρ0 and

αL.

5.3 Choice of model parameters and performance anal-

ysis
After analyzing APE behavior with the combination αL − ρ0, the primary ob-

jective is to identify the parameter combinations that yield a more accurate

system. Three key metrics are employed to evaluate RSSI diversity within the

physical scenario. The first two metrics calculate pairwise distances for the ex-

pected RSSI vectors at candidate test points: Euclidean distance and Chebyshev

distance. The remaining metric aggregates the pairwise distance data into a

single indicator: mean distance. Figure 8 illustrates the behavior of the mean of

the pairwise distances with the combinations (αL, ρ0). In addition, Table 4 and

Figure 9 demonstrate the performance of the three metrics when integrated with

SLSQP(+) compared to the pure NN and SLSQP(+) techniques.

For 40 dB ≤ ρ0 ≤ 65 dB, the Mean-Chebyshev approach using SLSQP(+)
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Figure 8 – Mean of the pairwise distances by log-distance path loss parameters
(ρ0: 40–80 dB, steps of 5 dB; αL: 1–7).

yields the best optimization results, achieving a minimum APE of 2.65 meters.

Conversely, for ρ0 > 65 dB, the Mean-Euclidean approach attains the best values

for APE, minimizing at 2.67 meters for ρ0 = 67.5 dB and αL = 2.75. However, for

ρ0 ≤ 65 dB, the Euclidean choice exhibits low performance concerning the APE,

with values falling below 3 meters.

Overall, the Mean-Chebyshev choice emerges as a more robust alternative

by leveraging superior performance in terms of positioning accuracy on average.

The advantage of the Chebyshev metric over the Euclidean metric may stem from

its focus on the maximum difference in the components of the RSSI vector, which

renders it more reliable (Pu and You, 2018). In contrast, the Euclidean metric

is more susceptible to capturing noise features. Consequently, the Chebyshev

metric enhances dissimilarity among candidate points, thereby improving the

measurement of signal diversity in indoor environments.

If one examines the results more closely, the difference between the pro-

posed OPTIMAPS (defined as the combination of Mean-Chebyshev metrics and

the SLSQP(+) algorithm) and the NN (used as the reference model) may not

appear significant at first glance. However, a more accurate comparison must
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Table 4 – Average positioning error (APE) by technique: for each given ρ0, there
is a most effective αL associated.

Technique ρ0 (dB) αL APE (m) Technique ρ0 (dB) αL APE (m)

Nearest-Neighbor

40.0 6.25 3.09

SLSQP(+)

40.0 6.00 2.75
42.5 5.75 3.03 42.5 5.75 2.70
45.0 5.50 3.02 45.0 5.25 2.71
47.5 5.00 2.99 47.5 5.25 2.69
50.0 5.00 2.94 50.0 4.75 2.69
52.5 4.50 2.92 52.5 4.50 2.67
55.0 4.25 2.90 55.0 4.25 2.65
57.5 3.75 2.86 57.5 4.00 2.65
60.0 3.50 2.81 60.0 3.75 2.66
62.5 3.25 2.77 62.5 3.25 2.66
65.0 3.00 2.77 65.0 3.25 2.67
67.5 2.75 2.73 67.5 2.75 2.67
70.0 2.50 2.75 70.0 2.50 2.68
72.5 2.25 2.77 72.5 2.25 2.68
75.0 2.00 2.82 75.0 2.00 2.72
77.5 1.75 2.86 77.5 1.75 2.73
80.0 1.50 2.94 80.0 1.50 2.75

Mean-Euclidean

40.0 5.00 3.42

Mean-Chebyshev

40.0 5.50 2.85
42.5 4.75 3.38 42.5 5.25 2.84
45.0 4.50 3.33 45.0 5.25 2.71
47.5 4.25 3.32 47.5 5.00 2.71
50.0 4.00 3.30 50.0 4.75 2.69
52.5 4.00 2.92 52.5 4.50 2.67
55.0 3.75 2.90 55.0 4.25 2.65
57.5 3.50 2.89 57.5 4.00 2.65
60.0 3.25 2.90 60.0 3.75 2.66

SLSQP(+) 62.5 3.00 2.86 SLSQP(+) 62.5 3.50 2.68
65.0 2.75 2.87 65.0 3.25 2.67
67.5 2.75 2.67 67.5 3.00 2.68
70.0 2.50 2.68 70.0 2.75 2.70
72.5 2.25 2.68 72.5 2.50 2.72
75.0 2.00 2.72 75.0 2.25 2.75
77.5 1.75 2.73 77.5 2.00 2.79
80.0 1.75 2.83 80.0 1.75 2.83

consider the same log-distance parameters for both the NN and OPTIMAPS

approaches. In this context, since OPTIMAPS employs the NN algorithm to

establish the initial guess for location estimation, the parameter combinations

serving as the reference are determined during the pairwise distance step, which

is utilized for both the NN and SLSQP(+) estimation steps. Table 5 presents a
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Figure 9 – Average positioning error in perspective: Nearest-Neighbor(NN),
SLSQP(+), Mean with Euclidean and SLSQP(+) (Mean-Euclidean),
and Mean with Chebyshev and SLSQP(+) (Mean-Chebyshev).

performance comparison in this regard. It is evident that OPTIMAPS enhances

the NN approach in all scenarios, with percentage improvements ranging from

5.56% to 12.58%.

An alternative visualization of the results is provided by the cumulative
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Table 5 – Performance comparison between NN (the reference model) and OP-
TIMAPS.

ρ0 (dB) αL
APE (m) Relative

NN OPTIMAPS Improvement (%)

40.0 5.50 3.26 2.85 12.58
42.5 5.25 3.22 2.84 11.80
45.0 5.25 3.05 2.71 11.14
47.5 5.00 2.99 2.71 9.36
50.0 4.75 2.96 2.69 9.12
52.5 4.50 2.92 2.67 8.56
55.0 4.25 2.90 2.65 11.07
57.5 4.00 2.87 2.65 7.67
60.0 3.75 2.85 2.66 6.67
62.5 3.50 2.86 2.68 9.46
65.0 3.25 2.84 2.67 5.99
67.5 3.00 2.85 2.68 5.96
70.0 2.75 2.86 2.70 5.59
72.5 2.50 2.88 2.72 5.56
75.0 2.25 2.96 2.75 7.09
77.5 2.00 3.02 2.79 7.61
80.0 1.75 3.08 2.83 8.11

error distribution relative to the best performances. Figure 10 displays eight

scenarios for the parameter ρ0 that yield the lowest APEs. Notably, the ground-

truth value of ρ0 lies between 55 and 60 dB (Assayag et al., 2024b,2), which

corresponds to the best results achieved. The findings support the notion that

the combination of Mean and Chebyshev metrics outperforms other candidate

combinations throughout most of the error distribution, establishing it as the

most effective choice for determining the αL − ρ0 combination that results in a

lower APE.

Although the APE results obtained through the Mean-Chebyshev method

combined with SLSQP(+) optimization are closer to the most effective values,
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Figure 10 – Cumulative error distribution by algorithm and calculated parame-
ters for selected ρ0 values.

this method does not consistently yield the minimum possible APE. Conversely,

to conduct a more comprehensive and robust analysis, a statistical evaluation
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of the error distribution for both Mean-Chebyshev and SLSQP(+) methods is

essential.

Given the error vectors displayed by the two aforementioned methods,

it is possible to compare the differences between their means. Since the estima-

tions correspond to the same testing points for both methods, a paired test is

appropriate. For normally distributed paired differences, paired t-tests compare

mean positioning errors. For non-normally distributed differences, Wilcoxon

signed-rank tests compare median differences. Both approaches assess algorithm

superiority but target different location parameters. In this specific case, to as-

sess the normality assumption of the error differences, the Shapiro-Wilk and

Kolmogorov-Smirnov tests were employed. The results indicated that the nor-

mality assumption was violated for all possible ρ0 values, necessitating the use

of the non-parametric Wilcoxon signed-rank test for statistical analysis. Table 6

presents the obtained results.

The statistical tests indicate that both estimation methods perform sim-

ilarly regarding their medians; however, significant differences are noted for

extreme values of ρ0. Additionally, when differences are observed, the practical

divergences between means are considered small based on the quantification of

effect size. Figure 11 illustrates the presented results.

The four-panel analysis indicates that both algorithms demonstrate nearly

identical mean positioning errors, characterized by a U-shaped performance

curve, with optimal accuracy observed at ρ0 = 52.5-55 dB. Although large sample

sizes (n ≈ 1420) permit the detection of statistically significant differences at vari-

ous noise levels, the practical differences are minimal to be deemed significant.

In this context, the effect size analysis provides compelling evidence for
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Table 6 – Wilcoxon-signed rank testing and effect size results for median and
mean comparisons between Mean-Chebyshev and SLSQP(+) methods
(α = 0.05).

ρ0 (dB) Mean Difference (m) p-value Significant Effect Size (Cohen d) Interpretation

40.0 0.11 6.67 × 10−4 Yes 0.090 Small Effect
42.5 0.14 9.39 × 10−4 Yes 0.087 Small Effect
45.0 0.00 – No – –
47.5 0.01 8.13 × 10−1 No 0.006 Small Effect
50.0 0.00 – No – –
52.5 0.00 – No – –
55.0 0.00 – No – –
57.5 0.00 – No – –
60.0 0.00 – No – –
62.5 0.02 6.64 × 10−1 No 0.012 Small Effect
65.0 0.00 – No – –
67.5 0.01 8.71 × 10−1 No 0.004 Small Effect
70.0 0.02 1.26 × 10−1 No 0.041 Small Effect
72.5 0.04 6.44 × 10−3 Yes 0.072 Small Effect
75.0 0.03 3.80 × 10−3 Yes 0.077 Small Effect
77.5 0.07 4.51 × 10−5 Yes 0.108 Small Effect
80.0 0.08 1.80 × 10−7 Yes 0.138 Small Effect

algorithmic equivalence, with Cohen’s d values consistently remaining below

the 0.2 threshold, indicative of small effects across all noise conditions. The p-

value visualization illustrates the disconnect between statistical significance and

practical relevance, where even highly significant results (p < 10−6) correspond

to negligible effect sizes. The paired differences analysis reveals bidirectional

performance variations without a systematic advantage for either algorithm,

while the constrained zero effect sizes for specific ρ0 values (45, 50, 52.5, 55, 57.5,

60, 65 dB) reinforce the conclusion of equivalence. When converted to practical

positioning units, the mean absolute differences amount to mere centimeters,

representing a negligible impact for real-world applications.

Therefore, OPTIMAPS, enhanced by the Mean-Chebyshev approach, is

capable of delivering highly effective performance in nearly all scenarios, ex-

hibiting minimal variations in extreme values of ρ0. This characteristic makes
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Figure 11 – Statistical performance comparison between Mean-Chebyshev (with
SLSQP(+)) and pure SLSQP(+) for each ρ0.

it a suitable and robust choice for indoor solutions that do not require a prior

training dataset, relying solely on the knowledge of the environment’s geometry

and the locations of the deployed access points.

5.4 Error analysis by room type
This section provides a thorough per-label error analysis, spatial aggregation

by room type, and examines correlation patterns between baseline algorithm
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performance and optimization advantages.

5.4.1 Data preprocessing

The analysis utilized the complete test measurement dataset comprising 148

unique location labels distributed across 10 devices.

All analysis focused on the parameter configuration ρ0 = 55.0 dB and

αL = 4.25, enabling direct algorithmic comparison under identical conditions.

5.4.2 Algorithm performance comparison

Table 7 presents the comprehensive performance metrics for both algorithms

analyzed.

Algorithm Mean Error (m) Standard Deviation (m)

Nearest Neighbor (NN) 2.90 1.67
SLSQP(+) 2.65 1.18

Improvement 0.25 —
Relative Improvement 8.62% —

Table 7 – Algorithm performance summary across 148 unique labels using pa-
rameters ρ0 = 55.0 dB, αL = 4.25.

The SLSQP(+) algorithm demonstrated superior average performance

with a mean positioning error reduction of 8.62% compared to the Nearest Neigh-

bor baseline. However, this aggregate improvement masked significant spatial

heterogeneity, with individual label improvements ranging from substantial

gains exceeding 30% to locations where NN maintained superior performance.
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Analysis of the error distributions revealed that SLSQP(+) achieved lower

error variance (1.18 m vs 1.67 m), indicating more consistent performance across

diverse spatial contexts. The comparison showed SLSQP(+) outperforming NN

in approximately 76% of locations, with the remaining 24% favoring the simpler

NN approach.

5.4.3 Spatial mapping and room-based aggregation

The 148 unique labels were systematically mapped to spatial areas using a

deterministic prefix-based classification system, as detailed in Table 8.

Label Prefix Area Classification Area Type Test Points

16 Room 1 Enclosed 15
41 Room 2 Enclosed 12
57 Room 3 Enclosed 8
40 Room 4 Enclosed 9
53 Room 5 Enclosed 12
39 Room 6 Enclosed 9
47 Room 7 Enclosed 12
51 Room 8 Enclosed 12
45 Room 9 Enclosed 12
43 Room 10 Enclosed 12
46 Room 11 Enclosed 12

63 Hall 1 Open 8
61 Hall 2 Open 7
62 Hall 3 Open 8

Total 148

Table 8 – Spatial area classification system and label distribution. Areas are cate-
gorized as enclosed rooms or open halls based on architectural charac-
teristics.

This classification enabled environment-specific performance analysis,



5.4. ERROR ANALYSIS BY ROOM TYPE 65

revealing fundamental differences in algorithm effectiveness between enclosed

and open spaces.

5.4.4 Room-level performance analysis

Aggregation by spatial area revealed distinct algorithmic performance patterns

across environment types. Table 9 presents the comprehensive room-level analy-

sis.

Area Type Labels NN Error (m) SLSQP(+) Error (m) Improvement (%)

Hall 1 Open 8 1.54 1.75 −13.64
Hall 3 Open 8 1.63 1.94 −19.02
Hall 2 Open 7 2.03 1.97 2.96
Room 5 Enclosed 12 2.22 2.68 −20.72
Room 4 Enclosed 15 2.38 2.45 −2.94
Room 6 Enclosed 9 2.68 2.78 −3.73
Room 1 Enclosed 9 2.93 2.83 3.41
Room 2 Enclosed 12 3.05 3.08 −0.98
Room 7 Enclosed 12 3.11 3.28 −5.47
Room 9 Enclosed 12 3.20 2.23 30.31
Room 10 Enclosed 12 3.44 2.10 38.95
Room 3 Enclosed 8 3.46 3.02 12.72
Room 11 Enclosed 12 3.62 2.81 22.38
Room 8 Enclosed 12 4.05 3.39 16.30

Table 9 – Room-level algorithm performance comparison ordered by NN base-
line error (ascending). Negative improvement percentages indicate
areas where NN outperforms SLSQP(+).

The analysis revealed a clear algorithmic dichotomy based on spatial

characteristics:

1. Open areas consistently demonstrated lower baseline positioning errors

(mean NN error: 1.73 m) but showed mixed or negative responses to

SLSQP(+) optimization. The average improvement for halls was −8.85%,

indicating that the optimization approach introduced unnecessary com-

plexity in these simpler environments;
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2. Enclosed rooms exhibited higher baseline positioning challenges (mean

NN error: 3.10 m) but demonstrated substantial benefits from SLSQP(+)

optimization, with an average improvement of 10.22%. The most dramatic

improvements occurred in the most challenging environments:

• Room 10: 38.95% improvement (3.44 m → 2.10 m)

• Room 9: 30.31% improvement (3.20 m → 2.23 m)

• Room 11: 22.38% improvement (3.62 m → 2.81 m)

• Room 8: 16.30% improvement (4.05 m → 3.39 m)

• Room 3: 12.72% improvement (3.46 m → 3.02 m)

5.4.5 Correlation analysis: baseline performance versus op-

timization benefit

A critical finding emerged from the systematic analysis of the relationship be-

tween NN baseline performance and SLSQP(+) optimization benefit. The statis-

tical analysis revealed a strong positive correlation between NN average error

and SLSQP(+) improvement percentage.

Statistical Measure Value

Pearson Correlation Coefficient 0.754
Two-sided p-value 0.0018
Statistical Significance Yes (p < 0.01)
Correlation Strength Strong Positive

Sample Size 14 areas
Confidence Level 99%

Table 10 – Correlation analysis between NN baseline error and SLSQP(+) im-
provement percentage.
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This analysis confirmed that areas with the most significant positioning

challenges (indicated by poor NN performance) experienced substantial benefits

from optimization. In contrast, regions that exhibited excellent NN performance

showed degradation when subjected to the more complex SLSQP(+) approach.

In other words, the SLSQP algorithm exhibits improved performance in environ-

ments characterized by high RSSI variability, as the NN, which relies exclusively

on a fixed-parameter log-distance model, is unable to deliver accurate location

estimations.
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6 Conclusions

This thesis introduced OPTIMAPS, an innovative, site-survey-free indoor po-

sitioning system (IPS) that leverages a log-distance path loss model combined

with Sequential Least Squares Programming (SLSQP) optimization to achieve

robust, real-time positioning using Bluetooth Low Energy (BLE) technology. The

proposed system directly addresses critical barriers faced by traditional IPS solu-

tions — most notably, the heavy reliance on labor-intensive and time-consuming

offline fingerprinting phases. By eliminating the requirement for pre-deployment

RSSI sampling and relying solely on known anchor node positions and scenario

geometry, OPTIMAPS establishes a new, practical paradigm for scalable and

accurate indoor localization.

The system was extensively validated in a demanding large-scale real-

world environment: a 720 m2 school facility composed of 11 classrooms, 3 halls,

15 BLE access points, and 148 well-labeled testing locations. The use of multiple

BLE receiver devices and thousands of RSSI samples provided a rigorous and

reproducible evaluation. OPTIMAPS produced a mean positioning error (APE)

of 2.65 meters — comparable to or exceeding the accuracy of other state-of-

the-art solutions in the literature, especially among those requiring no site-

survey. Crucially, assessment through anchor density-normalized error further

demonstrated that OPTIMAPS outperforms nearly all low-training systems in
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terms of precision and efficiency.

A major contribution of this thesis is the design of a two-stage pipeline

that separates offline scenario-dependent modeling from adaptive online esti-

mation. In the offline phase, rather than collecting RSSI fingerprints, suitable

parameters for the log-distance path loss model are discovered via geometric

analysis and maximization of signal vector diversity. The Chebyshev metric was

empirically and theoretically shown to provide superior quantification of RSSI

dissimilarity, producing the lowest average errors; the combination of the Mean-

Chebyshev metric with SLSQP yielded the minimum APE values throughout the

tested parameter space. This approach both minimizes initial deployment effort

and provides a principled framework for parameter selection even in highly

dynamic or previously unmapped environments.

For online estimation, OPTIMAPS employs a nearest-neighbor (NN) strat-

egy for the initial position guess, which is then refined using SLSQP optimization

within a constraint circle. This pipeline integrates high computational efficiency

(the NN step is O(n); SLSQP is O(k), where n — the number of reference points

— and k — the number of iterations — increase proportionally to the testbed

area, yet remain fast for typical IPS dimensions) with strong local adaptation to

real-time signal anomalies. Experimental results, which include comprehensive

statistical analyses (paired testing, effect size, cumulative error distributions)

confirm that SLSQP(+) consistently outperforms both NN baselines and alterna-

tive metaheuristic algorithms, reducing APE by up to 12.6% compared to NN

and achieving inference in just 30 ms per estimate.

A granular, spatially-structured analysis revealed essential nuances: while

open areas (halls) already exhibit low baseline errors with little benefit from
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optimization, enclosed and multipath-rich rooms experience dramatically im-

proved positioning accuracy—with error reductions exceeding 30% in the most

challenging locations, and a strong positive correlation between optimization

gain and baseline difficulty. As a result, OPTIMAPS not only matches or exceeds

the performance of a simpler reference algorithm as NN in easy scenarios, but

also delivers its greatest improvements precisely where traditional methods are

least reliable.

In direct comparison with recent literature — including systems tested

on the identical public BLE benchmark dataset — OPTIMAPS achieves competi-

tive or superior accuracy relative to survey-free, model-based solutions based

on population optimization, while requiring substantially less computational

and hardware resources. Unlike fingerprinting or deep learning alternatives,

OPTIMAPS enables deployment in fully dynamic environments, with zero site-

survey overhead and superior scalability.

In summary, the results of this thesis demonstrate that practical, accurate,

and computationally efficient indoor positioning systems can be achieved with-

out the need for site surveys or labor-intensive training. By integrating geometric

modeling, signal diversity optimization, and advanced constrained estimation,

OPTIMAPS bridges the performance gap with traditional methods, thereby facil-

itating practical, scalable, and robust indoor positioning system solutions for a

wide array of real-world applications.
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6.1 Limitations And Future Work
Despite the substantial advancements presented in this thesis, OPTIMAPS leaves

several fundamental and challenging research opportunities available for future

exploration. Addressing these opportunities could significantly enhance the

practicality, robustness, and scientific impact of survey-free indoor positioning.

1. Adaptation to dynamically changing access point infrastructures

This work assumes that the positions of all BLE APs are fixed and known a

priori. However, real-world scenarios — ranging from large-scale commer-

cial deployments to ad-hoc or “bring-your-own-device” networks — are

characterized by the dynamic (re-)positioning of APs, temporary outages,

and heterogeneous anchor geometries. As a challenging direction, future

work should develop algorithms for:

• Online AP self-localization: enabling the system to estimate or track

anchor positions in real time, using only RSSI measurements and

device movement data, without external calibration.

• Robust optimization under baseline uncertainty: formulating the entire

location pipeline to tolerate, adapt, and estimate under time-varying

anchor location priors (e.g., probabilistic anchors).

2. Integration of rich, multi-modal signal and physical environment model-

ing

The log-distance path loss model, while computationally efficient, does not

account for the highly non-linear and heterogeneous nature of indoor radio

propagation affected by walls, furniture, human mobility, and multipath

effects. Advancing beyond this limitation requires:
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• Physics-informed machine learning: Leveraging ray tracing, CAD-based

layout data, or hybrid deep learning models that take as input the

architectural blueprint and known material properties to predict RSSI

or other signal features at arbitrary positions.

• Transfer learning across buildings: Enabling rapid adaptation of the

model to entirely new settings using minimal data, possibly by meta-

learning or domain adaptation.

• Online adaptation: Real-time updating of the signal propagation model

based on ongoing measurements, enabling robust operation through

environmental changes (e.g., moving people, furniture).

3. Heterogeneous and uncalibrated device ecosystem

The current study uses BLE devices with relatively homogeneous hardware

characteristics. In real deployments, variability in transmit power, antenna

directionality, and hardware calibration across device manufacturers and

types can severely degrade accuracy. Addressing these requires:

• Cross-device calibration-free methods: Designing algorithms that can in-

fer and adapt to unknown device-specific biases in RSSI readings —

possibly through unsupervised calibration or federated learning.

• Device identification and anomaly detection: Automatically recognizing

and compensating for rogue or malfunctioning devices whose mea-

surements do not fit global trends.

4. Toward room-level semantics and contextual awareness

Most current approaches, including OPTIMAPS, focus purely on (x,y)

position. Important open questions include:
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• Integration with semantic building maps: How can signals be mapped

not just to coordinates but to meaningful zones or activities?

• Fusion with additional modalities: Combining BLE-based estimation

with vision, inertial sensors, or crowd-sourced floor plans for human-

centric applications such as personalized navigation or asset tracking.

5. Open benchmarking, privacy, and real-world long-term deployment

True evaluation of site-survey-free systems demands longitudinal, open,

and privacy-preserving deployments. Future work should:

• Benchmark across diverse real-world environments (malls, hospitals, air-

ports), with long-term temporal and seasonal effects.

• Design privacy-preserving data collection and inference protocols ensur-

ing user location and device data cannot be exploited or tracked by

adversaries.

In summary, this thesis represents a significant advancement toward

survey-free, practical indoor positioning. However, addressing the outstanding

challenges will necessitate progress in unsupervised spatial learning, robust

multi-modal modeling, distributed computation, and privacy-preserving proto-

cols — areas that present opportunities for impactful future research.

6.2 Published Papers
As a result of the research conducted over the past few years, three papers have

been published:
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1. Pinto, B.H.O.U.V.; de Oliveira, H.A.B.F.; Souto, E.J.P. Factor Optimization

for the Design of Indoor Positioning Systems Using a Probability-Based

Algorithm. J. Sens. Actuator Netw. 2021, 10, 16. (Pinto et al., 2021b)

2. Pinto, B.; Barreto, R.; Souto, E.; de Oliveira, H. Robust RSSI-based Indoor

Positioning System using K-means Clustering and Bayesian Estimation.

IEEE Sensors Journal, vol. 21, no. 21, pp. 24462-24470, 1 Nov.1, 2021. (Pinto

et al., 2021a)

3. Pinto, B., Oliveira, H. Online RSSI selection strategy for indoor positioning

in low-effort training scenarios. Computing 106, 2059–2077 (2024). (Pinto

and Oliveira, 2024)

The first paper, published during the Master’s program, focuses on identi-

fying the factors that significantly influence the accuracy of Bayesian estimation

and proposes a simulation approach for designing an IPS utilizing probability-

based algorithms. This ultimately serves as the foundation for transforming the

offline training phase into an "artificial" scenario for this thesis.

The second paper, initially submitted during the Master’s program and

subsequently refined at the Doctorate level, proposes a new IPS that uses k-

means clustering to classify scenarios into various log-distance path loss models.

It also leverages Bayesian inference for position estimation. In this context, the

first step towards minimizing the training effort is undertaken, with careful

consideration of the method’s execution time and scalability.

The third paper, submitted and published during the Doctorate, intro-

duces a novel IPS that selects the strongest RSSI from each AP and estimates the

position using the ordinary least squares method. The effort required during the
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training phase is significantly reduced while maintaining reasonable levels of

accuracy. In this work, the strongest RSSI utilized to minimize the average error

serves as the foundation for considering the Chebyshev metric in the presented

thesis, which ultimately emerges as the most effective choice for OPTIMAPS

among the options listed.

Collectively, the aforementioned publications contributed key concepts

and methodologies that underpin this thesis, enabling the development of an

indoor positioning system that eliminates the need for fingerprint collection

during the offline phase while achieving high efficiency in both accuracy and

execution time.
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