
UNIVERSIDADE FEDERAL DO AMAZONAS
INSTITUTO DE COMPUTAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA

Maria Ivanilse Calderon Ribeiro

CollabProg: Collaborative Web Platform to Support
Instructors in the Adoption of Active Methodologies in

Programming Education

Manaus
August 2025

Maria Ivanilse Calderon Ribeiro

CollabProg: Collaborative Web Platform to Support
Instructors in the Adoption of Active Methodologies in

Programming Education

Defense of Doctoral Dissertation submitted
to the Graduate Program in Informatics of
the Institute of Computing at the Federal
University of Amazonas as a requirement
for obtaining the degree of Doctor in Infor-
matics.

Advisor: Prof. Dr. Eduardo Feitosa..
Co-advisor: Prof. Dr. Williamsom Silva.

Manaus
2025

Ficha Catalográfica

Elaborada automaticamente de acordo com os dados fornecidos pelo(a) autor(a).

 CollabProg: Collaborative Web Platform to Support Instructors in the
Adoption of Active Methodologies in Programming Education / Maria
Ivanilse Calderon Ribeiro. - 2025.
 202 f. : il., color. ; 31 cm.

 Orientador(a): Eduardo Luzeiro Feitosa.
 Coorientador(a): Williamson Sila.
 Tese (doutorado) - Universidade Federal do Amazonas, Programa de
Pós-Graduação em Informática, Manaus (AM), 2025.

 1. Teaching programming. 2. Active learning methodologies. 3.
Computer programming. 4. Educational Tool. 5. CollabProg. I. Feitosa,
Eduardo Luzeiro. II. Sila, Williamson. III. Universidade Federal do
Amazonas. Programa de Pós-Graduação em Informática. IV. Título

R484c Ribeiro, Maria Ivanilse Calderon

Ministério da Educação
Universidade Federal do Amazonas

Coordenação do Programa de Pós-Graduação em Informática

FOLHA DE APROVAÇÃO

"COLLABPROG: UM REPOSITÓRIO COLABORATIVO ABERTO PARA APOIAR NA
ADOÇÃO DE METODOLOGIAS ATIVAS NO ENSINO DE PROGRAMAÇÃO"

MARIA IVANILSE CALDERON RIBEIRO

Tese de Doutorado defendida e aprovada pela banca examinadora constituída pelos professores:

Prof. Dr. Eduardo Luzeiro Feitosa - Presidente

Profa. Dra. Ana Carolina Oran Rocha - Membro Interno

Profa. Dra. Elaine Harada - Membro Interno

Prof. Dr. Pedro Henrique Dias Valler - Membro Externo

Profa. Dra. Taciana Pontual da Rocha Falcão - Membro Externo

Manaus, 12 de setembro de 2025.

Documento assinado eletronicamente por Elaine Harada, Professor do Magistério Superior , em
09/10/2025, às 13:33, conforme horário oficial de Manaus, com fundamento no art. 6º, § 1º, do Decreto
nº 8.539, de 8 de outubro de 2015.

Anexo Folha de Aprovação (2838498) SEI 23105.037979/2025-65 / pg. 1

http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm

Documento assinado eletronicamente por Eduardo Luzeiro Feitosa, Professor do Magistério
Superior, em 09/10/2025, às 13:52, conforme horário oficial de Manaus, com fundamento no art. 6º, §
1º, do Decreto nº 8.539, de 8 de outubro de 2015 .

Documento assinado eletronicamente por Ana Carolina Oran Rocha , Professor do Magistério
Superior, em 09/10/2025, às 15:15, conforme horário oficial de Manaus, com fundamento no art. 6º, §
1º, do Decreto nº 8.539, de 8 de outubro de 2015 .

Documento assinado eletronicamente por Taciana Pontual da Rocha Falcão , Usuário Externo, em
10/10/2025, às 11:47, conforme horário oficial de Manaus, com fundamento no art. 6º, § 1º, do Decreto
nº 8.539, de 8 de outubro de 2015.

A autenticidade deste documento pode ser conferida no site
https://sei.ufam.edu.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0, informando o código verificador 2838498 e o
código CRC 9F0215FA.

Avenida General Rodrigo Octávio, 6200 - Bairro Coroado I Campus Universitário Senador Arthur Virgílio
Filho, Setor Norte - Telefone: (92) 3305-1181 / Ramal 1193

CEP 69080-900, Manaus/AM, coordenadorppgi@icomp.ufam.edu.br ​

Referência: Processo nº 23105.037979/2025-65 SEI nº 2838498

Anexo Folha de Aprovação (2838498) SEI 23105.037979/2025-65 / pg. 2

http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
https://sei.ufam.edu.br/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0

Acknowledgments
First and foremost, I thank God, who has guided me to this point with health, strengthening
my belief in human persistence and resilience when pursuing a purpose.

I am deeply grateful to my parents, who have always supported me and taught me to persevere
and strive to be the best human being and woman in a society that has historically imposed
barriers upon them. I also thank my family for their strength and for understanding my need
for absence and isolation throughout this journey.

I thank Professor João Marcos Bastos Cavalcanti, who believed in my interest in pursuing a
doctorate and initially supervised me in the Graduate Program in Informatics (PPGI). I also
acknowledge all the professors who have been part of my journey, especially those from PPGI
who inspire and motivate us to continually learn and contribute to the scientific community.
I am also grateful to the technical staff of the Secretariat, who have always been helpful and
efficient, facilitating the academic processes.

To the friends I have made along this path, who remain present in my life, I thank you for being
part of my formation, not only academically but also personally.

A special thanks to Josiane Rodrigues, my first “best” on campus, who taught me how to reach
ICOMP on a hot afternoon bus ride to UFAM. She taught me to focus on my studies, set goals,
and carefully plan each step to achieve them. Moreover, she generously shared her family with
me, providing many joyful and instructive moments.

To my friend and sister Ana Carolina Oran, who has always been by my side, caring for me and
giving me a reality check when needed. Through her, I also gained her family, who welcomed
me in Manaus and ensured I never felt alone.

I have also had the pleasure of gaining new families along the way, such as Alice Adativa’s and
Bruno Ábia’s families, two examples of scholars and researchers who have always generously
helped me understand my difficulties and provided wisdom to keep moving forward.

I am also grateful to Joyce Miranda, a brilliant and kind person, always present with thoughtful
and supportive words when I needed them most. To Diego Rodrigues, whose irreverent and hu-
morous nature, combined with his problem-solving skills, was of great help during an important
phase of my journey.

Finally, my deepest gratitude goes to my advisor, Professor Eduardo Feitosa, whose generosity,
sincerity, and dedication were fundamental in overcoming the most challenging phases of the
doctorate, especially at UFAM, an institution that is demanding in many respects. He made it
possible for me to reach this moment, the completion of this work.

I am equally grateful and pleased to have been co-advised by Professor Willianson Silva, who
taught me much about conducting research, interpreting results, and the importance of sharing
knowledge with the scientific community. To them, I dedicate all the work of the past four years
and eight months, which resulted in twelve publications, including four articles in high-impact
journals.

Looking back, I realise it was worth every stumble, every tear, every moment of anxiety and
emotional imbalance. Perhaps it was a tense journey, I do not know, but what I will carry with
me and be most proud of is the result we achieved together, supported by this wonderful team
of people whom God placed in my life.

“Eu sou mais forte do que eu” .

(Clarice Lispector)

Abstract

Background: Teaching programming is a challenging task, as it requires instructors to guide
students in developing complex skills such as real-world abstraction, problem-solving, and
logical reasoning. However, the traditional teaching approach is often ineffective in achieving
these objectives. Evidence suggests that Active Learning Methodologies (ALMs) can provide a
more conducive environment for skill and competency development. Nonetheless, instructors’
adoption rate of ALMs remains relatively low due to various barriers and factors, particularly in
programming education. Goal: The objective of this doctoral thesis is to support instructors in
adopting active learning strategies in programming education. To achieve this goal, the research
was guided by the Design Science Research (DSR) methodology, which enabled the definition
of the research problem as well as the development, evaluation, and evolution of an artifact.
Method: The DSR approach is an iterative process composed of three interconnected cycles: the
Relevance Cycle, the Design Cycle, and the Rigor Cycle. During the Relevance Cycle, an analysis
of the feasibility of the research topic was conducted. To this end, a Systematic Literature
Mapping was carried out to understand the main challenges faced by instructors in adopting
ALMs in programming education, as well as to identify the ALMs currently used by teachers to
support this discipline. Furthermore, exploratory experimental studies were conducted to deepen
the understanding of the ALMs identified in the literature from the instructors’ perspective.
The Design Cycle enabled the development, evaluation, and evolution of an artifact, which in
this case is a repository called CollabProg (CollabProg: An Open Collaborative Repository
to Support the Adoption of Active Methodologies in Programming Education). CollabProg
provides specific guidelines to assist instructors in applying ALMs, as well as helping them
identify the ALMs best suited to their teaching context. To evaluate and improve CollabProg,
two design cycles were conducted in different educational institutions to assess its use and
acceptance. The results showed that CollabProg effectively supported instructors in adopting
ALMs in programming education, contributing to overcoming some of the barriers they face
and reaching a maturity level suitable for adoption by other educators. Finally, the Rigor
Cycle focused primarily on the generation and use of knowledge. The main foundations involve
knowledge about programming education, the identified ALMs that support this process, the
Systematic Literature Mapping, the experimental studies conducted, as well as the qualitative
and quantitative analyses carried out during the research. Findings: Regarding knowledge
generation, the main contribution to the knowledge base is CollabProg itself an innovative open
repository that assists instructors in identifying the most appropriate ALMs for their specific
teaching contexts in programming education. Additionally, the following contributions are
noteworthy: (i) the process of using CollabProg in real-world settings, which serves as a reference
for other instructors; (ii) the research conducted for the repository’s development; (iii) the set
of ALMs applicable to programming education; (iv) key considerations for implementing these
strategies; and (v) the knowledge derived from analyzing the impact of these methodologies
on the programming teaching process. Evidence demonstrates that CollabProg effectively
supports instructors in adopting ALMs while identifying limitations and opportunities for
improvement. It was also found that the repository helps instructors select the most suitable
ALMs tailored to their teaching context and specific classroom needs. The guidelines provided
by CollabProg proved to be useful and highly practical for lesson planning involving these
methodologies. Implications: The adoption of CollabProg highlights the critical importance
of implementing effective support strategies for instructors teaching programming, especially to
enhance student engagement and motivation. Given the complexity of programming concepts,

providing educators with tools that facilitate the selection and application of active learning
methodologies is essential. This need becomes even more pronounced in collaborative learning
environments where social interaction and peer engagement play a pivotal role in the learning
process. CollabProg’s adaptability and comprehensive support for diverse teaching contexts,
including collaborative settings, constitute a key factor in promoting successful instructional
practices and improving learning outcomes.

Keywords: Teaching programming, Active learning methodologies, Computer programming,
Educational Tool, CollabProg.

List of Figures

1.1 DSR adopted in the research . 5

2.1 ALCASYSTEM website . 12
2.2 OpenSMALS website . 13
2.3 Guide for Assertive Selection of ALMs in ES 14
2.4 The framework layout . 15

3.1 Types ALMs adopted for teaching programming. 18
3.2 Frequency of ALM use in programming classes. 23

4.1 CollabProg solution model. 28
4.2 Version 1.0 of CollabProg. 32
4.3 General results of perceptions about CollabProg. 34
4.4 Methodology Details . 36
4.5 View feedback button feedback . 37
4.6 CollabProg 2.0 Homepage. 38
4.7 Methodology Registration Page. 39
4.8 Active Learning Methodologies Page. 40

Contents

1 Introduction 3
1.1 Contextualization . 3
1.2 Research Question . 4
1.3 Objectives . 4
1.4 Research Methodology . 5
1.5 Organization of the Executive Summary . 6

2 Background and Related Works 9
2.1 Teaching Programming in Computing Education 9
2.2 Active Learning in Programming Education . 10
2.3 Active Learning Methodologies in Programming Education 10
2.4 Related Work . 11
2.5 Chapter Conclusion . 16

3 Relevance Cycle 17
3.1 Studies Conducted . 17
3.2 Systematic Mapping Study . 17

3.2.1 Findings from the SMS . 18
3.2.2 Acceptance Criteria for CollabProg . 20

3.3 Survey . 21
3.3.1 Survey Design . 21
3.3.2 Findings from the Survey . 22

3.4 Chapter Conclusion . 25

4 Design Cycle 27
4.1 First Design Cycle: Conception and Initial Validation 27

4.1.1 Organization of Knowledge about the Methodologies 27
4.1.2 Selection and Curation of Active Learning Methodologies 28
4.1.3 CollabProg - version 1.0 . 30
4.1.4 Evaluating CollabProg 1.0 . 32

4.2 Second Design Cycle: Improvements and Enhancements 35
4.3 Chapter Conclusion . 40

5 Rigor Cycle 43
5.1 Research rigor . 43
5.2 Contributions . 43

5.2.1 Publications . 44

6 Final Considerations 47
6.1 Conclusions and Future Perspectives . 47
6.2 Research Implications . 48
6.3 Threats to the Validity of the Research . 48
6.4 Future Works . 49
6.5 Chapter Conclusion . 50

Bibliography 51

Chapter 1

Introduction

T his chapter introduces the context of the study by presenting the background that
motivated the research, the guiding research question, and the methodology adopted to
address it.

1.1 Contextualization
Computer programming requires both cognitive and metacognitive skills. Students must not
only understand the syntax and semantics of a specific programming language, but also apply
their creativity to solve complex problems (Raj et al., 2018). This process, therefore, combines
the rigour of logical thinking with the flexibility of creativity (Eteng et al., 2022). Teaching and
learning programming is particularly challenging, especially in foundational courses, which are
often perceived as complex and demand a solid understanding of abstract concepts (Luxton-
Reilly et al., 2018; Raj et al., 2018).

Typically, such courses require instructors to support students in developing a range of skills, such
as real-world abstraction, problem-solving, and logical reasoning (Eickholt, 2018). Compounding
this issue is the continued reliance on traditional teaching methods, which are primarily centred
on teacher-to-student instruction. This often results in a “lecture-style indoctrination” approach,
leading students to lose interest in learning. Within this context, it becomes evident that both
teaching methodologies and content must be continually updated and/or adapted (Garcia et al.,
2021).

In this context, acquiring the skills required for computer program development is one of the
main challenges faced by computer science students. When unable to develop the necessary
competencies (e.g., abstraction), students often drop out of courses and, in some cases, leave their
degree programmes entirely (Sobral, 2021b). However, this scenario has been evolving, driven
by advances in the development of approaches that support the teaching and learning process
(Astrachan et al., 2002). Active Learning Methodologies (ALMs) have become increasingly
important, as they foster greater student engagement, encourage critical thinking, and facilitate
the acquisition of practical skills essential for success in programming (Moya, 2017).

In particular, ALMs have been widely adopted in developing strategies to address this issue
(Sobral, 2021a). They integrate active student participation, experiential learning, and learning
by doing, making learners more accountable for their own progress and fostering motivation

and satisfaction (Imbulpitiya et al., 2020). Compared to traditional approaches, ALMs pro-
mote effective engagement in constructing knowledge (Bacich and Moran, 2018) and encourage
autonomy, which supports the development of problem-solving skills (Witt et al., 2018).

However, challenges remain in adopting ALMs for teaching programming in computer science
(de Almeida et al., 2019). These include the variety of available methodologies, the need to adapt
strategies to specific course contexts, and the fact that many instructors feel overwhelmed or
anxious when required to adopt new pedagogical approaches (Kong et al., 2020). Despite positive
evidence of their effectiveness, adoption rates remain low (Nguyen et al., 2021). Reported
barriers include limited time for lesson planning, difficulty covering the full syllabus within an
ALM, student resistance to unfamiliar strategies, doubts about their effectiveness in achieving
learning objectives, and lack of clear guidance for implementation (Eickholt, 2018; Tharayil et al.,
2018). Resistance to change among instructors, particularly those accustomed to traditional
teaching, also hinders adoption (Calderon et al., 2022). These challenges underscore the need
for targeted professional development and adequate resources to support the transition to ALMs.
Addressing these barriers proactively can promote broader adoption and enhance the quality
of programming education.

Furthermore, in many higher education institutions, ALMs are implemented either as part of
the curriculum or in isolated courses (de Farias et al., 2018), which complicates the alignment
of teaching practices with the preparation of future professionals. Although there is literature
on the use of ALMs in this area, many reported strategies and tools are context-specific and
not readily transferable to other educational settings (da Silva and Oliveira, 2019; de Almeida
et al., 2019; Gonçalves et al., 2017; Moreno, 2019).

1.2 Research Question
The problem addressed in this research concerns improving the teaching of programming in
Computer Science. In this context, the study is guided by the following research question:
How can instructors be supported in addressing the challenges of implementing
Active Learning Methodologies in programming education within Computer Sci-
ence courses?

1.3 Objectives
The main objective of this doctoral thesis is to support instructors in the adoption of ALMs
in programming education at the higher education level, specifically within Computer Science
courses. To achieve this general objective, the following specific objectives have been defined:

• Identify the methodologies used by instructors and the difficulties and/or challenges
encountered when applying them in the classroom.

• Identify evidence in the literature regarding strategies for implementing ALMs in Com-
puter Science programming courses.

• Develop and adapt a toolset that offers a set of strategies for adopting ALMs in program-
ming education, tailored to different teaching contexts.

1.4 Research Methodology
This subsection presents the application of the Design Science Research (DSR) method used to
develop CollabProg. It provides a detailed description of the DSR cycles.

To achieve the objectives of this research, a methodology based on Design Science Research
(DSR) was employed. DSR involves the design and investigation of artefacts with the purpose
of interacting with the context of a problem and improving a specific aspect within that context
(Wieringa, 2009). In DSR, changes or improvements are made according to the needs of those
involved, in this case the instructors in the field. The aim is to address a problem through
the iteration of design and investigation activities within a design cycle (Wieringa, 2009, 2014).
The DSR process consists of three interconnected research cycles (Hevner and Chatterjee, 2010):
the Relevance Cycle, the Design Cycle, and the Rigor Cycle. Figure 1.1 presents the
methodology adopted in this research.

Figure 1.1: DSR adopted in the research

In the Relevance Cycle, we define the problem to be investigated, examine the context of
the investigation, establish the motivation for addressing the problem, and set the acceptance
criteria for the final evaluation of the research results. To support this process, we first conducted
a Systematic Mapping Study (SMS) to summarise the types of ALMs and the experimental
evidence related to the adoption of ALMs in programming education. Based on the results
identified in the SMS, we defined two kinds of acceptance criteria for CollabProg: design
criteria and behaviour criteria. These acceptance criteria were established to guide both the
development and evaluation of the proposed solution, ensuring alignment with the evidence
identified in the SMS. The acceptance criteria are detailed in the section 3.2.2.

In the Design Cycle, the solution proposed in this research, CollabProg, was developed, eval-
uated, and refined to ensure it addresses the problem and meets the defined requirements. The
development was primarily based on the ALMs identified and selected from the SMS, to sup-
port instructors in adopting appropriate methodologies for teaching programming. CollabProg
was evaluated through application to specific problems and contexts, allowing verification of
whether the desired effects were achieved and whether further iterations of the Design Cycle
were necessary. This practical evaluation involved instructors in the learning context. The
results obtained from applying the artifact helped corroborate or challenge the validity of the
defined requirements.

Finally, the Rigor Cycle refers to the generation and use of knowledge. It is grounded in
research theories and methods, combined with the experience and understanding of the funda-
mentals guiding the research, and contributes to the expansion of the knowledge base (Hevner,
2007). Research methods were employed to document the steps carried out during the execution
of the DSR cycles. Among these methods are the SMS and experimental studies, including
qualitative analysis of the artefact based on instructors’ perceptions. Research rigor is associ-
ated with credibility, reliability, precision and integrity, requiring theoretical and methodological
rigour (Wieringa, 2014). Therefore, rigor is ensured when the researcher follows a previously
established and validated method, preferably one widely recognised and accepted by the aca-
demic community. This requirement guided the use of solid theoretical foundations and existing
technical knowledge in this research.

This research is based primarily on knowledge about ALMs, the barriers and difficulties faced
by instructors in teaching, and the strategies they adopt. For the primary studies, we selected
instructors teaching higher education courses in Computer Science, Information Systems, or
Computer Engineering at educational institutions in Brazil. Questionnaires and the Technology
Acceptance Model (TAM) were used as data collection instruments. TAM is a questionnaire de-
signed to gather information about participants’ perceptions regarding key factors that influence
the acceptance or rejection of a given technology (Davis et al., 1989).

Therefore, we expected to present a technological support solution to assist instructors by
consolidating in a single online portal strategies for adopting different ALMs in programming
education. The platform would provide examples, activity suggestions, support options, tools
used by the community, experiences with methodology adoption in various scenarios, results
obtained by other instructors, and positive and negative aspects of the adopted ALM.

1.5 Organization of the Executive Summary
This document is presented in the form of an executive summary. The decision to structure
the work in this way was motivated by the need to provide a clear and focused presentation
of the main contributions, facilitating comprehension and dissemination of the results. An
executive summary allows for a synthesis of the research process, highlighting key objectives,
methodologies, and findings without extensive elaboration, which can be found in more detailed
publications.

The executive summary is structured into chapters that correspond to different research stages
and are related to scientific publications produced throughout the doctoral process. Table 1.1
presents the correspondence between each chapter and the respective publication(s).

Table 1.1: Mapping between chapters and scientific publications

Chapter Objective Reference
Chapter 2 Presents the theoretical background on pro-

gramming education and the use of ALMs in
the field of Computer Science. It also reviews
related works that provide the foundation for
this study

Eickholt (2018); Caceffo et al.
(2018); de Castro and Siqueira
(2019); Silva et al. (2020b); Lima
et al. (2021); Ahshan (2021).

Chapter 3 Presents the results of the Relevance Cycle. It
reports on a Systematic Mapping Study and
a national survey conducted to investigate in-
structors’ use of Active Learning Methodolo-
gies in programming education and the chal-
lenges encountered in their implementation.

Ribeiro and Passos (2020);
Calderon et al. (2021); Calderon
et al. (2024b); Calderon et al.
(2024a); Calderon et al. (2025).

Chapter 4 Addresses the conception, evaluation, and re-
finement process of CollabProg. CollabProg
was developed to mitigate instructors’ practi-
cal difficulties in adopting ALMs in program-
ming teaching by providing specific guidelines
for their implementation. It is a collaborative
and open repository designed to support in-
structors in the adoption of ALMs in program-
ming education.

Ribeiro et al. (2021); Calderon
et al. (2022); Calderon et al.
(2023b); Calderon et al. (2022);
Calderon et al. (2024c).

Chapter 5 Discusses the research rigor adopted in the
study and highlights its main contributions,
providing the reader with an overview of the
methodological robustness and the value added
by the findings

Ribeiro and Passos (2020);
Calderon et al. (2021); Calderon
et al. (2024b); Calderon et al.
(2024a); Calderon et al. (2025);
Ribeiro et al. (2021); Calderon
et al. (2022); Calderon et al.
(2023b); Calderon et al. (2022);
Calderon et al. (2024c).

Chapter 6 Presents the main conclusions of the research,
outlines directions for future work, discusses
the implications of the findings, and addresses
potential threats to the validity of the study.

Calderon et al. (2025); Calderon
et al. (2024c)

Therefore, this thesis aims to contribute to programming education in Computer Science by
supporting instructors in the adoption of active learning methodologies. By following a Design
Science Research approach, the study proposes the development and evaluation of an artifact
designed to address the challenges identified in the teaching context. The following chapters
are organized to present the theoretical foundation, the methodological path, the design and
validation of the proposed solution, and the main conclusions and contributions.

Chapter 2

Background and Related Works

T his chapter presents the theoretical background on programming education and the use
of ALMs in the field of Computer Science. It also reviews related works that provide
the foundation for this study.

2.1 Teaching Programming in Computing Education
Programming is the core of computing technology. Teaching programming has become necessary
due to the growing relevance of computing in daily life. Students must not only understand
the syntax and semantics of programming languages but also apply creativity to solve com-
plex problems, combining logical thinking with flexible problem-solving (Sharma et al., 2022).
However, instructors face various challenges in this process. These challenges arise from the
complexity of the subject matter, the diverse backgrounds of students, and the need to develop
both technical skills and creative problem-solving abilities (Eickholt, 2018).

At the beginning of their courses, many students face difficulties designing and writing straight-
forward programs, and some hesitate to learn programming, perceiving it as a complex subject
(Okonkwo and Ade-Ibijola, 2023). A lack of understanding of fundamental concepts is also a
significant obstacle (Corritore and Love, 2020). Computer Science courses (CS) are often consid-
ered challenging because they require prior skills in logic, mathematics, and text interpretation
(Freire et al., 2019). Students need prior knowledge of logic, mathematics, reading and text
interpretation, abstraction, and other skills to succeed in these courses (Bigolin et al., 2020).

These challenges are reflected in high dropout rates in undergraduate computing programmes
(Raj et al., 2018). Students majoring in CS, as well as those from other disciplines learning
programming, face difficulties and often show signs of poor performance, frustration, and
lack of engagement (Beaubouef and Mason, 2005). Some institutions report dropout rates
of up to 50%, while the estimated average global pass rate for CS1 is around 68% (Penney
et al., 2023). Considerable effort has been made to understand why learning programming
remains consistently difficult (Penney et al., 2023). This is believed to be partly due to
current instructional methods (Beaubouef and Mason, 2005), high expectations from instructors
(Luxton-Reilly, 2016), and the perceived lack of support for beginner students (Luxton-Reilly,
2016). In summary, teaching programming courses in higher education is complex due to the
broad range of skills required for student success (Denny et al., 2011).

2.2 Active Learning in Programming Education
Lecture classes, traditionally instructor-centred, involve students passively listening and absorb-
ing the presented material, often supported by slide presentations. Although these lectures are
necessary in some contexts, they often represent only a superficial change in teaching, merely
replacing the blackboard with a projector (Caceffo et al., 2018). Technological advances have
changed the means of delivering information but have not significantly altered how students
learn. However, this method of instruction is limited because it does not foster higher-order
thinking or advanced reasoning skills (O’grady, 2012).

On the other hand, Active Learning (AL), strongly influenced by Constructivism (Lima, 2016;
Selçuk and Yilmaz, 2020), offers an approach where students actively construct their knowledge,
assuming greater responsibility and control over their learning (Sasson et al., 2022). Con-
structivism is a learning theory that states that individuals actively construct their knowledge,
determined by experiences (Travers et al., 1993). In this context, AL is actively constructed by
the student, providing them with greater responsibility and control over their learning process.
In this approach, the student not only passively absorbs knowledge but learns through practice
and experience. This fundamental distinction motivates students to take responsibility for their
learning (Yannier et al., 2021). In AL, instructor guide students to think, reflect, and cultivate
their curiosity (Matsushita, 2018; Feyzi Behnagh and Yasrebi, 2020).

According to Parsons (2011), AL allows instructors to create learning situations in which
students build knowledge, develop critical and reflexive skills, and explore personal attitudes
and values. AL is a student-centred approach suitable for developing skills in independent study,
self-determination, and collaborative work (Tutal and Yazar, 2022). Yannier et al. (2021) point
to a growing consensus that humans learn more effectively when they are active rather than
passive, engaged rather than distracted, when the content is meaningful rather than disjointed,
and when learning takes place in socially interactive, iterative, and enjoyable environments.

The literature highlights the advantages of AL in the curricular structure of undergraduate
courses (Pundak and Rozner, 2008; Eickholt, 2018; Feyzi Behnagh and Yasrebi, 2020), showing
that active learning strategies tend to be more effective than traditional lectures in promoting
various educational outcomes, such as improved learning performance (Silva et al., 2019). How-
ever, despite the favourable evidence, traditional teaching remains the predominant approach
in university courses (Yannier et al., 2021).

2.3 Active Learning Methodologies in Programming Ed-
ucation

Programming involves coding step-by-step solutions and developing computational thinking
(dos Santos et al., 2020). Thus, teaching programming requires selecting appropriate proce-
dures, techniques, and tools to support student learning (Borges et al., 2018). Learning to
program particularly during the initial stages of STEM (Science, Technology, Engineering, and
Mathematics) educationcan be especially challenging for novice students. Many struggle with
planning and writing code, often perceiving programming concepts as complex and difficult to
master (Okonkwo and Ade-Ibijola, 2023). This steep learning curve is frequently attributed to
a limited understanding of the fundamental principles required to build even simple programs
(Corritore and Love, 2020).

Recent technological advances and innovative pedagogical approaches have transformed educa-

tion. One key development is the adoption of ALMs (Sobral, 2021a), which promote student-
centred learning through active participation. These methodologies have become widespread in
the fields of STEM, including computer science (Liao and Ringler, 2023). Rooted in Construc-
tivist theory, ALMs emphasize that learners build knowledge through experience, assuming
greater responsibility and control over their learning process (Lima, 2016; Arık and Yılmaz, 2020;
Elliott, 1996; Sasson et al., 2022). These methods enhance student engagement and support the
development of practical skills (Garcia et al., 2021), as ALMs are defined as any instructional
approaches in which students participate in activities beyond passive listening (Duffany, 2017).

Adopting ALMs for teaching programming has practical and successful implications for educators
who wish to implement AL, as they provide students with challenges they may face in the job
market (Garcia et al., 2021). Hence, there is a variety of ALMs and strategies for their adoption
that can mitigate the difficulties instructors face regarding implementing AL in programming
education (Calderon et al., 2021). It’s important to recognize that the successful implementation
of ALMs in programming education is not a haphazard process. It requires a certain degree
of knowledge and meticulous planning. Understanding the various ways, whether successful or
not, of implementing different strategies for adopting ALMs is a key step in this process.

This knowledge can serve as a solid foundation for educators seeking to incorporate new method-
ologies and active learning strategies into their programming courses. Therefore, some ALMs
have been implemented in programming education in undergraduate computing courses so that
students can handle the challenges they may face in the job market or develop greater autonomy
in solving proposed problems and improving communication (Garcia et al., 2021).

2.4 Related Work
Researchers have sought ways to improve the adoption of ALMs through new communication
and instructional technologies. In the educational context, several studies focus on developing
digital repositories to support teaching practices across various fields. This section presents
a detailed review of related works that align with the aims of this research, highlighting key
contributions and identifying gaps that motivate the current study.

The ALCASYSTEM (Figure 2.1), developed by de Castro and Siqueira (2019), is an online
portal designed to incorporate ALMs into computing education. Its objective is to support
educators in transforming teaching practices through information and communication technolo-
gies by facilitating access to active methodologies and promoting student engagement and the
development of essential skills. The platform allows instructors to search, classify, and share
ALMs used in their courses. It offers open access, enabling users to add comments, perform
keyword searches, and consult works and experience reports shared by other educators. These
features aim to assist in the implementation of more interactive and learner-centred teaching
practices.

However, based on user feedback collected during evaluations, some limitations of the system
were identified. Instructors reported that applying an active learning technique often requires
reading the entire article, which can be time-consuming and hinder quick implementation.
The homepage design was considered outdated and not engaging, potentially reducing user
interaction. There is also an absence of concise summaries or case studies to facilitate quick
understanding of techniques without reading full papers. Additionally, the platform lacks
collaborative features such as discussion forums or spaces for educator interaction, which limits
experience sharing and debate. Although a keyword search function has been implemented,

it is still under development and may not provide fully efficient results. While navigation is
generally good, there is room for improvement in terms of intuitiveness and ease of use. Lastly,
the database currently contains 285 works, which could be expanded to include more techniques
and recent publications to ensure better coverage and up-to-date content.

These limitations suggest that, although the portal is a useful tool, improvements in design,
usability, information access speed, and collaborative features could enhance its practical use in
teaching. The system enables the inclusion, search, selection, classification, and recommendation
of ALMs, organised by computing disciplines, specific active learning techniques, and includes
a publication forum.

Figure 2.1: ALCASYSTEM website

To conclude, ALCASYSTEM represents an initial effort to centralise and disseminate ALMs
within the computing education community. By integrating a curated repository of academic
works with search, classification, and recommendation features, the platform supports educators
in identifying and applying relevant methodologies. Although the portal has been positively
evaluated for its potential to promote alternative teaching practices, its continued development
is essential to address the identified limitations and to ensure broader adoption and pedagogical
impact.

Another relevant initiative is OpenSMALS (Open Repository for Teaching Software Modeling
from Active Learning Strategies), proposed by Silva et al. (2020a). This tool was developed
to support instructors in applying ALMs in the context of software modelling, particularly
in the teaching of UML diagrams. OpenSMALS seeks to address common challenges such as
students’ difficulties in understanding abstract modelling concepts and the continued reliance
on traditional instructional approaches due to time and resource constraints. The repository
provides structured pedagogical guidance, modelling scenarios, and assessment instruments to
assist instructors in implementing active strategies. It also includes a recommendation feature

Figure 2.2: OpenSMALS website

that suggests appropriate methods based on questionnaire responses and enables educators to
share and adapt strategies according to their teaching context.

Although the tool offers positive contributions—including support for contextualised application,
availability of instructional materials, and potential to enhance student engagement—some
limitations have been identified. These include the generality of some content, which may not
meet specific instructional needs; increased complexity in lesson planning; and the requirement
for instructors to be trained in the proposed methods. Additionally, its application has been
primarily tested in small class settings, raising concerns about scalability to larger groups. The
effectiveness of the tool also depends significantly on the instructor’s prior experience and ability
to adapt the strategies. Further research is necessary to validate its use in broader contexts
and to improve its scalability. In summary, although the primary focus of OpenSMALS is on
software modelling and instructional strategies for teaching UML diagrams, there is an indirect
connection to programming education. By enhancing active learning strategies in modelling,
the tool may also support the teaching of programming by facilitating the understanding of
complex software development concepts.

Another relevant contribution is the preliminary guide proposed by Lima et al. (2021). Due to
the length of its content, Figure 2.3 presents only steps 1 and 2 of the guide. Nevertheless, the
guide is organised into four stages: step 1 identifies the student’s learning style; step 2 diagnoses
the students’ soft skills; step 3 involves recognising the type and category of the ALM; and
step 4 consists of selecting the most appropriate ALM. The guide aims to assist educators in
choosing ALMs that align with students’ learning styles and profiles, facilitating the integration
of these methodologies into the teaching and learning process.

Developed using the DSR methodology, the guide underwent initial validation by experts, who
assessed its clarity, ease of use, flexibility, and pedagogical suitability. It also incorporates
strategies that connect academic learning with industry demands, promoting the development
of both technical competencies and soft skills. However, the study does have some limitations.
The initial validation was based on a convenience sample composed solely of academic specialists,
which may restrict the external validity and overlook broader industry perspectives. The current
version of the guide offers a preliminary overview but lacks in-depth information regarding the
stages, benefits, and challenges of each active methodology, which could limit its practical

Figure 2.3: Guide for Assertive Selection of ALMs in ES

effectiveness.

Furthermore, although the guide supports both in-person and emergency remote teaching
environments, it is not yet fully adapted to other modalities or more structured hybrid contexts.
Lastly, the guide currently functions as a manual instrument requiring manual application
and interpretation without integration into automated tools or software, which may impede
scalability and ease of use in larger or more varied educational settings. Despite its contributions,
the guide is not implemented as a web-based platform; instead, it is presented as an interactive
PDF document. This format limits its accessibility, scalability, and potential for user interaction
when compared to digital repositories or online systems. The absence of integrated digital
features, such as searchable content, real-time updates, or collaborative tools, may restrict its
practical adoption and long-term impact in broader educational contexts.

Another relevant work is the framework proposed by Ahshan (2021) to ensure active student
engagement in remote and online teaching during the COVID-19 pandemic. This framework
(Figure 2.4) is a conceptual model designed to guide educators in implementing activities
and strategies that promote active engagement in remote learning environments. It combines
adapted teaching pedagogy, educational technologies, and an e-learning management system to
support interactive and participatory learning.

The model integrates ALMs, synchronous and asynchronous teaching methods, and content
segmentation. It recommends the use of educational tools such as Google Meet, Jamboard,
Google Chat, Breakout Rooms, Mentimeter, Moodle, and electronic writing devices. Moodle
serves as the course management system. The framework begins with lesson bridging and a
welcome message to engage students and connect lessons. It includes ConcepTest activities to
assess and deepen students’ understanding, facilitating interactions among students, content,
and instructors. Learning objectives are clearly defined using action verbs based on Bloom’s
Taxonomy and linked to programme outcomes and graduate attributes to enhance engagement.

However, limitations include its focus on engineering courses, which may limit generalizability
to other disciplines. The framework’s dependence on specific educational technologies may
restrict its applicability in environments with limited technological resources. Additionally, the
study did not evaluate long-term learning outcomes or challenges in scaling the framework for
larger groups. In summary, the framework provides a practical guide for educators to enhance

Figure 2.4: The framework layout

active student engagement in remote and online teaching contexts, especially relevant during
the COVID-19 pandemic and beyond.

Recognizing the increasing demand for specialized support in programming education, it is
important to highlight that existing resources, present in Table 2.1, although valuable for
educators, tend to focus on specific domains such as software modeling, or offer broad repositories
of articles without tools dedicated to programming instruction.

Table 2.1: Summary of related work

Author(s) Focus / Description Key Results / Findings
de Castro and
Siqueira (2019)

ALCASYSTEM: online portal
for ALMs in computing educa-
tion

Supports access to methodologies, promotes engagement
and skill development; limitations in usability, lack of col-
laborative features, database size

Silva et al.
(2020b)

OpenSMALS: ALMs for software
modeling and UML teaching

Provides pedagogical guidance, recommendation system,
supports engagement; limitations include scalability, con-
tent generality, manual implementation

Ahshan (2021) Framework for active engage-
ment in remote learning

Integrates ALMs with e-learning tools, defines objectives
with Bloom’s taxonomy; limited to engineering courses,
technology-dependent, scalability not tested

Lima et al.
(2021)

Preliminary guide for ALM selec-
tion

Stepwise process for matching ALMs to students’ learning
styles and soft skills; manual, descriptive guide without
digital integration

This study CollabProg: curated repository
of ALMs for programming educa-
tion

Centralizes strategies for programming courses, optimizes
instructor workflow, integrates multiple methods in one
platform; addresses gaps of previous tools in accessibility,
specificity, and ease of use

Consequently, this executive summary presents a novel contribution through CollabProg. Unlike
other platforms, CollabProg centralizes a curated collection of strategies specifically developed

to facilitate the adoption of different active learning methodologies in programming education.
This integrated repository aims to optimise educators’ work by eliminating the need to search for
information across multiple sources, thus enhancing the implementation of effective pedagogical
practices. The following sections provide a detailed description of CollabProg and its potential
impact.

2.5 Chapter Conclusion
This chapter provided an overview of the theoretical concepts related to programming education
in Computer Science and the use of ALMs. It addressed the central role of programming
education within computing technologies and highlighted the significant challenges faced by
students, including difficulties with fundamental concepts and the prerequisite skills in logic and
mathematics. The chapter also discussed the limitations of traditional teaching methods, which
are often instructor-centred and focused on passive knowledge transmission, thereby failing to
adequately foster logical reasoning and higher-order thinking skills.

Additionally, the chapter examined the application of ALMs in programming education, high-
lighting their potential to improve student engagement and learning outcomes. The review of
related works revealed a range of pedagogical innovations, including ALCASYSTEM, which
incorporates ALMs into computing disciplines, and OpenSMALS, a tool designed to implement
active learning strategies in software modelling education. It also discussed the Preliminary
Guide by Lima et al. (2021) and the Framework proposed by Ahshan (2021), both of which
reinforce the importance of adapting teaching methodologies to diverse educational contexts
and student profiles. Together, these discussions establish a comprehensive foundation for this
study, highlighting both the challenges in programming education and the promising strategies
offered by ALMs. This background and related works support the development of the proposals
presented in the subsequent chapters.

Chapter 3

Relevance Cycle

This chapter presents the results of the Relevance Cycle. It reports on a Systematic
Mapping Study and a national survey conducted to investigate instructors’ use of Active
Learning Methodologies in programming education and the challenges encountered in

their implementation.

3.1 Studies Conducted
This research began in March 2020. To conduct experimental studies with the academic
community, the research project was submitted to the Research Ethics Committee (CEP) of
the Federal University of Amazonas (UFAM) and approved under opinion no. 4.694.031.

The first study was conducted as a Systematic Mapping Study (SMS), following the procedures
outlined by Kitchenham (2012): planning, conducting, and analysing the results. The goal
of the SMS was to summarise and characterise the ALMs employed in teaching computer
programming in undergraduate computing courses. This study provides an overview of the
current scenario and profiles the research adopting different ALMs in programming education. It
also identifies the topics or course content, tools, programming languages, and metrics reported
in the publications.The details of this part of the Relevance cycle can be seen in Appendices A,
B and C.

Additionally, a survey was conducted. As stated by Kitchenham and Pfleeger (2008), surveys
are suitable for capturing and summarising the views and experiences of a defined population.
This survey targeted faculty members involved in teaching programming using ALMs. This
approach was appropriate for identifying patterns and trends within a specific educational
context. The survey aimed to explore instructors’ perceptions regarding the use of ALMs in
programming education, with particular attention to the challenges and difficulties encountered
during implementation. The detailed conduct of the study is presented in Appendix D.

3.2 Systematic Mapping Study
By conducting the SMS, a deeper understanding of the research problem can be obtained. SMS
is a method used to categorise and summarise existing information on a research question in
an unbiased manner (Kitchenham and Charters, 2007). Based on the results of the SMS, it

is possible to identify the state of the art and research gaps, thereby enabling the suggestion
of areas for further investigation. For this SMS, the following Research Question (RQ) was
formulated: How have instructors used active learning methodologies while teaching
programming in undergraduate courses?

3.2.1 Findings from the SMS
Responding to the research question, a total of 3,850 publications were identified through a
meticulous search process. After rigorously applying the selection criteria, 81 publications
were accepted for analysis. From these, 37 types of ALMs were identified. Among them, 17
publications reported the use of mixed methodologies, such as Flipped Classroom and Problem-
Based Learning. The Flipped Classroom (FC) was cited in 14 publications, while Gamification-
based Learning (GM) appeared in 11. Problem-Based Learning (PBL) was employed in eight
publications, and Game-Based Learning (GBL) in five. Four publications described author-
developed ALMs, and four others used Project-Based Learning (PjBL). Figure 3.1 presents the
types of ALMs mapped in this study.

Figure 3.1: Types ALMs adopted for teaching programming.

Other identified methodologies include Cooperative Learning (CL) and Pair Programming
(PP), each cited in three publications; Team-Based Learning (TBL), Think-Pair-Share (TPS),
and Coding Dojo (Dojo), each cited in two publications; as well as Blended Learning (BL),
Peer Review (PR), Project-Based Service Learning (PBSL), Method 300 (M300), Process-
Oriented Guided Inquiry Learning (POGIL), and Top-Down Approach (TopD), each cited in
one publication. Building on this categorisation, the ALMs reported in the publications were

analysed and classified by type, revealing 37 distinct ALMs adopted for teaching programming.
According to Katona and Kovari (2016), numerous approaches have been developed in recent
decades to enhance student learning outcomes through ALMs. This is especially relevant for
programming courses, where regular practice is essential for mastery.

Among the ALMs mapped, 17 publications reported approaches that combined more than
one ALM. These were classified as “Mixed Methodologies” (MixMeth), as presented in Table
3.1. Additionally, four publications proposing new instructional strategies were categorised as
“Authors’ Methodologies” (Aut-Meth), in which instructors adopted distinct teaching practices
to incorporate active learning into their course planning. Mixed methodologies appeared in
20.9% (17) of the mapped publications, where authors integrated ALMs such as FC and PBL.
Some studies also combined POGIL with PP for programming instruction. These combinations
indicate an effort by instructors to explore alternative pedagogical strategies through the inte-
gration of multiple ALMs. Consequently, the studies reported diverse instructional experiences
and expanded opportunities for promoting active student engagement.

Table 3.1: Methodologies adopted jointly

ID ALM #Publications
1 Flipped Classroom (FC) + Project-Based Learning (PBL) S01
2 Mini-lecture + Live-coding + In-class coding (InCconding) S03
3 Pair programming (PP) + Exercise-based learning (EBL) S05
4 Flipped Classroom + Problem-based Learning S12, S15
5 Animated Flowchart with Example Think-Pair-Share S16
6 Project-based learning (PjBL) + SCRUM S23
7 Student Ownership of Learning (SOL) + Flipped Classroom + S26
8 Pairing-based pedagogy (Pairgogy) - Pairing-Based Approach (Pair programming

+ Blended Learning (BL)
S27

9 Flipped Classroom + Team-Based Learning (TBL) S28
10 Process Oriented Guided Inquiry Learning (POGIL) + Pair Programming S35
11 Process Oriented Guided Inquiry Learning + Pair Programming S21
12 Game-based learning (GBL) + Problem-based learning S43
13 Lecture-based Learning (LBL) + Problem-based Learning + Peer Instruction (PI) S46
14 Flipped Classroom + Gamification-based learning (GM) S65
15 Blended teaching + Problem-Based Learning + Task driven + Flipped classroom S70
16 Learning by collaboration, flipped classroom, game-based learning S73
17 Flipped Classroom, Peer Discussion, and Just-in-time S76
18 Coding Dojo, Gamification, Problem-based Learning, Flipped Classroom and Se-

rious Games
S81

The FC was reported in 17.5% (14) of the publications. In this methodology, in-person activities
typical of traditional instruction are shifted to extracurricular settings, while theoretical content
is accessed in advance through digital resources (Hendrik, 2019). GM appeared in 13.5% (11)
of the analysed studies. According to Venter (2020), GM is considered a promising educational
approach for this decade, as instructors worldwide acknowledge that the effective design of
gamified activities can enhance students’ productivity and creativity. PBL appeared in 9.8% (8)
of the publications. This student-centred methodology encourages learners to conduct research,
integrate theory and practice, and apply knowledge and skills to solve defined problems (Chang
et al., 2020). GBL was reported in 6.1% (5) of the studies. GBL involves the use of educational
games designed to balance the development of specific competencies with gameplay dynamics
(Qian and Clark, 2016). It has been applied in various areas of computer science education,
including software engineering, programming, and cybersecurity (Zhang-Kennedy and Chiasson,
2021).

Also, Aut-Meth was identified in 4.9% (4) of the publications, including studies S26 and S32. In
these cases, the authors developed and implemented their own ALMs to promote collaboration
and active learning in programming education. Project-Based Learning (PjBL) appeared in the

same proportion, in 4.9% (4) of the publications. PjBL is a student-centred approach in which
learners construct their knowledge through the development of projects (Paristiowati et al.,
2022). Lastly, 12 other types of methodologies were reported in fewer than four publications:
CL and PP were identified in three studies; TBL, TPS, Dojo in two; and BL, PR, PBSL, M300,
POGIL, and TopD in one publication each.

After analysing the data extracted from the publications selected for this research, the state of
the art regarding the adoption of ALMs in computer programming teaching was characterised.
This characterisation can support the development of new research by providing a foundation for
selecting and improving different methodologies in teaching practice. Consequently, it facilitates
the generation of knowledge and the construction of studies aimed at testing or creating methods
to assist instructors in programming education.

Based on this analysis, the mapped ALMs were organised and categorised, enabling the develop-
ment of CollabProg, an open and collaborative repository. This repository allows instructors to
identify, select, adopt, discuss, comment on, evaluate, and collaborate on the use of both new and
established ALMs in programming education. As a result, a set of step-by-step guidelines was
developed and made available to support instructors in adopting these methodologies according
to their specific teaching contexts. This practical resource reduces the need for instructors
to consult multiple scientific articles or books when seeking appropriate ways to implement a
given ALM in the classroom, thereby promoting more efficient and well-informed pedagogical
decisions. The CollabProg repository and its features will be detailed in the next chapter of
this work.

All details of the SMS results can be found in Calderon et al. (2023a). The study highlights
the importance of using ALMs in programming education, demonstrating that these method-
ologies engage students in active, participatory, and contextualised learning. The analysed
studies indicate that ALMs support students in applying knowledge to real-world problems,
fostering the development of practical and critical skills relevant to programming. The variety
of subjects addressed in combination with different ALMs reflects the interdisciplinary nature
of programming and the need to prepare students for complex and diverse challenges.

3.2.2 Acceptance Criteria for CollabProg
Based on the results identified in the SMS, we defined two kinds of acceptance criteria for
CollabProg: Design Criteria and Behavior Criteria. These acceptance criteria represent a set
of expectations that guide both the development and the evaluation of the repository. The
Design Criteria describe what the artefact should offer its users in terms of structure, content,
and functionality. The Behavior Criteria, in turn, refer to the expected contributions of the
artefact to programming teaching practices, particularly in fostering the understanding and
adoption of active learning methodologies. Defining these criteria was essential to ensure that
the design of CollabProg was evidence-based and aligned with the pedagogical needs identified
in the literature. The criteria are detailed below.

The Design Criteria specify what CollabProg should offer its users:

• DC1 – The artifact should provide a variety of ALMs, including detailed descriptions,
application examples, and usage contexts.

• DC2 – The artifact should present clear and structured guidelines for implementing each
ALMs, covering aspects such as planning, execution, and evaluation.

• DC3 – The artifact should provide curation of ALMs (the process of carefully selecting and
organizing ALM content), including critical analyses, evidence-based recommendations,
and feedback from other instructors who have already implemented these methodologies.

The Behavior Criteria are related to contributing to the teaching practices of programming
and are as follows:

• BC1 – The artifact should help the user deepen their understanding of ALMs by providing
educational resources such as tutorials, case studies, and explanatory videos.

• BC2 – The artifact should motivate instructors to adopt ALM by presenting evidence of
effectiveness, observed benefits in other institutions, and success stories.

• BC3 – The artifact should present clear and detailed information about ALMs, includ-
ing pedagogical objectives, detailed implementation steps, and possible challenges with
suggested solutions.

• BC4 – The artifact should provide detailed and practical guidelines, using accessible
language and concrete examples to facilitate implementation across different disciplines
and levels of education.

The acceptance criteria defined for CollabProg serve as a reference for both its development and
assessment. These criteria will be verified during the evaluation stages conducted throughout
the design cycles. By analysing how well the tool meets the established Design and Behaviour
Criteria, it is possible to identify strengths, limitations, and opportunities for improvement,
ensuring that CollabProg effectively supports programming education through the use of ALMs.

3.3 Survey
To gather new insights from instructors regarding the adoption of ALMs in programming
education, a survey was conducted with faculty members from Computer Science programs
across Brazil. The survey aimed to explore their perceptions of using ALMs and to identify the
challenges and difficulties encountered when implementing these methodologies in programming
classrooms. For this purpose, the survey research method was employed, using a questionnaire
as the primary tool to collect instructors’ perceptions. According to Kitchenham (2012), a
survey is a research method designed to summarise and understand the characteristics under
investigation within a broad population. The target audience comprised higher education
instructors experienced in teaching programming using ALMs. Further details on the survey
planning are available in Calderon et al. (2024a).

3.3.1 Survey Design
For the construction of the survey, the guidelines suggested by Coelho et al. (2020) were followed,
ensuring the questions were developed in a logical and coherent sequence. The questions are
presented in Table 3.2. The survey was organised into different sections to investigate the
adoption of ALMs in programming education. Initially, information about participants’ profiles
and experience was collected, including their current position and the length of time they
have been adopting ALMs. Participants were then asked about their specific use of ALMs in
teaching programming, followed by questions identifying the methodologies they have used and
the subjects in which these were applied.

The survey also explored the types of tools and platforms used in the teaching process. Addi-
tionally, it investigated participants’ motivations, perceived benefits, difficulties encountered,
and challenges related to adopting these methodologies. This structure aims to provide a
comprehensive understanding of the implementation and impact of ALMs within the specific
context of programming education.

Table 3.2: Questions created for the survey.

ID Question
Q01 Questions regarding the participants’ profile (gender, state of teaching, academic qualifications, etc.) and

experience (teaching computing, teaching programming courses, adopted programming languages).
Q02 Do you use any type of ALM for teaching programming?
Q03 How long have you been using ALM in programming teaching?
Q04 Which ALMs have you used in your programming classes?
Q05 What is your motivation for adopting ALMs for programming teaching?
Q06 What are the perceived benefits of adopting ALMs for programming teaching?
Q07 Have you encountered any difficulties in adopting ALMs?
Q08 What are the main challenges and drawbacks faced when using ALMs in programming teaching?

3.3.2 Findings from the Survey
The study gathered responses from 102 instructors across 21 states and the Federal District,
covering a total of 22 federative units. The regional distribution of participants was as follows:
North 37.2%, Northeast 14.9%, Southeast 11.%, South 9.7%, and Central-West 6.9%. The
highest concentration of instructors was in the North region, with Amazonas (23.5%), Rondônia
(21.6%), and Acre (7.8%) leading, followed by Minas Gerais (6.9%) and Alagoas (5.9%). Also,
analyzing the profile of the participants, it was observed that the majority identified as male,
comprising 62.7% (64) of the respondents, while 37.3% (38) identified as female. Regarding
age distribution, most instructors fell within the 41 to 45-year-old range (28.4%), followed by
those aged 46 to 50 years (26.6%) and 36 to 40 years (18.6%), indicating a predominance of
professionals in the more advanced stages of their careers.

Regarding the type of institution, 77.5% (79) of the instructors work at public institutions,
19.6% (20) at private institutions, and 2.9% (3) at community-based institutions, reflecting
the predominance of the public sector in educational provision. As for academic qualifications,
50% (51 instructors) hold a Master’s degree, followed by 34.3% (35) with a PhD, Postdoctoral
degree with 6.9% (7), 5.9% (6) with a Bachelor’s degree, and 2.9% (3) with a specialisation.
The high level of academic qualifications among the instructors is a positive indicator for the
adoption of ALMs, as it is often associated with a greater interest in innovative pedagogical
practices. Concerning classroom experience, most instructors reported 10 years of teaching
experience (11.8%), followed by 11 years (6.9%), indicating a solid professional trajectory. In
terms of experience specifically in teaching programming, 9.8% of instructors reported 5 years
of experience, while 8.8% reported between 2 and 10 years, reflecting a diversity of experience
levels within the sample.

As for the adoption of ALMs, the results show that 78.7% of instructors reported using or having
used some type of ALM in programming education. Additionally, 21.2% of participants have
been using ALMs for three years; 17.5% for four years; 16.% for five years; 15% for two years;
and 8.8% for eight years. These findings indicate a growing trend in the adoption of ALMs
in programming education, with many instructors having implemented these practices over a
considerable period. The results also highlight that Brazilian instructors use ALMs as tools to
facilitate learning, guiding and supporting students throughout their processes of discovery and
knowledge construction.

Figure 3.2 illustrates the scenario regarding the ALMs employed by instructors in programming
education (Q4). The ALMs always used in programming classes include: PBL (26), GM (19),
PjBl (14), Dojo (19), and PR (5). The ALMs almost always used are: PBL (26), GM (21),
PjB (20), PP (13), TBL (11), and Dojo (9). The ALMs sometimes adopted by instructors
include: PjBL (14), TBL (12), GM (12), PBL (11), PR (8), Dojo (8), and PR (5). These
results demonstrate a diverse and frequent use of ALMs in programming classes, indicating
a significant shift in teaching strategies. This shift aims to enhance student engagement and
performance through more participatory and collaborative learning approaches.

Figure 3.2: Frequency of ALM use in programming classes.

The analysis of the main motivations indicated by instructors for adopting ALMs in programming
education reveals a range of factors influencing this decision (see motivations in Table 3.3).
The key motivations highlighted by instructors include: increasing student engagement (56.3%),
aligning content with real-world practice (55%), and the opportunity for innovation in teaching
practice, as well as enabling students to create, adapt, and modify algorithms or code (each cited
by 46.3%). These results reflect a pursuit of more effective and engaging teaching methods that
offer students a more meaningful and relevant learning experience. These findings underscore
the importance of practical teaching approaches that emphasise the application of knowledge
in real-world contexts, preparing students not only to understand theoretical concepts but also
to apply them effectively in professional settings.

Moreover, the motivations related to making classes more dynamic (40%), conducting short and
frequent assessments (32.5%), and adapting to students’ skills and needs (27.5%) underscore the
importance of a personalised and flexible approach to programming education. This approach
enables instructors to address diverse student needs and learning styles, fostering a more inclusive
and effective learning environment. It is evident that instructors’ motivations reflect a desire
to promote a more engaging, practical, and relevant education, effectively preparing students
for job market challenges and supporting their academic and professional development.

Table 3.4 presents the Positive Perceptions (PP) reported by instructors regarding the adoption
of ALMs in programming education. The analysis of these positive aspects highlights a range

Table 3.3: Main motivations reported by instructor

ID Motivation Percentage (%)
M01 Increased student engagement in learning programming 56.3
M02 Alignment of content with their reality and teaching practice 55.0
M03 Opportunity for innovation in teaching practice 46.3
M04 Opportunity for students to create, adapt, and modify algorithms or code 46.3
M05 Replacement of traditional lecture-based classes 43.8
M06 Opportunity to develop skills for professional practice 41.3
M06 Active teaching practice that makes classes more dynamic 40.0
M07 Opportunity to conduct short and frequent assessments 32.5
M08 Adaptation to students’ skills and needs 27.5
M09 Opportunity for collaborative knowledge construction 27.5
M10 Traditional teaching methodologies do not provide teachers with tools to improve

content teaching in programming courses
26.3

M11 Connection between content and its application in students’ daily lives 26.3

of perceived benefits for students and the overall classroom environment. Student motivation
to learn the content (86.3%) was identified as the primary benefit, suggesting that ALMs
can foster deeper and more meaningful interest in the subject matter. Additionally, student
engagement in the classroom (78.8%) was the second most frequently cited benefit by instructors.
Other well-rated benefits include improvements in students’ ability to read code (70%) and
to understand how programming instructions work (65%), indicating that instructors perceive
ALMs as contributing to the development of key practical and technical programming skills.
Collaboration among students during content learning (46.3%) and the resolution of challenges
individually or in groups (33.8%) further underscore the role of ALMs in promoting teamwork
and knowledge sharing among learners.

Table 3.4: Positive perceptions reported by instructor on adopting ALMs.

ID Category Percentage (%)
PP01 Motivation to learn content 86.3
PP02 Student engagement in the classroom 78.8
PP03 Improvement in code reading ability 70.0
PP04 Improvement in understanding programming instructions 65.0
PP05 Improvement in individual performance 51.2
PP06 Collaboration among students during learning 46.3
PP07 Improvement in class performance 45.0
PP08 Challenges solved individually or in groups 33.8
PP09 Improvement in interaction among students 33.8
PP10 Improvement in skill development 32.5
PP11 Students’ ability to generate problem-solving alternatives 31.3
PP12 Improvement in student participation in class 30.0
PP13 Improvement in interaction between teacher and students 28.7
PP14 Students’ ability to evaluate solutions 27.5
PP15 Students’ ability to break problems into smaller modules 27.5
PP16 Knowledge sharing among students 25.0
PP17 Students’ willingness to solve problems 21.3
PP18 Application of theory in practical activities 18.8
PP19 Students’ ability to compare alternatives 15.0

Instructors also reported that ALMs improve individual student performance (51.2%) and overall
class performance (45%), suggesting that these methodologies can contribute to better academic
outcomes. Students’ ability to develop skills, generate alternative solutions to problems, evaluate
the solutions found, and break down problems into smaller modules indicates an enhancement
of their cognitive and analytical competencies. The findings suggest that instructors broadly
perceive the adoption of ALMs as beneficial, particularly in terms of fostering student motivation
and engagement. These elements are essential for active and participatory learning, which are
key to the effectiveness of programming education.

The results obtained from the survey conducted with 102 faculty members from various regions
of Brazil provide a solid foundation for the development of CollabProg, an open and collabo-
rative repository designed to support the adoption of ALMs in programming education. The
data revealed that, despite the recognised benefits of ALMs such as promoting practical under-
standing, enhancing programming skills, and fostering essential competencies like teamwork and
critical thinking—instructors still face significant challenges. These include a lack of specific
training, insufficient technological support, and difficulties in implementing the various stages
of ALMs.

These challenges highlight the urgent need for more resources and support to enable instructors
to integrate these methodologies more effectively. The perspectives shared by faculty indicate the
importance of institutional policies that promote continuous professional development, provide
appropriate technological infrastructure, and ensure support for the successful implementation of
ALMs. Based on the data collected, CollabProg can serve as a valuable tool to help address these
barriers by offering practical guidelines, encouraging the sharing of experiences and resources
among instructors, and supporting the more efficient adoption and application of ALMs.

3.4 Chapter Conclusion
This chapter presented the results of two complementary studies that contributed to advancing
the use of ALMs in programming education. The first, a SLM, identified and categorised 37
distinct ALMs employed by instructors in programming courses. Based on an analysis of 81
publications, this study offered a broad overview of the methodologies currently adopted in the
field, including prominent approaches such as FC, GM, PBL, and PjBL. The categorisation and
organisation of these methodologies provided a foundational framework to initiate the research
design cycle. Based on these results, the development of CollabProg was undertaken to support
instructors in adopting ALMs in programming education. The second study, an exploratory
evaluation of CollabProg 1.0, examined the perceptions of instructors regarding the platform’s
usefulness, ease of use, and intention to use. The findings confirmed the system’s alignment
with the defined acceptance criteria and highlighted its potential to facilitate the planning and
reporting of ALM-based practices in programming courses. Together, these studies demonstrate
the relevance and feasibility of using a structured repository to enhance the adoption of active
methodologies in the computing education context.

The second study involved a survey with 102 instructors from different regions of Brazil, offering
empirical insights into the practical application of ALMs in programming courses. The findings
indicate a growing trend in the adoption of these methodologies, with the majority of instruc-
tors reporting current or previous use of ALMs. However, the data also revealed persistent
challenges, including a lack of targeted training, limited access to technological infrastructure,
and difficulties in operationalising the stages of ALMs. These constraints underscore the neces-
sity for institutional support, encompassing ongoing professional development, the provision of
adequate resources, and the implementation of policies that encourage and sustain the use of
ALMs.

Together, these studies provide a robust foundation for the design and implementation of Col-
labProg, a tool conceived to address the challenges identified and promote broader adoption
of ALMs in programming education. By offering practical guidance, encouraging collabora-
tion among instructors, and facilitating the sharing of experiences and educational resources,
CollabProg seeks to contribute to the improvement of teaching practices and student learning
outcomes. The evidence gathered from both the SLM and the survey reinforces the relevance

of the CollabProg design cycle. Instructors highlighted the positive impact of ALMs on student
motivation, engagement, performance, and the development of technical and collaborative skills.
These insights are crucial for informing the design of more effective and inclusive teaching
approaches, which will be detailed in the next chapter, where the features, functionalities, and
implementation strategies of the CollabProg repository are presented.

Chapter 4

Design Cycle

T his section addresses the conception, evaluation, and refinement process of CollabProg.
CollabProg was developed to mitigate instructors’ practical difficulties in adopting ALMs
in programming teaching by providing specific guidelines for their implementation. It

is a collaborative and open repository designed to support instructors in the adoption of ALMs
in programming education.

4.1 First Design Cycle: Conception and Initial Validation
4.1.1 Organization of Knowledge about the Methodologies
The first design cycle involved organising the knowledge base on ALMs. The results obtained
through the SMS enabled the identification and categorisation of the ALMs adopted by instruc-
tors, as well as the recognition of positive evidence regarding their application in programming
education. Following the identification of these methodologies, we drew on the approaches
proposed by Sobrinho et al. (2016) and Silva et al. (2020a) to structure the knowledge of each
ALM in a conceptual model represented by a class diagram. To construct this model, we initially
defined the domain and scope of the knowledge based on the results presented in Calderon
et al. (2024b), which aimed to identify and categorise the types of methodologies adopted by
instructors for teaching programming.

According to Sobrinho et al. (2016), the domain refers to the semantic representation and
formalisation of teaching methodologies based on active learning principles, which are grounded
in constructivist theory, emphasising that students construct knowledge through experience,
interaction, and reflection. Doolittle et al. (2023) further explain that active learning places
learners at the centre of the educational process by engaging them in contextualised tasks,
collaborative interaction, reflective practice, and the use of prior knowledge. The scope of this
model is to support instructors in higher education programming courses by providing organised
and semantically structured knowledge, thereby facilitating the dissemination and adoption of
ALMs. Accordingly, the information collected about the ALMs was structured into a conceptual
model, represented as a class diagram shown in Figure 4.1.

In the model, the Category class represents the category of ALMs according to the method’s
approach. The class can be instantiated, for example, with the name Cooperative Learning,

Figure 4.1: CollabProg solution model.

which includes methodologies that promote learning through cooperation among students. This
category groups methodologies that focus on interaction between participants as a central
element of the teaching process. When instantiated, the class is associated with methodologies
aligned with this approach, such as PI and TPS, enabling the organisation and semantic
representation of these relationships within the conceptual model. This class is associated with
the Methodology class, which represents the ALMs included in CollabProg. As observed
in the SMS, methodologies can be used together to improve or complement the outcomes of
programming teaching. A self-relationship in the Methodology class represents this possibility.
The Step class represents the necessary steps for adopting methodologies. The Activity class
describes the actions to be carried out in each step of implementation in the classroom, such
as planning content, presenting the methodology, and defining roles. The Technology class
represents the possible educational technologies that can be used in each activity, including
virtual environments or games. Finally, the Participant and Role classes are associated with
each other and linked to the Methodology class to define the roles involved in each methodology.
The details of this part of the design cycle can be seen in Appendices E and F.

4.1.2 Selection and Curation of Active Learning Methodologies
After organising the knowledge on ALM, we conducted a curation of the information related
to the methodologies used in CollabProg. We examined scientific evidence and experimental
studies demonstrating the application of ALMs in the classroom. The studies analysed were
those selected during the SMS. Content curation is important because instructors often have
difficulties identifying the origin of information, which affects the evaluation of its accuracy
and authenticity (Correia, 2018). To avoid frustration among repository users, who are the
instructors, we ensured that the available content is based on scientific experiments and relevant
to the repository’s purpose. The curation focused on studies providing analysis to assist
instructors in implementing ALMs in the classroom, especially in programming education. We
selected ALMs supported by scientific evidence, excluding those without experimental support
or theoretical relevance. CollabProg aims to provide strategies for adopting ALMs and to ensure
the quality and relevance of the knowledge shared. This allows the teaching community to

access resources to support their pedagogical practices in programming education.

We defined a set of Quality Assessment Criteria (QAC) to evaluate the quality of primary
studies selected in the SMS for the development of CollabProg. The QAC assess studies on the
adoption of ALMs in programming education in higher education, specifically in Computing.
These criteria measure the relevance of each study for the content included in CollabProg.
Table 4.1 presents the QAC and the scores each primary study can receive. We established six
criteria to collect detailed information from primary studies to support instructors applying the
methodology in the classroom. The criteria classify the studies as Strong, Medium, or Weak
according to this scoring scheme: Strong Description = 2, Medium Description = 1,
Weak Description = 0. It is important to note that not all studies meet every criterion or
fall neatly into one of these categories. The classification depends on the level of detail provided
in the study regarding the description of the ALM.

For example, a study may receive a Strong Description score if it clearly describes and specifies
which metrics were used to evaluate improvement in programming teaching. Conversely, a Weak
Description score applies when the study lacks relevant information, such as failing to mention
the programming language used. An Intermediate or Medium Description is assigned if
the study provides an incomplete description of the metrics used to evaluate improvement,
as seen in QAC4 and QAC5. It is also worth noting that some criteria, such as QAC4 and
QAC5, do not include a Weak Description category, reflecting the nature of the information
they require. Among the defined criteria, QAC1 and QAC2 address aspects essential for the
implementation and understanding of ALMs in the classroom. For this reason, studies must
obtain the maximum score in both criteria to be included in CollabProg. Studies that do not
meet this condition are excluded. For the other criteria, which may receive a weak rating, the
absence of information in the primary study does not compromise the use of the methodology
by CollabProg users. The complete protocol used to conduct the Quality Assessment (QA) of
the primary studies is available online1. The criteria are listed below:

• QAC1 – Description of Active Methodology. This criterion should be strong,
as studies should provide detailed information about ALMs and its benefits, allowing
ColabProg users to understand better the methodology they want to adopt.

• QAC2 – Adoption Support. This criterion should be strong, as studies should provide
clear and practical guidance on the steps necessary for ColabProg users to implement and
adopt the methodology in their classrooms. This approach will instill a sense of confidence
and capability in the users.

• QAC3 – Metrics. This criterion can be weak, so studies that present the metrics used
to assess the methodology’s effectiveness in improving teaching and learning are needed.

• QAC4 – Programming Language. This criterion can be weak, as it aims to identify
the programming language used during the methodology’s implementation.

• QAC5 – Teaching Modality. This criterion must be more robust to identify the
teaching modality (face-to-face, blended learning, or distance education) in which the
methodology was implemented.

• QAC6 – Results Description. This criterion needs to be stronger, seeking solid
empirical evidence on the results of implementing the ALMs. This emphasis on empirical
evidence will ensure the audience of the studies’ validity and reliability.

1https://figshare.com/s/794c9f7e5adfdff915d1

Table 4.1: Quality Assessment Criteria X Publication Score

Criteria Description of the criterion Score
Q

A
C

1
Strong Description: If the methodology is clearly identified and described compre-
hensively, with information related to its concept, origin, objective, characterization,
application, and the benefits of implementation in the classroom.

2

Medium Description: If the methodology description is partially or incompletely
described, with not all information related to its concept, origin, objective, charac-
terization, application, and the benefits of implementation in the classroom being
provided.

1

Weak Description: If no descriptions related to the concept, origin, objective, char-
acterization, application, and the benefits of implementation in the classroom are men-
tioned.

0

Q
A

C
2

Strong Description: If it describes in detail the steps for implementing the method-
ology in the classroom, clearly presents the step-by-step process to be followed for
adopting the methodology, and provides relevant information about the tools and/or
technologies used during the adoption of the methodology.

2

Medium Description: If it describes incompletely and with few details the steps for
implementing the methodology in the classroom, presents the step-by-step process for
adopting the methodology incompletely and provides incomplete information about
the tools and/or technologies used during the adoption of the methodology.

1

Weak Description: If it does not describe the steps for implementing the method-
ology in the classroom, the step-by-step process for adopting the methodology, and
information about the tools and/or technologies used during the adoption of the ALM.

0

Q
A

C
3

Strong Description: If it clearly describes and specifies which metrics were used to
evaluate the improvement in programming teaching.

2

Medium Description: If it describes incompletely which metrics were used to evalu-
ate the improvement in programming teaching.

1

Weak Description: If it does not describe or specify which metrics were used to
evaluate the improvement in programming teaching.

0

Q
A

C
4 Strong Description: If it describes information that allows identifying and charac-

terizing the type of programming language used.
2

Weak Description: If no relevant information allowing the identification of the pro-
gramming language used is mentioned.

0

Q
A

C
5 Strong Description: If it presents complete, clear, and relevant information about

the teaching modality where the methodology was implemented.
2

Weak Description: If it does not present the teaching modality where the method-
ology was implemented.

0

Q
A

C
6

Strong Description: If it presents a clear description of the results obtained with
the adoption of the methodology during the teaching of the content, lessons learned,
positive or negative points, from the instructor’s perspective.

2

Medium Description: If it presents incomplete information about the results and
lessons learned by adopting the methodology during teaching programming.

1

Weak Description: If it does not present the results achieved or the lessons learned
by adopting the methodology used for teaching programming.

0

The process of selection and curation of ALMs was carried out by three researchers. Each
step was conducted collaboratively, beginning with individual reading of the studies, followed
by group discussions to validate decisions. The objective was to ensure that all analyses were
aligned with predefined criteria and that any disagreements were resolved by consensus. This
procedure aimed to maintain consistency in the application of the criteria and transparency in
the selection of the studies included in the CollabProg repository. Each study was evaluated
on a scale from 0 to 2, according to the criteria described in Tabela 4.1. Studies were classified
based on their scores and excluded when necessary. Publications that received a score of 0 were
removed, even if they were aligned with the research domain. The ALMs selected for inclusion
in CollabProg are presented in Table 4.2.

4.1.3 CollabProg - version 1.0
After completing the selection and curation process of ALMs, we structured the collected
information and created version 1.0 of CollabProg. This initial version organises the curated
content into a digital repository designed to support instructors in the adoption of ALMs. Figure
4.2 presents the interface of CollabProg, using the methodology POGIL as an example. Part

Table 4.2: Selected Active Learning Methodologies for CollabProg Composition

Methodology Name Authors
Blended Learning (BL) Safana and Nat (2019)
Cooperative Learning (CL) Pollock and Jochen (2001)
Flipped Classroom (FC) Kumar et al. (2018)
Game-Based Learning (GBL) Dicheva and Hodge (2018)
Gamification-Based Learning Gonçalves et al. (2019)
Method 300 (M300) de Castro Junior et al. (2021)
Problem-Based Learning (PBL) dos Santos et al. (2018)
Project-Based Learning (PjBL) Avouris et al. (2010)
Peer Review (PR) Turner et al. (2018)
Team Based Learning (TBL) Joshi et al. (2020)
Topdown (TopD) Gamage (2021)
Think-Pair-Share (TPS) Kothiyal et al. (2014)
Coding Dojo (DOJO) Mayfield et al. (2022)

01 of Figure 4.2 provides an overview of the repository. Part 02 contains a summary of the
selected ALM. Part 03 presents detailed content on the methodology, including descriptions of
roles, adoption steps, and the internal structure of each step. The details of this part of the
design cycle can be seen in Appendix G.

In CollabProg version 1.0, the repository is organised into three labelled menus that provide
information to support users in navigating, selecting, and adopting available ALMs. Instructors
can access information on ALMs, including adoption examples, tool options adopted by the
community, reported experiences, and feedback from other instructors. The platform includes
information on both the advantages and limitations identified in the use of different ALMs. A
key feature is that no registration is required to access CollabProg; the repository is open to
all users. The main interface (Home) provides access to the following menus:

• About: Provides an overview of the CollabProg repository.

• Methodology: Lists the ALMs mapped from the SMS results.

• Recommendation: Allows instructors to input characteristics about their class, the
content to be taught, discipline, etc., so CollabProg can recommend the most suitable
ALM for the scenario. This Recommendation provides step-by-step instructions for using
the ALM, information on roles during methodology implementation, activity suggestions,
and available community-adopted tool support options.

• Register methodology: Invites instructors to actively contribute to the CollabProg
repository by sharing a new ALM or an adaptation of one already implemented or tested for
teaching programming. This collaborative space is designed to foster a sense of community
and shared learning among instructors and researchers.

• Contact: Serves as a means of communication between the researchers involved in
platform development and the academic community. Users can get in touch via the
authors’ e-mails to report errors, problems, or suggestions for the repository.

We implemented CollabProg using three main components: back-end, front-end, and the recom-
mendation system, with the participation of six students dedicated to the development process.
The back-end manages the business logic and data, providing an API to support front-end

Figure 4.2: Version 1.0 of CollabProg.

interactions. It handles the registration and retrieval of information used to populate the Col-
labProg interface and generate methodology recommendations. It is important to note that
part of the recommendation functionality remains under development and has not yet been
fully implemented. The selection of technologies, tools, and programming languages prioritised
options that support development, task management, and completion of project stages.

4.1.4 Evaluating CollabProg 1.0
In the Design Cycle, it is essential that stakeholders directly related to the context in which
the problem is embedded evaluate the artefact (Wieringa, 2014). Accordingly, an exploratory
study was conducted to assess the feasibility of use and the acceptance of CollabProg by
instructors. The objective was to evaluate both aspects from the instructors’ perspective.
Participants were recruited through convenience sampling, involving instructors from different
regions of the country. Due to geographical distance, the study artefacts were adapted for
remote application.The details of this part of the design cycle can be seen in Appendix H.

The study artefacts were prepared using online tools available through Google Workspace, in-

cluding: (i) a consent form ensuring data confidentiality and participant anonymity (Ethics
Committee Approval No. 4.694.031); (ii) a characterisation questionnaire to capture instructors’
teaching experience and familiarity with ALMs; (iii) documents outlining the study protocol,
instructions for using CollabProg, and online rooms to support the procedures; (iv) the ini-
tial version of the CollabProg web portal; (v) a lesson plan template; and (vi) a post-use
questionnaire based on the TAM indicators.

Table 4.3 presents the statements answered by the instructors, structured according to the
TAM dimensions: Perceived Usefulness (PU), Perceived Ease of Use (PEU), and Perceived
Intention to Use (PIU). Two open-ended questions (OQ) were also included to gather more
detailed insights into instructors’ perceptions. The responses were analysed qualitatively using
coding techniques. Full details of the planning and execution of the study evaluating CollabProg
version 1.0 are available in Calderon et al. (2023b) and Calderon et al. (2024c).

Table 4.3: Instructor questions

Perceived Usefulness
PU1 Using the CollabProg repository improved my performance in lesson planning by adopting ALMs.
PU2 Using the CollabProg repository improved my productivity in adopting ALMs.
PU3 Using the CollabProg repository allowed me to fully report the aspects of my experience in adopting

active methodologies (ALMs).
PU4 I find the CollabProg repository useful for reporting my experience in adopting active methodologies

(ALMs).
Perceived Ease of Use

PEU1The CollabProg repository was clear and easy to understand
PEU2Using the CollabProg repository did not require much mental effort
PEU3I think the CollabProg repository is easy to use.
PEU4I find it easy to report my experience of adopting MAs using the CollabProg repository.

Perceived Intention to Use
PIU1 Assuming I have access to the ColabProg repository, I intend to use it to apply AIs in programming

education.
PIU2 Given that I have access to the ColabProg repository, I foresee using it to support me in adopting AIs in

programming education.
PIU3 I intend to use the ColabProg repository to assess my experience with adopting an AI in the next month.

Open-Ended Questions
OQ1 What were the main challenges/negative points perceived by you when using ColabProg?
OQ2 What were the main positive aspects you noticed when using ColabProg?

Figure 4.3 presents the overall results of the participants’ perceptions of CollabProg, based on
the TAM statements shown in Table 4.3, with the aim of understanding instructors’ experience
regarding its usefulness, ease of use, and intention to use the repository. Concerning Perceived
Usefulness, all instructors fully agreed with the statements (PU1, PU2, PU3, PU4), indicating
that CollabProg is useful for planning programming classes involving the adoption of ALMs. In
addition, CollabProg supports or enhances instructors’ productivity in their practice. It operates
as a support tool that enables instructors to draw on their own experiences when selecting an
ALM for use in their classes. The results indicate that instructors accept CollabProg as a tool
to support the adoption of ALMs in programming education.

Concerning the Perceived Ease of Use of CollabProg, the three statements (PEU1, PEU2, and
PEU3) received full agreement from most instructors. Participants reported that describing their
experiences with ALM adoption using CollabProg was straightforward. They also indicated that
the platform required little mental effort and was easy to understand and operate, particularly
in relation to the routine demands of programming teaching. In general, instructors considered
CollabProg clear, simple, and accessible. The only exception was statement PEU2, for which
instructor D2 expressed partial agreement.

Finally, concerning the Perceived Intention to Use CollabProg, all instructors partially agreed

Figure 4.3: General results of perceptions about CollabProg.

with the three statements (PIU1, PIU2, and PIU3). The intention to use CollabProg is relevant
to assess the community’s interest and willingness to adopt the tool, as well as its acceptance
as support for programming teaching. In this regard, instructors evaluated the repository
positively and indicated an intention to use it.

Therefore, based on the participants’ perceptions, the evaluation of the version 1.0 of CollabProg
highlights its potential as a support tool for the adoption of ALMs in programming education.
The results indicate acceptance in terms of usefulness, ease of use, and future use intention,
although with varying degrees of agreement. The findings suggest that CollabProg can be con-
sidered a viable repository to support instructors in selecting and planning ALMs, contributing
to the systematisation of pedagogical practices and the strengthening of a collaborative culture
in programming education.

However, to enhance its effectiveness and better meet user needs, the next iteration of CollabProg
must address certain design and behaviour criteria. Given these results, for version 2.0 it is
necessary to improve the design criteria, including: a) a greater variety of ALMs, with detailed
descriptions, application examples, and usage contexts; b) clear and structured guidelines for
implementing each ALM, covering planning, execution, and evaluation; and c) curation of ALMs,
with critical analyses and evidence-based recommendations. Regarding the behaviour criteria,
improvements should ensure that the artefact: a) supports the user in understanding ALMs; b)
presents clear and detailed information about the methodologies; and c) provides sufficiently
detailed guidelines to facilitate implementation. These points guide the improvements proposed
in the second design cycle of CollabProg.

4.2 Second Design Cycle: Improvements and Enhancements
After the initial evaluation of CollabProg by volunteer instructors from various higher education
institutions, we initiated a second design cycle to refine the tool based on the feedback received.
In this subsection, we present the planned improvements for version 2.0, focusing on usability,
functionality, and the quality of recommendations to better support the adoption of ALMs in
programming education. The evaluation results were analysed according to the design criteria
established for the implementation of CollabProg, presented in subsection 3.2.2, which reflect
user expectations. Details of version 2.0 are available in Appendices I and J.

We observed that requirement DC1, which states that the artefact should provide a variety
of ALMs with detailed descriptions, application examples, and usage contexts, was not fully
met during the study. This limitation was identified through instructor feedback, indicating
the need for a broader selection of active methodologies within the system. To address this,
we planned a more comprehensive curation that included methodologies used in combination
with various approaches, according to the Quality Assessment Criteria presented in subsection
4.1.2, as well as those developed and implemented by authors of primary studies. Additionally,
through the conduction of the MSL study in Calderon et al. (2023a), thirty-seven different
ALMs adopted by instructors were identified. Improvements in the detailing of each ALM
contributed to enhancing CollabProg in version 2.0.

In version 2.0 of CollabProg, to meet DC2, which requires the artefact to provide clear and
structured guidelines for implementing each ALM, details on planning, execution, and evaluation
were added to support instructors in adopting the available ALMs. CollabProg now offers
specific instructions for applying the selected ALM in the classroom. Figure 4.4 presents
general information, such as the time required to apply the methodology and the recommended
class size, as well as specific objectives that help instructors decide based on their current
context.

Regarding DC3, which states that the artefact must provide curation of ALMs, a process
of carefully selecting and organising the content, including critical analyses, evidence-based
recommendations, and feedback from instructors who have already applied these methodologies,
version 2.0 of CollabProg maintained and enhanced the implementation of these curation criteria,
as presented in Subsection 4.1.2. Additionally, in the Methodologies menu, instructors can
access the View Feedback button (Figure 4.5). The instructor can see evaluations from other
instructors about some specific methodology. Evaluations can be shared through star ratings
and comments, providing insights into the implementation experience of the methodology in
different contexts.

We believe the View Feedback feature is essential for the academic community. It promotes
transparency and trust by allowing users to access evaluations and testimonials from other
instructors about the implemented methodologies. This feature facilitates sharing experiences,
offering valuable lessons learned and best practices that can benefit new users. By enabling more
informed choices and inspiring contextual adaptations, the View Feedback feature strengthens
collaboration and community engagement, creating an environment of mutual support and
continuous learning.

The evaluation of CollabProg from the perspective of Behavior criteria, which refer to the
artifact’s contribution to programming teaching practices, revealed several areas of opportunity
for improvement. Instructors suggested improving the repository regarding BC1, which requires
that the artifact supports the user in understanding active methodologies. They highlighted
the need to make explanations of the steps and concepts of the methodologies clearer and more

Figure 4.4: Methodology Details

Figure 4.5: View feedback button feedback

accessible, facilitating understanding by users. Implementing detailed tutorials and practical
examples can help better meet this requirement as for BC2, which aims to motivate instructors
to adopt Active Methodologies, CollabProg was well evaluated. Professor D3 mentioned that
the intuitive presentation of the methodologies in CollabProg facilitated understanding of their
operation and lesson planning compared to other sources of documentation. This positive
feedback indicates that CollabProg is effectively promoting the adoption of ALMs.

Regarding BC3, which requires the presentation of clear and detailed information about ALMs,
we realized the need for improvements in documentation and provided examples identified. Par-
ticipants highlighted the importance of more detailed explanations about the assignment of roles
in ALMs, aiming to avoid confusion and facilitate implementation. Improving documentation
with specific cases and step-by-step descriptions can help better meet this requirement.

Finally, regarding BC4, which requires that guidelines be detailed to facilitate their imple-
mentation, CollabProg partially met this requirement. Assessments by instructors D1 and D3
indicated that, although CollabProg facilitated the application of methodologies and improved
understanding of the available ALMs, there is still room to make guidelines more detailed and
practical. Including checklists, flowcharts, and additional visual resources can make guidelines
more effective.

Based on the evaluation of CollabProg and the instructors’ suggestions, the repository repre-
sents a valuable tool for supporting programming teaching with ALMs. CollabProg received
praise for its ability to motivate the adoption of ALMs and facilitate understanding of their
operation. Opportunities for improvement were identified regarding the clarity and simplicity
of explanations, detailed documentation of methodologies, and explanation of the roles assigned
in each. Besides, the positive feedback on the ease of implementing AMs demonstrates the
potential of CollabProg as a valuable and effective tool for instructors wishing to use active
approaches in programming teaching.

Figure 4.6 shows the CollabProg homepage of version 2.0 (in Portuguese). The labeled menus
and their respective icons are displayed on the left side (part 1 of Figure 4.6). This combination
aims to provide a cleaner, more intuitive, and aesthetically pleasing interface, enhancing the

user experience. The "Home" menu directs to the CollabProg homepage. Part 2 of Figure 4.6
presents information about the ALMs and details about the CollabProg itself.

Figure 4.6: CollabProg 2.0 Homepage.

Figure 4.7 shows the Register Methodology menu, which directs the user to the methodology
registration page. On this page, the instructor is invited to provide details of the ALM, such as
the methodology description, educational objectives, implementation steps, suggested activities,
and necessary resources. Each field is accompanied by a detailed explanation of how to fill it
out, ensuring that the registration is done correctly and that the information provided is helpful
for the community that will use the methodology.

For the registration of methodology details, the user will be guided through five pages, each
with specific fields for collecting this information. Figure 4.7 presents this functionality’s first
and second pages. This feature enriches the tool by expanding the diversity of AMs available
to other instructors. To register a methodology, the user must fill in mandatory fields, such
as methodology description, taught disciplines, related content or categories, programming
languages used, necessary materials, methodology principles, methodology planning, and steps
for adopting the methodology. These pieces of information are essential for the community to
use and follow the tried-and-tested step-by-step process.

Figure 4.8 shows the Methodologies menu. On this page, CollabProg provides information
about each methodology, including the step-by-step implementation process, the roles of students
and instructors, the necessary materials and tools, the average time for lesson planning, the
steps for adopting the methodology, and how to assess learning, among other information. These
guidelines help instructors understand how to implement the ALM in their classroom.

After accessing the "Methodologies" menu, the instructors are presented with a list of available
methodologies for implementation. Upon selecting the one of interest, they are directed to
the initial screen for the chosen methodology. On this screen, depicted in Figure 4.4, general
information is displayed, such as the time required for applying the methodology and the
recommended class size. Besides, we provide specific methodology objectives, which help the

Figure 4.7: Methodology Registration Page.

Figure 4.8: Active Learning Methodologies Page.

instructors decide, considering their current context. The current version is accessible online2.

4.3 Chapter Conclusion
This chapter provided an overview of the conception, evaluation, and improvement of CollabProg.
The primary aim was to address practical challenges faced by instructors when implementing
ALMs in programming education. CollabProg was developed as a collaborative and open
repository offering specific guidelines for adopting various ALMs, supporting educators in
enhancing their teaching practices.

The first design cycle focused on organising and curating knowledge about ALMs, ensuring
the content was scientifically grounded and relevant to programming education. This curation
involved a thorough review of existing studies to include only validated methodologies. This
step was essential to provide instructors with reliable resources and assist them in navigating
the complexities of integrating ALMs in the classroom.

CollabProg version 1.0 was then developed, featuring a structured platform that highlighted
specific methodologies, such as POGIL. The initial version was evaluated through an exploratory
study, gathering instructor feedback to assess the platform’s feasibility and acceptability. Results
showed a positive reception, with instructors evaluating the system according to established
criteria, including perceived usefulness and ease of use.

In the second design cycle, instructor feedback identified areas for improvement, notably the
need for a broader range of ALMs. This prompted plans for a more comprehensive curation
of methodologies. The ongoing evaluation of CollabProg ensures its evolution aligns with user

2https://colabprog.ufam.edu.br/

needs, improving its effectiveness in supporting instructors adopting ALMs in programming
education.

Thus, CollabProg has demonstrated value as a tool offering instructors a structured and acces-
sible platform to improve their teaching practices. Future iterations will continue refining the
repository, incorporating additional methodologies and addressing user feedback to ensure the
platform’s continuous relevance and improvement in programming education.

Chapter 5

Rigor Cycle

This chapter discusses the research rigor adopted in the study and highlights its main
contributions, providing the reader with an overview of the methodological robustness
and the value added by the findings.

5.1 Research rigor
The rigor of this research in developing CollabProg was an essential aspect. It is associated with
credibility, reliability, precision, and integrity, requiring theoretical and methodological consis-
tency (Wieringa, 2014). This rigor was necessary in the creation, evaluation, and evolution of
CollabProg. It helped avoid excessive formalism that could hinder development and assessment,
while ensuring the relevance of the study. Solid theoretical foundations and existing technical
knowledge supported this process.

Rigor is ensured when researchers follow a validated research method, preferably recognised and
accepted by the academic community. As noted by Hevner and Chatterjee (2010) and Wieringa
(2009), DSR is not limited to applying knowledge to develop an artefact; it must also contribute
to the knowledge base of the domain. In this study, the development of CollabProg sought
both to address practical challenges in teaching programming and to generate theoretical and
methodological contributions to computing education using ALMs.

Thus, research methods were employed to document the steps taken during the DSR cycles
and ensure the required rigor. Notable among these are the SMS, presented in Section 3.2, and
the experimental study based on the TAM, detailed in Section 4.1.4, which is widely used in
technology acceptance research due to its theoretical robustness and broad applicability.

5.2 Contributions
An important stage in the rigor cycle is reporting the main contributions of the research. To
ensure the required rigor, research methods were employed to document the steps carried
out during the DSR cycles. Notable among these are the SMS, survey, and experimental
studies using the TAM model, which is frequently applied in research on technology acceptance
and adoption due to its theoretical robustness and applicability across contexts. The main
contributions of this research to date include:

• Identification, classification, and analysis of evidence: Catalogue and analysis of
the types of ALMs applied in programming education in Computer Science.

• Analysis of instructors’ perceptions: Investigation of instructors’ perceptions and
challenges in adopting ALMs in programming disciplines.

• Application of Design Science Research: Use of the DSR method to develop, evaluate,
and evolve the open collaborative repository CollabProg, with potential to guide other
researchers and instructors in the field.

• Exploratory study: Assessment of the feasibility and acceptance of CollabProg from
instructors’ perspective, offering practical insights for its use.

• Support for instructors: Evidence that CollabProg supported instructors from five
educational institutions in adopting ALMs in programming education.

• Evidence of ALMs’ effectiveness: Verification of ALMs’ effectiveness in the literature
and demonstration of their practical application in the classroom, resulting in measurable
improvement in teaching programming disciplines.

These contributions provide a foundation for the continuous evolution of CollabProg and the
improvement of pedagogical practices in programming education within Computer Science.

5.2.1 Publications
In this subsection, we present the publications in the proceedings of SBC events and journals that
report the research results conducted for the development of CollabProg. These publications
provide a solid foundation for the continuous evolution of the repository and the improvement
of pedagogical practices in programming education within the field of Computer Science. The
references are listed below in chronological order.

• Paper1 - RIBEIRO, Maria Ivanilse Calderon; PASSOS, Odette Mestrinho. A Study
on the active methodologies applied to teaching and learning process in the computing
area. Ieee Access, v. 8, p. 219083-219097, 2020.

• Paper2 - RIBEIRO, Maria Ivanilse Calderon; SILVA, Williamson; FEITOSA, Ed-
uardo Luzeiro. Repositório colaborativo para apoiar a adoção de metodologias ativas no en-
sino de programação. In: Simpósio Brasileiro de Educação em Computação (EDUCOMP).
SBC, 2021. p. 56-57.

• Paper3 - CALDERON, Ivanilse; SILVA, Williamson; FEITOSA, Eduardo. Um Ma-
peamento Sistemático da Literatura sobre o uso de Metodologias Ativas durante o Ensino
de Programação no Brasil. Simpósio Brasileiro de Informática na Educação (SBIE), p.
1152-1161, 2021.

• Paper4 - CALDERON, Ivanilse; SILVA, Williamson; FEITOSA, Eduardo. Col-
labProg: Um Repositório Colaborativo Aberto para Apoiar na Adoção de Metodologias
Ativas no Ensino de Programação. In: Simpósio Brasileiro de Educação em Computação
(EDUCOMP). SBC, 2022. p. 36-39.

1https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9252881
2https://sol.sbc.org.br/index.php/educomp_estendido/article/view/14874
3https://sol.sbc.org.br/index.php/sbie/article/view/18138
4https://sol.sbc.org.br/index.php/educomp_estendido/article/view/19411

• Paper5 - CALDERON, Ivanilse et al. Percepção docente sobre o uso do WhatsApp
como ferramenta de comunicação no ensino remoto emergencial. In: Workshop sobre
Aspectos Sociais, Humanos e Econômicos de Software (WASHES). SBC, 2023. p. 31-40.

• Paper6 - CALDERON, Ivanilse; SILVA, Williamson; FEITOSA, Eduardo. Explo-
rando a aceitação do collabprog como um facilitador de metodologias ativas no ensino de
programação. In: Simpósio Brasileiro de Informática na Educação (SBIE). SBC, 2023. p.
93-104.

• Paper7 - CALDERON, Ivanilse et al. CollabProg: Um Repositório Colaborativo
Aberto para Apoiar na Adoçao de Metodologias Ativas no Ensino de Programaçao. In:
Congresso Brasileiro de Informática na Educação (CBIE). SBC, 2023. p. 189-192.

• Paper8 - CALDERON, Ivanilse; SILVA, Williamson; FEITOSA, Eduardo. Active
learning methodologies for teaching programming in undergraduate courses: A systematic
mapping study. Informatics in Education, v. 23, n. 2, p. 279-322, 2024.

• Paper9 - CALDERON, Ivanilse; SILVA, Williamson; FEITOSA, Eduardo. Uma
Plataforma Web para apoiar Docentes no Ensino de Programação em Cursos de Sistemas
de Informação. In: Simpósio Brasileiro de Sistemas de Informação (SBSI). SBC, 2024. p.
297-302.

• Paper10 - CALDERON, Ivanilse et al. Um Survey sobre o Uso de Metodologias
Ativas no Ensino de Programação em Universidades Brasileiras. In: Simpósio Brasileiro
de Informática na Educação (SBIE). SBC, 2024. p. 2163-2177.

• Paper11 - CALDERON, Ivanilse; SILVA, Williamson; FEITOSA, Eduardo. Building
Bridges Instead of Putting up Walls: an Educational Tool to Facilitate Instructors in
Adopting Active Learning Methodologies for Teaching Programming. IEEE Access, 2025.

• Paper12 CALDERON, Ivanilse; SILVA, Williamson; FEITOSA, Eduardo. Investi-
gating the Use of Active Learning Methodologies in Programming Education: Findings
from a Brazilian National Survey. IEEE RITA, 2025 (In final adjustments following the
journal’s review).

Given this context, we present a series of articles that comprise our research. Article 1 covers
our initial study on the investigated problem, while Article 2 addresses the preliminary concepts
of the proposed artifact. Article 3 examines the adoption of methodologies within the national
context. Article 4 introduces CollabProg to the scientific community as the artifact developed
from these studies. Article 5 compiles and updates the findings from Articles 1 and 3. Article
6 explores the acceptance of CollabProg through an empirical study. Finally, Article 7 presents
CollabProg as a web platform designed to support instructors in information systems courses.

Together, these articles provide a comprehensive view of CollabProg’s development and appli-
cation. They illustrate a continuous research and development process focused on enhancing
teaching practices in programming education. CollabProg stands as a significant contribution

5https://sol.sbc.org.br/index.php/washes/article/view/24773
6https://sol.sbc.org.br/index.php/sbie/article/view/26653
7https://sol.sbc.org.br/index.php/cbie_estendido/article/view/27511
8https://www.ceeol.com/search/article-detail?id=1252141
9https://sol.sbc.org.br/index.php/sbsi_estendido/article/view/28630

10https://sol.sbc.org.br/index.php/sbie/article/view/31386
11https://ieeexplore.ieee.org/abstract/document/10938091
12em revisão para submissão final para IEEE RITA, 2025.

to the educational domain, offering a collaborative and open environment that supports the
adoption of active learning methodologies and prepares students for the evolving demands of
the computing industry.

Chapter Conclusion
This chapter presented the Rigor Cycle of the research, highlighting the theoretical and method-
ological foundations that supported the development, evaluation, and refinement of CollabProg.
Established research methods such as a SMS, a national survey, and experimental studies based
on the TAM model were employed to ensure scientific rigor, contributing to the reliability and
credibility of the findings.

The chapter also outlined the main contributions of the research, including the identification and
classification of evidence on ALMs in programming education, as well as a deeper understanding
of the challenges faced by instructors when implementing these methodologies. The use of DSR
guided the iterative development of CollabProg, resulting in theoretical advancements and
practical benefits for the educational community.

In summary, the results provide a solid basis for future work, demonstrating the relevance and
impact of the research. The contributions reinforce the potential of CollabProg to support
instructors in adopting effective pedagogical strategies and offer insights for the continuous
improvement of programming education in Computer Science.

Chapter 6

Final Considerations

This chapter presents the main conclusions of the research, outlines directions for future
work, discusses the implications of the findings, and addresses potential threats to the
validity of the study.

6.1 Conclusions and Future Perspectives
ALMs have gained increasing recognition in programming education as effective approaches to
engage students and enhance learning outcomes. Adoption of ALMs in computer science courses
is growing, yet instructors often face challenges that hinder their implementation. Inspired by
DSR, this study aimed to support instructors in adopting ALMs for programming education.
The application of DSR allowed for the clear definition of the research problem and guided the
development, evaluation, and refinement of a supporting artifact. To better understand the
landscape of ALMs in programming teaching, we initially conducted a SMS that identified 37
distinct ALMs currently employed by instructors. Moreover, the study revealed 17 publications
discussing the combined use of multiple ALMs and four that proposed new methodologies,
reflecting diverse strategies developed by instructors to promote ALMs in programming classes.

After completing the SMS, the curation process of the ALMs to be integrated into CollabProg
commenced, focusing exclusively on content and tool support options documented in the lit-
erature for instructors’ use. This approach aims to prevent user frustration by presenting
only knowledge and materials backed by scientific evidence, experimentation, or demonstrated
relevance. The selection process was rigorous, prioritising methodologies supported by solid
evidence and excluding those lacking empirical validation or with theoretical foundations consid-
ered irrelevant to the community in this research context. Based on the SMS and suvey results
and the curation of primary studies within the DSR Design Cycle, we developed, evaluated,
and refined the artifact CollabProg.

CollabProg is a collaborative and open repository created to assist instructors in selecting
the most suitable ALMs for their specific teaching contexts in programming education. An
experimental study was conducted involving five higher education institutions in Brazil to
evaluate the feasibility and acceptance of CollabProg from the perspective of instructors. This
study highlights the importance of developing strategies to support instructors in programming
education and to motivate students, which is a key element for effective teaching. This aspect

is particularly significant in collaborative learning environments, where social interaction plays
a crucial role in the adoption of ALMs (Serrano-Cámara et al., 2014).

6.2 Research Implications
This research presents several implications with the potential to influence teaching practices,
computing education research, and student development. CollabProg was developed to support
instructors in programming education by providing a portal with diverse guidelines for adopting
ALMs. As a collaborative repository, it offers access to tool recommendations and guidance on
student assessment aligned with ALMs.

Regarding the preparation of supplementary materials, instructors can develop additional re-
sources to complement those available in the repository, thereby providing students with clearer
guidance and contextualising learning within the curriculum. Collaboration among instructors
is encouraged, allowing the exchange of effective teaching practices and strategies for integrating
repository resources across different programming disciplines and educational contexts. The
use of CollabProg requires instructors to adapt their teaching methods and commit to ongoing
professional development to maximise its benefits.

For students, the implications involve enhanced active and practical learning experiences. Sup-
ported by CollabProg, instructors can facilitate hands-on programming activities and projects
that reinforce theoretical concepts and develop practical problem-solving skills. Collaborative
activities such as group projects, pair programming, and class discussions foster knowledge
sharing and social skill development. The repository also aids instructors in planning and
implementing formative assessments, such as quizzes, code reviews, and discussions, that help
identify learning difficulties and enable timely instructional adjustments.

Finally, for researchers, CollabProg highlights gaps in computing education, particularly re-
garding the integration of ALMs and new technologies in teaching and assessment. This opens
opportunities to develop and evaluate novel methodologies promoting personalised and adaptive
learning approaches. Researchers can also investigate best practices, challenges, and lessons
learned in adopting ALMs, contributing to improved pedagogical frameworks and informing
educational policies in computing.

6.3 Threats to the Validity of the Research
Despite precautions taken in defining the SMS protocol during the Rigor cycle, as per Kitchen-
ham (2012), and the careful design of the survey aimed at understanding instructors’ perceptions
of adopting and using ALMs in programming classes, using the Opinion Survey method with
an online questionnaire, targeting higher education instructors experienced with ALMs , this
work presents some limitations and threats to validity. The following section discusses these
threats and the measures adopted to mitigate their impact on the development of CollabProg.

a) Classification of SMS results: The classification of SMS results, which formed the knowledge
base and mapped potential ALMs for CollabProg, has limitations due to the subjective nature
of human classification. Although this manual process is common in the field, it introduces
potential bias. To reduce this, three researchers conducted the classification, and two doctoral
researchers reviewed the protocol, inclusion and exclusion criteria, and research strategy. To
assess reliability, two researchers independently classified a random sample of 40 publications,

resulting in a Kappa agreement of 0.89, indicating almost perfect agreement. Based on this,
the subsequent steps of selection and data extraction proceeded.

b) Scope of conducted studies: The studies carried out do not represent the entirety of research
on ALM adoption by instructors in programming education. This limitation was mitigated
by an iterative research strategy including pilot testing and clear participant selection criteria.
Systematic methods were applied and documented to allow replication. However, the sample
size limits the generalizability of the findings. Future research will involve larger samples to
enhance representativeness among educators.

c) Data analysis: Data analysis performed by a single professor may introduce subjective bias
in interpreting results, potentially affecting objectivity and comprehensiveness. To mitigate
this, plans include involving additional researchers or professionals in data analysis to reduce
personal bias and improve interpretation accuracy.

d) Regarding the survey: Limitations include the geographic concentration of participants in
northern Brazil, which may affect the generalisability of the findings due to regional variations
in educational practices. Furthermore, the predominance of faculty from public institutions
restricts a broader perspective, as private institutions may adopt different teaching strategies.
The self-reported nature of the data introduces potential bias, with educators possibly over-
estimating or underestimating their practices. Another important limitation is the lack of an
in-depth analysis of the impact of ALMs on student learning outcomes, indicating the need
for further research on the development of specific skills such as problem-solving, collaborative
work, and practical application of theoretical knowledge.

6.4 Future Works
Future work will focus on formulating and evolving a model of difficulties related to adopting
ALMs in programming education, aimed at evaluating and validating CollabProg. This model
will be developed from the results of the experimental study and will represent the perspectives
and experiences of instructors teaching programming disciplines. A survey will be conducted
to evaluate the model, and its evolution will be guided by instructors’ feedback. Validation
will also occur through practical use of the model by instructors, ensuring that CollabProg is
assessed across diverse experiences, needs, and educational contexts.

In addition to refining the systematic mapping study of ALMs based on literature, the set of
methodologies available on CollabProg will be continuously updated to align the platform with
pedagogical trends and the evolving requirements of instructors. This maintenance is essential
to keep the repository relevant and useful for programming education.

Efforts will also focus on engaging the teaching community, particularly those who currently
use traditional methods. Through tutorials and awareness resources, the aim is to demonstrate
the benefits of ALMs and support their adoption by instructors. Additionally, the platform will
be translated into other languages to reach a broader international audience. This internation-
alisation is expected to expand CollabProg’s impact by fostering a global network of educators
sharing best practices and contributing to the innovation of programming education worldwide.

In conclusion, CollabProg is intended to serve as technological support that consolidates, in
a single online portal, strategies for adopting various ALMs in programming education. The
platform will provide examples, activity suggestions, support options, tools adopted by the
community, reports on experiences in different scenarios, results achieved by instructors, and

critical reflections on the advantages and limitations of the adopted methodologies.

6.5 Chapter Conclusion
This chapter presented the final considerations of the research, emphasising its contributions,
implications, and limitations. By adopting the DSR methodology, the study systematically
addressed the challenge of supporting instructors in adopting ALMs in programming education.
From conducting a SMS to developing and evaluating the CollabProg artifact, each phase
contributed to a solid understanding of the barriers faced by instructors in this context. The re-
search identified a wide variety of ALMs applied in programming education and underscored the
need to provide structured, evidence-based, and accessible support for instructors. CollabProg
emerged as a collaborative and open repository with potential to transform teaching practices
by offering curated methodologies, tool recommendations, assessment guidelines, and opportu-
nities for peer collaboration. Its experimental implementation across multiple higher education
institutions in Brazil demonstrated the platform’s feasibility and acceptance, highlighting its
relevance and potential positive impact on both instructors and students.

The implications of this work extend to educational practice, academic research, and student
engagement. Instructors gain access to resources that promote more dynamic, collaborative,
and student-centred approaches. Students benefit from more meaningful, practical learning
experiences. Researchers acquire a foundation for exploring further questions and methods
related to integrating ALMs in computing education. Despite these contributions, the research
recognises its limitations, particularly regarding sample size, potential biases in classification
and data analysis, and the generalisability of the findings. Measures were taken to mitigate
these threats, and future work is planned to enhance the scope and reliability of the results.

Moving forward, the evolution of CollabProg will involve developing a validated model of the
difficulties faced by instructors, expanding and internationalising the platform, continuously
updating methodologies, and engaging a broader teaching community. Ultimately, CollabProg is
expected to serve as a dynamic and evolving technological support system, enabling instructors
in diverse educational contexts to adopt, adapt, and reflect on active learning strategies in
programming education.

Bibliography

Ahshan, R. (2021). A framework of implementing strategies for active student engagement
in remote/online teaching and learning during the covid-19 pandemic. Education Sciences,
11(9):483.

Arık, S. and Yılmaz, M. (2020). The effect of constructivist learning approach and active
learning on environmental education: A meta-analysis study. International Electronic Journal
of Environmental Education, 10(1):44–84.

Astrachan, O. L., Duvall, R. C., Forbes, J., and Rodger, S. H. (2002). Active learning in small
to large courses. In 32nd Annual Frontiers in Education, volume 1, pages T2A–T2A. IEEE.

Avouris, N., Kaxiras, S., Koufopavlou, O., Sgarbas, K., and Stathopoulou, P. (2010). Teaching
introduction to computing through a project-based collaborative learning approach. In 2010
14th Panhellenic Conference on Informatics, pages 237–241. IEEE.

Bacich, L. and Moran, J. (2018). Metodologias ativas para uma educação inovadora: uma
abordagem teórico-prática. Penso Editora.

Beaubouef, T. and Mason, J. (2005). Why the high attrition rate for computer science students:
some thoughts and observations. ACM SIGCSE Bulletin, 37(2):103–106.

Bigolin, N. M., Silveira, S. R., Bertolini, C., de Almeida, I. C., Geller, M., Parreira, F. J.,
da Cunha, G. B., and Macedo, R. T. (2020). Metodologias ativas de aprendizagem: um
relato de experiência nas disciplinas de programação e estrutura de dados. Research, Society
and Development, 9(1):e74911648–e74911648.

Borges, R. P., Oliveira, P. R. F., Lima, R. d. R., and De Lima, R. (2018). A systematic review
of literature on methodologies, practices, and tools for programming teaching. IEEE Latin
America Transactions, 16(5):1468–1475.

Caceffo, R., Gama, G., and Azevedo, R. (2018). Exploring active learning approaches to
computer science classes. In Proceedings of the 49th ACM Technical Symposium on Computer
Science Education, pages 922–927.

Calderon, I., Oran, A. C., Feitosa, E., and Silva, W. (2024a). Um survey sobre o uso de
metodologias ativas no ensino de programação em universidades brasileiras. In Simpósio
Brasileiro de Informática na Educação (SBIE), pages 2163–2177. SBC.

Calderon, I., Silva, W., and Feitosa, E. (2021). Um mapeamento sistemático da literatura
sobre o uso de metodologias ativas durante o ensino de programação no brasil. In Anais do
XXXII Simpósio Brasileiro de Informática na Educação, pages 1152–1161. SBC.

Calderon, I., Silva, W., and Feitosa, E. (2022). Collabprog: Um repositório colaborativo aberto
para apoiar na adoção de metodologias ativas no ensino de programação. In Anais Estendidos
do II Simpósio Brasileiro de Educação em Computação, pages 36–39. SBC.

Calderon, I., Silva, W., and Feitosa, E. (2023a). Active learning methodologies for teach-
ing programming in undergraduate courses: A systematic mapping study. Informatics in
Education.

Calderon, I., Silva, W., and Feitosa, E. (2023b). Explorando a aceitação do collabprog como um
facilitador de metodologias ativas no ensino de programação. In Anais do XXXIV Simpósio
Brasileiro de Informática na Educação, pages 93–104. SBC.

Calderon, I., Silva, W., and Feitosa, E. (2024b). Active learning methodologies for teaching pro-
gramming in undergraduate courses: A systematic mapping study. Informatics in Education,
23(2):279–322.

Calderon, I., Silva, W., and Feitosa, E. (2024c). Uma plataforma web para apoiar docentes
no ensino de programação em cursos de sistemas de informação. In Simpósio Brasileiro de
Sistemas de Informação (SBSI), pages 297–302. SBC.

Calderon, I., Silva, W., and Feitosa, E. (2025). Building bridges instead of putting up walls:
an educational tool to facilitate instructors in adopting active learning methodologies for
teaching programming. IEEE Access.

Chang, C.-S., Chung, C.-H., and Chang, J. A. (2020). Influence of problem-based learn-
ing games on effective computer programming learning in higher education. Educational
Technology Research and Development, 68(5):2615–2634.

Coelho, J. A., Souza, G. H., and Albuquerque, J. (2020). Desenvolvimento de questionários e
aplicação na pesquisa em informática na educação. Metodologia de Pesquisa em Informática
na Educa∖cão: Abordagem Quantitativa de Pesquisa. Porto Alegre: SBC. Série Metodologia
de Pesquisa em Informática na Educa∖cão, 2.

Correia, A.-P. (2018). As múltiplas facetas da curadoria de conteúdos digitais. Revista
Docência e Cibercultura, 2(3):14–32.

Corritore, C. L. and Love, B. (2020). Redesigning an introductory programming course
to facilitate effective student learning: A case study. Journal of Information Technology
Education: Innovations in Practice, 19:091–135.

da Silva, M. A. d. F. and Oliveira, M. (2019). A robótica educacional na perspectiva das
metodologias ativas. In Anais do XXV Workshop de Informática na Escola, pages 1289–1293.
SBC.

Davis, F. D., Bagozzi, R. P., and Warshaw, P. R. (1989). Technology acceptance model. J
Manag Sci, 35(8):982–1003.

de Almeida, L., Rolim, M. P., da Silva, R., and Costa, A. (2019). E-pbl: Ferramenta de apoio
ao aprendizado e uso da metodologia de aprendizado baseado em problemas. In Anais do
XXV Workshop de Informática na Escola, pages 1399–1403. SBC.

de Castro, R. M. and Siqueira, S. (2019). Alcasystem-um portal com técnicas de aprendizagem
ativa para disciplinas da área da computaçao. In Anais dos Workshops do Congresso
Brasileiro de Informática na Educação, volume 8, page 1243.

de Castro Junior, A. A., Cheung, L. M., Batista, E. J. S., and de Lima, A. C. (2021). Uma
análise preliminar da aplicação do método 300 em turmas de algoritmos e programação. In
Anais do XXIX Workshop sobre Educação em Computação, pages 171–180. SBC.

de Farias, G. F., Brito, N., Farias, F. J. S., and DE SOUZA, M. V. (2018). Moodle como
ferramenta de suporte a pbl em rede: Uma revisão sistemática. Educação Fora da Caixa:
Tendências Internacionais e Perspectivas sobre a Inovação na Educação.

Denny, P., Luxton-Reilly, A., Tempero, E., and Hendrickx, J. (2011). Understanding the
syntax barrier for novices. In Proceedings of the 16th annual joint conference on Innovation
and technology in computer science education, pages 208–212.

Dicheva, D. and Hodge, A. (2018). Active learning through game play in a data structures
course. In Proceedings of the 49th ACM Technical Symposium on Computer Science Education,
pages 834–839.

Doolittle, P., Wojdak, K., Walters, A., et al. (2023). Defining active learning: A restricted
systematic review. Teaching and Learning Inquiry, 11.

dos Santos, S. C., Reis, P. B., Reis, J. F., and Tavares, F. (2020). Two decades of pbl in teaching
computing: a systematic mapping study. IEEE transactions on education, 64(3):233–244.

dos Santos, S. C., Santana, E., Santana, L., Rossi, P., Cardoso, L., Fernandes, U., Carvalho,
C., and Torres, P. (2018). Applying pbl in teaching programming: an experience report. In
2018 IEEE Frontiers in Education Conference (FIE), pages 1–8. IEEE.

Duffany, J. L. (2017). Application of active learning techniques to the teaching of introductory
programming. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 12(1):62–69.

Eickholt, J. (2018). Barriers to active learning for computer science faculty. arXiv preprint
arXiv:1808.02426.

Elliott, S. N. (1996). Educational psychology: Effective teaching, effective learning. (No
Title).

Eteng, I., Akpotuzor, S., Akinola, S. O., and Agbonlahor, I. (2022). A review on effective
approach to teaching computer programming to undergraduates in developing countries.
Scientific African, 16:e01240.

Feyzi Behnagh, R. and Yasrebi, S. (2020). An examination of constructivist educational
technologies: Key affordances and conditions. British Journal of Educational Technology,
51(6):1907–1919.

Freire, L., Coutinho, J., Lima, V., and Lima, N. (2019). Uma proposta de encontros de tutoria
baseada em metodologias ativas para disciplinas de programação introdutória. In Anais dos
Workshops do Congresso Brasileiro de Informática na Educação, volume 8, page 298.

Gamage, L. N. (2021). A bottom-up approach for computer programming education. Journal
of Computing Sciences in Colleges, 36(7):66–75.

Garcia, F. W. D. S., Carvalho, E. D. C., and Oliveira, S. R. B. (2021). Use of active
methodologies for the development of a teaching plan for the algorithms subject. In 2021
IEEE Frontiers in Education Conference (FIE), pages 1–9. IEEE.

Gonçalves, B., Nascimento, E., Monteiro, E., Portela, C., and Oliveira, S. (2019). Elementos
de gamificação aplicados no ensino-aprendizagem de programação web. In Anais do XXVII
Workshop sobre Educação em Computação, pages 1–10. SBC.

Gonçalves, M., Souza, S. M., Barros, F., and Bittencourt, R. (2017). Percepções sobre
metodologias ativas de aprendizagem de programação no ensino profissionalizante. In Anais
dos Workshops do Congresso Brasileiro de Informática na Educação, volume 6, page 1132.

Hendrik, H. (2019). Flipping web programming class: Student’s perception and performance.
In Proceedings of the 11th International Conference on Engineering Education (ICEED),
pages 31–45.

Hevner, A. and Chatterjee, S. (2010). Design science research in information systems. Design
research in information systems: theory and practice, pages 9–22.

Hevner, A. R. (2007). A three cycle view of design science research. Scandinavian journal of
information systems, 19(2):4.

Imbulpitiya, A., Kodagoda, N., Gamage, A., and Suriyawansa, K. (2020). Using active learning
integrated with pedagogical aspects to enhance student’s learning experience in programming
and related concepts. In International Conference on Interactive Collaborative Learning,
pages 218–228. Springer.

Joshi, A., Schmidt, M., Panter, S., and Jain, A. (2020). Evaluating the benefits of team-based
learning in a systems programming class. In 2020 IEEE Frontiers in Education Conference
(FIE), pages 1–7. IEEE.

Katona, J. and Kovari, A. (2016). A brain–computer interface project applied in computer
engineering. IEEE Transactions on Education, 59(4):319–326.

Kitchenham, B. A. (2012). Systematic review in software engineering: where we are and
where we should be going. In Proceedings of the 2nd international workshop on Evidential
assessment of software technologies, pages 1–2.

Kong, S.-C., Lai, M., and Sun, D. (2020). Teacher development in computational thinking:
Design and learning outcomes of programming concepts, practices and pedagogy. Computers
& Education, 151:103872.

Kothiyal, A., Murthy, S., and Iyer, S. (2014). Think-pair-share in a large cs1 class: does
learning really happen? In Proceedings of the 2014 conference on Innovation & technology
in computer science education, pages 51–56.

Kumar, M., Renumol, V., and Murthy, S. (2018). Flipped classroom strategy to help under-
achievers in java programming. In 2018 International Conference on Learning and Teaching
in Computing and Engineering (LaTICE), pages 44–49. IEEE.

Liao, Y.-C. and Ringler, M. (2023). Backward design: Integrating active learning into
undergraduate computer science courses. Cogent Education, 10(1):2204055.

Lima, J., Alencar, F., and Santos, W. (2021). A preliminary guide for assertive selection of
active methodologies in software engineering education. In Brazilian Symposium on Software
Engineering, pages 170–179.

Lima, V. V. (2016). Constructivist spiral: an active learning methodology. Interface-
Comunicação, Saúde, Educação, 21:421–434.

Luxton-Reilly, A. (2016). Learning to program is easy. In Proceedings of the 2016 ACM
Conference on Innovation and Technology in Computer Science Education, pages 284–289.

Luxton-Reilly, A., Albluwi, I., Becker, B. A., Giannakos, M., Kumar, A. N., Ott, L., Paterson,
J., Scott, M. J., Sheard, J., and Szabo, C. (2018). Introductory programming: a system-
atic literature review. In Proceedings Companion of the 23rd Annual ACM Conference on
Innovation and Technology in Computer Science Education, pages 55–106.

Matsushita, K. (2018). An invitation to deep active learning. Deep active learning: Toward
greater depth in university education, pages 15–33.

Mayfield, C., Moudgalya, S. K., Yadav, A., Kussmaul, C., and Hu, H. H. (2022). Pogil in
cs1: Evidence for student learning and belonging. In Proceedings of the 53rd ACM Technical
Symposium on Computer Science Education V. 1, pages 439–445.

Moreno, B. (2019). Combinando metodologias ágeis e ativas no ensino de introdução a
programação a estudantes do ensino médio. In Anais do Workshop de Desafios da Computação
Aplicada à Educação, volume 8, pages 45–47.

Moya, E. C. (2017). Using active methodologies: The studentśview. Procedia-Social and
Behavioral Sciences, 237:672–677.

Nguyen, K. A., Borrego, M., Finelli, C. J., DeMonbrun, M., Crockett, C., Tharayil, S., Shekhar,
P., Waters, C., and Rosenberg, R. (2021). Instructor strategies to aid implementation of
active learning: a systematic literature review. International Journal of STEM Education,
8:1–18.

Okonkwo, C. W. and Ade-Ibijola, A. (2023). Synthesis of nested loop exercises for practice in
introductory programming. Egyptian Informatics Journal, 24(2):191–203.

O’grady, M. J. (2012). Practical problem-based learning in computing education. ACM
Transactions on Computing Education (TOCE), 12(3):1–16.

Paristiowati, M., Rahmawati, Y., Fitriani, E., Satrio, J. A., and Putri Hasibuan, N. A. (2022).
Developing preservice chemistry teachers’ engagement with sustainability education through
an online project-based learning summer course program. Sustainability, 14(3):1783.

Parsons, P. (2011). Preparing computer science graduates for the 21st century. Teaching
Innovation Projects, 1(1).

Penney, J., Pimentel, J. F., Steinmacher, I., and Gerosa, M. A. (2023). Anticipating user
needs: Insights from design fiction on conversational agents for computational thinking. In
International Workshop on Chatbot Research and Design, pages 204–219. Springer.

Pollock, L. and Jochen, M. (2001). Making parallel programming accessible to inexperienced
programmers through cooperative learning. ACM SIGCSE Bulletin, 33(1):224–228.

Pundak, D. and Rozner, S. (2008). Empowering engineering college staff to adopt active
learning methods. Journal of Science Education and Technology, 17(2):152–163.

Qian, M. and Clark, K. R. (2016). Game-based learning and 21st century skills: A review of
recent research. Computers in human behavior, 63:50–58.

Raj, A. G. S., Patel, J., and Halverson, R. (2018). Is more active always better for teaching
introductory programming? In 2018 International Conference on Learning and Teaching in
Computing and Engineering (LaTICE), pages 103–109. IEEE.

Ribeiro, I. C., Silva, W., and Feitosa, E. L. (2021). Repositório colaborativo para apoiar a
adoção de metodologias ativas no ensino de programação. In Anais Estendidos do I Simpósio
Brasileiro de Educação em Computação, pages 56–57. SBC.

Ribeiro, M. I. C. and Passos, O. M. (2020). A study on the active methodologies applied to
teaching and learning process in the computing area. IEEE Access, 8:219083–219097.

Safana, A. I. and Nat, M. (2019). Students’ perception of a blended learning approach in an
african higher institution. J. Univers. Comput. Sci., 25(5):515–540.

Sasson, I., Yehuda, I., Miedijensky, S., and Malkinson, N. (2022). Designing new learning
environments: An innovative pedagogical perspective. The Curriculum Journal, 33(1):61–81.

Selçuk, A. and Yilmaz, M. (2020). The effect of constructivist learning approach and active
learning on environmental education: A meta-analysis study. International Electronic Journal
of Environmental Education, 10(1):44–84.

Serrano-Cámara, L. M., Paredes-Velasco, M., Alcover, C.-M., and Velazquez-Iturbide, J. Á.
(2014). An evaluation of students’ motivation in computer-supported collaborative learning
of programming concepts. Computers in human behavior, 31:499–508.

Sharma, V., Bhagat, K. K., Huang, H.-H., and Chen, N.-S. (2022). The design and evaluation
of an ar-based serious game to teach programming. Computers & Graphics, 103:1–18.

Silva, W., Gadelha, B., Steinmacher, I., and Conte, T. (2020a). Towards an open repository
for teaching software modeling applying active learning strategies. In 2020 IEEE/ACM
42nd International Conference on Software Engineering: Software Engineering Education
and Training (ICSE-SEET), pages 162–172. IEEE.

Silva, W., Steinmacher, I., and Conte, T. (2019). Students’ and instructors’ perceptions
of five different active learning strategies used to teach software modeling. IEEE Access,
7:184063–184077.

Silva, W. A. F. et al. (2020b). Opensmals: um repositório aberto para auxiliar no ensino de
modelagem de software empregando estratégias de aprendizagem ativa.

Sobral, S. R. (2021a). Project based learning with peer assessment in an introductory program-
ming course.

Sobral, S. R. (2021b). Strategies on teaching introducing to programming in higher education.
In World Conference on Information Systems and Technologies, pages 133–150. Springer.

Sobrinho, H., Castro, L., Nogueira, A., Harada, E., and Gadelha, B. (2016). Organizando o
conhecimento sobre técnicas de aprendizagem colaborativas. Nuevas Ideas em Informatica
Educativa, 12:152–156.

Tharayil, S., Borrego, M., Prince, M., Nguyen, K. A., Shekhar, P., Finelli, C. J., and Waters, C.
(2018). Strategies to mitigate student resistance to active learning. International Journal of
STEM Education, 5(1):1–16.

Travers, J. F., Elliott, S. N., and Kratochwill, T. R. (1993). Educational psychology: Effective
teaching, effective learning. Brown & Benchmark/Wm. C. Brown Publ.

Turner, S. A., Pérez-Quiñones, M. A., and Edwards, S. H. (2018). Peer review in cs2:
Conceptual learning and high-level thinking. ACM Transactions on Computing Education
(TOCE), 18(3):1–37.

Tutal, Ö. and Yazar, T. (2022). Active learning promotes more positive attitudes towards the
course: A meta-analysis. Review of Education, 10(1):e3346.

Venter, M. (2020). Gamification in stem programming courses: State of the art. In 2020 ieee
global engineering education conference (educon), pages 859–866. IEEE.

Wieringa, R. (2009). Design science as nested problem solving. In Proceedings of the 4th
international conference on design science research in information systems and technology,
pages 1–12.

Wieringa, R. J. (2014). Design science methodology for information systems and software
engineering.

Witt, D. T., Kemczinski, A., and dos Santos, L. M. (2018). Resolução de problemas: Aborda-
gens aplicadas no ensino de computação. Anais do Computer on the Beach, pages 731–740.

Yannier, N., Hudson, S. E., Koedinger, K. R., Hirsh-Pasek, K., Golinkoff, R. M., Munakata,
Y., Doebel, S., Schwartz, D. L., Deslauriers, L., McCarty, L., et al. (2021). Active
learning:“hands-on” meets “minds-on”. Science, 374(6563):26–30.

Zhang-Kennedy, L. and Chiasson, S. (2021). A systematic review of multimedia tools for
cybersecurity awareness and education. ACM Computing Surveys (CSUR), 54(1):1–39.

Received September 13, 2020, accepted October 12, 2020, date of publication November 9, 2020,
date of current version December 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3036976

A Study on the Active Methodologies Applied
to Teaching and Learning Process in the
Computing Area
MARIA IVANILSE CALDERON RIBEIRO 1 AND ODETTE MESTRINHO PASSOS2
1Institute of Computing, Federal University of Amazonas, Manaus 69067-005, Brazil
2Institute of Exact Sciences and Technology, Federal University of Amazonas, Itacoatiara 69103-128, Brazil

Corresponding author: Maria Ivanilse Calderon Ribeiro (ivanilse.calderon@icomp.ufam.edu.br)

This work was supported in part by the Institute of Computing at the Federal University of Amazonas (UFAM), Manaus, AM - Brazil, in
part by the Foundation for Research Support of the State of Amazonas (FAPEAM) - POSGRAD 2017 (Resolution 002/2016), in part by
the Coordination for the Improvement of Higher Education Personnel - Brazil (CAPES) - Finance Code 001, and in part by the support of
Federal Institute of Education, Science and Technology of Rondônia (IFRO)/Campus Porto Velho North Zone.

ABSTRACT Active Methodologies allow an active process in teaching and learning contents, promote
responsible student involvement and bring satisfaction and enrichment to educational practices and active
learning. Generally, students have learning difficulties in Computer Science courses, as they need to develop
computational skills and thinking. The goals of this article is to characterize and analyze the types of Active
Methodologies that are being applied in teaching and learning activities in Computer Science. Thus, this
investigation was carried out through a Systematic Mapping Study, focusing on the use of the types of
methodologies in view of the results achieved. It presents students’ perceptions, benefits, and difficulties in
adopting these methodologies in the classroom. The results show 6 types of different Active Methodologies
used in 35 publications selected, different types of techniques or studies that were used, the publications trend
per year, the courses that wereworked in analyzed publications, and some benefits and difficulty related to the
adoption of Active Methodologies. Regarding to students’ perception, we identified different type feelings.
Thus, the contributions of this study consist in a research focused on the use of Active Methodologies in a
very broad sense, including the perceptions of teachers and students regarding the use of different teaching
and learning methodologies. In addition, it shows the specific benefits and possible difficulties experienced
in the use of Active Methodologies as teaching strategies. Consequently, some findings from this study may
have the potential to support or direct choices of these methodologies in different Computer Science courses.

INDEX TERMS Active methodologies, teaching in computing, learning, students’ perception.

I. INTRODUCTION
The old method of teaching in which students were getting
used to stay seated on their places, writing down and listening
to a lecture of a teacher, have changed [1]. The nature of
computer use has changed remarkably in the past fifty years.
However, most Computer Science (CS) courses are still often
teaching through that old paradigm that is not adequated to
deal with modern concerns. Even in the face of the current
generation of students and the nature of computing, most
computer courses are still teaching in traditional ways [2].
That scenario needs a new conception that can brought a

The associate editor coordinating the review of this manuscript and
approving it for publication was Chia-Wen Tsai.

profound pedagogical renewal that requires knowledge and
domain of new methodologies [3].

Active methodologies (AM) can support the development
of self-competencies and skills. Because, on an increasingly
complex society, mere transmission of information no longer
characterizes an efficient teaching and learning process [4].
Therefore, AM are teaching strategies centered on the effec-
tive participation of students in the construction of the learn-
ing process, in a flexible, interconnected and hybrid way [5].
Also, on the new way, the act of learning needs to become
a reconstructive process that allows the students to establish
different relationships between facts and objects, producing
resignifications and reconstructions and contributing to their
application in different contexts [6], brings satisfaction and
enrichment for both teacher and students [7].

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 219083

Appendix A

https://orcid.org/0000-0002-8885-0979

M. I. Calderon Ribeiro, O. M. Passos: Study on the Active Methodologies Applied to Teaching and Learning Process

Although there are several papers investigating about AM
in teaching and learning, there is still a shortage of papers that
shows how these AM influence and also can be exploited for
support knowledge of teaching and learning in CS courses.
Therefore, we have identified the need for a comprehensive
research bout influence and support AM in teaching and
learning in CS courses.

Systematic Mapping Studies (SMS) provides an overview
of a research area, identifying the quantity, the types of
research carried out, the results available, in addition to the
frequency of publications over time to identify trends [8].
Our aims in this study, is characterizes and analyzes types
of AM most applied to teaching and learning activities in
CS courses. It also presents the students’ perceptions about
the AM applied in teaching, some benefits, and difficulties in
adopting the different types of AM inside of a classroom.

From an initial selection of 753 publications, we have iden-
tified 35 different publications that have used AM to support
in teaching and learning in CS courses. From the selected
publications, the following AM were the most cited: Gamifi-
cation (GM); Problem-Based Learning (PBL); Project-Based
Learning (ProjBL); Peer instruction (PI); Flipped classroom
(FC); and Team-Based Learning (TBL). Also, we have identi-
fied the research goal per AM applied, the publications trend
per year, the main proposals of the studies mapped, technical
or studies used per methodology, the computing area and
active methodology applied, the courses that were worked
in analyzed publications, and some benefits and difficulty
related to the adoption of AM. Regarding to students’ percep-
tion, we identified the feelings of Satisfaction in learning the
content, Motivation to learn content and Feeling of mastery
of content.

Besides this introductory section, this paper is structured as
follows: Section 2 present related works; Section 3 describes
the research method to define search strategy and
research questions; Section 4 discusses the results; finally,
Section 5 describes limitations and validity of this article, and
Section 6 shows some conclusions.

II. RELATED WORKS
In recent years, several studies have reported evaluations and
comparisons regarding of use of AM as teaching strategies
in computer science e.g., [9]–[11]. The goal of those studies
was to demonstrate the use of the AM with a focus on its use
and apply them as teachingmethods. Thoseworks point out to
AM as possible support to improve teaching in the computing
and, consequently, to minimize the avoidance of courses in
the area.

Raes et al. [12] present the results of an experiment on that
subject comparing the students’ learning experiences in a lec-
ture face-to-face versus virtual students. The results show that
although the hybrid virtual classroom is promising flexibility
in education as it gives to students the choice for when and
where attend the course, it is also the most challenging one to
teach and to learn as a remote participant.

Farias & Nunes [13] argue that many studies in computing
and education science present tools or environments related
to teach in programming that does not reach the expected
effect on the students’ learning experience. That research
also shows some relevant studies that, involving active pro-
gramming learning for high school and university students,
contribute to the construction of an innovative educational
scenarios involving active programming learning.

Silva & Oliveira [14] have published an experience report
of how robotics fits as an effective instrument from the per-
spective of AM for education. Those authors point out that
robotics in education presents a possible path to be taken and
used as a strategy applied to AM for the development and
assimilation of knowledge, capable of promoting increasing
participation and interest on the part of students, inside and
outside school.

Moreno [15] proposes the discussion of evaluating how
the principles, values, techniques and agile development pro-
cesses can be relate to the AM to optimize teaching and learn-
ing process in introductory programming subjects with focus,
specifically, on students of the high school. Thus, that author
seeks to understand how teaching and learning, in introduc-
tion to programming, can be optimized by converging the
active techniques widely discussed in the literature with those
considered agile in software engineering.

The paper of Silva et al. [16], by his turn, seems to aim to
present an systematic literature review on the use of digital
games on teaching of programming for beginners in comput-
ing at university level in the last decade in Brazil. The authors
argue that teaching programming is part of the basic academic
training in CS and related areas.

We have observed that the use of AM in the context of
learning computing still faces some challenges, mainly in
relation to the attitude of the teacher and the students in
relation to the use and effective applicability of the method-
ologies. In addition, the students’ posture in relation to his
autonomy for studies or in relation to an active posture for
his studies inside or outside classroom, negatively reflect
on skills related to computational thinking and learning
computing [17], [18].

Resuming, all those previous works show that, besides a
positive differential for teaching computing, today the adop-
tion of AM are still a challenge because some teachers have
resistance to adopt new teaching techniques. Furthermore,
the training of new professionals in the area of technology,
as well as in other areas of knowledge in computer pro-
gramming, is a challenging task for hundreds of scientific
researches, proposing several strategies that address from
robotics, programming language, and educational games and
to pedagogical approaches [19]. Also, that review has con-
cluded that students have their own problems related to auton-
omy for study.

III. METHODS
For this paper, we have conducted SMS to collect all evi-
dences that fit eligible criteria pre-specified following the

219084 VOLUME 8, 2020

M. I. Calderon Ribeiro, O. M. Passos: Study on the Active Methodologies Applied to Teaching and Learning Process

recommendations presented by Kitchenham & Charters [20].
Those kinds of studies also help to identify gaps in cur-
rent research in order to suggest areas for further investiga-
tion [21] and by gathering, synthesizing and reviewing study
findings [22]. So, this map was undertaken in three phases:
planning, conducting, and reporting based on a systematic
review protocol. Details of those stages are described in the
following sub-sections.

To examine the current use of AM applied in CS courses,
our research questions were:
RQ1. Which types of AM are being applied in teaching and

learning activities in computing courses?
RQ2. Which are the courses’ perceptions about the AM

applied in teaching?
RQ3. Which are the benefits and difficulties in relation to

the adoption of AM?

A. DATA SOURCE
The main digital libraries that were used to search for pri-
mary studies was Scopus, because: (i) It provides Index for
publications of most events in the computer and education
area, according to Dybá et al. [23]; (ii) It is an important
repositories and are widely used for research in the scientific
community; (iii) Its databases provide the best results, have
strengths in different areas and return papers frommore tradi-
tionally indexed [24]. In addition, we also manually searched
the symposium and conference proceedings and journals in
which relevant studies to the computer and education area
domain had previously been published: (i) Brazilian Sympo-
sium on Informatics in Education (SBIE); (ii) Brazilian Sym-
posium on Games and Digital Entertainment (SBGames);
(iii) Computer Workshop at School (WIE); (iv) Computer
EducationWorkshop (WEI); (v) NewTechnologies in Educa-
tion Journal (RENOTE); (vi) Journal of Informatics in Educa-
tion (RBIE); and (vii) International Congress of Educational
Informatics (TISE). The period of analysis of the proceedings
of the symposium above was from 2010 to 2019. Also, it is
important to mention that in the Brazilian Symposium on
Games and Digital Entertainment the search was made in all
tracks; however, the proceedings of this symposium of the
year 2014 was not used, as it is not available at the time of
the search.

B. SEARCH STRATEGY
For the construction and refinement of the search string,
we have flowed the recommendations of Petersen et al. [8].
We have performed the three advise steps, which are: (i) Con-
sultation to the experts for the construction of the mapping
protocol; (ii) The refinement and (iii) Test of the search string
and selection of the keywords for manually searched.

Furthermore, to facilitate the identification of search string
terms, the terms were defined from the Population, Interven-
tion, Comparison, Output (PICO) parameters, byKitchenham
&Charters [20] and the terms related to each parameter, when
applicable (see Table 1).

TABLE 1. Terms used to instantiate parameters PICO.

FIGURE 1. Search string used in the SMS.

Moreover, we used the search string in which Boolean OR
has been applied to join alternate terms and synonyms in each
main part; and Boolean AND has been used to join the three
main parts. Figure 1 shows the search string of this work.

C. STUDY SELECTION
During the SMS, only relevant publications to the research
question were selected for further analysis. Kitchenham &
Charters [20] had suggested the definition of inclusion and
exclusion criteria for papers that are returned by the search
string. Any paper that did not meet all the inclusion criteria
must be deleted. Therefore, we have used the five inclusion
criteria to select articles (see TABLE 2).

D. SEARCH RETURNS AND DATA EXTRACTION
The literature search identified 753 publications. After the
removal of 105 duplicate papers, applying the 1st filter (selec-
tion based on title, keywords and abstract) and 2nd filter

TABLE 2. Inclusion set of criteria.

VOLUME 8, 2020 219085

M. I. Calderon Ribeiro, O. M. Passos: Study on the Active Methodologies Applied to Teaching and Learning Process

(complete analysis of the study) to removal out-of-scope and
duplicate papers (see Fig. 2), the final number of studies
reviewed was reduced to 35 relevant papers that are listed in
the (Supplementary data Appendix 1).

FIGURE 2. Shows the results obtained that answers the research.

In this scenario, we can observe that most of the researches
selected in this mapping were published in SBGames, i.e., in
this symposium the community can find most of publications
related to AM teaching strategies in computer science. Also,
we can observe SBIE, another symposium also used by the
computer community in education. Furthermore, the journals
RENOTE and RBIE also have been used.

IV. RESULTS AND ANALYSIS
In this section, we present our results according to the
research questions.

A. ACTIVE METHODOLOGIES IN TEACHING OF
COMPUTING
RQ1. Which types of AM are being applied in teaching and
learning activities in computing courses?

Fig. 3 shows the results of 6 different types of AM most
applied in the teaching and learning activities of different CS
courses: GM; PBL; ProjBL; PI; FC and TBL.

Between publications analyzed, were applied the TBL and
PI, but those types were used not alone in the work. For
example, on the publications [10], [25]–[27] the researchers
have used more than one AM as teaching strategies in their
research. TBL methodology goes beyond covering the con-
tent, as it allows the use of course concepts to solve prob-
lems. Therefore, on TBL, learning is favored through group
interaction; after the questions raised, they are discussed
within the groups, the answers are presented to the class,
thus revising the main points of the subject [18], [28]. The
professional school educators have found TBL particularly
attractive because it offers powerful solutions to several major
problems they face in teaching [29]. Thus, it is an active
learning method developed to help students achieve goals of
the course while learning how to function in teams.

FC is a methodology that means that events that have
traditionally taken place inside the classroom now take
place outside the classroom and vice versa. The use of
learning technologies, particularly multimedia, provides new

FIGURE 3. Types of AM are applied. In increasing order: TBL; FC; PI;
ProjBL; PBL and GM.

opportunities for students to learn, opportunities that are not
possible with other media [30]. Basically, the concept of a
flipped class is this: what is traditionally done in class is now
done at home, and what is traditionally done as homework
is now completed in class. In the flipped model, the time is
completely restructured [31].

Furthermore, it is important tomention that theAMapplied
in conjunction with TBL and PI were the PBL, ProjBL,
FC and GM together, i.e., around 14% (5 publications) of
set analyzed. PI is collaborative methodology, developed by
teacher Eric Mazur of Harvard University. It aims to involve
all students during class, promoting activities in which they
are encouraged to apply the concepts discussed at that time,
while explaining them to their colleagues [18]. Therefore,
approach with PI will help them learn, mainly because the
students have to play a central role in their own learning with
the instructor as their coach [32] [33].

PBL is a methodology emerged in the 70s, through the
doctor Howard Barrows, being applied in medical classes
and has gained acceptance and is becoming increasingly
effective across a variety of course in higher education and
an educational method for the teaching of computing is being
used in computer science [9]. It is considered to be an educa-
tional strategy centered on the students, which helps him in
the development of reasoning and communication, essential
skills for success in his professional life [34].

Fig. 3 shows the mapping results, PBL, ProjBL, PI and
FC types of AM that were used in a few publications. Those
methodologies were used just in 17% (7 publications), 9%
(3 publications) and 6% (2 publications) respectively of the
total set analyzed. Therefore, researches that use the method-
ology PBL, in general, seems to challenge the students to
perform high-level mental tasks, such as analysis, synthesis
and evaluation. That method was used totally focused on the
health area, but nowadays it has been accepted in the teaching
of several areas of knowledge, mainly in Computing, both on
elementary and on high school [9].

ProjBL is a methodology that organizes learning around
projects, according to definitions found in Project-based
learning handbooks for teachers. For this methodology,

219086 VOLUME 8, 2020

M. I. Calderon Ribeiro, O. M. Passos: Study on the Active Methodologies Applied to Teaching and Learning Process

projects are complex tasks, based on challenging questions
or problems, that involve students in design, problem-solving,
decision making, or investigative activities; give students the
opportunity to work relatively autonomously over extended
periods of time; and culminate in realistic products or
presentations [35] [36].

Ultimately, around 71% of the studies (25 publications) of
set analyzed presented works used GM as methodology to
teaching courses or measure the learning. Thus, it is the use
of game elements and design for purposes unrelated to games
to get people motivated to achieve specific goals [37] [38].
Therefore, gamification can provide an edge in learning deliv-
ery when it is designed, developed, and deployed properly.
Thus, the effort should not focus solely on points, badges, and
leader boards. Results of the change have bilateral nature–
they can affect students’ results and help them to understand
the educational content and create conditions for an effective
learning process [39]. We have observed that, on large-scale,
concepts of gamification are applied into other areas almost
every day [40]. And, on educational context, it is no different,
because those researches have linked positive impacts on
game experiences in different cases, particularly on player’s
experiences and interactions during learning courses on
computing.

That scenario address that there is a greater production of
procedure or technique for teaching in computing applying
AM. Thus, we can notice a great concern of the educational
community that demands of teachers to prepare dynamic
classes and master how to use the different AM to motivate
students in addition to producing different materials. It is
important, because an increasing number of strategies are
gaining prominence in terms of getting students’ attention,
changing the traditional way of teaching and learning [1],
and support the search for learning objects that might help
teachers on that task.

We also have analyzed the main objective of the
researchers in relation to the use of AM; those research inter-
ests present different challenges encountered in the studies
for the application of AM on teaching of computation (see
Table 3). Those investigated studies, in general, present their
objective as a search for different strategies for teaching and
learning applying different AM, which results in different
solutions for teaching.

This overview of research goal shows the importance of
knowing about that topic and the need for developing more
work to understand and increase useful tools to improve
different means about teaching and learning. It is so because
educational field is facing an impasse due to numerous
changes in society: it is necessary to evolve and to make
everyone learn in a competent and constructive way [41].
Also, the current social demands require much more from
teachers in the classroom, not only a new attitude, but new
ways of transmitting their knowledge [42].

Table 3, in general, shows concerns related to teaching
and learning of content by students, research to awaken
motivation and interest in the studied subject, research for

developing quality professionals applyingmethodologies that
leave behind the traditional method of decorating content
and its mechanical reproduction. Thus, those researches have
used different types of AM, as case studies involving the
active learning of programming for students of different lev-
els of education, since basic education up to postgraduate.
Therefore, we can conclude that more research is required
to improve innovative educational scenarios involving active
learning in computer science.

Notably, the results shows that around 63% of the students
(22 publications) analyzed applied AM as teaching strategies
for teaching University. While around 20% of the studies
(7 publications) were focused on Technical High School,
just around 12% of the studies (4 publications) are related
with others education levels, e.g., Postgraduate studies, High
school, and Basic education. That scenario shows that AM
are being adopted at all levels of education, i.e., it reveals that
education professionals, especially in computing, are look-
ing for innovate in relation to their teaching methodologies
adopted in the classroom (see Fig. 4).

FIGURE 4. Education level system: High school, Postgraduate studies,
Basic education, Not mentioned, Technical high school, University
education.

Some results also revealed that the effects of the tran-
sition from a teaching-centered model of education to a
learning-centered one involves a great cultural change for
the University as an educational institution [43]. However,
the social changes have leading to a change of perception
in the teaching-learning process that promotes the emergence
of the so-called active learning methodologies [18]. It is more
perspective on higher education, so, we have analyzed the
education level system in publications, because in higher
education, there are growing trends toward flexible online
course delivery [44].

Besides that, it is important to recognize that during the
past few years, primary studies have been increased published
regarding use AM as teaching strategies in the context of
education [45]–[47] and have helped to refocus academic
researches on method to teaching and learning, but it is still
insufficient. Table 4 shows AM apply by education level
system.

VOLUME 8, 2020 219087

M. I. Calderon Ribeiro, O. M. Passos: Study on the Active Methodologies Applied to Teaching and Learning Process

TABLE 3. Research goal per AM applied.

TABLE 4. AM applied by education level system.

We have observed that GM is being applied more among
the methodologies mapped in this study, that its use ranges
from basic education to graduation and it is present in 74% of
the analyzed publications that use GM as an AM in teaching.
Following, PBLmethodology appears in 4 surveys, i.e., about
11%. Finally, the TBL, PI, FC and ProjBL methodologies
are mentioned each in only 1 survey, i.e., about 2.80% of the
analyzed publications.

The results presented above show us that, among the most
significant and applied AM as teaching strategies in the
computation, we can find GM and PBL. However, a few
applications in the classroom were also using FC, PI, TBL
and ProjBL. This scenario demonstrates that the use of those
teaching methodologies, as teaching strategies in computing,
can be seen as effective teaching methods, as they support
the stimulation of the students’ initiative to create opportu-
nities for learning content inside and outside the classroom,
because AMcan promote proactivity, commitment to the edu-
cational process and linking learning to significant aspects of
reality [48].

In additional, we also have analyzed the distribution of
publications per year (Fig. 5). The interest of investigations

FIGURE 5. Publications per year. The figure includes line graphs showing
number of publications returned by search and publications that met the
inclusion criteria (2010-2019 period).

on topic of AM as teaching strategies in computing has began
around 2010 with 1 publication. In the following years, from
2010 to 2015, publications remained stable, 1 or 2 paper
per year. But, in 2016 and 2017 the number of publications
has increased up to 4 and 7, respectively. 2018 confirms
that evolution becoming the year in which most researches
were publishing on that subject, 11 in total. But in 2019, that
number fell again, just 4 publications.

However, we have considered an incipient number of
publications for whom that applied of AM, supported by
the principle of autonomy into the classroom, becomes of
vital importance due to impact they can have on students’
learning [49]. Also, AM have numerous forms of use for
teaching and learning the computing courses. Furthermore,
the applying of AM can favor the autonomy of the students
both in face-to-face and distance education, favoring curios-
ity, stimulating individual and collective decision making,
arising from activities of social practice and of students’
contexts [50]. Therefore, AM emerges as a proposal to focus
on the process of teaching and learning in the search for the

219088 VOLUME 8, 2020

M. I. Calderon Ribeiro, O. M. Passos: Study on the Active Methodologies Applied to Teaching and Learning Process

TABLE 5. Students’ perceptions about AM.

active participation of all involved, centered on the reality in
which they are inserted [51].

Thereby, that scenario shows combination of learning by
challenges, the use of real problems and the games with the
flipped classroom allow students to learn by doing, together
and at their own place [41]. At the same time, teacher acts
as an advisor, supervisor, and facilitator of the learning pro-
cess, not only as the sole source of information and knowl-
edge [45]. Thus, AM are teaching strategies centered on the
effective participation of students in the construction of the
learning process, in a flexible, interconnected and hybrid
way [17].

B. STUDENTS’ PERCEPTION ABOUT ACTIVE
METHODOLOGIES IN TEACHING COMPUTING
RQ2. Which are the students’ perceptions about the AM
applied in teaching?

Table 5 shows AM applied and description in relation to
students’ perception; there were feeling of Satisfaction in
learning the content, Motivation to learn content, and Feeling
of mastery of content. Those results have indicated, in gen-
eral, that the students’ perceptions were positives regarding
AM applied as strategy in teaching, i.e. AM enable greater
interaction between teachers and students, benefiting both.
Students acquire greater protagonism and independence in

teaching and learning process. Teachers have a great oppor-
tunity to innovate, to propose new ways to teach and to
stimulate their students [42], but it is necessary their full
commitment with all process. It is required from them to be
aware of their role in order to achieve successful results, also
need to actively practice the directions proposed by that type
of methodology. So it can be seen as liberating for both in
the sense of leaving the traditional forms of teaching and
learning in favor of a new way to enhance the productive
involvement of the teacher and the consequent active and
innovative learning of the students.

The informations obtained from this mapping have made
possible to identify the students’ perceptions aroused with the
use of different types of AM, enabling teachers to identify
pedagogical practices that most attract student’s participation.
Because, reflecting on education in the contemporary context,
includes, among other important aspects, the discussion on
AM produced in a collaborative way and its implications for
the experiences of students in the classroom [17].

We have considered that, from those three dimensions,
the students’ perspectives presented in some publications,
in general, can support the construction of knowledge in
order to monitor and to measure the data related to the
acquisition and development of knowledge, skills and atti-
tudes achieved by students, according to the research goals in
question.

VOLUME 8, 2020 219089

M. I. Calderon Ribeiro, O. M. Passos: Study on the Active Methodologies Applied to Teaching and Learning Process

TABLE 6. Dimension of students’ perception.

Also, many teachers imagine that all learning, including
expository class, is inherently active. They consider that,
while the students participates watching an expository class,
they are actively involved, but cognitive science researches
has indicated that students must do more than simply listen
for an effective learning [18].

Therefore, from the adoption of active teaching method-
ological practices combined with Digital Information and
Communication Technologies (TDICs), inherent to the CS,
today’s teacher and future teachers can make teaching and
learning process more attractive to the eyes of students [52]
and, for that, it is possible to use the AM as teaching
strategies in computing new didactic methods seeking to
combine the use of technologies, pedagogical knowledge
and the different types of AM that currently exist for
teaching.

Table 6 has mapping results organized in dimension iden-
tified to reply research question RQ 2. Not all articles explic-
itly have presented the students’ perceptions regarding the
applying of AM. Thus, some perceptions presented are based
on the researchers’ observations made during their field
research. It can be observedwhen in some publications survey
were used to learn about the acceptance and the applying of
AM to learn the content. It was possible to identify three
dimensions in relation to students’ perception presented in
those publications: a) Satisfaction in learning the proposed
content: concerns the perception of the students about his
learning of the concepts treated in the teaching of the subject’s
contents appears in 23 publication (65%); b) Motivation to
learn the content: it is related to the students’ perception
of will and searches to learn even more about the concepts
treated in the teaching of the subject’s contents and it was
observed in 22 publication (62%); and c) Feeling of mastery
in relation to the proposed content: this perception is related
to the ability to practice activities outside the classroom,
to teach or share the content learned with colleagues and was
notice in 11 papers (31%).

The new generation of students from the end of the
20th century seems not to be interested in attending a class
in the same way every day [52]. Originally, the active
method of learning works with the child’s experience, so the
teacher could support his students to reflect and encourage
him to make decisions [53]. To understand the students’
perceptions about the AM applied in teaching, we have
applied different technical or studies to obtain the results
presented.

TABLE 7. Technical or studies used per methodology.

We can observe in mapping results that some researches
have used more than one different technical or study to AM
apply. Table 7 presents that scenario mapped.

It shows us that most of the researches have used the
following technical or studies to get and analyze the percep-
tions of students: Survey, Online Tool, Games, Case Study,
Framework, Manual Game, Computer Tool, Online Course,
Focus Group, Interview, Workshop and Software. We have
observed that most researches have used survey technical to
gathering information about students’ perspectives. In gen-
eral, the goals was to explore the perception of students in
the CS in order to analyze improvements, or the lack of it,
in learning, according to different active teaching method-
ologies that have been used and in order to stimulate the
knowledge skills of the studied contents.

Thus, we have noticed that survey, online tools, games, and
case study were technical or studies most used by researchers.
Also, those technical or studies were used together with oth-
ers on most researchers analyzed, i.e. researchers as Oliveira
& Barros [54] that applied the case study, game, and survey to
get data about students’ perceptions. In this sense, interview,
focus group, workshop and online tools, online course, man-
ual game, framework software and use of WhatsApp were
combined with those technical or studies to understand the
students’ perceptions about the AM applied in teaching, pre-
sented in Table 7.

Thereby, the use of those techniques reflects the inter-
est of the author to know how the students’ perceptions
about the AM applied in teaching of computing courses

219090 VOLUME 8, 2020

M. I. Calderon Ribeiro, O. M. Passos: Study on the Active Methodologies Applied to Teaching and Learning Process

FIGURE 6. Type of technical or studies used in research. Bars graph
showing the number of technical that used to apply AM. In increasing
order: Online course, Focus group, Interview, Software, WhatsApp,
Manual game, Computer tool, Framework, Case study, Computer game,
Online tool, and Survey.

could better support the learning process and could motivate
researches to produce knowledge about process of teaching.
Also, it becomes an important way to provide different and
new ways of getting experiences in computing. So, in this
context, it can be seen that most of the researchers have
applied AM in teaching to instigate the students to participate
in the class, through group works or discussion of problems.
Those type of methodologies, as Lovato et al. [18] points, are
those that place students as protagonists, while the teachers
are mediators or facilitators of the process.

Fig. 6 shows some scenario about number of publications
by type of technique or study used on the researchers ana-
lyzed. In relation of survey, this technical appears in 26 of
publications. In sequence, the most used were online tools
in 9 publications, the computer games in 7, and case study
in 6 researches. The techniques or studies less used were the
framework in 3, manual game and computer tool appears in 2
publications, while the others were, in general, used just one
per each publication.

We observed that those techniques or studies have been
used in education as a form to know different types of knowl-
edge and to promote a critical, creative, and reflective attitude
concerning to adoption of AM strategy in computer science.
Because, the technological evolution that we are witnessing
today brings challenges on the reality of education and so it
points to need for changes that allows a redirection capable of
answering those challenges and improve the skills of the new
generations of students, since their educational beginning,
allowing them to develop knowledge and skills for a future in
which technology undergoes continuous developments [14].

Fig. 7 presents the distribution of publications per proposal
presented by the research. We have noticed that between
those proposals analyzed are commonly presented in works
that seek to analyze students’ school performance and as
well as improve teaching and learning process. Also, those
proposals seek to provide experience in the use of gamified
on-line tools, to support teaching and learning in the most
diverse course of computing area. They also seek to start
the stimulation of computational thinking through a gamified

FIGURE 7. Proposals de studies mapping. Bars graph showing the type
and number of proposals of studies that used to apply AM. In increasing
order: Conceptual model, Extension course and a didactic guide, Distance
programming course, Learning object, Application mobile, Game,
Gamified environment educational, Gamified online tools, and
Methodology.

application and to motivate students to practice some intro-
ductory content in the area of computing in a fun way.

Table 8 shows the mains courses worked on those research
analyzed. It may reflect, in general, two propositions regard-
ing traditional methodologies in computing: (i) those courses
are more difficult to learn; and (ii) they are more difficult to
teach using traditional methodologies. In any case, we can
infer that those researchers were looking for solutions to
problems that are evident, and we understand that this prob-
lem is not an exception. Therefore, the courses presented
above can reflect the research’ interest and necessity in know-
ing how AM can be used like teaching strategies centered on
effective participation both the teacher and the students. Thus,
on non-collaborative processes, teachers have more roles to
perform, as work is controlled and organized by them, while
in the collaborative process it is more opened and students
become more active [55].

Thereby, it might help students to acquire autonomy over
their interests and skills, motivating them to search and to
research on the topics brought by contents. In short, they
might realize that is worth learning [56], because with the
appearance of the so-called AM of learning, the students
becomes the protagonist and the use of this type of methodol-
ogy allows the development of new skills, such as initiative,
creativity, criticality reflective, capacity for self-assessment
and cooperation to work as a team; and the teacher acts as
an advisor, supervisor, and facilitator of the process [18],
being necessary for this sense observing the different learning
processes.

In this scenario, observing and evaluating the students’
perception of his or her learning while AM are adopted as
teaching strategies is not a trivial task. However, the literature
shows that several studies are being carried out in order
to analyze the potential of AM for learning [49], [52] or
to facilitate retention of knowledge by students [18], [57].
Nevertheless, so far, there are few studies that aim to evaluate
students’ experiences in relation to active teaching method-
ologies [58]. Also, we have noticed that it is necessary, due
to the similarities between some activemethodologies, to give

VOLUME 8, 2020 219091

M. I. Calderon Ribeiro, O. M. Passos: Study on the Active Methodologies Applied to Teaching and Learning Process

TABLE 8. Courses worked in analyzed publications.

support for teachers on some type of learning. It is so because,
in general, various AM were applied on those articles ana-
lyzed, however, in the course of this research, we have faced
a lack of classification that could clearly present the use of
AM in relation to the categorization of types of learning.

Thus, we have reached a conclusion that the interest in
knowing the students’ perception in thismapping of the litera-
ture can be very useful in different aspects regarding teaching
and learning process. For example, it may be possible to
know if some students need additional help to understand the
information explained in the classroom or even to promote
the intuition of means to help those students in their presented
difficulty. Each study here analyzed has presented students’
perceptions in different ways, i.e. they did not clearly show
types of perception of the students regarding percentage of
acceptance in relation to the applying of AM in the classroom.
So, we think that is important present one classification that
could help following researches and teachers that are inter-
ested on applying such methodology.

Therefore, considering the course of the computer science
organized in three different fields, following the Reference
Curriculum for Undergraduate Courses in Computing and
Informatics by Brazilian Computer Society (SBC): I) Com-
putability Fundaments (CF), which comprises the core of
subjects that involve scientific parts and the fundamental
techniques for the solid formation of the various computer
program; II) Computing Technology (CT), which comprises
the core of the course and represents a set of aggregated
and consolidated knowledge that enable students to develop

solving problems in the various application domains; and III)
Information Systems (IS), which comprises the core of the
course that enables students to use the resources of Informa-
tion Technology in solving problems of productive sectors of
society.

Table 9 presents the AM used per field of computing area
in relation to the course worked on the researches analyzed in
this paper. Therefore, it reflects, generally, that the GM and
PBL were types of AM more used in three different area of
computing. Thus, those types of AM can provide positives
students’ perception in relation of learning of course, because
learning is most effective when it is active, experiential, situ-
ated, problem-based and provides immediate feedback [59].
Also, this research demonstrates that students engagement
in course remains mixed, because, the GM and PBL were
used in tree field of computing area and they are often put
forth as a possible answer to change the teaching and learning
landscape and to make it more attractive and interactive for
students. Those types of AM, generally, can support students
in relation of learning, because our results show that students’
motivation and engagement is positively related to use of
different AM in course.

TABLE 9. Computing area and active methodology applied.

ProjBL and PI are the types of AMmost used to teach in the
fields of IS and CF. It might means that teacher has to adapt
his/her programming languages or programming technique,
because the quality of the teaching is partly dependent on
the teacher’s competence in using the technology [12], and
this type of course requires some changes in the teachers’
teaching methods and different approaches in order to moti-
vate and to engage students in program. ProjBL and PI are
most used both in IS and CF. FC and TBL are most used
only in CF. It might mean that teacher needs to actively learn
how to work with different AM and has to get opportunities
to try things out and to evaluates outcomes taking students’
perceptions as basis, because courses of CF are core of CS
learning.

So, to deal with the needs for more significant learning
in CS, those types of AM can be developed and provide a
richer engaging learning experience for teachers and students.
Those methodologies can motivate processes of teaching
and learning in different courses, because those method-
ologies might stimulate and engage all people involved
in this process of teaching and learning. Also, it agrees
with education literatures when they address AM like a
set of processes, procedures, techniques, and tools that
involve the students actively in the teaching and learning
process.

219092 VOLUME 8, 2020

M. I. Calderon Ribeiro, O. M. Passos: Study on the Active Methodologies Applied to Teaching and Learning Process

TABLE 10. Benefits in relation to the adoption of AM.

C. BENEFITS AND DIFFICULTIES IN RELATION TO
ADOPTION ACTIVE METHODOLOGIES IN
TEACHING OF COMPUTING
RQ3: Which are the benefits and difficulties in relation to the
adoption of AM?

We have observed the most studies, in general, obtained
benefits when they adopted GM as an AM for teaching,
see Table 10. However, they also reflects difficulties (see
Table 11), caused by the lack of commitment of students out-
side the classroom. Thereby, we have chosen to present those
reports in relation to the benefits and difficulties presented
in the texts of the publications. In general, it can support the
use or adequacy of new teaching techniques applying AM,
in addition to sharing the related benefits and difficulties in
order to direct new practices.

Attracting students’ attention and keeping them involved
are essential points for the process of learning and developing
critical thinking. Teacher plays a role as an activator of learn-
ing [49]. Therefore, the adoption of this type of methodology
for teaching in computing will certainly bring benefits for
both students and teachers.

In the scenario presented by Table 10, we have understood
that it is possible to infer that there is a positive influence on
teaching and learning process in relation to the use of AM
in CS courses. For example, GM, according to the analyzed
works, is an engagement technique for achieve the educa-
tional goals required to learn programming. However, we also
have observed that even with the positive influence of the
use of AM as teaching strategies, there were yet difficulties
(see Table 11), mainly in relation to the students’ awareness

VOLUME 8, 2020 219093

M. I. Calderon Ribeiro, O. M. Passos: Study on the Active Methodologies Applied to Teaching and Learning Process

TABLE 11. Difficulty in relation to the adoption of AM.

about importance of their self-studies organization and their
autonomy, especially when adopted a technique in which
teacher acts just presenting a problem and students should
acting looking for solutions.

Table 11 shows difficulties presented by teachers. In gen-
eral, those difficulties were related to use new teaching tech-
niques. It is important to mention that those difficulties are
not linked only to students’ awareness of the importance
of their studies, i. e., the difficulties involved, range from
the structures available for teaching to the behavior of the
teaching staff facing the new need to adopt different method-
ologies for more effective teaching. Thereby, it is necessary
to know the method that can fulfill the needs of educational
institutions in which the teacher operates, whether in basic
education, high school, undergraduate and among others [60].
Because, within education, it is necessary to debate whether
or not learning improves when students are allowed to explore
the educational content by themselves or if students must be
strictly guided in the topics to be learned. On the other hand,
in classroom environments, teachers present students choices
because they believe it increases effort and learning [61].

Those result have demonstrated that most researchers
have found different benefits in relation to the AM. It is
important to mention that not all publications clearly show
the items benefits or difficulties. However, they present the
results achieved and the difficulties faced in conducting their
researches. Thereby, we can infer that the use of different
AM positively influences the teaching because, in general
way, it addresses different techniques for teaching,, and it
addresses new activities and new engagement techniques
required to achieve educational goals in learning different CS
courses.

Therefore, AM have produced positive results for stu-
dents in relation to learning and, for teachers, in relation to
teaching practices, because, as Michaelsen have pointed [62],
it forces students to break with their passivity. Considering
the benefits presented in the analyzed publications, some
advantages could be: (i) developing students’ skills at a high
level; (ii) promoting the development of personal and team
skills; and (iii) also bringing advantages to the teacher, such
as enthusiasm them in the classroom and career continuity
as pointed by Guimarães et al. [52]. Those results are very

219094 VOLUME 8, 2020

M. I. Calderon Ribeiro, O. M. Passos: Study on the Active Methodologies Applied to Teaching and Learning Process

important, because in the 20th century, education is a con-
sequence of a process that involves several thinkers, who
discuss teaching models and highlight the need for students’
autonomy [18].

Finally, notably, all those researches also confirm a need
for reflection about our traditional teaching practices and
the adoption of AM applied in teaching and learning course
on computing area. Because, according to the words of
Vanbecelaere et al. [59] ‘‘learning is most effective when it
is active, experiential, situated, problem-based and provides
immediate feedback’’. So, without any doubts, technology
has found its way into many classrooms around the world
to help educational process to be more effective and enjoy-
able. Despite the great potential may technology have for
facilitating and promoting students learning, teachers are also
challenged to not only familiarize themselves with those
technologies but to put it in practice as well [63].

V. THREATS TO VALIDITY
Webelieve that some limitations of this study can be related to
publication, selection bias, inaccuracy in data extraction and
erroneous classification. For Kitchenham & Charters [20],
limitations related to publication bias refers to the problem
that positive results are more likely to be published than neg-
atives, because negative results take longer to be published or
are mentioned in other publications to a lesser extent. In order
to reduce that obstacle, as much as possible, we have done
search on symposium, conference proceedings and journals
in which the most relevant studies to the Computer and
Education area are published frequently: Brazilian Sympo-
sium on Informatics in Education, Brazilian Symposium on
Games and Digital, Entertainment, Computer Workshop at
School, Computer Education Workshop, New Technologies
in Education Magazine, Journal of Informatics in Education,
International Congress of Educational Informatics and Sco-
pus Library. This last platform is a digital library that is
frequently used for researchers for access to relevant journals
related to the same subject that we have been studying here.
However, we did not consider other sources such as searching
on conference bases or workshops that may affect, somehow,
the validity of our results.

The bias that refers to the selection of publications is
related to distortions that could happened in a statistical
analysis due to the criteria used to select publications. In order
to mitigate that threat, we have used the inclusion criteria
to gather the largest possible number of publications that
fit the AM as being applied in the teaching and learning
activities of course of computing area, as well as the criteria
for the exclusion of articles that did not present the necessary
information related to this study. So, we have elaborated a
SMS and validated it with other professionals of the areas
with recognized experience in the conduction of that kind of
work.We also have detected other limitations that could bring
some problems to the results of this work and that are related
to the systematic of procedure in carrying out this study. Thus,
analyzing our main goals in relation to the accomplishment
of this SMS, we have decided to categorize the selected

publications and to identify representative studies instead
of carrying out tests of validations on the results achieved
by those authors. Besides that, we also have included on
our mapping others specific questions, such as, regarding
methodologies, technical or studies used, and this may have
affected our results.

VI. CONCLUSION
This paper have presented a SMS that summarizes existing
information regarding types of AM being applied in teaching
and learning activities in CS courses. From an initial number
of 753 papers, a total of 35 were selected for carrying out the
mapping study. And the results obtained have allowed us to
extract some conclusions regarding the state-of-the-art in the
area, to identify several research gaps, and to extract some
guidelines for innovative directions in computing education.
Moreover, the application of a well-defined review protocol
will also allow us to efficiently update and extend the SMS in
future years.

As a result, our analyses have revealed or presented the
following significant findings: a) an overview of the active
methodologies applied to teach in computation that shows
a variety of 6 types of AM; b) the AM used per field of
computing area in relation to students’ perception; c) different
types of technical or studies used in research; d) and some
benefits and difficulties in relation to the adoption of AM to
teaching. According to those findings, we suggest that this
review can greatly help and inform about the use of AM in
the teaching and learning computing. Our review has showed
a variety of AM that have been used and have identified
the most common ones. It also has provided an overview of
the methods used when validating the corresponding active
methodology applied. In recent years, a great number of
AM has been used as techniques for teaching in computing.
However, in the current existing mapping studies, the percep-
tions of students have been forgotten. So, we have joined our
mapping of both teachers’ and students’ points of view.

Finally, we expect that AM used in teaching computing
in this review could also be effective in solving problems in
other areas that share similar characteristics about learning
difficulty, practice, and content abstraction students. Thus,
it might allow teachers to experience the consequences of
different methodologies choices as powerful approach to
promote engagement, motivation, empathy, awareness, and
constructive behavior for students. Also, we have highlighted
the importance of continuing this research, such as those
analyzed about mapping, in order to increase and to offer
more consistent bibliography, both qualitative and quantita-
tive data. That way, our research could sensibly allows the
measurement and validation of the applicability of the AM
as a strategic tool for teaching different contents in different
course on computing or other areas.

REFERENCES
[1] R. M. Castro and E. S. Siqueira, ‘‘Alternative teaching techniques (active

learning) for computer disciplines: A systematic mapping in the Brazil
context,’’ in Proc. School Comput. Sci. Workshop, 2019, vol. 25, no. 1,
p. 1409.

VOLUME 8, 2020 219095

M. I. Calderon Ribeiro, O. M. Passos: Study on the Active Methodologies Applied to Teaching and Learning Process

[2] P. Parsons, ‘‘Preparing computer science graduates for the 21st century,’’
Teach. Innov. Proj., vol. 1, no. 1, pp. 1–90, 2011.

[3] M. Leon, ‘‘Quality teaching innovation and improvement of university
teaching. Study and analysis project: Teaching innovation,’’ Ministry
Educ., Madrid, Spain, Tech. Rep., 2010, pp. 1–23.

[4] C. P. dos Santos and E. S. R. Soares, ‘‘Learning and teacher-student
relationship at the university: Two sides of the same coin,’’ Study Aval.
Educ., vol. 22, no. 49, pp. 353–369, 2011.

[5] J. Moran, ‘‘Active methodologies and hybrid models in education,’’ in
New Digital Technologies: Reflections on Mediation, Learning and Devel-
opment, S. Yaegashi et al., Eds. Curitiba, Brazil: CRV, 2017, pp. 23–35.
Accessed: Jun. 27, 2020. [Online]. Available: http://www2.eca.usp.
br/moran/wpcontent/uploads/2018/03/Metodológicas_Ativas.pdf

[6] P. Demo, Teacher of the Future and Knowledge Reconstruction. London,
U.K.: Voices, 2004.

[7] M. A. de Armanda, R. L. Rodrigues, and E. V. C. Garcia, ‘‘A systematic
mapping for problem based learning applied to computer science,’’ inProc.
School Comput. Sci. Workshop, 2012, vol. 1, no. 1.

[8] A. K. Hartwig,M. Silveira, L. Fronza,M.Mattos, and E. L. P. A. de Kohler,
‘‘Active methodologies for the teaching of computing: A systematic review
and a practical study,’’ in Proc. Workshop Inform. School, Nov. 2019,
vol. 25, no. 1, p. 1, doi: 10.5753/cbie.wie.2019.1139.

[9] J. V. Lima, M. de Melo Alves Júnior, A. Moya, R. Almeida, P. Anjos,
M. Lencastre, R. A. de Araújo Fagundes Fagundes, and F. lencar, ‘‘Active
methodologies and software engineering teaching: A systematic literature
review,’’ in Proc. Workshop Inform. School, Nov. 2019, vol. 25, no. 1, p. 1,
doi: 10.5753/cbie.wie.2019.1014.

[10] A. Raes, P. Vanneste, M. Pieters, I. Windey, W. Van Den Noortgate, and
F. Depaepe, ‘‘Learning and instruction in the hybrid virtual classroom: An
investigation of students’ engagement and the effect of quizzes,’’ Comput.
Edu., vol. 143, Jan. 2020, Art. no. 103682.

[11] F. L. de Oliveira and F. E. I. Nunes, ‘‘Active learning in programming
teaching: A systematic literature review,’’ in Proc. Workshops Brazilian
Congr. Inform. Educ., 2019, vol. 8, no 1, p. 377.

[12] M. A. de F. da Silva and E. M. Oliveira, ‘‘Educational robotics in the per-
spective of active methodologies,’’ in Proc. School Comput. Sci. Workshop,
2019, vol. 25, no. 1, p. 1289.

[13] B. Moreno, ‘‘Combining agile and active methodologies in teaching intro-
duction to programming to high school students,’’ in Proc. Workshop
Challenges Comput. Appl. Educ., 2019, vol. 8, no 1, p. 45.

[14] R. R. Silva, J. Fernandes, and E. R. Santos, ‘‘Overview of the use of digital
games in teaching programming at the higher education level in the last
decade: A systematic literature review,’’ in Proc. Brazilian Symp. Comput.
Educ., 2018, vol. 29, no 1, p. 535.

[15] L. Bacich and E. J. Moran, Active Methodologies for Innovative Edu-
cation: A Theoretical-Practical Approach. Coventry, U.K.: Penso Editor,
2018.

[16] F. L. Lovato, A. Michelotti, and E. E. L. da Silva Loreto, ‘‘Active learning
methodologies: A brief review,’’ Acta Sci., vol. 20, no. 2, pp. 154–171,
2018.

[17] T. R. da Silva, T. Medeiros, H. Medeiros, R. Lopes, and E. Aranha, ‘‘Pro-
gramming teaching-learning: A systematic literature review,’’ Brazilian J.
Inform. School, vol. 23, no. 1, p. 182, 2015.

[18] B. Kitchenham and E. S. Charters, ‘‘Guidelines for performing systematic
literature reviews in software engineering, version 2.3,’’ Dept. EBSE,
Keele Univ., Univ. Durham, Durham, U.K., Tech. Rep., 2007.

[19] A. Fernandez, E. Insfran, and S. Abrahão, ‘‘Usability evaluation methods
for the Web: A systematic mapping study,’’ Inf. Softw. Technol., vol. 53,
no. 8, pp. 789–817, Aug. 2011.

[20] J. Jesson, L. Matheson, and E F. M. Lacey, Doing Your Literature Review:
Traditional and systematic techniques. Newbury Park, CA, USA: Sage,
2011.

[21] T. Dyba, T. Dingsoyr, and E. G. K. Hanssen, ‘‘Applying systematic reviews
to diverse study types: An experience report,’’ in Proc. 1st Int. Symp.
Empirical Softw. Eng. Meas., Sep. 2007, pp. 225–234.

[22] S. R. Lambert, ‘‘Do MOOCs contribute to student equity and social inclu-
sion? A systematic review 2014–18,’’ Comput. Edu., vol. 145, Feb. 2020,
Art. no. 103693.

[23] K. Petersen, S. Vakkalanka, and L. Kuzniarz, ‘‘Guidelines for conducting
systematic mapping studies in software engineering: An update,’’ Inf.
Softw. Technol., vol. 64, pp. 1–18, Aug. 2015.

[24] E. C. Moya, ‘‘Using active methodologies: The student-view,’’
Procedia-Social Behav. Sci., vol. 237, pp. 672–677, 2017, doi:
10.1016/j.sbspro.2017.02.040.

[25] F. L. Noguero, Participatory Methodology in Education Universitaria,
vol. 9. Madrid, Spain: Narcea Ediciones, 2005.

[26] S. V. Silva and E. A. R. Gonçalves, ‘‘The simulated practice in teaching
project management through the ’integrated management tool,’’ Projects
Manage., New Ideas Educ. Inform. TISE, Tech. Rep., 2015, p. 6.

[27] R. A. Bittencourt, C. A. Rodrigues, and E. D. S. S. Cruz, ‘‘An inte-
grated object-oriented programming experience, data structures and sys-
tems design with PBL,’’ in Proc. 21st Workshop Comput. Educ.-33rd
Congr. Brazilian Computer Soc.Maceió, Brazil: SBC, 2013, p. 10.

[28] L. F. D. Pereira, F. Fábio Lapolli, F. F. Sampaio, C. L. R. Motta, and
C. E. T. Oliveira, ‘‘Learning objects workshop: An approach to the teach-
ing of computing in technical courses,’’Brazilian J. Inform. School, vol. 18,
no. 3, pp. 4–18, Sep. 2010, doi: 10.5753/RBIE.2010.18.03.04.

[29] D. Ravindranath, T. L. Gay, and M. B. Riba, ‘‘Trainees as teachers in
team-based learning,’’ Academic Psychiatry, vol. 34, no. 4, pp. 294–297,
Jul. 2010.

[30] R. H. Steadman,W. C. Coates, Y.M. Huang, R.Matevosian, B. R. Larmon,
and L. McCullough, ‘‘Simulation-based training is superior to problem-
based learning for the acquisition of critical assessment and management
skills,’’ Crit. Care Med., vol. 34, no. 1, pp. 151–157, 2006.

[31] M. J. Lage, G. J. Platt, andM. Treglia, ‘‘Inverting the classroom: A gateway
to creating an inclusive learning environment,’’ J. Econ. Edu., vol. 31, no. 1,
pp. 30–43, Jan. 2000.

[32] J. Bergmann and E A. Sams, Flip Your Classroom: Reach Every Student in
Every Class Every Day. Washington, DC, USA: International Society for
Technology in Education, USA, 2012, pp. 15–17.

[33] R. Sayer, E. Marshman, and C. Singh, ‘‘Case study evaluating just-in-
time teaching and peer instruction using clickers in a quantum mechanics
course,’’ Phys. Rev. Phys. Edu. Res., vol. 12, no. 2, Oct. 2016.

[34] E. Mazur, Peer Instruction: The Active Learning Revolution. Coventry,
U.K.: Penso Editor, 2015.

[35] A. G. P. de Andrade, F. A. C. dos Santos, Jr., J. M. Pimentel,
J. C. N. Bittencourt, and E. T. B. de Santana, ‘‘Application of the PBL
method in software engineering teaching: Student’s view,’’ in Proc.
ERBASE, SBC, Brazil, 2010, pp. 1–10.

[36] J. W. Thomas, ‘‘A review of research on project-based learning,’’ Autodesk
Found., San Rafael, CA, USA, Tech. Rep., 2000, pp. 230–243.

[37] J. R. Mergendoller and E. J. W. Thomas. (2001). Managing Project-
Based Learning: Principles From the Field. Buck Institute for Education.
[Online]. Available: httpwwwBieOrg

[38] S. Deterding, R. Khaled, L. E. Nacke, and E. D. Dixon, ‘‘Gamification:
Toward a definition,’’ in Proc. CHI Gamification Workshop, Vancouver
BC, Canada, vol. 12, 2011.

[39] L. A. Ribeiro, T. L. da Silva, and E. A. Q. Mussi, ‘‘Gamification: A
methodology to motivate engagement and participation in a higher edu-
cation environment,’’ Int. J. Educ. Res., vol. 6, no. 4, pp. 249–264, 2018.

[40] G. Kiryakova, N. Angelova, and E. L. Yordanova, ‘‘Gamification in edu-
cation,’’ in Proc. 9th Int. Balkan Educ. Sci. Conf., 2014, pp. 1–5.

[41] A. C. T. Klock, I. Gasparini, and E.M. S. Pimenta, ‘‘Designing, developing
and evaluating gamification: An overview and conceptual approach,’’ in
Data Analytics Approaches in Educational Games and Gamification Sys-
tems, A. Tlili and E M. Chang, Singapore: Springer, 2019, pp. 227–246.

[42] J.Morán, ‘‘Changing education with activemethodologies,’’Coleç. Mídias
Contemp. Media Convergences Educ. Cid. Youth Approaches, vol. 2, no. 1,
pp. 15–33, 2015.

[43] A. Diesel, A. L. S. Baldez, and E. S. N. Martins, ‘‘The principles of active
teaching methodologies: A theoretical approach,’’ Rev. Thema, vol. 14,
no. 1, pp. 268–288, 2017.

[44] R. L. Moffitt, C. Padgett, and R. Grieve, ‘‘Accessibility and emotional-
ity of online assessment feedback: Using emoticons to enhance student
perceptions of marker competence and warmth,’’ Comput. Edu., vol. 143,
Jan. 2020, Art. no. 103654.

[45] E. F. Barbosa and E. D. G. de Moura, ‘‘Active learning methodologies in
Professional and Technological Education,’’ Bol. Tec. Senac, vol. 39, no. 2,
p. 2, 2013.

[46] R. Pereira, ‘‘Active method: Questioning techniques of reality applied to
basic education and higher education,’’ in Proc. 6th Int. Colloq. ‘Educ.
Contemp., São Cristovão, Brazil, 2012, pp. 1–15.

[47] D. Woods, Problem Based Learning: How to Get the Most From PBL.
Hamilton, ON, Canada: McMaster Univ., 1994.

[48] V. V. Lima, ‘‘Constructivist spiral: An active teaching-learning methodol-
ogy,’’ Interface-Comun. Health Educ., vol. 21, pp. 421–434, Oct. 2016.

[49] A. Corrêa, D. Zuasnabar, M. Santibanez, S. Silva, L. Prestes, and
E. P. F. da Silva, ‘‘The use of mobile learning and active methodologies
in the educational context,’’ in Proc. Workshops Brazilian Congr. Inform.
Educ., 2019, vol. 8, no. 1, p. 730.

[50] A. B. de Machado, ‘‘Active methodologies, integral knowledge,’’ in Inno-
vative Practices in Active Methodologies, S. R. Dias and A. N. Volpato,
Eds. Florianópolis, Brazil: Context Digital, 2017.

219096 VOLUME 8, 2020

http://dx.doi.org/10.5753/cbie.wie.2019.1139
http://dx.doi.org/10.5753/cbie.wie.2019.1014
http://dx.doi.org/10.1016/j.sbspro.2017.02.040
http://dx.doi.org/10.5753/RBIE.2010.18.03.04

M. I. Calderon Ribeiro, O. M. Passos: Study on the Active Methodologies Applied to Teaching and Learning Process

[51] D. B. Felippe, A. N. Volpato, I. Araldi, and E. S. R. Dias, Innovative
Practices in Active Methodologies, S. R. Dias and A. N. Volpato, Eds.
Florianópolis, Brazil: Context Digital, 2017, p. 179.

[52] F. Guimarães, M. Leite, F. Reinaldo, and E. G. Ito, ‘‘Active teaching
methods combined with technology for teaching practice: An experience
report,’’ in Proc. Workshop Inform. School, 2018, vol. 24, no. 1, p. 1, doi:
10.5753/cbie.wie.2018.333.

[53] A. Prado, Understanding the 21st Century Student and How to Teach This
New Generation. São Paulo, Brazil: Geekie, 2015.

[54] E. Oliveira and R. Barros, ‘‘Gaia ABstração game: Proposal of a game to
mediate the teaching-learning process of the object-oriented paradigm,’’ in
Proc. 17th Symp. Bras. Games E Entertainment Digit., 2013, pp. 533–540.

[55] P. L. Torres and E. A. F. Irala, ‘‘Collaborative learning,’’ in Some to
Entertain Thinking and Act, P. L. Torres, Ed. Curitiba, Brazil: SENAR,
2007, pp. 65–98.

[56] J. H. Helm e L. G. Katz, Young Investigators: The Project Approach in the
Early Years. New York, NY, USA: Teachers College Press, 2016.

[57] L. de Almeida, M. P. Rolim, R. da Silva, and E. A. Costa, ‘‘E-PBL?: Sup-
port tool for learning and using the problem based learning methodology,’’
in Proc. Workshop Inform. School, Nov. 2019, vol. 25, no. 1, p. 1, doi:
10.5753/cbie.wie.2019.1399.

[58] J. B. S. Júnior, A. Kronbauer, and E. J. Campos, ‘‘Assessing users’ experi-
ence with active methodologies in Human-Computer Interaction classes,’’
in Proc. Brazilian Symp. Inform. School, Nov. 2019, vol. 30, no. 1, p. 1,
doi: 10.5753/cbie.sbie.2019.1201.

[59] S. Vanbecelaere, K. Van den Berghe, F. Cornillie, D. Sasanguie,
B. Reynvoet, and F. Depaepe, ‘‘The effects of two digital educational
games on cognitive and non-cognitive math and reading outcomes,’’ Com-
put. Edu., vol. 143, Jan. 2020, Art. no. 103680.

[60] T. S. Borges and G. Alencar, ‘‘Active methodologies in the promotion of
critical student education: The use of active methodologies as a didactic
resource in the critical education of higher education students,’’Cairu Rev.,
vol. 3, no. 4, pp. 119–143, 2014.

[61] C. Ferguson, E. L. van den Broek, and H. van Oostendorp, ‘‘On the role
of interaction mode and story structure in virtual reality serious games,’’
Comput. Edu., vol. 143, Jan. 2020, Art. no. 103671.

[62] L. K. Michaelsen, ‘‘Getting started with team learning,’’ in Team Learn.
Transform. Use Small Groups Westport. Westport, CT, USA: Greenwood,
2002.

[63] R. Scherer, F. Siddiq, and J. Tondeur, ‘‘All the same or different? Revisiting
measures of teachers’ technology acceptance,’’ Comput. Edu., vol. 143,
Jan. 2020, Art. no. 103656.

[64] T. S. C. da Silva, J. C. B. de Melo, and E. P. C. A. R. de Tedesco,
‘‘A model to promote student engagement in programming learning using
gamification,’’ Brazilian J. Inform. School, vol. 26, no. 3, p. 3, 2018.

[65] E. Pantaleão, L. R. Amaral, and E. G. B. E. Silva, ‘‘An approach
based on the Robocode environment for teaching high school program-
ming,’’ Brazilian J. Inform. School, vol. 25, no. 3, p. 3, 2017, doi:
10.5753/rbie.2017.25.03.95.

[66] M. C. Cera, M. H. D. Forno, and E. V. G. Vieira, ‘‘A Proposal for Teaching
Software Engineering from Problem Solving,’’ Brazilian J. Inform. School,
vol. 20, no. 3, p. 3, Dec. 2012, doi: 10.5753/rbie.2012.20.03.116.

[67] S. V. Silva and A. R. Gonçalves, ‘‘The simulated practice in teaching
project management through the integrated management tool,’’ Project
Manage., New Ideas Educ. Inform. TISE, Tech. Rep., 2015, vol. 6.

[68] A. F. F. Costa, A. F. M. F. de Melo, G. G. Moreira, M. A. de Carvalho,
and E. M. V. A. de Lima, ‘‘Application of inverted room and gamification
elements to improve teaching-learning in object oriented programming,’’
ProjectManage., New Ideas Educ. Inform. TISE, Tech. Rep., 2017, vol. 13,
pp. 223–232.

[69] W. Nagai, C. Izeki, and E. R. Dias, Experience in the Use of Gamified
Online Tools in the Introduction to Computer Programming, vol. 22, no. 1,
2016, p. 301.

[70] M. G. de Oliveira, A. Neves, M. F. S. Lopes, H. F. Medeiros,
M. B. Andrade, and E. L. L. Reblin, ‘‘A distance programming course with
active methodologies and learning analysis by software metrics,’’ Rev. New
Technol. Educ., vol. 15, no. 1, pp. 1–10, 2017.

[71] R. I. Casarotto, G. Bernardi, A. Z. Cordenonsi, and E. R. D. Medina,
‘‘Logirunner: A board game as a tool to aid the teaching and learning of
algorithms and programming logic,’’ RENOTE-Rev. News Tecnol. Educ.,
vol. 16, no. 1, pp. 1–10, 2018.

[72] R. I. Casarotto, G. Bernardi, A. Z. Cordenonsi, and R. D. Medina, ‘‘The
use of unplugged computing in a gamification context for teaching data
structures,’’ Renote-Rev. News Tecnol. Educ., vol. 16, no. 2, pp. 546–555,
2018.

[73] J. A. Moreira and W. M. Monteiro, ‘‘Inverted classroom—An experience
in teaching-learning programming for computer network administration,’’
Rev. New Technol. Educ., vol. 16, no. 1, pp. 1–11, 2018.

[74] M. E. C. Natal, B. A. Barbosa, J. C. Hernandes, B. de Sousa Much,
M. Bigolin, S. J. R. da Silva, C. B. Silva, and L. F. B. de Carvalho, ‘‘Tri-
logic: A gamified environment as an aid tool for teaching programming
logic learning,’’ Rev. New Technol. Educ., vol. 16, no. 2, pp. 41–50, 2018.

[75] D. S. de Souza Rabelo et al., ‘‘Development of computer systems using
problem-based learning,’’ in Proc. Brazilian Symp. Comput. Educ., 2018,
vol. 29, no. 1, pp. 188–197, doi: 10.5753/cbie.sbie.2018.188.

[76] F. I. R. Pessoa, A. L. S. O. Araujo, W. Andrade, and E. D. Guerrero,
‘‘T-mind: A gamified application to encourage the development of com-
putational thinking skills,’’ in Proc. Brazilian Symp. Comput. Educ., 2017,
vol. 28, no. 1, p. 645.

[77] M. A. de Azevêdo Silva and A. Dantas, KLouro: An Educational Game
to Motivate Students Who Are New to Programming, vol. 25, no. 1, 2014,
p. 702.

[78] E. H. S. Raposo and V. Dantas, ‘‘The snake challenge-using gamification
to motivate students in an introductory programming discipline,’’ in Proc.
Brazilian Symp. Comput. Educ., 2016, vol. 27, no. 1, p. 577.

[79] M. C. Meireles and B. Bonifácio, ‘‘Use of agile methods and problem-
based learning in software engineering teaching: An experience report,’’
in Proc. Brazilian Symp. Comput. Educ., 2015, vol. 26, no. 1, p. 180.

[80] R. F. de Azevedo and B. C. de Paula, ‘‘Proposed methodology for learning
computer programming through the recontextualization of serious games
in the style game & watch,’’ in Proc. SBC SBGames, 2011, pp. 1–9.

[81] R. T. Figueiredo and C. Figueiredo, ‘‘Wargrafos- game to aid in learning
the discipline of graph theory,’’ in Proc. 12th Symp. Bras. Games Enter-
tainment Digit. SBGames, 2011, pp. 1–9.

[82] E. D. de Oliveira and R. M. de Barros, ‘‘Gaia ABstração game: Proposal
for a game to mediate the teaching-learning process of the object-oriented
paradigm,’’ inProc. 17th Brazilian Symp. GamesDigit. Entertainment, São
Paulo, Brazil, 2013, pp. 533–540.

[83] S. A. Melo, ‘‘Game of code: Applying gamification in programming dis-
ciplines,’’ in Proc. SBGames XV SBGames, São Paulo, Brazil, Sep. 2016,
pp. 1241–1244.

[84] J. Mattar et al., ‘‘Gamification and games for scientific methodology: Pro-
posed board game and game,’’ in Proc. SBGames XVI SBGames, Curitiba,
Brazil, Nov. 2017, pp. 757–763.

[85] S. Melo and C. d S. S. Neto, ‘‘Game of code: Development and evaluation
of a gamified activity for programming disciplines,’’ presented at the em
16th Symp. Brazilian Games Entertainment Digit. (SBGames), 2017.

[86] E. D. deOliveira, L. de SouzaMendes,M. C. Camargo,M.H. S. Senegalha,
and R.M. de Barros, ‘‘Gaia abstraction game BD: A game that aims to help
the teaching-learning process of entify-relationship concepts and relational
model,’’ in Proc. SBGames, XVI SBGames, Curitiba, Brazil, Nov. 2017,
pp. 27–33.

[87] J. Mombach et al., ‘‘POOkemon: A game about object-oriented program-
ming,’’ in Proc. SBGames, 2018, p. 5.

MARIA IVANILSE CALDERON RIBEIRO is cur-
rently pursuing the Ph.D. degree in informat-
ics with the Federal University of Amazonas
(UFAM). Her research interests include software
engineering education, active learning strategies,
and related topics. She is currently a Professor of
basic, technical and technological education with
the Federal Institute of Education, Science and
Technology of Rondônia (IFRO)/Campus Porto
Velho North Zone.

ODETTE MESTRINHO PASSOS received the
Licentiate and bachelor’s degrees in mathemat-
ics, the master’s degree in informatics, and the
Ph.D. degree in informatics from the Federal Uni-
versity of Amazonas, in 1995, 2003, and 2014,
respectively. She is currently an adjunct Profes-
sor with the Federal University of Amazonas
/ Institute of Exact Sciences and Technology.
She has experience in computer science, working
mainly in informatics in education, software pro-

cess improvement, and experimental software engineering.

VOLUME 8, 2020 219097

http://dx.doi.org/10.5753/cbie.wie.2018.333
http://dx.doi.org/10.5753/cbie.wie.2019.1399
http://dx.doi.org/10.5753/cbie.sbie.2019.1201
http://dx.doi.org/10.5753/rbie.2017.25.03.95
http://dx.doi.org/10.5753/rbie.2012.20.03.116
http://dx.doi.org/10.5753/cbie.sbie.2018.188

Um Mapeamento Sistemático da Literatura sobre o uso de
Metodologias Ativas durante o Ensino de Programação no

Brasil

Ivanilse Calderon1,3, Williamson Silva2, Eduardo Feitosa1

1Instituto de Computação (IComp) – Universidade Federal do Amazonas (UFAM)
Manaus, AM – Brasil

2Laboratory of Empirical Studies in Software Engineering (LESSE) - Departamento
de Engenharia de Software - Universidade Federal do Pampa (UNIPAMPA)

- Alegrete, RS - Brasil

3Instituto Federal de Educação, Ciência e Tecnologia de Rondônia (IFRO)
Campus Porto Velho Zona Norte - Porto Velho, RO - Brasil

{1,3ivanilse.calderon,1efeitosa}@icomp.ufam.edu.br

2williamsonsilva@unipampa.edu.br

Abstract. Teaching programming is a challenge for instructors of Computer
Science courses. Instructors have been adopting Active Learning Methodolo-
gies (ALMs) into teaching practices of computer programming to minimize the
challenges faced in the classroom. In this sense, we performed a systematic li-
terature mapping to summarize the main ALMs adopted by instructors during
teaching programming in undergraduate courses in the Brazilian context. We
identified main ALMs, and Educational Games and Gamification are the most
adopted by Brazilian instructors. We also identified students’ perceptions about
the use of these ALMs in the classroom.

Resumo. O ensino de programação é um desafio para os docentes dos cursos
de Computação. Como forma de tentar minimizar os desafios enfrentados em
sala de aula, os docentes vem adotando as Metodologias Ativas (MAs) em suas
práticas de ensino e aprendizagem de programação de computadores. Nesse
sentido, conduziu-se um Mapeamento Sistemático da Literatura para sumarizar
as principais MAs adotadas pelos docentes durante o ensino de programação
nos cursos de graduação no cenário brasileiro. A partir dos resultados, fo-
ram identificadas dez tipos de MAs, sendo Jogos Educacionais e Gamificação
as mais adotadas pelos docentes brasileiros. Foram identificadas também as
percepções dos estudantes sobre o uso destas MAs em sala de aula.

1. Introdução
O processo de aprendizagem em disciplinas de programação de computadores, em cursos
da área de Computação (conhecidas na literatura como CS1 e CS2), é uma atividade com-
plexa e difı́cil [Luxton-Reilly et al. 2018]. Estas disciplinas requerem que os estudantes
desenvolvam, ao longo da aprendizagem, diferentes habilidades como alta capacidade
cognitiva de abstração dos problemas, resolução de problemas, raciocı́nio e pensamento

1152DOI: 10.5753/sbie.2021.217564

Appendix B

lógico [Raj et al. 2018]. Para que os estudantes desenvolvam tais habilidades, os docentes
precisam adotar novas estratégias de ensino e obter uma postura mais transformadora em
sala de aula, proporcionando um ambiente de aprendizagem engajador para os estudantes
[Acharya and Gayana 2021, Silva et al. 2019].

Diante deste cenário, as Metodologias Ativas (MAs) vêm ganhando destaque en-
tre os docentes [Ribeiro et al. 2021]. Segundo Diesel et al. (2017), as MAs possibilitam
uma mudança no paradigma de aprendizagem, onde o estudante sai do papel de agente
passivo (apenas escuta e recebe o conteúdo que é transmitido pelo docente) e passa para
o papel de agente ativo da aprendizagem, tornando-se o principal responsável por sua
aprendizagem. As MAs são estratégias de ensino centradas na participação efetiva dos
estudantes e, por conta disso, auxiliam na construção do processo de aprendizagem de
uma maneira flexı́vel, interligada e hı́brida [Bacich and Moran 2018]. Sob esta perspec-
tiva, é importante refletir sobre à adoção de MAs durante o ensino de programação frente
às estratégias de ensino tradicionais que continuam centradas no docente.

Nesse sentido, este artigo tem por objetivo sumarizar as principais MAs adota-
das pelos docentes durante o ensino de programação de computadores em cursos de
graduação no Brasil. Para isso, foi conduzido um Mapeamento Sistemático da Litera-
tura (MSL) nos principais eventos e periódicos relacionados à Informática na Educação
e Educação em Computação no Brasil, entre os anos de 2010 e 2021. Os resultados
alcançados mostram um panorama sobre a aplicação das MAs no ensino de programação
e as percepções dos estudantes, com relação às MAs, enquanto aprendem conteúdos rela-
cionados à programação de computadores.

2. Método de Pesquisa
Um MSL [Kitchenham and Charters 2007] foi realizado para identificar o panorama sobre
as MAs adotadas para o ensino de programação de computadores na educação superior
no Brasil. Os procedimentos utilizados serão detalhados nas subseções a seguir.

2.1. Questões de Pesquisa

Para guiar este trabalho definiu-se as seguintes Questões de Pesquisa (QP):

• QP1: Quais as metodologias ativas que são comumente adotadas por docentes
durante o ensino e aprendizagem de programação de computadores?
• QP2: Como os estudantes percebem as metodologias ativas durante a aprendiza-

gem de programação?

2.2. Estratégia de Busca

Este MSL se propõe a investigar as MAs adotadas nos cursos de graduação do Bra-
sil. Esta pesquisa foi realizada manualmente nos seguintes eventos e revistas cientı́ficas
de Educação em Computação e Informática na Educação no Brasil: Simpósio Brasi-
leiro de Informática na Educação (SBIE), Workshop de Informática na Escola (WIE),
Workshop de Educação em Computação (WEI), Simpósio Brasileiro de Jogos e Entrete-
nimento Digital (SBGames), Congresso Internacional de Informática Educativa (TISE),
Revista Novas Tecnologias na Educação (RENOTE) e Revista Brasileira de Informática
na Educação (RBIE). Considerando que a Sociedade Brasileira de Computação vem
trabalhando, desde 2010, na reformulação do Currı́culo de Referência dos cursos de

X Congresso Brasileiro de Informática na Educação (CBIE 2021)

Anais do XXXII Simpósio Brasileiro de Informática na Educação (SBIE 2021)

1153

Ivanilse
Destacar

Ivanilse
Destacar

Computação [Castro and Siqueira 2019], neste trabalho considerou-se o perı́odo de 2010
até 2021, para conhecer o cenário nacional em relação à utilização das MAs na última
década. Este MSL foi conduzido até maio de 2021.

2.3. Seleção das publicações

Para a seleção das publicações identificadas, os seguintes Critérios de Inclusão (CI)
foram definidos: CI1, devem ser selecionadas publicações que apresentam MAs e/ou
as percepções dos docentes/estudantes sobre as MAs adotadas durante o ensino de
programação; e CI2, devem ser selecionadas publicações que apresentam estudos experi-
mentais sobre o uso das MAs durante o ensino de programação. Também foram definidos
os Critérios de Exclusão (CE): CE1, publicações não disponı́veis para a leitura e co-
leta dos dados (publicações pagas, por exemplo); CE2, publicações que não atendam os
critérios de inclusão; CE3, publicações que não estejam nos idiomas Português ou Inglês;
CE4, publicações duplicadas.

Na primeira etapa do processo de seleção (1o Filtro), realizou-se a leitura do
tı́tulo, palavras-chave e resumo de cada publicação. Neste momento, foram seleciona-
das as publicações que atendessem pelo menos um dos critérios de inclusão. Em caso de
dúvida, a publicação era incluı́da para uma análise posterior. Na segunda etapa (2o Fil-
tro), realizou-se a leitura completa das publicações selecionadas no 1o Filtro utilizando
os critérios de inclusão e exclusão para decidir se publicação seria selecionada ou não.

2.4. Extração dos dados

Nesta fase, foram extraı́dos os dados categorizados da seguinte forma: informações ge-
rais (tı́tulo, autores, ano, tipo e o local de publicação), metodologia (tipos de MAs iden-
tificadas nas publicações), trechos das publicações que apresentavam às percepções dos
estudantes sobre as MAs, nome das disciplinas, linguagens de programação mencionadas
e informações sobre as ferramentas utilizadas em conjunto com as MAs.

3. Resultados Obtidos
A Tabela 1 apresenta a quantidade de publicações retornadas por evento e revista (segunda
coluna), bem como a quantidade de artigos selecionados no 1o e no 2o Filtro. Um total de
21 publicações foram selecionadas com base nos critérios descritos na Subseção 2.3.

Tabela 1. Quantitativo das publicações retornadas.

Bibliotecas Digitais Publicações 1o Filtro 2o Filtro
SBGames 315 16 7

SBIE 305 14 4
RENOTE 265 5 2

RBIE 336 14 1
TISE 21 2 1
WEI 88 19 4
WIE 177 12 2
Total 753 220 21

Os resultados mostram que houve um aumento na quantidade de publicações
em 2018 e 2019 (Figura 1). No perı́odo de 2011 a 2017 observa-se uma oscilação no
quantitativo de publicações (entre uma e três publicações por ano). Nos anos de 2012
e 2015 não foram identificadas publicações no contexto deste MSL. Percebe-se que há

X Congresso Brasileiro de Informática na Educação (CBIE 2021)

Anais do XXXII Simpósio Brasileiro de Informática na Educação (SBIE 2021)

1154

uma quantidade significativa de publicações sobre o uso de MAs para a aprendizagem
de programação. Logo, acredita-se que a comunidade está constantemente pesquisando e
publicando sobre a adoção de MAs para apoiar a prática docente.

Figura 1. Tendência de publicação por ano.

3.1. QP1 - Quais as MAs que são comumente adotadas pelos docentes durante o
ensino e aprendizagem de programação de computadores?

Em relação a QP1, a Figura 2 apresenta uma visão geral das MAs identificadas no âmbito
deste MSL. Mais detalhes sobre os resultados das MAs podem ser encontradas no re-
latório técnico (https://figshare.com/s/21338d322bcfed888be5).

Figura 2. Tipos de Metodologias ativas identificadas nas publicações.

Ao todo, foram identificadas dez (10) tipos de MAs adotadas pelos docentes, são
elas: Aprendizagem Baseada em Problemas (ABP); Aprendizagem Baseada em Proje-
tos (ABPj); Coding Dojo (Dojo); Computação Desplugada (CD); Sala de Aula Inve-

X Congresso Brasileiro de Informática na Educação (CBIE 2021)

Anais do XXXII Simpósio Brasileiro de Informática na Educação (SBIE 2021)

1155

tida (SAI); Gamificação (GM); Jogos Educacionais (JE), Método Baseado em Tutoriais
(MBT), Programação Competitiva (PC) e Robótica Educacional (RE).

Na Figura 2 percebe-se que Jogos Educacionais é a metodologia com maior quan-
tidade de publicações disponı́veis (7) e, consequentemente, a mais adotada pelos docen-
tes. Destaca-se que, no contexto dos JEs, existe uma associação automática dessa MA
com jogos digitais. Stephan et al. (2020) apresentam o GameProgJP, uma abordagem
que visa apoiar o ensino de programação empregando como recurso pedagógico o desen-
volvimento de jogos. O jogo é divido em quatro partes, sendo que cada parte abordava
determinado conteúdo da disciplina: 1a parte, declaração de variáveis e uso de funções;
2a parte, estruturas condicionais; 3a parte, estruturas de repetição, vetores e strings; 4a

parte, matrizes e estruturas de dados heterogêneas. Ao final são geradas quatro versões
do jogo. As mecânicas do jogo são implementadas de acordo com o conteúdo ensinado
ao longo da disciplina [Stephan et al. 2020]. Como resultados, os autores notaram que a
abordagem motivou e aumentou o interesse dos estudantes por programação.

No que diz respeito à Gamificação (GM), essa MA vem sendo utilizada pelos
docentes pois torna a prática das disciplinas de programação uma atividade leve, divertida
e descontraı́da para os estudantes [Casarotto et al. 2018]. Para auxiliar neste processo,
os docentes têm adotado ferramentas e atividades gamificadas com foco na resolução de
problemas, como o Kahoot e Socrative [Nagai et al. 2016], o Portal URI Online Judge
[Brito et al. 2019] e o UVa Online Judge [Melo et al. 2016]. Outro ponto a ser destacado
é que a GM normalmente vem sendo adotada em conjunto com outras MAs. Costa et
al. (2017) relatam uma experiência sobre uso de elementos de gamificação combinados
com as metodologia SAI para ensinar os conteúdos de Programação Orientada à Objetos.
Como resultados, os autores comentam que à adoção combinada destas MAs permitiu a
melhoria do rendimento acadêmico e do engajamento dos estudantes nas aulas.

Foram identificadas também as disciplinas de programação em que as MAs foram
adotadas, são elas: Algoritmos (AL), Algoritmos II (ALII), Estruturas de Dados (ED),
Introdução à Programação (IP), Laboratório de Programação (LProg), Linguagem de
Programação (LP), Lógica de Programação (LogProg), Programação Orientada à Obje-
tos (POO), Programação (Prog), Programação Web (ProgWeb) e Teoria dos Gráfos (TG).
Observou-se que a linguagem de programação C foi a mais utilizada pelos docentes para
ensinar programação, seguida pela linguagem Java e Python. A Tabela 2 apresenta um
resumo das MAs encontradas, as disciplinas ao qual foram adotadas e, quando houver, as
ferramentas utilizadas pelos docentes para apoiar na adoção das MAs. 1

Tabela 2. MAs utilizadas por disciplina e ferramentas utilizadas.

MAs Nome das Disciplinas e Ferramentas Adotadas
JE LogProg e AL (Jogo Logirunner), IP (Jogo Klouro), POO (Jogo Gaia ABstração Game, POOkemon), Prog

(Jogos Bullfrogs, Metrocity, Carcassonne e o jogo Um império em oito minutos) e LProg (GameProgJF)
GM POO (cod[edu]), Prog (Kahoot, code.Org, Socrative), IP (Canvas e Huxley), ALII (on-line UVa Online

Judge e o Jogo Game of Code (Goc))
Dojo AL, IP, LP (IDE DevC++)
GM + SAI POO (Moodle)
MBT Prog (FlashPunk)
PC + GM AL, ED (URI online Judge)
RE Prog (Code Blocks e Arduı́no)

1Para mais detalhes, ver o relatório técnico deste MSL (https://figshare.com/s/21338d322bcfed888be5).

X Congresso Brasileiro de Informática na Educação (CBIE 2021)

Anais do XXXII Simpósio Brasileiro de Informática na Educação (SBIE 2021)

1156

Em se tratando de ensino de programação, o uso de ferramentas para a execução de
tarefas é indispensável. Diante disso, é fato que utilizar as MAs com o suporte ferramental
de ferramentas (UVa Online Judge, Kahoot, code.Org e Socrative, por exemplo) contribui
para atrair a atenção do estudante em diversas ocasiões nas aulas. Além disso, apoia no
engajamento e motivação dos estudantes, em especial nos momentos iniciais do ensino,
visto que é imprescindı́vel para o processo de ensino e aprendizagem. Desta forma, nota-
se que a utilização de ferramentas computacionais, aliadas as MAs, contribui para que
a construção e compartilhamento do conhecimento dos estudantes. O uso de ferramen-
tas poderá ser uma contribuição pedagógica quando na transposição didática no ensino
frente ao perfil dos estudantes na contemporaneidade. Porém, ressalta-se que nem sem-
pre o fato de utilizar alguma ferramenta garante que os objetivos de aprendizagem sejam
alcançados. Isso dependerá, muitas vezes, do perfil do estudante, do contexto, da disci-
plina e do conteúdo em que a ferramenta foi aplicada [Blatt et al. 2017, Silva et al. 2019].

3.2. QP2 - Como os estudantes percebem as MAs durante a aprendizagem de
programação?

Para responder a QP2, realizou-se uma análise qualitativa das percepções dos estudantes
coletadas a partir de cada publicação aceita, em relação as MAs adotadas. O objetivo
principal desta análise foi identificar os pontos positivos e negativos relatados na litera-
tura, sob a ótica dos estudantes, em relação às MAs. Para realizar a análise qualitativa, foi
criada uma lista com todas as percepções identificadas. Cada uma das percepções foi ana-
lisada e, a partir disso, criaram-se códigos. Em seguida, estes códigos foram analisados e
agrupados de acordo com as suas caracterı́sticas, formando conceitos relevantes e que são
representados neste trabalho por meio de Categorias e Subcategorias. Ressalta-se que um
pesquisador-autor realizou a análise. Em seguida, ela foi revisada e discutida com outro
pesquisador-autor, que possui mais de seis anos de experiência em análise qualitativa. A
Tabela 3 mostra as percepções dos estudantes agrupadas de acordo com as Categorias
identificadas: Engajamento, Desempenho, Interação e Colaboração, e Motivação.

Tabela 3. Percepções dos Estudantes em relação às MAs.

Cat. Subcategorias ABP ABPj CD Dojo PC GM SAI JE MBT RE #artigos

E
ng

aj
am

en
to (+) Engajados para aprender os conteúdos ensi-

nados
X X X X 06

(+) Engajados devido ao trabalho em equipe X X X 01
(+) Engajados devido aos momentos de dis-
cussão e de tirar dúvidas durante a aula

X X 02

D
es

em
pe

nh
o (+) Melhoria no desempenho na disciplina X X X X 03

(+) Melhoria do desenvolvimento de com-
petências profissionais

X X X X 02

(+) Melhoria nas habilidades de programação X X X 01
(+) Contribuiu para o entendimento dos concei-
tos ensinados

X X 04

In
te

ra
çã

o
e

co
la

bo
ra

çã
o (+) Melhoria da participação em sala de aula X X X X 03

(+) Incentivou a colaboração e interação en-
tre estudantes e estudantes e docentes para
resolução dos exercı́cios

X X X X 02

M
ot

iv
aç

ão

(+) Motivou os estudantes aprenderam de forma
divertida a disciplina

X X X X X X 04

(+) Motivou os estudantes a continuarem fre-
quentando a disciplina

X X 01

(+) Motivou os estudantes a se sentiram envol-
vidos no aprendizado

X X X X X 04

(+) Possibilitou os estudantes buscarem diferen-
tes formas de resolver os problemas

X X X 03

X Congresso Brasileiro de Informática na Educação (CBIE 2021)

Anais do XXXII Simpósio Brasileiro de Informática na Educação (SBIE 2021)

1157

Para a categoria “Engajamento” foram associadas três subcategorias que retra-
tam os motivos pelos quais os estudantes se sentiram mais engajados para aprender
programação com aquelas MAs. A percepção em relação ao engajamento foi identifi-
cada quando os docentes empregaram as seguintes MAs: ABP, CD, Dojo, GM e JE.
Observa-se que estas MAs contribuem para o despertar dos estudantes para uma postura
ativa, criativa e colaborativa, visto que se mostram engajados no trabalho em equipe e
para discutir as questões durante a aula, buscando tirar dúvidas.

Na categoria “Desempenho”, as seguintes MAs se destacaram: ABP, ABPj,
CD, Dojo, PC, GM, SAI e JE. Nota-se que todas elas estão relacionadas à melhoria
do desempenho dos estudantes e algumas mais especificamente ao desenvolvimento de
competências profissionais, como comunicação mais ampla, trabalho em equipe e au-
todidatismo. Além disso, nota-se uma discussão sobre a melhoria das habilidades de
programação, como a capacidade para resolução de problemas, entendimento do fun-
cionamento básico da linguagem de programação e a capacidade de leitura de código
[Nagai et al. 2016], além de contribuir para o entendimento dos conceitos ensinados.
Deste modo, os estudantes conseguem desenvolver habilidades relacionadas aos conheci-
mentos e práticas da programação, construindo competências profissionais.

Partindo do pressuposto que a construção do conhecimento perpassa pela troca de
experiências e compartilhamento do conhecimento construı́do, observou-se que as MAs
ABP, Dojo, PC e GM foram as que mais contribuı́ram para o despertar da “Interação
e Colaboração” entre os estudantes e entre os estudantes e docentes. Isto ocorre, pois
estas MAs permitem a melhoria da participação em sala de aula e troca de conhecimentos
por meio da interação nas discussões. Por fim, observa-se que a categoria “Motivação”
esteve associada a forma divertida adotada para ensinar o conteúdo (MAs CD, Dojo, PC,
GM, JE, MBT e RE). A motivação dos estudantes refletiu numa melhoria na frequência
com que os estudantes participavam das aulas, uma vez que eram desafiados a buscarem
formas inovadoras de resolver os problemas, dentro e fora da sala de aula.

Em relação as percepções negativas das MAS, tais percepções estavam relaciona-
das a baixa compreensão dos estudantes sobre os conteúdos das disciplinas e não sobre
às MAs em si, tais como [Silva et al. 2018, Moreira and Monteiro 2018]: dificuldade de
compreender o funcionamento das estruturas de controle, dificuldade de criar algoritmos
que resolvam problemas concretos; dificuldade em aprender a pensar algoritmicamente,
dificuldades de se posicionar em frente aos colegas e docentes para expor o seu traba-
lho e responder a questionamentos. Também houveram aspectos negativos relacionados a
programação e ao funcionamento do computador, e dificuldades sobre questões técnicas,
por exemplo, a manipulação de arquivos em Java [Cera et al. 2012], falta de habilida-
des necessárias, como a resolução de problemas [Nagai et al. 2016] ou mesmo a falta de
motivação dos estudantes e sua dificuldade para manter um ritmo de estudos contı́nuo
[Raposo and Dantas 2016]. Acredita-se que as percepções identificadas e mapeadas po-
dem subsidiar a construção de conhecimentos para a escolha das MAs a serem utilizadas,
frente ao objetivo de aprendizagem a ser alcançado. Além disso, o interesse em conhecer
a percepção dos estudantes é importante, pois possibilita, por exemplo, saber se alguns
estudantes precisam de ajuda adicional para compreender os conteúdos debatidos em sala
de aula ou mesmo para promover (novos) meios para ajudar nas dificuldades apresentadas.

X Congresso Brasileiro de Informática na Educação (CBIE 2021)

Anais do XXXII Simpósio Brasileiro de Informática na Educação (SBIE 2021)

1158

4. Discussão dos Resultados
Os resultados apresentados neste trabalho mostram que há uma preocupação relacionada
à adoção / aplicação de diferentes MAs durante o ensino de programação, haja vista que
vem sendo exigido cada vez mais do corpo docente a preparação de aulas dinâmicas
e o domı́nio de como utilizar as diferentes MAs para motivar e engajar os estudantes.
Percebe-se também um número crescente de MAs que vêm ganhando destaque, no sentido
de chamar a atenção dos estudantes e mudando a forma tradicional de aprendizagem de
programação [Castro and Siqueira 2019]. Frente a isso, as pesquisas identificadas neste
MSL mostram a importância de se explorar esse tema e a necessidade de desenvolver
mais estudos para um melhor entendimento de como e quando utilizar MAs no ensino da
programação nos cursos da área da Computação e frente as diferentes necessidades dos
envolvidos no processo de ensino e aprendizagem no cenário educacional.

Além disso, esse panorama demonstra que foram encontrados mais benefı́cios do
que dificuldades, em especial na perspectiva do estudante, em relação a adoção das MAs
nas aulas de programação. Portanto, conclui-se que a adoção de MAs, de maneira geral,
vem produzido resultados de aprendizagem positivos para os estudantes, uma vez que de
certa forma as MAs fazem com que os estudantes rompam com sua passividade em sala
de aula [Mulcahy 2002]. Desta forma, é necessário apoiar e capacitar o corpo docente
para que possam atender às necessidades do ensino [Borges and Alencar 2014].

Ao observar a literatura, identificou-se os trabalhos de Borges et al. (2018) e
Medeiros et al. (2018) . Contudo, estes trabalhos olham para a literatura sob a ótica
de estratégias de ensino (tradicionais ou não) que podem ser adotadas durante o ensino
de programação, diferentemente deste MSL, que foca apenas nas MAs. O trabalho de
Berssanette e Francisco (2021) apresenta os resultados de MSL em que foram identificas
estratégias pedagógicas adotadas no ensino de programação, similarmente ao conduzido
neste MSL. Constatou-se que apesar do estudo ter sido executado apenas no contexto
brasileiro e com foco no ensino superior, os resultados encontrados neste MSL estão
alinhados com os resultados de Berssanette e Francisco (2021) .

5. Considerações Finais
O foco desta pesquisa é sumarizar as principais MAs utilizadas no ensino de programação
em cursos superiores no Brasil, além de relatar as percepções dos estudantes sobre o pro-
cesso de aprendizagem com estas MAs. Para isso, foi conduzido um MSL nos principais
eventos e revistas cientı́ficos do Brasil. A partir dos resultados alcançados, foram identi-
ficadas que dez metodologias ativas são comumente adotadas pelos docentes.

As MAs que mais se destacaram foram JE e GM, estas MAs podem fornecer um
feedback rápido, já que muitas vezes são apoiadas por ferramentas tecnológicas e que
visam facilitar o processo de aprendizagem de conceitos associadas à prática das teo-
rias aprendidas e a colaboração entre os estudantes. Também, tais ferramentas fornecem
meios para que as práticas para a aprendizagem possam ser realizadas em equipe, o que
desperta a curiosidade, motiva e engaja os estudantes a aprender, a compartilhar e buscar
ativamente a construções de seus novos conhecimentos, praticando os conceitos com a
utilização e o suporte de tecnologias fı́sicas ou digitais.

Como contribuições, este trabalho apresenta diferentes MAs para suporte ao en-
sino e a aprendizagem ativa da programação. Isto é necessário pois, muitas vezes, os

X Congresso Brasileiro de Informática na Educação (CBIE 2021)

Anais do XXXII Simpósio Brasileiro de Informática na Educação (SBIE 2021)

1159

Ivanilse
Destacar

docentes não sabem qual MA adotar em sala de aula frente aos diferentes assuntos e dis-
ciplinas que precisa ministrar ao longo do semestre. Como trabalhos futuros pretende-se
desenvolver um repositório colaborativo aberto em que os docentes possam identificar,
selecionar, adotar, discutir, comentar, avaliar e possivelmente colaborar com (novas ou
não) MAs utilizadas durante o ensino de programação.

Referências
Acharya, S. and Gayana, M. (2021). Enhanced learning and improved productivity of

students’ using project based learning approaches for programming courses. Journal
of Engineering Education Transformations, 34:524–530.

Bacich, L. and Moran, J. (2018). Metodologias ativas para uma educação inovadora:
uma abordagem teórico-prática. Penso Editora.

Berssanette, J. and de Francisco, A. (2021). Active learning in the context of the tea-
ching/learning of computer programming: A systematic review. Journal of Informa-
tion Technology Education: Research, 20(1):201–220.

Blatt, L., Becker, V., and Ferreira, A. (2017). Mapeamento sistemático sobre metodolo-
gias e ferramentas de apoio para o ensino de programação. In Anais do Workshop de
Informática na Escola, volume 23, page 815.

Borges, R., Oliveira, P. R. F., Lima, R. d. R., and De Lima, R. (2018). A systematic review
of literature on methodologies, practices, and tools for programming teaching. IEEE
Latin America Transactions, 16(5):1468–1475.

Borges, T. S. and Alencar, G. (2014). Metodologias ativas na promoção da formação
crı́tica do estudante: o uso das metodologias ativas como recurso didático na formação
crı́tica do estudante do ensino superior. Cairu em revista, 3(4):119–143.

Brito, P., Fortes, R., Faria, F., Lopes, R. A., Santos, V., and Magalhães, F. (2019).
Programação competitiva como ferramenta de apoio ao ensino de algoritmos e es-
trutura de dados para alunos de ciência da computação. In Simpósio Brasileiro de
Informática na Educação (SBIE), volume 30, page 359.

Casarotto, R. I., Bernardi, G., Cordenonsi, A. Z., and Medina, R. D. (2018). Logirunner:
um jogo de tabuleiro como ferramenta para o auxı́lio do ensino e aprendizagem de
algoritmos e lógica de programação. RENOTE, 16(1).

Castro, R. M. and Siqueira, S. (2019). Técnicas alternativas de ensino (aprendizagem
ativa) para disciplinas da computação: Um mapeamento sistemático no contexto brasil.
In Anais do Workshop de Informática na Escola, volume 25, pages 1409–1413.

Cera, M. C., Dal Forno, M. H., and Vieira, V. G. (2012). Uma proposta para o ensino
de engenharia de software a partir da resolução de problemas. Revista Brasileira de
Informática na Educação, 20(03):116.

Costa, A. F. F., de MELO, A. F. M. F., MOREIRA, G. G., CARVALHO, M. d. A., and
LIMA, M. V. d. A. (2017). Aplicação de sala invertida e elementos de gamificação
para melhoria do ensino-aprendizagem em programação orientada a objetos.

Diesel, A., Baldez, A. L. S., and Martins, S. N. (2017). Os princı́pios das metodologias
ativas de ensino: uma abordagem teórica. Revista Thema, 14(1):268–288.

X Congresso Brasileiro de Informática na Educação (CBIE 2021)

Anais do XXXII Simpósio Brasileiro de Informática na Educação (SBIE 2021)

1160

Kitchenham, B. and Charters, S. (2007). Guidelines for performing systematic litera-
ture reviews in software engineering. Technical report, Keele University and Durham
University Joint Report.

Luxton-Reilly, A., Albluwi, I., Becker, B. A., Giannakos, M., Kumar, A. N., Ott, L.,
Paterson, J., Scott, M. J., Sheard, J., and Szabo, C. (2018). Introductory programming:
a systematic literature review. In Proceedings of the 23rd Annual ACM Conference on
Innovation and Technology in Computer Science Education, pages 55–106.

Medeiros, R. P., Ramalho, G. L., and Falcão, T. P. (2018). A systematic literature re-
view on teaching and learning introductory programming in higher education. IEEE
Transactions on Education, 62(2):77–90.

Melo, S., Oliveira, R., and Soares Neto, C. d. S. (2016). Game of code: aplicando
gamificação em disciplinas de programação. In XV Simposio Brasileiro de Jogos e
Entretenimento Digital (SBgames 2016).

Moreira, J. A. and Monteiro, W. M. (2018). O uso da computação desplugada em um
contexto de gamificação para o ensino de estrutura de dados. RENOTE, 16(2):546–
555.

Mulcahy, D. (2002). Team-based learning: A transformative use of small groups. Gre-
enwood publishing group.

Nagai, W., Izeki, C., and Dias, R. (2016). Experiência no uso de ferramentas online
gamificadas na introdução à programação de computadores. In Anais do Workshop de
Informática na Escola, volume 22, page 301.

Raj, A. G. S., Patel, J., and Halverson, R. (2018). Is more active always better for tea-
ching introductory programming? In 2018 International Conference on Learning and
Teaching in Computing and Engineering (LaTICE), pages 103–109. IEEE.

Raposo, E. H. S. and Dantas, V. (2016). O desafio da serpente-usando gamification para
motivar alunos em uma disciplina introdutória de programação. In Simpósio Brasileiro
de Informática na Educação (SBIE), volume 27, page 577.

Ribeiro, I. C., Silva, W., and Feitosa, E. L. (2021). Repositório colaborativo para apoiar
a adoção de metodologias ativas no ensino de programação. In Anais Estendidos do
Simpósio Brasileiro de Educação em Computação, pages 56–57. SBC.

Silva, T. S. C., de Melo, J. C. B., and Tedesco, P. C. d. A. R. (2018). Um modelo para
promover o engajamento estudantil no aprendizado de programação utilizando gamifi-
cation. Revista Brasileira de Informática na Educação, 26(03):120.

Silva, W., Steinmacher, I., and Conte, T. (2019). Students’ and instructors’ perceptions of
five different active learning strategies used to teach software modeling. IEEE Access,
7:184063–184077.

Stephan, J., Oliveira, A., and Renhe, M. C. (2020). O uso de jogos para apoiar o ensino e
aprendizagem de programação. In Anais do XXXI Simpósio Brasileiro de Informática
na Educação, pages 381–390. SBC.

X Congresso Brasileiro de Informática na Educação (CBIE 2021)

Anais do XXXII Simpósio Brasileiro de Informática na Educação (SBIE 2021)

1161

Ivanilse
Máquina de escrever
Diante deste cenario, as Metodologias Ativas (MAs) v ´ em ganhando destaque en- ˆ

tre os docentes [Ribeiro et al. 2021]. Segundo Diesel et al. (2017), as MAs possibilitam

uma mudanc¸a no paradigma de aprendizagem, onde o estudante sai do papel de agente

passivo (apenas escuta e recebe o conteudo que ´ e transmitido pelo docente) e passa para ´

o papel de agente ativo da aprendizagem, tornando-se o principal responsavel por sua ´

aprendizagem.

Informatics in Education, 2024, Vol. 23, No. 2, 279–322
© 2024 Vilnius University
DOI: 10.15388/infedu.2024.11

279

Active Learning Methodologies for Teaching
Programming in Undergraduate Courses:
A Systematic Mapping Study

Ivanilse CALDERON1,3, Williamson SILVA2, Eduardo FEITOSA3
1Federal Institute of Rondônia - IFRO, Brazil
2Federal University of Pampa - UNIPAMPA, Brazil
3Federal University of Amazonas - UFAM, Brazil
e-mail: ivanilse.calderon@ifro.edu.br, williamson.silva@gmail.com,
efeitosa@icomp.ufam.edu.br

Received: April 2023

Abstract. Teaching programming is a complex process requiring learning to develop different
skills. To minimize the challenges faced in the classroom, instructors have been adopting active
methodologies in teaching computer programming. This article presents a Systematic Mapping
Study (SMS) to identify and categorize the types of methodologies that instructors have adopted
for teaching programming. We evaluated 3,850 papers published from 2000 to 2022. The re-
sults provide an overview and comprehensive view of active learning methodologies employed
in teaching programming, technologies, programming languages, and the metrics used to observe
student learning in this context. In the results, we identified thirty-seven different ALMs adopted
by instructors. We realized that seventeen publications describe teaching approaches that combine
more than one ALM, and the most reported methodologies in the studies are Flipped Classroom
and Gamification-Based Learning. In addition, we are proposing an educational and collaborative
tool called CollabProg, which summarizes the primary active learning methodologies identified
in this SMS. CollabProg will assist instructors in selecting appropriate ALMs that align with their
pedagogical requirements and teaching programming context.

Keywords: teaching programming, active learning methodologies, computer programming.

1. Introduction

Teaching and learning computing is not trivial due to the fundamental subjects in the
area, especially those related to programming (Luxton-Reilly et al., 2018), since they are
considered complex and require the complete understanding of abstract concepts (Raj
et al., 2018; Turpen et al., 2016). Learning programming requires students to plan solu-
tions to problems, transform the plans into syntactically correct instructions for execu-
tion, and assess the consequential results of executing those instructions (Chao, 2016).

Appendix C

I. Calderon, W. Silva, E. Feitosa280

Analyzing the Computer Science (CS) curriculum, we perceive that the introduc-
tory CS courses (CS0, CS1, and/or CS2) provide the understanding of fundamental
programming topics for the students (Lang et al., 2006). Typically, they are curricular
units that promote the initial contact of Science, Technology, Engineering, and Math-
ematics (STEM) undergraduate students with computational thinking and programming
languages. However, why do introductory programming courses have high failure and
dropout rates?

We highlight two reasons. We identify two reasons. First, higher education in-
stitutions are often associated with traditional teaching methods and resistance to
change (West et al., 2007). Additionally, most instructors adopt traditional teaching
methodologies, causing students to lose interest in learning. Second, according to So-
bral (2021b), teaching and learning how to program are challenging tasks. Teaching
programming is more than coding and translating an algorithm into a language that
a computer can understand. It is to think and solve the problem of creating an algo-
rithm (Sobral, 2021c). For computer science students, acquiring the necessary skills
for software development is one of the main challenges faced. These problems make
students unable to develop specific skills (e.g., abstraction) and often abandon classes
and sometimes even the course (Sobral, 2021b). To combat these problems, instruc-
tors and researchers must constantly update and/or modify teaching methodologies
(Garcia et al., 2021).

Over the past few decades, there has been a significant evolution in technological
resources that can support the teaching and learning process. As a positive contribution
to the teaching process, active learning methodologies have been widely adopted in
developing strategies to overcome learning difficulties, lack of motivation or engage-
ment on the part of students, or even dropping out of the course (Sobral, 2021a).

Active Learning Methodologies (ALMs) combine active student participation,
experimental learning, and action learning. These methodologies make students more
responsible for learning, increasing their motivation and satisfaction (Imbulpitiya et al.,
2020). It is essential to highlight that ALMs induce aspects of active learning, includ-
ing other concepts, such as collaborative and cooperative learning. In active learning,
students learn through instructor-defined activities, which are responsible for supervis-
ing and proposing discussions and challenges, and performed through collaborative
or cooperative learning, which involves two or more participants (de Andrade et al.,
2021). According to Chandrasekaran et al. (2016), the ALMs are considered necessary
in the learning process since they involve students actively constructing knowledge and
change the role of the instructor, who was previously a transmitter of content and in-
formation for a learning facilitator. Think-pair-share, Group Writing assignments, Peer
Instruction, and Problem-Based Learning are examples of ALMs employed to teach
and learn programming.

In the educational context of teaching programming, it is crucial to recognize that
programming is a practical skill that demands hands-on experience for mastery. ALMs,
such as hands-on projects, labs, and interactive exercises, allow students to engage with
and apply programming concepts directly. This iterative process contributes to develop-
ing their problem-solving and programming skills over time. ALMs embody teaching

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...281

methodologies prioritizing the student’s central role in learning, fostering engagement,
active participation, and the construction of knowledge. They prove highly effective due
to the inherently practical and problem-solving nature of programming itself, facilitating
practical learning, honing problem-solving abilities, fostering collaboration, and pro-
moting student teamwork (Eickholt, 2018).

However, which ALM should instructors adopt for teaching programming in comput
ing? To answer this question, we must first consider several related questions: In which
course or course will the instructor use the ALM? Will the instructor incorporate ALMs
throughout the entire course, or will they use them in specific contexts? Does the instruc-
tor know ALM? Does he have time to learn how to use it? Although secondary studies
have been conducted to examine publications analyzing the adoption of ALMs (de An-
drade et al. (2021), Garcia et al. (2022), Suarez-Escalona et al. (2022), Ahshan (2021)),
they have not centered explicitly on identifying suitable methodologies to aid educators
in teaching programming at the higher education level, nor have they proposed a col-
laborative and open repository to support programming instructors. Through an SMS,
we can compile the factors that may bolster programming teaching and ascertain which
ALMs have been embraced, enabling educators to implement these methodologies in
their classrooms.

This research aims to summarize and characterize, through a Systematic Mapping
Study (SMS), the ALMs employed in teaching computer programming in undergradu
ate computing courses. Thus, this SMS provides an overview of the current scenario
and characterizes the research that adopts different ALMs when teaching computer
programming. It also identifies the contents/classes, tools, and programming languages
and the metrics presented in the publications. We hope that Computer Science Education
communities and researchers will use this research to improve academic education and
industry training.

The remainder of this paper is organized as follows. Section 2 describes the back
ground. The protocol of the systematic mapping is presented in Section 3. In Section 4,
we present the results of selected studies. Section 5 contains a discussion of the results.
Section 6 shows the effects of this SMS results in the proposal for the new educational
technology called CollabProg. Section 7 addresses threats to validity. Finally, conclu-
sions and further work are presented in Section 7.

2. Background

This section presents the theoretical concepts of teaching computer programming and
active learning methodologies.

2.1. Teaching Computer Programming

Programming is recognized as an essential competency for addressing real-world prob
lems using computational tools in the 21st Century (Chao, 2016), and consequently,

I. Calderon, W. Silva, E. Feitosa282

the promotion of skills related to computer programming has been encouraged. Learn-
ing computer programming is a crucial step towards developing these skills.

Programming courses should stimulate and develop students’ skills and compe-
tencies necessary for them to be able to solve complex real-world problems. In other
words, skills may encompass coding (the ability to write computer code using specific
programming languages to create programs and solutions), problem-solving, logical
thinking, debugging, and abstraction. The ACM and IEEE curriculums state that stu-
dents are expected to learn the knowledge, skills, and attitudes presented at the under-
graduate level (ACM and IEEE, 2013). For Petri and von Wangenheim (2017), com-
puter science graduates should be able to design and implement systems involving
software and hardware.

However, when it comes to teaching and learning programming, the literature over
the years has shown that, when teaching programming to students, instructors could be
more successful and need to be (Berssanette and de Francisco, 2021). When instructing
programming, it’s crucial to recognize that competencies extend beyond mere tech-
nical skills; they encompass the ability to apply these skills across diverse contexts
and effectively combine them to attain larger objectives. These competencies include
problem-solving, collaboration, self-learning, analysis, adaptation, and technical com-
munication. Consequently, programming is one of the most prevalent means of nurtur-
ing computational thinking, as it requires the application of computer science concepts
such as abstraction, debugging, remixing, and iteration to address problem-solving
(Yang et al., 2023).

In light of this, innovative pedagogical approaches to teaching programming have
become an ongoing topic of discussion in universities and colleges worldwide. The
teaching of programming is centered on the three aspects of programming: design,
development, and testing (Kong et al., 2020). The inadequate balance in applying these
concepts results in a disproportionate amount of time that the student spends to abstract
the problem from the real world and create a solution, then develop this solution and
test it. This leads to frustration and demotivation and is a severe problem of these core
disciplines for computer science (Rajaravivarma, 2005). Lister et al. (2004) and Tenen-
berg and Fincher (2005) highlight significant deficiencies in the learning outcomes of
students who studied programming in different higher education courses. These scenar-
ios originate from mistakes at the beginning of studies and poor understanding of basic
concepts, procedures, and processes (Kinnunen and Malmi, 2006). Moreover, some
deficiencies are identified in the teaching of programming, particularly concerning the
students’ lack of skills for programming (McCracken et al., 2001).

According to Barnes et al. (2008) and Parsons (2011), the nature of computing and
this generation of students has changed remarkably in recent years. However, most
higher education computing courses are still taught in traditional ways and may not be
adequate to keep pace with modern concerns and may not support the necessary learn-
ing. According to (Petri and von Wangenheim, 2017), student-centered instructional
strategies are needed to achieve more effective learning at higher levels, thus allowing
them to learn by doing.

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...283

2.2. Active Learning Methodologies

Active learning (AL) or Active Learning Methodologies (ALM), a term popular in
US education circles in the 1980s, encourages learners to take responsibility for their
learning, requiring their experience in education to inform their process of learning
(Zayapragassarazan and Kumar, 2012). The premise is to engage more actively the
students through various methodologies, strategies, approaches, and student-centered
pedagogical techniques so that they become involved in the teaching and learning pro-
cess. The idea is that they apply their knowledge meaningfully, employing higher-order
thinking skills and reflecting on their learning to build new knowledge (Berssanette and
de Francisco, 2021).

Although understanding the concept behind ALM is simple, it does not have a spe-
cific or strict definition. ALMs have no specific definition and can have different inter-
pretations depending on the subject or group of learners involved (Hativa, 2001; Kane,
2007). On the other hand, it is easy to observe that ALMs can draw from various learning
theories emphasizing active student participation, knowledge construction, and the de-
velopment of practical skills, especially Constructivist Theory (Ben-Ari, 2001; Jonassen
et al., 1995) where the knowledge is not simply absorbed from textbooks and lectures
but actively constructed by the student (Ben-Ari, 2001).

It is a fact that ALMs help instructors develop and improve general principles about
teaching and learning. Using ALMs, instructors are responsible for organizing appro-
priate learning activities that allow learners to explore and develop their knowledge and
thinking. They must use practical teaching methods by providing numerous examples
of activities and pedagogical techniques that students can enjoy in various learning situ-
ations. Various teaching methods have been created to achieve this goal (Hativa, 2001;
Kane, 2007). In practice, the possibilities for adopting ALMs vary widely in intensity
and implementation and include diverse approaches such as group problem solving,
use of tools, and the realization of projects in classes or workshops (Freeman et al.,
2014). So, the typical question made by instructors is: Which ALM should I adopt in
my classroom?

There is much evidence in the literature about the advantages of using ALMs in teach
ing, especially in computing. Several researchers have highlighted the positive impacts
on student learning, attitudes, critical thinking, and reducing students’ failures in subjects
for teaching programming (Park and Choi, 2014). The use of ALMs allows the instructors
to create learning situations for students to build knowledge about the contents learned to
develop critical thinking and reflections on the exercises they carry out, as well as explor-
ing attitudes, personal values, and learning through doing (Parsons, 2011).

However, adopting ALMs for teaching programming has practical implications for
instructors who wish to implement active learning. There are many ALMs to be adopted.
The possibilities vary widely in intensity and implementation and include diverse ap
proaches such as group problem solving, use of tools, and the realization of projects in
classes or workshops (Freeman et al., 2014). But which choice? Do the instructors know
the various successful or unsuccessful ways of using and implementing ALMs? Do they
have some knowledge and planning to be considered to use an ALM?

I. Calderon, W. Silva, E. Feitosa284

To address these questions, this research investigates how instructors have used ac-
tive learning methodologies while teaching programming in undergraduate courses. In
addition, we were also interested in which subjects they were applied to, which program-
ming languages were used, and if they were realized experimental studies.

3. Research Methodology

We conducted a Systematic Mapping Study (SMS) to identify the scenario in which in
structors used the ALMs while teaching programming. The SMS follows the procedures
described in Kitchenham (2012), i.e., planning, conducting, and analyzing the results.
The planning activities and their steps are described in the following subsections, and
Sections 4 and 5 show the results.

3.1. Research Questions

We defined the following Research Question (RQ) to guide our work:
RQ1●● : How have instructors used active methodologies during the teaching of
programming in undergraduate courses?

To answer the research question, we sought to identify three aspects in the selected
publications: (i) Which ALMs have been adopted for teaching programming? (ii) What
is the programming teaching context?, and (iii) What kinds of experiments have been
performed by the researchers? Based on the three aspects, research sub-questions (SQs)
were defined for each element to answer specific questions (see Table 1).

3.2. Search Strategy

This SMS proposes investigating the ALMs instructors adopt while teaching program
ming in undergraduate courses. For this, we used the search mechanism available in most
digital libraries based on textual research expressions and a manual search of events in

Table 1
Sub-questions. Source: The authors.

Aspect Sub-questions

Methodology SQ1. Which ALMs were addressed in the publications?

Teaching SQ2. Which subjects were mentioned in the publications?
SQ3. Which programming languages were reported in the publications?

Experiments SQ4. What type of experimental study was carried out?
SQ5. What evaluation metrics were reported in the publications?
SQ6. Which technologies were adopted during the teaching of programming?

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...285

computing. According to Steinmacher et al. (2015), the definition of the search string is
an essential phase for the effectiveness of the search stage of an SMS. The search string
was defined based on two essential terms of our research questions: (1) active method
ologies and (2) teaching of programming. Besides this, to help us, the studies by Kelle-
her and Pausch (2005), Raj et al. (2018), Tharayil et al. (2018), and Aksit et al. (2016)
were used as control articles to support the selection of keywords and synonyms related
to the research questions.

Therefore, the query was iteratively evolved several times to ensure that a compre
hensive set of synonyms was used to allow high coverage. A search string refinement
process was performed to include new terms from previously selected publications and
verify whether the control articles provided hits via the test search strings. The search
string used in this study is presented below.

Active Learning Methodologies for Teaching Programming in Undergraduate Courses 7

(“active learning” OR “active methodology”)
AND

(“introductory programming” OR “introduction to programming” OR “novice
programming” OR “novice programmers” OR “CS1” OR “CS 1” OR

“programming course” OR “learn programming” OR “learning to program” OR
“teach programming” OR “training programming” OR “instruction

programming” OR “coaching programming”)

After defining the search string, we selected the following libraries: (i) IEEE Xplore
Digital Library (IEEE)2, (ii) ACM Digital Library (ACM)3, and (iii) Scopus Library4.
These libraries were selected for the following reasons: (i) They possess robust search
engines with effective operations and broad search scope; (ii) Scopus serves as a meta-
library, indexing publications from several renowned publishers, including Springer, El-
sevier, and Taylor & Francis; (iii) ACM and IEEE rank as the top two digital libraries
in Computer Science. Our choice of these databases is informed by recommendations
from prior systematic literature reviews, affirming their suitability and relevance as sources
(Nakamura et al., 2022).

Additionally, a manual search was carried out in the following events and scientific
journals on education in computing and informatics in education in Brazil: (i) Brazilian
Symposium on Informatics in Education (SBIE), (ii) Workshop on Computing at School
(WIE), (iii) Computer Education Workshop (WEI), (iv) Brazilian Symposium on Games
and Digital Entertainment (SBGames), (v) International Congress of Educational Infor-
matics (TISE), (vi)New Journal Technologies in Education (RENOTE) and (vii)Brazilian
Journal of Informatics in Education (RBIE). The choice to perform searches in Brazilian
sources, including journals and specialized events in the field of computing and informat-
ics education in Brazil, was motivated by several vital reasons that align with the scope of
this research. First and foremost, it is crucial to emphasize that Brazil’s educational and
technological landscape possesses distinct characteristics that can significantly influence
the emergence of pedagogical approaches and practices that are both unique and highly
relevant to the national context. As suggested by Mendes et al. (2020), it is advisable to
follow the references cited in each selected paper to discover additional pertinent sources.
Consequently, exploring Brazilian sources has provided access to studies, research find-
ings, and local experiences frequently unavailable internationally. This enrichment con-
tributes significantly to the discourse and comprehension of the challenges and progress
in computing education within a distinct contextual framework.

Our aim in incorporating Brazilian sources was to encourage cultural and linguistic
diversity in academic discourse, enabling researchers and educators from diverse back-
grounds to share their knowledge and promoting a more inclusive and worldwide outlook
in studies related to educational informatics. Thus, it was a strategic decision to incor-
porate Brazilian sources into the research to enhance and provide context to the results

2https://www.ieee.org/
3http://dl.acm.org/
4http://www.scopus.com/

After defining the search string, we selected the following libraries: (i) IEEE Xplore
Digital Library (IEEE)1, (ii) ACM Digital Library (ACM)2, and (iii) Scopus Library3.
These libraries were selected for the following reasons: (i) They possess robust search
engines with effective operations and broad search scope; (ii) Scopus serves as a meta
library, indexing publications from several renowned publishers, including Springer, El
sevier, and Taylor & Francis; (iii) ACM and IEEE rank as the top two digital libraries in
Computer Science. Our choice of these databases is informed by recommendations from
prior systematic literature reviews, affirming their suitability andrelevance as sources
(Nakamura et al., 2022).

Additionally, a manual search was carried out in the following events and scientific
journals on education in computing and informatics in education in Brazil: (i) Brazil-
ian Symposium on Informatics in Education (SBIE), (ii) Workshop on Computing at
School (WIE), (iii) Computer Education Workshop (WEI), (iv) Brazilian Symposium on
Games and Digital Entertainment (SBGames), (v) International Congress of Educational
Informatics (TISE), (vi) New Journal Technologies in Education (RENOTE) and (vii)
Brazilian Journal of Informatics in Education (RBIE). The choice to perform searches
in Brazilian sources, including journals and specialized events in the field of computing

1	https://www.ieee.org/
2	http://dl.acm.org/
3	http://www.scopus.com/

I. Calderon, W. Silva, E. Feitosa286

and informatics education in Brazil, was motivated by several vital reasons that align
with the scope of this research. First and foremost, it is crucial to emphasize that Bra-
zil’s educational and technological landscape possesses distinct characteristics that can
significantly influence the emergence of pedagogical approaches and practices that are
both unique and highly relevant to the national context. As suggested by Mendes et al.
(2020), it is advisable to follow the references cited in each selected paper to discover
additional pertinent sources. Consequently, exploring Brazilian sources has provided
access to studies, research findings, and local experiences frequently unavailable inter-
nationally. This enrichment contributes significantly to the discourse and comprehen-
sion of the challenges and progress in computing education within a distinct contextual
framework.

Our aim in incorporating Brazilian sources was to encourage cultural and linguis-
tic diversity in academic discourse, enabling researchers and educators from diverse
backgrounds to share their knowledge and promoting a more inclusive and worldwide
outlook in studies related to educational informatics. Thus, it was a strategic decision
to incorporate Brazilian sources into the research to enhance and provide context to the
results despite potential limitations in linguistic accessibility for confident readers of the
international journal.

3.3. Publication Selection Criteria

Following the procedures described by Kuhrmann et al. (2017), inclusion criteria (IC)
and exclusion criteria (EC) were defined for the publications returned by the search
string. These criteria are needed to select only relevant publications for the search and
filter publications that require further analysis. The criteria are presented in Table 2.

Table 2
Criteria for inclusion or exclusion of publications. Source: The authors.

Criteria ID Description

Inclusion of
publication
(IC)

IC1

IC2

IC3

Publications that discuss the perceptions of instructors and/or students regarding
the ALMs used during the teaching and learning of programming classes should be
selected.
Publications that present experimental studies on the use of ALMs during the teaching
of programming should be selected.
Publications that present learning assessment metrics about the use of the ALM(s) adop-
ted should be selected.

Exclusion of
publication
(EC)

EC1

EC2
EC3
EC4

EC5

Publication is not available for reading and data collection (paid publications or those
not made available by the search engine).
Publications that do not meet the inclusion criteria.
Publications not written in English or Portuguese.
The following types of publication: books, doctoral theses, master’s dissertations,
patents, tutorials, workshop proposals, or posters.
Duplicate publications (for example, a paper with a study published in different
places or on different dates). In this case, we considered only the most complete and
latest version.

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...287

3.4. Processes for the Selection of Publications

We applied two selection filters (inclusion and exclusion criteria) in the returned pub
lications. We adopted the Start tool4 to help us filter the papers. If the search returned du-
plicate papers, the tool would indicate this, and only one article remained for analysis.

In the 1st Filter, we analyzed the titles and abstracts of the returned publications,
and only the publications that adopted ALMs for teaching programming were selected.
Via this filter, we excluded only papers that were clearly out of scope. In case of doubts
regarding the publication’s relevance, the articles were kept for further analysis.

In the 2nd Filter, we read the publications selected by the first filter to conduct a
more detailed analysis and identify and extract the data according to the inclusion and
exclusion criteria.

3.5. Data Extraction

From the publications selected, we extracted relevant information using a form summa
rized in Table 3.

3.6. Execution of Systematic Mapping

The systematic mapping involved three researchers to reduce the interpretation bias of
a single researcher. Two Ph.D. researchers reviewed the inclusion and exclusion criteria
protocol and analyzed the search strategy.

To assess the reliability of the publication selection process, two researchers indepen
dently ranked a sample of 40 publications randomly selected from the set of publications
returned to measure the level of agreement among them.

In this classification, the title and abstract of each publication were evaluated and
classified based on the selection criteria. Cohen’s Kappa coefficient was applied af-
ter this step, and the statistical test was used, which is a measure of intra-and inter-
observer agreement and the degree of understanding beyond what would be expected
by chance alone (Cohen, 1960). The evaluation result showed a consensus between
researchers of 0.89 (Kappa concordance), representing an almost perfect concordance.
Based on this result, the steps of selecting and extracting data from publications were
continued.

3.7. Identified Publications

Initially, 3,850 publications were found in the digital libraries and annals: 954 in the
Scopus library, 2,190 in the manual search, 373 in the IEEE library, and 333 in the

4	http://lapes.dc.ufscar.br/tools/start_tool

I. Calderon, W. Silva, E. Feitosa288

ACM library. After removing duplicate publications, the total number of publica-
tions selected for analysis using the first filter was 3,709. Of these 3,709 publications,
2,979 were excluded after using the first filter since they did not meet the inclusion
criteria.

According to the established inclusion and exclusion criteria, the remaining 730
publications were read and analyzed using the second filter. At the end of the evaluation
process, 80 publications were accepted and had their data extracted. Fig. 1 summarizes
the complete data selection and extraction process. The publications selected in this
SMS are presented in Table 13, organized by their relevance as obtained from digital
libraries.

Table 3
Data to be extracted from publications. Source: The authors

Aspect Extraction items Data to be extracted

General
information

Title
Author(s)
Type of publication

Publication Year
Venue of the paper

The title of the publication.
The name of the author(s) of publication.
The type of publication (e.g., paper in a journal, conference
paper, etc.).
The publication year of the paper.
The name of the venue where the paper was published.

Methodologies Identified ALM Name of the ALM addressed in the publication.

Teaching Subject
Course
Language

The name of the subject taught.
The name of the course reported.
Name of the programming language that was used.

Experiments Experimental study
Type of experimental
study

Technologies

Metrics

Does the publication present an experimental study?
Does the publication describe the type of study? If yes, which one
(Unterkalmsteiner et al., 2011; Creswell et al., 2006): (i) case
study, if an empirical inquiry investigates a contemporary
phenomenon within its real-life context, especially when
the boundaries between phenomenon and context are not
evident; (ii) experience report, if the focus of the study is
directed towards reporting educational experiences without
stating research questions or a theoretical concept, which is
then evaluated empirically; (iii) controlled experiment, if the
study performs an empirical investigation that manipulates one
or more variables or factors in the studied context, verifying
the effects of this manipulation; (iv) action research, if the
study states this research method explicitly; (v) survey, if
the study collects quantitative and/or qualitative data using a
questionnaire or interviews; (vi) mixed methods if involves
collecting, analyzing, and mixing qualitative and quantitative
approaches in a single study or a series of studies.
Does the publication present the technologies, tools, and
applications used in teaching programming? If yes, list them.
Does the publication describe the metrics used to evaluate the
improvement in teaching programming? If there are metrics,
specify the metric used in the publication.

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...289

4. Results

4.1. Publication Trend

This section presents the publication trends for the research topic investigated in this
SMS. Fig. 2 shows the variation in the number of publications on adopting ALMs
for teaching programming. During the research period, 2018 has the most significant
number of publications. Ten studies were published in 2021, while only three were
published in 2022. The period from 2019 to 2020 has 12 and nine publications, respec-

Fig. 1. Results of systematic mapping filters. Source: The authors.

Fig. 2. Publication trend by year. Source: The authors.

I. Calderon, W. Silva, E. Feitosa290

tively. Between 2013 and 2017, there was a variation between two and six publications.
From 2001 to 2012, the number of publications varied between zero and one per year.

We observed decreased publications between 2020 and 2022, possibly due to the
pandemic and the shift to remote learning. One possible reason for this could be the
numerous planned studies on in-person teaching. However, in 2021, some strategies,
such as those in publication S64, were adapted for emergency remote teaching. Given
this scenario, it is clear that there is a significant number of publications on the adop-
tion of ALMs for learning programming. Therefore, it is believed that the community is
constantly researching the adoption of ALMs to support teaching practices.

The most common publication type is conference papers, with 43 publications.
Workshops had 19 publications; finally, the journals had 18 studies published. To pres-
ent venues for research publications related to adopting ALM in computing, we intro-
duce Table 4, which lists events and journals and their respective number of publica-
tions. In this way, we aim to assist researchers new to the field.

We observed that the Frontiers in Education Conference (FIE), an important interna
tional conference that focuses on educational innovations and research in engineering
and education in computing, leads in the development of new research insights and
educational approaches and is the conference with the most significant number of pub-
lications of interest to this research. In addition, the Technical Symposium on Computer
Science Education (SIGCSE) and the Brazilian Symposium on Informatics in Educa-
tion (SBIE) presented seven publications each, and the Workshop on Computing Edu-
cation (WEI) presented five publications.

4.2. SQ1. Which ALMs were Addressed in the Publications?

To answer SQ1, the ALMs reported in the publications were analyzed and classified by
type, and 37 kinds of ALMs adopted for teaching programming were identified. Fig. 3
shows the types of ALMs mapped in this study. According to Katona and Kovari (2016),

Table 4
Events that resulted in more than two publications on the SMS theme. Source: The authors

ID Publication venue #Publications

01 Frontiers in Education Conference (FIE) 15
02 Technical Symposium on Computer Science Education (SIGCSE) 7
03 Brazilian Symposium on Informatics in Education (SBIE) 6
04 Workshop on Computer Education (WEI) 5
05 Brazilian Symposium on Games and Digital Entertainment (SBGames) 2
06 Global Engineering Education Conference (EDUCON) 2
07 International Conference on Learning and Teaching in Computing and Engineering

(LaTICE)
 2

08 Conference on Information Technology Education (SIG) 2
09 Others (places with only one publication) 39

- Total 80

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...291

numerous approaches have been aimed at enhancing students’ learning achievements in
recent decades through active learning methods. This particularly applies to program-
ming-related courses, where students must practice regularly.

Among the ALMs mapped, we noticed 17 publications presenting approaches that
combine more than one ALM. We named and classified them as “Mixed Methodologies”
(MixMeth). See all the MixMeth in Table 5. In addition, four publications with proposals
for new methodologies were classified as “Authors’ Methodologies” (Aut-Meth), i.e.,
instructors adopt different teaching practices to explore active learning during the teach-
ing schedule. These can be seen in publications S16, S17, S18, and S25.

The ALMs that were jointly adopted stand out with a percentage of 20.9% (17) of
the mapped publications, as can be seen in study S12, in which the authors adopted the
Flipped classroom (FC) and Problem-Based Learning (PBL) in a mixed way. The FC
method uses information technology to invert traditional in-class activities into out-of-
class activities and vice versa (Hendrik, 2019). The common practice of this approach is
the students watch a pre-recorded lecturer video at home and then in the class meeting.
They do a quiz or assignments related to the subject they learned before (Bergmann
and Sams, 2012). Project-Based Learning (PBL) is an inclusive teaching approach that
involves students investigating real-world problems. With this methodology, students
formulate the questions and find solutions to these issues (dos Santos et al., 2018).
Therefore, the combination of active methodologies like FC and PBL can be highly ben-

Fig. 3. Types ALMs adopted for teaching programming. Source: The authors.

I. Calderon, W. Silva, E. Feitosa292

eficial for teaching programming due to the different contributions each one offers. FC
method offers benefits such as pre-preparation, an emphasis on practical activities, and
heightened interaction with the instructor. Meanwhile, Problem-Based Learning (PBL)
promotes student-centered learning, knowledge application, and interpersonal skills de-
velopment. This effective and engaging approach thoroughly equips students with real-
world programming practice.

Notably, the Flipped Classroom and Problem-Based Learning methodologies were
individually reported in 17.5% (14) and 9.8% (8) of the publications.

The S35 publication adopted Process-Oriented Guided Inquiry Learning (POGIL)
and Pair Programming (PP) for teaching programming. POGIL is a student-centered
learning approach that focuses on concept development in the framework of learning
teams. Instead of passively listening to a traditional lecture, students work together
in groups on specifically designed activities that guide students through the construc-
tion of course content (Hu and Shepherd, 2013). The pilot is responsible for typing
at the computer or documenting a design in the PP process. The other partner, the co-
pilot, observes the driver’s work, looks for defects in the driver’s position, and is an
ever-ready brainstorming partner (Nagappan et al., 2003). Adopting POGIL and PP
methodologies can lead to notable enhancements in programming education. These
improvements encompass active learning, the promotion of collaboration, the stimula-
tion of critical thinking through guided inquiry, the provision of immediate feedback,
ongoing code review, the encouragement of cooperative knowledge building, joint

Table 5
Methodologies adopted jointly. Source: The authors

ID ALM #Publications

 1 Flipped Classroom + Project-Based Learning S01
 2 Mini-lecture + Live-coding + In-class coding S03
 3 Pair programming + Exercise-based learning S05
 4 Flipped Classroom + Problem-based Learning S12, S15
 5 Animated Flowchart with Example Think-Pair-Share S16
 6 Project-Based Learning + SCRUM S23
 7 Student Ownership of Learning + Flipped Classroom S26
 8 Pairing-based pedagogy - Pairing-Based Approach (Pair programming + Blended Learning S27
 9 Flipped Classroom + Team-Based Learning S28
10 Process Oriented Guided Inquiry Learning + Pair Programming S35
11 Process Oriented Guided Inquiry Learning + Pair Programming S21
12 Game-Based Learning + Problem-Based Learning S43
13 Lecture-based Learning + Problem-Based Learning + Peer Instruction S46
14 Flipped Classroom + Gamification-Based Learning S65
15 Blended teaching + Problem-Based Learning + Task-driven + Flipped classroom S70
16 Learning by Collaboration, Flipped Classroom, Game-Based Learning S73
17 Flipped Classroom, Peer Discussion, and Just-in-time S76
18 Coding Dojo, Gamification, Problem-Based Learning, Flipped Classroom and Serious

Games
S80

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...293

problem-solving, and a deeper comprehension of algorithms. Consequently, incorpo-
rating these approaches into programming education can amplify student engagement,
facilitate collaboration, cultivate problem-solving skills, and elevate the quality of
generated code. Both methodologies are practical and can be employed in conjunction
or separately, depending on the learning objectives and the specific requirements of
the class. Thus, it can be seen that the mixed use of ALMs provided instructors with
different possibilities to test combinations of ALMs jointly. In this way, different ex-
periences of teaching practices are observed, as well as new opportunities for students
to be motivated to learn actively.

We observed that 13.5% (11) of the analyzed studies adopted Gamification-Based
Learning (GM). Gamification refers to integrating game elements into non-game con-
texts. This trend is gaining popularity among educational researchers due to its poten-
tial to reduce student boredom and increase active learning, engagement, and motiva-
tion (Kaya and Ercag, 2023). According to Venter (2020), GM is considered one of the
most promising educational methodologies for this decade, as educators worldwide
recognize that the proper design of gamified learning activities can significantly im-
prove student productivity and creativity. Therefore, adopting the GM methodology in
programming education innovates by making learning more engaging, practical, and
motivating. GM is crucial for attracting and retaining students, developing program-
ming and problem-solving skills, and preparing them for success in the tech industry.
Adopting GM also provides significant opportunities, such as student engagement and
motivation, promoting practical learning, fostering self-directed learning, and facilitat-
ing collaboration.

The Game-Based Learning (GBL) methodology appears in 6.1% (5) of the publica
tions. The game-based approach is unique because it involves and excites students,
allowing them to spend their time-solving problems. Additionally, GBL encourages the
exploration of different problem-solving methods. In simple, fun games, the students
may repeat the process just because they want a different outcome (Rajaravivarma,
2005). The methodology focuses on applying educational games designed to balance
learning a specific competence with the gameplay (Qian and Clark, 2016). Currently, it
is being adopted in computer science teaching in several areas, such as software engi-
neering, programming, or security (Zhang-Kennedy and Chiasson, 2021).

Aut-Meth appears in 4.9% (4) of the publications, such as S26 and S32. The authors
elaborated and used an ALM to explore collaboration and active learning in teaching
programming. With the same percentage, Project-Based Learning (PjBL) appears in
4.9% (4) of the publications. PjBL is also an example of a student-centered methodolo-
gy, through which students learn to build their own learning experiences independently
(Paristiowati et al., 2022). The Project-Based Learning (PjBL) methodology involves
learning through projects. This methodology challenges students to take responsibility
for their learning while promoting positive interdependence, individual accountability,
social skills, and equal participation during project presentations. Students can ben-
efit greatly from this learning approach by encouraging communication and leadership
(Kholijah et al., 2023).

I. Calderon, W. Silva, E. Feitosa294

Finally, 12 types of methodologies were cited by less than four publications: Coop
erative Learning (CL) (3), Pair Programming (PP) (3), Team-Based Learning (TBL)
(2), Think-Pair-Share (TPS) (2), Coding Dojo (Dojo) (2), Blended Learning (BL)
(1), Peer Review (PR) (1), Project-Based Service Learning (PBSL) (1), Method 300
(M300) (1), Process-Oriented Guided Inquiry Learning (POGIL) (1), and Top-Down
(TopD) (1).

CL is a widely-used educational approach that the instructors can apply to diverse
subjects and populations (Beck and Chizhik, 2006). Also, it can develop computation-
al thinking and knowledge of computational programming (Li et al., 2023). PP is an
active learning methodology that compares pair programming and solo programming.
Its effectiveness is affected by compatibility factors such as students’ skills, person-
ality, and self-esteem (Xu and Correia, 2023). TBL develops critical thinking skills
and problem-solving ability to solve problems individually and empowers students
to solve complex issues (Sibley and Ostafichuk, 2023). TPS methodology encourages
students to consider the problem’s solution individually, share their answers with their
partners in pairs, and present their solutions orally to the entire class (Hidayati et al.,
2023). Dojo is a hands-on workshop session widely used in classroom settings where
students can practice programming in groups for collaborative learning. This meth-
odology significantly improves students’ skills in designing software and applying
design patterns (Nasir, 2023).

BL combines in-person and online instruction for flexibility. It offers face-to-face
learning while keeping students safe (Srivatanakul, 2023). PR is an active, authentic
activity providing a distinct learning experience in the classroom. This approach de-
mands that students engage in higher-level thinking as they analyze and evaluate the
work of others. It is a commonly used technique in industry and is a genuine activ-
ity that can help prepare students for the workplace (Turner et al., 2018). At PBSL,
students can participate in projects that present challenging and holistic situations
requiring them to apply their functional technology skills, critical thinking abilities,
and interpersonal skills to understand the issues they must address. The learning ex-
perience is highly engaging as they work through the project and solve the problems
they encounter (Brescia et al., 2009).

M300 method can be defined as an innovative strategy of active learning, combin
ing features of peer learning and mentoring techniques, which are widely used in ac-
tive learning (de Castro Junior et al., 2021). POGIL is a suitable pedagogical approach
for teaching programming, software testing, and DevOps at the undergraduate level
(Joshi and Lau, 2023). The TopD methodology is a pedagogical approach to software
development and programming education. It begins with a broad view of the problem
to be solved and gradually delves into specific implementation details. This approach
is advantageous when teaching object-oriented programming, software architecture,
and complex systems development, where organization and structure are vital to proj-
ect success (Sung and Shirley, 2003). Table 6 shows the ALMs individually adopted
per paper.

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...295

4.3. SQ2. Which Subjects were Mentioned in the Publications?

To answer SQ2, we observed the contents and disciplines presented in the publications,
as reported in the studies, and identified approximately 30 different disciplines used for
teaching. Table 7 presents the ALMs used for teaching programming in different courses
and classes in computing.

In the Introductory Programming class, different ALMs (PBSL, PjBL, PP, TBL,
and TPS) have been adopted for the initial teaching of programming, as observed in

Table 7
Subject X Methodologies. Source: The authors.

ALM Subject/content Course #Publication

FC Data structures and OOP
Introduction to programming and algo-
rithm

Computer Engineering
Software Engineering

S2
S38

Introduction to programming/linear
data structures

Computer Science S41

OOP
Computer programming
Introductory programming

Computer Programming
Computer Science
Computer Science and Information Techno-
logy, Information Systems

S8, S42
S30, S37, S40
S7, S14, S24,
S47, S50

Continued on next page

Table 6
Methodologies individually adopted per paper. Source: The authors

ID ALM #Publications

 1 Blended Learning (BL) S36
 2 Cooperative Learning (CL) S17, S32, S33, S77
 3 Coding Dojo (DOJO) S61, S63
 4 Flipped Classroom (FC) S2, S7, S8, S14, S24, S30, S37, S38, S40, S41, S42,

S47, S50, S74
 5 Game-Based Learning (GBL) S11, S48, S51, S53, S55, S67
 6 Gamification-Based Learning (GM) S19, S21, S49, S54, S56, S57, S58, S60, S62, S68
 7 Method 300 (M300) S64
 8 Programming Case Studies (PCS) S18
 9 Hybrid Two-Stage Model (HTSM) S25
10 Problem-Based Learning (PBL) S9, S10, S13, S52, S59, S75, S78, S80
11 Project-Based Service Learning (PBSL) S44
12 Project-Based Learning (PjBL) S4, S39, S66, S79
13 Process Oriented Guided Inquiry Learning (POGIL) S71
14 Pair Programming (PP) S22, S45, S72
15 Peer Review (PR) S31
16 Team-Based Learning (TBL) S6, S20
17 Top-Down (TopD) S69
18 Think-Pair-Share (TPS) S29, S34

I. Calderon, W. Silva, E. Feitosa296

Table 7 – continued from previous page

ALM Subject/content Course #Publication

MixMeth Web programming
Introductory programming
Computer programming
OOP

Informatics
Management Information System
Computer Science
Computer Engineering, Software Engineer-
ing

S1
S26
S35
S3, S15, S27,
S65

Introductory programming Computer Engineering, Software Engineer-
ing and Information Systems Engineering

S5, S12, S23,
S28, S43, S46

GM Algorithm
Algorithm and data structures
OOP
Programming lab
Web programming
Introductory programming I and II

Computer Science
Computer Science
Information Systems
Computer Science
Information Systems
Computer Engineering, Computer Science

S54
S57
S68
S58
S62
S56, S60,
S19, S21, S49

GBL Data Structures
Programming II
Programming Logic and Algorithm
Algorithms
Introductory programming

Computer Science
Computer Science
Information Systems
Computer Science and Information Systems
Computer science and Information Systems

S48
S53
S67
S51
S11, S55

PBL OOP
Algorithms and programming I
OOP, data structures and software design
Programming paradigms
Teaching programming

Computer Engineering
Computer Engineering
Computer Engineering
Software Engineering
not mentioned

S9
S13
S10
S59
S52

AuthMeth System Programming Computer Science and Engineering S16
Programming
Introductory programming

Computer Science
Computer Science

S18
S17, S25

PjBL Introductory programming
Mobile development
OOP, data structures and systems design

Computer Engineering
Computer Science
Computer Engineering

S4
S39
S66

CL Parallel programming
OOP

Computer Science
Informatics

S32
S33

PP Introductory Computer Science course
Mobile app development

Computer Science S22
S45

TBL Introduction to systems programming
Introductory programming

Computer Science S6
S20

DOJO Introductory programming, programm-
ing language, OOP
Algorithm

Computer Science S63

S61

TPS Introductory programming Computer Science S29, S34

BL Computer programming Computer Science S29, S36

M300 Algorithm and programming Computer Science S64

PBSL Introductory programming Computer Engineering S44

PR OOP Computer Science S31

Note: FC – Flipped Classroom; MixMeth – Mixed Methodologies; GM – Gamification-Based Learning;
GBL – Game-Based Learning; PBL – Problem-Based Learning; Aut-Meth – Authors’ Methodolo-
gies; PjBL – Project-Based Learning; CL – Cooperative Learning; PP – Pair Programming; TBL
– Team-Based Learning; BL – Blended Learning; M300 – Method 300; PBSL – Project-Based
Service Learning; PR – Peer Review.

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...297

publications S4, S22, S29, SS34, S39, S44, S45, and S66. Regarding the teaching of
algorithms and data structures, the adoption of GM, GBL, FC, M300, and Dojo is ob-
served, as observed in publications S11, S19, S21, S24, S30, S37 S48, S49, S51, S53-
S58; S60-S64, S67 and S68.

In teaching computer programming, the BL, FC, and MixMeth are adopted, accord-
ing to publications S1-S3, S5, S7, S8, S12, S14, S15, S23, S24, S26, S28, S30, S35, S37,
S38, S40-S43, S46, S47, S50, S54, S61 and S65.

Finally, in classes such as Parallel Programming, Object-Oriented Programming
(OOP), System Programming, Software Design, Teaching Programming, and Program-
ming paradigms, the CL, Aut-Meth, PBL, and PR methodologies were mapped and are
presented in publications S9, S10, S13, S16-S18, S25, S31-S33, S52, and S59.

4.4. SQ3. Which Programming Languages were Reported in the Publications?

To answer SQ3, we verified the programming languages reported in the studies. Table 8
summarizes the types of programming languages found in the publications, which are
analyzed by the type of ALM used for their teaching. The publications S64, S65, S67,
S70, S72, and S74 do not show which programming language was used.

Java is among the most used programming languages mentioned in 27 publications.
The C++ and C languages are used in 12 and 10 publications. Finally, Python was men
tioned in 11 publications. Not all publications cited which programming language was
used, and some did not mention it clearly in the study. The following publications, S51,
S53, S67 (GBL), S22 and S45 (PP), S6 (TBL), S64 (M300), S44 (PBSL), S31 (PR) and
S54 (GM) are examples of this fact.

Table 8
Programming Language X Methodology. Source: The authors

ALM Programming language #Publication

FC Java, C#, C,Python S2, S7, S8, S14, S24, S30, S37, S38, S40, S41, S42, S47, S50
MixMeth Javascript, PHP, Java, C++, C,Python S1, S3, S5, S12, S15, S23, S26, S27, S28, S35, S43, S46, S65
GM Java, C++, C,Python, PHP, Ruby S19, S21, S49, S54, S56, S57, S58, S60, S62, S68
PBL Java C, Python S9, S10, S13, S52, S59
Maut Assembly, C++, Java S16, S17, S18, S25
PjBL Python Java S4, S39, S66
CL C, C++, JAVA S32,S 33
GBL Python, Java S48, S55
DOJO C, Python, Java S61, S62
BL Java S36
TBL C++ S20

Note: FC – Flipped Classroom; MixMeth – Mixed Methodologies; GM – Gamification-Based Learning;
PBL – Problem-Based Learning; Aut-Meth – Authors’ Methodologies; PjBL – Project-Based
Learning; CL – Cooperative Learning; GBL – Game-Based Learning; DOJO – Coding Dojo; BL –
Blended Learning; TBL – Team-Based Learning.

I. Calderon, W. Silva, E. Feitosa298

4.5. SQ4. What Type of Experimental Study was Carried out?

Research and development in information technology and computer science rely heav-
ily on empirical studies. These studies provide (i) the necessary foundation for mak-
ing technical decisions, (ii) evaluating the efficiency of systems and solutions, and
(iii) generating evidence-based knowledge to improve computing practices in different
fields.

To answer SQ4, the types of studies were carried out: case studies, controlled experi
ments, surveys, and mixed methods.

Therefore, we observed that all the studies carried out were experimental. Table 9
presents the types of studies identified in the publications. Given this panorama, we ob
served that 87.76% of the studies carried out a case study, which evidences the instruc-
tors’ concern regarding the applicability of the methodologies, technologies, and types
of programming languages in daily teaching practice.

Table 9
Type of studies X Methodology. Source: The authors

ALM Action
research

Case
study

Focus
group

Inter-
views

Obser-
vations

Survey #Publication

MixMeth X X X S1, S3, S5, S12, S15, S23, S26, S27, S28,
S35, S43, S46, S65, S70, S73, S76, S80

FC X X S2, S7, S8, S14, S24, S30, S37, S38, S40,
S41, S42, S47, S50, S74

GM X X S19, S21, S49, S54, S56, S57, S58, S60,
S62, S68

PBL X S9, S10, S13, S52, S59, S75, S78, S80
GBL X X S48, S51, S53, S55, S67
AuthMeth X S16, S17, S18, S25
PjBL X S4, S39, S66, S79
CL X X S32, S33, S77
PP X S22, S45, S72
DOJO X S61, S63
TBL X X X S6, S20
TPS X X X S29, S34
BL X S36
M300 X S64
PBSL X S44
PR X S31
POGIL X S71
TopD X S69

Note: MixMeth – Mixed Methodologies; FC – Flipped Classroom; GM – Gamification-Based Learning;
PBL – Problem-Based Learning; GBL – Game-Based Learning; Aut-Meth – Authors’ Methodologies;
PjBL – Project-Based Learning; CL – Cooperative Learning; PP – Pair Programming; DOJO –
Coding Dojo;TBL – Team-Based Learning; TPS – Think-Pair-Share; BL – Blended Learning; M300
– Method 300; PBSL – Project-Based Service Learning; PP – Pair Programming; POGIL – Process
Oriented Guided Inquiry Learning; TopD – Top-Down.

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...299

In addition, we realized that the case study was the most used type of experiment and
was used in conjunction with other types of investigation (e.g., surveys and interviews)
as in publications S21, S29, S41, S46, and S48.

Observation, interviews, focus groups, and action-research experiments stood out
in a smaller percentage. Our observations revealed that each technique was pivotal in
research concerning adopting ALMs in programming education. The focus group ap-
proach provided an overview of group perspectives, allowing us to identify common
trends and issues in studies S34. In contrast, studies S20 and S46 utilized the interview
technique, provided a more in-depth exploration of individual experiences and revealed
detailed and unique insights. Finally, research S77 using the action research technique
enabled us to assess the implementation and evaluation of practical interventions, foster-
ing continuous improvement in active teaching practices.

4.6. SQ5. What Evaluation Metrics were Reported in the Publications?

To answer SQ5, a qualitative analysis of the metrics was carried out about the ALMs
adopted, which are presented from each accepted publication. The main objective of
this analysis was to identify the metrics used by the instructors from the perspective of
teaching to the adoption of ALMs. A list of all identified metrics was created to perform
the qualitative analysis. Each of the metrics was listed, and based on the list, codes were
created. Subsequently, these codes were analyzed and grouped according to their char-
acteristics to form relevant concepts represented in this work through categories. It is
noteworthy that a researcher-author performed the analysis. The identified metrics were
then revised and discussed with another researcher-author with more than six years of
experience in qualitative analysis.

Table 10 presents the main metrics, which are grouped according to the identified
categories: Engagement, Performance, Motivation, Collaboration, and Interaction.

In the Engagement category, we observed that this metric generally represents why
students felt more engaged in learning programming. Engagement refers to a work-relat-
ed cognitive-affective state characterized by vigor, dedication, and absorption (Schaufeli
and Bakker, 2003). The perception regarding engagement was identified when instruc-
tors adopted the following ALMs: GM (S19, S21, S54, S56, S62, S68), MixMeth (S15,
S35), Auth-Meth (18), TBL (S20); TPS (S29), FC (S41), M300 (S64) and PBL (S78).
Therefore, it can be seen that these ALMs contribute to awakening students to an active,
creative, and collaborative posture, as they are engaged in teamwork, discuss issues dur-
ing class, and seek to clarify their doubts.

The Performance category is related to performance in continuous assessment tasks
such as key indicators, student progress, student grades after completing the course,
rates, and averages obtained in activities, assessments, and final exams (Veerasamy
et al., 2020). In this category, the following ALMs stood out: MixMeth (S1, S5, S12,
S15, S23, S26, S28, S35, S43, S73, S76, S80), FC (S14, S30, S36, S38, S40, S47, S50),
PBL (S10, S58, S75, S80) and GM (S49, S54, S57, S60). These ALMs have significantly
improved student performance due to new teaching strategies, which have shown con-

I. Calderon, W. Silva, E. Feitosa300

siderable advantages in solving real problems while maintaining curiosity about technol-
ogy (Wang et al., 2019).

By definition, motivation explains the goals and how actively or intensely someone
pursues them. This can be intrinsic motivation, which involves the individual in some
task for the simple pleasure of performing it, or extrinsic motivation, which consists of
the individual in activities for the rewards obtained by completing them or because such
activities are necessary steps to achieve a specific objective (Souza and Bittencourt,
2019). The category Motivation is associated with how students felt when learning via
the GM (S21, S54, S56, S58, S60, S62, S68), FC (S7, S40, S74), MixMeth (S15, S65),
GBL (S51, S55) and Dojo (S61, S63) methodologies. We note that the motivation is
reflected in an improvement in the student’s attendance and class participation due to
the challenges proposed to them to seek innovative ways of solving problems inside and
outside the classroom.

Knowledge construction occurs via the exchange of experiences and the sharing of
acquired knowledge. In this sense, it is observed that the DOJO (S61, S63), TBL (S20),
JE (S11), and PBL (S9) were the methodologies that most contributed to the awaken-
ing of Collaboration among students and between students and instructors. In the case

Table 10
Metrics X Methodology. Source: The authors

ALM Enga-
gement

Perfor-
mance

Moti-
vation

Colla-
boration

Inter-
action

#Publications

FC X X X S7, S14, S30, S36, S38, S40, S41, S47, S50, S74
MixMeth X X X S1, S5, S12, S15, S23, S26, S28, S35, S43, S65,

S73, S76, S80
GM X X X S19, S21, S49, S54, S56, S57, S60, S62, S68, S21,

S54, S56, S58, S60, S62, S68
GBL X X X X S48, S11, S51, S55, S76
AutMeth X X X S16, S18, S17, S25
PjBL X X S4, S66, S79
CL X S77
PP X S22, S46, S72
TBL X X X S6, S20
TPS X X S29, S34
M300 X X X S64
PBSL X S44
DOJO X X X S61, S63
PBL X X X X X S9, S10, S58, S75, S78, S80
TopD X S69
POGIL X S71

Note: FC – Flipped Classroom; MixMeth – Mixed Methodologies; GM – Gamification-Based Learning;
GBL – Game-Based Learning; Aut-Meth – Authors’ Methodologies; PjBL – Project-Based Learning;
CL – Cooperative Learning; PP – Pair Programming; TBL – Team-Based Learning; TPS – Think-
Pair-Share; M300 – Method 300; PBSL – Project-Based Service Learning; DOJO – Coding Dojo;
PBL – Problem-Based Learning; TopD – Top-Down; POGIL – Process Oriented Guided Inquiry
Learning.

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...301

of the DOJO, in addition to making the experience more fun, it promotes an inclusive,
cooperative, and collaborative environment based on exchanging experiences and net-
working among participants (de Castro Junior et al., 2021). This occurs because this
ALM allows for improved classroom participation and knowledge exchange via col-
laboration in activities and discussions.

In the Interaction, the PBL (S9, S10), JE (S11), and M300 (S64) methodologies
were the most reported to contributing to the awakening of interaction in the classroom,
whether between students themselves or between the students and their instructors. We
note that they all relate to improving or even awakening student interaction. They can
contribute to developing professional skills such as broader communication, teamwork,
and self-education. In addition, there is a discussion about improving programming
skills such as problem-solving, understanding the basic functioning of programming
languages, and the ability to read code (Nagai et al., 2016).

Table 11 presents the metric instructor’s perception. The instructor’s perception
metric is related to the subjective observations of instructors reported in the teaching
and student learning studies. In this sense, the instructor’s perception metric is related
to their perception of knowledge and skill acquisition, students’ perceptions of the ef-
fectiveness of studies, and students’ views and performance, among others. Table 11
presents an overview of the reported perceptions since the perceptions regarding the
students’ effort are not objective (Aivaloglou and Meulen, 2021).

Table 11
Instructors’ perception X Methodology. Source: The authors

Metho-
dology

Instructors’ perceptions #Publi-
cation

MixMeth Improvement of students’ abilities, students’ completion of a task.
Correcting errors and problem-solving within the given time frame.
Students’ perceptions of the effectiveness.

S70
S27
S3

FC Knowledge and skill acquisition.
Cognitive flexibility, problem-solving skills, flipped learning readiness levels in students’
programming.

S2
S24

CL Peer evaluations and self-assessment.
Improvement in programming skills.

S32
S33

PBL Student behavior with a focus on the teaching-learning process, students’ grades for the
three PBL problems.
Theoretical evaluation (content), evaluation of the proposed solution (result), and eval
uation of interpersonal skills.

S13

S52

GBL Willingness to solve problems, ability to generate alternatives, comparison between pos
sible alternatives, evaluation of solutions.

S53

BL Affection, skill, cognition. S36

PjBL Course organization and course quality, course difficulty level. S39

PR Students understood the concepts, and understanding was improving. S31

Note: MixMeth – Mixed Methodologies; FC – Flipped Classroom; CL – Cooperative Learning; PBL –
Problem-Based Learning; GBL – Game-Based Learning; BL – Blended Learning; PjBL – Project-
Based Learning; PR Peer Review.

I. Calderon, W. Silva, E. Feitosa302

Given this scenario, it can be seen that the Performance metric highlights the
methodologies MixMeth, FC, PBL, GM, and PjBL. However, we realized the GM and
FC methodologies stand out regarding the Motivation metric. For the Collaboration
and Interaction metrics, the DOJO and PBL stand out, respectively. Thus, there is an
opportunity to improve instructional strategies for teaching, in addition to contrib-
uting to the understanding of taught concepts and the development of skills related
to programming, which consequently contributes to the development of professional
skills. Finally, the instructors’ perception highlights the MixMeth, FC, CL, and PBL
methodologies if we consider the advantages and construction of knowledge regarding
group activities.

4.7. SQ6. Which Technologies Were Used During the Teaching of Programming?

To answer SQ6, we organized the technologies cited in the publications by the type of
methodologies used for teaching programming. Table 12 presents the technologies re
ported in the publications.

Table 12
Technologies X Methodology. Source: The authors

Metho-
dology

Technologies #Publi-
cation

FC Hands-on instruction, Tic-Tac-Toe, Grading, Tokens, Pearson MyProgrammingLab
Blackboard, videos, slides, textbooks
Video tutorials
App Inventor online editor, Edmodo, video
Video, interactive textbook, zyBooks platform
Video lectures, platforms online
Flash animations and video, Java Swing
Java Collections Framework and iterators, Eclipse, Java v1.7, JUnit v4, EclEmma, Jacoco,
FindBugs, PMD, and CheckStyle, GitHub, Google Forms
Virtual learning environment
YouTube channel, video quizzes
MyProgrammingLab textbook, online quizzes, programming homework

S7
S8
S14
S24
S30
S37
S40
S41

S42
S47
S50

MixMeth Google Classroom, Kahoot, video lectures
Stack Overflow, Javadoc or Google
CodeBlocks IDE, URI Judge Online, Sophia Learning tool
MOOC tool, PPT to the projection screen
Moodle
NSB AppStudio, commercial APIs (e.g., Google Maps, Yelp, Weather, etc.), Code
Academy lessons, videos, Canvas
textbook, videos
Scratch game
Moodle, video from YouTube, Poll Everywhere tool
Moodle, the Multimedia Teaching-Learning Environment

S1
S3
S12
S15
S23
S26

S28
S43
S46
S65

Continued on next page

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...303

Table 12 – continued from previous page

Metho-
dology

Technologies #Publi-
cation

GM Interactive User Input, Cryptogram, Word Search, Puzzle Maker, Hangman
Framework de Werbach, UVa Online Judge
URI Online Judge
GameProgJF, Google Forms
code.org course, Kahoot, Socrative
cod[edu], Google Forms

S19
S54
S57
S58
S60
S68

GBL Textbook, video
Games: DSAsketch, Lightest and Heaviest, SAVG-Engine, Sorting Game, Sorting Casi-
no, Sorting Game, Sortko
Games: Bullfrogs, An Eight-minute Empire, Carcassone, Metrocity, Resolution Inventory
Social Problems
App Construct2

S48
S51

S53

S67

PBL Eclipse, NetBeans
Google Classroom, IDE JetBrains PyCharm

S10
S52

PjBL GUI tkinter
Video lectures, Canvas, Gitlab, Google App Engine, Google Cloud, CATME system
Junit

S4
S39
S66

CL Github, Facebook, IntelliJ IDEA S33

PP Lectures, tutorials, demo sessions, homework assignments S45

TBL Quiz
Eclipse, NetBeans, JUnit, Javadoc

S6
S20

TPS Survey S29

DOJO IDE DevC++
Google Forms

S61
S63

Note: FC – Flipped Classroom; MixMeth – Mixed Methodologies; GM – Gamification-Based Learning;
GBL – Game-Based Learning; PBL – Problem-Based Learning; PjBL – Project-Based Learning;
CL – Cooperative Learning; PP – Pair Programming; TBL – Team-Based Learning; TPS – Think-
Pair-Share; DOJO – Coding Dojo.

It is essential to mention that not all publications presented the tools or technologies
used. However, we noticed that the selected studies present different types of tools,
ranging from devices known by the community, such as Google Classroom, Kahoot,
video lectures, and GitHub, which were shown in publications S1, S33, and S52, to
even lesscommon ones, such as tkinter GUI, App Inventor online editor, MyProgram-
mingLab, App Construct2, which were featured in S4, S24, S50, and S55. In addition, it
is observed that not all publications reported or did not mention which technology was
used in the study.

5. Discussion of the Results

We observed that instructors have been experimenting with different ALMs to improve
their teaching abilities, which will reflect directly on the students’ learning. In addition,

I. Calderon, W. Silva, E. Feitosa304

the community’s concern regarding improvements in teaching programming is due to
the needs and weaknesses still perceived in teaching. From this perspective, positive
aspects are observed. Higher education has developed significantly over the last two
decades. It has been influenced by two trends: advances in active learning methods and
the integration of technology, which are much more than artifacts and applications.

In this context, the diverse scenario of ALMs experienced in teaching programming
shows that the faculty seeks to motivate and engage students in programming studies,
as it is known that teaching and learning programming is complex and challenging. In
this context, it is observed that it is challenging to introduce innovations even when this
would be advantageous and beneficial for teaching and learning programming, consider-
ing that teaching programming is still a challenge for instructors of computing courses
(Raj et al., 2018). However, adopting these ALMs makes it possible to minimize the
challenges faced in the classroom for teaching and learning programming.

The results of this SMS are corroborated with the results of the literature, espe-
cially concerning the main ALMs mapped. The works by Berssanette and de Francisco
(2021) and (Anicic and Stapic, 2022) present results that report adopting different ALMs
in teaching and learning computer programming. These authors highlight methodolo-
gies that have been used by instructors in teaching programming, namely Coding Dojo
(DOJO), Gamification (GM), Game-Based Learning (GBL), Project-Based Learning
(PjBL), Problem-Based Learning (PBL), Flipped classroom (FC) and Peer Instruction
(PI). The adoption of these ALMs reveals their concern for motivating and engaging stu-
dents in programming classes. It is observed that instructors seek support in the ALMs
to innovate in their teaching of programming.

Table 3 presents methodologies that were also listed in the research by Berssanette
and de Francisco (2021) and Anicic and Stapic (2022), including approaches that in-
structors have implemented for active teaching and learning. Hendrik (2019) adopts two
ALMs for teaching programming, the FC, which refers to the concept of role reversal in
the classroom. The Flipped Classroom is “what is traditionally done in the classroom is
now done at home, and what is traditionally done as homework is now done in the class-
room” (Bergmann and Sams, 2012) and PjBL, which is “a teaching method that engages
students in learning knowledge and skills through a structured extended inquiry process,
complex real-life questions, and projected tasks” (Hallermann et al., 2016).

We mapped four new methodologies implemented by the authors (S16, S17, S18,
and S25) named Auth-Meth. The Auth-Meth are not widely used methodologies in the
literature and are presented as new strategies for the teaching of programming. The work
by Dol (2018) (S16) presents a combination of an animated flowchart with an example
and TPS activities. The approach used to modify the TPS activities proved helpful in
teaching algorithms. The work of Yuan and Cao (2019) (S25) shows a hybrid two-stage
model in which a programming project is divided into two stages: the checkpoint stage
(stage one) and the final submission stage (stage two) and the act of reviewing other
people’s code are found to improve student learning.

It is a challenge to plan classes that motivate students. However, motivation is consid
ered an indispensable factor in carrying out any activity and, mainly, in learning. Faced
with this challenge, ALMs are seen as an essential support and strategy for teaching

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...305

programming. In this context, Table 7 shows that the FC, MixMeth, GM, GBL, and PBL
methodologies are more frequently addressed in the studies.

In this scenario, the MixMeth, GM, GBL, and PBL methodologies provide student
learning that is generally based on projects and work in groups during their studies.
According to Aivaloglou and Meulen (2021), there are several reasons for implement
ing group work, e.g., it offers students the opportunity to work on larger-scale software
projects, and it can be used as an instructional strategy and is included in education be
cause of its benefits for the domain-specific knowledge learning process. For Kirschner
et al. (2018), there are also the benefits of collaboration when facilitating measures are
taken, such as scripted learning environments, including rules for communication and
coordination, in the classroom.

Table 12 summarizes the technologies that instructors have used. The FC, MixMeth,
GM, and GBL methodologies use different technologies. It is observed that the techno
logical support (whether digital or not) adopted for teaching programming was effective,
mainly in implementing activities in the classroom, such as questionnaires and projects
using different tools and applications. For Shokaliuk et al. (2020), the interaction with
technologies and digital content provides a reflective and critical attitude in the face
of its evolution and an ethical, safe, and responsible approach to using these tools. In
this perspective, adopting ALMs and learning technologies, such as Kahoot or Google
Classroom, is presented as effective in facilitating the teaching of programming. Even
curious, open, and perspective in the face of its evolution, as well as an ethical, safe, and
responsible approach to using these tools. In this perspective, adopting ALMs and learn-
ing tools (e.g., Kahoot or Google Classroom) is presented as effective in facilitating the
teaching of programming.

In recent years, special attention has been focused on integrating digital technologies
and games in education, and there is an increase in interest in using games as a tool to
aid student learning (Grivokostopoulou et al., 2016). In this context, the mapping re
sults show that the studies used different games regarding GM and GBL methodologies,
while methodologies like FC, MixMeth, PBL, and PjBL are used with online learn-
ing resources. The growing availability of online learning resources, such as tutorial
web-sites (e.g., Codecademy.org, Kahn Academy), block programming environments
(e.g., Scratch), and educational games (e.g., Swift Playgrounds), are popular choices for
people to gain programming knowledge (Lee and Chiou, 2020).

ALMs and relevant technologies can aid instructors in teaching programming due
to the possibility of involving students in classes. Students’ engagement during their
learning is essential for learning challenging subjects like computer programming. In
particular, educational games have successfully taught introductory programming con-
cepts (Lee and Chiou, 2020). However, even with the success of these resources, the
student may encounter difficulties and not receive the necessary support to overcome the
difficulties and may become frustrated (Lee and Chiou, 2020). Therefore, it is essential
to look at student engagement, as it is crucial to student success (Marks, 2000) and, con-
sequently, necessary for teaching programming.

Due to their unnatural syntax and semantics, computer programming languages are
challenging for most first-year computer science students (Jeff and Nguyen, 2018). Giv-

I. Calderon, W. Silva, E. Feitosa306

en this, anattemptwas made to map the programminglanguages reported in the studies.
Table 8 presents the various types of languages, and three types of programming lan-
guage stand out for being the most used with most mapped ALMs. Java, Python, and C
languages were the most reported in the studies, and these languages are among the main
languages, according to surveys by Cass (2022).

Thus, using different languages with ALMs can significantly contribute to the pro
gramming teaching process and prove to be a viable alternative in teaching. Java is a
popular language for developing Web applications. Java is the most-reported program
ming language in the studies and is used with the FC, MixMeth, GM, PBL, Auth-Meth,
PjBL, CL, GBL, DOJO, and BL methodologies. Additionally, most studies reported us-
ing Python with the FC, MixMeth, GMm, PBL, PjBL, GBL, and DOJO methodologies.
According to research by Cass (2022), since 2019, Python has been one of the main
programming languages and at the top of the main programming languages until 2022.
Another language that stood out in the studies was C, which was used with FC, Mix-
Meth, PBL, CL, and Dojo methodologies. It can be used in different projects, such as
creating applications. According to research by Cass (2022), C stands out among the
main programming languages.

6. Why Are these Results Essential for an Educational Technology Proposal?

The results achieved in this SMS permitted us to identify and categorize the ALMs that
instructors have adopted and revealed crucial positive evidence related to their use in
teaching programming. On the other hand, it also shows that they are still little employed
by instructors (Nguyen et al., 2021). Lack of time for lesson planning (Eickholt, 2018;
Michael, 2007), difficulty in complying with the entire content of the course (Eick-
holt, 2018), students’ rejection of the use of new teaching methodologies, and lack of
information on how to implement ALMs in classes (Tharayil et al., 2018) are pointed out
as to incorporate them into their teaching.

Based on that, we intend to develop an educational tool called CollabProg. Collab-
Prog helps instructors to identify, select, adopt, discuss, comment, evaluate, and possibly
collaborate with new (or existing) ALMs used during the teaching of programming. As a
guide, we are using the Design Science Research (DSR) methodology (Wieringa, 2014;
Vihavainen et al., 2014) to help us develop CollabProg, a collaborative repository whose
main objective is to aid instructors in adopting active methodologies while teaching pro
gramming content.

CollabProg will help the instructor to identify and choose ALMs that meet the peda
gogical needs and follow their teaching context. In addition, it will provide a set of
specific guidelines that will describe the steps for instructors to apply ALMs in the class-
room. In this way, instructors will no longer need to search various books, articles, web-
sites, or forums for ways to implement a specific ALM. The initial idea is for CollabProg
to be available on a website on the Web so that instructors can access it. Fig. 4 shows the
first version of CollabProg focusing on a specific active methodology, POGIL. Part 01 of

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...307

Fig. 4 provides a brief description of CollabProg, and Part 02 offers a concise overview
of the chosen active methodology by the instructor, in this case, POGIL. Finally, Part 03
provides more detailed explanations of the methodology, including the roles within the
method, the steps for adoption, and a breakdown of each step.

The website will contain further information to assist instructors in their teaching
practice. The repository modules (menus) will displayed in sequence, and the instructor
will not need to register to access the platform and have access to all its functions.

In CollabProg version 1, the repository is divided into three labeled menus. Each
menu provides information for users to navigate, select, and adopt any available ALMs.
Instructors can find a wealth of information on ALMs within CollabProg, including adop-
tion examples, community-adopted tool options, real-world experiences, and feedback
from other instructors. This platform provides valuable insights into both the positive
and negative aspects of different ALMs. As a differential, unlike many other platforms,
users don’t need to register to access CollabProg – it’s open to anyone.

In the main interface (Home), instructors will have access to About, which will
present an overview of the CollabProg repository. In Methodology, a list of the ALMs

Fig. 4. First version of CollabProg. Source: The authors.

I. Calderon, W. Silva, E. Feitosa308

mapped from the SMS results will be presented. It is essential to highlight that not all
methodologies identified here may be available on CollabProg. We will conduct a previ-
ous evaluation of all ALMs and, through pre-established evaluation criteria, a curation
of methodologies with steps defined in the literature to direct their implementation in
the classroom. This curatorship will be very important, as it will be through it that only
methodologies that have well-defined steps and that can be reproduced by other instruc-
tors, regardless of their teaching context, will be highlighted.

In Recommendation (How to adopt menu), the instructor will provide character-
istics about the class, the content to be taught, and the discipline, among others, so
that CollabProg can recommend the ALM that best suits the scenario informed by the
instructor. Based on CollabProg’s recommendation, the intention is to present the step-
by-step instructions for using the ALM, information, and the roles to be assumed by
participants during the methodology implementation, suggestions for activities, and tool
support options that are available and have been adopted by the community.

As it is a collatborative and open repository, in the Register methodology menu,
the instructor will have an open space to share a new ALM or an adaptation of one
already implemented or tested for teaching programming. The Experiences menu will
be a space for the community to share their experiences, suggestions, and evaluations
of ALMs in different educational settings. In addition, the results of the achieved learn-
ing objectives and the positive and negative points about the adopted ALM will also be
presented. In this way, other instructors can consult the advantages or disadvantages of
using a particular ALM, thus helping them choose the methodology. Finally, Contact
will be the means of communication between the researchers involved in the develop-
ment of the platform and the academic community, who will be able to get in touch via
the authors’ e-mails to report errors, problems, or suggestions for the repository.

To classify the ALMs that will be part of CollabProg, we intend to group the knowl-
edge about each methodology in a conceptual model inspired by those proposed by
Sobrinho et al. (2016). We will initially define the domain and scope of knowledge
built from the SMS results. According to Sobrinho et al. (2016), the domain is the
semantic representation and formalization of teaching methodologies based on active
learning principles. This model’s scope is to support instructors in teaching program-
ming in higher education through organized and semantically represented knowledge,
thus facilitating its dissemination and active methodologies. This way, we will structure
the information collected from the ALMs in a conceptual model, represented using the
class diagram shown in Fig. 5.

In the model, the class Category represents the category of active methodologies
according to the approach of the method. This class is associated with the Methodology
class, which represents the active methodologies that will compose CollabProg. As we
observed in the SMS, the methodologies can be used together to improve or complement
the positive results of teaching programming. The self-relationship represents this possi
bility in the Methodology class. The Step class represents the necessary steps for adopt-
ing methodologies. The Activity class describes the activities to be carried out in the
steps for implementing the methodologies in the classroom, which can be planning the

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...309

content and explaining the methodology and the roles, among others. The Technology
class represents the possible educational technologies that can be used and employed for
each activity, whether a virtual environment or a game. Finally, to define the roles to be
followed and that exist in the methodologies, the Participant and Role classes are as-
sociated with each other and related to the Methodology class.

To better explain and develop the elaborated conceptual model, a recommendation
system will be developed based on knowledge of the methodologies presented in the con
ceptual model. Thus, based on the answers provided by the instructors in the question
naire, the recommendation system will provide a set of methodologies according to the
needs of the instructor interested in applying them. This recommendation system will
be part of CollabProg and will be available in the Recommendation menu, described in
the information architecture.

Regarding the trusteeship of the contents that will be shared on CollabProg, in gener-
al, the perspective is that a screening process be carried out to guarantee the reliability of
the contents presented so that there is adoption and effective use of ALMs in the teaching
of programming. In addition, for curation, the researchers involved will propose criteria
that will evaluate the contents made available in the repository to avoid any frustrations
of the users who will use the repository.

To assess the feasibility of using and developing CollabProg, we intend to conduct
quantitative experimental studies via questionnaires and using the Technology Accep-
tance Model (TAM) and semi-structured interviews. In addition, qualitative studies are
planned that involve case studies, focus group sessions, and interviews with instructors
in the area to understand the context in which instructors work (Manotas et al., 2016).
The goal is to conduct studies with instructors from public or private higher education
institutions and in classes that deal with computer programming content, whether in
courses for beginners or not.

We expected that CollabProg would be a technological aid that would bring to-
gether, in a single Internet portal, strategies on how to conduct the adoption of dif-

Fig. 5. Conceptual model of CollabProg. Source: The authors.

I. Calderon, W. Silva, E. Feitosa310

ferent ALMs for teaching programming and will provide examples, suggestions for
activities, support options, and tools adopted by the computer science education com-
munity, as well as experiences on the adoption of methodologies in different scenarios,
results achieved by other instructors and positive and negative points about the ALM
adopted.

7. Threats to Validity

Despite the care in defining the SMS protocol as per Kitchenham (2012) and its sys-
tematic application, it can be observed that this research suffers from some well-known
limitations and threats to its validity. However, to mitigate the impact of factors that
may affect the validity of this SMS, several strategies were adopted for constructing the
search string for selecting and extracting data from the publications. According to Am-
patzoglou et al. (2019), several threats to validity can occur in an SMS. Among the most
common is the search string construction, which we sought to mitigate using a string
carefully constructed to include all potentially relevant publications.

In terms of threats to selecting relevant instructional units and data extraction, these
were mitigated by the definition and documentation of a rigorous protocol. The careful
establishment of inclusion and exclusion criteria and discussion among the authors until
consensus was reached. As study inclusion/exclusion bias is a common threat to validity,
an attempt was made to mitigate this threat by carrying out an inclusion and exclusion
process by two researchers, who held weekly meetings to discuss each article, especially
those that did not fit the criterion applied.

Finally, another prevalent threat in studies is data extraction bias, mitigated by defin
ing possible answers for each question in the protocol before extraction. In addition, data
extraction was performed by the first author, inferred when not explicitly indicated in the
article, and carefully reviewed by the co-authors. Finally, selecting digital libraries and
annals to search for publications is another validity threat we sought to mitigate. There
fore, to avoid this problem, we selected libraries and events that are known and widely
used in computer science.

8. Conclusion and Future Work

After analyzing the data extracted from the publications selected for this research, the
state of the art regarding adopting ALMs in teaching computer programming was char-
acterized. It is essential to mention that this characterization can help in the development
of new research since the selection of different methodologies that can be used and im-
proved in teaching practice will, therefore, support the knowledge and construction of
new research that aims to test or create new methods that help the instructors in teaching
programming.

Thus, the importance of seeking strategies to support instructors in teaching and
motivating students to learn programming is highlighted since this is a significant fac-

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...311

tor for successful instruction. This factor is especially relevant in collaborative learn-
ing contexts, where social interaction is critical in adopting ALMs (Serrano-Cámara
et al., 2014).

As future work, the aim is to curate and categorize the ALMs mapped here so that
instructors can compose an open, collaborative repository in which they can identify, se
lect, adopt, discuss, comment, evaluate, and possibly collaborate with new (or existing)
ALMs are used while teaching programming. The repository will help the instructors
identify and choose ALMs according to their teaching context to meet their pedagogical
needs. Therefore, from the curation of the mapped ALMs, it will be possible to build and
make available a set of step-by-step guidelines to aid instructors during the adoption of
the ALMs. In this way, the instructors will not need to search various scientific articles
or books for ways to carry out a particular ALM in the classroom.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior – Brasil (CAPES) – Finance Code 001. This work was partially supported
by Amazonas State Research Support Foundation – FAPEAM – through the POSGRAD
project. Williamson Silva thanks FAPERGS for the financial support granted through
ARD/ARC Project (process 22/2551-0000606-0). Ivanilse Calderon thanks the Federal
Institute of Rondônia (IFRO).

References

ACM, IEEE (2013). Computer science curricula 2013.
https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf

Agapito, J.L., Rodrigo, M., Mercedes, T. (2018). Investigating the impact of a meaningful gamification-based
intervention on novice programmers’ achievement. In: International Conference on Artificial Intelligence
in Education, pp. 3–16. Springer.

Ahshan, R. (2021). A framework of implementing strategies for active student engagement in remote/online
teaching and learning during the COVID-19 pandemic. Education Sciences, 11(9), 483.

Aivaloglou, E., Meulen, A.v.d. (2021). An empirical study of students’ perceptions on the setup and grading
of group programming assignments. ACM Transactions on Computing Education (TOCE), 21(3), 1–22.

Aksit, F., Niemi, H., Nevgi, A. (2016). Why is active learning so difficult to implement: The Turkish case.
Australian Journal of Teacher Education (Online), 41(4), 94–109.

Alves, G., Rebouças, A., Scaico, P. (2019). Coding dojo como prática de aprendizagem colaborativa para
apoiar o ensino introdutório de programação: Um estudo de caso. In: Anais do XXVII Workshop sobre
Educação em Computação, pp. 276–290. SBC.

Amira, T., Lamia, M., Hafidi, M. (2019). Implementation and evaluation of flipped algorithmic class. Interna
tional Journal of Information and Communication Technology Education (IJICTE), 15(1), 1–12.

Ampatzoglou, A., Bibi, S., Avgeriou, P., Verbeek, M., Chatzigeorgiou, A. (2019). Identifying, categorizing
and mitigating threats to validity in software engineering secondary studies. Information and Software
Technology, 106, 201–230.

Anicic, K.P., Stapic, Z. (2022). Teaching Methods in Software Engineering: Systematic Review. IEEE Soft-
ware.

Araújo, E.A., Furtado C C, J., Alexandre S H, G. (2020). Jogos de tabuleiros modernos para aprimorar a res
olução de problemas em alunos de programação. In: XIX Simposio Brasileiro de Jogos e Entretenimento
Digital (SBgames 2020).

I. Calderon, W. Silva, E. Feitosa312

Astrachan, O.L., Duvall, R.C., Forbes, J., Rodger, S.H. (2002). Active learning in small to large courses. In:
32nd Annual Frontiers in Education (Vol. 1), pp. 2–2. IEEE.

Avouris, N., Kaxiras, S., Koufopavlou, O., Sgarbas, K., Stathopoulou, P. (2010). Teaching introduction to
computing through a project-based collaborative learning approach. In: 2010 14th Panhellenic Confer-
ence on Informatics, pp. 237–241. IEEE.

Barnes, T., Powell, E., Chaffin, A., Lipford, H. (2008). Game2Learn: improving the motivation of CS1
students. In: Proceedings of the 3rd international conference on Game development in computer science
education, pp. 1–5.

Battistella, P.E., Wangenheim, C.G.v., Wangenheim, A.v., Martina, J.E. (2017). Design and large-scale eval-
uation of educational games for teaching sorting algorithms. Informatics in Education, 16(2), 141–164.

Beck, L.L., Chizhik, A.W. (2006). Workshop Applying Cooperative Learning Methods in Teaching Com-
puter Programming. In: Proceedings. Frontiers in Education. 36th Annual Conference, pp. 1–2. IEEE.

Ben-Ari, M. (2001). Constructivism in computer science education. Journal of computers in Mathematics
and Science Teaching, 20(1), 45–73.

Bergmann, J., Sams, A. (2012). Flip your classroom: Reach every student in every class every day. Interna-
tional society for technology in Education, ???.

Berssanette, J.H., de Francisco, A.C. (2021). Active learning in the context of the teaching/learning of
computer programming: A systematic review. Journal of Information Technology Education. Research,
20, 201.

Bittencourt, R.A., Rodrigues, C.A., Cruz, D.S.S. (2013). Uma experiência integrada de programaçao ori-
entada a objetos, estruturas de dados e projeto de sistemas com pbl. In: XXXIII Congresso da SBC–XXI
WEI.

Boudia, C., Bengueddach, A., Haffaf, H. (2019). Collaborative strategy for teaching and learning object-
oriented programming course: A case study at Mostafa Stambouli Mascara University, Algeria. Infor-
matica, 43(1).

Bowman, N.A., Jarratt, L., Culver, K., Segre, A.M. (2021). The impact of pair programming on college
students’ interest, perceptions, and achievement in computer science. ACM Transactions on Computing
Education, 21(3), 1–19.

Brescia, W., Mullins, C., Miller, M.T. (2009). Project-based Service-Learning in an Instructional Technol-
ogy Graduate Program. International Journal for the Scholarship of Teaching and Learning, 3(2), 2.

Brito, P., Fortes, R., Faria, F., Lopes, R.A., Santos, V., Magalhães, F. (2019). Programaçao competitiva
como ferramenta de apoio ao ensino de algoritmos e estrutura de dados para alunos de ciência da com-
putaçao. In: Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na
Educação-SBIE) (Vol. 30), p. 359.

Caceffo, R., Gama, G., Azevedo, R. (2018). Exploring active learning approaches to computer science
classes. In: Proceedings of the 49th ACM Technical Symposium on Computer Science Education, pp.
922–927.

Cao, L., Grabchak, M. (2019). Interactive preparatory work in a flipped programming course. In: Proceed-
ings of the ACM Conference on Global Computing Education, pp. 229–235.

Casarotto, R.I., Bernardi, G., Cordenonsi, A.Z., Medina, R.D. (2018). Logirunner: um Jogo de Tabuleiro
como Ferramenta para o Auxílio do Ensino e Aprendizagem de Algoritmos e Lógica de Programação.
RENOTE, 16(1).

Cass, S. (2022). The Top Programming Languages 2022: Python’s still No. 1, but employers love to see
SQL skills. IEEE Spectrum.

Chandrasekaran, S., Badwal, P., Thirunavukkarasu, G., Littlefair, G. (2016). Collaborative learning experi-
ence of students in distance education. In: International Symposium on Project Approaches in Engi-
neeringEducation (Vol. 6), pp. 90–99.

Chao, P.-Y. (2016). Exploring students’ computational practice, design and performance of problem-solving
through a visual programming environment. Computers & Education, 95, 202–215.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and psychological measure-
ment, 20(1), 37–46.

Corritore, C.L., Love, B. (2020). Redesigning an Introductory Programming Course to Facilitate Effective
Student Learning: A Case Study. Journal of Information Technology Education: Innovations in Practice,
19, 091–135.

Costa, A.F.F., de Melo, A.F.M.F., Moreira, G.G., Carvalho, M.d.A., Lima, M.V.d.A. (2017). Aplicaçao de
sala invertida e elementos de gamificaçao para melhoria do ensino-aprendizagem em programaçao ori-
entada a objetos. TISE.

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...313

Creswell, J.W., Shope, R., Plano Clark, V.L., Green, D.O. (2006). How interpretive qualitative research
extends mixed methods research. Research in the Schools, 13(1), 1–11.

da Silva, T.S.C., de Melo, J.C.B., Tedesco, P.C.d.A.R. (2018). Um modelo para promover o engajamento
estudantil no aprendizado de programação utilizando gamification. Revista Brasileira de Informática na
Educação, 26(03), 120.

da Silva Garcia, F.W., Oliveira, S.R.B. (2022). Aplicação de um Plano de Ensino para Disciplina de Algo-
ritmos com Metodologias Ativas: Um Relato de Estudo de Caso Piloto. In: Anais do XXXIII Simpósio
Brasileiro de Informática na Educação, pp. 301–310. SBC.

de Andrade, T.L., Rigo, S.J., Barbosa, J.L.V. (2021). Active methodology, educational data mining and
learning analytics: A systematic mapping study. Informatics in Education, 20(2), 171.

de Azevêdo Silva, M.A., Dantas, A. (2014). KLouro: Um jogo educacional para motivar alunos iniciantes
em programação. In: Brazilian Symposium on Computers in Education (Vol. 25), p. 702.

de Castro Junior, A.A., Cheung, L.M., Batista, E.J.S., de Lima, A.C. (2021). Uma Análise Preliminar da
Aplicação do Método 300 em Turmas de Algoritmos e Programação. In: AnaisdoXXIXWorkshopsobre-
Educação em Computação, pp. 171–180. SBC.

de Oliveira Fassbinder, A.G., Botelho, T.G.G., Martins, R.J., Barbosa, E.F. (2015). Applying flipped class-
room and problem-based learning in a CS1 course. In: 2015 IEEE Frontiers in Education Conference
(FIE), pp. 1–7. IEEE.

Desai, P., Meena, S., Giraddi, S., Desai, S., Hanchinamani, G. (2021). Transformation in Course Delivery
Augmented with Problem-Based Learning and Tutorial. In: 2021 World Engineering Education Forum/
Global Engineering Deans Council (WEEF/GEDC), pp. 15–22. IEEE.

Dicheva, D., Hodge, A. (2018). Active learning through game play in a data structures course. In: Proceed-
ings of the 49th ACM Technical Symposium on Computer Science Education, pp. 834–839.

Dol, S.M. (2018). Animated flowchart with example followed by think-pair-share activity for teaching algo-
rithms of engineering courses. In: 2018 IEEE Tenth International Conference on Technology for Educa-
tion (T4E), pp. 186–189. IEEE.

dos Santos, S.C., Santana, E., Santana, L., Rossi, P., Cardoso, L., Fernandes, U., Carvalho, C., Torres, P.
(2018). Applying PBL in teaching programming: an experience report. In: 2018 IEEE Frontiers in Edu-
cation Conference (FIE), pp. 1–8. IEEE.

Drini, M. (2018). Using new methodologies in teaching computer programming. In: 2018IEEEIntegrated-
STEM Education Conference (ISEC), pp. 120–124. IEEE.

Durak, H.Y. (2020). Modeling different variables in learning basic concepts of programming in flipped
classrooms. Journal of Educational Computing Research, 58(1), 160–199.

Edwards, J.M., Fulton, E.K., Holmes, J.D., Valentin, J.L., Beard, D.V., Parker, K.R. (2018). Separation of
syntax and problem solving in Introductory Computer Programming. In: 2018 IEEE Frontiers in Educa-
tion Conference (FIE), pp. 1–5. IEEE.

Eickholt, J. (2018). Barriers to active learning for computer science faculty. arXiv preprint
arXiv:1808.02426.

Elmaleh, J., Shankararaman, V. (2017). Improving student learning in an introductory programming course
using flipped classroom and competency framework. In: 2017 IEEE Global Engineering Education Con-
ference (EDUCON), pp. 49–55. IEEE.

Elnagar, A., Ali, M. (2012). A modified team-based learning methodology for effective delivery of an
introductory programming course. In: Proceedings of the 13th annual conference on Information tech-
nology education, pp. 177–182.

Finger, A.F., da Silva, J.P.S., Ecar, M. (2021). Utilizando Aprendizado Baseado em Problemas para o Ensino
de Paradigmas de Programação. In: Anais do XXXII Simpósio Brasileiro de Informática na Educação,
pp. 135–144. SBC.

Freeman, S., Eddy, S.L., McDonough, M., Smith, M.K., Okoroafor, N., Jordt, H., Wenderoth, M.P. (2014).
Active learning increases student performance in science, engineering, and mathematics. Proceedings of
the national academy of sciences, 111(23), 8410–8415.

Gamage, L.N. (2021). A bottom-up approach for computer programming education. Journal of Computing
Sciences in Colleges, 36(7), 66–75.

Garcia, F.W.D.S., Carvalho, E.D.C., Oliveira, S.R.B. (2021). Use of active methodologies for the develop-
ment of a teaching plan for the algorithms subject. In: 2021 IEEE Frontiers in Education Conference
(FIE), pp. 1–9. IEEE.

Garcia, F.W.d.S., Oliveira, S.R.B., Carvalho, E.d.C. (2022). A second experimental study the application of
a teaching plan for the algorithms subject in an undergraduate course in computing using active method-
ologies. Informatics in Education, 22(2), 233–255.

I. Calderon, W. Silva, E. Feitosa314

Gonçalves, B., Nascimento, E., Monteiro, E., Portela, C., Oliveira, S. (2019). Elementos de Gamificação
Aplicados no Ensino-Aprendizagem de Programação Web. In: Anais do XXVII Workshop sobre Educa-
ção em Computação, pp. 1–10. SBC.

Grivokostopoulou, F., Perikos, I., Hatzilygeroudis, I. (2016). An educational game for teaching search algo-
rithms. In: International Conference on Computer Supported Education (Vol. 3), pp. 129–136. SCITE-
PRESS.

Hallermann, S., Larmer, J., Mergendoller, J.R. (2016). PBL in the elementary grades: step-by-step guid-
ance, tools and tips for standards-focused K-5 projects. Buck Institute for Education, ???.

Hativa, N. (2001). Teaching for effective learning in higher education. Springer Science & Business Media,
???.

Hayashi, Y., Fukamachi, K.-I., Komatsugawa, H. (2015). Collaborative learning in computer programming
courses that adopted the flipped classroom. In: 2015 International Conference on Learning and Teaching
in Computing and Engineering, pp. 209–212. IEEE.

Heckman, S.S. (2015). An empirical study of in-class laboratories on student learning of linear data struc-
tures. In: Proceedings of the Eleventh Annual International Conference on International Computing
Education Research, pp. 217–225.

Hendrik, H. (2019). Flipping Web Programming Class: Student’s Perception and Performance. In: Proceed-
ings of the 11th International Conference on Engineering Education (ICEED), pp. 31–45.

Herala, A., Vanhala, E., Nikula, U. (2015). Object-oriented programming course revisited. In: Proceedings
of the 15th Koli Calling Conference on Computing Education Research, pp. 23–32.

Hidayati, N., Hariyadi, T., Praheto, B., Kusnita, S., Darmuki, A. (2023). The effect of cooperative learn-
ing model with think pair share type on speaking skill. International Journal of Instruction, 16(3),
935–950.

Hijon-Neira, R., Velazquez-Iturbide, A., Pizarro-Romero, C., Carriço, L. (2014). Serious games for motivat-
ing into programming. In: 2014 IEEE Frontiers in Education Conference (FIE) Proceedings, pp. 1–8.
IEEE.

Hu, H.H., Shepherd, T.D. (2013). Using POGIL to help students learn to program. ACM Transactions on
Computing Education (TOCE), 13(3), 1–23.

Hu, H.H., Shepherd, T.D. (2014). Teaching CS 1 with POGIL activities and roles. In: Proceedings of the
45th ACM technical symposium on Computer science education, pp. 127–132.

Imbulpitiya, A., Kodagoda, N., Gamage, A., Suriyawansa, K. (2020). Using active learning integrated with
pedagogical aspects to enhance student’s learning experience in programming and related concepts. In:
International Conference on Interactive Collaborative Learning, pp. 218–228. Springer.

Jeff, B., Nguyen, K. (2018). ADL-Algorithmic design language. In: 2018 International Conference on
Computational Science and Computational Intelligence (CSCI), pp. 651–654. IEEE.

Jonassen, D., Davidson, M., Collins, M., Campbell, J., Haag, B.B. (1995). Constructivism and computer-
mediated communication in distance education. American journal of distance education, 9(2), 7–26.

Jonsson, H. (2015). Using flipped classroom, peer discussion, and just-in-time teaching to increase learning
in a programming course. In: 2015 IEEE Frontiers in Education Conference (FIE), pp. 1–9. IEEE.

Joshi, A., Schmidt, M., Panter, S., Jain, A. (2020). Evaluating the benefits of team-based learning in a sys-
tems programming class. In: 2020 IEEE Frontiers in Education Conference (FIE), pp. 1–7. IEEE.

Joshi, N., Lau, S.-K. (2023). Effects of process-oriented guided inquiry learning on approaches to learn-
ing, long-term performance, and online learning outcomes. Interactive Learning Environments, 31(5),
3112–3127.

Kane, L. (2007). Educators, learners and active learning methodologies. International journal of lifelong
education.

Katona, J., Kovari, A. (2016). A brain–computer interface project applied in computer engineering. IEEE
Transactions on Education, 59(4), 319–326.

Kaya, O.S., Ercag, E. (2023). The impact of applying challenge-based gamification program on students’
learning outcomes: Academic achievement, motivation and flow. Education and Information Technolo-
gies, 1–26.

Kelleher, C., Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of programming
environments and languages for novice programmers. ACM Computing Surveys (CSUR), 37(2), 83–
137.

Kholijah, G., Rarasati, N., Sormin, C., Aryanto, F. (2023). Project Based Learning Model in Computer
Programming Courses at Mathematics Student. IJER (Indonesian Journal of Educational Research),
8(1), 36–42.

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...315

Kinnunen, P., Malmi, L. (2006). Why students drop out CS1 course? In: Proceedings of the second interna-
tional workshop on Computing education research, pp. 97–108.

Kirschner, P.A., Sweller, J., Kirschner, F., Zambrano R, J., et al.(2018). From cognitive load theory to
collaborative cognitive load theory. International Journal of Computer-Supported Collaborative Learn-
ing, 13(2), 213–233.

Kitchenham, B.A. (2012). Systematic review in software engineering: where we are and where we should
be going. In: Proceedings of the 2nd international workshop on Evidential assessment of software tech-
nologies, pp. 1–2.

Kong, S.-C., Lai, M., Sun, D. (2020). Teacher development in computational thinking: Design and learning
outcomes of programming concepts, practices and pedagogy. Computers & Education, 151, 103872.

Kothiyal, A., Murthy, S., Iyer, S. (2014). Think-pair-share in a large CS1 class: does learning really happen?
In: Proceedings of the 2014 conference on Innovation & technology in computer science education, pp.
51–56.

Kuhrmann, M., Fernández, D.M., Daneva, M. (2017). On the pragmatic design of literature studies in soft-
ware engineering: an experience-based guideline. Empirical software engineering, 22(6), 2852–2891.

Kumar, M., Renumol, V., Murthy, S. (2018). Flipped classroom strategy to help underachievers in java pro
gramming. In: 2018 International Conference on Learning and Teaching in Computing and Engineering
(LaTICE), pp. 44–49. IEEE.

Kurkovsky, S. (2013). Mobile game development: improving student engagement and motivation in intro-
ductory computing courses. Computer Science Education, 23(2), 138–157.

Lacher, L.L., Jiang, A., Zhang, Y., Lewis, M.C. (2018). Including Coding Questions in Video Quizzes for a
Flipped CS1. In: Proceedings of the 49th ACM Technical Symposium on Computer Science Education,
pp. 574–579.

Lang, J., Nugent, G.C., Samal, A., Soh, L.-K. (2006). Implementing CS1 with embedded instructional re-
search design in laboratories. IEEE Transactions on Education, 49(1), 157–165.

Lee, M.J., Chiou, J. (2020). Animated hints help novices complete more levels in an educational program-
ming game. Journal of computing sciences in colleges, 35(8).

Li, W., Liu, C.-Y., Tseng, J.C. (2023). Effects of the interaction between metacognition teaching and stu-
dents’ learning achievement on students’ computational thinking, critical thinking, and metacognition in
collaborative programming learning. Education and Information Technologies, 1–25.

Lister, R., Adams, E.S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, R., Moström, J.E.,
Sanders, K., Seppälä, O., et al.(2004). A multi-national study of reading and tracing skills in novice pro
grammers. ACM SIGCSE Bulletin, 36(4), 119–150.

Loftsson, H., Matthíasdóttir, Á. (2019). Using flipped classroom and team-based learning in a first-semester
programming course: An experience report. In: 2019 IEEE International Conference on Engineering,
Technology and Education (TALE), pp. 1–6. IEEE.

Luxton-Reilly, A., Albluwi, I., Becker, B.A., Giannakos, M., Kumar, A.N., Ott, L., Paterson, J., Scott, M.J.,
Sheard, J., Szabo, C. (2018). Introductory programming: a systematic literature review. In: Proceedings
Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science
Education, pp. 55–106.

Manotas, I., Bird, C., Zhang, R., Shepherd, D., Jaspan, C., Sadowski, C., Pollock, L., Clause, J. (2016). An
empirical study of practitioners’ perspectives on green software engineering. In: Proceedings of the 38th
international conference on software engineering, pp. 237–248.

Marks, H.M. (2000). Student engagement in instructional activity: Patterns in the elementary, middle, and
high school years. American educational research journal, 37(1), 153–184.

Mayfield, C., Moudgalya, S.K., Yadav, A., Kussmaul, C., Hu, H.H. (2022). POGIL in CS1: Evidence for
Student Learning and Belonging. In: Proceedings of the 53rd ACM Technical Symposium on Computer
Science Education V. 1, pp. 439–445.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y.B.-D., Laxer, C., Thomas, L.,
Utting, I., Wilusz, T. (2001). Report by the ITiCSE 2001 Working Group on Assessment of Programming
Skills of First-year CS Students. Distribution, 33(4), 125–180.

Melo, S., Soares Neto, C.d.S. (2017). Game of code: desenvolvimento e avaliação de uma atividade gami-
ficada para disciplinas de programação. In: XVI Simposio Brasileiro de Jogos e Entretenimento Digital
(SBgames 2017).

Mendes, E., Wohlin, C., Felizardo, K., Kalinowski, M. (2020). When to update systematic literature reviews
in software engineering. Journal of Systems and Software, 167, 110607.

I. Calderon, W. Silva, E. Feitosa316

Michael, J. (2007). Faculty perceptions about barriers to active learning. College teaching, 55(2), 42–47.
Michaličková, V. (2021). Using Online Forums to Promote Collaborative Learning in Introductory Pro-

gramming Courses. In: 7th International Conference on Higher Education Advances (HEAd’21), pp.
145–152. Editorial Universitat Politècnica de València.

Nagai, W., Izeki, C., Dias, R. (2016). Experiência no uso de ferramentas online gamificadas na introdução
à programação de computadores. In: Anais do Workshop de Informática na Escola (Vol. 22), pp. 301–
310.

Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, K., Miller, C., Balik, S. (2003). Improving the CS1
experience with pair programming. ACM Sigcse Bulletin, 35(1), 359–362.

Nakamura, W.T., de Oliveira, E.C., de Oliveira, E.H., Redmiles, D., Conte, T. (2022). What factors affect
the UX in mobile apps? A systematic mapping study on the analysis of app store reviews. Journal of
Systems and Software, 193, 111462.

Nasir, U. (2023). Using Architectural Kata in Software Architecture Course: An Experience Report. In: Pro
ceedings of the 5th European Conference on Software Engineering Education, pp. 215–219.

Nguyen, K.A., Borrego, M., Finelli, C.J., DeMonbrun, M., Crockett, C., Tharayil, S., Shekhar, P., Waters,
C., Rosenberg, R. (2021). Instructor strategies to aid implementation of active learning: a systematic
literature review. International Journal of STEM Education, 8, 1–18.

Özyurt, H., Özyurt, Ö. (2018). Analyzing the effects of adapted flipped classroom approach on computer
programming success, attitude toward programming, and programming self-efficacy. Computer Applica-
tions in Engineering Education, 26(6), 2036–2046.

Paristiowati, M., Rahmawati, Y., Fitriani, E., Satrio, J.A., Putri Hasibuan, N.A. (2022). Developing Preser-
vice Chemistry Teachers’ Engagement with Sustainability Education through an Online Project-Based
Learning Summer Course Program. Sustainability, 14(3), 1783.

Park, E.L., Choi, B.K. (2014). Transformation of classroom spaces: Traditional versus active learning class-
room in colleges. Higher Education, 68(5), 749–771.

Parsons, P. (2011). Preparing computer science graduates for the 21st Century. Teaching Innovation Proj-
ects, 1(1).

Petri, G., von Wangenheim, C.G. (2017). How games for computing education are evaluated? A systematic
literature review. Computers & education, 107, 68–90.

Pollock, L., Jochen, M. (2001). Making parallel programming accessible to inexperienced programmers
through cooperative learning. ACM SIGCSE Bulletin, 33(1), 224–228.

Qian, M., Clark, K.R. (2016). Game-based Learning and 21st century skills: A review of recent research.
Computers in human behavior, 63, 50–58.

Rahman, F. (2018). Integrating project-based learning in mobile development course to enhance student
learning experience. In: Proceedings of the 19th Annual SIG Conference on Information Technology
Education, pp. 1–6.

Raj, A.G.S., Patel, J., Halverson, R. (2018). Is More Active Always Better for Teaching Introductory
Programming? In: 2018 International Conference on Learning and Teaching in Computing and Engi-
neering (LaT-ICE), pp. 103–109. IEEE.

Rajaravivarma, R. (2005). A games-based approach for teaching the introductory programming course.
ACM SIGCSE Bulletin, 37(4), 98–102.

Raposo, E.H.S., Dantas, V. (2016). O Desafio da Serpente-Usando gamification para motivar alunos em
uma disciplina introdutória de programação. In: Brazilian Symposium on Computers in Education (Vol.
27), p. 577.

Ribeiro, A.L., Bittencourt, R.A. (2018). A pbl-based, integrated learning experience of object-oriented
programming, data structures and software design. In: 2018 IEEE Frontiers in Education Conference
(FIE), pp. 1–9. IEEE.

Ribeiro, A.L., Bittencourt, R.A. (2019). A case study of an integrated programming course based on PBL.
In: 2019 IEEE Frontiers in Education Conference (FIE), pp. 1–9. IEEE.

Rosiene, C.P., Rosiene, J.A. (2015). Flipping a programming course: The good, the bad, and the ugly. In:
2015 IEEE Frontiers in Education Conference (FIE), pp. 1–3. IEEE.

Safana, A.I., Nat, M. (2019). Students’ Perception of a Blended Learning Approach in an African Higher
Institution. J. Univers. Comput. Sci., 25(5), 515–540.

Schaufeli, W.B., Bakker, A.B. (2003). Utrecht work engagement scale preliminary manual version 1.1.
Occupational Health Psychology Unit, Utrecht University.

Scherer, A.P.Z., Mór, F.N. (2020). Uso da técnica Coding DOJO em aulas de programação de computadores.
In: Anais do XXVIII Workshop sobre Educação em Computação, pp. 6–10. SBC.

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...317

Seeling, P. (2016a). Evolving an introductory programming course: impacts of student self-empowerment,
guided hands-on times, and self-directed training. In: 2016 IEEE Frontiers in Education Conference
(FIE), pp. 1–5. IEEE.

Seeling, P. (2016b). Switching to blend-Ed: Effects of replacing the textbook with the browser in an intro-
ductory computer programming course. In: 2016 IEEE Frontiers in Education Conference (FIE), pp.
1–5. IEEE.

Serrano-Cámara, L.M., Paredes-Velasco, M., Alcover, C.-M., Velazquez-Iturbide, J.Á. (2014). An evalu-
ation of students’ motivation in computer-supported collaborative learning of programming concepts.
Computers in human behavior, 31, 499–508.

Seyam, M., McCrickard, D.S., Niu, S., Esakia, A., Kim, W. (2016). Teaching mobile application develop-
ment through lectures, interactive tutorials, and Pair Programming. In: 2016 IEEE Frontiers in Educa-
tion Conference (FIE), pp. 1–9. IEEE.

Shokaliuk, S.V., Bohunenko, Y.Y., Lovianova, I.V., Shyshkina, M.P. (2020). Technologies of distance learn-
ing for programming basics on the principles of integrated development of key competences. In: CTE
Workshop Proceedings (Vol. 7), pp. 548–562.

Sibley, J., Ostafichuk, P. (2023). Getting started with team-based learning. Taylor & Francis, ???.
Sobral, S.R. (2020). Two different experiments on teaching how to program with active learning method-

ologies: a critical analysis. In: 2020 15th Iberian Conference on Information Systems and Technologies
(CISTI), pp. 1–7. IEEE.

Sobral, S.R. (2021a). Project based learning with peer assessment in an introductory programming course.
Sobral, S.R. (2021b). Strategies on teaching introducing to programming in higher education. In: World

Conference on Information Systems and Technologies, pp. 133–150. Springer.
Sobral, S.R. (2021c). Teaching and learning to program: Umbrella review of introductory programming in

higher education. Mathematics, 9(15), 1737.
Sobrinho, H., Castro, L., Nogueira, A., Harada, E., Gadelha, B. (2016). Organizando o conhecimento sobre

técnicas de aprendizagem colaborativas. Nuevas Ideas em Informatica Educativa, 12, 152–156.
Souza, S.M., Bittencourt, R.A. (2019). Motivation and engagement with pbl in an introductory program-

ming course. In: 2019 IEEE Frontiers in Education Conference (FIE), pp. 1–9. IEEE.
Souza, S.M., Bittencourt, R.A. (2020). Report of a CS1 Course for Computer Engineering Majors Based on

PBL. In: 2020 IEEE Global Engineering Education Conference (EDUCON), pp. 837–846. IEEE.
Souza, S.M., Bittencourt, R.A. (2021). Sentiments and Performance in an Introductory Programming Course

Based on PBL. In: 2021 IEEE Global Engineering Education Conference (EDUCON), pp. 831–840.
IEEE.

Srivatanakul, T. (2023). Emerging from the pandemic: instructor reflections and students’ perceptions on an
introductory programming course in blended learning. Education and Information Technologies, 28(5),
5673– 5695.

Steinmacher, I., Silva, M.A.G., Gerosa, M.A., Redmiles, D.F. (2015). A systematic literature review on the
barriers faced by newcomers to open source software projects. Information and Software Technology,
59, 67–85.

Stephan, J., Oliveira, A., Renhe, M.C. (2020). O uso de jogos para apoiar o ensino e aprendizagem de
programação. In: Anais do XXXI Simpósio Brasileiro de Informática na Educação, pp. 381–390. SBC.

Suarez-Escalona, R., Estrada-Dominguez, J., Infante-Alcantara, L., Cavazos-Salazar, R., Treviño-Rodri-
guez, F. (2022). Active Learning Implementation as Digital Education Strategy During the COVID-19.
In: 13th International Multi-Conference on Complexity, Informatics and Cybernetics, IMCIC 2022, pp.
63–68.

Sulaiman, S. (2020). Pairing-based approach to support understanding of object-oriented concepts and
programming. Int. J. Adv. Sci. Eng. Inf. Technol, 10(4).

Sung, K., Shirley, P. (2003). A top-down approach to teaching introductory computer graphics. In: ACM
SIGGRAPH 2003 Educators Program, pp. 1–4.

Tao, Y., Nandigam, J. (2016). Programming case studies as context for active learning activities in the class-
room. In: 2016 IEEE Frontiers in Education Conference (FIE), pp. 1–4. IEEE.

Tenenberg, J., Fincher, S. (2005). Students designing software: a multi-national, multi-institutional study.
Informatics in Education, 4(1), 143–162.

Tharayil, S., Borrego, M., Prince, M., Nguyen, K.A., Shekhar, P., Finelli, C.J., Waters, C. (2018). Strategies
to mitigate student resistance to active learning. International Journal of STEM Education, 5(1), 1–16.

Topalli, D., Cagiltay, N.E. (2018). Improving programming skills in engineering education through prob-
lem-based game projects with Scratch. Computers & Education, 120, 64–74.

I. Calderon, W. Silva, E. Feitosa318

Turner, S.A., Pérez-Quiñones, M.A., Edwards, S.H. (2018). Peer review in CS2: Conceptual learning and
high-level thinking. ACM Transactions on Computing Education (TOCE), 18(3), 1–37.

Turpen, C., Dancy, M., Henderson, C. (2016). Perceived affordances and constraints regarding instructors’
use of Peer Instruction: Implications for promoting instructional change. Physical Review Physics Edu-
cation Research, 12(1), 010116.

Unterkalmsteiner, M., Gorschek, T., Islam, A.M., Cheng, C.K., Permadi, R.B., Feldt, R. (2011). Evaluation
and measurement of software process improvement—a systematic literature review. IEEE Transactions
on Software Engineering, 38(2), 398–424.

Veerasamy, A.K., D’Souza, D., Apiola, M.-V., Laakso, M.-J., Salakoski, T. (2020). Using early assessment
performance as early warning signs to identify at-risk students in programming courses. In: 2020 IEEE
Frontiers in Education Conference (FIE), pp. 1–9. IEEE.

Venter, M. (2020). Gamification in STEM programming courses: State of the art. In: 2020 IEEE Global
Engineering Education Conference (EDUCON), pp. 859–866. IEEE.

Vihavainen, A., Airaksinen, J., Watson, C. (2014). A systematic review of approaches for teaching introduc-
tory programming and their influence on success. In: Proceedings of the Tenth Annual Conference on
International Computing Education Research, pp. 19–26.

Wang, G., Zhao, H., Guo, Y., Li, M. (2019). Integration of flipped classroom and problem based learning
model and its implementation in university programming course. In: 2019 14th International Conference
on Computer Science & Education (ICCSE), pp. 606–610. IEEE.

West, R.E., Waddoups, G., Graham, C.R. (2007). Understanding the experiences of instructors as they adopt
a course management system. Educational Technology Research and Development, 55, 1–26.

Wieringa, R.J. (2014). Design science methodology for information systems and software engineering.
Xie, S., Hu, C., Wu, W., Fan, L., Xiong, Y., Tao, J. (2021). Blended Practical Teaching of Object Oriented

Programming Based on PBL and Task Driven. In: 2021 5th International Conference on Education and
E-Learning, pp. 125–128.

Xu, F., Correia, A.-P. (2023). Adopting distributed pair programming as an effective team learning activity:
a systematic review. Journal of Computing in Higher Education, 1–30.

Yang, F.-C.O., Lai, H.-M., Wang, Y.-W. (2023). Effect of augmented reality-based virtual educational ro-
botics on programming students’ enjoyment of learning, computational thinking skills, and academic
achievement. Computers & Education, 195, 104721.

Yang, S., Park, H., Choi, H. (2021). Impact of Active Learning on Object-Oriented Programming Instruc-
tion: Transforming from 3D to Text-based coding. In: 2021 IEEE Integrated STEM Education Confer-
ence (ISEC), pp. 252–255. IEEE.

Yuan, H., Cao, Y. (2019). Hybrid pair programming-a promising alternative to standard pair programming.
In: Proceedings of the 50th ACM Technical Symposium on Computer Science Education, pp. 1046–
1052.

Zayapragassarazan, Z., Kumar, S. (2012). Active learning methods. Online Submission, 19(1), 3–5.
Zhang, L., Niu, J. (2022). Research to Practice in Computer Programming Course using Flipped Classroom.

In: 2022 IEEE Frontiers in Education Conference (FIE), pp. 1–7. IEEE.
Zhang-Kennedy, L., Chiasson, S. (2021). A systematic review of multimedia tools for cybersecurity aware-

ness and education. ACM Computing Surveys (CSUR), 54(1), 1–39.

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...319

M.I. Calderon Ribeiro is currently pursuing a Ph.D. degree in informatics with the Fed-
eral University of Amazonas (UFAM). Her research interests include software engineer-
ing education, active learning strategies, and related topics. She is an associate professor
at the Federal Institute Rondônia (IFRO – Porto Velho North Zone Campus).

W. Silva received a Ph.D. in Informatics from the Institute of Computing of the Federal
University of Amazonas (UFAM). He is currently an Adjunct Professor of Software
Engineering at the Federal University of Pampa (UNIPAMPA). He is also a member
of the LESSE Research Group (Laboratory of Empirical Studies in Software Engineer
ing), the Steering Committee (2022-2023 and 2023-2024) of the Special Committee on
Information Systems (CESI) of the Brazilian Computer Society (SBC), and is part of
the Active Methodologies Interest Group linked to the Special Committee on Comput-
ing Education. His research interests include Software Engineering, Empirical Software
Engineering, Software Quality, Computing Education Research, Usability, User Experi-
ence, Machine Learning, and Human-Centered Machine Learning.

E.L. Feitosa received a degree in data processing from the Federal University of Ama-
zonas (UFAM) in 1998, a master’s degree in computer science from the Federal Univer-
sity of Rio Grande do Sul (UFRGS), in 2001, and the Ph.D. degree in computer science
from the Federal University of Pernambuco (UFPE). He is an Associate Professor with
the Institute of Computing (IComp), UFAM. He is also a Researcher and a Leader with
the Emerging Technologies and System Security (ETSS) Research Group. He holds a
position as a Research Fellow with the Networking and Emerging Technologies Re-
search Group.

I. Calderon, W. Silva, E. Feitosa320

Appendix A

Table 13 presents the relevant publications for this systematic mapping.

Table 13
Selected publications

ID Publication title Authors/year

S01 Flipping Web Programming Class: Student’s Perception and Performance Hendrik (2019)
S02 Flipped Classroom Strategy to Help Underachievers in Java Programming Kumar et al. (2018)
S03 Is More Active Always Better for Teaching Introductory Programming? Raj et al. (2018)
S04 Teaching Introduction to Computing through a project-based collaborative

learning approach
Avouris et al. (2010)

S05 Separation of syntax and problem-solving in Introductory Computer Progra-
mming

Edwards et al. (2018)

S06 Evaluating the Benefits of Team-Based Learning in a Systems Programming
Class

Joshi et al. (2020)

S07 Evolving an introductory programming course: Impacts of student self-
empowerment, guided hands-on times, and self-directed training

Seeling (2016a)

S08 Flipping a Programming Course: the Good, the Bad, and the Ugly Rosiene and Rosiene
(2015)

S09 A Case Study of an Integrated Programming Course Based on PBL Ribeiro and Bittencourt
(2019)

S10 A PBL-Based, Integrated Learning Experience of Object-Oriented Program
ming, Data Structures and Software Design

Ribeiro and Bittencourt
(2018)

S11 Serious Games for Motivating into Programming Hijon-Neira et al. (2014)
S12 Applying Flipped Classroom and Problem-Based Learning in a CS1 Course de Oliveira Fassbinder

et al. (2015)
S13 Report of a CS1 Course for Computer Engineering Majors Based on PBL Souza and Bittencourt

(2020)
S14 Improving Student Learning in an Introductory Programming Course Using

Flipped Classroom and Competency Framework
Elmaleh and
Shankararaman (2017)

S15 Integration of Flipped Classroom and Problem-Based Learning Model and its
Implementation in University Programming Course

Wang et al. (2019)

S16 Animated Flowchart with Example Followed by Think-Pair-Share Activity
for Teaching Algorithms of Engineering Courses

Dol (2018)

S17 Active Learning in Small to Large Courses Astrachan et al. (2002)
S18 Programming Case Studies as Context for Active Learning Activities in the

Classroom
Tao and Nandigam
(2016)

S19 A Games-Based Approach for Teaching the Introductory Programming
Course

Rajaravivarma (2005)

S20 A Modified Team-Based Learning Methodology for Effective Delivery of an
Introductory Programming Course

Elnagar and Ali (2012)

S21 Mobile game development: Improving student engagement and motivation in
introductory computing courses

Kurkovsky (2013)

S22 Improving the CS1 Experience with Pair Programming Nagappan et al. (2003)
S23 Two different experiments on teaching how to program with active learning

methodologies: critical analysis
Sobral (2020)

S24 Modeling Different Variables in Learning Basic Concepts of Programming in
Flipped Classrooms

Durak (2020)

Continued on next page

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...321

Table 13 – continued from previous page

ID Publication title Authors/year

S25 Hybrid Pair Programming – A Promising Alternative to Standard Pair Pro
gramming

Yuan and Cao (2019)

S26 Redesigning an introductory programming course to facilitate effective stu
dent learning: a case study

Corritore and Love
(2020)

S27 Pairing-Based Approach to Support Understanding of Object-Oriented Con
cepts and Programming

Sulaiman (2020)

S28 Using Flipped Classroom and Team-Based Learning in a First-Semester Pro
gramming Course: An Experience Report

Loftsson and
Matthíasdóttir (2019)

S29 Effect of Think-Pair-Share in a Large CS1 Class: 83 Sustained Engagement Kothiyal et al. (2014)
S30 Interactive Preparatory Work in a Flipped Programming Course Cao and Grabchak

(2019)
S31 Peer Review in CS2: Conceptual Learning and High-Level Thinking Turner et al. (2018)
S32 Making Parallel Programming Accessible to Inexperienced Programmers

through Cooperative Learning
Pollock and Jochen
(2001)

S33 Collaborative Strategy for Teaching and Learning Object-Oriented Program
ming Course: A Case Study at Mostafa Stambouli Mascara University, Alge
ria

Boudia et al. (2019)

S34 Think-Pair-Share in a Large CS1 Class: Does Learning Really Happen? Kothiyal et al. (2014)
S35 Teaching CS 1 with POGIL Activities and Roles Hu and Shepherd (2014)
S36 Students’ Perception of a Blended Learning Approach in an African Higher

Institution
Safana and Nat (2019)

S37 Implementation and Evaluation of Flipped Algorithmic Class Amira et al. (2019)
S38 Analyzing the effects of adapted flipped classroom approach on computer

programming success, attitude toward programming, and programming self-
efficacy

Özyurt and Özyurt
(2018)

S39 Integrating Project-Based Learning in Mobile Development Course to En
hance Student Learning Experience

Rahman (2018)

S40 Collaborative Learning in Computer Programming Courses That Adopted
The Flipped Classroom

Hayashi et al. (2015)

S41 An Empirical Study of In-Class Laboratories on Student Learning of Linear
Data Structures

Heckman (2015)

S42 Object-oriented programming course revisited Herala et al. (2015)
S43 Improving programming skills in engineering education through problem-

based game projects with Scratch
Topalli and Cagiltay
(2018)

S44 Using New Methodologies in Teaching Computer Programming Drini (2018)
S45 Teaching Mobile Application Development through Lectures, Interactive

Tutorials, and Pair Programming
Seyam et al. (2016)

S46 Exploring Active Learning Approaches to Computer Science Classes Caceffo et al. (2018)
S47 Including Coding Questions in Video Quizzes for a Flipped CS1 Lacher et al. (2018)
S48 Active Learning through Game Play in a Data Structures Course Dicheva and Hodge

(2018)
S49 Investigating the Impact of a Meaningful Gamification-Based Intervention

on Novice Programmers’ Achievement
Agapito et al. (2018)

S50 Switching to Blend-Ed: Effects of Replacing the Textbook with the Browser
in an Introductory Computer Programming Course

Seeling (2016b)

S51 Design and Large-scale Evaluation of Educational Games for Teaching Sort
ing Algorithms

Battistella et al. (2017)

S52 Applying PBL in Teaching Programming: na Experience Report dos Santos et al. (2018)
S53 Modern board games to improve problem solving in programming students Araújo et al. (2020)

Continued on next page

I. Calderon, W. Silva, E. Feitosa322

Table 13 – continued from previous page

ID Publication title Authors/year

S54 Game of Code: development and evaluation of a gamified activity for pro
gramming disciplines

Melo and Soares Neto
(2017)

S55 KLouro: An educational game to motivate beginner students in programming de Azevêdo Silva and
Dantas (2014)

S56 The Snake Challenge – Using gamification to motivate students in an intro
ductory programming course

Raposo and Dantas
(2016)

S57 Competitive Programming as a tool to support the teaching of algorithms and
data structure for Computer Science students

Brito et al. (2019)

S58 The Use of Games to Support the Teaching and Learning of Programming Stephan et al. (2020)
S59 Using Problem-Based Learning to Teach Programming Finger et al. (2021)
S60 Experience in Using Gamified Online Tools in Introduction to Computer

Programming
Nagai et al. (2016)

S61 Use of the Coding DOJO technique in computer programming classes Scherer and Mór (2020)
S62 Gamification Elements Applied in Web Programming Teaching-Learning Gonçalves et al. (2019)
S63 Coding Dojo as a Collaborative Learning Practice to Support Introductory

Programming Teaching: A Case Study
Alves et al. (2019)

S64 A Preliminary Analysis of the Application of Method 300 in Algorithms and
Programming Classes

de Castro Junior et al.
(2021)

S65 Application of Inverted Room and Gamification Elements to Improve
Teaching-Learning in Object Oriented Programming

Costa et al. (2017)

S66 An Integrated Experience of Object Oriented Programming, Data Structures
and Systems Design with PBL

Bittencourt et al. (2013)

S67 Logirunner: A Board Game as a Tool to Aid the Teaching and Learning of
Algorithms and Logic Programming

Casarotto et al. (2018)

S68 A Model to Promote Student Engagement in Programming Learning Using
Gamification

da Silva et al. (2018)

S69 A Bottom-Up Approach for Computer Programming Education Gamage (2021)
S70 Blended Practical Teaching of Object Oriented Programming Based on PBL

and Task Driven
Xie et al. (2021)

S71 POGIL in CS1: Evidence for Student Learning and Belonging Mayfield et al. (2022)
S72 The Impact of Pair Programming on College Students’ Interest, Perceptions,

and Achievement in Computer Science
Bowman et al. (2021)

S73 Impact of Active Learning on Object-Oriented Programming Instruction Yang et al. (2021)
S74 Research to Practice in Computer Programming Course using Flipped Class

room
Zhang and Niu (2022)

S75 Transformation in Course Delivery Augmented with Problem-Based Learn
ing and Tutorial

Desai et al. (2021)

S76 Using Flipped Classroom, Peer Discussion, and Just-in-time Teaching to In
crease Learning in a Programming Course

Jonsson (2015)

S77 Using Online Forums to Promote Collaborative Learning in Introductory
Programming Courses

Michaličková (2021)

S78 Sentiments and Performance in an Introductory Programming Course Based
on PBL

Souza and Bittencourt
(2021)

S79 Project Based Learning with Peer Assessment in an Introductory Program
ming Course

Sobral (2021a)

S80 Application of a Teaching Plan for the Discipline of Algorithms with Active
Methodologies: A Report of a Pilot Case Study

da Silva Garcia and
Oliveira (2022)

Um Survey sobre o Uso de Metodologias Ativas de
Aprendizagem no Ensino de Programação em Universidades

Brasileiras

Ivanilse Calderon1,3, Ana Carolina Oran1, Eduardo Feitosa1, Williamson Silva2

1Instituto de Computação (IComp) – Universidade Federal do Amazonas (UFAM)
Manaus, AM – Brasil

2Programa de Pós-Graduação em Engenharia de Software (PPGES) -
Universidade Federal do Pampa (UNIPAMPA) - Alegrete, RS - Brasil

3Instituto Federal de Educação, Ciência e Tecnologia de Rondônia (IFRO)
Campus Porto Velho Zona Norte - Porto Velho, RO - Brasil

{1,3ivanilse.calderon,1ana.oran,efeitosa}@icomp.ufam.edu.br

2williamsonsilva@unipampa.edu.br

Abstract. Teaching programming is challenging because it requires students to
develop abstraction, problem-solving, and logical reasoning skills. There is evi-
dence that Active Learning Methodologies (ALMs) can facilitate the efficient
development of these skills. This paper describes the results of a survey con-
ducted with 102 teachers from different regions of Brazil, which summarized
evidence on the use of ALMs in teaching programming. The results were obtai-
ned from 22 states, with the highest participation from the North region (37.2%)
and a predominance of instructors working in public institutions (77.5%). The
results indicated that 78.4% of instructors already use or are using ALMs, and
the three most adopted ALMs are Problem-Based Learning, Gamification, and
Project-Based Learning.

Resumo. Ensinar programação é desafiador devido à necessidade de desen-
volver habilidades como abstração, resolução de problemas e raciocínio lógico
nos estudantes. Há evidências de que as Metodologias Ativas de Aprendizagem
(MAAs) podem facilitar o desenvolvimento dessas competências de forma efici-
ente. Este artigo apresenta os resultados de um survey conduzido com 102 do-
centes de diferentes regiões do Brasil que sumarizariou evidências sobre o uso
das MAAs no ensino de programação. Os resultados foram obtidos de 22 unida-
des federativas, com maior participação proveniente da região Norte (37,2%)
e uma predominância de docentes atuando em instituições públicas (77,5%).
Os resultados indicaram que 78,4% dos docentes já utilizaram ou estão utili-
zando MAAs e as mais adotadas são Problem-Based Learning, Gamificação e
Project-Based Learning.

1. Introdução
O ensino na área da Computação enfrenta desafios significativos, exigindo um equilí-
brio entre os conhecimentos teóricos e abordagens de aprendizagem práticas e aplicadas

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2163DOI: 10.5753/sbie.2024.242282

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2163DOI: 10.5753/sbie.2024.242282

Appendix D

[dos Santos et al. 2020]. Dada a relevância da Computação no cotidiano, o ensino de pro-
gramação tornou-se um desafio ainda maior [Eickholt 2018]. Ensinar programação é uma
tarefa complexa, pois os estudantes ao final das disciplinas necessitam compreender como
utilizar diferentes tecnologias de forma eficaz [Liao e Ringler 2023]. Contudo, aprender
a programar, especialmente no início dos cursos, é desafiador para os estudantes. Muitos
enfrentam dificuldades ao planejar e escrever programas, e alguns consideram os conteú-
dos de programação difíceis de compreender [Okonkwo e Ade-Ibijola 2023]. Em geral,
os estudantes têm dificuldades em aprender a programar devido à falta de compreensão
de conceitos fundamentais para escrever programas simples [Corritore e Love 2020].

A abordagem centrada no professor, típica das aulas tradicionais, é muitas ve-
zes ineficaz para o desenvolvimento de competências importantes, pois tende a levar os
estudantes a absorver passivamente as informações apresentadas [Caceffo et al. 2018].
Como resultado, muitos estudantes desistem das disciplinas ou mesmo do próprio curso
[Sobral 2021b, Garcia et al. 2021]. No entanto, esse cenário tem mudado nas últimas dé-
cadas, impulsionado pelo contínuo avanço tecnológico e por novas abordagens pedagógi-
cas. Um exemplo dessa evolução são as Metodologias Ativa de Aprendizagem (MAAs),
amplamente discutidas e adotadas no ensino de programação [Sobral 2021a]. Essas me-
todologias promovem a participação ativa dos estudantes no processo de aprendizagem,
contribuindo para o desenvolvimento efetivo de competências práticas. As MAAs visam
capacitar os estudantes a lidar com os desafios do mercado de trabalho, desenvolver maior
autonomia na resolução de problemas e melhorar a comunicação [Garcia et al. 2021].

Este artigo descreve um survey conduzido com docentes de cursos de Computação
no Brasil, visando investigar a adoção das MAAs no ensino de programação. O survey
examinou percepções dos docentes sobre o uso dessas metodologias, assim como as di-
ficuldades e desafios enfrentados em sala de aula. Os resultados oferecem um panorama
da adoção das MAAs no Brasil e revelam as percepções dos docentes ao ensinarem dis-
ciplinas de programação. Por meio deste estudo, busca-se fornecer insights valiosos para
a melhoria das práticas pedagógicas na educação em programação, contribuindo para um
ensino mais eficaz e alinhado às necessidades do mercado e dos estudantes.

2. Fundamentação Teórica

O ensino de programação tem se tornado importante devido à crescente relevância da
Computação no cotidiano. No entanto, os docentes enfrentam diversos desafios, pois
os estudantes precisam entender a sintaxe e a semântica das linguagens de programa-
ção, e também desenvolver habilidades como a capacidade cognitiva para abstrair proble-
mas, resolver desafios, exercitar o raciocínio e o pensamento lógico [Sharma et al. 2022].
Muitos estudantes enfrentam dificuldades no início dos cursos ao projetar e escre-
ver programas simples, e alguns consideram a programação uma disciplina complexa
[Okonkwo e Ade-Ibijola 2023]. A falta de compreensão de conceitos fundamentais é um
obstáculo, resultando em baixo desempenho, frustração, falta de engajamento, dentre ou-
tros fatores [Corritore e Love 2020].

Esses desafios refletem nas altas taxas de evasão nos cursos de Computação.
Algumas instituições de ensino superior relatam taxas de evasão de até 50%, e a
média global de aprovação em cursos introdutórios de Ciência da Computação é de
cerca de 68% [Penney et al. 2023]. Isso é atribuído, em parte, às técnicas instrucio-

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2164

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2164

nais e pedagógicas atuais, altas expectativas dos docentes e a falta de suporte aos in-
gressantes [Beaubouef e Mason 2005, Luxton-Reilly 2016, Denny et al. 2011]. Diante
desses desafios, as MAAs vêm ganhando destaque entre os docentes [Parsons 2011,
Berssanette e de Francisco 2021, Calderon et al. 2024]. As MAAs têm sido cada vez
mais adotadas em salas de aula por serem centradas nos estudantes e por promoverem
maior envolvimento na aprendizagem. A adoção de MAAs tem implicações práticas
bem-sucedidas, proporcionando aos estudantes desafios semelhantes aos que enfrentarão
no mercado de trabalho [Garcia et al. 2021].

As MAAs combinam participação ativa do estudante, aprendizagem experimental
e aprendizagem pela ação, tornando o estudante mais responsável na aprendizagem, o
que resulta em maior motivação e satisfação [Imbulpitiya et al. 2020]. As vantagens do
aprendizado ativo sobre o aprendizado passivo incluem a participação efetiva dos estudan-
tes na construção da sua aprendizagem [Bacich e Moran 2018] e o estímulo à autonomia,
que apoia no desenvolvimento das habilidades relacionadas à resolução de problemas
[Witt et al. 2018]. Portanto, algumas MAAs têm sido implementadas no ensino de pro-
gramação em cursos de graduação em Computação, visando capacitar os estudantes para
os desafios do mercado de trabalho, desenvolver maior autonomia na resolução de proble-
mas e melhorar a comunicação [Garcia et al. 2021]. Vale ressaltar ainda que a implemen-
tação bem-sucedida das MAAs exige conhecimento e planejamento cuidadoso por parte
dos docentes. Compreender as diferentes estratégias, bem como seus sucessos e fracas-
sos, é importante para docentes que desejam incorporar novas metodologias e estratégias
de aprendizagem ativa em suas aulas de programação.

3. Trabalhos Relacionados

Nesta seção, são discutidos trabalhos que exploram diferentes abordagens e metodologias
educacionais, com ênfase na eficácia da aprendizagem ativa e MAAs nos currículos de
Ciência da Computação. Esses estudos oferecem uma visão abrangente das tendências e
desafios atuais na educação.

Hassan e Puteh (2017) conduziram um survey sobre o uso da Aprendizagem Ativa
Habilitada por Tecnologia nas práticas de ensino e aprendizagem para melhorar a qua-
lidade dos estudantes de engenharia. Elahi et al. (2016) conduziram uma revisão sobre
estratégias de aprendizagem ativa recentes, agrupando-as em duas dimensões distintas:
personalização, ou seja, se os itens selecionados pelo sistema são diferentes para dife-
rentes usuários, e hibridização, ou seja, se o aprendizado ativo é guiado por um único
critério (heurística) ou por múltiplos critérios. O trabalho de Bishop e Verleger (2013)
conduziram uma revisão da literatura sobre o uso de sala de aula invertida. Os resultados
desta pesquisa mostram que a maioria dos estudos realizados até o momento exploram as
percepções dos estudantes e utilizam projetos em grupo. Os relatos sobre as percepções
dos estudantes sobre a sala de aula invertida são variadas, mas, em geral, são positivos.

Suo et al. (2021) conduziram um survey com docentes para compreender sobre
a inclusão e adoção do uso de metodologias ativas no conteúdos de Computação Para-
lela e Distribuída (PDC) em currículos dos cursos de Ciência da Computação. Enquanto
que Wiggins et al. (2017) conduziram um survey para obter uma visão mais holística da
experiência dos estudantes em sala de aula a partir do uso das metodologias ativas. A
pesquisa conduzida por Villas-Boas et al. (2012) visou determinar o estado da arte da

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2165

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2165

Aprendizagem Ativa no Ensino de Engenharia no Brasil e os esforços de pesquisa nesta
área, bem como mapear os pesquisadores envolvidos neste tipo de abordagem de ensino-
aprendizagem. Os autores relataram que as estratégias ativas de aprendizagem aplicadas
nas escolas de engenharia do Brasil já apresentam resultados, que muitas vezes indicam a
necessidade de realinhamento em suas concepções iniciais, bem como na organização do
currículo do curso. Lima et al. (2020) conduziram um survey para diagnosticar o uso de
metodologias ativas no processo de ensino-aprendizagem das disciplinas da Engenharia
de Software nas instituições de ensino brasileiras. Como resultados, os autores relataram
que apesar do aumento na aplicação destas e os benefícios produzidos pelas mesmas, os
resultados indicam alguns obstáculos que tornam difícil o seu uso. Diante deste cenário,
observa-se que estas pesquisas oferecem uma rica contribuição para a comunidade cien-
tífica ao explorar e avaliar diversas metodologias educacionais que buscam melhorar a
qualidade do ensino e a preparação dos estudantes para os desafios profissionais.

4. Método de pesquisa

O objetivo deste estudo foi compreender a percepção dos docentes sobre a adoção e uso
das MAAs e compreender sobre as dificuldades e/ou desafios enfrentados ao utilizar estas
MAAs em sala de aula no ensino de programação. Para alcançar este objetivo, foi adotado
o método Pesquisa de Opinião (survey), empregando um questionário online como abor-
dagem para coleta das percepções dos docentes. Segundo Kitchenham e Pfleeger (2008),
um survey é um método de pesquisa utilizado para sumarizar e compreender as carac-
terísticas investigadas a partir de ampla população de indivíduos. O público-alvo deste
survey são docentes de instituições de ensino superior que têm experiência no ensino de
programação empregando algum tipo de metodologia ativa de aprendizagem. Em relação
ao design da coleta de dados, o questionário aplicado foi classificado como um recorte
transversal, no qual os docentes participantes forneceram suas informações em relação às
suas experiências e visão dentro de um determinado contexto [Oliveira et al. 2017].

4.1. Planejamento

O processo, desde a definição dos objetivos até a elaboração do questionário e a aplica-
ção para obter dados válidos, foi inspirado nas quatro etapas propostas por Kitchenham
e Pfleeger (2008) para assegurar a consistência e confiabilidade do estudo. Na primeira
etapa, foram investigados trabalhos de revisão e mapeamento sistemático da literatura já
realizados (ver Seção 3). Isso ajudou os pesquisadores a compreender melhor o estado
da arte e as tendências atuais das MAAs, os desafios frequentes e as boas práticas perce-
bidas pelos docentes, bem como compreender algumas motivações iniciais. Na segunda
etapa (Design do Questionário), definiu-se a população-alvo, a questão de pesquisa, o
método de coleta e os critérios de análise. Esses elementos foram estabelecidos para di-
recionar o estudo e garantir que os dados coletados fossem relevantes para o contexto da
pesquisa. Na terceira etapa (Aplicação do Questionário), realizou-se a coleta de dados,
iniciando com um estudo piloto para validar o questionário. Em seguida, o questionário
foi disponibilizado e divulgado entre o público-alvo. Na quarta e última etapa (Documen-
tação e divulgação dos resultados), o survey foi documentado e compartilhado utilizando
a ferramenta Google Forms. Os resultados foram analisados com o auxílio de outros
três pesquisadores especialistas, visando garantir a precisão da análise e a divulgação dos
resultados.

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2166

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2166

4.2. Design do questionário

Para a construção do questionário, foram seguidas as diretrizes sugeridas por Coelho et al.
(2019), assegurando que as fossem elaboradas seguindo uma ordem lógica e encadeada.
As perguntas são apresentadas na Tabela 1.

Tabela 1. Perguntas criadas para o survey.

ID Questão
Q01 Perguntas referentes ao perfil (gênero, estado que leciona, titulação, etc.) e experiência dos participantes (lecionando compu-

tação, lecionando aulas de programação, linguagens adotadas).
Q02 Você adota algum tipo de MAA para o ensino de programação?
Q03 Há quanto tempo você vem adotando MAA no ensino de programação?
Q04 Quais MAAs você já utilizou em suas aulas de programação?
Q05 Qual é a sua motivação para a adoção das MAAs para o ensino de programação?
Q06 Quais os pontos positivos percebidos em relação a adoção das MAAs para o ensino de programação?
Q07 Você já sentiu dificuldade em adotar as MAAs?
Q08 Quais os principais desafios e pontos negativos enfrentados em relação ao uso de MAAs no ensino de programação?

As perguntas do questionário foram organizadas em diferentes tipos para inves-
tigar a adoção de MAAs no ensino de programação. Inicialmente, são coletadas infor-
mações sobre o perfil e a experiência dos participantes, como cargo atual e tempo de
adoção de MAAs. Em seguida, os participantes são questionados sobre a adoção espe-
cífica de MAAs para ensinar programação, seguido pela identificação das metodologias
já utilizadas e em quais disciplinas foram aplicadas. Também são explorados os tipos de
ferramentas e plataformas utilizadas no processo de ensino. Além disso, são investiga-
das motivações, benefícios percebidos, dificuldades enfrentadas e desafios relacionados à
adoção dessas metodologias. As questões finais abordam métodos de avaliação da apren-
dizagem dos estudantes e as soft skills percebidas como desenvolvidas durante o processo
de ensino de programação. Essa estrutura visa compreender amplamente a implementa-
ção e impacto das MAAs no contexto específico do ensino de programação. As respostas
das perguntas do survey podem ser: perguntas fechadas de escolha única e perguntas de
múltipla escolha. Em Q1, Q2 e Q3, os participantes selecionam uma única opção que me-
lhor descreve seu perfil e experiência. A partir da Q4, os participantes foram apresentados
a uma lista de opções em que poderiam escolher as que melhor refletem sua realidade ou
perspectiva.

Além das perguntas usadas para coletar as informações dos participantes, uma se-
ção inicial foi apresentada contendo o objetivo do estudo, o Termo de Consentimento Li-
vre e Esclarecido (TCLE) 1 com informações sobre os direitos dos participantes e garantia
de anonimato, além de uma questão solicitando a concordância dos participantes para par-
ticipar do estudo. Vale ressaltar que o presente estudo está dispensado de apresentação de
Comitê de Ética, por enquadrar-se na categoria Pesquisa de Opinião pública com partici-
pantes não identificáveis, conforme o Ofício Circular No. 17/2022/CONEP/SECNS/MS,
de julho de 2022 e Ofício Circular No. 12/2023/CONET/SECNS/DGIP/SE/MS.

4.3. Aplicação do questionário

Para coletar as respostas dos docentes em diferentes regiões, utilizou-se o Google Forms
para disponibilizar o questionário on-line. O link do questionário foi compartilhado em
diversos grupos de interesse no tema e em redes sociais, possibilitando a identificação de

1https://figshare.com/s/bd04d980e05a30de434c

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2167

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2167

potenciais respondentes dispostos a participar do estudo. O questionário foi enviado por
meio dos e-mails institucionais, grupos de WhatsApp, abrangendo o quantitativo de 107
instituições de ensino superior. O período de coleta foi de 28 de novembro de 2023 a 17
de maio de 2024.

4.4. Documentação e Divulgação dos resultados

Foi realizada uma análise descritiva dos dados de forma univariada [Nardi 2018]. Os
dados foram tabulados e os gráficos foram gerados com o auxílio do Microsoft Ex-
cel. Para possibilitar a transparência e a reprodutibilidade do processo científico
[Mendez et al. 2020] seguido pelos pesquisadores, todos os dados utilizados durante a
análise podem ser acessados por meio deste link2. Por fim, a divulgação dos resultados à
comunidade, está sendo realizada a partir da publicação deste trabalho.

5. Análise dos resultados

5.1. Visão geral dos participantes

O estudo obteve a participação de 102 docentes de 21 Estados e o Distrito Federal, tota-
lizando 22 unidades federativas participantes. Apresentando o seguinte cenário: Norte:
37,2%, Nordeste: 14,9%, Sudeste: 11,8%, Sul: 9,7% e o Centro-Oeste: 6,9%. A maior
participação dos docentes estão nas regiões Norte, sendo Amazonas (23,5%), Rondônia
(21,6%) e Acre (7,8%), seguido pelos Estados de Minas Gerais (6,9%) e Alagoas (5,9%).

Analisando o perfil dos docentes, notou-se que 62,7% (64) se declararam como
Homem e 37,3% (38) se declararam como Mulher. Em relação às instituições de ensino,
77,5% (70) dos docentes atuam em instituições públicas, 19,6% (20) em instituições pri-
vadas e 2,9% (3) em instituições comunitárias, o que reflete a predominância do setor
público na oferta educacional. Quanto à titulação, 50% (51 docentes) possuem mestrado,
seguido por 34,3% (35) com doutorado, 5,9% (6) com graduação e apenas 2,9% (3) pos-
suem especialização.

Quanto à experiência em sala de aula, observou-se que a maioria dos docentes
possui 10 anos de experiência (11,8%), seguido por 11 anos (6,9%), indicando uma tra-
jetória significativa no ensino. No que diz respeito à experiência em lecionar programa-
ção, 9,8% dos docentes têm 5 anos de experiência e 8,8% entre 2 e 10 anos, refletindo
uma diversidade de níveis de experiência. Além disso, dentre as linguagens menciona-
das encontram-se Python (66.3%), C++ (40,6%), C (35,6%), Java (35,6%), Java Script
(11,9%), Pascal (9,9%) e C (5,9%).

5.2. Experiência sobre o uso das Metodologias Ativas de Aprendizagem

A Figura 1 apresenta o percentual de docentes que utilizam MAAs (Parte 1) e tempo de
adoção dessas metodologias no ensino de programação (Parte 2).

Sobre a adoção das MAAs (Q2), os resultados mostram que 78,4% dos docentes
informaram que usa ou usou algum tipo de MAA no ensino de programação. Ainda
constatou-se que (Q3): 21,2% dos participantes têm utilizado MAAs por três anos; 17,5%
aplicam essas metodologias há quatro anos, 16,2% utilizam MAAs há cinco anos, 15%
que começaram a utilizá-las há dois anos e 8,8% adotam essas práticas há oito anos. Esses

2https://figshare.com/s/0027c75e6b77f6c2c849

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2168

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2168

Figura 1. Percentual de docentes que adotam as MAAs e o tempo de adoção.

dados indicam uma crescente adoção das MAAs no ensino de programação, com muitos
docentes já implementando essas práticas há vários anos. Os resultados evidenciam que
os docentes brasileiros usam as MAAs como facilitadores do aprendizado, guiando e
apoiando os estudantes em seu processo de descoberta e construção do conhecimento.

A Figura 2 apresenta o cenário em relação as MAAs empregadas pelos docentes
no ensino de programação (Q4). As MAAs sempre utilizadas nas aulas de programação
incluem: Problem-Based Learning (26), Gamificação (19), Project-Based Learning (14),
Coding Dojo (19) e Peer Review (5). As MAAs quase sempre utilizadas são: Problem-
Based Learning (26), Gamificação (21), Project-Based Learning (20), Pair Programming
(13), Team-Based Learning (11) e Coding Dojo (9). As MAAs algumas vezes adota-
das pelos docentes incluem: Project-Based Learning (14), Team-Based Learning (12),
Gamificação (12), Problem-Based Learning (11), Pair Programming (8), Coding Dojo
(8), Peer Review (5). Os resultados demonstram que o uso diversificado e frequente de
MAAs nas aulas de programação aponta para uma mudança significativa nas estratégias
de ensino, buscando melhorar o engajamento e o desempenho dos estudantes por meio de
MAAs mais participativas e colaborativas.

5.3. Percepções dos docentes sobre a adoção e o uso das MAAs na prática docente

Ao analisar as percepções dos docentes sobre a adoção e o uso das MAAs na prática
docente, observa-se que este é um aspecto importante para o aprimoramento contínuo
da qualidade do ensino. Compreender as motivações, pontos positivos e negativos, e os
desafios enfrentados pelos educadores ao implementar MAAs permite identificar áreas de
sucesso e oportunidades de melhoria.

A análise das principais motivações (Q5) apontadas pelos docentes para adotar
MAAs no ensino de programação revela uma gama de fatores que influenciam essa de-
cisão (ver motivações na Tabela 2). As principais motivações destacadas pelos docentes
foram: o aumento do engajamento dos estudantes (56,3%), a adequação do conteúdo à
realidade e prática de ensino (55%) e a possibilidade de inovação na prática docente e pos-
sibilidade dos estudantes criarem, adaptarem e modificarem algoritmos ou códigos (cada
uma com 46,3%). Esses resultados refletem a busca por métodos de ensino mais efica-
zes e envolventes, que proporcionem uma experiência de aprendizado mais significativa

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2169

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2169

Figura 2. Frequência de uso das MAAs nas aulas de programação.

e relevante para os estudantes. Entendemos que esses aspectos apontam para a importân-
cia de abordagens de ensino mais práticas e voltadas para a aplicação do conhecimento
em contextos reais, preparando os estudantes não apenas para compreender os conceitos
teóricos, mas também para aplicá-los de forma eficaz no mercado de trabalho.

Tabela 2. Motivações mais apontadas pelos docentes

ID Motivação Porcentagem (%)
M01 Engajamento dos estudantes para o aprendizado da programação é maior 56,3
M02 Adequação do conteúdo de acordo com a sua realidade e prática de ensino 55,0
M03 Possibilidade de inovação na prática docente 46,3
M04 Possibilidade dos estudantes criarem, adaptarem e modificarem algoritmos ou códigos 46,3
M05 A substituição das aulas expositivas 43,8
M06 Possibilidade de desenvolver habilidades para a prática profissional 41,3
M06 Prática de ensino ativa que dinamiza as aulas 40,0
M07 Possibilidade de realizar avaliações curtas e frequentes 32,5
M08 Adaptação às habilidades e necessidades dos estudantes 27,5
M09 Possibilidade de construção colaborativa do conhecimento 27,5
M10 Metodologias tradicionais de ensino não permitem ao professor meios para aprimorar o

ensino dos conteúdos nas disciplinas de programação
26,3

M11 Articulação entre os conteúdos com aplicação no dia a dia do estudante 26,3

Além disso, as motivações relacionadas à dinamização das aulas (40%), à realiza-
ção de avaliações curtas e frequentes (32,5%) e à adaptação às habilidades e necessidades
dos estudantes (27,5%) destacam a importância de uma abordagem personalizada e fle-
xível no ensino de programação. Essa abordagem permite que os docentes atendam às
diferentes necessidades e estilos de aprendizagem dos estudantes, promovendo um ambi-
ente de aprendizado mais inclusivo e eficaz. Observa-se que as motivações dos docentes
refletem um desejo de promover uma educação mais envolvente, prática e relevante para
os estudantes, preparando-os de forma mais eficaz para os desafios do mercado de traba-
lho e incentivando seu desenvolvimento acadêmico e profissional.

A Tabela 3 apresenta as Percepções Positivas (PP) reportadas pelos docentes em
relação à adoção das MAAs no ensino de programação (Q06). A análise dos pontos po-
sitivos apresentam uma série de benefícios percebidos para os estudantes e o ambiente de
sala de aula. A motivação dos estudantes para aprender os conteúdos (86,3%) é destacada

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2170

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2170

como o principal benefício, sugerindo que as MAAs podem estimular um interesse mais
profundo e significativo nos temas abordados. Além disso, o engajamento dos estudantes
em sala de aula (78,8%) foi o segundo benefício destacado pelos docentes. Outros bene-
fícios bem avaliados é a melhoria da capacidade dos estudantes em relação à leitura de
código (70%) e o entendimento do funcionamento das instruções de programação (65%),
em que os docentes percebem que as MAAs podem contribuir para o desenvolvimento de
habilidades práticas e técnicas importantes em programação. A colaboração entre os estu-
dantes durante o aprendizado do conteúdo (46,3%) e a resolução de desafios propostos de
forma individual ou em grupo (33,8%) destacam a importância das MAAs na promoção
do trabalho em equipe e na troca de conhecimentos entre os estudantes.

Os docentes responderam também que as MAAs melhoram o desempenho indi-
vidual (51,2%) e no desempenho da turma (45%), sugerindo que as MAAs podem con-
tribuir para o alcance de melhores resultados acadêmicos. A capacidade dos estudantes
em desenvolver habilidades, gerar alternativas para solução de problemas, realizar avalia-
ções das soluções encontradas e realizar divisão dos problemas em módulos menores são
aspectos que indicam o fortalecimento das competências cognitivas e analíticas dos estu-
dantes. Os resultados indicam que a adoção das MAAs é amplamente percebida como be-
néfica pelos docentes, especialmente em termos de aumento da motivação e engajamento
dos estudantes. Estes aspectos são importantes para a aprendizagem ativa e participativa,
elementos centrais para a eficácia do ensino de programação.

Tabela 3. Percepções positivas relatadas pelos docentes para adotar MAAs.

ID Categoria Porcentagem (%)
PP01 Motivação para aprender conteúdos 86,3
PP02 Engajamento dos estudantes em sala de aula 78,8
PP03 Melhoria da capacidade de leitura de código 70,0
PP04 Melhoria no entendimento das instruções de programação 65,0
PP05 Melhoria no desempenho individual 51,2
PP06 Colaboração entre estudantes durante o aprendizado 46,3
PP07 Melhoria no desempenho da turma 45,0
PP08 Desafios resolvidos individual ou em grupo 33,8
PP09 Melhoria na interação entre os estudantes 33,8
PP10 Melhoria no desenvolvimento de habilidades 32,5
PP11 Capacidade dos estudantes em gerar alternativas para solução de problemas 31,3
PP12 Melhoria na participação dos estudantes em sala de aula 30,0
PP13 Melhoria na interação entre professor e estudantes 28,7
PP14 Capacidade dos estudantes em realizar avaliação das soluções 27,5
PP15 Capacidade dos estudantes em dividir problemas em módulos menores 27,5
PP16 Compartilhamento do conhecimento entre os estudantes 25,0
PP17 Disposição dos estudantes para resolver problemas 21,3
PP18 Aplicação da teoria nas atividades práticas 18,8
PP19 Capacidade dos estudantes em realizar comparação entre alternativas 15,0

Apesar dos benefícios das MAAs apontadas acima, muitos docentes enfrentam di-
ficuldades ou barreiras na sua adoção em sala de aula. Compreender os aspectos que mais
impactam negativamente nas práticas em sala de aula é importante. Para tanto, os partici-
pantes foram questionados sobre as dificuldades encontradas ao adotar MAAs (Q07). Os
resultados indicam que 53,8% dos docentes afirmam que às vezes enfrentam dificuldades,
27,5% relatam enfrentar dificuldades frequentemente, 10% raramente encontram dificul-
dades, 5% nunca tiveram dificuldades, e 3,7% sempre enfrentam obstáculos na adoção
das MAAs. Alinhado à questão acima, os participantes também foram questionados sobre
os principais desafios e pontos negativos enfrentados na aplicação das MAAs.

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2171

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2171

Ao mapear esse cenário por meio da questão Q08, evidenciou-se que a falta de
formação docente específica para a aplicação das MAAs (64,6%), a dificuldade em imple-
mentar todas as fases das MAAs (58,2%), a carência de suporte tecnológico para facilitar
a compreensão e adoção das metodologias (58,2%), a escassez de informações sobre a
implementação e adoção das MAAs (55,7%) e a falta de conhecimento ou domínio sobre
como implementá-las (55,7%) são os principais obstáculos. Outros desafios incluem a di-
ficuldade em conciliar o uso de tecnologias durante a implementação das MAAs (54,4%),
a falta de comprometimento dos estudantes com os estudos prévios necessários (53,2%),
a restrição de tempo por parte dos docentes para o planejamento das aulas que adotam
MAAs (51,9%), e a ausência de formação pedagógica específica para o ensino com a
utilização dessas metodologias (48,1%). Todos esses desafios refletem a complexidade
do ambiente educacional atualmente, evidenciam as lacunas na preparação dos docentes.
Isso também ressalta a necessidade urgente de investimentos em capacitação profissional
e suporte institucional para promover uma implementação eficaz das MAAs no ensino de
programação.

6. Discussão dos Resultados

A adoção das MAAs no ensino de programação é importante para promover um aprendi-
zado significativo e eficaz entre estudantes da Computação. Estudos indicam um aumento
considerável no engajamento dos estudantes quando essas metodologias são implemen-
tadas nas aulas [Acharya e Gayana 2021, Bacich e Moran 2018]. Esse aumento de en-
gajamento se manifesta em maior participação, motivação e interesse dos estudantes. A
adoção das MAAs pelos docentes é, portanto, fundamental para assegurar um ensino de
qualidade e preparar os estudantes para os desafios do século XXI. Os resultados do ques-
tionário evelam que as MAAs mais frequentemente adotadas no ensino de programação
incluem Problem-Based Learning, Gamificação, Project-Based Learning, Coding Dojo e
Peer Review. Comparando esses resultados com a literatura, evidenciamos que há uma
convergência em relação às MAAs mais adotadas no ensino de programação. Tanto os
resultados do survey quanto a revisão sistemática conduzida por Bersanete e Francisco
(2021) destacam Project-Based Learning como uma das principais metodologias adota-
das pelos docentes.

Além disso, os resultados deste trabalho apresentam que as linguagens de progra-
mação mais utilizadas pelos docentes são Python (66.3%), C++ (40,6%), C (35,6%), Java
(35,6%), Java Script (11,9%), Pascal (9,9%) e C (5,9%). Calderon et al. (2021) eviden-
ciaram que linguagem de programação C é a mais utilizada pelos docentes para ensinar
programação, seguida por Java e Python. Em seu trabalho mais recente, Calderon et al.
(2024) relataram que Java está entre as linguagens mais utilizadas, seguida por C++, C
e Python. Esses resultados estão alinhados com os relatados na literatura, ressaltando
a adaptação curricular às necessidades acadêmicas e profissionais e sustentando a flexi-
bilidade necessária no ensino de programação para preparar estudantes para múltiplos
contextos da indústria de tecnologia. Os resultados deste trabalho indicam ainda que a
adoção das MAAs é amplamente percebida como benéfica pelos docentes, especialmente
em termos de aumento da motivação e engajamento dos estudantes. Liao e Ringler (2023)
relatam as percepções positivas dos docentes em relação às MAAs, sugerindo que estão
sempre abertos a inovar em suas práticas pedagógicas e a adotar abordagens mais centra-
das no estudante para melhorar a experiência de aprendizagem dos estudantes em cursos

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2172

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2172

de Computação. Esses autores destacam que os docentes adotam as MAAs principal-
mente devido ao aumento da motivação e engajamento dos estudantes e à importância de
envolver estes em atividades práticas e projetos relevantes, proporcionando uma conexão
mais direta entre o aprendizado teórico e sua aplicação prática. A colaboração entre os
estudantes é fortalecida, pois muitas MAAs incentivam o trabalho em equipe e a troca de
ideias. Os estudantes sentem-se mais preparados para enfrentar os desafios do mercado
de trabalho após passarem por experiências de aprendizado baseadas em MAAs, desen-
volvendo não apenas habilidades técnicas, mas também habilidades interpessoais e de
resolução de problemas.

Os resultados também revelam um cenário complexo e multifacetado de desa-
fios enfrentados pelos docentes ao adotar MAAs no ensino de programação. A análise
dos dados revelou dificuldades enfrentadas pelos docentes, incluindo a falta de forma-
ção específica para a aplicação das MAAs, a dificuldade em implementar todas as fases
necessárias, a carência de suporte tecnológico, a escassez de informações sobre a imple-
mentação e a falta de conhecimento ou domínio sobre como aplicá-las, conforme relatado
também no trabalho de Lima et al. (2020). Esses desafios refletem a complexidade do
ambiente educacional e a necessidade de apoio e desenvolvimento profissional contínuo
para os docentes no contexto do ensino de programação. A escassez de tempo para pla-
nejamento das aulas sugerem a necessidade de estratégias de gestão de sala de aula e de
tempo mais eficazes. Conforme Sobral (2020) e Lima et al. (2020), a implementação
de MAAs pode exigir tempo e esforço adicionais por parte dos docentes para planejar e
executar as atividades de forma eficaz. Kovařík et al. (2022) afirmam que a preparação
de atividades de aprendizagem ativas pode demandar mais tempo e esforço comparado a
preparação de aulas tradicionais.

O suporte institucional e à adaptação curricular não devem ser subestimados. As
instituições precisam fornecer os recursos necessários e criar um ambiente que enco-
raje a experimentação e a inovação pedagógica. A falta de formação específica é um
obstáculo crítico para a implementação eficaz dessas metodologias [Calderon et al. 2024,
Berssanette e de Francisco 2021]. Segundo Kovarik et al. (2022), a adoção bem-sucedida
de MAAs requer um certo nível de treinamento e desenvolvimento profissional para ga-
rantir que os docentes possam projetar e facilitar atividades de aprendizagem eficazes.
Sem a formação adequada, os docentes podem se sentir despreparados para adotar e in-
tegrar as MAAs de forma sistemática em seu contexto de ensino. Além disso, a carência
de suporte tecnológico e de informações sobre a implementação das MAAs destaca a
necessidade de infraestrutura adequada e recursos educacionais. Calderon et al. (2024)
relatam que a implementação bem-sucedida das MAAs em sala de aula requer tanto o
conhecimento pedagógico quanto a disponibilidade de ferramentas tecnológicas. Há,
portanto, a necessidade de artefato educacionais que apoiem os docentes na adoção de
MAAs no ensino de programação, mininizando as barreiras percebidos pelos docentes
[Berssanette e de Francisco 2021, Calderon et al. 2024].

A falta de comprometimento e resistência por parte dos estudantes são desafios.
Alguns estudantes podem resistir ao aprendizado ativo devido às mudanças na abordagem
de ensino tradicional, exigindo maior participação e envolvimento [Liao e Ringler 2023].
No entanto, ao longo do tempo, muitos estudantes percebem os benefícios dessas estraté-
gias e se tornam mais receptivos a elas, contribuindo para um ambiente de aprendizagem

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2173

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2173

mais dinâmico [Kovarik et al. 2022, Eickholt 2018]. Kovarik et al. (2022) afirmam que
os estudantes geralmente se beneficiam das MAAs, pois essas abordagens promovem uma
aprendizagem mais envolvente, colaborativa e significativa.

A adoção da MAAs no ensino das disciplinas introdutórias desempenham um pa-
pel importante na formação dos estudantes, estabelecendo as bases conceituais e práticas
necessárias para sua jornada acadêmica e profissional. A implementação dessas MAAs
desde o início do curso pode proporcionar uma introdução mais envolvente e significativa
aos conceitos fundamentais da computação, preparando-os para desafios mais avançados.
Por outro lado, se as MAAs estiverem sendo adotadas em disciplinas mais avançadas, isso
pode indicar uma ênfase na aplicação prática dos conhecimentos adquiridos e no desen-
volvimento de habilidades específicas para situações do mundo real. Em ambos os casos,
compreender a presença das MAAs nas disciplinas do curso se faz necessário para avaliar
o impacto dessas abordagens no ensino de computação e para orientar futuras iniciativas
de melhoria curricular e pedagógica.

7. Considerações Finais e Trabalho Futuros

Este estudo apresentou o resultado de um survey realizado com 102 docentes de diferentes
regiões do Brasil, cujo objetivo foi compreender a percepção dos docentes sobre a adoção
e uso das MAAs e compreender sobre as dificuldades e/ou desafios enfrentados ao utili-
zar estas MAAs em sala de aula no ensino de programação. De acordo com os resultados
obtidos, as MAAs incentivam uma compreensão prática dos conceitos, promovem o de-
senvolvimento de habilidades de programação e fortalecem competências consideradas
importantes, como trabalho em equipe, comunicação e pensamento crítico. Além disso,
os docentes evidenciaram que essas metodologias preparam os estudantes para os desafios
do mercado de trabalho, onde a capacidade de aplicar conhecimentos em projetos práticos
e resolver problemas complexos é fundamental. Assim, as MAAs não apenas melhoram
a experiência de aprendizagem, mas também capacitam os estudantes para uma carreira
bem-sucedida.

Por outro lado, os desafios identificados são igualmente importantes e sugerem a
necessidade de uma abordagem multifacetada para a sua superação. A falta de formação
específica e de suporte tecnológico, bem como a dificuldade em implementar todas as fa-
ses das MAAs, indicam que os docentes precisam de mais recursos e apoio para integrar
essas metodologias de forma eficaz em suas práticas pedagógicas. A falta de comprome-
timento dos estudantes e a restrição de tempo para o planejamento também são questões
que precisam ser abordadas nas políticas institucionais e estratégias de ensino que va-
lorizem e facilitem a adoção das MAAs. Para superar essas barreiras, faz-se necessário
investir em formação contínua para os docentes, disponibilizar recursos tecnológicos ade-
quados e fornecer suporte institucional, assegurando a implementação eficaz das MAAs e
maximizando seus benefícios no ensino de programação. Como trabalhos futuros espera-
se investigar estratégias específicas para mitigar os desafios identificados na adoção das
MAAs no ensino de programação e a percepção dos estudantes sobre o uso de MAAs
em sala de aula. Estudos adicionais podem explorar a eficácia de diferentes abordagens
de ensino que facilitem a implementação das MAAs, bem como avaliar o impacto de
iniciativas institucionais na motivação e no comprometimento dos estudantes.

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2174

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2174

Agradecimentos
A presente pesquisa foi realizada com apoio da Coordenação de Aperfeiçoamento de Pes-
soal de Nível Superior – Brasil (CAPES) – Código de Financiamento 001 e parcialmente
financiado pela Fundação de Amparo à Pesquisa do Estado do Amazonas – FAPEAM
– por meio do projeto POSGRAD. Williamson Silva agradece pelo apoio financeiro da
FAPERGS (Projeto ARD/ARC) - processo n. 22/2551-0000606. Ivanilse Calderon agra-
dece ao Grupo de Pesquisa em Tecnologias e Educação em Computação (GPComp) e
ao Instituto Federal de Educação, Ciência e Tecnologia de Rondônia (IFRO) pelo apoio
financeiro - processo n. 23243.004494/2024-20, Programa Institucional de Incentivo à
Qualificação (PIQ), Edital n.34/2024/REIT-DGP/IFRO.

Referências
Acharya, S. e Gayana, M. (2021). Enhanced learning and improved productivity of stu-

dents’ using project based learning approaches for programming courses. Journal of
Engineering Education Transformations, 34:524–530.

Bacich, L. e Moran, J. (2018). Metodologias ativas para uma educação inovadora: uma
abordagem teórico-prática. Penso Editora.

Beaubouef, T. e Mason, J. (2005). Why the high attrition rate for computer science stu-
dents: some thoughts and observations. ACM SIGCSE Bulletin, 37(2):103–106.

Berssanette, J. H. e de Francisco, A. C. (2021). Active learning in the context of the
teaching/learning of computer programming: A systematic review. Journal of Infor-
mation Technology Education. Research, 20:201.

Bishop, J. e Verleger, M. A. (2013). The flipped classroom: A survey of the research. Em
2013 ASEE annual conference & exposition, páginas 23–1200.

Caceffo, R., Gama, G., e Azevedo, R. (2018). Exploring active learning approaches to
computer science classes. Em Proceedings of the 49th ACM Technical Symposium on
Computer Science Education, páginas 922–927.

Calderon, I., Silva, W., e Feitosa, E. (2021). Um mapeamento sistemático da literatura
sobre o uso de metodologias ativas durante o ensino de programação no brasil. Anais
do XXXII Simpósio Brasileiro de Informática na Educação, páginas 1152–1161.

Calderon, I., Silva, W., e Feitosa, E. (2024). Active learning methodologies for teaching
programming in undergraduate courses: A systematic mapping study. Informatics in
Education, 23(2):279–322.

Coelho, J. A., Souza, G. H., e Albuquerque, J. (2020). Desenvolvimento de questionários
e aplicação na pesquisa em informática na educação. Metodologia de Pesquisa em
Informática na Educa\cão: Abordagem Quantitativa de Pesquisa. Porto Alegre: SBC.
Série Metodologia de Pesquisa em Informática na Educa\cão, 2.

Corritore, C. L. e Love, B. (2020). Redesigning an introductory programming course to
facilitate effective student learning: A case study. Journal of Information Technology
Education: Innovations in Practice, 19:091–135.

Denny, P., Luxton-Reilly, A., Tempero, E., e Hendrickx, J. (2011). Understanding the
syntax barrier for novices. Em Proceedings of the 16th annual joint conference on
Innovation and technology in computer science education, páginas 208–212.

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2175

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2175

dos Santos, S. C., Reis, P. B., Reis, J. F., e Tavares, F. (2020). Two decades of pbl in
teaching computing: a systematic mapping study. IEEE transactions on education,
64(3):233–244.

Eickholt, J. (2018). Barriers to active learning for computer science faculty. arXiv preprint
arXiv:1808.02426.

Elahi, M., Ricci, F., e Rubens, N. (2016). A survey of active learning in collaborative
filtering recommender systems. Computer Science Review, 20:29–50.

Garcia, F. W. D. S., Carvalho, E. D. C., e Oliveira, S. R. B. (2021). Use of active metho-
dologies for the development of a teaching plan for the algorithms subject. Em 2021
IEEE Frontiers in Education Conference (FIE), páginas 1–9. IEEE.

Hassan, N. F. e Puteh, S. (2017). A survey of technology enabled active learning in tea-
ching and learning practices to enhance the quality of engineering students. Advanced
Science Letters, 23(2):1104–1108.

Imbulpitiya, A., Kodagoda, N., Gamage, A., e Suriyawansa, K. (2020). Using active
learning integrated with pedagogical aspects to enhance student’s learning experience
in programming and related concepts. Em International Conference on Interactive
Collaborative Learning, páginas 218–228. Springer.

Kitchenham, B. A. e Pfleeger, S. L. (2008). Personal opinion surveys. Em Guide to
advanced empirical software engineering, páginas 63–92. Springer.

Kovarik, M. L., Robinson, J. K., e Wenzel, T. J. (2022). Why use active learning? Em
Active Learning in the Analytical Chemistry Curriculum, páginas 1–12. ACS Publica-
tions.

Liao, Y.-C. e Ringler, M. (2023). Backward design: Integrating active learning into un-
dergraduate computer science courses. Cogent Education, 10(1):2204055.

Lima, J. V. V., Silva, C. A. D., de Alencar, F. M. R., e Santos, W. B. (2020). Metodo-
logias ativas como forma de reduzir os desafios do ensino em engenharia de software:
diagnóstico de um survey. Em Anais do XXXI Simpósio Brasileiro de Informática na
Educação, páginas 172–181. SBC.

Luxton-Reilly, A. (2016). Learning to program is easy. Em Proceedings of the 2016 ACM
Conference on Innovation and Technology in Computer Science Education, páginas
284–289.

Mendez, D., Graziotin, D., Wagner, S., e Seibold, H. (2020). Open Science in Software
Engineering, páginas 477–501. Springer International Publishing, Cham.

Nardi, P. M. (2018). Doing Survey Research: A Guide to Quantitative Methods. Rou-
tledge.

Okonkwo, C. W. e Ade-Ibijola, A. (2023). Synthesis of nested loop exercises for practice
in introductory programming. Egyptian Informatics Journal, 24(2):191–203.

Oliveira, M., Oliveira, S. R. B., e Meira, S. (2017). Condução de uma fábrica de software
e o processo de aprendizagem em cursos de graduação de ti: Uma aplicação de um
survey sobre a percepção da importância. Em SBIE, volume 28.

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2176

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2176

Parsons, P. (2011). Preparing computer science graduates for the 21st century. Teaching
Innovation Projects, 1(1).

Penney, J., Pimentel, J. F., Steinmacher, I., e Gerosa, M. A. (2023). Anticipating user
needs: Insights from design fiction on conversational agents for computational thin-
king. Em International Workshop on Chatbot Research and Design, páginas 204–219.
Springer.

Sharma, V., Bhagat, K. K., Huang, H.-H., e Chen, N.-S. (2022). The design and evaluation
of an ar-based serious game to teach programming. Computers & Graphics, 103:1–18.

Sobral, S. R. (2020). Two different experiments on teaching how to program with active
learning methodologies: A critical analysis. Em 2020 15th Iberian Conference on
Information Systems and Technologies (CISTI), páginas 1–7. IEEE.

Sobral, S. R. (2021a). Project based learning with peer assessment in an introductory
programming course.

Sobral, S. R. (2021b). Strategies on teaching introducing to programming in higher edu-
cation. Em World Conference on Information Systems and Technologies, páginas 133–
150. Springer.

Suo, X., Glebova, O., Liu, D., Lazar, A., e Bein, D. (2021). A survey of teaching pdc
content in undergraduate curriculum. Em 2021 IEEE 11th Annual Computing and
Communication Workshop and Conference (CCWC), páginas 1306–1312. IEEE.

Villas-Boas, V., Neto, O. M., Campos, L. C., e Aguiar, B. (2012). A survey of active lear-
ning in brazilian engineering schools. Em Proceedings: Active Learning Engineering
Education Workshop.

Wiggins, B. L., Eddy, S. L., Wener-Fligner, L., Freisem, K., Grunspan, D. Z., Theobald,
E. J., Timbrook, J., e Crowe, A. J. (2017). Aspect: A survey to assess student perspec-
tive of engagement in an active-learning classroom. CBE—Life Sciences Education,
16(2):ar32.

Witt, D. T., Kemczinski, A., e dos Santos, L. M. (2018). Resolução de problemas: Abor-
dagens aplicadas no ensino de computação. Anais do Computer on the Beach, páginas
731–740.

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2177

XIII Congresso Brasileiro de Informática na Educação (CBIE 2024)

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

2177

Repositório Colaborativo para apoiar a adoção de Metodologias

Ativas no Ensino de Programação

Ivanilse Calderon Ribeiro
 Instituto de Computação (IComp)

 Universidade Federal do Amazonas

 Manaus, AM - Brasil

ivanilse.calderon@icomp.ufam.edu.br

Williamson Silva
Departamento de Ciência da

Computação

Universidade Estadual do Paraná

Apucarana, PR - Brasil

williamson.silva@gmail.com

Eduardo Luzeiro Feitosa
Instituto de Computação (IComp)

Universidade Federal do Amazonas

 Manaus, AM -Brasil

 efeitosa@icomp.ufam.edu.br

O ensino de programação é um processo complexo [1], pois requer

que os estudantes desenvolvam ao longo da aprendizagem

diferentes habilidades, tais como capacidade de abstração,

resolução de problemas, raciocínio e pensamento lógico [2-4].

Tradicionalmente, o ensino de programação se dá por meio de aulas

expositivas combinadas com exercícios que descrevem problemas

ao qual os estudantes devem solucionar [2,5-6]. Essa forma de

ensino vem recebendo diversas críticas, uma vez que a transmissão

do conhecimento é realizada de forma passiva [7-9]. Visando

minimizar este problema, docentes tentam adaptar ou empregar

novas estratégias de ensino para proporcionar um ambiente de

aprendizagem desafiador e engajador para os estudantes [5,10].

Neste sentido, o uso de Metodologias Ativas (MAs) vêm

ganhando destaque entre os docentes [11-12]. De acordo com

Koening [13], as MAs baseiam-se na teoria Construtivista, em que

a aprendizagem é responsabilidade do estudante. As MAs criam

situações de aprendizagem para que os estudantes construam

conhecimentos sobre os conteúdos aprendidos, desenvolvendo a

capacidade crítica e a reflexão sobre as práticas que realizam, bem

como explorando atitudes, valores pessoais e aprendam-fazendo

(learning by doing) [12,14, 15].

Apesar das evidências positivas em relação às MAs, a adoção

por parte dos docentes ainda é relativamente baixa [16-18]. Isso

vem ocorrendo devido às diversas barreiras que os professores

enfrentam na adoção das MAs, tais como: (a) falta de tempo para o

planejamento das aulas adotando MAs [16-17]; (b) dificuldade de

cumprir todo o conteúdo da disciplina [16,19]; (c) rejeição por parte

dos estudantes em relação à utilização de novas metodologias de

ensino; (d) falta de informação sobre como implementar as MAs

nas aulas [3,19].

Dado o contexto apresentado, esta pesquisa tem como objetivo

apoiar a adoção das MAs para o ensino de programação,

minimizando as barreiras e/ou desafios enfrentados pelos docentes.

Esta pesquisa está sendo guiada pela metodologia de Design

Science Research (DSR) [20-21] para delimitar o problema de

pesquisa, o desenvolvimento, a avaliação e evolução do artefato. A

proposta inicial é desenvolver um repositório colaborativo aberto

em que os docentes possam identificar, selecionar, adotar, discutir,

comentar, avaliar e possivelmente colaborar com (novas ou não)

MAs utilizadas durante o ensino de programação.

O repositório auxiliará o docente na identificação e escolha de

MA(s) de acordo com o seu contexto de ensino e que atenda às suas

necessidades pedagógicas. O repositório também disponibilizará

um conjunto de guidelines que contará com o passo a passo para

guiar os docentes durante a adoção das MAs. Desta forma, os

docentes não precisarão buscar, em vários artigos científicos ou

livros, formas de como conduzir uma determinada MA em sala de

aula. Com a elaboração do repositório, estas informações ficarão

disponíveis em apenas um único lugar. Além disso, em razão da

proposição de novas MAs, o repositório será colaborativo e aberto

à comunidade acadêmica. Assim, docentes poderão contribuir com

MAs adotadas, avaliando positivamente ou não o uso de uma

determinada MA. Esta avaliação permitirá que os demais docentes

possam compartilhar com a comunidade docente suas experiências

de uso de uma MA. Isso ajudará os demais docentes durante o

processo de adoção ou não de uma determinada MA. É importante

mencionar que o repositório está na fase de ideação, ou seja, ainda

está sendo realizada a identificação e o mapeamento das MAs,

materiais de apoio, informações e artefatos que poderão ajudar os

professores durante a adoção de uma MA. A coleta e curadoria

destas informações apoiarão na concepção e no desenvolvimento

do artefato proposto (repositório colaborativo aberto).

Por fim, para avaliar a viabilidade de uso e evoluir o

repositório, pretende-se conduzir estudos experimentais

quantitativos (questionários – Modelo de Aceitação de Tecnologia,

surveys) e qualitativos (estudos de caso, entrevistas e sessões de

grupo focal) com docentes que ministram disciplinas de

programação. Espera-se que, a partir do uso do repositório, algumas

barreiras enfrentadas pelos docentes durante a adoção de MAs

sejam minimizadas, uma vez que a literatura confirma que docentes

e pesquisadores em Educação estão obtendo resultados

significativamente melhores ao experimentar novas intervenções e

abordagens pedagógicas durante o processo de ensino-

aprendizagem [22].

AGRADECIMENTOS

Os autores agradecem ao apoio financeiro fornecido de forma

indireta das seguintes instituições de ensino: Universidade Federal

do Amazonas (UFAM), Instituto Federal de Educação, Ciência e

Fica permitido ao(s) autor(es) ou a terceiros a reprodução ou distribuição, em parte

ou no todo, do material extraído dessa obra, de forma verbatim, adaptada ou

remixada, bem como a criação ou produção a partir do conteúdo dessa obra, para

fins não comerciais, desde que sejam atribuídos os devidos créditos à criação

original, sob os termos da licença CC BY-NC 4.0.

EduComp’21, Abril 26–30, 2021, Jataí, Goiás, Brasil (On-line)

©️2021 Copyright mantido pelo(s) autor(es). Direitos de publicação licenciados à

Sociedade Brasileira de Computação (SBC).

56

Appendix E

EduComp’21, Abril 26–30, 2021, Jataí, Goiás, Brasil (On-line) Calderon Ribeiro et al.

Tecnologia de Rondônia (IFRO) / Campus Porto Velho Zona Norte

e da Universidade Estadual do Paraná (UNESPAR) / Campus

Apucarana.

REFERÊNCIAS
[1] Andrew Luxton-Reilly, Ibrahim Albluwi, Brett A. Becker, Michail Giannakos,

Amruth N. Kumar, Linda Ott, James Paterson, Michael James Scott, Judy Sheard,

and Claudia Szabo. 2018. Introductory programming: a systematic literature

review. In Proceedings Companion of the 23rd Annual ACM Conference on

Innovation and Technology in Computer Science Education, pp. 55-106.

[2] Adalbert Gerald Soosai Raj, Jignesh Patel, and Richard Halverson. 2018. Is More

Active Always Better for Teaching Introductory Programming? In2018

International Conference on Learning and Teaching in Computing and

Engineering (LaTICE), IEEE, 103–109.

[3] Maria Ivanilse Calderon Ribeiro, and Odette Mestrinho Passos. 2020. A Study

on the Active Methodologies Applied to Teaching and Learning Process in the

Computing Area. In IEEE Access, (2020), 219083–219097.

[4] Chandra Turpen, Melissa Dancy, and Charles Henderson. 2016. Perceived

affordances and constraints regarding instructors’ use of Peer Instruction:

Implications for promoting instructional change. In Physical Review Physics

Education Research 12, 1 (2016), 010116.

[5] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. 2005. A study of the

difficulties of novice programmers. In ACM SIGCSE Bulletin 37, 3 (2005), 14–

18.

[6] Diego Teixeira Witt, and Avanilde Kemczinski. 2020. Metodologias de

Aprendizagem Ativa Aplicadas à Computação: Uma Revisão da Literatura. In

Informática na educação: teoria & prática 23, 1 (2020).

[7] Lilian Bacich and José Moran. Metodologias Ativas para uma Educação

Inovadora: Uma Abordagem Teórico-Prática. Penso Editora.

[8] Chicon P. M., C. R. Quaresma, and S. B. Garcês. 2019. Aplicação do Método de

ensino Peer Instruction para o Ensino de Lógica de Programação com

acadêmicos do Curso de Ciência da Computação. In Anais do 5º Seminário

Nacional de Inclusão Digital (SENID). Cruz Alta: UNICRUZ, 02-10.

[9] Aline Diesel, Alda Leila Santos Baldez, and Silvana Neumann Martins. 2017. Os

princípios das metodologias ativas de ensino: uma abordagem teórica. In Revista

Thema 14, 1 (2017), 268–288.

[10] Shreenath Acharya and MN Gayana. 2021. Enhanced Learning and Improved

Productivity of Students’ using Project Based Learning Approaches for

Programming Courses. In Journal of Engineering Education Transformations

34, (2021), 524–530.

[11] Ronney Moreira Castro and Sean Siqueira. 2019. Técnicas Alternativas de

Ensino (Aprendizagem Ativa) para Disciplinas da Computação: Um

Mapeamento Sistemático no Contexto Brasil. In Anais do Workshop de

Informática na Escola (Vol. 25, No. 1, pp. 1409-1413.

[12] Diego Teixeira Witt, Avanilde Kemczinski, and Luciane Mulazani dos Santos.

2018. Resolução de problemas: Abordagens aplicadas no ensino de computação.

In Anais do Computer on the Beach (2018), 731–740.

[13] Kathleen M Koenig. 2020. Personal response systems: Making an informed

choice. In Active Learning in College Science Journal. Springer, 123–139.

[14] Jose Moran. 2021. Avanços e desafios na educação híbrida. Educação

transformadora. Retrieved January 20, 2021 from

http://www2.eca.usp.br/moran/.

[15] Paul Parsons. 2011. Preparing computer science graduates for the 21st Century.

Teaching Innovation Projects 1, 1 (2011).

[16] Jesse Eickholt. 2018. Barriers to active learning for computer science faculty.

arXiv preprint arXiv:1808.02426 (2018).

[17] Joel Michael. 2007. Faculty perceptions about barriers to active learning. In

College Teaching 55, 2 (2007), 42–47.

[18] Elisa L Park and Bo Keum Choi. 2014. Transformation of classroom spaces:

Traditional versus active learning classroom in colleges. In Higher Education 68,

5 (2014), 749–771.

[19] Williamson Silva, Bruno Gadelha, Igor Steinmacher, and Tayana Conte. 2020.

Towards an open repository for teaching software modeling applying active

learning strategies. In 2020 IEEE/ACM 42nd International Conference on

Software Engineering: Software Engineering Education and Training (ICSE-

SEET), IEEE 162–172.

[20] Alan Hevner and Samir Chatterjee. 2010. Design science research in information

systems. In Design research in information systems. Springer, 9–22.

[21] Roel J Wieringa. 2014. Design science methodology for information systems and

software engineering. Springer.

[22] Arto Vihavainen, Jonne Airaksinen, and Christopher Watson. 2014. A systematic

review of approaches for teaching introductory programming and their influence

on success. In Proceedings of the tenth annual conference on International

computing education research, 19–26.

57

CollabProg: Um Repositório Colaborativo Aberto para Apoiar na
Adoção de Metodologias Ativas no Ensino de Programação

Ivanilse Calderon
ivanilse.calderon@icomp.ufam.edu.br
Instituto de Computação (IComp) -
Universidade Federal do Amazonas

Manaus, Amazonas, BR

Williamson Silva
williamsonsilva@unipampa.edu.br
Departamento de Engenharia de

Software - Universidade Federal do
Pampa (UNIPAMPA)

Alegrete, Rio Grande do Sul, BR

Eduardo Feitosa
efeitosa@icomp.ufam.edu.br

Instituto de Computação (IComp) -
Universidade Federal do Amazonas

Manaus, Amazonas, BR

RESUMO
O ensino de programação é um desafio, pois requer que o docente
direcione o estudante ao desenvolvimento de diferentes habilida-
des, tais como abstração do mundo real, resolução de problemas,
raciocínio lógico. No entanto, a abordagem tradicional de ensino
utilizada não é eficaz para isso. Nesse sentido, as Metodologias
Ativas (MAs) vêm sendo adotadas pelos docentes, pois possibilitam
o desenvolvimento de habilidades, reflexão sobre as práticas rea-
lizadas, explorar atitudes, valores pessoais e o aprender-fazendo.
O objetivo desta pesquisa é apoiar os docentes na adoção de MAs
no ensino de programação. A metodologia utilizada nesta pesquisa
é baseada nas diretrizes do Design Science Research que guiará a
condução dos estudos, a criação e avaliação do artefato proposto.
A principal contribuição para a base de conhecimento é o próprio
repositório colaborativo aberto para apoiar o docente na adoção de
MAs no ensino de programação, a metodologia da pesquisa usada
neste trabalho e o design dos estudos experimentais conduzidos.

CCS CONCEPTS
• Social and professional topics → Computing education.

PALAVRAS-CHAVE
Ensino de programação, Metodologias Ativas, Computação

1 CARACTERIZAÇÃO DO PROBLEMA
O ensino de programação ainda é um grande desafio para os do-
centes, uma vez que requer que os estudantes compreendam de
forma correta conceitos abstratos [9, 12]. Além disso, os docentes
se deparam com a necessidade de motivar e despertar nos estu-
dantes diferentes habilidades ao longo do ensino de programação,
tais como a capacidade de abstração, a resolução de problemas e, o
raciocínio e pensamento lógico [15, 21].

Nesse sentido, o uso de Metodologias Ativas (MAs) vêm ga-
nhando destaque entre os docentes [7, 27]. Diferente da abordagem
tradicional de ensino, as MAs possibilitam que os estudantes as-
sumam um papel ativo na aprendizagem, tendo suas experiências,

Fica permitido ao(s) autor(es) ou a terceiros a reprodução ou distribuição, em parte ou
no todo, domaterial extraído dessa obra, de forma verbatim, adaptada ou remixada, bem
como a criação ou produção a partir do conteúdo dessa obra, para fins não comerciais,
desde que sejam atribuídos os devidos créditos à criação original, sob os termos da
licença CC BY-NC 4.0.
EduComp’22, Abril 24-29, 2022, Feira de Santana, Bahia, Brasil (On-line)
© 2022 Copyright mantido pelo(s) autor(es). Direitos de publicação licenciados à
Sociedade Brasileira de Computação (SBC).

saberes e opiniões valorizadas como ponto de partida para constru-
ção do conhecimento [7], os estudantes constroem conhecimentos
sobre os conteúdos aprendidos, desenvolvem a capacidade crítica e
passam a refletir sobre suas práticas, sobre os valores pessoais e o
aprender-fazendo (learning by doing) [19, 27].

Apesar das evidências positivas em relação às MAs no ensino
de programação, a adoção por parte dos docentes ainda é relativa-
mente baixa [9, 20], devido às diversas barreiras que os docentes
enfrentam na adoção das MAs, tais como: (a) falta de tempo para
o planejamento das aulas adotando MAs [9, 18]; (b) dificuldade
de cumprir todo o conteúdo da disciplina [9, 23]; (c) rejeição por
parte dos estudantes em relação à adoção de novas metodologias
de ensino; (d) falta de informação sobre como implementar as MAs
nas aulas [23]; (e) os grupos de alunos são grandes e heterogêneos
[13]; e (f) falta de suporte tecnológico, um artefato para apoiar o
docente na adoção de MAs no ensino de programação.

Diante desse cenário, observa-se pesquisas interessadas no uso
das MAs para apoiar os docentes em suas práticas na Computação
[22, 27]. No entanto, poucas pesquisas apresentam soluções ou
suporte tecnológico para apoiar o docente a minimizar as barreiras
e/ou os desafios enfrentados na adoção das MAs para o ensino de
programação, logo, observa-se lacunas para serem pesquisadas.

O problema tratado nesta pesquisa está relacionado com a melho-
ria do processo de ensino de programação em Computação. Neste
contexto, este trabalho está sendo guiado pela seguinte questão de
pesquisa: Comominimizar as barreiras e/ou desafios enfrenta-
dos pelos docentes durante a adoção de metodologias ativas
no ensino de programação em Computação?

Este artigo está organizado da seguinte forma: A Seção 2 discorre
sobre a fundamentação teórica. A Seção 3 discute os trabalhos
relacionados. A Seção 4 apresenta a metodologia da pesquisa e
métodos para avaliar os resultados. Por fim, a Seção 5 detalha o
estado atual da pesquisa.

2 FUNDAMENTAÇÃO TEÓRICA
As disciplinas de lógica de programação e programação de computa-
dores, bem como o estudo de linguagens de programação, apresen-
tam um nível de dificuldade alto para muitos estudantes, exigindo
grande esforço [10]. Isso ocorre porque tais disciplinas exigem do
estudante conhecimentos prévios em lógica, matemática, leitura e
interpretação de texto, abstração de ideias e outras habilidades [4].

A literatura ainda destaca que o processo de ensino em disci-
plinas de programação de computadores é um processo complexo
devido às necessidades dos estudantes desenvolverem diferentes
habilidades [15, 21]. Além disso, nas salas de aula os grupos de

36

Appendix F

EduComp’22, Abril 24-29, 2022, Feira de Santana, Bahia, Brasil (On-line) Calderon et al.

estudantes são grandes e heterogêneos, portanto, é difícil planejar
as aulas de forma que seja benéfica para todos [13].

Diante desse cenário, as MAs vêm sendo utilizadas pelos docen-
tes para o ensino de programaçao [7, 27], pois possibilitam uma
mudança de paradigma de aprendizagem, em que o estudante sai
do papel de agente passivo, que apenas escuta e recebe o conteúdo
que é transmitido pelo docente, e passa para o papel de agente ativo,
tornando-se o responsável por sua própria aprendizagem [8, 19].
As MAs são estratégias de ensino centradas na participação efetiva
dos estudantes e auxiliam na construção do processo de aprendiza-
gem de forma flexível, interligada e híbrida [7]. As MAs também
englobam a concepção do processo de ensino e aprendizagem que
considera a participação efetiva dos estudantes na construção da
sua aprendizagem, valorizando as diferentes formas pelas quais eles
podem ser envolvidos nesse processo para que aprendam, em seu
próprio ritmo, tempo e estilo [3]. Além disso, podem estimular a
motivação e a autônomia do estudante e ajudar no desenvolvimento
das habilidades relacionadas à resolução de problemas [27].

3 TRABALHOS RELACIONADOS
A literatura evidencia os esforços despendidos pela academia para
mitigar os desafios do processo de ensino na Computação. Como
diferencial e critério de inovação, esta pesquisa destaca-se pela
criação de um repositório colaborativo aberto para apoiar na adoção
deMAs no ensino de programação. Os repositórios digitais surgiram
conjuntamente ao avanço da tecnologia, quando muda-se a forma
de armazenar informações [17]. Apresenta-se a seguir tecnologias
utilizadas para apoiar os docentes na utilização de MAs na prática
docente.

O trabalho de Castro e Siqueira [6] apresenta um portal chamado
ALCASYSTEM, que recomenda técnicas de MAs para disciplinas
da área de Computação. Para que o docente adote determinada MA
é necessário selecionar opções no portal para obter recomendações
de artigos para leitura. Logo, a demanda de tempo e opções para
seleção, poderá desmotivar o docente na adoção das técnicas.

Silva et al. [24] apresenta um repositório aberto para auxiliar
no ensino de modelagem de software empregando estratégias de
aprendizagem ativa, chamado OpenSMALS, que disponibiliza um
conjunto de métodos e atividades, baseados em estratégias ativas de
aprendizagem, para docentes dos cursos de Engenharia de Software
(ES). Logo, contexto da pesquisa é mais especifico.

O trabalho de Lima et al.[14] mostra um guia preliminar para
seleção assertiva de MAs no ensino de ES, que fornece aos docen-
tes uma ferramenta para auxiliar na escolha assertiva das MAs.
Observa-se que o guia é específico para ES, traz apenas dez tipos de
MAs, é disponibilizado em arquivo digital e não permite interação
entre a comunidade.

Ahshan [1] mostra um framework para implementar estratégias
para o envolvimento ativo dos estudantes no ensino remoto durante
a pandemia do COVID-19, que traz atividades/estratégias para ga-
rantir o envolvimento ativo dos estudantes com foco no contexto
remoto, contudo, não apresenta experiências e/ou avaliações de
outros docentes em relação às atividades/estratégias apresentadas.

A literatura apresenta pesquisas que abordam a utilização de
MAs no ensino em diferentes contextos. No entanto, não há traba-
lho que apresente ao docente um repositório colaborativo aberto

para apoiar na adoção de MAs no ensino de programação. Diante
disso, como diferencial e inovação, o CollabProg será um apoio
tecnológico, disponível na internet que apresentará um conjunto
de guidelines para apoiar o docente na adoção de MAs no ensino
de programação. Destaca-se ainda como inovador por possibilitar
a comunidade academica compartilhar experiências, por ser um
ambiente colaborativo e aberto. Além disso, apresentará vários ti-
pos de MAs e técnicas associadas a diversos recursos pedagógicos
para o ensino de programação. Os docentes não precisarão buscar
em vários artigos científicos ou livros estratégias para adoção das
MAs, pois tais informações ficarão disponíveis em apenas um único
lugar.

4 METODOLOGIA DA PESQUISA E MÉTODOS
PARA AVALIAR OS RESULTADOS

Para delimitar o problema de pesquisa, o desenvolvimento, a avali-
ação e evolução do artefato proposto, esta pesquisa é guiada pela
metodologia Design Science Research (DSR) [11, 26]. O DSR enfatiza
a conexão entre conhecimento e prática [25] e vem sendo utilizada
em pesquisas educacionais [2]. Esta Seção apresenta a visão geral
da metodologia da pesquisa (Figura 1), os estudos experimentais
para avaliar o artefato propostos e os resultados alcançados.

Figura 1: Visão geral da metodologia da pesquisa.

37

CollabProg EduComp’22, Abril 24-29, 2022, Feira de Santana, Bahia, Brasil (On-line)

Na 1ª parte da pesquisa (Ciclo de Relevância) é definido o pro-
blema a ser investigado, compreendido o contexto da investigação,
estabelecida a motivação para a solução do problema e os critérios
de aceitação para a avaliação final dos resultados da pesquisa. Para
isso, serão conduzidos três estudos exploratórios: a) Um Mapea-
mento Sistemático da Literatura (MSL) para buscar na literatura
evidências sobre as MAs e as áreas de conhecimento em que elas
estão sendo empregadas para o ensino na Computação; b) Um se-
gundo MSL será conduzido para sumarizar os tipos de MAs e quais
as evidências experimentais que existem na adoção de tais MAs
para o ensino de programação; e c) Uma Pesquisa de Opinião com
docentes que lecionam na área da Computação, para identificar as
MAs adotadas, as barreiras e os desafios enfrentados em relação a
adoção das MAs.

Na 2ª parte da pesquisa (Ciclo de Design) será desenvolvido,
evoluído e avaliado o CollabProg, um Repositório Colaborativo
Aberto para Apoiar na Adoção de Metodologias Ativas no Ensino
de Programação. O CollabProg apoiará o docente na identificação,
escolha e adoção das MAs de acordo com o contexto de ensino e que
atenda às necessidades pedagógicas no ensino de programação. Para
isso, este repositório disponibilizará um conjunto de guidelines que
contará com o passo a passo para guiar os docentes durante a adoção
das MAs nas aulas de programação. O CollabProg será colaborativo
e aberto à comunidade acadêmica, em razão da proposição de novas
MAs frente aos diferentes cenários de ensino, para que os docentes
possam identificar, selecionar, adotar, discutir, comentar, avaliar e
possivelmente colaborar com as MAs utilizadas durante o ensino de
programação e, possibilitará o compartilhamento de experiências e
avaliações em relação a adoção das MAs, contribuindo assim, com
a comunidade acadêmica no processo de adoção das MAs durante
o ensino de programação.

Como um apoio tecnológico, o CollabProg reunirá em um único
repositório estratégias de como conduzir a adoção de diferentes
tipos de MAs para o ensino de programação, disponibilizará ao
docente um passo a passo objetivo e prático, juntamente com exem-
plos, sugestões de atividades, opções de suporte ferramental dispo-
nível e adotado pela comunidade, experiências sobre a adoção das
MAs em cenários diferentes, os resultados alcançados, os pontos
positivos e negativos sobre a MA adotada. Assim, os docentes não
precisarão buscar em vários artigos científicos ou livros como uti-
lizar determinada MA. Em relação à curadoria dos conteúdos que
serão compartilhados no CollabProg, de modo geral, a perspectiva
é que seja feito um processo de triagem que visará garantir a confi-
abilidade dos conteúdos apresentados, para que se tenha a adoção
efetiva das MAs no ensino de programação. Além disso, para a
curadoria, os pesquisadores envolvidos irão propor critérios que
avaliarão os conteúdos que serão disponibilizados no repositório
para evitar frustações dos usuários que utilizarão do repositório.

Para avaliar a viabilidade de uso e evoluir o CollabProg, pretende-
se conduzir estudos experimentais quantitativos, por meio de ques-
tionários, utilizando o Technology Accepentace Model (TAM) e en-
trevistas semiestruturadas. Além disso, planeja-se realizar estudos
qualitativos por meio de estudos de caso, sessões de grupo focal e
entrevistas com os docentes da área para obter uma compreensão
ampla do contexto em que os docentes atuam [16]. O objetivo é
realizar os estudos com docentes de Instituições de Ensino Superior

Públicas ou privadas no Brasil e em disciplinas que tratam o con-
teúdo de programação de computadores, seja em turma iniciante
ou não.

Também, será formulado e evoluído um modelo de dificulda-
des em relação adoção das MAs no ensino de programação para
avaliar e validar o CollabProg. Este modelo de dificuldades será
consolidado a partir dos resultados dos estudos experimentais rea-
lizados. O objetivo é projetar um modelo a partir da perspectiva e
experiências dos docentes da área e que lecionam as disciplinas de
programação. Para avaliar o modelo será utilizada uma pesquisa de
opinião realizada com os docentes, a evolução se dará a partir das
perspectivas e avaliação dos próprios docentes e, por fim, será vali-
dado por meio do uso do modelo pelos docentes. Assim, espera-se
que o CollabProg seja avaliado a partir de diferentes experiências,
necessidades e contextos do ensino de programação.

A 3ª parte da pesquisa (Ciclo de Rigor) refere-se principalmente
à geração e o uso de conhecimento [11]. Nesta parte, os principais
fundamentos estão relacionados ao conhecimento sobre a adoção de
MAs para o ensino de programação na Computação, às estratégias
para adoção das MAs, o MSL, os estudos experimentais, às análises
qualitativa e quantitativa, ao grupo focal, à entrevista, dentre outros.
Em relação à geração de conhecimento, a principal contribuição é
o próprio CollabProg, o conjunto de estratégias para a adoção das
MAs e, ummodelo de dificuldades na adoção daMAs, na perspectiva
dos docentes que ensinam programação.

Em se tratando das limitações da pesquisa, pode-se considerar
que o repositório será avaliado na perspectiva de apoiar o docente
em suas práticas no ensino de programação. Contudo, embora sejam
analisados diferentes bases de dados e conduzidos diferentes estu-
dos, provavelmente não serão alcançadas todas a percepções dos
docentes sobre a adoção das MAs, o que não inviabiliza sua avalia-
ção a partir da perspectiva do estudante. Em relação aos cenários e
respectivos conteúdos que serão compartilhados no repositório, não
é possível afirmar que representarão todos os cenários do ensino
de programação. Por fim, em relação aos dados coletados, pode-se
apontar a subjetividade na classificação dos mesmos, que busca-se
mitigar com um processo de análise e interpretação rigoroso.

5 ESTADO ATUAL DA PESQUISA
Como o objetivo de apoiar os docentes na adoção de MAs no ensino
de programação, a pesquisa iniciou emmarço de 2020. Para conduzir
estudos experimentais junto à comunidade acadêmica, submeteu-se
o projeto da pesquisa para a avaliação da Comissão de Ética em
Pesquisa (CEP) da Universidade Federal do Amazonas (UFAM), o
projeto foi aprovado pela CEP sob o parecer n.4.694.031. A Tabela 1
apresenta o cronograma e as atividades da pesquisa.

Até o presente período, finalizou-se a Atividade 1 da pesquisa. Os
resultados alcançados no estudo realizado trouxeram evidências so-
bre a adoção de 6 tipos de MAs em 35 cursos e conteúdos diferentes
da área da Computação, além disso, apresentou as percepções dos
estudantes em relação a adoção das MAs no ensino. Os resultados
completos estão em Calderon et al. [22].

A Atividade 2 está em desenvolvimento. Parte dos resultados
desta atividade encontra-se em Calderon et al. [5], em que os auto-
res apresentam um MSL sobre o uso de MAs no contexto brasileiro
e percebeu-se que as MAs que mais se destacam como suporte ao

38

EduComp’22, Abril 24-29, 2022, Feira de Santana, Bahia, Brasil (On-line) Calderon et al.

ensino na Computação são as MAs Jogos Educacionais e a Gamifica-
ção. É importante mencionar que o estudo conduzido na Atividade
2, está em fase de conclusão, pois os resultados locais alcançados
estão sendo expandidos com os resultados obtidos em conferências
e periódicos internacionais.

Tabela 1: Cronograma das atividades da pesquisa proposta.

Id Atividades 2020 2021 2022 2023
1 Conduzir 1ª MSL - MAs na Computação x x
2 Conduzir 2º MSL - MAs no ensino de programação x x
3 Pesquisa de opinião com os docentes x
4 Construir, avaliar e validar o mapa de dificuldades x
5 Construir, avaliar e validar o repositório proposto x x

O estudo da Atividade 3 está em fase de planejamento, passando
atualmente por análise e avaliação das questões e do formulário da
pesquisa de opinião. Com a condução deste estudo, espera-se alcan-
çar evidências sobre a adoção das MAs, considerando as práticas
docentes, experiênicas e diferentes contextos em que estão sendo
adotas as MAs no ensino de programação na área da Computação.

Pretende-se iniciar a Atividade 4 após a consolidação dos resulta-
dos dos estudos experimentais realizados nas Atividades 3. Por fim,
é importante mencionar que a Atividade 5, está em fase ideação,
ou seja, ainda está sendo realizada a identificação e o mapeamento
das MAs, materiais de apoio, informações e artefatos que poderão
apoiar o docente na adoção de uma MA. Assim, a coleta e curadoria
destas informações apoiarão na concepção e no desenvolvimento
do CollabProg.

6 AGRADECIMENTOS
Ao Instituto de Computação da Universidade Federal do Amazonas
(UFAM), a Fundação de Amparo à Pesquisa do Estado do Amazonas
(FAPEAM) - POSGRAD 2017 (Resolução 002 / 2016), a Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) -
Código Financeiro 001, ao Instituto Federal de Educação, Ciência e
Tecnologia de Rondônia (IFRO) / Campus Porto Velho Zona Norte
e a Universidade Federal do Pampa (UNIPAMPA - Alegrete) pelo
apoio.

REFERÊNCIAS
[1] Razzaqul Ahshan. 2021. A framework of implementing strategies for active

student engagement in remote/online teaching and learning during the COVID-
19 pandemic. Education Sciences 11, 9, 483.

[2] Alan César Belo Angeluci, Gabriela Leal Redigolo, Paulo Sergio Felix da Silva,
and Patrícia Jaqueline Arakaki. 2020. DESIGN SCIENCE RESEARCH COMO
MÉTODO PARA PESQUISAS EM TIC NA EDUCAÇÃO. In Anais do CIET: EnPED:
2020-(Congresso Internacional de Educação e Tecnologias| Encontro de Pesquisadores
em Educação a Distância).

[3] Lilian Bacich and José Moran. 2018. Metodologias ativas para uma educação
inovadora: uma abordagem teórico-prática. Penso Editora.

[4] Nara Martini Bigolin, Sidnei Renato Silveira, Cristiano Bertolini, Iara Carnevale
de Almeida, Marlise Geller, Fábio José Parreira, Guilherme Bernardino da Cunha,
and Ricardo Tombesi Macedo. 2020. Metodologias Ativas de Aprendizagem:
um relato de experiência nas disciplinas de programação e estrutura de dados.
Research, Society and Development 9, 1, e74911648–e74911648.

[5] Ivanilse Calderon, Williamson Silva, and Eduardo Feitosa. 2021. UmMapeamento
Sistemático da Literatura sobre o uso de Metodologias Ativas durante o Ensino
de Programação no Brasil. In Anais do XXXII Simpósio Brasileiro de Informática
na Educação. SBC, 1152–1161.

[6] Ronney Moreira de Castro and Sean Siqueira. 2019. ALCASYSTEM-Um Portal
com Técnicas de Aprendizagem Ativa para Disciplinas da Área da Computação.
In Anais dos Workshops do Congresso Brasileiro de Informática na Educação, Vol. 8.
1243.

[7] Ronney Moreira de Castro and Sean Siqueira. 2019. Técnicas alternativas de
ensino (aprendizagem ativa) para disciplinas da computação: Um mapeamento
sistemático no contexto brasil. In Anais do Workshop de Informática na Escola,
Vol. 25. 1409–1413.

[8] Aline Diesel, Alda Leila Santos Baldez, and Silvana Neumann Martins. 2017. Os
princípios das metodologias ativas de ensino: uma abordagem teórica. Revista
Thema 14, 1, 268–288.

[9] Jesse Eickholt. 2018. Barriers to active learning for computer science faculty.
arXiv preprint arXiv:1808.02426.

[10] Laís Freire, Jarbele Coutinho, Verônica Lima, and Náthalee Lima. 2019. Uma Pro-
posta de Encontros de Tutoria Baseada em Metodologias Ativas para Disciplinas
de Programação Introdutória. In Anais dos Workshops do Congresso Brasileiro de
Informática na Educação, Vol. 8. 298.

[11] Alan Hevner and Samir Chatterjee. 2010. Design science research in information
systems. In Design research in information systems. Springer, 9–22.

[12] Asanthika Imbulpitiya, Nuwan Kodagoda, Anjalie Gamage, and Kushnara Su-
riyawansa. 2019. Using active learning integrated with pedagogical aspects to
enhance student’s learning experience in programming and related concepts. In
International Conference on Interactive Collaborative Learning. Springer, 218–228.

[13] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. 2005. A study of the
difficulties of novice programmers. Acm sigcse bulletin 37, 3, 14–18.

[14] José Lima, Fernanda Alencar, andWylliams Santos. 2021. A Preliminary Guide for
Assertive Selection of Active Methodologies in Software Engineering Education.
In Brazilian Symposium on Software Engineering. 170–179.

[15] Andrew Luxton-Reilly, Ibrahim Albluwi, Brett A Becker, Michail Giannakos, Am-
ruth N Kumar, Linda Ott, James Paterson, Michael James Scott, Judy Sheard, and
Claudia Szabo. 2018. Introductory programming: a systematic literature review.
In Proceedings Companion of the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education. 55–106.

[16] Irene Manotas, Christian Bird, Rui Zhang, David Shepherd, Ciera Jaspan, Caitlin
Sadowski, Lori Pollock, and James Clause. 2016. An empirical study of prac-
titioners’ perspectives on green software engineering. In 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE). IEEE, 237–248.

[17] Rodrigo Medeiros, Marcos Doarte, José Viterbo, Cristiano Maciel, and Clodis
Boscarioli. 2021. Uma Análise Comparativa entre Repositórios de Recursos Edu-
cacionais Abertos para a Educação Básica. In Anais do XXXII Simpósio Brasileiro
de Informática na Educação. SBC, 213–224.

[18] Joel Michael. 2007. Faculty perceptions about barriers to active learning. College
teaching 55, 2, 42–47.

[19] José Morán. 2015. Mudando a educação com metodologias ativas. Coleção mídias
contemporâneas. Convergências midiáticas, educação e cidadania: aproximações
jovens 2, 1, 15–33.

[20] Elisa L Park and Bo Keum Choi. 2014. Transformation of classroom spaces:
Traditional versus active learning classroom in colleges. Higher Education 68, 5,
749–771.

[21] Adalbert Gerald Soosai Raj, Jignesh Patel, and Richard Halverson. 2018. Is
More Active Always Better for Teaching Introductory Programming?. In 2018
International Conference on Learning and Teaching in Computing and Engineering
(LaTICE). IEEE, 103–109.

[22] Maria Ivanilse Calderon Ribeiro and Odette Mestrinho Passos. 2020. A Study
on the Active Methodologies Applied to Teaching and Learning Process in the
Computing Area. IEEE Access 8, 219083–219097.

[23] Williamson Silva, Bruno Gadelha, Igor Steinmacher, and Tayana Conte. 2020.
Towards an open repository for teaching software modeling applying active
learning strategies. In 2020 IEEE/ACM 42nd International Conference on Software
Engineering: Software Engineering Education and Training (ICSE-SEET). IEEE,
162–172.

[24] Williamson Alison Freitas Silva et al. 2020. OPENSMALS: um repositório aberto
para auxiliar no ensino de modelagem de software empregando estratégias de
aprendizagem ativa.

[25] Roel Wieringa. 2009. Design science as nested problem solving. In Proceedings of
the 4th international conference on design science research in information systems
and technology. 1–12.

[26] Roel J Wieringa. 2014. Design science methodology for information systems and
software engineering. Springer.

[27] Diego Teixeira Witt, Avanilde Kemczinski, and Luciane Mulazani dos Santos.
2018. Resolução de problemas: Abordagens aplicadas no ensino de computação.
Anais do Computer on the Beach, 731–740.

39

CollabProg: Um Repositório Colaborativo Aberto para
Apoiar na Adoção de Metodologias Ativas no Ensino de

Programação

Ivanilse Calderon1,3, Klissia Reis1, Saulo Silva1, Hélio Endrio1, Roseno Silva1,
Miquéias Viana1, Symon Cristhian1, Williamson Silva2, Eduardo Feitosa1

1Instituto de Computação (IComp) – Universidade Federal do Amazonas (UFAM)
Manaus, AM – Brasil

2Laboratory of Empirical Studies in Software Engineering (LESSE) - Departamento
de Engenharia de Software - Universidade Federal do Pampa (UNIPAMPA)

- Alegrete, RS - Brasil

3Instituto Federal de Educação, Ciência e Tecnologia de Rondônia (IFRO)
Campus Porto Velho Zona Norte - Porto Velho, RO - Brasil

{1,3ivanilse.calderon,1efeitosa}@icomp.ufam.edu.br

2williamsonsilva@unipampa.edu.br

Abstract. CollabProg is an open collaborative repository, available on the in-
ternet, which brings together, in a single environment, different types of Active
Methodologies (AMs) for teaching programming and aims to support teachers
in the adoption of AMs in teaching programming. The methodology used in this
research is based on the Design Science Research guidelines that guided the
conducting the studies, creating and evaluating the proposed artifact. The AMs
presented by CollabProg went through a screening process, which established
quality criteria in relation to the detailing and adoption of the methodology in
teaching programming. In this way, the reliability of the contents presented was
guaranteed, in order to have the effective adoption of AMs in programming tea-
ching.
Keywords Teaching programming, Active Methodologies, Computing

Resumo. O CollabProg é um repositório colaborativo aberto, disponı́vel na
internet, que reúne, em único ambiente diferentes tipos de Metodologias Ati-
vas (MAs) para o ensino de programação e tem por objetivo apoiar os docen-
tes na adoção de MAs no ensino de programação. A metodologia utilizada
nesta pesquisa é baseada nas diretrizes do Design Science Research que guiou
a condução dos estudos, a criação e avaliação do artefato proposto. As MAs
apresentadas pelo CollabProg passaram por um processo de triagem, que esta-
beleceu critérios de qualidade em relação ao detalhamento e adoção da meto-
dologia no ensino de programação. Deste modo, garantiu-se a confiabilidade
dos conteúdos apresentados, a fim de se ter a adoção efetiva das MAs no ensino
de programação.
Palavras-chave: Ensino de programação, Metodologias Ativas, Computação

Appendix G

 CollabProg

Contexto Motivação

Problema

Algumas das barreiras
enfrentadas pelos docentes

Um Repositório Colaborativo Aberto para Apoiar na Adoção de
Metodologias Ativas no Ensino de Programação

Autores: Ivanilse Calderon , Klissia Reis , Saulo Silva , Hélio Endrio , Roseno
Silva , Miquéias Viana , Symon Cristhian , Williamson Silva , Eduardo Feitosa .

Diante deste cenário, o problema tratado nesta pesquisa
está relacionado com a melhoria do processo de ensino de

programação em Computação.

Metodologias
Ativas

MA

 Objetivo do CollabProg

Minimizar as barreiras e/ou os
desafios enfrentados pelos

docentes durante a adoção de
MAs no ensino de programação

de computadores.

ivanilse.calderon@icomp.ufam.edu.br ; kars@icomp.ufam.edu.br ; saulosilva@super.ufam.edu.br ;
hecr@icomp.ufam.edu.br ; roseno.silva@icomp.ufam.edu.br ; miqueias@icomp.ufam.edu.br ;
symon@icomp.ufam.edu.br ; williamsonsilva@unipampa.edu.br ; efeitosa@icomp.ufam.edu.br

1 2 3

4 5 6

7 8 9

1 2 3 4

5 6 7 8 9

Inovação CollabProg é um apoio tecnológico, disponível
na internet, que apresenta um conjunto de
guidelines para apoiar o docente na adoção

de MAs no ensino de programação.

Publico-alvo
Docentes do ensino superior
da área da computação
que lecionam disciplinas de
programação.

Área de conhecimento
Pode ser utilizado pelos docentes
de diversas área, em especial, a
área de programação de
computadores.

Metodologias Ativas abordadas
(1) Blended Learning, (2) Cooperative Learning, (3) Coding Dojo, (4) Flipped
Classroom, (4) Game-Based Learning, (5) Gamification-Based Learning, (6)
Gamification-Based Learning, (7) Method 300, (8) Problem-Based Learning , (9)
Project-Based Learning, (10) Peer Review, (11) Team-Based Learning, (12) Topdown,
(13) Think-Pair-Share e (14) Process Oriented Guided Inquiry Learning

Tecnologia utilizada

Back-end: Node.js, MongoDB,
Mongoose, Swagger, Railway e
gitHub.

Front-end: ReactJS, Lib
styled-components e JEST,
Vercel e gitHub.

Abordagem pedagógica
Por se tratar de um ambiente colaborativo
e aberto, o CollabProg aborda o modelo
3C de colaboração, que é baseado na
concepção de que para colaborar, os
membros de um grupo comunicam-se,
coordenam-se e cooperam.

Onde foi desenvolvida
O CollabProg é parte da geração e o uso de conhecimento e a principal
contribuição de uma Tese de doutorado desenvolvida nos Programas de
Pós-graduação da Univesidade Federal do Amazona (UFAM) e a
Universidade Federal do Pampa (Unipampa).

Página que apresenta o

detalhamento de como o

docente poderá implementar

a MA em sua aula.

Página para colaboração,
onde os docentes poderão

cadastrar metodologias que
foram utilizadas e suas

experiências.

Página de login, caso o

docente queira colabora

compartilhando suas

experiências.

Interface do ColabProg

Página de contatos
com os

pesquisadores. informações sobre apesquisa.

Página com

Acesse agora, clique aqui

Home do
Collabprog

Página para colaboração,

onde os docentes poderão

compartilhar sua experiência

em relação a metodologia

utilizada.

adoção das metodologias.

Página que apresenta os

feedbacks sobre o

As MAs registradas passarão
por um processo de triagem,

com critérios de avaliação, que
visa garantir a confiabilidade

do repositório.

Agradecimentos - O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Código de Financiamento 001 e parcialmente
financiado pela Fundação de Amparo à Pesquisa do Estado do Amazonas – FAPEAM – por meio do projeto POSGRAD. Williamson Silva agradece pelo apoio financeiro da FAPERGS (Projeto ARD/ARC -
processo 22/2551-0000606. Ivanilse Calderon agradece ao Instituto Federal de Educação, Ciência e Tecnologia de Rondônia (IFRO)/Campus Porto Velho Zona Norte.

https://front-end-collab-prog.vercel.app/

Explorando a aceitação do CollabProg como um Facilitador
de Metodologias Ativas no Ensino de Programação

Ivanilse Calderon1,3, Williamson Silva2, Eduardo Feitosa1

1Instituto de Computação (IComp) – Universidade Federal do Amazonas (UFAM)
Manaus, AM – Brasil

2Programa de Pós-Graduação em Engenharia de Software (PPGES) -
Universidade Federal do Pampa (UNIPAMPA) - Alegrete, RS - Brasil

3Instituto Federal de Educação, Ciência e Tecnologia de Rondônia (IFRO)
Campus Porto Velho Zona Norte - Porto Velho, RO - Brasil

{1,3ivanilse.calderon,1efeitosa}@icomp.ufam.edu.br

2williamsonsilva@unipampa.edu.br

Abstract. There is evidence that Active Methodologies (AM) enable the deve-
lopment of skills and competencies. However, the rate of adoption by teachers
is relatively low, especially in teaching programming. To help teachers, we de-
veloped CollabProg, an open collaborative repository that brings together, in
a single environment, the step-by-step guide on how to lead the adoption of
different types of AM for teaching programming. This article describes an ex-
ploratory study that aims to evaluate the acceptance of CollabProg, from the
perspective of professors. The results show that the professors had a good per-
ception; they could express themselves and easily describe their experiences.

Resumo. Existem evidências de que as Metodologias Ativas (MAs) possibilitam
o desenvolvimento de habilidades e competências. Contudo, a taxa de adoção
pelos docentes é relativamente baixa, especialmente no ensino de programação.
Para auxiliar os professores, desenvolvemos o CollabProg, um repositório co-
laborativo aberto que reúne, em único ambiente, um passo a passo de como
conduzir a adoção de diferentes tipos de MAs para o ensino de programação.
Este artigo descreve um estudo exploratório que visa avaliar a aceitação do
CollabProg, a partir da perspectivas dos docentes.Os resultados mostram que
os docentes tiveram boa percepção, pois conseguiram se expressar e descrever
suas experiências de forma fácil.

1. Introdução

O ensino de programação em cursos de Computação é considerado complexo por exigir
uma compreensão profunda de conceitos abstratos que ainda não são totalmente com-
preensı́veis aos estudantes [Luxton-Reilly et al. 2018]. Aliadas a isso, continuam sendo
ministradas com base na transmissão unidirecional de conhecimento dos docentes para
o discentes, o que leva automaticamente ao caminho de uma “aula de doutrinação”.
Como consequência, os discentes não se sentem motivados a aprender o conteúdo
[Garcia et al. 2021] e, muitas vezes, abandonam as disciplinas e até mesmo o curso

Appendix H

[Sobral 2021]. Logo, os docentes necessitam repensar e adaptar as suas aulas e pro-
mover um ambiente educacional mais participativo, centrado no discente e que valorize a
construção ativa e o compartilhamento do conhecimento [Calderon et al. 2021].

Tem-se observado que os docentes estão cada vez mais interessados em uti-
lizar e explorar Metodologias Ativas (MAs) em sala de aula [Witt et al. 2018], uma
vez que elas envolvem os discentes ativamente no processo de aprendizagem (le-
arning by doing) e os direcionam a refletir sobre seu aprendizado como ponto de
partida para construção de novos conhecimentos e desenvolvimento de habilidades
[Berssanette and de Francisco 2021]. Apesar das evidências positivas que sustentam a
eficácia das MAs durante o ensino de programação, a taxa de adoção por parte dos docen-
tes ainda é relativamente baixa [Nguyen et al. 2021]. Diversas barreiras são percebidas
durante a adoção das MAs [Tharayil et al. 2018]: falta de tempo para o planejamento
de aulas que adotam MAs; dificuldade em cumprir todo o conteúdo do curso; rejeição
dos discentes ao uso de novas estratégias pedagógicas em aula; dúvidas quanto à eficácia
das MAs para alcançar os objetivos de aprendizagem; falta de informações sobre como
implementar MAs nas aulas.

Além destas barreiras, ainda há a resistência dos docentes à mudança devido à
familiaridade com abordagens tradicionais de ensino. Isso pode estar relacionado aos
fatos que a adoção de MAs nem sempre é direta, requer uma mudança de paradigma e
pode exigir um esforço significativo, por parte dos docentes, para se adaptarem a novas
práticas. No entanto, poucas pesquisas apresentam soluções ou suporte tecnológico para
apoiar o docente a minimizar as barreiras e/ou os desafios enfrentados na adoção das MAs
para o ensino de programação, logo, observa-se lacunas para serem pesquisadas.

Diante deste cenário, este artigo descreve a construção de um repositório colabo-
rativo aberto para apoiar na adoção de MAs no ensino de programação denominado Col-
labProg, guiada pela metodologia de Design Science Research (DSR) [Wieringa 2014].
Também apresenta os resultados do primeiro ciclo de Design, conduzido com o objetivo
de avaliar a aceitação e a viabilidade de uso do CollabProg a partir do ponto de vista de
docentes de diferentes instituições de ensino do Brasil.

Os resultados deste ciclo mostram evidências iniciais de que o CollabProg apoia os
docentes na adoção de metodologias ativas, além de apresentar as limitações e oportuni-
dades de melhoria. Como contribuição, o CollabProg auxiliará o docente na identificação
e escolha de MA(s), de acordo com o seu contexto de ensino e que atenda às suas ne-
cessidades reias em sala de aula. Além disso, disponibilizará um conjunto de guidelines,
que conterão com o passo a passo para guiar os docentes durante a adoção das MAs.
Desta forma, os docentes não precisarão buscar, em vários artigos cientı́ficos ou livros,
formas de como conduzir uma determinada MA em sala de aula, ou seja, o CollabProg
reunirá, em um único repositório, um conjunto de estratégias de como conduzir a adoção
de diferentes tipos de MAs para o ensino de programação.

2. Trabalhos Relacionados
No contexto educacional, diversos trabalhos foram desenvolvidos com o propósito de criar
repositórios digitais voltados para apoiar a prática docente em diversas áreas. A seguir são
apresentados os trabalhos que apresentam repositório para apoiar a prática docente.

O portal ALCASYSTEM, desenvolvido por [Castro and Siqueira 2019], é uma

plataforma Web que apoia os docentes na busca, seleção e recomendação de metodolo-
gias ativas no contexto da Computação. Para isso, ALCASYSTEM disponibiliza uma
variedade de artigos que exploram diferentes abordagens de ensino, além de possuir um
fórum para interação entre os docentes. No entanto, os docentes necessitam gerenciar o
seu tempo para poder ler e assimilar uma quantidade significativa de artigos recomenda-
dos para uso de uma determinada metodologia ativa, o que pode impactar na não efetiva
adoção destas pelos docentes.

Silva et al. (2020) apresentam o portal OpenSMALS, um repositório aberto para
ensino de modelagem de software por meio de metodologias ativas. O OpenSMALS
fornece um conjunto de orientações especı́ficas sobre como implementar MAs, bem como
artefatos compartilhados por outros docentes, questionários de avaliação, etc. Os autores
conduziram um estudo empı́rico envolvendo cinco docentes e 163 estudantes para avaliar
a eficácia do do portal. Os resultados revelaram que o OpenSMALS ajudou os docentes a
implementar as metodologias ativas. Contudo, o repositório possui um conjunto limitado
de MAs (apenas oito) e com foco em um conteúdo especı́fico, modelagem de software.

Lima et al. (2021) apresentam um guia de seleção que fornece aos docentes uma
ferramenta para auxiliá-los na escolha assertiva de uma MA, a partir da identificação do
perfil e estilo de aprendizagem do estudante. A primeira versão foi avaliada por meio de
sessões de grupo focal. Os resultados mostram indı́cios de utilidade, clareza, facilidade de
uso, organização, flexibilidade, adequação, visualização e seleção de MAs em diferentes
contextos de ensino. Observa-se que o guia é especı́fico para ES, traz apenas dez tipos de
MAs, é disponibilizado em arquivo digital e não permite interação entre a comunidade.

Ahshan (2021) apresenta um framework que implementa atividades / estratégias
para garantir o envolvimento ativo dos estudantes durante a pandemia. O framework com-
bina o uso equilibrado de pedagogia de ensino ajustada, tecnologias educacionais e um
sistema de gerenciamento de e-learning. Os resultados da pesquisa indicam que combinar
as tecnologias utilizadas, ensino sı́ncrono e atividades de aprendizado ativo na estrutura
desenvolvida é eficaz para aprendizagem interativa. Contudo, não apresenta experiências
e/ou avaliações de outros docentes em relação às atividades/estratégias apresentadas e
foca no contexto do ensino remoto.

Esses trabalhos se concentram em fornecer suporte aos docentes. No entanto,
é importante ressaltar que até o momento não foram identificados trabalhos especı́ficos
voltados para o ensino de programação. Portanto, o presente artigo traz uma contribuição
pioneira nesse domı́nio, o CollabProg.

3. CollabProg
O CollabProg é um repositório colaborativo que tem por objetivo apoiar os docentes du-
rante a adoção de MAs no ensino de programação. Para tanto, disponibiliza um conjunto
de guidelines especı́ficos que descrevem os passos para que as MAs sejam adotadas em
sala de aula. Em relação às MAs que compõem o CollabProg, buscamos agrupar o co-
nhecimento sobre cada metodologia em um modelo conceitual inspirado na proposta de
Sobrinho et al. (2016) e Silva et al. (2020). Inicialmente, definimos o domı́nio e es-
copo do conhecimento que seria construı́do a partir dos resultados do estudo. O domı́nio
é a representação e formalização semântica das metodologias de ensino baseadas em
princı́pios de aprendizagem ativa [Sobrinho et al. 2016]. O escopo deste modelo é for-

necer suporte aos docentes no ensino de programação, por meio do conhecimento organi-
zado e representado semanticamente, facilitando sua difusão e uso de MAs.

Na primeira versão do CollabProg, que pode ser acessado online1 , o repositório
está dividido em três menus rotulados, os quais dispõem de informações para a utilização
do CollabProg por parte do usuário. O usuário poderá navegar livremente, selecionar e
adotar qualquer MA disponı́vel no repositório. O acesso ao CollabProg não exige nenhum
cadastro (aberto), uma vez que apresenta-se como um apoio tecnológico que reúne um
detalhamento de como conduzir a adoção de diferentes MAs no ensino de programação.
Nele, o docente encontrará informações pertinentes sobre as MAs, incluindo exemplos
de adoção, opções de ferramentas adotadas pela comunidade, experiências em cenários
diferentes, os resultados alcançados por outros docentes, bem como pontos positivos e
negativos sobre a MA adotada. A Figura 1 ilustra a primeira versão do CollabProg com
um recorte sobre uma determinada metodologia ativa, a POGIL. A Parte 01 da Figura 1
apresenta uma breve descrição do CollabProg, a Parte 02 apresenta uma breve descrição
sobre a metodologia ativa escolhida pelo docente, neste caso a POGIL. Por fim, a Parte 03
apresenta explicações mais detalhadas sobre a metodologia, bem como os papéis existen-
tes na metodologia, os passos para adoção e detalhamento de cada passo. Conforme dito,
no site há mais informações que podem auxiliar os professores em sua prática docente.

Figura 1. Primeira Versão do CollabProg.

É importante mencionar que o menu Registrar Metodologia, utilizado pelo do-
1https://acesse.one/OKSqX

cente para cadastrar metodologias, estava em planejamento e não disponı́vel para a
avaliação dos participantes do estudo exploratório do CollabProg. As MAs cadastra-
das passaram pela curadoria do CollabProg, com base em critérios de qualidade pré-
estabelecidos, relacionadas a clareza e o detalhamento sobre o uso de uma MA.

4. Estudo Exploratório
No ciclo de Design (DSR) é essencial que os stakeholders diretamente relacionados ao
contexto em que o problema está inserido avaliem o artefato [Wieringa 2014]. Neste
sentido, foi realizado um estudo exploratório a fim de verificar a viabilidade de uso e
aceitação de docentes sobre o ColabProg.

4.1. Planejamento

O objetivo deste estudo é avaliar a viabilidade de uso e aceitação do CollabProg sob o
ponto de vista de docentes. Os pesquisadores recrutaram, por conveniência, docentes de
diversos locais do paı́s. Devido ao distanciamento geográfico entre os participantes, os
artefatos do estudo tiveram que ser adaptados. Os artefatos usados foram elaborados a
partir das ferramentas on-line disponı́veis via Google Workspace, sendo eles: (i) termo
de consentimento garantindo a confidencialidade dos dados fornecidos e o anonimato dos
docentes (Parecer Comitê de Ética Nº 4.694.031) 2; (ii) questionário de caracterização
para conhecer a experiência dos docentes em sala de aula e no uso de MAs3; (iii) do-
cumentos contendo o roteiro do estudo, instruções de uso do CollabProg e salas online
para realização de experimentos4; (iv) versão inicial do portalweb do CollabProg 5; (iv)
modelo de um plano de aula6; e (v) formulário de pós-uso baseado nos indicadores do
Modelo de Aceitação de Tecnologia (TAM)7.

4.2. Participantes

Foram recrutados cinco docentes de instituições de ensino superior, que participaram vo-
luntariamente do estudo. A Tabela 1 apresenta uma visão geral dos perfis dos docentes.

Tabela 1. Sı́ntese do perfil dos participantes do estudo

ID Universidade Cursos Experiência Usa MA Perı́odo MA
D1 Universidade Federal do Pampa

(UNIPAMPA)
Ciência da Computação e Enge-
nharia de Software

1 ano Não - -

D2 Instituto Federal do Amazonas
(IFAM)

Ciência da Computação e In-
formática

3 anos Sim 3 meses PP

D3 Universidade Tecnologica Fede-
ral do Paraná (UTFPR)

Engenharia de Software e Ciência
da Computação

5 anos Não - -

D4 Universidade Estadual de Ma-
ringa (UEM)

Ciências da Computação e Enge-
nharia

8 anos Não - -

D5 Instituto Federal de Rondônia
(IFRO)

Redes de Computadores e Siste-
mas para Internet

10 anos Sim 5 anos ABP

8PP - Programação em Pares; ABP - Aprendizagem Baseada em Problemas

Nota-se que apenas dois participantes usaram MAs em sala de aula, demonstrando
a falta de aproveitamento das potencialidades das MAs no ensino de programação.Quanto

2https://acesse.one/MxxPA
3https://l1nk.dev/Eq9Fo
4https://l1nk.dev/gqPRQ
5https://acesse.one/jsaCp
6https://l1nk.dev/KRqmh
7https://l1nk.dev/b7Tem

a motivação para adoção de MA, os docentes relataram que é em virtude de prover
mais autonomia aos estudantes e facilitar o processo de aprendizagem, uma vez que
programação exige bastante raciocı́nio e um certo nı́vel de abstração ou mesmo fazer
o estudante o protagonista de seu aprendizado. Nenhum dos docentes usa ou fez uso de
ferramentas educacionais que os ajudassem no uso de tais MAs em sala de aula.

4.3. Execução
A execução do estudo foi totalmente on-line e individual. Antes do primeiro ciclo do
DSR, decidiu-se realizar um estudo piloto afim de verificar se o estudo alcançaria seu
objetivo. Os resultados do piloto foram satisfatórios e não houve necessidade de aprimorar
o roteiro do estudo. Cada docente foi convidado via e-mail, que descrevia o objetivo
do estudo e algumas orientações norteadoras. Caso aceitassem, um dos pesquisadores
combinava uma data para a condução individual do estudo. Após o aceite, o estudo foi
conduzido seguindo as etapas detalhadas na Figura 2. Cada etapa é explicada a seguir.

Figura 2. Etapas realizadas no estudo para avaliar o CollabProg.

Na data agendada com o docente, um link para um documento com o roteiro de
preparação foi enviado via chat da sala online. Nesse documento estavam disponı́veis o
formulário online do termo de consentimento e o formulário de caracterização para os
docentes responderem. Este último possuia perguntas para caracterizar a experiência do
docente em relação à adoção das MAs no ensino de programação. É importante ressaltar
que a participação de avaliação do CollabProg foi voluntária e todos os participantes
assinaram o termo de consentimento, com o qual concordaram participar do estudo e
em fornecer os resultados para análise. Após preencherem os questionários, os docentes
receberam instruções e explicações sobre o estudo. No roteiro, os docentes deveriam
planejar uma aula utilizando uma MA para ensinar o conteúdo de “Variáveis e Constantes”
de uma tipica disciplina de Programação I.

Para isso, foi disponibilizado aos docentes: (a) um modelo de plano de aula, ao
qual deveria ser preenchido; (b) a versão on-line do CollabProg, que deveria ser utilizado
como forma de apoio na criação do plano de aula por meio das diretrizes e guidelines
disponı́veis no repositório. Ao final, os docentes disponibilizaram a versão do planeja-
mento. Nota-se que o foco não era avaliar se o plano estava correto ou não, mas saber
se o CollabProg ajudou os docentes a planejar a metodologia em todas as etapas da aula.
Ressaltamos que os docentes estavam livres para escolher as metodologias que mais se
adequavam ao seu conhecimento (teórico e prático), habilidades e, possivelmente, ao seu
contexto de ensino. Após realizar o planejamento, o docente era convidado a responder a
um questionário de avaliação, no qual apontava sua experiência após o uso do CollabProg.

4.4. Análise dos dados
O questionário de avaliação do CollabProg foi definido com base nos indicadores do
Modelo de Aceitação da Tecnologia (TAM) [?]. O TAM é um questionário projetado para

obter informações sobre a percepção dos participantes em relação aos principais fatores
que influenciam a aceitação ou rejeição de uma determinada tecnologia. Os indicadores
definidos foram: (i) Utilidade Percebida, que define o grau que o docente acredita que
o CollabProg pode melhorar seu desempenho na adoção da MAs; (ii) Facilidade de Uso
Percebida, que define o grau que o docente acredita que ao usar o CollabProg seria livre
de esforço; e (iii) Intenção de Uso Percebida, que define o grau que o docente acredita
que poderá utilizar o CollabProg no futuro. A razão para focar nestes indicadores é que
estes são fortemente correlacionados com a aceitação do CollabProg pelos docentes.

Com base no uso do CollabProg, os docente forneceram suas percepções de
acordo com o nı́vel de concordância em relação às afirmativas estabelecidas no TAM.
Cada afirmativa deveria ser respondida com base em uma escala Likert de cinco pontos,
variando de Discordo Totalmente a Concordo Totalmente. A Tabela 2 apresenta as afir-
mativas respondidas pelos docentes e baseadas nos indicadores do TAM. Além disso, foi
acrescentada duas questões abertas para permitir um melhor entendimento das respos-
tas dos docentes. A partir das respostas recebidas, foi conduzida uma análise qualitativa
empregando técnicas de codificação.

Tabela 2. Perguntas a serem respondidas pelos docentes

Utilidade Percebida
UP1 Usar o repositório ColabProg melhorou o meu desempenho em relação ao planejamento das aulas adotando MAs
UP2 Usar o repositório ColabProg melhorou a minha produtividade em relação adoção de MAs
UP3 Usar o repositório ColabProg me permitiu relatar completamente os aspectos da minha experiência na adoção das MAs
UP4 Eu acho o repositório ColabProg útil para relatar minha experiência da adoção de MAs

Facilidade de Uso Percebida
FUP1 O repositório ColabProg foi claro e fácil de entender
FUP2 Usar o repositório ColabProg não demandou muito esforço mental
FUP3 Eu acho que o repositório ColabProg é fácil de usar
FUP4 Eu acho fácil relatar a minha experiência de adoção das MAs usando o repositório ColabProg

Intenção de Uso Percebida
IUP1 Assumindo que eu tenha acesso ao repositório ColabProg, eu pretendo usá-lo para aplicar MAs no ensino de programação
IUP2 Dado que eu tenha acesso ao repositório ColabProg, eu prevejo que eu o usaria para me apoiar na adoção de MAs no ensino

de programação
IUP3 Eu pretendo usar o repositório ColabProg para avaliar a minha experiência com a adoção de uma MAs no próximo mês

Questões Abertas
QA1 Quais foram os principais desafios / pontos negativos percebidos por você ao utilizar o ColabProg?
QA2 Quais foram os principais pontos positivos que você percebeu ao utilizar o ColabProg?

5. Resultados e Discussões
Esta seção apresenta os resultados qualitativos e quantitativos do estudo, bem como os
discussão dos resultados.

5.1. Resultados Quantitativos do Questionário TAM

A Figura 3 apresenta os resultados gerais das percepções dos participantes sobre o Col-
labProg, conforme as afirmativas do TAM apresentadas na Tabela 2, para conhecer a ex-
periência dos professores quanto à utilidade, facilidade e intenção de uso do respositório.

Em relação às percepções dos docentes sobre a Utilidade Percebida do Collab-
Prog, observa-se que em todas as afirmativas (UP1, UP2, UP3, UP4), todos os docentes
concordam totalmente com a utilidade do CollabProg para o planejamento das aulas de
ensino de programação com a adoção de MAs. Além disso, ficou evidente que o Collab-
Prog se mostra como uma ferramenta capaz de potencializar ou apoiar a produtividade
do docentes em sua prática. Também é possı́vel perceber que o CollabProg se configura

Figura 3. Resultados gerais das percepções sobre o CollabProg.

como um suporte ferramental capaz de permitir que o docente utilize suas experiências
ao selecionar uma MA para adotar em suas aulas. Por fim, os resultados das percepções
dos participantes refletem uma boa aceitação por parte dos docentes do CollabProg como
apoio na adoção de MAs no ensino de programação.

Sobre a Facilidade de Uso Percebida do CollabProg, nota-se que houve con-
cordância total nas três afirmativas (FUP1, FUP2 e FUP3) Os docentes disseram que é
fácil relatar suas experiências de adoção de MAs usando o CollabProg. Também apon-
taram que seu uso não exigiu muito esforço mental, sendo de fácil entendimento e uso,
especialmente no que diz respeito às necessidades do dia a dia da prática docente no en-
sino de programação. De modo geral, todos os docentes consideram o CollabProg claro e
fácil de entender, bem como fácil de usar. A única exceção foi na afirmativa FUP2, onde
D2 concordou parcialmente em relação à facilidade de uso do CollabProg.

Quanto a Intenção de Uso Futuro Percebida do CollabProg, todos os docentes
concordaram parcialmente com as três afirmativas (IU1, IU2, IU3). A intenção de uso do
CollabProg é importante para verificar a disponibilidade e o interesse da comunidade em
relação à ferramenta, bem como sua aceitação como apoio ao ensino de programação por
parte dos docentes. Sendo assim, observamos que os docentes avaliaram positivamente e
manifestaram a intenção de utilizar o repositório CollabProg.

5.2. Percepções dos participantes sobre o uso do CollabProg
Para avaliar a experiência dos docentes em relação à utilização do CollabProg, analisamos
a seguinte frase: “utilizar o CollabProg contribuiu para a adoção de metodologia ativa
em minhas aulas de ensino de programação?”. De modo geral, a percepção foi positiva,
sendo apontados aspectos relevantes em relação à experiência da utilização do Collab-
Prog. No que diz respeito aos pontos positivos, foram identificadas quatro subcategorias
que abordam os benefı́cios do repositório.

Na primeira subcategoria, explicação detalhada das etapas, D1 comentou que:
“não tinha conhecimento sobre as metodologias e o CollabProg me permitiu aplicá-las
de forma fácil”. D3 afirmou que o: “CollabProg facilitou bastante a compreensão sobre

as metodologias ativas disponı́veis no repositório”. D3 também comentou que, em ou-
tros momentos, pretendia usar o POGIL em suas aulas, mas a sua documentação é muito
extensa e que “a forma como foi apresentada no CollabProg foi bem mais intuitiva para
compreender o funcionamento dessa MA e planejar as aulas”. Na segunda subcategoria,
aumento da produtividade na implementação de MA, D2 evidenciou que “sem o Col-
labProg dificilmente eu iria atrás dos detalhes de uma MA para ensinar programação”.

Em relação à terceira subcategoria, utilidade dos exemplos práticos, D3 expos
que “os exemplos apresentados foram muito úteis para compreender melhor como pode-
mos adotar a metodologia”. O docente complementou dizendo que, muitas vezes, lemos
sobre as metodologias, mas fica tudo muito abstrato e que “ter os passos envolvidos e os
exemplos torna muito mais fácil compreender como aplicar a metodologia”. Por fim, em
relação ao estı́mulo ao trabalho colaborativo e à participação ativa dos alunos, quarta
subcategoria, D4 afirmou que “trabalhos colaborativos enriquecem o aprendizado”, e D5
compartilhou que “a principal vantagem, na minha opinião, é fazer com que o aluno par-
ticipe mais ativamente das aulas e, consequentemente, tenha um melhor aprendizado”.

As percepções apresentadas pelos docentes, além de contribuı́rem com a evolução
do repositório, confirmaram o interesse pela utilização desta ferramenta. Em relação à
utilidade do CollabProg, todos os docentes consideraram que o repositório CollabProg
pode contribuir para o planejamento das aulas no que tange à adoção de MAs. Enquanto
isso, a maioria consideraram que os conteúdos apresentados no repositório são úteis.

Também foram identificados alguns pontos negativos pelos docentes. O primeiro
está relacionado a dificuldade na compreensão das etapas e conceitos. D1 comentou
sentir dificuldade em “compreender as metodologias ativas (algumas etapas tive que ler
diversas vezes)”. D2 complementou dizendo que “apesar de estar muito bem organizado,
ainda senti dificuldades em montar o passo-a-passo.” O segundo ponto negativo é refe-
rente aos desafios na montagem do passo-a-passo e confusão em pontos especı́ficos.
Neste sentido, D3 enfatizou que “alguns pontos ficaram confusos durante a leitura da
metodologia ativa, em especial o POGIL, que adotei”. D5 disse que a sua principal difi-
culdade “foi construir um plano de aula que refletisse a metodologia ativa em questão”.

Com base em suas experiências, os docentes destacaram algumas sugestões para
melhorar a utilização do ColabProg. A primeira foi buscar maior clareza e simplicidade
nas explicações das etapas e conceitos das metodologias, tornando-as mais acessı́veis
e fáceis de compreender. Mencionaram a necessidade de orientações práticas para a
contribuição com os planos de aula e o uso do ColabProg pelos docentes. Destacaram
a importância de aprimorar a documentação e os exemplos das metodologias, tornando-
os mais claros e abrangentes. Também sugeriram ter uma explicação mais detalhada sobre
a atribuição de papéis nas MAs, a fim de evitar confusões e facilitar a implementação.

6. Considerações Finais
Este artigo apresentou os resultados do primeiro ciclo de Design conduzido com o obje-
tivo de avaliar a aceitação e a viabilidade de uso do CollabProg, um repositório colabora-
tivo e aberto para apoiar a adoção de MAs no ensino de programação, a partir do ponto
de vista de docentes de diferentes instituições de ensino do Brasil. A partir dos resultados
alcançados buscamos evoluir e realizar melhorias no CollabProg, especialmente nos pon-
tos negativos e necessidades apontadas pelos docentes. Realizamos novo ciclo de design

e elaboramos a segunda versão do CollabProg, acessada online9 e que parte dela pode ser
vista na Figura 4. Nesta versão, o CollabProg está dividido em cinco menus rotulados, os
quais dispõem de informações para direcionar o usuário. Nesta versão, forma mantidas as
funcionalidade da primeira versão, contudo, já passou-se a apresentar o menu Registrar
Metodologia, para o cadastro de metodologias.

Figura 4. Segunda versão do CollabProg.

Como trabalhos futuros, pretende-se disponibilizar uma função de
Recomendação das MAs, permitindo que o docente informe algumas caracterı́sticas
sobre a turma, o conteúdo a ser ensinado, disciplina, entre outras informações, para que
o CollabProg possa recomendar a MA que melhor se adequará ao cenário informado.

Agradecimentos
O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pes-
soal de Nı́vel Superior – Brasil (CAPES) – Código de Financiamento 001 e parcialmente
financiado pela Fundação de Amparo à Pesquisa do Estado do Amazonas – FAPEAM –
por meio do projeto POSGRAD. Williamson Silva agradece pelo apoio financeiro da FA-
PERGS (Projeto ARD/ARC - processo 22/2551-0000606. Ivanilse Calderon agradece ao

9https://l1nq.com/B4rZg

Instituto Federal de Educação, Ciência e Tecnologia de Rondônia (IFRO)/Campus Porto
Velho Zona Norte.

Referências

Ahshan, R. (2021). A framework of implementing strategies for active student engage-
ment in remote/online teaching and learning during the covid-19 pandemic. Education
Sciences, 11(9):483.

Berssanette, J. H. and de Francisco, A. C. (2021). Active learning in the context of
the teaching/learning of computer programming: A systematic review. Journal of
Information Technology Education. Research, 20:201.

Calderon, I., Silva, W., and Feitosa, E. (2021). Um mapeamento sistemático da literatura
sobre o uso de metodologias ativas durante o ensino de programação no brasil. In
Anais do XXXII Simpósio Brasileiro de Informática na Educação, pages 1152–1161.
SBC.

Castro, R. M. d. and Siqueira, S. (2019). Alcasystem-um portal com técnicas de apren-
dizagem ativa para disciplinas da área da computaçao. In Anais dos Workshops do
Congresso Brasileiro de Informática na Educação, volume 8, page 1243.

Garcia, F. W. D. S., Carvalho, E. D. C., and Oliveira, S. R. B. (2021). Use of active
methodologies for the development of a teaching plan for the algorithms subject. In
2021 IEEE Frontiers in Education Conference (FIE), pages 1–9. IEEE.

Lima, J., Alencar, F., and Santos, W. (2021). A preliminary guide for assertive selection
of active methodologies in software engineering education. In Brazilian Symposium
on Software Engineering, pages 170–179.

Luxton-Reilly, A., Albluwi, I., Becker, B. A., Giannakos, M., Kumar, A. N., Ott, L.,
Paterson, J., Scott, M. J., Sheard, J., and Szabo, C. (2018). Introductory programming:
a systematic literature review. In Proceedings Companion of the 23rd Annual ACM
Conference on Innovation and Technology in Computer Science Education, pages 55–
106.

Nguyen, K. A., Borrego, M., Finelli, C. J., DeMonbrun, M., Crockett, C., Tharayil, S.,
Shekhar, P., Waters, C., and Rosenberg, R. (2021). Instructor strategies to aid imple-
mentation of active learning: a systematic literature review. International Journal of
STEM Education, 8:1–18.

Silva, W., Gadelha, B., Steinmacher, I., and Conte, T. (2020). Towards an open repository
for teaching software modeling applying active learning strategies. In 2020 IEEE/ACM
42nd International Conference on Software Engineering: Software Engineering Edu-
cation and Training (ICSE-SEET), pages 162–172. IEEE.

Sobral, S. R. (2021). Strategies on teaching introducing to programming in higher educa-
tion. In World Conference on Information Systems and Technologies, pages 133–150.
Springer.

Sobrinho, H., Castro, L., Nogueira, A., Harada, E., and Gadelha, B. (2016). Organi-
zando o conhecimento sobre técnicas de aprendizagem colaborativas. Nuevas Ideas
em Informatica Educativa, 12:152–156.

Tharayil, S., Borrego, M., Prince, M., Nguyen, K. A., Shekhar, P., Finelli, C. J., and
Waters, C. (2018). Strategies to mitigate student resistance to active learning. Interna-
tional Journal of STEM Education, 5(1):1–16.

Wieringa, R. J. (2014). Design science methodology for information systems and software
engineering. Springer.

Witt, D. T., Kemczinski, A., and dos Santos, L. M. (2018). Resolução de problemas:
Abordagens aplicadas no ensino de computação. Anais do Computer on the Beach,
pages 731–740.

Uma Plataforma Web para apoiar Docentes no Ensino de
Programação em Cursos de Sistemas de Informação

Ivanilse Calderon1,3, Williamson Silva2, Eduardo Feitosa1

1Instituto de Computação (IComp) – Universidade Federal do Amazonas (UFAM)
Manaus, AM – Brasil

2Laboratory of Empirical Studies in Software Engineering (LESSE) - Departamento
de Engenharia de Software - Universidade Federal do Pampa (UNIPAMPA)

- Alegrete, RS - Brasil

3Instituto Federal de Educação, Ciência e Tecnologia de Rondônia (IFRO)
Campus Porto Velho Zona Norte - Porto Velho, RO - Brasil

{1,3ivanilse.calderon,1efeitosa}@icomp.ufam.edu.br

2williamsonsilva@unipampa.edu.br

Abstract. Teaching programming in Information Systems courses is not just
about fulfilling a step in the academic curriculum or merely about writing code
with students, but rather a journey to prepare them for job market opportunities
and to empower them to be agents of change and innovation. Active methodo-
logies are strategies that can assist in this process. Educators face barriers and
challenges in adopting active methodologies to enhance their teaching practices
in programming. This work presents CollabProg, an open web platform avai-
lable online, which brings together different types of active methodologies in a
single environment to support educators in programming teaching.

Resumo. Ensinar programação nos cursos de Sistemas de Informação não é
apenas cumprir uma etapa no currículo acadêmico ou sobre escrever linhas de
código com os estudantes, mas uma jornada para preparar os estudantes para
as oportunidades do mercado de trabalho e para capacitá-los a serem agentes
de mudança e inovação. As metodologias ativas são estratégias que podem aju-
dar neste processo. Os docentes enfrentam barreiras e desafios para a adoção
de metodologias ativas para melhorar suas praticas docentes em relação ao en-
sino de programação. Este trabalho apresenta o CollabProg, uma plataforma
web aberta, disponível na internet, que reúne, em único ambiente diferentes ti-
pos de metodologias ativas para apoiar os docentes no ensino de programação.

1. Introdução
O ensino de programação é fundamental no currículo de cursos de Sistemas de Infor-
mação (SI) e representa um desafio para os docentes [Imbulpitiya et al. 2019]. Ao en-
sinar programação, espera-se capacitar os estudantes com habilidades essenciais para
o mundo digital, que está em constante evolução. No entanto, a natureza dinâmica da
tecnologia exige que os educadores busquem recursos atualizados e eficazes para o en-
sino. Isso ocorre porque tais disciplinas demandam conhecimentos prévios em lógica,
matemática, leitura, interpretação de texto, abstração de ideias, entre outras habilidades

Anais Estendidos do XX Simpósio Brasileiro de Sistemas de Informação (SBSI 2024)

Trilha de Temas, Ideias e Resultados Emergentes em Sistemas de Informação - Resultados Emergentes: Pós-graduação

297

Appendix I

[Bigolin et al. 2020]. As Metodologias Ativas (MAs) têm despertado o interesse dos do-
centes para a prática pedagógica em sala de aula. Segundo Koenig (2020), as MAs têm
suas bases na teoria Construtivista, que busca tornar o estudante protagonista de sua pró-
pria aprendizagem. Isso auxilia os estudantes a desenvolver habilidades críticas, refletir
sobre suas práticas, além de explorar atitudes, valores pessoais e o aprendizado por meio
da prática (learning by doing) [Ribeiro et al. 2021].

Este trabalho descreve o desenvolvimento de uma plataforma web colaborativa e
aberta, denominada CollabProg, destinada a apoiar os docentes na adoção de MAs no
ensino de programação. Na seção 2, são abordados os trabalhos relacionados, enquanto a
seção 3 apresenta o referencial teórico. O CollabProg é detalhado na seção 4. Por fim, as
considerações finais e os trabalhos futuros são abordados na seção 5.

2. Trabalhos relacionados
Pesquisadores têm se empenhado em aprimorar a adoção de MAs por meio de novas
tecnologias de comunicação e instrução. No contexto educacional, observam-se pesquisas
para a criação de repositórios digitais que apoiam a prática docente em diversas áreas. O
portal ALCASYSTEM [de Castro and Siqueira 2019] é um exemplo disso, sendo uma
plataforma web que auxilia os docentes na busca, seleção e recomendação de MAs no
contexto da Computação. Outro exemplo é o portal OpenSMALS [Silva et al. 2020], um
repositório aberto voltado para o ensino de modelagem de software por meio de MAs.
Nesse contexto, Lima et al., (2021) criaram um guia de seleção destinado a auxiliar os
docentes na escolha de MAs com base no perfil e estilo de aprendizagem dos estudantes,
é específico para a engenharia de software. Ahshan (2021) apresenta um framework
para implementar atividades e estratégias que promovam o engajamento dos estudantes,
combinando tecnologias educacionais e um sistema de gerenciamento de e-learning.

3. Referêncial teórico
Dentre os grandes desafios na área de Sistemas de Informação (SI), observa-se a neces-
sidade de aprimorar a formação para desenvolver habilidades, conhecimento e atitudes
profissionais, além de analisar os conteúdos das disciplinas [Cafezeiro et al. 2017]. O en-
sino de programação desenvolve habilidades que abrem portas para uma ampla gama de
oportunidades profissionais e acadêmicas na área de Tecnologia da Informação (TI). Con-
tudo, o ensino de programação nos cursos de SI é considerado complexo, pois requer uma
compreensão profunda de conceitos abstratos que ainda não são totalmente compreensí-
veis aos estudantes [Luxton-Reilly et al. 2018]. Neste contexto, nota-se que os docentes
dos cursos de SI podem enfrentar diversas barreiras, como a falta de tempo para o plane-
jamento das aulas [Michael 2007], dificuldades em cumprir todo o conteúdo da disciplina
[Eickholt 2018], entre outras na adoção das MAs para o ensino de programação. Para
mitigar esse problema, os docentes precisam de um ambiente onde possam entender e,
consequentemente, adaptar ou empregar novas estratégias de ensino, oferecendo, assim,
um ambiente de aprendizagem desafiador e engajador para os estudantes.

4. O desenvolvimento do CollabProg

4.1. Método

Para o desenvolvimento do CollabProg, utilizou-se o Design Science Research (DSR),
escolha justificada pela conexão entre conhecimento e prática [Wieringa 2009]. Segundo

Anais Estendidos do XX Simpósio Brasileiro de Sistemas de Informação (SBSI 2024)

Trilha de Temas, Ideias e Resultados Emergentes em Sistemas de Informação - Resultados Emergentes: Pós-graduação

298

Hevner et al., (2004) o DSR procura identificar e compreender os problemas do mundo
real e propor soluções apropriadas e úteis, fazendo avançar o conhecimento teórico da
área. O DRS é dividida em três ciclos. No Ciclo de Relevância foi definido o problema
investigado e a motivação para a pesquisa. No Ciclo de Design desenvolveu-se, avaliou-se
e evoluiu-se o CollabProg. Por fim, no Ciclo de Rigor refere-se aos principais fundamen-
tos relacionados ao conhecimento sobre a adoção de MAs para o ensino de programação,
às estratégias para adoção das MAs e aos estudos experimentais.

4.2. Processo de curadoria e seleção das metodologias

O processo de curadoria das MAs que compõem o CollabProg priorizou o compartilha-
mento apenas dos conteúdos e das opções de suporte ferramental disponíveis na literatura,
para a utilização dos docentes. Deste modo, busca-se evitar possíveis frustrações para os
usuários desta plataforma web, visto que não serão apresentados conhecimentos e/ou con-
teúdos sem base científica, sem experimentos ou irrelevantes. A triagem realizada para
a seleção das MAs teve como critério principal a escolha de metodologias respaldadas
por evidências científicas sólidas, eliminando a adoção de metodologias desprovidas de
experimentos ou cujo embasamento teórico se mostrasse irrelevante para a comunidade,
diante do contexto desta pesquisa. O detalhamento do protocolo definido e utilizado para
a Avaliação de Qualidade (AQ) dos estudos primários pode ser visto on-line1.

4.3. Primeira versão do CollabProg

A Figura 1 ilustra a primeira versão do CollabProg com um recorte sobre uma determi-
nada metodologia ativa, a POGIL. A Parte 01 da Figura 1 apresenta uma breve descrição
do CollabProg, a Parte 02 apresenta uma breve descrição sobre a MA escolhida pelo do-
cente, neste caso a POGIL. Por fim, a Parte 03 apresenta explicações mais detalhadas
sobre a metodologia, bem como os papéis existentes na metodologia, os passos para ado-
ção e detalhamento de cada passo.

4.4. Avaliação do CollabProg

Para avaliar a viabilidade de uso e aceitação da segunda versão do CollabProg, foi reali-
zado um estudo exploratório, com a participação de docentes de todo o Brasil, utilizando
o Modelo de Aceitação da Tecnologia (TAM) [Silva 2015]. Os resultados deste estudo
podem ser consultados em Calderon et al., (2023). Com base na avaliação do CollabProg
e nas sugestões dos docentes, concluímos que o repositório representa uma ferramenta
valiosa para apoiar o ensino de programação com MAs. Embora tenhamos recebido elo-
gios pela sua capacidade de motivar a adoção das MAs e facilitar a compreensão de seu
funcionamento, também foram identificadas oportunidades de melhoria em relação à cla-
reza e simplicidade das explicações, à documentação das metodologias e à explicação dos
papéis atribuídos em cada uma delas.

4.5. Segunda versão do CollabProg

A Figura 2 apresenta um recorte da segunda versão. Dividida em cinco menus rotulados,
os quais dispõem de informações para direcionar o usuário. A Parte 1 apresenta a página
inicial e o detalhamento do menu Metodologias (identificação da MA e sua descrição).

1https://figshare.com/s/794c9f7e5adfdff915d1

Anais Estendidos do XX Simpósio Brasileiro de Sistemas de Informação (SBSI 2024)

Trilha de Temas, Ideias e Resultados Emergentes em Sistemas de Informação - Resultados Emergentes: Pós-graduação

299

Figura 1. Primeira versão CollabProg

Na Parte 2 são apresentadas informações específicas da MA selecionada. Nesta parte, o
usuário, de modo objetivo, consegue verificar se a MA atenderá ou não ao seu contexto
de ensino, considerando o tempo de aula, a quantidade de estudantes, quais serão os
papéis a serem desempenhados na aula, dentre outras informações que contribuirão para o
docente decidir por qual MA adotar. Por fim, na Parte 3 são apresentados dois submenus:
"Como implementar"e "Mais sobre a metodologia". Nestes, o usuário encontrará um
direcionamento detalhado e objetivo sobre a MA selecionada, facilitando o entendimento
de como, em quais condições e onde a MA poderá ser adotada.

5. Considerações finais e trabalhos futuros

Desde sua proposta inicial, o CollabProg tem evoluído constantemente e sua segunda ver-
são representa um avanço significativo em termos de estrutura e usabilidade, com uma
organização mais clara e intuitiva, facilitando a navegação e compreensão das MAs dis-
poníveis. A plataforma foi submetida a um estudo exploratório com docentes, utilizando
o TAM, confirmando sua utilidade no apoio ao ensino de programação com MAs. Atual-
mente, a terceira versão do CollabProg está em fase de implementação, com a introdução
de novos recursos, como o menu "Registrar Metodologia"para o cadastro de novas meto-
dologias e a função de "Recomendação"de MAs, permitindo que os docentes informem
características da turma para receber sugestões personalizadas. Esta versão do CollabProg
está disponível online2 para acesso.

2https://l1nq.com/drfa3

Anais Estendidos do XX Simpósio Brasileiro de Sistemas de Informação (SBSI 2024)

Trilha de Temas, Ideias e Resultados Emergentes em Sistemas de Informação - Resultados Emergentes: Pós-graduação

300

Figura 2. Segunda versão do CollabProg.

Agradecimentos
O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pes-
soal de Nível Superior – Brasil (CAPES) – Código de Financiamento 001 e parcialmente
financiado pela Fundação de Amparo à Pesquisa do Estado do Amazonas – FAPEAM –
por meio do projeto POSGRAD. Williamson Silva agradece pelo apoio financeiro da FA-
PERGS (Projeto ARD/ARC - processo 22/2551-0000606. Ivanilse Calderon agradece ao
Instituto Federal de Educação, Ciência e Tecnologia de Rondônia (IFRO)/Campus Porto
Velho Zona Norte.

Referências
Ahshan, R. (2021). A framework of implementing strategies for active student engage-

ment in remote/online teaching and learning during the covid-19 pandemic. Education
Sciences, 11(9):483.

Bigolin, N. M., Silveira, S. R., Bertolini, C., de Almeida, I. C., Geller, M., Parreira, F. J.,
da Cunha, G. B., and Macedo, R. T. (2020). Metodologias ativas de aprendizagem: um
relato de experiência nas disciplinas de programação e estrutura de dados. Research,
Society and Development, 9(1):e74911648–e74911648.

Cafezeiro, I. L., Viterbo Filho, J., Da Costa, L. C., Salgado, L. C. d. C., Meira, M. R., and
Monteiro, R. S. (2017). Grand research challenges in information systems in brazil

Anais Estendidos do XX Simpósio Brasileiro de Sistemas de Informação (SBSI 2024)

Trilha de Temas, Ideias e Resultados Emergentes em Sistemas de Informação - Resultados Emergentes: Pós-graduação

301

2016-2026. GRAND RESEARCH CHALLENGES IN INFORMATION SYSTEMS IN
BRAZIL 2016-2026.

Calderon, I., Silva, W., and Feitosa, E. (2023). Explorando a aceitação do collabprog
como um facilitador de metodologias ativas no ensino de programação. In Anais do
XXXIV Simpósio Brasileiro de Informática na Educação, pages 93–104. SBC.

de Castro, R. M. and Siqueira, S. (2019). Alcasystem-um portal com técnicas de apren-
dizagem ativa para disciplinas da área da computaçao. In Anais dos Workshops do
Congresso Brasileiro de Informática na Educação, volume 8, page 1243.

Eickholt, J. (2018). Barriers to active learning for computer science faculty. arXiv preprint
arXiv:1808.02426.

Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004). Design science in information
systems research. MIS quarterly, pages 75–105.

Imbulpitiya, A., Kodagoda, N., Gamage, A., and Suriyawansa, K. (2019). Using active
learning integrated with pedagogical aspects to enhance student’s learning experience
in programming and related concepts. In International Conference on Interactive Col-
laborative Learning, pages 218–228. Springer.

Koenig, K. M. (2020). Personal response systems: Making an informed choice. Active
Learning in College Science: The Case for Evidence-Based Practice, pages 123–139.

Lima, J., Alencar, F., and Santos, W. (2021). A preliminary guide for assertive selection
of active methodologies in software engineering education. In Brazilian Symposium
on Software Engineering, pages 170–179.

Luxton-Reilly, A., Albluwi, I., Becker, B. A., Giannakos, M., Kumar, A. N., Ott, L.,
Paterson, J., Scott, M. J., Sheard, J., and Szabo, C. (2018). Introductory programming:
a systematic literature review. In Proceedings Companion of the 23rd Annual ACM
Conference on Innovation and Technology in Computer Science Education, pages 55–
106.

Michael, J. (2007). Faculty perceptions about barriers to active learning. College teaching,
55(2):42–47.

Ribeiro, I. C., Silva, W., and Feitosa, E. L. (2021). Repositório colaborativo para apoiar
a adoção de metodologias ativas no ensino de programação. In Anais Estendidos do I
Simpósio Brasileiro de Educação em Computação, pages 56–57. SBC.

Silva, P. (2015). Davis’ technology acceptance model (tam)(1989). Information seeking
behavior and technology adoption: Theories and trends, pages 205–219.

Silva, W., Gadelha, B., Steinmacher, I., and Conte, T. (2020). Towards an open repository
for teaching software modeling applying active learning strategies. In Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering: Software
Engineering Education and Training, pages 162–172.

Wieringa, R. (2009). Design science as nested problem solving. In Proceedings of the
4th international conference on design science research in information systems and
technology, pages 1–12.

Anais Estendidos do XX Simpósio Brasileiro de Sistemas de Informação (SBSI 2024)

Trilha de Temas, Ideias e Resultados Emergentes em Sistemas de Informação - Resultados Emergentes: Pós-graduação

302

IEEE EDUCATION SOCIETY SECTION

Received 6 February 2025, accepted 8 March 2025, date of publication 24 March 2025, date of current version 23 April 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3554156

Building Bridges Instead of Putting Up Walls: An
Educational Tool to Facilitate Instructors in
Adopting Active Learning Methodologies for
Teaching Programming
IVANILSE CALDERON 1, WILLIAMSON SILVA 2, AND EDUARDO FEITOSA1
1Institute of Computing, Federal University of Amazonas - (UFAM), Manaus 69067-005, Brazil
2Software Engineering Department/PPGES, Federal University of Pampa (UNIPAMPA), Alegrete 96460-000, Brazil

Corresponding author: Ivanilse Calderon (ivanilse.calderon@icomp.ufam.edu.br)

This work was supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brazil (CAPES) under Grant 001;
in part by the Amazonas State Research Support Foundation (FAPEAM) through the Programa Institucional de Apoio à Pós-Graduação
Stricto Sensu (POSGRAD Project), from Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) (Auxílio
Recém-Doutor / Auxílio Recém- Contratado - ARD/ARC - Project) under Grant 22/2551-0000606-0 and Grant 23243.004494/2024-20;
and in part by the Institutional Qualification Incentive Program (PIQ) under Grant 34/2024/REIT-DGP/IFRO. The Research Group in
Technologies and Education in Computing (GPComp) and the Federal Institute of Education, Science, and Technology of Rondônia
(IFRO) supported Ivanilse Calderon’s work under Grant 23243.004494/2024-20.

ABSTRACT Teaching programming is a challenging task, as it requires instructors to guide students in
developing complex skills such as real-world abstraction, problem-solving, and logical reasoning. However,
the traditional teaching approach is often ineffective in achieving these objectives. Evidence suggests
that Active Learning Methodologies (ALMs) can provide a more conducive environment for skill and
competency development. Nonetheless, instructors’ adoption rate of ALMs remains relatively low due to
various barriers and factors, particularly in programming education. To assist instructors in facing this
challenge, we present in this article CollabProg, an open collaborative repository designed to support
instructors in identifying and selecting the appropriate ALMs for their teaching context and specific
classroom needs. Additionally, CollabProg provides a set of practical guidelines, offering a step-by-step
guide to assist instructors in adopting ALMs. We adopted the Design Science Research Methodology
(DSRM) to systematically address the research problem and guide the development, evaluation, and
evolution of CollabProg. Furthermore, we present two case studies to evaluate the acceptance and feasibility
of using CollabProg from the perspective of instructors at different educational institutions in Brazil.
The evidence demonstrates that CollabProg effectively supports instructors in adopting active learning
methodologies while identifying limitations and opportunities for improvement. We also found that
CollabProg helped instructors identify and choose suitable ALMs for their teaching context to meet their
specific classroom needs. The guidelines provided by the repository were useful and highly practical
for lesson planning in adopting ALMs. The adoption of CollabProg underscores the need for effective
strategies to support instructors in teaching programming and motivating students to learn. These strategies
are particularly important in collaborative learning contexts, where social interaction is key. CollabProg’s
versatility in supporting such contexts is important for successful instruction.

INDEX TERMS Teaching programming, active learning methodologies, computer programming,
educational tools, CollabProg.

The associate editor coordinating the review of this manuscript and

approving it for publication was S. Chandrasekaran .

I. INTRODUCTION
Teaching programming requires a set of skills that students
must develop, encompassing not only the understanding of

VOLUME 13, 2025
2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 66907

Appendix J

https://orcid.org/0000-0002-8885-0979
https://orcid.org/0000-0003-1849-2675
https://orcid.org/0000-0003-2871-880X

I. Calderon et al.: Building Bridges Instead of Putting Up Walls

the syntax and semantics of a specific programming language
but also the ability to apply creativity to solve complex
problems. This process integrates the precision of logical
thinking with the flexibility of creative problem-solving [5]
Consequently, teaching and learning programming can be
particularly challenging, especially in foundational courses
such as CS1, CS2, and Data Structures. Students often
perceive these courses as highly complex, demanding a solid
grasp of abstract concepts and rigorous analytical thinking.
From the instructor’s perspective, these courses demand
that students develop critical skills, including real-world
abstraction, problem-solving, and logical reasoning [2].
Using a traditional teaching approach often proves inef-

fective for developing essential programming skills. The
teacher-centered model, typical of conventional classrooms,
frequently results in students passively absorbing informa-
tion [8]. Consequently, many students either drop out of
these courses or leave the program altogether, perceiving
the methodology as inadequate for their learning needs [9],
[10]. However, this scenario has shifted significantly in recent
decades, fueled by continuous technological advancements
and the emergence of innovative pedagogical approaches.
A notable example of this evolution is the adoption of Active
Learning Methodologies (ALMs), which have been widely
discussed and implemented in programming education [11].
These methodologies emphasize active student engagement
in the learning process, fostering a more dynamic environ-
ment that significantly enhances the development of practical
skills.

ALMs represent a pedagogical approach integrating active
student participation, experiential learning, and learning by
doing [3], [4], [31]. By adopting ALMs, students assume a
central role in their learning process. This active engagement
enhances their interest and deepens their involvement with
the content covered in courses such as algorithms [10].
ALMs offer numerous advantages over traditional teaching
methods, including personalized learning, access to a wide
range of educational resources, immediate feedback, and
adaptive learning [32]. However, it is important to emphasize
that, despite the benefits of ALMs, traditional teaching
methods have their merits and can serve as complementary
approaches.

Despite the positive evidence supporting the effectiveness
of ALMs in programming education, their adoption rate
among instructors remains relatively low [17]. Several
barriers have been identified that hinder their widespread
implementation [2]. These include the lack of time to design
lessons incorporating ALMs, the challenge of covering the
entire course content within an ALM framework, student
resistance to new pedagogical strategies, doubts about the
effectiveness of ALMs in achieving learning objectives, and
insufficient guidance on how to implement ALMs effectively
in the classroom. Additionally, instructor resistance to change
poses a significant barrier, particularly for those already
accustomed to traditional teaching methods [2], [17], [28],

[81]. These challenges highlight the need for educators to
have adequate professional development and resources to
facilitate the transition to ALMs. Proactively addressing these
barriers can promote the broader adoption of ALMs and
enhance the quality of programming education.

This article describes the development, evaluation, and
evolution of an open and collaborative repository designed
to support the adoption of Active Learning Methodologies
(ALMs) in programming education, called CollabProg.
CollabProg provides educators with a valuable educational
tool to implement active methodologies, fostering a more
engaging and practical approach to programming education.
Additionally, we presented the results of the first Design
Cycle, which we conducted to assess the acceptance and
feasibility of using CollabProg from the perspective of
instructors across various educational institutions in Brazil.
The findings from this cycle demonstrate that CollabProg
effectively supports instructors in adopting active learning
methodologies, a particularly relevant contribution given the
growing demand for dynamic and participatory teaching
methods. Furthermore, the article highlights the limitations
and opportunities for improvement identified in the results,
reflecting a commitment to the continuous evolution and
enhancement of the tool. This ensures its effectiveness and
ongoing relevance in the rapidly evolving landscape of
computer education.

The main contribution of our study is (i) CollabProg,
an educational tool designed to assist instructors in identi-
fying and selecting Active Learning Methodologies (ALMs)
that align with their teaching context and classroom needs;
(ii) a structured repository of step-by-step guidelines,
enabling instructors to implement ALMs effectively without
the need to search through multiple scientific articles or
books; and (iii) a consolidated collection of strategies,
facilitating the adoption of various ALMs specifically
tailored to programming education.

The article is structured as follows. Section II pro-
vides foundational information and context for the study.
Section III presents literature and prior research relevant to
the topic. Section IV introduces the proposed framework,
the CollabProg. Section V discusses the significance and
practical implications of the study. Section VI outlines
the initial design and implementation of the framework.
Section VII describes the enhancements and updates based
on feedback from the first cycle. Section VIII emphasizes
the methodological rigor and validation processes employed.
Section IX discusses the limitations of this work. Section X
explores the broader impacts of the findings. Finally,
Section X concludes our work and discusses some future
work.

II. BACKGROUND
This section presents the theoretical foundations of Program-
ming Education in Computer Science and Active Learning
Methodologies.

66908 VOLUME 13, 2025

I. Calderon et al.: Building Bridges Instead of Putting Up Walls

A. TEACHING PROGRAMMING IN COMPUTING
Programming is often regarded as the cornerstone of all
computing technologies. Teaching programming has become
essential due to the growing significance of computing in
everyday life [16]. However, instructors face numerous chal-
lenges in this process [2]. Students are required to understand
the syntax and semantics of programming languages and
apply creativity to solve complex problems, blending the
precision of logical thinking with the adaptability of creative
problem-solving [18].
At the beginning of their courses, many students struggle

with designing and writing simple programs, and some
even hesitate to learn programming, perceiving it as a
complex subject [6]. A lack of understanding of fundamental
concepts further compounds these challenges [7]. Courses
on programming logic and computer programming are often
perceived as difficult because they require foundational skills
in logic, mathematics, and text interpretation [19]. To succeed
in these courses, students need prior knowledge in logic,
mathematics, reading comprehension, idea abstraction, and
other critical skills [20].
These challenges are reflected in the high dropout rates

observed in undergraduate Computing programs. Computer
Sciencemajors and the increasing number of non-majors who
take programming courses often struggle, displaying clear
signs of poor performance, frustration, and disengagement.
Some institutions have reported dropout rates as high as 50%,
while the global average pass rate for introductory Computer
Science courses is approximately 68% [24]. Significant
efforts have been made to understand why learning to
program remains a persistent challenge [24]. This is believed
to stem, in part, from current instructional techniques [25],
high expectations from instructors [26], and the perceived
lack of support for beginner students [21]. In summary,
teaching programming courses in higher education is inher-
ently complex due to the diverse skills required for student
success [27].

B. ACTIVE LEARNING IN PROGRAMMING EDUCATION
Traditional lecture-based classes, typically instructor-
centered, involve students passively listening and absorbing
information, often supported by slide presentations. While
this approach remains essential in certain contexts, it often
represents only a superficial shift in the teaching paradigm,
replacing the blackboard with a projector [8]. Technological
advancements have primarily altered the means of delivering
information to students rather than fostering significant
changes in how they learn. However, this instructional
method has limitations, as it fails to promote higher-order
thinking and advanced reasoning skills [30].
On the other hand, Active Learning (AL), deeply rooted

in constructivism [12] offers an approach where students
actively construct their knowledge, taking greater responsi-
bility and control over their learning process [13], [14]. Con-
structivism is a learning theory that posits individuals actively
build their knowledge based on their experiences [15]. In this

context, AL emphasizes active knowledge construction by the
student, empowering them to take ownership of their learn-
ing. Rather than passively absorbing information, students
learn through practice and experience. This fundamental shift
encourages students to take responsibility for their learning
journey [37]. In AL, instructors act as facilitators, guiding
students to think critically, reflect deeply, and nurture their
curiosity [22], [23], [35], [38], [40].

According to [28] AL enables instructors to create learning
environments where students construct knowledge, develop
critical and reflective skills, and explore personal attitudes
and values. AL is a student-centered approach, well-suited
for fostering skills in independent study, self-determination,
and collaborative work [39]. As noted by [33], [37],
[41], [42] there is a growing consensus that humans learn
most effectively when they are active (rather than passive)
and engaged (rather than distracted), when the material
is meaningful (rather than disjointed), and when learning
occurs in a socially interactive, iterative (rather than merely
repetitive), and enjoyable context.

The literature highlights the advantages of AL in the
curricular structure of undergraduate courses [2], [35], [43],
[44], [45], [46], demonstrating that active learning strategies
are more effective than traditional lectures in promoting
a wide range of desirable educational outcomes, such as
increased learning [36], [47], [48], [49], [50]. However,
despite the favorable evidence, traditional teaching still
prevails as the dominant mode of instruction in university
courses [36], [51], [52], [53], [54].

C. ACTIVE LEARNING METHODOLOGIES IN
PROGRAMMING EDUCATION
Teaching in computing has encountered significant chal-
lenges, particularly in balancing extensive theoretical knowl-
edge with learning dynamics that are inherently practical
and applied [1]. Adopting innovative pedagogical approaches
for teaching programming is essential to develop the
critical skills required for students pursuing careers in
the field [30]. These skills include abstraction and logi-
cal reasoning. Consequently, instructors have increasingly
turned to ALM as an effective alternative for programming
education [28].

Adopting ALMs for teaching programming has practical
and successful implications for instructors aiming to imple-
ment AL, as they prepare students for real-world challenges
they may encounter in the job market [10]. Consequently,
various ALMs are available to facilitate their adoption,
helping to mitigate the challenges instructors face when
implementing ALMs in programming education.

It is essential to recognize that successfully implementing
ALM in programming education is not a haphazard process.
It requires a certain degree of knowledge and meticulous
planning. Understanding the various ways, whether success-
ful or not, of implementing different strategies for adopting
ALM is a key step in this process. This knowledge can be

VOLUME 13, 2025 66909

I. Calderon et al.: Building Bridges Instead of Putting Up Walls

a solid foundation for instructors seeking to incorporate new
ALMs into their programming courses.

As a result, several ALMs have been implemented in
programming education in undergraduate computing courses.
These methodologies aim to equip students with the skills
needed to tackle challenges in the job market, foster greater
autonomy in problem-solving, and enhance communication
abilities [10].

III. RELATED WORKS
Researchers have explored ways to enhance the adoption of
ALM by leveraging new communication and instructional
technologies. In the educational context, numerous initiatives
have focused on developing digital repositories to support
teaching practices across various disciplines.

The ALCASYSTEM portal, developed by [59] is a
web-based platform designed to assist instructors in search-
ing for, selecting, and recommendingALMwithin the context
of Computing. It offers a variety of articles exploring different
teaching approaches and includes a forum to facilitate inter-
action among instructors. However, a significant challenge is
that instructors must dedicate considerable time to reading
and assimilating the recommended articles for each ALM,
which can hinder their effective adoption.

In [56], [65], the authors present the OpenSMALS portal,
an open repository designed for teaching software modeling
through ALMs. OpenSMALS offers specific guidelines
on implementing ALM, along with artifacts shared by
other instructors, evaluation questionnaires, and additional
resources. However, the repository is limited in scope,
featuring only eight ALMs, and is focused exclusively on the
content area of software modeling.

In [57], the authors developed a selection guide to assist
instructors in choosing an ALMs based on identifying
students’ profiles and learning styles. The authors designed
the guide to be practical, easy to use, and adaptable for
visualizing and selecting ALMs across different teaching
contexts. However, it is limited to Software Engineering and
includes only ten ALMs, which are presented in a static
digital format that does not facilitate user interaction.

In [58], the authors present a framework to implement
activities and strategies that ensure active student engage-
ment during the pandemic. The framework integrates a
balanced approach, combining adjusted teaching pedagogy,
educational technologies, and an e-learning management
system. However, it lacks insights from other instructors’
experiences or evaluations regarding the proposed activities
and strategies, and its focus is limited to the context of remote
teaching.

We recognize the growing demand for specialized sup-
port in programming education. However, while existing
resources—such as relevant educational materials — offer
valuable assistance to instructors, many of these efforts
are narrowly focused on specific areas, such as software
modeling. Others provide a broad collection of articles for

reference, but there remains a notable gap in the availability
of tools tailored explicitly for programming education.

Therefore, this article introduces a pioneering contribution:
CollabProg. With CollabProg, instructors will no longer need
to search through numerous scientific articles or books to find
ways to implement specific ALMs in the classroom. Instead,
CollabProg consolidates a comprehensive set of strategies
for adopting various ALMs tailored to programming edu-
cation into a single repository. In this context, this article
presents an innovative and groundbreaking contribution —
CollabProg—whichwewill explain in detail in the following
sections.

IV. CollabProg PROPOSITION
The Design Science Research Methodology (DSRM) [59],
[60] guides the development of CollabProg, which helps
define the research problem and supports the creation,
evaluation, and evolution of the tool. DSRM bridges the gap
between knowledge and practice [60] and is widely adopted
by researchers for developing educational artifacts [61].
The DSRM also aims to identify and understand real-

world problems, propose effective and valuable solutions,
and advance the theoretical knowledge of the field [59]. The
research for CollabProg began in March 2020 and received
approval from the Research Ethics Committee of the Federal
University of Amazonas (UFAM) under protocol number
4.694.031. The application of DSRM is structured into three
cycles: the Relevance Cycle, the Design Cycle, and the Rigor
Cycle.

In theRelevance Cycle, we define the problem to be inves-
tigated, understand the study context, establish the motivation
for addressing the problem, and set the acceptance criteria
for the final evaluation of the research outcomes. To achieve
this, we first conducted a Systematic Mapping Study (SMS)
to summarize the types of ALMs and the experimental
evidence related to their adoption in programming education.
Based on the findings from this SMS, we defined two types
of acceptance criteria for CollabProg: Design Criteria and
Behavior Criteria.

TheDesign Criteria specify what CollabProg should offer
its users, as detailed below:

• DC1 – The artifact should offer a diverse range
of ALMs, including detailed descriptions, practical
application examples, and relevant usage contexts.

• DC2 – The artifact should provide clear and struc-
tured guidelines for implementing each ALM, cov-
ering key aspects such as planning, execution, and
evaluation.

• DC3 – The artifact should include curated ALMs (a
process of carefully selecting and organizing ALM
content) featuring critical analyses, evidence-based
recommendations, and feedback from instructors who
have previously implemented these methodologies.

The Behavior Criteria are related to contributing to the
teaching practices of programming and are as follows:

66910 VOLUME 13, 2025

I. Calderon et al.: Building Bridges Instead of Putting Up Walls

FIGURE 1. Research methodology. Adapted from [63].

• BC1 – The artifact should enhance the user’s under-
standing of ALMs by providing educational resources
such as tutorials, case studies, and explanatory videos.

• BC2 – The artifact should encourage instructors to adopt
ALMs by presenting evidence of their effectiveness,
observed benefits in other institutions, and success
stories.

• BC3 – The artifact should offer clear and detailed infor-
mation about ALMs, including pedagogical objectives,
step-by-step implementation instructions, and potential
challenges with suggested solutions.

• BC4 – The artifact should provide practical and detailed
guidelines, using accessible language and concrete
examples to facilitate implementation across various
disciplines and educational levels.

In the Design Cycle, we develop, evaluate, and refine the
artifact, CollabProg. This development is primarily grounded
in ALMs adopted for teaching programming. To assist
instructors in selecting appropriate ALMs, we identified and
curated ALMs from the SMS, as detailed in Section V.
CollabProg was evaluated by applying it to specific problems
and contexts, enabling us to assess whether we achieved
the expected outcomes based on requirements and whether
further iterations of the Design Cycle were necessary. Conse-
quently, we evaluated CollabProg in practice—specifically,

with instructors in real learning contexts—as discussed in
Section VI-E7.
Finally, the Rigor Cycle focuses on the generation and

application of knowledge [59]. In this cycle, the primary
foundations include knowledge about adopting ALMs for
teaching programming in Computing, strategies for imple-
menting ALMs, the SMS, experimental studies, qualitative
and quantitative analyses, focus groups, interviews, and other
relevant methods. Regarding knowledge generation, the main
contribution is CollabProg, a comprehensive set of strategies
for adopting AMs from the perspective of programming
instructors.

The following subsections will provide a detailed explana-
tion of the DSRM cycles.

V. RELEVANCE CYCLE
In DSRM, a practical problem drives the investigation,
generating new research questions and challenges that expand
existing knowledge [59]. According to [60] the initial phase
of the research focuses on understanding the problemwithout
proposing immediate solutions.

To gain a deeper understanding of the research problem,
we first conducted a SMS. The goal was to identify
how instructors utilize ALMs in programming education.
According to [62] an SMS systematically categorizes and

VOLUME 13, 2025 66911

I. Calderon et al.: Building Bridges Instead of Putting Up Walls

summarizes existing information on a research question
unbiasedly. As suggested by [62] this process involves
planning, conducting, and analyzing results. For further
details on the SMS, refer to [29].
The Research Question guiding the SMS was: How

have instructors used active learning methodologies while
teaching programming in undergraduate courses? From
this question, we identified 3,850 publications through
a meticulous search process. After rigorously applying
selection criteria, we accepted 81 publications.

From the 81 publications analyzed in the SMS, we iden-
tified 37 types of ALMs. Among these, 17 publications
mentioned using Mixed Methodologies, such as Flipped
Classroom and Problem-based Learning. The Flipped
Classroom (FC) was cited in 14 publications, while
Gamification-based Learning (GM) appeared in 11. Eight
publications employed Problem-Based Learning (PBL),
while five used Game-Based Learning (GBL). Authors in
four publications also developed their own ALMs, and
four others applied the Project-Based Learning (PjBL)
methodology. Other identified methodologies include:

• Cooperative Learning (CL) and Pair Programming (PP),
each cited in three publications;

• Team-based Learning (TBL), Think-Pair-Share (TPS),
and Coding Dojo (Dojo) in two publications;

• Blended Learning (BL), Peer Review (PR), Project-
based Service-learning (PBSL), Method 300 (M300),
Process Oriented Guided Inquiry Learning (POGIL),
and TopdownApproach (TopD), each in one publication.

We observed that researchers applied ALMs in over
30 different subjects. Introductory Programming was the
most frequently mentioned subject associated with ALMs
such as PBSL, PJBL, PP, TBL, and TPS. Algorithms and
Data Structures were addressed using GM, GBL, FC, M300,
and DOJO methodologies. Computer Programming was
frequently linked to ALMs such as BL, FC, and mixed
methodologies. Other subjects, including Parallel Program-
ming, Object-Oriented Programming, System Programming,
Software Design, Teaching Programming, and Programming
Paradigms, were associated with methodologies like CL,
PBL, and PR.

Additionally, we found that Java is the most frequently
used programming language, mentioned in 27 publications,
while C++, Python, and C appeared in 12, 11, and 10 pub-
lications, respectively. Notably, several publications did not
specify the programming language adopted.

The results of the SMS underscored the significance
of using ALMs in programming education, demonstrating
that these methodologies engage students in ways that
foster active, participatory, and contextualized learning. The
studies revealed that ALMs encourage students to apply
their knowledge to solve real-world problems, developing
practical and critical skills essential for success in program-
ming. The diversity of subjects addressed through various
ALMs reflects the interdisciplinary nature of programming,

preparing students to tackle complex and diverse challenges.
Consequently, adopting ALMs enhances the student learning
experience and empowers instructors to deliver effective and
relevant education that aligns with market demands and the
needs of contemporary society.

VI. FIRST DESIGN CYCLE: CollabProg 1.0
This section discusses CollabProg’s conception, evaluation,
and iterative improvement process. We developed Col-
labProg to address instructors’ practical challenges when
adopting ALMs in programming education by providing
specific guidelines for implementing various ALMs. It is
a collaborative and open repository to support instructors
in integrating ALMs into their programming teaching
practices.

A. ORGANIZATION OF KNOWLEDGE ABOUT THE
METHODOLOGIES
The results obtained through the SMS enabled us to identify
and categorize the ALMs being adopted by instructors.
Additionally, they revealed significant positive evidence
regarding their effectiveness in programming education.
After identifying these ALMs, we drew inspiration from
those proposed by [64] and [65] and organized the knowledge
about each methodology into a conceptual model represented
as a class diagram. To achieve this, we first defined the
domain and scope of the knowledge to be constructed, based
on the results obtained in [29].

According to [64], the domain refers to the semantic
representation and formalization of teaching methodologies
grounded in active learning principles. The scope of this
model is to assist instructors in teaching programming
within higher education by organizing and semantically rep-
resenting knowledge, thereby facilitating the dissemination
and adoption of ALM. Based on this, we structured the
information gathered from the ALMs into a conceptual
model, represented using the class diagram shown in
Figure 2.
In the model, the Category class represents the classifica-

tion of ALM based on their approach. This class is associated
with theMethodology class, representing the ALM included
in CollabProg. As observed in the SMS, the authors combine
methodologies to enhance or complement the positive
outcomes of programming education. A self-relationship
within the Methodology class represents this possibility. The
Step class outlines the necessary steps for adopting these
methodologies. The Activity class describes the activities
to be performed while implementing methodologies in the
classroom, such as content planning, methodology explana-
tion, and role assignment, among others. The Technology
class represents the educational technologies that can be
utilized for each activity, whether virtual environments,
games, or other tools. Finally, to define the roles involved
in the methodologies, the Participant and Role classes are
associated with each other and linked to the Methodology
class.

66912 VOLUME 13, 2025

I. Calderon et al.: Building Bridges Instead of Putting Up Walls

FIGURE 2. Conceptual model of CollabProg.

B. SELECTION AND CURATION PROCESS OF ACTIVE
LEARNING METHODOLOGIES
After organizing the knowledge about ALMs, we thoroughly
curated the information used to compose CollabProg. This
involved examining scientific evidence and experimental
studies demonstrating the practical application of ALMs
in the classroom. It is important to note that the studies
analyzed were those selected in the SMS. Content cura-
tion plays a critical role, as instructors often struggle to
determine the origin of information, which can compro-
mise the assessment of its accuracy and authenticity [66].
Therefore, we aimed to prevent potential frustrations for
the end users of the repository—primarily instructors—by
ensuring that the available content is scientifically grounded,
based on empirical evidence, and relevant to its intended
purpose [66].

The curation process primarily focused on studies that
provided detailed analyses to assist instructors in effec-
tively implementing these methodologies in the classroom,
particularly in programming education. We selected ALMs
supported by solid scientific evidence, excluding those
lacking experimental validation or irrelevant theoretical
foundations. As a result, CollabProg aims to share strategies
for adopting ALMs and commits to ensuring the quality
and relevance of the available knowledge. This ensures that
the teaching community can access valuable, well-founded
resources to enhance their pedagogical practices in computer
programming education.

We established a set of Quality Assessment Criteria (QAC)
to evaluate the quality of the primary studies selected in
the SMS for developing the CollabProg repository. The
QACs are designed to analyze studies on adopting ALMs
for programming education in higher education, particularly

in Computing. These criteria quantify the relevance of each
primary study, guiding the selection of content to be included
in CollabProg.

Table 1 presents the specification of the QAC and the cor-
responding scores each ALM can receive. We established six
QACs to extract detailed information from primary studies
that support instructors in implementing the methodologies
in the classroom. These criteria guide the search for detailed
information in the studies and classify them as Strong,
Medium, orWeak. The scoring scheme for publications is as
follows: Strong Description= 2,MediumDescription= 1,
and Weak Description = 0.
Criteria that require a strong rating directly impact the

implementation and understanding of ALMs in the classroom
(QAC1 and QAC2). Studies that do not achieve the maximum
score in these criteria are excluded. For criteria that can
receive a weak rating, the absence of information in primary
studies will not hinder CollabProg users’ adoption of the
methodology. The detailed protocol used for primary studies’
Quality Assessment (QA) is available online.1 These criteria
are as follows:

• QAC1 – Description of ALMs. This criterion must
be strong. Studies should provide detailed information
about the ALM and its benefits, enabling CollabProg
users to understand better the methodology they intend
to adopt.

• QAC2 – Adoption Support. This criterion must be
strong, as studies should offer clear and practical
guidance on the steps required for CollabProg users
to implement and adopt the methodology in their

1https://figshare.com/s/794c9f7e5adfdff915d1

VOLUME 13, 2025 66913

I. Calderon et al.: Building Bridges Instead of Putting Up Walls

TABLE 1. Quality assessment criteria X publication score.

classrooms. This approach will instill confidence and
capability in the users.

• QAC3 –Metrics. This criterion can be weak, as it seeks
studies that present the metrics used to evaluate the
methodology’s effectiveness in improving teaching and
learning.

• QAC4 – Programming Language. This criterion can
be weak, as it aims to identify the programming lan-
guage used during the methodology’s implementation.

• QAC5 – Teaching Modality. This criterion can be
weak, as it identifies the teachingmodality (face-to-face,
blended learning, or distance education) in which the
methodology was implemented.

• QAC6 – Results Description. This criterion must be
strong, as it seeks solid empirical evidence on the
outcomes of implementing the ALMs. This emphasis on
empirical evidence ensures the validity and reliability of
the studies.

We evaluated each study on a scale from 0 to 2,
following the description provided in Table 2. Based on
the scores, we classified the studies and excluded those
not meeting the required criteria. We removed publications
with a score of 0, even if they fell within the research
domain. We present in Table 2 all selected ALMs included in
CollabProg.

It is important to note that the entire evaluation and curation
process was conducted by three researchers, ensuring a rigor-
ous and thorough analysis. All three researchers consistently
reviewed and evaluated each stage of the process, making
decisions collaboratively and based on solid evidence. This

TABLE 2. Selected active learning methodologies for CollabProg
compositiong.

collaborative approach enhanced the accuracy and reliability
of the study selection, ensuring that only the most relevant
and detailed publications were included in the CollabProg
repository.

C. CollabProg - VERSION 1.0
After completing the selection and curation process of ALMs,
we structured the collected information and developed
the first version of CollabProg. Figure 3 illustrates the
initial version of CollabProg, focusing on a specific active
methodology, POGIL. Part 01 of Figure 3 provides a brief
overview of CollabProg, while Part 02 offers a concise
description of the selected ALM, in this case, POGIL. Finally,
Part 03 provides a detailed explanation of the methodology,

66914 VOLUME 13, 2025

I. Calderon et al.: Building Bridges Instead of Putting Up Walls

FIGURE 3. First version of CollabProg.

including its roles, implementation steps, and a breakdown of
each step.

In CollabProg version 1.0, we organized the repos-
itory into three labeled menus, each designed to help
users navigate, select, and adopt any available ALMs.
Instructors can access a wide range of information on
ALMs within CollabProg, including adoption examples,
community-recommended tools, real-world experiences, and
feedback from other instructors. This platform provides
valuable insights into the strengths and limitations of different
ALMs. A key feature is that users do not need to register to
access CollabProg—it is open to everyone. Within the main
interface (Home), instructors can access the followingmenus:

• About: Provides an overview of the CollabProg
repository.

• Methodology: Lists the ALMs mapped from the SMS
results.

• Recommendation: This feature allows instructors to
input characteristics about their class, such as the
content to be taught, the discipline, and other relevant
details, enabling CollabProg to recommend the most
suitable ALM for the scenario. The recommendation
includes step-by-step instructions for implementing the
ALM, details on roles during its execution, activity
suggestions, and options for community-recommended
tools to support the process.

• Register methodology: This feature invites instructors
to actively contribute to the CollabProg repository by
sharing a new ALM or an adaptation of one they
have implemented or tested for teaching programming.
This collaborative space fosters community and shared
learning among instructors and researchers.

• Contact: This feature is a communication channel
between the researchers developing the platform and the

VOLUME 13, 2025 66915

I. Calderon et al.: Building Bridges Instead of Putting Up Walls

academic community. Users can contact the authors via
email to report errors and issues or provide suggestions
for improving the repository.

We implemented CollabProg across three layers (back-
end, front-end, and recommendation system), with the
participation of six students dedicated to the development
process. The back end, responsible for managing business
rules and data, provides an API for interaction with the front
end, enabling the registration and retrieval of information
necessary to populate CollabProg’s screens and methodology
recommendations. It is important to note that the recom-
mendation system has not yet been fully implemented and
remains a pending aspect of the project. When selecting tech-
nologies, tools, and programming languages, we prioritized
those that facilitate development, task organization, and the
completion of development stages, such as:

• Node.js: A JavaScript runtime environment for building
scalable and asynchronous server-side applications.

• Mongoose: An Object Data Modeling (ODM) library
for MongoDB and Node.js, facilitating integration and
management of data relationships.

• NestJS: A back-end framework for Node.js offering
efficiency and scalability, using TypeScript and a syntax
similar to Angular.

We chose a non-relational database for the database
due to the self-contained nature of the methodology and
user experience documents. We selected MongoDB for its
efficient storage capacity, schema flexibility, and ease of
implementation and maintenance. We also chose develop-
ment tools based on their ability to support the development
process and facilitate the visualization of changes made by
developers, including:

• Docker: Used throughout the development lifecycle to
enable quick, easy, and portable application develop-
ment, both in desktop and cloud environments.

• GitHub: A platform that hosts the application code,
offering Git version control.

• Visual Studio Code: A lightweight yet powerful code
editor available for Windows, macOS, and Linux,
with integrated support for JavaScript, TypeScript, and
Node.js.

• Swagger UI: Allows visualization and interaction
with API resources without logic implementation, with
automatic generation from the OpenAPI specifica-
tion, simplifying back-end development and client-side
consumption.

CollabProg’s back end was hosted on a free platform to
enable quick access to the front end, which was integrated
using Railway. We chose Railway, a cloud platform that
simplifies software deployment complexity, for its ease
of application deployment. The tools used for front-end
development were as follows:

• React: A JavaScript library used to create
component-based user interfaces, known for its ease
of use, flexibility, and scalability, selected for its

declarative nature, component-based approach, and
ability to be server-rendered using Node.

• TypeScript: A superset of JavaScript developed by
Microsoft in 2012, incorporating features and tools
lacking natively in the JavaScript language, chosen for
the ease of performing activities through ‘‘transcompila-
tion’’ of code into ‘‘pure’’ JavaScript before execution.

D. PRACTICAL USE OF CollabProg
The scenario described below illustrates how CollabProg
can assist instructors in implementing ALMs —in this
case, POGIL—in programming education, specifically for
teaching conditional structures (if, if-else, and else). The
goal is to provide a practical example demonstrating how
the CollabProg repository facilitates lesson planning and
execution.

1) OVERVIEW OF THE METHODOLOGY IN CollabProg
CollabProg provides a centralized repository that equips
instructors with tools and resources to plan lessons
effectively:

• Detailed descriptions of POGIL: The repository
provides structured templates to guide instructors in
implementing collaborative and inquiry-driven activities
tailored to programming education.

• Planning guides: The repository provides structured
templates to guide instructors in implementing collabo-
rative and inquiry-driven activities tailored to program-
ming education.

• Interactive tools: CollabProg allows instructors to
design problems divided into progressive stages, using
prompts that stimulate inquiry and promote the practical
application of concepts.

In the scenario, the instructor utilized a POGIL template
from CollabProg to design a practical lesson where students:

• Explore the fundamentals of conditional structures
through guided questions and example analysis.

• Conceptualize the material by writing small code
snippets.

• Apply their knowledge by solving a broader program-
ming problem.

2) PRACTICAL APPLICATION OF POGIL IN THE CLASSROOM
Using CollabProg’s step-by-step guide, the instructor struc-
tures the lesson as follows:

Step 1: In the classroom, the lesson is conducted in a
structured sequence designed to maximize student engage-
ment and collaboration. The instructor organizes students into

66916 VOLUME 13, 2025

I. Calderon et al.: Building Bridges Instead of Putting Up Walls

small groups, assigning specific roles to each member (e.g.,
facilitator, recorder, questioner, quality monitor) to ensure
active participation from everyone.

Step 2: The instructor introduces a practical problem,
breaking it into manageable steps. Each group collaborates to
explore concepts, answer questions, and write code snippets
guided by prompts provided in the template.

Step 3: As students work, the instructor observes group
interactions, monitors progress, and provides clarification or
redirection when necessary, fostering a collaborative learning
environment.

Step 4: At the end of the session, each group presents
its solutions, allowing the class to compare approaches
and discuss alternative strategies. CollabProg assists in
tailoring assessments to the classroom context, helping
instructors choose methods that align with students’ needs
and characteristics.

In this case, using CollabProg, instructors can access a
step-by-step guide for implementing the POGIL methodol-
ogy in the classroom. The platform also assists in determining
the most suitable type of assessment for the classroom
context, considering the student’s needs and characteristics.
CollabProg provides clear guidelines, enabling instructors
to follow structured recommendations and achieve optimal
results in their teaching practice. This approach fosters a
deeper understanding of the content, ensuring a dynamic,
interactive, and reflective learning experience for all students.

3) OVERVIEW OF APPLYING THE POGIL METHODOLOGY
WITH THE USE OF CollabProg
This example demonstrates how CollabProg serves as both a
repository of ALMs and a practical tool for:

• Streamlining Lesson Planning: Ready-to-use, cus-
tomizable templates reduce planning time for instructors.

• Enhancing Student Engagement: Collaborative activ-
ities increase interaction and participation.

• Fostering Skill Development: Students develop tech-
nical and process skills such as communication, leader-
ship, and problem-solving.

The POGIL methodology emphasizes collaboration and
inquiry. Instructors can implement this methodology effec-
tively in their classrooms with a structured approach.
CollabProg provides:

• Step-by-StepGuide: Instructions on organizing groups,
assigning roles, and structuring activities around
inquiry-based problems.

• Customization:Tools to adapt POGIL activities to meet
the specific needs of beginner or advanced learners.

• Assessment Tools: Methods for formative and summa-
tive evaluations and timely, personalized feedback to
enhance the learning experience.

This scenario highlights how CollabProg supports the
adoption of ALMs, from planning to execution, by offering
a concrete example of its application in programming
education. It emphasizes the platform’s positive impact on

lesson organization, student engagement, and the practical
implementation of methodologies such as POGIL.

E. EVALUATING CollabProg 1.0
In this sense, we conducted an exploratory study to verify
the feasibility of using and accepting CollabProg 1.0. In the
DSRMcycle, it is essential that stakeholders directly involved
in the problem’s context evaluate the artifact [60]. In this
regard, we conducted an exploratory study to assess the
feasibility and acceptance of CollabProg 1.0.

1) PLANNING
This study aims to evaluate the feasibility and acceptance of
CollabProg from the instructors’ perspective. We recruited
instructors from various locations across Brazil using a
convenience sampling approach. Due to the geographical
distance between participants, we adapted the study arti-
facts using online tools available via Google Workspace,
including:

• (i) a consent form ensuring the confidentiality of
provided data and the anonymity of instructors (Ethics
Committee No. 4,694,031)2;

• (ii) a characterization questionnaire to understand
instructors’ experience in the classroom and with the use
of ALMs3;

• (iii) documents containing the study script, CollabProg
usage instructions, and online rooms for conducting
experiments4;

• (iv) the initial version of the CollabProg web portal5;
• (v) a lesson plan template6; and
• (vi) a post-use form based on Technology Acceptance
Model (TAM) indicators.7

2) PARTICIPANTS
We recruited five instructors from higher education institu-
tions voluntarily participating in the study. Table 3 provides
an overview of the instructors’ profiles.

Only two participants had used ALMs in the classroom
(PP—Pair Programming and PBL—Problem-Based Learn-
ing), highlighting the underutilization of ALMs’ potential
in programming education. Regarding their motivation for
adopting ALMs, the instructors reported that it provided
students with greater autonomy, facilitated the learning
process—since programming requires significant reasoning
and abstraction—and empowered students to take ownership
of their learning. None of the participants had used edu-
cational tools to assist them in implementing ALMs in the
classroom.

2https://bit.ly/3zelXpx
3https://bit.ly/4eDjWDl
4https://bit.ly/3VB4VcB
5https://bit.ly/3VX4yun
6https://bit.ly/4bnH3yW
7https://bit.ly/3VXtmT4

VOLUME 13, 2025 66917

I. Calderon et al.: Building Bridges Instead of Putting Up Walls

TABLE 3. Summary of participants’ profiles in the study.

FIGURE 4. Stage of the study to evaluate CollabProg.

3) EXECUTION
We conducted the study entirely online and on an individual
basis. Before the first DSRM cycle, we performed a pilot
study to verify whether the studywould achieve its objectives.
The pilot results were satisfactory, and we concluded that no
improvements to the study script were necessary. We invited
each instructor via email, describing the study’s goals and
some guiding instructions. If they agreed to participate, one
of the researchers scheduled a date for the individual session.
Upon acceptance, we conducted the study following the
detailed steps outlined in Figure 4. We explain each stage
below.

On the scheduled date, we sent the instructor a link to a
document containing the preparation script via online chat.
This document included the online consent form and a
characterization form with questions about the instructor’s
experience adopting ALMs for programming education.
Participation in the CollabProg evaluation was voluntary,
and all participants signed the consent form, agreeing to
participate in the study and allowing their results to be
used for analysis. After completing the questionnaires, the
instructors received instructions and explanations about the
study. The script required the instructors to plan a class using
an ALM to teach the topic ‘‘Variables and Constants’’ from a
typical Programming I course.

For this task, we provided the instructors with (a) a lesson
plan template to complete and (b) the online version of
CollabProg, which they were instructed to use as a support
tool for creating the lesson plan by following the guidelines
and recommendations available in the repository. At the end
of the task, the instructors submitted their completed lesson
plans. The focus was not on evaluating the correctness of
the plan but on determining whether CollabProg assisted the
instructor in planning the methodology across all stages of

the class. We emphasize that the instructors should choose
the best methodologies that are aligned with their theoretical
and practical knowledge, skills, and teaching context. After
completing the planning, we invited the instructors to answer
an evaluation questionnaire in which they shared their
experience using CollabProg.

4) DATA ANALYSIS
The evaluation questionnaire for CollabProg was designed
based on the indicators of the Technology Acceptance
Model (TAM) [67]. TAM is a framework used to gather
information about participants’ perceptions regarding the
key factors influencing the acceptance or rejection of a
particular technology. The indicators defined were [67]:
(i) Perceived Usefulness, which measures the extent to
which instructors believe CollabProg can enhance their
performance in adopting ALMs; (ii) Perceived Ease of Use,
which measures the extent to which instructors believe using
CollabProg would be effortless; and (iii) Perceived Intention
to Use measures the extent to which instructors believe they
will use CollabProg in the future. We focused on these
indicators because they strongly correlate with instructors’
acceptance of CollabProg.

Using CollabProg, instructors provided their perceptions
based on their level of agreement with the statements
established in the TAM. The instructors carefully evaluated
each statement using a five-point Likert scale, ranging
from Strongly Disagree to Strongly Agree, ensuring a
systematic and comprehensive approach to the research.
Table 4 presents the statements answered by the instructors
aligned with the TAM indicators. Additionally, we included
two open-ended questions to gain deeper insights into the
instructors’ responses. We conducted a qualitative analysis
using coding techniques based on the responses received.

66918 VOLUME 13, 2025

I. Calderon et al.: Building Bridges Instead of Putting Up Walls

TABLE 4. Questions to be answered by the instructors.

5) ANALYSIS OF INSTRUCTORS’ LESSON PLANS
In the lesson plans evaluated by instructors who used
CollabProg, the importance of organized lesson planning for
the success of ALMs and effective teaching was evident. The
platform provides a clear structure that enables instructors
to systematically organize their lessons, following a logical
sequence of steps, simplifying the creation of well-structured
plans.Most instructors participating in the evaluation adopted
the TPS methodology, followed by POGIL, which is high-
lighted by the platform as effective for fostering collaborative
and student-centered learning. When properly implemented,
these lesson plans demonstrate that ALMs can positively
impact the teaching process.

Regarding content selection, instructors were able to
identify relevant and appropriate topics tailored to their
students’ learning levels, aligning lesson objectives with the
specific content. This clarity in defining content and purpose
reflects the instructors’ thoughtful approach to effective
teaching. By leveraging CollabProg, instructors strategically
selected relevant and suitable content for their students’ stage
of learning. As a result, the planning process became more
focused and directed toward the most essential elements,
leading to greater clarity and objectivity.

When defining lesson objectives, instructors established
clear goals and ensured alignment with the selected ALMs.
This deliberate reflection on objectives was key in delivering
lessons more effectively. By employing methodologies such
as TPS or POGIL, instructors created active learning
environments that fostered greater student engagement
and participation. As a result, the lessons moved beyond
mere knowledge transmission, emphasizing learning through
discussions, problem-solving, and collaborative work—core
principles of the adopted methodologies.

Additionally, the lesson plans included a detailed analysis
of the required resources, demonstrating that instructors were
well-prepared to address the challenges of teaching. Using
CollabProg to organize these resources provided a broader
and more practical perspective on lesson execution. The
instructors followed the step-by-step methodology offered by

the platform, enabling them to structure activities effectively
and allocate appropriate time for each phase, from group
discussions to hands-on activities. Assessment strategies
were also carefully planned, allowing instructors to measure
student learning throughout the lesson and ensure continuous
and effective monitoring of student progress. In this way,
CollabProg supported the organization of lesson planning
and encouraged instructors to reflect deeply on the best
approaches to teaching and assessment, ultimately enhancing
educational outcomes.

6) QUANTITATIVE RESULTS OF THE TAM QUESTIONNAIRE
Figure 5 presents the overall results of the participants’
perceptions of CollabProg, based on the TAM statements
outlined in Table 4. These results provide insights into the
instructors’ experiences regarding the platform’s usefulness,
ease of use, and intention to use the repository.

Regarding the instructors’ perceptions of CollabProg’s
Perceived Usefulness, we observed that in all statements
(PU1, PU2, PU3, PU4), all instructors strongly agreed that
CollabProg helps plan programming classes using ALMs.
Furthermore, CollabProg is a tool capable of enhancing or
supporting instructors’ productivity in their teaching practice.
CollabProg is a support tool that enables instructors to use
their experiences to select an ALM to implement in their
classes. Finally, the results reflect the instructors’ acceptance
of CollabProg as a valuable resource for adopting ALMs in
programming education.

The three statements (PEU1, PEU2, and PEU3) regarding
the perceived ease of using CollabProg received strong over-
all agreement. Instructors said reporting their experiences of
adopting ALMs using CollabProg is easy. They also noted
that using the platform required minimal mental effort and
was easy to understand and use, particularly for meeting
the daily needs of programming teaching practice. Overall,
all instructors found CollabProg straightforward, easy to
understand, and simple. The only exception was in statement
PEU2, where D2 partially agreed regarding the ease of use of
CollabProg.

VOLUME 13, 2025 66919

I. Calderon et al.: Building Bridges Instead of Putting Up Walls

FIGURE 5. General results of perceptions about CollabProg.

Finally, the Perceived Future Use Intention of CollabProg,
all instructors partially agreed with the three statements
(PIU1, PIU2, PIU3). The intention to use CollabProg is
crucial for assessing the community’s interest in the tool
and its acceptance as a support resource for programming
education. Instructors evaluated the CollabProg repository
positively and expressed their intention to use it in the future.

7) PARTICIPANTS’ PERCEPTIONS ON THE USE OF
CollabProg
To assess the instructors’ experience using CollabProg,
we analyzed the following statement: ‘‘Using CollabProg
contributed to adopting active methodologies in my
programming teaching classes.’’ Overall, the perception
was positive, with several relevant aspects regarding the
experience of using CollabProg. Regarding the positive
points, we identified four subcategories that address the
benefits of the repository.

In the first subcategory, detailed explanation of the steps,
I1 commented: I had no prior knowledge about the method-
ologies, and CollabProg allowed me to apply them easily.’’
I3 stated, CollabProg greatly facilitated the understanding
of the ALM available in the repository.’’ I3 also mentioned
that on previous occasions, they had considered using POGIL
in their classes, but its documentation was extensive. They
added that ‘‘the way it was presented in CollabProg wasmuch
more intuitive for understanding how this ALM works and

planning the classes.’’ In the second subcategory, increased
productivity in implementing ALMs, I2 highlighted that
‘‘without CollabProg, I would rarely seek out the details of
an ALM to teach programming.’’

Regarding the third subcategory, usefulness of practical
examples, I3 expressed that ‘‘the presented examples were
very helpful in understanding how to adopt the method-
ology.’’ The instructor added that they often read about
methodologies, but the content remains very abstract. They
noted that ‘‘having the steps and examples makes it much
easier to understand how to apply the methodology.’’ Finally,
regarding the fourth subcategory, encouragement of collab-
orative work and active student participation, D4 stated
that ‘‘collaborative work enriches learning,’’ and I5 shared
that ‘‘the main advantage, in my opinion, is encouraging
students to participate more actively in class, leading to
better learning outcomes.’’

The instructors’ perceptions confirmed their interest in
using CollabProg and contributing to its evolution. Regarding
the platform’s usefulness, all instructors agreed that the
CollabProg repository could significantly contribute to class
planning by adopting ALMs. Additionally, the majority
found the content presented in the repository highly helpful.

The instructors also identified some negative points.
The first is related to difficulty in understanding the
steps and concepts. I1 commented on having difficulty in
‘‘understanding the active methodologies (some steps I had

66920 VOLUME 13, 2025

I. Calderon et al.: Building Bridges Instead of Putting Up Walls

to read several times).’’ I2 added, ‘‘Although it is very well
organized, I still had difficulties setting up the step-by-step.’’
The second negative point is related to challenges in setting
up the step-by-step and confusion in specific points. In this
regard, I3 emphasized that ‘‘some points were confusing
during the reading of the active methodology, especially
POGIL, which I adopted.’’ I5 stated that their main difficulty
was ‘‘building a lesson plan that accurately reflected the
active methodology in question.’’

In conclusion, the implementation of ALMs revealed
several challenges identified by the instructors. A significant
issue was the difficulty in understanding the steps and
concepts, with some instructors struggling to fully grasp
the methodologies and often needing to reread the steps
multiple times. Additionally, there were challenges in setting
up the step-by-step process and confusion around specific
points. This was particularly evident with methodologies
like POGIL, where the complexity and lack of clarity made
it difficult for instructors to create lesson plans accurately
reflecting the intended active learning strategies. These
challenges underscore the need for improved instructional
materials and training to better support educators in effec-
tively adopting and implementing active methodologies.

The results of the first design cycle provided valuable
insights into the repository’s acceptance and feasibility.
Focused on supporting the adoption of ALMs in program-
ming education, CollabProg was evaluated by instructors
from various educational institutions across Brazil. Based
on these findings, we made efforts to improve CollabProg,
particularly addressing the negative aspects and needs iden-
tified by the instructors. Consequently, we conducted a new
design cycle and developed the second version of CollabProg,
aiming to meet its users’ demands and expectations better.

VII. SECOND DESIGN CYCLE: CollabProg 2.0
CollabProg was evaluated by instructors from various higher
education institutions who voluntarily participated. Based
on the study results, we analyzed CollabProg from the per-
spective of Design Criteria, which outline user expectations
for the artifact. We observed that Requirement DC1—the
artifact should provide a variety of ALMs, including detailed
descriptions, application examples, and usage contexts—
was not fully met during the study. This limitation was
identified through instructor feedback, which highlighted the
need for a more significant number of active methodologies
available in the system. To address this issue, we planned a
more comprehensive curation process, and the inclusion of
methodologies used in combination with various approaches,
as well as methodologies developed and implemented by the
authors of primary studies, as detailed in the results of the
SMS, available in [29].
Regarding DC2, which states that the artifact should

provide clear and structured guidelines for implementing
each ALM, covering aspects such as planning, execution, and
evaluation, most evaluating instructors found the information
available on the portal adequate and valuable. Regarding

DC3, which requires the artifact to provide curated ALMs (a
process of carefully selecting and organizing ALM content),
including critical analyses, evidence-based recommenda-
tions, and feedback from instructors who have implemented
these methodologies, this process ensured that the method-
ologies were scientifically grounded and relevant for practical
application in programming education. The evaluation of
CollabProg from the perspective of Behavior Criteria, which
refer to the artifact’s contribution to programming teaching
practices, revealed several areas for improvement.

Instructors suggested improvements to the repository
regarding BC1, which requires the artifact to support users
in understanding active methodologies. They emphasized the
need to make explanations of the steps and concepts of the
methodologies clearer and more accessible, facilitating user
comprehension. Implementing detailed tutorials and practical
examples could help better meet this requirement. As for
BC2, which aims to motivate instructors to adopt ALM,
CollabProg was well-received. Instructor D3 mentioned that
the intuitive presentation of the methodologies in CollabProg
made it easier to understand their operation and plan
lessons than other documentation sources. This positive
feedback indicates that CollabProg is effectively promoting
the adoption of ALMs.

Regarding BC3, which requires the presentation of clear
and detailed information about ALMs, we identified the
need for improvements in documentation and the examples
provided. Participants emphasized the importance of more
detailed explanations regarding the assignment of roles in
ALMs, aiming to reduce confusion and facilitate imple-
mentation. Enhancing the documentation with specific case
studies and step-by-step descriptions could help better meet
this requirement. Finally, regarding BC4, which requires
that guidelines be detailed to facilitate their implementation,
CollabProg partially met this requirement. Assessments by
instructors D1 and D3 indicated that, while CollabProg
facilitated the application of methodologies and improved
understanding of the available ALMs, there is still room to
make the guidelines more detailed and practical. Incorpo-
rating checklists, flowcharts, and additional visual resources
could enhance the effectiveness of the guidelines.

Based on the evaluation of CollabProg and the instructors’
suggestions, the repository represents a valuable tool for
supporting programming education with ALMs. CollabProg
was praised for its ability to motivate the adoption of
ALMs and facilitate understanding of their implementation.
Opportunities for improvement were identified, particularly
in enhancing the clarity and simplicity of explanations,
providing more detailed documentation of methodologies,
and clarifying the roles assigned in each. Additionally, the
positive feedback on the ease of implementing ALMs demon-
strates CollabProg’s potential as a valuable and effective tool
for instructors seeking to adopt active approaches to teaching
programming.

Figure 6 shows the homepage of CollabProg version 2.0
(in Portuguese). The labeled menus and their respective icons

VOLUME 13, 2025 66921

I. Calderon et al.: Building Bridges Instead of Putting Up Walls

are displayed on the left side (Part 1 of Figure 6). This design
aims to provide a cleaner, more intuitive, and aesthetically
pleasing interface, enhancing the user experience. TheHome
menu directs users to the CollabProg homepage. Part 2 of
Figure 6 presents information about the ALMs and details
about CollabProg itself.

Figure 7 shows the Register Methodology menu, which
directs users to the methodology registration page. On this
page, instructors are invited to provide details about theALM,
including its description, educational objectives, implemen-
tation steps, suggested activities, and necessary resources.
Each field is accompanied by a detailed explanation of
how to complete it, ensuring accurate registration and
providing helpful information for the community using the
methodology.

For the registration of methodology details, users are
guided through five pages, each containing specific fields
for collecting the required information. Figure 7 presents this
functionality’s first and second pages. This feature enriches
the tool by expanding the diversity of ALMs available to other
instructors. To register a methodology, users must complete
mandatory fields, such as the methodology description,
taught disciplines, related content or categories, program-
ming languages used, necessary materials, methodology
principles, methodology planning, and steps for adopting the
methodology. This information is essential for the community
to use and follow the tried-and-tested step-by-step process
effectively.

Figure 8 shows the Methodologies menu. On this
page, CollabProg provides detailed information about each
methodology, including the step-by-step implementation
process, the roles of students and instructors, the necessary
materials and tools, the average time required for lesson
planning, the steps for adopting the methodology, and
guidance on assessing learning, among other details. These
guidelines help instructors understand how to implement the
ALM in their classrooms effectively.

After accessing the ‘‘Methodologies’’ menu, instructors
are presented with a list of available methodologies for
implementation. Upon selecting a methodology of interest,
they are directed to the initial screen for the chosen
methodology. On this screen, depicted in Figure 9, general
information is displayed, such as the time required for
applying the methodology and the recommended class size.
Additionally, specific objectives of the methodology are
provided, helping instructors make informed decisions based
on their current context.

Additionally, in the Methodologies menu, instructors
can access the View Feedback button (Figure 10). This
feature allows instructors to see evaluations from other
instructors about specific methodologies. Evaluations are
shared through star ratings and comments, providing insights
into the implementation experience of the methodology
in different contexts. We believe the ‘‘View Feedback’’
feature is essential for the academic community. It pro-
motes transparency and trust by allowing users to access

evaluations and testimonials from other instructors about
the implemented methodologies. This feature facilitates
sharing experiences, offering valuable lessons learned and
best practices that can benefit new users. By enabling
more informed choices and inspiring contextual adaptations,
the ‘‘View Feedback’’ feature strengthens collaboration and
community engagement, fostering an environment of mutual
support and continuous learning.

We will systematically collect and analyze user feedback
to ensure the CollabProg platform remains relevant and
practical. This strategy will encourage instructors to share
their experiences after applying methodologies, detailing the
results, challenges encountered, and any adaptations made.
Aggregated feedback will be analyzed to identify trends,
strengths, and areas for improvement, providing valuable
insights to guide the platform’s evolution. This includes
updating methodology models, improving usability, and
addressing specific user needs.

The systematic approach adopted by CollabProg to collect
and analyze user feedback is structured into stages that
ensure the acquisition of relevant data, efficient analysis,
and practical application in improving the platform. This
approach includes the following key elements:

• Structured Feedback Collection: Users are encour-
aged to provide feedback after implementing a method-
ology through tools integrated into the platform. These
tools include simple evaluation forms, star ratings, and
fields for detailed comments.

• Feedback Analysis and Categorization: All feedback
received is categorized based on factors such as the
application context (e.g., course type, class size),
methodology strengths, challenges encountered, and
suggestions for improvement.

• Practical Application and Updates: Insights derived
from feedback are directly incorporated into CollabProg
updates. This may include improving methodology
descriptions, developing new features, or refining the
platform’s usability.

By adopting this systematic approach, CollabProg ensures
that users’ voices are central to the platform’s continuous
development. This fosters an environment that addresses
instructors’ real needs and enhances the effectiveness of
programming education.

The Recommendations menu is currently in the study
and development phase. This feature aims to implement a
fundamental resource for personalizing the user experience.
The idea is to use intelligent algorithms to analyze user
preferences and context, such as taught disciplines, level
of education, and educational objectives, to recommend
ALMs that best suit their profile. By providing personalized
recommendations, this feature will help instructors explore
new teaching approaches aligned with their specific needs
and goals. Additionally, it will promote the discovery
of innovative and practical methodologies, increasing the
diversity and quality of teaching practices adopted by the

66922 VOLUME 13, 2025

I. Calderon et al.: Building Bridges Instead of Putting Up Walls

FIGURE 6. CollabProg 2.0 Homepage.

academic community. The careful implementation of the
‘‘Recommendations’’ feature, therefore, not only enhances
the tool’s usability but also significantly enriches the learning
and teaching experience in programming and computer
science.

VIII. RIGOR CYCLE
The rigor of this research in developing CollabProg has been
considered an essential aspect. Research rigor is associated
with credibility, reliability, precision, and integrity, demand-
ing theoretical and methodological rigor [60]. Rigor is
ensured when researchers follow a previously established and
validated research method, preferably one widely recognized
and accepted by the academic community. The rigor of this
research guided us to utilize solid theoretical foundations and
existing technical knowledge.

Thus, we employed research methods to document the
steps taken during the DSRM cycles, ensuring the necessary
rigor in this research. Notable among these methods are
the SMS presented in Section V and the experimental
study using the TAM, as detailed in Section VI-E. The
TAM model is frequently used in technology acceptance
and adoption research due to its theoretical robustness and
broad applicability across various contexts. An essential stage
in the rigor cycle is for researchers to report the main
contributions of their research. The significant contributions
of this research so far include:

• Identification, classification, and analysis of existing
evidence: We cataloged and analyzed evidence on the

types of ALMs applied in programming education in
Computer Science.

• Understanding and analysis of instructors’ percep-
tions: We investigated and comprehended instructors’
perceptions and difficulties in adopting ALMs, specif-
ically in programming disciplines.

• Application of Design Science Research: We have
uniquely applied the DSRM to develop, evaluate, and
evolve a collaborative and open repository, CollabProg.
This innovative approach can potentially inspire other
researchers and instructors in the field.

• Conducting an exploratory study: We conducted
an exploratory study that has direct implications for
using and accepting CollabProg from the instructors’
perspective, providing practical insights for instructors.

• Practical evidence of support for instructors: We
evidenced that CollabProg assisted instructors from five
different educational institutions in adopting ALMs in
programming education.

• Practical evidence of ALMs’ effectiveness: Our
research not only identified the efficacy of the ALMs
in the literature but also demonstrated their practical
application in the classroom. This implementation led
to a tangible improvement in the teaching process in
programming disciplines.

These contributions reflect the breadth and depth of
the work undertaken, providing a solid foundation for the
continuous evolution of CollabProg and improving pedagog-
ical practices in programming education within Computer
Science.

VOLUME 13, 2025 66923

I. Calderon et al.: Building Bridges Instead of Putting Up Walls

FIGURE 7. Methodology registration page.

IX. LIMITATIONS
While CollabProg offers significant advantages in supporting
instructors with ALMs for programming education, its
implementation has challenges or limitations. Despite the
progress made with CollabProg, several limitations still need
to be addressed so that the repository can reach its full
potential as a robust tool for selecting ALMs. Currently,
the automated recommendation system for choosing ALMs
is still under development. We are exploring algorithms
and methods that can suggest the most appropriate peda-

gogical approaches based on the specific context provided
by instructors, considering factors such as student expe-
rience levels, learning objectives, and available resources.
The absence of this functionality limits CollabProg’s
ability to offer personalized and automated recommenda-
tions, requiring more significant manual intervention from
instructors.

Another significant challenge lies in the initial stage of
community collaboration features. Although the repository
was designed to allow instructors to share experiences and

66924 VOLUME 13, 2025

I. Calderon et al.: Building Bridges Instead of Putting Up Walls

FIGURE 8. Active learning methodologies page.

insights on using different ALMs in programming education,
active community participation remains limited. We are
implementing enhancements to facilitate user interaction,
enabling them to contribute new practices, comment on
existing methodologies, and benefit from the experiences of
other educators. These improvements aim to foster a culture
of knowledge sharing and strengthen CollabProg’s utility as
a genuinely collaborative repository.

Finally, the curation process for the methodologies avail-
able in the repository remains partially dependent on the
project’s internal team. While this initial approach has
enabled a thorough analysis of the included methodologies,
it also introduces potential biases and limits the scope of
curation. We are exploring strategies to allow contributions
from other educators and automation solutions to improve the
evaluation of ALMs and ensure greater diversity and objectiv-
ity in the selection process. Overcoming these challenges will
be essential for expanding CollabProg’s impact and providing
more comprehensive and reliable support to the educational
community. However, these limitations do not hinder the
current use of the repository; they represent challenges that
will be addressed over time.

X. RESEARCH IMPLICATIONS
The research presents several implications that could pos-
itively impact teaching practices, the work of researchers
in computer science education, and students’ academic
development.

With CollabProg developed, instructors will have access
to a portal offering diversified educational guidance related
to adopting ALMs. As a collaborative repository, CollabProg
will provide opportunities for instructors to access, for
example, recommendations for tools that can be used with
ALMadoption, guidance on assessing students during classes
and preparing complementary teaching materials. Instructors
may also choose to develop complementary materials for the
resources in the repository, providing additional guidance and
contextualizing learning within the classroom curriculum.

Instructors can benefit from collaborating with colleagues
to share effective teaching practices and strategies for
using the repository. This may include exchanging ideas
on integrating repository resources into different disciplines
or educational contexts related to programming education.
Finally, using the collaborative repository will require

VOLUME 13, 2025 66925

I. Calderon et al.: Building Bridges Instead of Putting Up Walls

FIGURE 9. Methodology details.

66926 VOLUME 13, 2025

I. Calderon et al.: Building Bridges Instead of Putting Up Walls

FIGURE 10. View feedback button feedback.

instructors to adapt their teaching practices and commit
to continuous professional development, ensuring they can
maximize the available resources and effectively support their
students’ learning journeys.

Given this scenario of new possibilities for teaching
practices using CollabProg, the implications for students are
centered on active and practical learning. Instructors will
have the support to promote hands-on programming activities
and projects where students can apply theoretical concepts
learned in the classroom. This approach will reinforce
learning and enable students to develop practical problem-
solving skills. Another critical aspect is fostering collab-
oration among students, whether through group projects,
pair programming activities, or classroom discussions, which
can encourage knowledge sharing, collaborative problem-
solving, and the development of essential social skills.
Additionally, with the support of CollabProg, instructors
can plan and incorporate regular formative assessments,
such as quick quizzes, code reviews, and group discussions,
to identify areas of difficulty and adjust instruction as needed,
ensuring a solid understanding of concepts.

Finally, researchers may identify research gaps in com-
puter science education, particularly in integrating new
technologies and methodologies, such as ALMs, and their
applications in educational contexts. This presents oppor-
tunities to develop new teaching and assessment method-
ologies incorporating ALM concepts, promoting a more
personalized and adaptive approach to computing education.
Additionally, conducting investigations into best practices
for ALM adoption in computer science education—including

implementation strategies, challenges faced, and lessons
learned—can inform pedagogical practices and educational
policies for computing education.

XI. FINAL CONSIDERATIONS AND FUTURE WORK
The adoption of ALMs is becoming increasingly prominent
in computer science courses. However, instructors face
various barriers that hinder the adoption of these method-
ologies. Inspired by the DSRM, we explored ways to assist
instructors in adoptingALMs in programming education. The
application of DSRM enabled the definition of the research
problem and the development, evaluation, and enhancement
of an artifact.

To deepen our understanding of the research problem,
we initially conducted an SMS to identify the ALMs
used by instructors in programming education. This study
revealed 37 different types of ALMs adopted in programming
education. Additionally, we identified 17 publications that
address the combination of multiple ALMs and four others
that present proposals for new methodologies. Instructors
developed or proposed these latter approaches, demonstrating
the diverse strategies employed in their teaching practices
to promote active learning during programming classes. The
detailed results of this study can be found in [29].

After completing the SMS, the curation process of
the ALMs integrated into CollabProg began. This process
prioritized sharing only content and tool support options
available in the literature for instructors’ use. The goal was
to avoid frustrations for repository users by ensuring that
only knowledge and content supported by scientific evidence,
experimentation, or proven relevance would be presented.
The selection of ALMs was meticulous, prioritizing method-
ologies grounded in solid scientific evidence and excluding
those lacking experimentation or whose theoretical basis was
deemed irrelevant to the community within the context of this
research.

Based on the SMS results and the curation process of
primary studies in the Design Cycle of the DSRM, we devel-
oped, evaluated, and enhanced the CollabProg artifact.
CollabProg is a collaborative and open repository designed
to support instructors in adopting the most appropriate
ALMs for their teaching context in programming education.
We conducted an experimental study with five higher
education institutions in Brazil to assess the feasibility and
acceptance of CollabProg from the instructors’ perspectives.
This highlights the importance of seeking strategies to
support instructors in programming education and tomotivate
students in programming learning, as these are critical factors
for successful instruction. This factor is particularly relevant
in collaborative learning contexts, where social interaction
plays a significant role [68] in the adoption of ALMs.

In future work, we intend to develop and refine a model of
challenges related to adopting ALMs in programming educa-
tion to evaluate and validate CollabProg. This comprehensive
model will be built based on the results of the experimental
study. The goal is to design a model from the perspectives

VOLUME 13, 2025 66927

I. Calderon et al.: Building Bridges Instead of Putting Up Walls

and experiences of programming course instructors. A survey
will be conducted with instructors to evaluate the model,
and their feedback and evaluations will guide its evolution.
Additionally, we will validate the model through instructors’
applications. This approach will ensure that CollabProg is
evaluated based on diverse experiences, needs, and contexts
of teaching programming.

In addition to refining the SMS ofALMs based on the latest
literature, we will continuously update the methodologies
available on CollabProg to ensure the platform remains
aligned with evolving pedagogical trends and the practical
needs of instructors. This ongoing effort is essential for
integrating innovative and effective practices into program-
ming education. We also aim to enhance engagement with
the teaching community, particularly among instructors who
continue to rely on traditional teaching methods. By offering
tutorials and awareness resources, we seek to highlight the
benefits of ALMs and make their adoption more accessible
and appealing to educators. Lastly, we plan to translate the
platform into multiple languages, enabling us to reach a
global audience of educators. The internationalization of
CollabProg will not only broaden its impact but also foster
a worldwide network of instructors who can share best
practices and contribute to the continuous innovation of
programming education across diverse educational contexts.

In conclusion, we expect CollabProg to serve as a
technological support platform that consolidates strategies for
adopting various ALMs in programming education within a
single internet portal within a single internet portal. It will
provide examples, activity suggestions, support options, tools
adopted by the community, experiences of methodology
adoption in different scenarios, results achieved by other
instructors, and insights into the positive and negative aspects
of the adopted ALMs.

ACKNOWLEDGMENT
The authors would like to acknowledge the use of Grammarly
and ChatGPT 4.o for improving the spelling, grammar,
vocabulary, and style of the text. All suggestions were
carefully examined, tested, and often corrected by them,
whereby they take full responsibility for the form and content
of the article.

REFERENCES
[1] S. C. dos Santos, P. B. S. Reis, J. F. S. Reis, and F. Tavares, ‘‘Two decades

of PBL in teaching computing: A systematic mapping study,’’ IEEE Trans.
Educ., vol. 64, no. 3, pp. 233–244, Aug. 2021.

[2] J. Eickholt, ‘‘Barriers to active learning for computer science faculty,’’
2018, arXiv:1808.02426.

[3] Y.-C. Liao and M. Ringler, ‘‘Backward design: Integrating active learning
into undergraduate computer science courses,’’ Cogent Educ., vol. 10,
no. 1, Dec. 2023, Art. no. 2204055.

[4] O. E. Holo, E. N. Kveim, M. S. Lysne, L. H. Taraldsen, and F. O. Haara,
‘‘A review of research on teaching of computer programming in primary
school mathematics:Moving towards sustainable classroom action,’’Educ.
Inquiry, vol. 14, no. 4, pp. 513–528, Oct. 2023.

[5] I. Eteng, S. Akpotuzor, S. O. Akinola, and I. Agbonlahor, ‘‘A review on
effective approach to teaching computer programming to undergraduates
in developing countries,’’ Sci. Afr., vol. 16, Jul. 2022, Art. no. e01240.

[6] C. W. Okonkwo and A. Ade-Ibijola, ‘‘Synthesis of nested loop exercises
for practice in introductory programming,’’ Egyptian Informat. J., vol. 24,
no. 2, pp. 191–203, Jul. 2023.

[7] C. L Corritore and B. Love, ‘‘Redesigning an introductory programming
course to facilitate effective student learning: A case study,’’ J. Inf. Technol.
Educ., Innov. Pract., vol. 19, pp. 91–135, Aug. 2020.

[8] R. Caceffo, G. Gama, and R. Azevedo, ‘‘Exploring active learning
approaches to computer science classes,’’ in Proc. 49th ACM Tech. Symp.
Comput. Sci. Educ., Feb. 2018, pp. 922–927.

[9] S. R. Sobral, ‘‘Strategies on teaching introducing to programming in higher
education,’’ in Advances in Intelligent Systems and Computing, vol. 3.
Cham, Switzerland: Springer, 2021, pp. 133–150.

[10] F. W. Da Silva Garcia, E. Da Costa Carvalho, and S. R. B. Oliveira, ‘‘Use
of active methodologies for the development of a teaching plan for the
algorithms subject,’’ in Proc. IEEE Frontiers Educ. Conf. (FIE), Oct. 2021,
pp. 1–9.

[11] P. Remit and S. R. Sobral, ‘‘Project based learning with peer assessment in
an introductory programming course,’’ Int. J. Inf. Educ. Technol., vol. 11,
no. 7, pp. 337–341, 2021.

[12] V. V. Lima, ‘‘Constructivist spiral: An active learning methodology,’’
Interface (Botucatu).[Internet]. vol. 21, no. 61, pp. 421–434, Jul. 2022.

[13] S. Arik and M. Yilmaz, ‘‘The effect of constructivist learning approach
and active learning on environmental education: A meta-analysis study,’’
Int. Electron. J. Environ. Educ., vol. 10, no. 1, pp. 44–84, 2020.

[14] I. Sasson, I. Yehuda, S. Miedijensky, and N. Malkinson, ‘‘Designing
new learning environments: An innovative pedagogical perspective,’’
Curriculum J., vol. 33, no. 1, pp. 61–81, Mar. 2022.

[15] J. F. Travers, S. N. Elliott, and T. R. Kratochwill, Educational Psychol-
ogy: Effective Teaching, Effective Learning. Brown & Benchmark/Wm.
C. Brown Publ, 1993.

[16] J. H. Berssanette and A. C. de Francisco, ‘‘Active learning in the context
of the teaching/learning of computer programming: A systematic review,’’
J. Inf. Technol. Educ., Res., vol. 20, pp. 201–220, Jan. 2021.

[17] K. A. Nguyen, M. Borrego, C. J. Finelli, M. DeMonbrun, C. Crockett,
S. Tharayil, P. Shekhar, C.Waters, and R. Rosenberg, ‘‘Instructor strategies
to aid implementation of active learning: A systematic literature review,’’
Int. J. STEM Educ., vol. 8, no. 1, pp. 1–18, Dec. 2021.

[18] V. Sharma, K. K. Bhagat, H.-H. Huang, and N.-S. Chen, ‘‘The design and
evaluation of an AR-based serious game to teach programming,’’ Comput.
Graph., vol. 103, pp. 1–18, Apr. 2022.

[19] L. Freire, J. Coutinho, V. Lima, and N. Lima, ‘‘Uma proposta de encontros
de tutoria baseada emmetodologias ativas para disciplinas de Programação
Introdutória,’’ in Proc. Anais dos Workshops do VIII Congresso Brasileiro
de Informática na Educação (CBIE), Nov. 2019, p. 298.

[20] N. M. Bigolin, S. R. Silveira, C. Bertolini, I. C. D. Almeida, M. Geller,
F. J. Parreira, G. B. D. Cunha, and R. T. Macedo, ‘‘Metodologias ativas de
aprendizagem: Um relato de experiência nas disciplinas de programação
e estrutura de dados,’’ Res., Soc. Develop., vol. 9, no. 1, Jan. 2020,
Art. no. e74911648.

[21] A. Luxton-Reilly, Simon, I. Albluwi, B. A. Becker, M. Giannakos,
A. N. Kumar, L. Ott, J. Paterson, M. J. Scott, J. Sheard, and C. Szabo,
‘‘Introductory programming: A systematic literature review,’’ in Proc.
Companion 23rd Annu. ACM Conf. Innov. Technol. Comput. Sci. Educ.,
Jul. 2018, pp. 55–106.

[22] A. G. S. Raj, J. Patel, and R. Halverson, ‘‘Is more active always better for
teaching introductory programming?’’ in Proc. Int. Conf. Learn. Teaching
Comput. Eng. (LaTICE), Apr. 2018, pp. 103–109.

[23] S. Acharya and M. N. Gayana, ‘‘Enhanced learning and improved
productivity of students’ using project based learning approaches for
programming courses,’’ J. Eng. Educ. Transformations, vol. 34, p. 524,
Jan. 2021.

[24] J. Penney, ‘‘Anticipating user needs: Insights from design fiction
on conversational agents for computational thinking,’’ in Proc. Int.
Workshop Chatbot Res. Design. Cham, Switzerland: Springer, 2023,
pp. 204–219.

[25] T. Beaubouef and J. Mason, ‘‘Why the high attrition rate for computer
science students: Some thoughts and observations,’’ ACM SIGCSE Bull.,
vol. 37, no. 2, pp. 103–106, Jun. 2005.

[26] A. Luxton-Reilly, ‘‘Learning to program is easy,’’ in Proc. ACM Conf.
Innov. Technol. Comput. Sci. Educ., Jul. 2016, pp. 284–289.

[27] P. Denny, A. Luxton-Reilly, E. Tempero, and J. Hendrickx, ‘‘Understand-
ing the syntax barrier for novices,’’ in Proc. 16th Annu. joint Conf. Innov.
Technol. Comput. Sci. Educ., Jun. 2011, pp. 208–212.

[28] P. Parsons, ‘‘Preparing computer science graduates for the 21st Century,’’
Teach. Innov. Projects, vol. 1, no. 1, pp. 1–6, 2011.

66928 VOLUME 13, 2025

I. Calderon et al.: Building Bridges Instead of Putting Up Walls

[29] I. Calderon, W. Silva, and E. Feitosa, ‘‘Active learning methodologies for
teaching programming in undergraduate courses: A systematic mapping
study,’’ Informat. Educ., vol. 23, pp. 279–322, Sep. 2023.

[30] M. J. O’Grady, ‘‘Practical problem-based learning in computing educa-
tion,’’ ACM Trans. Comput. Educ., vol. 12, no. 3, pp. 1–16, Jul. 2012.

[31] A. Imbulpitiya, N. Kodagoda, A. Gamage, and K. Suriyawansa, ‘‘Using
active learning integrated with pedagogical aspects to enhance student’s
learning experience in programming and related concepts,’’ in Proc. Int.
Conf. Interact. Collaborative Learning. Cham, Switzerland: Springer,
2020, pp. 218–228.

[32] L. Bacich and J. Moran, Metodologias Ativas Para Uma Educação
Inovadora: Uma Abordagem Teórico-Prática. NewYork, NY, USA: Penso
Editora, 2017.

[33] D. Witt, K. Teixeira, D. S. Avanilde, and L. Mulazani, ‘‘Resolução de
problemas: Abordagens aplicadas no ensino de computação,’’ Anais do
Comput. Beach, vol. 9, pp. 731–740, May 2018.

[34] D. Pundak and S. Rozner, ‘‘Empowering engineering college staff to
adopt active learning methods,’’ J. Sci. Educ. Technol., vol. 17, no. 2,
pp. 152–163, Apr. 2008.

[35] R. F. Behnagh and S. Yasrebi, ‘‘An examination of constructivist
educational technologies: Key affordances and conditions,’’ Brit. J. Educ.
Technol., vol. 51, no. 6, pp. 1907–1919, Nov. 2020.

[36] W. Silva, I. Steinmacher, and T. Conte, ‘‘Students’ and instructors’
perceptions of five different active learning strategies used to teach
software modeling,’’ IEEE Access, vol. 7, pp. 184063–184077, 2019.

[37] N. Yannier, ‘‘Active learning: ‘Hands-on’ meets ‘minds-on,’’’ Science,
vol. 374, no. 6563, pp. 26–30, 2021.

[38] K. Matsushita, ‘‘An invitation to deep active learning,’’ in Deep
Active Learning: Toward Greater Depth in University Education, 2018,
pp. 15–33.

[39] Ö. Tutal and T. Yazar, ‘‘Active learning promotes more positive attitudes
towards the course: Ameta-analysis,’’ Rev. Educ., vol. 10, no. 1, Apr. 2022,
Art. no. e3346.

[40] N. F. Hassan and S. Puteh, ‘‘A survey of technology enabled active
learning in teaching and learning practices to enhance the quality of
engineering students,’’ Adv. Sci. Lett., vol. 23, no. 2, pp. 1104–1108,
Feb. 2017.

[41] M. Elahi, F. Ricci, and N. Rubens, ‘‘A survey of active learning in
collaborative filtering recommender systems,’’ Comput. Sci. Rev., vol. 20,
pp. 29–50, May 2016.

[42] J. Bishop and M. Verleger, ‘‘The flipped classroom: A survey of the
research,’’ in Proc. ASEE Annu. Conf. Expo., 2013, p. 23.

[43] X. Suo, O. Glebova, D. Liu, A. Lazar, and D. Bein, ‘‘A survey of teaching
PDC content in undergraduate curriculum,’’ in Proc. IEEE 11th Annu.
Comput. Commun. Workshop Conf. (CCWC), Jan. 2021, pp. 1306–1312.

[44] B. L. Wiggins, S. L. Eddy, L. Wener-Fligner, K. Freisem, D. Z. Grunspan,
E. J. Theobald, J. Timbrook, and A. J. Crowe, ‘‘ASPECT: A survey to
assess student perspective of engagement in an active-learning classroom,’’
CBE—Life Sci. Educ., vol. 16, no. 2, p. ar32, Jun. 2017.

[45] V. Villas-Boas, O. M. Neto, L. C. Campos, and B. Aguiar, ‘‘A survey of
active learning in Brazilian engineering schools,’’ in Proc. Act. Learn. Eng.
Educ. Workshop, 2012, pp. 1–12.

[46] J. V. V. Lima, C. A. D. Silva, F. M. R. de Alencar, and W. B. Santos,
‘‘Metodologias ativas como forma de reduzir os desafios do ensino em
engenharia de software: Diagnóstico de um survey,’’ in Proc. Anais do
XXXI Simpósio Brasileiro de Informática na Educação (SBIE), Nov. 2020,
pp. 172–181.

[47] B. A. Kitchenham and S. L. Pfleeger, ‘‘Personal opinion surveys,’’ inGuide
To Advanced Empirical Software Engineering. London, U.K.: Springer,
2008, pp. 63–92.

[48] M. Oliveira, S. R. B. Oliveira, and S. Meira, ‘‘Condução de uma Fábrica
de software e o processo de aprendizagem em cursos de Graduação de
TI: Uma Aplicação de um survey sobre a Percepção da importância,’’ in
Proc. Simpósio Brasileiro de Informática na Educação, vol. 1, Oct. 2017,
p. 92.

[49] J. A. Coelho, G. H. Souza, J. Alburquere, ‘‘Desenvolvimento de
questionários e aplicação na pesquisa em Informática na Educação,’’
in Metodologia de Pesquisa em Informática na Educação: Abordagem
Quantitativa de Pesquisa (Série Metodologia de Pesquisa em Informática
na Educação), vol. 2. Porto Alegre, Brazil: SBC, 2020.

[50] P. M. Nardi, Doing Survey Research: A Guide to Quantitative Methods.
Evanston, IL, USA: Routledge, 2018.

[51] D. Mendez, D. Graziotin, S. Wagner, and H. Seibold, ‘‘Open science in
software engineering,’’ in Contemporary Empirical Methods in Software
Engineering. Berlin, Germany: Springer, 2020, pp. 477–501.

[52] I. Calderon, W. Silva, and E. Feitosa, ‘‘Um Mapeamento Sistemático
da Literatura sobre o uso de Metodologias Ativas durante o Ensino de
Programação no Brasil,’’ in Proc. Anais do XXXII Simpósio Brasileiro de
Informática na Educação, 2021, pp. 1152–1161.

[53] S. R. Sobral, ‘‘Two different experiments on teaching how to program with
active learning methodologies: A critical analysis,’’ in Proc. 15th Iberian
Conf. Inf. Syst. Technol. (CISTI), Jun. 2020, pp. 1–7.

[54] M. L. Kovarik, J. K. Robinson, and T. J. Wenzel, ‘‘Why use active
learning?’’ in Active Learning in the Analytical Chemistry Curricu-
lum. Olympia, WA, USA: American Chemical Society, Jan. 2022,
pp. 1–12.

[55] R. M. D. Castro and S. Siqueira, ‘‘ALCASYSTEM–Um portal com
Técnicas de aprendizagem ativa para disciplinas da Área da Computação,’’
in Proc. Anais dos Workshops do VIII Congresso Brasileiro de Informática
na Educação (CBIE), Nov. 2019, p. 1243.

[56] W. A. F. Silva, ‘‘OPENSMALS: Um repositório aberto para auxiliar no
ensino de modelagem de software empregando estratégias de aprendiza-
gem ativa,’’ 262f. Tese (Doutorado em Informática)-Universidade Federal
do Amazonas, Manaus.

[57] J. Lima, F. Alencar, and W. Santos, ‘‘A preliminary guide for
assertive selection of active methodologies in software engineer-
ing education,’’ in Proc. Brazilian Symp. Softw. Eng., Sep. 2021,
pp. 170–179.

[58] R. Ahshan, ‘‘A framework of implementing strategies for active student
engagement in remote/online teaching and learning during the COVID-19
pandemic,’’ Educ. Sci., vol. 11, no. 9, p. 483, Aug. 2021.

[59] A. Hevner and S. Chatterjee, ‘‘Design science research in information
systems,’’ in Design Research in Information Systems: Theory and
Practice, 2010, pp. 9–22.

[60] R. J. Wieringa, Design Science Methodology for Information Systems and
Software Engineering. Cham, Switzerland: Springer, 2014.

[61] A. C. B. Angeluci,Design Science Research ComoMétodo Para Pesquisas
em TIC na Educação. São Carlos, Brazil: Anais CIET, Horizonte, 2020.

[62] B. A. Kitchenham, ‘‘Systematic review in software engineering: Where we
are and where we should be going,’’ in Proc. 2nd Int. Workshop Evidential
Assessment Softw. Technol., Sep. 2012, pp. 1–2.

[63] A. Dresch, D. Lacerda, D. Pacheco Jr., and J. A. V. Antunes, Design
Science Research: Método de Pesquisa Para Avanço da Ciência e
Tecnologia. Porto Alegre, Brazil: Bookman Editora, 2020.

[64] H. Sobrinho, ‘‘Organizando o conhecimento sobre técnicas de aprendiza-
gem colaborativas,’’ Nuevas Ideas em Informatica Educativa, vol. 12,
pp. 152–156, Jan. 2016.

[65] W. Silva, B. Gadelha, I. Steinmacher, and T. Conte, ‘‘Towards an
open repository for teaching software modeling applying active learning
strategies,’’ in Proc. IEEE/ACM 42nd Int. Conf. Softw. Eng., Softw. Eng.
Educ. Training (ICSE-SEET), Oct. 2020, pp. 162–172.

[66] A.-P. Correia, ‘‘As múltiplas facetas da curadoria de conteúdos digitais,’’
Revista Docência e Cibercultura, vol. 2, no. 3, pp. 14–32, 2018.

[67] V. Venkatesh and F. D. Davis, ‘‘A theoretical extension of the technology
acceptance model: Four longitudinal field studies,’’Manage. Sci., vol. 46,
no. 2, pp. 186–204, Feb. 2000.

[68] L. M. Serrano-Cámara, M. Paredes-Velasco, C.-M. Alcover, and
J. Á. Velazquez-Iturbide, ‘‘An evaluation of students’ motivation in
computer-supported collaborative learning of programming concepts,’’
Comput. Hum. Behav., vol. 31, pp. 499–508, Feb. 2014.

[69] A. I. Safana and M. Nat, ‘‘Students’ perception of a blended learning
approach in an African higher institution,’’ J. Univers. Comput. Sci.,
vol. 25, no. 5, pp. 515–540, 2019.

[70] L. Pollock and M. Jochen, ‘‘Making parallel programming accessible to
inexperienced programmers through cooperative learning,’’ ACM SIGCSE
Bull., vol. 33, no. 1, pp. 224–228, Mar. 2001.

[71] M. Kumar, V. G. Renumol, and S. Murthy, ‘‘Flipped classroom strategy
to help underachievers in Java programming,’’ in Proc. Int. Conf. Learn.
Teaching Comput. Eng. (LaTICE), Apr. 2018, pp. 44–49.

[72] D. Dicheva and A. Hodge, ‘‘Active learning through game play in a data
structures course,’’ in Proc. 49th ACM Tech. Symp. Comput. Sci. Educ.,
Feb. 2018, pp. 834–839.

[73] B. Gonçalves, E. Nascimento, E. Monteiro, C. Portela, and S. Oliveira,
‘‘Elementos de Gamificação aplicados no ensino-aprendizagem de Pro-
gramação Web,’’ in Proc. Anais do Workshop Sobre Educação em
Computação (WEI), Jul. 2019, pp. 1–10.

[74] A. A. D. Castro Jr., L.M. Cheung, E. J. S. Batista, andA. C. D. Lima, ‘‘Uma
Análise preliminar da Aplicação do Método 300 em turmas de algoritmos
e Programação,’’ in Proc. Anais do XXIX Workshop sobre Educação em
Computação (WEI), Jul. 2021, pp. 171–180.

VOLUME 13, 2025 66929

I. Calderon et al.: Building Bridges Instead of Putting Up Walls

[75] S. C. d. Santos, É. Santana, L. Santana, P. Rossi, L. Cardoso, U. Fernandes,
C. Carvalho, and P. Tôrres, ‘‘Applying PBL in teaching programming: An
experience report,’’ in Proc. IEEE Frontiers Educ. Conf. (FIE), Oct. 2018,
pp. 1–8.

[76] N. Avouris, S. Kaxiras, O. Koufopavlou, K. Sgarbas, and P. Stathopoulou,
‘‘Teaching introduction to computing through a project-based collaborative
learning approach,’’ in Proc. 14th Panhellenic Conf. Informat., Sep. 2010,
pp. 237–241.

[77] S. A. Turner, M. A. Pérez-Quiñones, and S. H. Edwards, ‘‘Peer review in
CS2: Conceptual learning and high-level thinking,’’ ACM Trans. Comput.
Educ., vol. 18, no. 3, pp. 1–37, Sep. 2018.

[78] A. Joshi, M. Schmidt, S. Panter, and A. Jain, ‘‘Evaluating the benefits
of team-based learning in a systems programming class,’’ in Proc. IEEE
Frontiers Educ. Conf. (FIE), Oct. 2020, pp. 1–7.

[79] L. N. Gamage, ‘‘A bottom-up approach for computer programming
education,’’ J. Comput. Sci. Colleges, vol. 36, no. 7, pp. 66–75, 2021.

[80] A. Kothiyal, S. Murthy, and S. Iyer, ‘‘Think-pair-share in a large CS1 class:
Does learning really happen?’’ in Proc. Conf. Innov. Technol. Comput. Sci.
Educ. (ITiCSE), 2014, pp. 51–56.

[81] I. Calderon, W. Silva, and E. Feitosa, ‘‘Collabprog: Um repositório
colaborativo aberto para apoiar na adoção de metodologias ativas no
ensino de programação,’’ in Anais Estendidos do II Simpósio Brasileiro
de Educação em Computação (SBC), 2022, pp. 36–39.

[82] C. Mayfield, S. K. Moudgalya, A. Yadav, C. Kussmaul, and H. H. Hu,
‘‘POGIL in CS1: Evidence for student learning and belonging,’’ in Proc.
53rd ACM Tech. Symp. Comput. Sci. Educ., Feb. 2022, pp. 439–445.

IVANILSE CALDERON received the bachelor’s
degree in information systems from the Lutheran
University of Brazil (ULBRA), and the M.Sc.
degree in geography from the Federal University
of Rondônia (UNIR). She is currently pursuing
the Ph.D. degree in informatics with the Federal
University of Amazonas (UFAM). She is a Profes-
sor of basic, technical, and technological education
with the Federal Institute of Education, Science,
and Technology of Rondn̂ia (IFRO). She is a

member of the Research Group on Technology and Education in Computing
(GPComp).

WILLIAMSON SILVA received the bachelor’s
degree in systems analysis and development from
the Federal Institute of Education, Science, and
Technology of Roraima (Boa Vista Campus), and
the M.Sc. and Ph.D. degrees in informatics from
the Graduate Program in Informatics, Federal Uni-
versity of Amazonas (UFAM). Currently, he is an
Adjunct Professor with the Federal University of
Pampa (UNIPAMPA) and a member of the Grad-
uate Program in Software Engineering (PPGES-

UNIPAMPA). With a solid academic background and an interdisciplinary
approach, he actively contributes to the academic community, seeking
advancements in the fields of computing education and software engineering.
His main research interests include computer science education, informatics
in education, requirements engineering, software quality, experimental
software engineering, information systems, usability and user experience,
conversational agents, chatbots, artificial intelligence, and machine learning.
He is a member of the LESSE Research Group (Laboratory of Empirical
Studies in Software Engineering), the Steering Committee of the Special
Commission on Information Systems (CESI) (2022–2023, 2023–2024, and
2024–2025), and the Steering Committee of the Special Commission on
Informatics in Education (2024–2025), both committees of the Brazilian
Computer Society (SBC). He is also part of the Interest Group on Active
Methodologies linked to the Special Commission on Computer Education.

EDUARDO FEITOSA received the bachelor’s
degree in data processing from the Federal Uni-
versity of Amazonas (UFAM), in 1998, the M.Sc.
degree in computer science from the Federal
University of Rio Grande do Sul, in 2001,
and the Ph.D. degree in computer science from
the Federal University of Pernambuco, in 2010.
He is an Associate Professor with the Institute of
Computing (IComp) and a permanent Professor
of the Graduate Program in Informatics (PPGI),

UFAM. He is the Coordinator of the Graduate Program in Informatics
(PPGI), UFAM. He is one of the leaders of the Research Group on Emerging
Technologies and System Security (ETSS). He collaborates with various
research groups both nationally and internationally and has coordinated
projects with national and international institutions. He is a reviewer of
several journals and a member of committees of various conferences. He is
a member of the Special Commission on Information and System Security
(C.E.Seg.), SBC.

66930 VOLUME 13, 2025

	55cf600e17036c7a470ef57fc31c8ebc3be14665bdb48c2effdd59a5ea0225bd.pdf
	c03689c5789edf8dc0cde30d298e130cd9b51402829e59bef9b739ab0c1fbbf6.pdf
	55cf600e17036c7a470ef57fc31c8ebc3be14665bdb48c2effdd59a5ea0225bd.pdf
	Anexo Folha de Aprovação (2838498)

