
Universidade Federal do Amazonas
Instituto de Computação

Programa de Pós-Graduação em Informática

Gretchen Torres de Macedo

Uma Abordagem Assistida de Inspeção
Funcional de Protótipos de Interface de

Software

Manaus
Setembro de 2025

Gretchen Torres de Macedo

Uma Abordagem Assistida de Inspeção
Funcional de Protótipos de Interface de

Software

Tese apresentada ao Programa de
Pós-Graduação em Informática do
Instituto de Computação da Univer-
sidade Federal do Amazonas como
requisito para obtenção do grau de
Doutor em Informática.
Área de concentração: Engenharia
de Software

Orientador: Prof. Dr. Bruno Freitas Gadelha
Coorientador: Prof. Dr. Awdren de Lima Fontão

Manaus
2025

Ficha Catalográfica

Elaborada automaticamente de acordo com os dados fornecidos pelo(a) autor(a).

 Uma Abordagem Assistida de Inspeção Funcional de Protótipos de
Interface de Software / Gretchen Torres de Macedo. - 2025.
 252 f. : il., color. ; 31 cm.

 Orientador(a): Bruno Freitas Gadelha.
 Coorientador(a): Awdren de Lima Fontão.
 Tese (doutorado) - Universidade Federal do Amazonas, Programa de
Pós-Graduação em Informática, Manaus, 2025.

 1. Inspeção Funcional. 2. Prototipação de Interface de Usuário. 3.
Inspeção de Interface de Usuário. 4. Heurísticas. I. Gadelha, Bruno Freitas.
II. Fontão, Awdren de Lima. III. Universidade Federal do Amazonas.
Programa de Pós-Graduação em Informática. IV. Título

M141a Macedo, Gretchen Torres de

v

Para Claudemir, Getúlio e Isadora, que são o meu mundo inteiro.

vi

Busque a liberdade e torne-se cativo de seus desejos.
Busque a disciplina e encontre sua liberdade.

Frank Herbert

vii

AGRADECIMENTOS

Aproveito este espaço para registrar os meus mais sinceros agradecimentos
às pessoas que, de uma forma ou de outra, me ajudaram, me apoiaram ou
me incentivaram durante esta jornada de transformação pessoal que eu estou
vivenciando. Em especial, gostaria de agradecer:

Ao meu esposo, Claudemir Ivan, por todo incentivo desde o primeiro dia em
que eu cogitei fazer doutorado, por sempre me ouvir durante os momentos de
questionamentos e pela paciência e amor infinitos.

Aos meus filhos, Getúlio e Isadora, maiores fontes de amor e inspiração da
minha vida, que me fazem sempre saber diferenciar as coisas importantes das sem
importância.

Ao meu orientador e amigo de longa data, Prof. Dr. Bruno Gadelha, pelo
privilégio de poder tê-lo ao meu lado nessa fase tão transformadora da minha
vida.

Ao meu coorientador, Prof. Dr. Awdren Fontão, por todas as suas con-
tribuições para a realização deste trabalho.

À Professora Dra. Tayana Conte, pela sua imensa generosidade em compar-
tilhar seus conhecimentos e experiência e por ser sempre tão inspiradora.

Aos amigos Athos, Leomar e Thaís, pessoas que amo e admiro profundamente.
Ao meu pai, Wilmar, a pessoa que eu mais admiro pela inteligência e percepção

aguçada, e às minhas irmãs, Ingrid e Sheron, mulheres inteligentes e guerreiras,
com as quais tenho a honra de poder compartilhar minha vida.

A todos os amigos do grupo USES, sempre companheiros e dispostos a ajudar
nos momentos difíceis.

Aos membros da banca examinadora, Professores Edna Canedo, Gleison San-
tos, Igor Steinmacher, Rodrigo Santos, Tayana Conte e Márcia Lima, que gentil-
mente aceitaram o convite para participar desta defesa de doutorado. Agradeço
pela disponibilidade e generosidade em dedicar seu tempo à leitura e discussão da
tese. Suas considerações foram fundamentais para o aprimoramento do trabalho
e para o meu crescimento como pesquisadora.

viii

Aos participantes voluntários dos estudos que integram esta pesquisa, pela
colaboração, pelo tempo e pela dedicação.

À Universidade Federal do Amazonas, ao Instituto de Computação e ao pro-
grama de pós-graduação em informática da UFAM (PPGI/UFAM).

Ao Ministério Público do Estado do Amazonas, pelo apoio concedido através
do programa de aperfeiçoamento funcional de servidores.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento
001. Este trabalho foi parcialmente financiado pela Fundação de Amparo à
Pesquisa do Estado do Amazonas – FAPEAM – por meio do projeto POSGRAD.

ix

Resumo

A prototipação de interface de usuário (IU) é amplamente utilizada no desenvolvi-
mento de software para explorar soluções, demonstrar e validar funcionalidades,
servindo também como guia para o design, a implementação e os testes. Para
apoiar a identificação precoce de defeitos funcionais e evitar retrabalho, é essencial
incluir protótipos em inspeções de qualidade que verifiquem se contêm elementos
necessários à representação de funcionalidades. No entanto, as técnicas existentes
de inspeção de IU concentram-se, em sua maioria, na avaliação de usabilidade ou
de problemas de design, sendo aplicadas a protótipos interativos ou interfaces já
implementadas. A carência de abordagens de inspeção funcional de protótipos de
IU motivou a questão de pesquisa desta tese: (QP) - Como inspecionar protóti-
pos de interface de usuário em relação à sua funcionalidade? Para respondê-la,
utilizou-se a Design Science Research (DSR) no desenvolvimento de uma abor-
dagem de inspeção funcional de protótipos de IU que produziu dois instrumentos
de inspeção: (i) um catálogo de heurísticas de inspeção funcional (CHIF), que de-
screve funcionalidades comumente representadas em protótipos de IU, elaborado
a partir da análise de protótipos de interface e de capturas de telas de aplicações;
(ii) um checklist de propósito geral (UIProtoCheck), voltado para para inspeção de
protótipos de funcionalidades não caracterizadas pelas heurísticas. Para apoiar a
realização de inspeções funcionais, foi desenvolvida a ferramenta GUIPFI (Guided
User Interface Prototype Functional Inspection), que integra o CHIF e o UIPro-
toCheck com recursos de recomendação de instrumentos de inspeção, anotação de
defeitos e geração de relatórios. Os artefatos elaborados foram avaliados através
de um focus group com especialistas, um experimento controlado e estudos de
inspeção funcional de protótipos de IU na academia e com profissionais da in-
dústria de software. As avaliações mostraram evidências empíricas da eficácia e
utilidade da abordagem na identificação de defeitos funcionais em protótipos de
IU, contribuindo para a teoria e a prática da Engenharia de Software.

Palavras-chave: Inspeção Funcional, Prototipação de Interface de Usuário, In-
speção de Interface de Usuário, Heurísticas.

x

Abstract

User interface (UI) prototyping is widely used in software development to explore
solutions, demonstrate, and validate functionality, and also serves as a guide
for design, implementation, and testing. To support the early identification of
functional defects and avoid rework, it is essential to include prototypes in quality
inspections that verify they contain all the necessary elements to represent their
intended functionality. However, existing UI inspection techniques primarily fo-
cus on assessing usability or design issues and are typically applied to interactive
prototypes or already implemented interfaces. The lack of functional inspection
approaches for UI prototypes motivated the research question of this thesis: (QP)
- How to inspect user interface prototypes regarding their functionality? To answer
it, Design Science Research (DSR) was used in the development of a functional
inspection approach for UI prototypes that produced two inspection tools: (i) a
catalog of functional inspection heuristics (CHIF), which describes functionalities
commonly represented in UI prototypes, developed from the analysis of interface
prototypes and application screenshots; (ii) a general-purpose checklist UIPro-
toCheck, aimed at inspecting prototypes of functionalities not characterized by
heuristics. To support functional inspections, the GUIPFI (Guided User Interface
Prototype Functional Inspection) tool was developed. It integrates CHIF and
UIProtoCheck, featuring inspection tool recommendations, defect annotation, and
report generation. The developed artifacts were evaluated through a focus group
with experts, a controlled experiment, and functional inspection studies of UI
prototypes in academia and with software industry professionals. The evaluations
demonstrated empirical evidence of the approach’s effectiveness and usefulness
in identifying functional defects in UI prototypes, contributing to the theory and
practice of Software Engineering.

Keywords: Functional Inspection, User Interface Prototyping, User Interface
Inspection, Heuristics.

Lista de Figuras

1.1 Ciclos de pesquisa baseados na DSR 6

1.2 Visual Abstract da abordagem de inspeção funcional de protótipos

de interface. 8

3.1 Papéis dos participantes nos times de desenvolvimento. 33

3.2 Tempo de experiência dos participantes. 34

3.3 Finalidade das empresas dos participantes. 34

3.4 QP1 - Finalidade de uso da prototipação - protótipos de baixa

fidelidade. 35

3.5 QP1 - Finalidade de uso da prototipação - protótipos de alta fi-

delidade. 37

3.6 QP2 - Prototipação no processo de desenvolvimento adotado pelas

empresas. 39

3.7 QP3 - Códigos relacionados às atividades de qualidade de software

com uso de prototipação. 43

4.1 Abordagem de ensino remoto de Engenharia de Requisitos com

desenvolvimento de soft skills. 56

Lista de Figuras xii

4.2 Método para desenvolvimento de heurísticas de usabilidade e UX

(Fonte: Quiñones et al. (2018)). 57

4.3 CHIF - página inicial . 67

4.4 CHIF - heurística de Carrinho de Compras 68

4.5 Exemplos de protótipos de Funcionalidades Básicas – Lista (a) e

Menu (b). 70

4.6 Exemplos de protótipos do tipo Funcional – Registro de Conta (a)

e Autenticação (b). 70

5.1 Processo para anotação de datasets com atividades de garantia da

qualidade. Fonte: Klie et al. (2024). 82

5.2 Processo de anotação adaptado para contemplar atividades de ex-

pansão do catálogo de heurísticas. 83

5.3 Funcionalidades do CHIF e EnRICO. 86

5.4 Exemplos de instâncias do tópico Dialer. (a) Calculadora. (b)

Botões de elevador. (c) Criação de PIN. 88

5.5 Análise de instância. (a) Uma captura de tela de Lista reclassi-

ficada como Configurações. (b) Uma captura de tela de Configu-

rações reclassificada como Visualização. 90

5.6 Exemplos de protótipos de interface classificados como Configurações. 91

5.7 Protótipo de IU usado no estudo - Página de Busca. 101

5.8 Natureza dos defeitos encontrados por instrumento de inspeção –

CHIF-E e UIProtoCheck. 111

6.1 GUIPFI - diagrama de casos de uso. 125

6.2 GUIPFI - Aplicação de suporte à inspeção de protótipos de interface.126

xiii Lista de Figuras

6.3 GUIPFI - Arquitetura da ferramenta GUIPFI. 127

6.4 GUIPFI - Dados informados para o Recomendador. 128

6.5 Funcionalidade de Recomendação 128

6.6 GUIPFI - Recomendador de instrumentos de inspeção. 131

6.7 Funcionamento do Assistente de Inspeção. 131

6.8 GUIPFI - Heurísticas Lista e consulta selecionadas como instru-

mentos de inspeção. 132

6.9 GUIPFI - Relatório de inspeção inicial. 132

6.10 Exemplos de protótipos de interface escreenshotsutilizados na

avaliação das sugestões de heurísticas do LLM. 133

6.11 Exemplo de protótipo que representa mais de uma funcionalidade

(Menu, Lista e Busca). 134

6.12 Exemplo de protótipo (Carrinho de Compra) que recebeu sugestões

de heurísticas de funcionalidades não presentes na tela, mas que

possivelmente fariam parte da aplicação. 135

6.13 Ciclo 3 - Ocupação dos participantes. 142

6.14 Ciclo 3 - Tempo de experiência na indústria de software. 142

6.15 Ciclo 3 - Área de atuação na indústria de software. 143

6.16 Ciclo 3 - Análise estatística das inspeções funcionais de protótipos

de interface. 144

6.17 Utilidade percebida. 145

6.18 Utilidade percebida. 145

6.19 Facilidade de uso percebida. 147

6.20 Dificuldades encontradas e pontos fracos da ferramenta. 147

6.21 Intenção de uso da GUIPFI. 149

Lista de Figuras xiv

6.22 Intenção de uso da ferramenta GUIPFI. 149

6.23 Avaliação da qualidade dos resultados - Recomendador. 151

6.24 Q4 - Qualidade das recomendações de instrumentos de inspeção

obtidas com o uso da GUIPFI. 151

7.1 GUIPFI - Relatório de inspeção gerado pela ferramenta. 159

7.2 Faixa etária dos participantes da indústria. 164

7.3 Tempo de experiência dos participantes da indústria. 164

7.4 Ciclo 3 - Análise estatística das inspeções realizadas por partici-

pantes da indústria. 165

7.5 Utilidade percebida - participantes da indústria. 166

7.6 Facilidade de uso percebida - participantes da indústria. 168

7.7 Intenção de uso da GUIPFI - profissionais da indústria. 170

7.8 Avaliação da qualidade dos resultados do componente Recomen-

dador - profissionais da indústria. 172

D.1 Protótipo de IU usado no estudo - Página de Busca. 231

D.2 Protótipo de IU usado no estudo - Página de Produto. 232

D.3 Protótipo de IU usado no estudo - Página de Carrinho de Compra. 232

Lista de Tabelas

3.1 Perguntas do questionário relativas ao uso de prototipação. 31

3.2 Lista de empresas com mais de um respondente. 33

4.1 Categorias de protótipos obtidas durante o estágio Experimental. 61

4.2 Informações selecionadas de diferentes fontes durante o passo 3,

estágio Descritivo. 63

4.3 Correspondência entre categorias do processo de rotulagem e tra-

balhos relacionados. 65

4.4 Adaptações no modelo de especificação de heurísticas de usabili-

dade de Quiñones et al. (2018). 66

4.5 Heurística HEU1-06 � Lista. 71

4.6 Heurística HEU2-08 � Registro de Conta. 72

4.7 Questionário de avaliação das heurísticas por especialistas. 74

5.1 Resumo das funcionalidades do CHIF-E. 87

5.2 Heurística HEU2-05 � Configurações. 92

5.3 Funcionalidades Específicas do CHIF-E e seus contextos de aplicação93

5.4 UIProtoCheck - checklist para inspeção de protótipos de interface

de usuário . 96

Lista de Tabelas xvi

5.5 Lista de defeitos inseridos intencionalmente nos protótipos do ex-

perimento controlado. 102

5.6 Experiência dos participantes e times. CT - TimeChecklist; HT -

Time CHIF-E; PC - Participante do bloco Checklist; PH - Partici-

pante do bloco CHIF-E. 103

5.7 Equipes de revisores e desenvolvedores e temas de projeto. 107

5.8 Eficácia, eficiência e falso-positivos - CHIF-E. 108

5.9 Eficácia, eficiência, e falso-positivos - UIProtoCheck. 108

5.10 Teste de normalidade Shapiro-Wilk. 109

5.11 Teste estatístico não-paramétrico Mann-Whitney. 109

5.12 Falso-positivos por tipo de instrumento de inspeção. 110

5.13 Número de defeitos encontrados por natureza e instrumento de

inspeção. 111

5.14 Quadro comparativo dos principais aspectos - CHIF-E e UIPro-

toCheck. 112

5.15 Temas resultantes da análise temática. 114

5.16 Defeitos relatados por time e categoria. 115

6.1 Designação de equipes de inspetores e desenvolvedores 138

6.2 Caracterização do perfil dos participantes 139

6.3 Questionário de avaliação da ferramenta GUIPFI - TAM 140

6.4 Questionário de avaliação da ferramenta GUIPFI - Perguntas com-

plementares (abertas) . 141

7.1 Exemplos de ajustes de termos e expressões na especificação das

heurísticas - Lista . 157

xvii Lista de Tabelas

7.2 Exemplo de ajustes de termos e expressões na especificação das

heurísticas - Câmera . 157

7.3 Ocupação, tempo de experiência e faixa etária dos participantes. . 163

7.4 Caracterização das empresas onde os participantes trabalham. . . 163

A.1 Heurística HEU1-01 � Alteração. 197

A.2 Heurística HEU1-02 � Busca. 198

A.3 Heurística HEU1-03 � Cadastro. 199

A.4 Heurística HEU1-04 � Visualização. 200

A.5 Heurística HEU1-05 � Galeria. 201

A.6 Heurística HEU1-06 � Lista. 202

A.7 Heurística HEU1-07 � Menu. 203

A.8 Heurística HEU1-08 � Mestre-Detalhe. 204

A.9 Heurística HEU1-09 � Upload de Arquivos. 205

A.10 Heurística HEU2-01 � Autenticação. 206

A.11 Heurística HEU2-02 � Câmera. 207

A.12 Heurística HEU2-03 � Carrinho de Compra. 208

A.13 Heurística HEU2-04 � Chat. 209

A.14 Heurística HEU2-05 � Configurações. 210

A.15 Heurística HEU2-06 � Editor de Imagens. 211

A.16 Heurística HEU2-07 � Finalizar Compra. 212

A.17 Heurística HEU2-08 � Home. 213

A.18 Heurística HEU2-09 � Mapas. 214

A.19 Heurística HEU2-10 � Media Player. 215

A.20 Heurística HEU2-11 � Notícias. 216

Lista de Tabelas xviii

A.21 Heurística HEU2-12 � Página de Produto. 217

A.22 Heurística HEU2-13 � Perfil de Usuário. 218

A.23 Heurística HEU2-05 � Quiz. 219

A.24 Heurística HEU2-15 � Registro de Conta. 220

A.25 Heurística HEU2-16 � Tutorial. 221

A.26 Heurística HEU2-17 � Videoconferência. 222

E.1 Designação de equipes de inspetores e desenvolvedores 234

Sumário

1 Introdução 1

1.1 Objetivos . 5

1.2 Metodologia . 5

1.3 Organização do Trabalho . 10

2 Referencial Teórico 12

2.1 Prototipação de Interfaces de Usuário 12

2.2 Técnicas de Inspeção de Interfaces de Usuário 15

2.3 Abordagens Automatizadas para Detecção de Defeitos em Inter-

faces de Software . 17

2.4 Identificação de Significado em Interfaces de Usuário 20

2.5 Trabalhos Relacionados . 23

2.6 Originalidade e Relevância da Pesquisa 27

3 Ambiente: Prototipação no Desenvolvimento de Software 28

3.1 Metodologia . 29

3.2 Resultados . 32

3.2.1 QP1: Finalidade da Prototipação 35

Sumário xx

3.2.2 QP2: Prototipação no Processo de Desenvolvimento 38

3.2.3 QP3: Prototipação e Qualidade de Software 42

3.3 Discussão . 45

3.3.1 Lições . 47

3.3.2 Limitações . 49

3.4 Considerações Finais . 49

4 Catálogo Heurísticas de Inspeção Funcional (CHIF) 51

4.1 Introdução . 51

4.2 Obtenção de Conjunto de Protótipos 54

4.3 Método de Especificação de Heurísticas de Inspeção Funcional . . 57

4.3.1 Estágio Exploratório . 58

4.3.2 Estágio Experimental . 59

4.3.3 Estágio Descritivo . 62

4.3.4 Estágio Correlacional . 64

4.3.5 Estágio de Seleção . 64

4.3.6 Estágio de Especificação 65

4.3.7 Estágio de Validação . 68

4.3.8 Estágio de Refinamento 69

4.3.9 Heurísticas de Inspeção Funcional 69

4.4 Validação das Heurísticas com Especialistas 71

4.4.1 Preparação e Execução . 73

4.4.2 Resultados . 73

4.5 Considerações Finais . 77

4.5.1 Limitações . 78

xxi Sumário

5 Expansão do Catálogo de Heurísticas de Inspeção Funcional

(CHIF-E) 79

5.1 Introdução . 80

5.2 Adição de novas funcionalidades ao CHIF 81

5.2.1 Planejamento . 84

5.2.2 Anotação Iterativa em Lote 89

5.2.3 Adjudicação - Especificação de novas heurísticas 91

5.3 UIProtoCheck: Um checklistgenérico para inspeção funcional de

protótipos de interface . 94

5.4 Avaliação . 97

5.4.1 Experimento Controlado: CHIF-E X UIProtoCheck 97

5.4.1.1 Planejamento . 98

5.4.1.2 Execução . 101

5.4.2 Estudo Experimental: Inspeção de Projetos de Interface

Utilizando o CHIF-E . 104

5.4.2.1 Planejamento . 105

5.4.2.2 Execução . 106

5.5 Resultados . 106

5.5.1 QP1: Suporte do CHIF-E e do UIProtoCheck à inspeção

funcional de protótipos de Interface de Usuário 108

5.5.2 QP2: Tipos de defeitos encontrados durante a inspeção

funcional de protótipos de interface usando o CHIF-E . . . 112

5.6 Ameaças à Validade . 117

5.7 Considerações Finais . 119

Sumário xxii

6 GUIPFI � Uma Ferramenta para Inspeção Funcional de Protóti-

pos de Interface 123

6.1 Design da Ferramenta GUIPFI 124

6.1.1 Recomendação . 127

6.1.2 Assistente de Inspeção . 130

6.1.3 Avaliação do desempenho do LLM na sugestão de heurísti-

cas relevantes . 133

6.2 Avaliação da GUIPFI na Academia 137

6.2.1 Planejamento . 137

6.2.2 Execução . 139

6.2.3 Resultados . 141

6.3 Considerações Finais . 153

7 GUIPFI: Estudo de Campo na Indústria de Software 155

7.1 Planejamento . 155

7.1.1 Melhorias nas heurísticas do CHIF-E 156

7.1.2 Melhorias na GUIPFI . 157

7.1.3 Ajustes no prompt do Recomendador 159

7.2 Execução . 162

7.3 Resultados . 164

7.4 Ameaças à Validade . 172

7.5 Considerações Finais . 174

8 Conclusão 176

8.1 Contribuições da Pesquisa . 180

8.1.1 Artigos Publicados . 181

xxiii Sumário

8.2 Trabalhos Futuros . 181

Referências Bibliográficas 183

A Catálogo de Heurísticas de Inspeção Funcional - CHIF-E 196

A.1 Funcionalidades Básicas . 196

A.2 Funcionalidades Específicas . 196

B Termo de Consentimento Livre e Esclarecido � TCLE 223

C Artefatos do Primeiro Ciclo de Design 228

C.1 Cenário da Avaliação das Heurísticas por Especialistas 228

C.2 Roteiro de Atividades do Grupo Focal 229

D Artefatos do Segundo Ciclo de Design 231

D.1 Protótipos de interface inspecionados no experimento controlado . 231

D.2 Instruções para condução da inspeção 232

E Artefatos do Terceiro Ciclo de Design 234

E.1 Instruções para Realização da Atividade de Inspeção 234

E.2 Material da Aula - Inspeção Funcional de Protótipos de Interface

de Usuário . 236

F Artefatos do Estudo de Validação na Indústria 244

F.1 Carta Convite . 244

F.2 Instruções para realização do estudo 245

Capítulo 1

Introdução

Protótipos de interface do usuário são representações gráficas, interativas ou

estáticas da interface de usuário (IU) de um software (Bjarnason et al., 2021). Eles

são um recurso amplamente utilizado por engenheiros de software para representar

as funcionalidades de um software durante o processo de desenvolvimento de

software (Bjarnason et al., 2021).

No estágio de elicitação de requisitos, protótipos de interface de usuário são

utilizados para facilitar a comunicação com clientes, explorar soluções alternativas

e validar ideias (Dow et al., 2011; Lauff et al., 2020), pois ilustram como os

usuários irão interagir com o software por meio da interface. Em projetos que

utilizam a metodologia de desenvolvimento ágil, a prototipação tem se mostrado

um instrumento crítico de elicitação de requisitos que pode promover a melhoria

da comunicação em times de desenvolvimento, principalmente quando associada

a boas práticas de gerenciamento (Käpyaho and Kauppinen, 2015; Garcia et al.,

2017).

No entanto, a prototipação é uma tarefa desafiadora (Lee et al., 2020). Du-

rante a atividade de design de protótipos de interface, é necessário analisar quais

funcionalidades serão representadas e quais elementos de design caracterizam tais

funcionalidades. É preciso, ao mesmo tempo, seguir regras de design, dominar

tecnologias de desenvolvimento e ser criativo e inovador para atrair e manter o

engajamento do usuário (Chen et al., 2020a). Como resultado, as atividades que

Capítulo 1. Introdução 2

envolvem o desenvolvimento de interfaces se tornam extremamente complexas e

costumam ser realizadas de maneira pouco sistemática (Belikova et al., 2018).

Além disso, durante o desenvolvimento de um software, os protótipos de inter-

face constituem um recurso para representar e coletar requisitos que podem servir

de referência para as fases posteriores do processo de desenvolvimento, incluindo o

design de interface, o desenvolvimento incremental, a implementação, a validação

e testes de aceitação (Käpyaho and Kauppinen, 2015; Bjarnason et al., 2023). Por

este motivo, possíveis erros de representação de requisitos em protótipos que não

forem detectados logo no início de um projeto podem resultar em custos maiores

de correção conforme o desenvolvimento do software avança.

O cenário apresentado destaca a necessidade de desenvolvimento de formas de

auxiliar a elaboração de protótipos de interface de usuário, bem como viabilizar

a sua verificação. Atividades voltadas à garantia da qualidade podem ser empre-

gadas para avaliar a qualidade dos protótipos de interface. Dentre as técnicas de

garantia da qualidade mais utilizadas para verificação de interfaces de usuário,

destaca-se a inspeção (Wilson, 2013), que é uma técnica que consiste na análise de

artefatos do projeto de um software para identificar defeitos. A inspeção funcional

de artefatos de design de software propõe-se a verificar o quanto um determinado

design está em conformidade com uma especificação ou com requisitos funcionais

(Salleh et al., 2017).

As técnicas existentes de inspeção de interface de usuário são projetadas

principalmente para avaliação e identificação de defeitos de usabilidade (Holling-

sed and Novick, 2007; Islam et al., 2020). Dentre elas, pode-se citar a avaliação

heurística (Nielsen, 1994a), a inspeção baseada em perspectivas (Zhang et al.,

1999), inspeções formais de usabilidade (Kahn and Prail, 1994) e a avaliação de

comunicabilidade de sinais de interface (De Souza et al., 2006; Islam et al., 2020).

Outras abordagens procuram identificar defeitos de design em interfaces de

software através da análise automática de interfaces gráficas de usuário (Graphical

User Interfaces - GUI) (Moran et al., 2018; Packevi£ius et al., 2018; Yang et al.,

2021). Por exemplo, o trabalho de Moran et al. (2018) utiliza técnicas de visão

computacional para verificar se a implementação de uma interface está de acordo

com seu design. Yang et al. (2021) apresentam uma abordagem automática para

detecção dedesign smells, que são características encontradas em interfaces de

3

software que violam regras de design pré-estabelecidas. Packevi£ius et al. (2018)

apresentam um método de análise de código-fonte com base em conjuntos de

regras associados a capturas de tela para identificar defeitos de apresentação

de texto e problemas semânticos. Também há trabalhos que buscam auxiliar o

desenvolvimento de interfaces no momento da sua concepção, através da busca de

interfaces gráficas (Huang et al., 2019) ou sugerindo GUIs semelhantes, com base

na disposição dos componentes e destacando áreas onde a atenção do usuário

possivelmente se concentra em um protótipo (Lee et al., 2020). Neste tipo de

busca, é possível pesquisar, a partir de um design de entrada, uma variedade

de exemplos de interfaces de usuário semelhantes (Bernal-Cárdenas et al., 2019;

Chen et al., 2020b).

As abordagens apresentadas de auxílio à prototipação e verificação de design

de interface de usuário baseiam-se em imagens e não consideram o significado dos

elementos e funcionalidades representados no protótipo. Isto reduz os tipos de

verificações que podem ser realizadas durante a avaliação da interface. No caso

da verificação da disposição dos componentes no protótipo, não é verificado se os

elementos realmente representam a funcionalidade correta. Já a busca de designs

com base em imagens procura apenas GUIs visualmente semelhantes. Isto limita

a recuperação de exemplos inovadores de interfaces que representem a mesma

funcionalidade, mas cuja aparência difere da interface utilizada como parâmetro

de busca. Além disso, estas abordagens são destinadas a protótipos interativos,

de elaboração mais complexa e demorada, ou à própria interface do software, que

só pode ser examinada após o software ter sido implementado (Wilson, 2013).

Protótipos criados durante a fase de elicitação de requisitos, por outro lado,

costumam focar nos aspectos mais críticos da funcionalidade projetada, frequen-

temente desconsiderando convenções de design ou considerações de usabilidade.

Assim, a inspeção de protótipos de interface preliminares deve considerar essencial-

mente sua funcionalidade subjacente. Por funcionalidade entende-se um conjunto

de funções e respectivas propriedades que satisfazem um ou mais requisitos de

sistema (Salleh et al., 2017). Desta forma, destaca-se a necessidade de técnicas

ou abordagens de inspeção de protótipos de interface que os analisem de acordo

com seu significado, possibilitando antecipar a detecção de defeitos relacionados

à funcionalidade representada.

Capítulo 1. Introdução 4

O problema tratado nesta tese refere-se à identificação tardia de defeitos de

funcionalidade em protótipos de interface de usuário (IU), etapa que frequente-

mente ocorre apenas após a implementação do software, resultando em retrabalho

e aumento de custos de correção. Embora os protótipos de IU sejam amplamente

utilizados para comunicar e validar requisitos durante o desenvolvimento, inexis-

tem abordagens de inspeção com foco explícito na verificação funcional desses

artefatos, capazes de avaliar se as funcionalidades esperadas estão corretamente

representadas e completas. As técnicas de inspeção existentes concentram-se pre-

dominantemente em aspectos de usabilidade, acessibilidade e comunicabilidade,

não contemplando a dimensão funcional necessária para garantir a consistên-

cia entre o que é representado no protótipo e o comportamento esperado do

sistema. Neste contexto, esta pesquisa visa contribuir com a identificação de de-

feitos funcionais em protótipos de interface e, consequentemente, com a melhoria

da qualidade do software desenvolvido. Assim, esta pesquisa buscou responder à

seguinte questão de pesquisa:

QP: �Como inspecionar protótipos de interface de usuário

em relação à sua funcionalidade?�

Para abordar esta questão, primeiramente, verificou-se que a inspeção de

protótipos de interface em termos de sua funcionalidade deve iniciar-se pela iden-

tificação da funcionalidade representada, para, em seguida, verificar se a interface

projetada se alinha com os requisitos funcionais. Tais requisitos podem ser explí-

citos, derivados de especificações e modelos, e intrínsecos (conhecimento tácito),

associados a essa funcionalidade. Por exemplo, em um aplicativo de comércio de

veículos, existem requisitos específicos de domínio, como, por exemplo,�A página

de produto deve apresentar a quilometragem do veículo�, e requisitos típicos de

comércio eletrônico, como a apresentação de imagens do veículo na página do

produto.

Diante disso, a abordagem de inspeção funcional de protótipos de interface

desta pesquisa considerou tanto as características inerentes às funcionalidades

representadas quanto especificações e modelos específicos das aplicações. Ela foi

viabilizada através da caracterização de funcionalidades amplamente conhecidas,

5 1.1. Objetivos

comuns a diferentes aplicativos, como autenticação de usuário, pesquisa ou for-

mulários de cadastro. Como o conhecimento sobre as características peculiares

destas funcionalidades recorrentes é tácito, ou seja, desenvolvedores de software

as conhecem, mas elas não são formalmente especificadas, buscou-se neste tra-

balho descrever explicitamente cada funcionalidade comumente conhecida para

realizar inspeções segundo o aspecto funcional. Além disso, também foi elabo-

rado um checklistde propósito geral para inspeção de protótipos de IU que não

representam as funcionalidades diretamente especificadas. Através da ênfase na

caracterização de funcionalidades, buscou-se contribuir para a detecção precoce de

defeitos e inconsistências na representação de requisitos funcionais em protótipos

da interface de usuário.

1.1 Objetivos

O objetivo principal desta pesquisa é dar suporte a times de desenvolvimento de

software na atividade de inspeção funcional de protótipos de interface de usuário

através de uma abordagem assistida de inspeção funcional. Com esta abordagem,

busca-se oferecer mecanismos que possibilitem antecipar a identificação de defeitos

relacionados à funcionalidade. Os objetivos específicos desta pesquisa são:

ˆ Caracterizar funcionalidades comumente representadas em protótipos de

interface de usuário em diferentes domínios de aplicação;

ˆ Elaborar instrumentos para inspeção de protótipos de interface com foco

na sua funcionalidade;

ˆ Apoiar a identificação de defeitos funcionais através de ferramenta automa-

tizada baseadas nos instrumentos de inspeção desenvolvidos nesta pesquisa.

1.2 Metodologia

A abordagem metodológica utilizada nesta pesquisa é aDesign Science Research

- DSR (Hevner and Chatterjee, 2010; Dresch et al., 2015). O DSR é um método

de pesquisa que operacionaliza a pesquisa baseada naDesign Science(Hevner

Capítulo 1. Introdução 6

et al., 2004), que por sua vez é um paradigma epistemológico para a realização

de pesquisas dedicadas ao estudo da construção de novos artefatos, sejam para

resolver problemas ou para melhorar os sistemas existentes. A ênfase na produção

de artefatos é a razão pela qual a DSR foi escolhida para este projeto, uma vez que

o mesmo visa contribuir com um artefato para a inspeção funcional de protótipos

da interface de usuário de maneira automatizada. As etapas deste projeto de

pesquisa seguem a visão de DSR descrita por Hevner (2007). Em seu modelo,

a DSR compreende três ciclos de atividades intimamente relacionados: Rigor,

Relevância e Design. A Figura 1.1 ilustra como os ciclos se relacionam entre si

e com os escopos do Ambiente, da Pesquisa e da Base de Conhecimento, com

atividades adaptadas ao contexto específico deste projeto de pesquisa.

O ciclo de Relevância compreende a realização de atividades entre os escopos

do Ambiente e da Pesquisa visando identificar um problema prático, definir o

domínio da pesquisa e avaliar o artefato produzido pela pesquisa no ambiente real.

O ciclo do Rigor é realizado visando identificar na literatura as bases teóricas

e metodológicas a serem utilizadas na pesquisa, bem como contribuir com uma

abordagem de inspeção funcional de interfaces para a base de conhecimento

existente. Já o ciclo do Design compreende as atividades de desenvolvimento e

aprimoramento iterativo do artefato da pesquisa, visando resolver o problema

previamente identificado no ciclo de Relevância.

Figura 1.1: Ciclos de pesquisa baseados na DSR

7 1.2. Metodologia

A abordagem de inspeção funcional de protótipos de interface desenvolvida

nesta pesquisa visa solucionar o problema de identificação tardia de defeitos

associados à funcionalidade em protótipos de interface de usuário. Ela se baseia em

um conjunto de instrumentos de inspeção funcional desenvolvidos no decorrer do

projeto: (i) um conjunto de heurísticas que descrevem funcionalidades comumente

encontradas em aplicações de software e (ii) umchecklistde propósito geral como

alternativa de inspeção para protótipos de funcionalidades não contempladas no

conjunto de heurísticas. A abordagem foi implementada na ferramenta GUIPFI

(Guided User Interface Prototype Functional Inspection), que oferece mecanismos

de seleção de instrumentos de inspeção adequados ao protótipo inspecionado, além

de suporte ao registro de defeitos e geração de relatórios de inspeção. A Figura

1.2 apresenta oVisual Abstract da solução elaborada nesta pesquisa, elaborado a

partir do modelo definido por Storey et al. (2017). OVisual Abstract apresenta o

escopo, o problema e a solução adotados nesta pesquisa na forma de uma Regra

Tecnológica.

Nesta pesquisa, a primeira atividade está situada noCiclo de Rigor e con-

sistiu na realização de uma revisão de literatura (Capítulo 2) visando encontrar

trabalhos existentes que tratam de técnicas de inspeção de protótipos de interface

de usuário, assim como técnicas de identificação de significado em protótipos

de interface. Nesta fase, também foi avaliada a aplicabilidade dessas técnicas ao

contexto desta pesquisa. Nesta revisão, foi possível verificar que as abordagens

existentes para inspeção de protótipos de interface focam-se nos aspectos de re-

gras de design e de usabilidade, não havendo ainda abordagens que suportem a

inspeção de protótipos de IU com foco na sua funcionalidade.

A segunda atividade do método de trabalho, localizada no escopo doCiclo

Relevância , foi a realização de uma pesquisa de opinião direcionada a profissi-

onais de diferentes funções em times de desenvolvimento de software (Capítulo

3). A pesquisa visou caracterizar com que finalidade os profissionais da indústria

de software utilizam protótipos de UI e como estes estão relacionados às etapas

do processo de desenvolvimento e às atividades de garantia da qualidade. Com

este estudo, foram identificadas diversas etapas do processo de desenvolvimento

de software que utilizam a prototipação, desde a ideação, a implementação e os

testes. Os resultados revelaram a importância de incluir protótipos de interface

Capítulo 1. Introdução 8

Figura 1.2: Visual Abstract da abordagem de inspeção funcional de protótipos
de interface.

em atividades de garantia da qualidade, de maneira a antecipar a identificação

de defeitos em protótipos de IU no processo de desenvolvimento de software,

reduzindo assim o seu impacto nas fases de desenvolvimento subsequentes. Os

resultados desta pesquisa foram publicados em De Macedo et al. (2022).

O Ciclo de Design foi realizado em três iterações, com o objetivo de desen-

volver uma abordagem de apoio à inspeção funcional de protótipos de interface

de usuário. Na primeira iteração do ciclo de Design (Capítulo 4), foi elaborado

um conjunto de heurísticas de funcionalidades comumente encontradas em siste-

mas de informação (De Macedo et al., 2022), com o intuito de utilizá-las como

instrumentos de apoio à inspeção funcional. O conjunto de heurísticas foi ela-

borado a partir da análise de protótipos de interface do ponto de vista de sua

funcionalidade, obtidos em um estudo que utilizou Pesquisa-Ação para avaliar

uma metodologia colaborativa para o ensino de Engenharia de Requisitos com o

desenvolvimento desoft skills adaptada ao contexto remoto (De Macedo et al.,

9 1.2. Metodologia

2024). As heurísticas foram avaliadas através de um grupo focal com especialis-

tas, que indicaram pontos importantes de melhoria, sugestões de unificação de

algumas heurísticas e a adição de novas funcionalidades ao catálogo.

A segunda iteração do Ciclo de Design (Capítulo 5) consistiu na inclusão de

novas funcionalidades no conjunto de heurísticas de funcionalidades recorrentes.

Além disso, foi desenvolvido o UIProtoCheck (De Macedo et al., 2023), um instru-

mento de inspeção de propósito geral para ser utilizado na inspeção de protótipos

de funcionalidades não descritas no conjunto de heurísticas. Estes instrumentos

de inspeção foram avaliados em um estudo em laboratório, onde os participantes

voluntários elaboraram projetos de aplicações de software com o uso de prototi-

pação de interface e utilizaram os instrumentos de inspeção para verificar se os

protótipos atendem aos requisitos estabelecidos para a funcionalidade represen-

tada. Os resultados deste estudo indicaram a necessidade de desenvolvimento de

um software de apoio às atividades de inspeção funcional.

Na terceira iteração do Ciclo de Design (Capítulo 6), foi desenvolvido um

artefato de software, o GUIPFI (Guided User Interface Prototype Functional

Inspection), o qual, dado um protótipo de interface, recomenda o instrumento

de inspeção funcional mais adequado para inspecioná-la. Além disso, o artefato

oferece suporte às atividades de inspeção, possibilitando a consulta e seleção

de instrumentos, o registro de defeitos encontrados e a geração de relatórios

de inspeção. Os resultados indicaram pontos de melhoria nas heurísticas, na

recomendação de instrumentos e nas funcionalidades da ferramenta.

A finalização da pesquisa ocorreu novamente no escopo do Ciclo de Relevância.

Ela consistiu em um estudo de campo na indústria de software (Capítulo 7), onde

o artefato refinado foi utilizado por profissionais de times de desenvolvimento de

diferentes perfis e empresas. Neste estudo, os profissionais utilizaram o software

elaborado para inspecionar protótipos de IU de projetos de software reais.

Em atenção aos princípios éticos que regem esta pesquisa, esta pesquisa foi sub-

metida ao Comitê de Ética em Pesquisa - CEP da Universidade Federal do Ama-

zonas - UFAM, sob o número CAAE 40937120.6.0000.5020, em 26/07/2021, tendo

sido aprovada no Parecer Consubstanciado N. 4.923.486, de 22 de agosto de 2021.

Devido a alterações significativas no escopo da pesquisa, um novo projeto de pes-

quisa foi submetido ao referido comitê, sob o número CAAE: 82963224.1.0000.5020,

Capítulo 1. Introdução 10

em 18/07/2024, tendo sido aprovado no Parecer Consubstanciado N. 7.072.722,

de 12 de setembro de 2024.

1.3 Organização do Trabalho

Os demais capítulos deste trabalho de pesquisa estão organizados da seguinte

maneira:

ˆ Capítulo 2 � Referencial Teórico e Trabalhos Relacionados: Apre-

senta o referencial teórico dos conceitos abordados nesta pesquisa, prototi-

pação de interfaces de usuário e inspeção de software, bem como trabalhos

relacionados às técnicas de inspeção existentes.

ˆ Capítulo 3 � Prototipação no Desenvolvimento de Software: Apre-

senta os resultados da pesquisa realizada com profissionais que trabalham

com desenvolvimento de software, visando caracterizar o uso de prototipação

na indústria de software.

ˆ Capítulo 4 � Catálogo de Heurísticas de Inspeção Funcional (CHIF):

Neste capítulo é apresentado o processo de elaboração das heurísticas de

inspeção funcional de interfaces de usuário utilizadas pela abordagem de

inspeção funcional apresentada nesta pesquisa.

ˆ Capítulo 5 � Expansão do Catálogo de Heurísticas de Inspeção

Funcional (CHIF-E): Este capítulo apresenta a metodologia utilizada

para ampliar a abrangência do CHIF com a inclusão de heurísticas para

novas funcionalidades, resultando no CHIF expandido (CHIF-E), e para a

elaboração dochecklist de uso geral para inspeção funcional de protótipos

de interface (UIProtoCheck).

ˆ Capítulo 6 � GUIPFI � Uma Ferramenta para Inspeção Funcional

de Protótipos de Interface: Apresenta o processo de desenvolvimento da

ferramenta GUIPFI e a avaliação da ferramenta no contexto da academia.

11 1.3. Organização do Trabalho

ˆ Capítulo 7 � GUIPFI: Estudo de Campo na Indústria de Software:

Apresenta o estudo de avaliação da abordagem implementada na ferramenta

GUIPFI na indústria de software.

ˆ Capítulo 8 � Conclusão e Trabalhos Futuros: Apresenta as principais

contribuições deste trabalho, suas limitações e oportunidades de pesquisas

futuras.

Capítulo 2

Referencial Teórico

Este capítulo apresenta o referencial teórico e a revisão de literatura adotados no

desenvolvimento deste projeto de pesquisa, que abordam conceitos relacionados

à prototipação de interfaces de usuário. O capítulo aborda ainda a revisão de

literatura de diversos temas relacionados à inspeção funcional de protótipos de

interface: métodos de inspeção de interfaces de usuário, abordagens automatizadas

de detecção de defeitos e identificação de significados em interfaces de software.

Em seguida, na seção Trabalhos Relacionados, são apresentadas as pesquisas que

guardam maior proximidade com o tema abordado nesta tese: a inspeção funcional

de protótipos de interface de usuário.

2.1 Prototipação de Interfaces de Usuário

Em atividades de engenharia de software, protótipos de interface de usuário são

modelos preliminares de funcionalidades de um software. Eles são utilizados com

diferentes finalidades, tais como demonstrar ideias, explorar soluções e elicitar

requisitos (Ogedebe and Jacob, 2012; Suranto, 2015; Karhapää et al., 2021).

No processo de desenvolvimento, a prototipação tem sido utilizada na elicita-

ção de requisitos ou na descoberta do produto de software. No entanto, alguns

trabalhos relatam seu uso também como instrumento na definição de iterações,

para auxiliar estimativas, para servir de referência para o desenvolvimento ou

para apoiar atividades de teste de usabilidade (Käpyaho and Kauppinen, 2015;

13 2.1. Prototipação de Interfaces de Usuário

Garcia et al., 2017; Behutiye et al., 2020). Além disso, estudos mostram que a

prototipação pode ser utilizada em dinâmicas de design que estimulem a criação e

o compartilhamento de múltiplas soluções, de forma a favorecer a aprendizagem,

a comunicação em equipe e a produção de resultados de maior qualidade (Dow

et al., 2011).

Bjarnason et al. (2021) apresentam um mapeamento sistemático da literatura

sobre prototipação, que resultou emframework para classificação de protótipos

(PAM - Prototyping Aspects Model), o qual os classifica segundo quatro aspectos:

o propósito para sua elaboração, o escopo, a forma de uso e a estratégia de

exploração de ideias durante a elaboração do protótipo. No aspecto do propósito,

oito tipos diferentes são apresentados: exploração, comunicação, desenvolvimento

incremental, melhoria da qualidade, viabilidade de mercado e técnica e usabilidade.

Em relação a aspectos de qualidade no desenvolvimento de software com o uso

de prototipação, há relatos do uso de prototipação para gerenciar requisitos de

qualidade. O trabalho de Behutiye et al. (2020), sobre tipos de recursos utilizados

para gerenciar requisitos de qualidade em desenvolvimento ágil, mostrou que a

prototipação em ciclos iterativos é utilizada na identificação de requisitos de

arquitetura, usabilidade e desempenho. Karhapää et al. (2021) relatam o uso de

mockupscomo uma das estratégias utilizadas pelas empresas de desenvolvimento

de software para elicitar requisitos de qualidade em situações em que o time de

desenvolvimento tem acesso direto a clientes ou usuários.

O trabalho de Käpyaho and Kauppinen (2015) apresenta um estudo de caso

para investigar como a prototipação pode ser utilizada para resolver problemas na

engenharia de requisitos em processos de desenvolvimento ágil. Seus resultados

mostram que os protótipos facilitaram a comunicação com clientes, porém, não

ajudaram na visão do projeto como um todo e nem melhoraram a atenção aos

requisitos de qualidade e não funcionais. Além disso, eles apresentam uma lista de

medidas para amenizar problemas normalmente relacionados ao uso de protótipos,

tais como fazer revisão da visão geral do projeto periodicamente, promover o

envolvimento do cliente e manter melhor controle de requisitos de qualidade e

não-funcionais.

Bellomo et al. (2013) analisaram os fatores de uso da prototipação com foco

em atributos de qualidade que e identificaram diversos aspectos da prática de

Capítulo 2. Referencial Teórico 14

prototipação que permitem uma resposta eficiente a mudanças, tais como a in-

tegração entre o processo ágil e a arquitetura, com colaboração entre arquiteto

e product ownerdurante o planejamento, a demonstração de protótipos e a aná-

lise do feedbacksobre o protótipo. A partir desses resultados, são apresentados

guidelinesde prototipação com foco na qualidade do software.

Apesar de ser utilizada para fins diversos, apoiando atividades que vão desde

a concepção de ideias até a gestão de requisitos de qualidade (De Macedo et al.,

2022), processos existentes não oferecem procedimentos explícitos para a utilização

da prototipação no desenvolvimento de software, sendo seu uso predominante-

mente empírico (Belikova et al., 2018; Bjarnason et al., 2023). Alguns trabalhos,

entretanto, apresentam ferramentas que visam apoiar a ideação de interfaces de

usuário. Por exemplo, o Guigle (Bernal-Cárdenas et al., 2019) implementa uma

abordagem de busca e recomendação de interfaces, utilizando textos de telas,

componentes de IU, nomes de aplicativos e cores para recuperar telas semelhantes

da loja Google Play. O Swire (Huang et al., 2019) propõe a recuperação de GUIs

a partir de esboços, baseando-se em um banco de dados construído com exemplos

do dataset Rico (Deka et al., 2017). Chen et al. (2020b) também investigam a

busca e recuperação de GUIs por meio dewireframes. Já o Rewire (Swearngin

et al., 2018) apoia a reutilização de exemplos ao converter capturas de tela em

representações vetoriais editáveis, possibilitando que designers manipulem compo-

nentes extraídos de maneira a agilizar a reconstrução e edição de interfaces a partir

de exemplos. De forma similar, o GUI2WiRe (Kolthoff et al., 2020) possibilita a

extração e composição automática de elementos emwireframes ao recuperar in-

terfaces gráficas a partir de requisitos expressos em linguagem natural, utilizando

um repositório de larga escala de GUIs mineradas de aplicativos.

Além de abordagens e ferramentas assistivas, diversas técnicas de detecção

de defeitos em interfaces de usuário foram desenvolvidas nas últimas décadas. A

próxima seção apresenta a revisão de literatura de técnicas de inspeção voltadas

para interfaces de usuário.

15 2.2. Técnicas de Inspeção de Interfaces de Usuário

2.2 Técnicas de Inspeção de Interfaces de Usuá-

rio

Técnicas de inspeção são métodos de engenharia de software para melhorar a

qualidade de requisitos, documentação e código, usados principalmente na ava-

liação de problemas de usabilidade em softwares (Wilson, 2013). As técnicas de

inspeção mais popularmente utilizadas para interfaces de usuário são as de inspe-

ção de usabilidade. Dentre elas, podemos destacar a avaliação heurística (Wilson,

2013), onde a interface é avaliada de acordo com um conjunto de princípios de

design(heurísticas), oriundos do senso comum. As Heurísticas de Nielsen (Niel-

sen, 1994a) constituem um dos métodos de inspeção de usabilidade de interfaces

mais amplamente utilizados. Ele é formado por dez heurísticas que descrevem

as características gerais desejáveis de uma interface de usuário e podem indicar

potenciais fontes de problemas relacionados à usabilidade.

Com base nessa abordagem, outros trabalhos foram propostos contendo heurís-

ticas voltadas para domínios de aplicação mais específicos. Dentre eles, podemos

citar o MIT2 (Valentim and Conte, 2014), uma técnica de inspeção paramockups

de interfaces de aplicações. Silva et al. (2015) propõem um conjunto de trinta

e três heurísticas de usabilidade para avaliar a usabilidade de aplicativos mó-

veis voltados para usuários idosos. As heurísticas avaliam fatores relevantes de

usabilidade para o público-alvo em aplicações de saúde e bem-estar: percepção,

cognição, habilidade, navegação, conteúdo edesignvisual. O HE4DWUX (Yerat-

ziotis and Zaphiris, 2018) é um conjunto de heurísticas para avaliar a experiência

do usuário e a acessibilidade de aplicações web para usuários surdos. O trabalho

de Baños Díaz and Zapata Del Río (2018) propôs um conjunto de heurísticas

para projetar interfaces seguras e satisfatórias para sites deinternet banking. Uma

revisão sistemática da literatura sobre heurísticas de usabilidade para aplicações

móveis é apresentada no trabalho de Da Costa et al. (2019), que propõe ainda

um conjunto de heurísticas de usabilidade para esse contexto. As heurísticas pro-

postas consideram o usuário, a tarefa realizada por ele e o contexto de uso, assim

como a carga cognitiva, como fatores importantes da usabilidade. Já Bashir and

Farooq (2019) propuseram um conjunto de 14 heurísticas de usabilidade de apli-

cativos móveis obtidas a partir do mapeamento entre problemas encontrados em

Capítulo 2. Referencial Teórico 16

um estudo com 800 usuários e conjuntos de heurísticas disponíveis na literatura.

Além da avaliação heurística, outros métodos de inspeção de interface são

voltados para avaliar a forma como os usuários interagem com as aplicações,

considerando os diversos perfis ou papéis que eles podem assumir ao usar o

software. O Walkthrough Cognitivo (Wharton, 1994) é um método de avaliação

de capacidade de aprendizagem no qual especialistas em UI percorrem a interface

e exploram todos os recursos oferecidos, avaliando, a cada tarefa executada, a

facilidade com que o usuário final entenderia o seu propósito e a sua forma de uso.

Uma variação desse método é oHeuristic Walkthrough(Sears, 1997), que combina

a Avaliação Heurística e o Walkthrough Cognitivo usando uma lista de tarefas

que especificam o que deve ser feito, mas não como deve ser feito, de maneira

a estimular a exploração da IU. A Inspeção da Interface do Usuário Baseada

em Perspectiva (Zhang et al., 1999; Shull et al., 2000) é outra abordagem que

seleciona diferentes aspectos de uso do software e define procedimentos de revisão

personalizados para eles, podendo detectar problemas de performance e eficiência,

além de usabilidade. Por fim, inspeções formais de usabilidade (Hollingsed and

Novick, 2007) revisam artefatos com um grupo de especialistas em fatores humanos

que executam cenários de tarefas na interface como se fossem usuários de diferentes

perfis. Os defeitos encontrados são avaliados pelo grupo e encaminhados aos

desenvolvedores para correção.

Finalmente, alguns métodos buscam avaliar diferentes aspectos da comunica-

ção entre sistema e usuário. A avaliação de comunicabilidade é um tipo específico

de inspeção de interfaces de usuário que busca verificar como a interface comu-

nica ao usuário o que pode ser feito, o que está acontecendo e o que aconteceu

após uma ação. O Método de Inspeção Semiótica (Semiotic Inspection Method-

SIM)(De Souza et al., 2006) avalia como a interface transmite a lógica do sistema

por meio de sinais estáticos e dinâmicos presentes na interface, como links, ícones

e botões, e como os usuários entendem esses sinais. Seu objetivo é identificar dife-

rentes formas de uso do software e possíveis interpretações de seu comportamento.

Para isso, é utilizada a documentação da aplicação associada à análise explora-

tória e aprofundada em partes bem definidas do software. Derivado do Método

de Inspeção Semiótica, oframework SIDE - Semiotic Interface Sign Design and

Evaluation (Islam et al., 2020) foi desenvolvido para projetar e avaliar a comuni-

17
2.3. Abordagens Automatizadas para Detecção de Defeitos em Interfaces de

Software

cabilidade de sinais de interface web e de aplicativos móveis. Esteframework é

orientado à identificação de problemas de usabilidade em elementos de interface

relacionados à sua intuitividade, que não são captados por técnicas de inspeção de

usabilidade convencionais. Já oCollaborative Critique(Lucas and Babaian, 2015)

é um método de inspeção de usabilidade que avalia o software como um parceiro

colaborativo do usuário na realização de tarefas, ao invés de avaliar se o usuário

consegue usar a interface de forma eficiente. Ele é conduzido por especialistas

como umwalkthrough, que realizam um conjunto definido de tarefas e avaliam

os aspectos de encontrabilidade de opções, esforço e confusão, apoio contextual,

feedbackde progresso e suporte a erros.

As técnicas de inspeção apresentadas se mostraram eficazes na detecção de

problemas de usabilidade, interação e violação de regras de design. No entanto, elas

não cobrem a avaliação de aspectos relacionados à funcionalidade representada

nas interfaces e são mais adequadas para protótipos interativos ou interfaces

implementadas. Além disso, elas requerem um tempo considerável de preparação

e necessitam de avaliadores especialistas.

2.3 Abordagens Automatizadas para Detecção

de Defeitos em Interfaces de Software

Embora amplamente utilizados, os métodos manuais de inspeção de interfaces

apresentam limitações relacionadas ao custo, ao tempo necessário e à dependência

de avaliadores especializados. Visando reduzir essas limitações, diversas aborda-

gens automatizadas têm sido propostas, com o objetivo de acelerar o processo

de detecção de defeitos, aumentar a cobertura da avaliação e reduzir a subjeti-

vidade característica das análises humanas. Essas soluções incluem modelos de

falhas para viabilizar a automação da identificação de defeitos (Lelli et al., 2015;

Marenkov et al., 2016),frameworksque combinam múltiplas análises e fornecem

feedbackem tempo de design (Charfi et al., 2015; Cheng, 2016; Lee et al., 2020) e

ferramentas que realizam a análise automática em busca de defeitos (Packevi£ius

et al., 2018; Moran et al., 2018; Yang et al., 2021).

Dentre os modelos propostos visando fornecer bases para a elaboração de

Capítulo 2. Referencial Teórico 18

ferramentas de detecção de defeitos, podemos destacar o trabalho de Lelli et al.

(2015), que apresenta um modelo de falhas de GUI para apoiar atividades de teste

de software e o desenvolvimento de ferramentas de teste. O modelo descreve falhas

em duas categorias: falhas de interface de usuário, como problemas estruturais,

estéticos e de apresentação de dados GUI, e falhas de interação, como a execução

de ações incorretas, ausência de ações esperadas e problemas defeedbacknas

interações. Seu objetivo é o de apoiar o desenvolvimento e a avaliação de ferra-

mentas de teste automatizado. Já o modelo proposto por Marenkov et al. (2016)

define conceitos e uma estrutura para definição de diretrizes de usabilidade, de

maneira a possibilitar a avaliação automática e imediata de atributos da interface

de usuário, como estrutura de navegação, densidade de conteúdo e legibilidade de

textos, durante a implementação. A avaliação do modelo e da estrutura proposta

mostrou que são adequados para avaliar a maioria das interfaces de usuário de

acordo com as diretrizes definidas ainda durante a fase de desenvolvimento.

Em relação aosframeworksde detecção de defeitos em interfaces, Charfi et al.

(2015) desenvolveram o RITA (useR Interface evaluaTion frAmework), umfra-

meworkmodular para avaliação de interfaces de usuário que integra como técnicas

de análise a inspeção automática de conformidade com diretrizes ergonômicas

configuráveis, a análise de dados de interação capturados em tempo real e a avali-

ação subjetiva por meio de questionários aplicados aos usuários. Desta forma, ele

consegue detectar automaticamente defeitos relacionados à violação de diretrizes

de design, problemas de fluxo de interação, desempenho de tarefas e percepção

dos usuários quanto à qualidade da interface. No entanto, os autores apontam

limitações como a necessidade de instrumentação do código-fonte da aplicação

para capturar os dados de interação.

O MAUi - Mobile App Usability Inspection (Cheng, 2016), por sua vez, é um

framework para inspeção de usabilidade de aplicativos móveis em fases iniciais

de desenvolvimento no contexto delean startups. Ele incorporou regras de Ava-

liação Heurística (Nielsen, 1994b) em uma abordagem que coordena a inspeção

com atividades de preparação, execução baseada em casos de uso e avaliação

por meio de questionários. Os resultados do estudo de avaliação doframework

demonstraram alta confiabilidade na detecção de defeitos de usabilidade associa-

dos à navegabilidade, clareza de rótulos e adequação de fluxos de interação. Já

19
2.3. Abordagens Automatizadas para Detecção de Defeitos em Interfaces de

Software

o GUIComp (Lee et al., 2020) é uma ferramenta de auxílio à prototipagem de

GUI que oferecefeedbackautomatizado e em tempo real sobre defeitos visuais

e estruturais durante o processo de design de interfaces gráficas. A ferramenta

pode recomendar interfaces de usuário semelhantes, avaliar aspectos visuais, como

alinhamento de componentes, tamanho de elementos e consistência de layout, e

mostrar pontos no protótipo que chamam mais a atenção do usuário.

Outros trabalhos desenvolveram abordagens automatizadas de detecção de

defeitos em GUIs. A TLDD - Text and Layout Defect Detector(Packevi£ius

et al., 2018) é uma abordagem de análise automatizada para detecção de defeitos

que impactam a legibilidade, a compreensão das funcionalidades e a consistência

visual da interface. Para isso, a abordagem se baseia em uma lista de regras

de análise estática e combina a execução dinâmica da aplicação com a análise

automatizada de capturas de tela para identificar problemas como textos ambíguos

ou inconsistentes, mal posicionados ou sobrepostos.

Outra ferramenta de análise automatizada de interface de usuário é o GVT

- GUI Violation Tester (Moran et al., 2018), que comparamockupsde design

com implementações reais de interfaces de aplicativos móveis, com o objetivo

de garantir a fidelidade entre a especificação visual e o produto final. A técnica

emprega visão computacional para detectar discrepâncias visuais entre o design

planejado e a interface implementada, identificando defeitos como desalinhamen-

tos, uso incorreto de cores e diferenças de tamanho entre componentes. O trabalho

de Yang et al. (2021) apresenta um detector automatizado dedesign smellsem

interfaces gráficas de usuário, com o objetivo de melhorar a clareza visual e a orga-

nização dos elementos de interface.Design smellssão características encontradas

em designs de interface que violam boas regras de design (Yang et al., 2021).

A ferramenta analisa UIs complexas para identificar violações em sete dimen-

sões e quatro aspectos, como agrupamentos confusos de componentes, densidade

excessiva de informações e uso inadequado de hierarquias visuais.

Os modelos,frameworkse ferramentas apresentados nesta seção demonstram

o potencial de abordagens automatizadas em apoiar o processo de inspeção, au-

xiliando a detecção de diferentes tipos de problemas, como defeitos visuais, es-

truturais ou de usabilidade. No entanto, há uma carência de abordagens que

identifiquem problemas de natureza funcional, como a ausência ou inadequação

Capítulo 2. Referencial Teórico 20

de funcionalidades esperadas pelos usuários, o que pode acarretar a propagação

de defeitos relacionados à funcionalidade para as demais fases do processo de de-

senvolvimento. A próxima seção apresenta a revisão de literatura de trabalhos que

buscam identificar aspectos relacionados ao significado em interfaces de usuário.

2.4 Identificação de Significado em Interfaces de

Usuário

A identificação de significado em interfaces de usuário tem sido tema de traba-

lhos recentes tanto na área de Engenharia de Software quanto na de Interação

Humano-Computador, visando principalmente o desenvolvimento de aplicações

de aprendizado de máquina para entendimento visual de interfaces, acessibili-

dade, automação e análise de design. As abordagens apresentadas nesta revisão

de literatura concentram-se na anotação de significado em diferentes níveis de

granularidade, desde a identificação de características semânticas em elementos

individuais da interface, como ícones, componentes ou botões, passando por ano-

tações estruturais e identificação de regiões funcionais de interfaces, como menus

e rodapés, até a caracterização da interface como um todo.

Em relação à identificação e anotação automática de significado em componen-

tes individuais, como ícones, links, botões e campos de texto, diversos trabalhos

foram desenvolvidos visando o aprimoramento de recursos de acessibilidade, de

geração de descrições automáticas de interfaces e de suporte a ferramentas de

design (Liu et al., 2018; Zang et al., 2021; Chen et al., 2022; Sunkara et al., 2022).

O trabalho de Liu et al. (2018) descreve um método de aprendizagem de

anotação semântica de elementos presentes em imagens de interfaces de aplicati-

vos móveis, especificamente botões textuais e ícones, além de alguns elementos

estruturais, como menus e rodapés. Essa abordagem utiliza um dicionário lexical

de componentes, ícones e botões obtidos após a análise de 720 telas e 73.000

elementos de interface. As anotações podem ser usadas para realizar operações

baseadas em semântica, como busca de GUIs com o mesmo significado ou busca

de sequências de telas relacionadas a uma mesma funcionalidade emdatasetsde

mineração de interação.

21 2.4. Identificação de Significado em Interfaces de Usuário

Zang et al. (2021) apresentam um método multimodal de anotação de signifi-

cado de ícones de aplicativos móveis que combina imagens, contexto textual ao

redor do ícone e alguns atributos textuais presentes na hierarquia de componentes

da UI para inferir sua função. Chen et al. (2022) ampliaram a identificação de

ícones de aplicações móveis através da elaboração de um modelo multimodal de

classificação em aprendizagem de máquina. O modelo utiliza um dataset anotado

contendo 327.879 ícones, associados à informação contextual (textos por perto) e

símbolos modificadores nos ícones, visando prover uma classificação de ícones mais

completa, que abranja também a classificação de ícones menos frequentemente

encontrados em aplicações.

Sunkara et al. (2022) também exploraram a anotação semântica de interfaces

móveis. Sua pesquisa produziu um dataset elaborado manualmente contendo

mais de 500.000 anotações de ícones, que associam componentes de interface a

rótulos textuais que descrevem sua funcionalidade. A pesquisa visou possibilitar o

desenvolvimento de aplicações com interpretações mais completas do significado

de interfaces, indo além da identificação de tipos de componentes.

Além da identificação de significado em elementos isolados, outros trabalhos

têm se dedicado a analisar o significado de áreas ou regiões das interfaces, buscando

reconhecer agrupamentos de elementos que, juntos, representam uma unidade

funcional ou conceitual. O trabalho de Akpinar and Ye³ilada (2017) apresenta uma

abordagem de identificação automática de elementos visuais e regiões em páginas

web e de seu significado semântico em nível estrutural, tais como cabeçalho, barra

lateral ou mecanismo de busca. Para identificar a funcionalidade, foi criado um

dataset anotado por usuários que classificaram áreas de páginas web reais, pré-

divididas automaticamente em blocos visuais, de acordo com sua percepção do

papel funcional de cada região, como navegação, conteúdo ou publicidade.

Já o trabalho de Wu et al. (2021) propôs um método de engenharia reversa

de modelos de UI a partir de capturas de tela, com o objetivo de reconstruir uma

representação hierárquica da interface. A partir dessa representação, é possível

segmentar a tela em regiões com papéis distintos, rotulando grupos de compo-

nentes que representam aspectos estruturais, como barra de ferramentas, tabela,

navegação inferior.

De maneira similar, o WebUI (Wu et al., 2023) é umdataset com 400.000

Capítulo 2. Referencial Teórico 22

páginas web e metadados anotado com informações semânticas estruturais e de

elementos individuais extraídas automaticamente da árvore de acessibilidade dos

navegadores. Esse dataset possibilita o desenvolvimento de modelos de apren-

dizado de máquina destinados ao entendimento visual de interfaces de usuário,

como a análise de padrões de regiões de tela e de layout, a classificação de telas

com base na aparência visual, a geração de listas de rótulos mais prováveis para

uma interface ou a análise de similaridade entre diferentes interfaces.

Por fim, algumas iniciativas têm buscado atribuir significado à interface como

um todo, categorizando telas inteiras segundo tópicos ou funcionalidades globais.

O datasetEnRICO (Leiva et al., 2020) é um conjunto rotulado formado por 1.460

capturas de tela de aplicativos e suas respectivas informações estruturais. As telas

são uma amostra dodataset RICO (Deka et al., 2017) e foram categorizadas

em 20 tópicos de design de UI, que fornecem uma compreensão de alto nível da

intenção de cada tela e podem ser utilizadas em aplicações de apoio ao design de

interfaces de usuário.

Já a abordagem de Chen et al. (2020a) usa a identificação semântica para

descobrirtags ausentes que possam ser usadas para descrever imagens em reposi-

tórios de compartilhamento de imagens de design. A solução apresentada descreve

uma técnica baseada em aprendizado profundo que combina imagens e metada-

dos do design de interface de aplicativos para sugerirtags que complementem

a descrição de significado de UIs em cinco diferentes aspectos: plataforma, cor,

funcionalidade da aplicação, funcionalidade da tela e layout da tela. Além disso,

oferece um método de visualização para destacar quais partes das imagens deram

origem àtag sugerida.

Em outro trabalho mais recente, Wang et al. (2021) propuseram oScreen2Words,

uma abordagem de resumo automático de interfaces móveis que utiliza aprendi-

zado multimodal (imagem da tela, a estrutura hierárquica da interface e o texto

visível na tela) para gerar descrições textuais de alto nível sobre o propósito de

uma tela de aplicativo. Esse trabalho contribui também com umdatasetanotado

de telas de aplicações móveis associadas a descrições feitas por anotadores hu-

manos. Esse trabalho pode ser utilizado no desenvolvimento de aplicações como

acessibilidade, recuperação de interfaces e geração automática de documentação.

Os trabalhos revisados nesta seção apresentam diversas abordagens de carac-

23 2.5. Trabalhos Relacionados

terização de significado em interfaces de usuário, abrangendo níveis elementares

(componentes individuais), intermediários (regiões funcionais) e globais (UI como

um todo). No entanto, observa-se que a maioria dessas abordagens está voltada

para a classificação de elementos ou telas com base em características visuais ou

estruturais, com foco em aplicações como acessibilidade, recuperação de design ou

entendimento visual. Poucos trabalhos buscam conectar essa identificação semân-

tica com a verificação da presença das funções esperadas a partir de requisitos

ou cenários de uso. Neste sentido, a abordagem proposta neste projeto de pes-

quisa visa contribuir para a caracterização semântica de interfaces de usuário ao

apresentar uma abordagem baseada em heurísticas para identificação de defeitos

funcionais em protótipos de interface de usuário. As heurísticas utilizadas na

abordagem descrevem diferentes funcionalidades através de suas características

específicas e podem ser utilizadas em inspeções funcionais rápidas de protóti-

pos, com ênfase na detecção de defeitos relacionados à ausência ou representação

inadequada das funcionalidades especificadas.

2.5 Trabalhos Relacionados

Estudos recentes têm apresentado métodos e ferramentas visando antecipar a

identificação de defeitos em protótipos de interface de usuário, abordando dife-

rentes aspectos de garantia da qualidade, tais como a verificação de consistência

entre requisitos e protótipos baseada em BDD (Rocha Silva et al., 2019) ou LLMs

(Kolthoff et al., 2024), a análise automatizada de interfaces visando identificar

problemas de agrupamento semântico de elementos de interação (Duan et al.,

2023) e violações de heurísticas de usabilidade (Duan et al., 2024). Esta seção

apresenta os quatro trabalhos mais relacionados à abordagem assistida de identi-

ficação de defeitos funcionais em protótipos de interface proposta neste projeto

de pesquisa.

Rocha Silva et al. (2019) propuseram uma abordagem automatizada para

verificar a consistência entre requisitos funcionais descritos em formatoBehavior-

Driven Development(BDD) e protótipos de interface de usuário. A solução utiliza

uma ontologia (Silva et al., 2017) para mapear semanticamente os comportamen-

tos descritos nos requisitos com os elementos presentes nos protótipos, permitindo

Capítulo 2. Referencial Teórico 24

a validação automática, a nível de interação, de cenários de uso desde as primei-

ras etapas do desenvolvimento. Para isso, os requisitos funcionais precisam estar

formalizados na DSL (Domain-Specific Language) Gherkin1, com cenários no for-

mato Given-When-Then, especificando, respectivamente, condições de ocorrência,

eventos e resultados esperados. A ferramenta analisa cada cenário BDD através

do XML do protótipo, verificando se os campos existem no protótipo, se os nomes

são consistentes com os requisitos e se os tipos de campo utilizados para entrada

de dados são compatíveis com o comportamento esperado.

Embora essa abordagem automatize a verificação de cenários de histórias

de usuário e elementos de protótipos, ela depende fortemente da existência de

especificações formais completas e de protótipos estruturados em formatos como

XML, que possam ser lidos por ferramentas de automatização, o que não é o

cenário comumente encontrado na indústria de desenvolvimento de software. Além

disso, os tipos de verificação realizadas são limitados a rótulos, campos e tipos de

elementos presentes na interface. Por outro lado, esta tese apresenta a ferramenta

GUIPFI para a realização de inspeções funcionais assistidas em protótipos de

interface de diferentes tipos, incluindo os de baixa fidelidade ou não estruturados.

Esta ferramenta utiliza um catálogo de heurísticas de design elaborado a partir do

conhecimento tácito de funcionalidades recorrentes em sistemas de informação, o

que possibilita a detecção de defeitos funcionais mesmo na ausência de requisitos

formalizados, podendo ser utilizada em cenários da indústria de software com

diferentes graus de maturidade em engenharia de requisitos. Aspectos de avaliação

de elementos de exibição, entrada de dados e interação são cobertos pelochecklist

de inspeção funcional (UIProtoCheck).

Duan et al. (2023) propuseram um conjunto de cinco diretrizes de agrupamento

semântico, com foco na detecção automatizada de problemas de organização ló-

gica de elementos em interfaces de usuário. Sua abordagem utiliza protótipos

com hierarquia de layout estruturada e elementos com descrições textuais (p.

ex.: XML de Android, RICO dataset) a partir dos quais são elaboradas métri-

cas baseadas emembeddingssemânticos (Sentence-BERT) e análise declusters

para identificar violações como agrupamentos incoerentes, redundância e falta de

rótulos explicativos.

1https://cucumber.io/docs/gherkin/reference/

25 2.5. Trabalhos Relacionados

A solução apresentada por Duan et al. (2023) oferece contribuições importantes

na verificação automatizada de aspectos estruturais da interface, com foco na

coerência semântica entre elementos de UI. Nesse sentido, a abordagem proposta

neste trabalho complementa tais esforços ao propor uma abordagem voltada para

a validação de aspectos funcionais de protótipos, possibilitando a identificação de

defeitos relacionados à representação, ausência ou inadequação de funcionalidades

esperadas, e ampliando o escopo de verificações precoces que podem ser realizadas

visando à qualidade de interfaces de usuário.

Recentemente, outro trabalho de Duan et al. (2024) propôs uma abordagem

para a avaliação automática demockupsde interface de usuário com uso deLarge

Language Models(LLMs), especificamente o modelo GPT-42. A proposta consiste

em um plugin para o Figma3 que permite realizar avaliações automáticas com

base em diferentes conjuntos de heurísticas selecionadas pelo usuário, como as

heurísticas de usabilidade de Nielsen (Nielsen, 1994b), princípios de design visual

e diretrizes de agrupamento semântico (Duan et al., 2023). A aplicação fornece

ao LLM uma representação domockupem formato JSON junto com o conjunto

de heurísticas selecionadas para identificar violações de design. A ferramenta

utiliza um processo iterativo no qual designers podem revisar omockupcom base

na avaliação gerada pela ferramenta, rodar novamente a avaliação e continuar

refinando a interface.

Os resultados mostraram um bom desempenho na detecção de problemas de

alinhamento, espaçamento e tamanho de elementos, de representações textuais e

de agrupamento semântico, mas mostraram limitações em relação à avaliação de

usabilidade com heurísticas de Nielsen (Nielsen, 1994b), especialmente naquelas

cujas avaliações dependem de interações ou fluxos, tais comoAjuda e Documen-

tação ou Prevenção de Erros. A principal contribuição desta tese, por outro lado,

é a de oferecer suporte à detecção precoce de defeitos funcionais em protótipos de

interface, incluindo os relacionados à ausência de características essenciais ou in-

consistências na representação de funcionalidades conhecidas, independentemente

da existência de estrutura formal (como JSON) ou integração com ferramentas

específicas de design.

2https://openai.com/index/gpt-4-research/
3https://www.figma.com

Capítulo 2. Referencial Teórico 26

Kolthoff et al. (2024) apresentaram avanços significativos ao apresentar uma

abordagem semiautomatizada baseada em LLMs para validação entre requisitos

funcionais, descritos como história de usuário, e protótipos de interface de usuário.

O método realiza a validação ao transformar os protótipos em uma representação

textual abstrata e, a partir dessa abstração, utiliza LLMs para classificar cada

história de usuário como implementada ou não. Além disso, o sistema sugere

componentes de interface adequados para apoiar a implementação de requisitos

ainda ausentes.

No entanto, a abordagem de Kolthoff et al. (2024) depende de requisitos

formalizados como histórias de usuário, o que não costuma ser uma realidade

comumente encontrada na indústria de desenvolvimento de software, e se limita

a analisar protótipos representados com estrutura passível de análise textual,

como os representados em DSLs de ferramentas de prototipação. Outra limitação

dessa abordagem é o fato de que ela não cobre falhas funcionais que vão além da

presença ou ausência de componentes diretamente mapeáveis. Em contraste, a

proposta desta tese adota um enfoque baseado em conhecimento de domínio, utili-

zando heurísticas de design funcional (CHIF/CHIF-E) e umchecklistde inspeção

semântica (UIProtoCheck), o que permite a análise de protótipos de diferentes

tipos e fidelidades, incluindo aqueles não estruturados ou desprovidos de especifi-

cações formais, comowireframes em formato de imagem ou papel. Enquanto a

abordagem de Kolthoff et al. (2024) busca identificar a cobertura de requisitos

explícitos, este projeto de pesquisa é voltado para a detecção de defeitos funcio-

nais relacionados à representação, ausência ou inconsistência de funcionalidades

esperadas, considerando tanto requisitos explícitos quanto conhecimento tácito

de domínio.

A análise desses trabalhos evidencia o avanço recente nas soluções voltadas à

identificação de problemas em protótipos de interface de usuário, com destaque

para abordagens que exploram desde a validação automatizada de requisitos for-

mais até a geração defeedbackvisual baseado em heurísticas e aprendizado de

máquina. No entanto, tais abordagens carecem de suporte à avaliação da repre-

sentação de funcionalidades em protótipos de interface. Além disso, observa-se

que essas iniciativas apresentam limitações em termos de aplicabilidade, escopo

funcional ou dependência de artefatos formais e estruturados. A proposta desta

27 2.6. Originalidade e Relevância da Pesquisa

tese busca oferecer uma alternativa a essas limitações através de uma abordagem

de inspeção funcional que integra conhecimento de diferentes domínios de aplica-

ção, heurísticas para funcionalidades básicas e específicas e suporte de software

para guiar inspeções voltadas à identificação precoce de defeitos funcionais, inde-

pendentemente do tipo de protótipo ou do nível de formalização dos requisitos.

2.6 Originalidade e Relevância da Pesquisa

Como visto nos trabalhos apresentados nas seções anteriores, há um conjunto

consolidado de técnicas de avaliação de usabilidade, ferramentas voltadas à verifi-

cação de interfaces implementadas, além de diversas abordagens de caracterização

de significado em interfaces de usuário. Entretanto, observa-se uma lacuna rele-

vante na literatura de abordagens que ofereçam suporte à verificação sistemática

de funcionalidades ainda na fase de prototipação.

Visando preencher a lacuna identificada, a presente pesquisa propõe uma abor-

dagem de inspeção funcional voltada para protótipos de interface, com o objetivo

de apoiar desenvolvedores de software na identificação precoce de falhas e com-

plementar as técnicas tradicionais de avaliação, evitando o avanço de defeitos

funcionais não identificados para fases mais custosas do processo de desenvolvi-

mento. Desta forma, a presente pesquisa oferece contribuições teóricas e práticas

para ampliar o alcance das técnicas de detecção antecipada de defeitos em in-

terfaces de usuário, através de uma abordagem adaptável a diferentes contextos

que possibilita o desenvolvimento de interfaces mais robustas desde suas etapas

iniciais.

Capítulo 3

Ambiente: Prototipação no

Desenvolvimento de Software

De acordo com a literatura, a prototipação de interface de usuário é um recurso

amplamente utilizado nas diversas fases do desenvolvimento de um software, prin-

cipalmente na engenharia de requisitos, para explorar ideias e facilitar a comuni-

cação com o cliente (Käpyaho and Kauppinen, 2015). Além disso, protótipos são o

artefato mais utilizado para melhorar a comunicação de times de desenvolvimento

de software (Garcia et al., 2017).

Além das atividades relacionadas à elicitação de requisitos, os protótipos tam-

bém são utilizados no desenvolvimento incremental, na melhoria da qualidade,

além de análises de viabilidade de mercado, técnica e de usabilidade (Bjarnason

et al., 2021). Bellomo et al. (2013) descrevem um processo de desenvolvimento

onde protótipos esprints são desenvolvidos paralelamente, de forma a atrelar

requisitos e atributos de qualidade. Outros trabalhos também utilizam a proto-

tipação em processos iterativos para elicitar requisitos de qualidade (Behutiye

et al., 2020; Karhapää et al., 2021).

Diante dos diferentes usos da prototipação de IU relatados na literatura, foi

realizada uma pesquisa de opinião com profissionais da indústria de software,

através da aplicação de um questionário eletrônico, visando caracterizar como

eles têm utilizado a prototipação e qual a relevância de seu uso para o processo

de desenvolvimento de software.

29 3.1. Metodologia

Especificamente, o estudo realizado buscou entender: (i) como a prototipação

tem sido utilizada; (ii) de que maneira ela está inserida no processo de desenvolvi-

mento de software; e (iii) de que forma ela é utilizada nas atividades de garantia

da qualidade de software. A análise destes três aspectos possibilitou avaliar a

relevância do uso da prototipação no processo de desenvolvimento em aspectos

relacionados à qualidade de software. O resultado desta pesquisa foi publicado

em De Macedo et al. (2022).

3.1 Metodologia

O método de pesquisa adotado neste estudo é formado por duas etapas: Pesquisa

de Opinião (Glasow, 2005) e Análise Qualitativa com procedimentos iniciais de

codificação daGrounded Theory(Corbin and Strauss, 2014). A pesquisa de opi-

nião é um método de pesquisa utilizado para coletar dados e descrever aspectos

específicos de uma população dada. Esta pesquisa seguiu os procedimentos indi-

cados por Linåker et al. (2015) e teve como objetivo verificar como a prototipação

é utilizada; como se integra ao processo de desenvolvimento adotado e como esse

uso se reflete na qualidade dos produtos de software desenvolvidos. Desta forma,

foram elencadas as seguintes questões de pesquisa:

QP1: Com qual finalidade os protótipos de interface são elaborados?

QP2: Como a prototipação está inserida no processo de desenvolvi-

mento de software?

QP3: Como a prototipação está relacionada com atividades de garan-

tia da qualidade dos produtos de software desenvolvidos?

A partir destas questões de pesquisa, foram elaboradas as perguntas da pes-

quisa de opinião, começando com questões mais gerais sobre o perfil do partici-

pante, seguidas de perguntas mais específicas voltadas aos aspectos investigados

para responder às questões de pesquisa definidas. O tempo de resposta do questi-

onário foi estimado em 15 minutos.

A pesquisa de opinião foi realizada por meio de um questionário eletrônico1,

1Material suplementar: https://doi.org/10.6084/m9.figshare.20407329

Capítulo 3. Ambiente: Prototipação no Desenvolvimento de Software 30

composto de três partes. Aprimeira parte compreende o Termo de Consenti-

mento Livre e Esclarecido (TCLE), que descreve os objetivos da pesquisa, riscos,

benefícios e procedimentos adotados, e cuja aceitação pelo participante é obriga-

tória para que ele proceda às demais perguntas do questionário. O Apêndice B

apresenta o TCLE utilizado nesta pesquisa.

A segunda parte contém perguntas de caracterização do perfil dos partici-

pantes e da empresa para a qual trabalham. Estas perguntas envolvem: o tempo

de experiência, o grau de escolaridade, a finalidade da empresa, a quantidade de

desenvolvedores da empresa, a quantidade de pessoas no time de desenvolvimento

e os papéis desempenhados no time. Aterceira parte do questionário compre-

ende perguntas tanto abertas quanto fechadas relacionadas ao uso de prototipação.

As questões desta parte são apresentadas na Tabela 3.1.

Para avaliar o questionário, foi realizado um estudo piloto com um voluntário,

profissional da indústria de desenvolvimento de software com mais de 30 anos

de experiência. Durante o preenchimento do questionário, o participante relatou

algumas dúvidas em relação às perguntas, que foram ajustadas para remover

ambiguidades e torná-las mais claras.

O público-alvo desta pesquisa é formado por profissionais de times de desen-

volvimento da indústria de software que utilizam prototipação em suas atividades

de trabalho. Desta forma, o questionário foi divulgado noLinkedIn2. Além disso,

o link para a pesquisa foi enviado via mensagem direta para profissionais da rede

de contatos dos pesquisadores envolvidos neste trabalho que atendessem ao perfil

da pesquisa. Também foi solicitado que estes profissionais encaminhassem olink

do questionário para sua rede de contatos que atendessem ao mesmo perfil.

As respostas do questionário sobre o uso de prototipação foram analisadas

com os seguintes procedimentos de codificação daGrounded Theory(Corbin and

Strauss, 2014): codificação aberta (open coding) e codificação axial. Na codificação

aberta, são definidos previamente os aspectos que guiam a análise, a partir dos

quais os dados obtidos são rotulados com códigos criados segundo estes aspectos.

No caso deste estudo, a análise inicialmente foi realizada pelo primeiro pesquisador,

que a conduziu com base nas questões de pesquisa, de acordo com os seguintes

aspectos: diferentes formas de uso de protótipos, o papel da prototipação no

2https://www.linkedin.com

31 3.1. Metodologia

Tabela 3.1: Perguntas do questionário relativas ao uso de prototipação.

ID Pergunta Questão de Pesquisa

Q1 No seu trabalho, sua equipe costuma elaborar
protótipos das telas do software a ser desenvol-
vido?

�

Q1.1 Como os protótipos da interface são elaborados?QP2
Q1.2 Conte-nos sobre o processo de elaboração desses

protótipos. Como a demanda chega à equipe e
quais as primeiras ações tomadas?

QP2

Q1.3 Durante a elaboração dos protótipos de tela,
existe comunicação com o cliente? Conte-nos
como essa comunicação ocorre e qual o objetivo.

QP1 e QP2

Q1.4 Quantas vezes o protótipo de telas elaborado é
apresentado ao cliente?

QP2

Q1.5 O que acontece se o cliente discordar de algo que
foi projetado no protótipo de telas?

QP2 e QP3

Q1.6 Os protótipos de telas que foram elaborados du-
rante o projeto são utilizados em outras fases do
desenvolvimento?

QP3

Q1.7 Se você respondeu "Sim"na pergunta anterior,
conta pra gente em quais momentos ele é uti-
lizado durante o processo de desenvolvimento.

QP1 e QP3

Q1.8 Seu time realiza alguma ação para verificar se
o software implementado corresponde ao que foi
especificado nos protótipos de telas e outros ar-
tefatos de desenvolvimento do produto? Se sim,
como é feita essa validação?

QP3

Q1.9 Você utiliza os protótipos de telas para automa-
tizar alguma etapa do desenvolvimento? De que
forma?

QP1 e QP3

Q1.10 Na sua opinião, a prototipação de telas tem al-
guma utilidade no seu processo de desenvolvi-
mento? Por quê?

QP1 e QP2

Q2 Que outra forma de comunicação você usa para
conversar com seu cliente sobre a solução a ser
desenvolvida?

QP2

Capítulo 3. Ambiente: Prototipação no Desenvolvimento de Software 32

processo de desenvolvimento e a prototipação relacionada a atividades de garantia

da qualidade do produto de software. Os resultados foram revisados por outros

dois pesquisadores. Um deles possui mais de 4 anos de experiência em estudos

qualitativos e ensino de qualidade de software, além de ampla experiência na

indústria. O outro pesquisador envolvido tem mais de 8 anos de experiência em

estudos qualitativos e educação em qualidade de software. Como resultado, foram

identificados conceitos-chave relativos ao uso de prototipação na indústria, tais

como especificação de requisitos, análise de negócio, protótipos de baixa fidelidade,

protótipos de alta fidelidade e seus diferentes usos.

Na codificação axial (Corbin and Strauss, 2014), foi analisado como os códigos

obtidos durante a codificação aberta se relacionam entre si, formando uma rede

de conceitos e relações. A partir dessas relações, foi possível obter uma visão de

como a prototipação está inserida no processo de desenvolvimento de software,

com qual finalidade ela é utilizada e de que forma ela está relacionada às ativi-

dades de garantia da qualidade. Os resultados desta análise são detalhados na

seção seguinte. Uma imagem geral da rede de códigos resultante da análise quali-

tativa e uma lista de códigos e respectivas citações estão disponíveis no material

suplementar3.

3.2 Resultados

Após a divulgação do questionário, foram obtidas 56 respostas, das quais 39

(69,6%) alegam utilizar protótipos no desenvolvimento de software. Foram ob-

tidas 42 respostas de 24 empresas diferentes, sendo que 14 participantes não

identificaram a empresa onde trabalham. Das empresas identificadas, cinco em-

presas possuíam mais de um respondente, conforme apresentado na Tabela 3.2.

Em relação ao papel que os participantes exercem no time de desenvolvimento,

foram obtidas respostas principalmente de analistas de sistemas, gerentes de

projeto, programadores e desenvolvedores júnior, pleno e sênior. A Figura 3.1

mostra a proporção de cada papel.

Quanto ao tempo de experiência dos participantes, foi verificada uma maior

3Material suplementar: https://doi.org/10.6084/m9.figshare.20407329

33 3.2. Resultados

Tabela 3.2: Lista de empresas com mais de um respondente.

Empresa Quantidade

E1 3
E2 9
E4 3
E6 4
E10 3

Figura 3.1: Papéis dos participantes nos times de desenvolvimento.

ocorrência de participantes com experiência de até 10 anos, sendo que essa frequên-

cia vai diminuindo conforme aumenta o tempo de experiência. A Figura 3.2 ilustra

esta distribuição.

Em relação à finalidade das empresas dos participantes, 30 (53,6%) traba-

lham para empresas de desenvolvimento de software. Outras finalidades que se

destacam são de funcionários de empresas cuja finalidade principal não é a de

desenvolvimento de software (comércio de bens e serviços) e de empresas que

terceirizam a prestação de serviços de desenvolvimento de software. Há também

Capítulo 3. Ambiente: Prototipação no Desenvolvimento de Software 34

Figura 3.2: Tempo de experiência dos participantes.

participantes de empresas que desenvolvem e comercializam softwares de prate-

leira, universidades, institutos de pesquisa, empresas de realização de cursos, de

administração de bancos de dados e do setor público, com um respondente cada,

como ilustrado na Figura 3.3.

Figura 3.3: Finalidade das empresas dos participantes.

Nas próximas seções serão apresentados os resultados das demais questões

apresentadas no questionário, tomando por base cada uma das questões de pes-

35 3.2. Resultados

quisa definidas anteriormente.

3.2.1 QP1: Finalidade da Prototipação

Nesta seção, são apresentados os resultados relacionados às motivações dos de-

senvolvedores para utilizarem a prototipação, coletados das respostas às questões

Q1.2, Q1.7 e Q1.9. Além disso, apresenta-se ainda a percepção destes desenvol-

vedores em relação aos benefícios obtidos com o uso da prototipação, coletada

da questão Q1.10. A Figura 3.4 apresenta um trecho da rede de códigos criada

neste trabalho durante a análise qualitativa. Nela, são apresentados os códigos

relacionados à elaboração de protótipos de baixa fidelidade (Walker et al., 2002)

que representam as finalidades com que os protótipos são elaborados.

As respostas fornecidas pelos participantes mostraram que os protótipos são

bastante utilizados nas fases iniciais do desenvolvimento. As principais finalidades

são as de elicitação de requisitos ou de histórias de usuário, exploração de ideias e

soluções pela equipe de desenvolvimento, de forma a alinhar expectativas. Também

são utilizados para analisar soluções existentes e tecnologias que serão necessárias

para desenvolver o produto:�Durante este processo da criação do protótipo de

baixa fidelidade faz-se brainstorming com a equipe para obter ideias e o que será

preciso estudar de novas tecnologias ou componentes para o projeto. (...) Depois é

feita uma pesquisa benchmarking pelo Designer para entender melhor as soluções

existentes.� (P1).

Figura 3.4: QP1 - Finalidade de uso da prototipação - protótipos de baixa fideli-
dade.

Após a elaboração dos protótipos iniciais, eles são apresentados aos clientes

Capítulo 3. Ambiente: Prototipação no Desenvolvimento de Software 36

para validação dos requisitos, das regras de negócio e dos fluxos de navegação:

�Com a prototipação, nos reunimos com o cliente para refinar os requisitos e o

fluxo de navegação.�(P10); �É nesta fase que as prototipações entram para validar

as regras de negócio e então entrar no ciclo do dev team.�(P41). A partir desta

primeira etapa, os protótipos são utilizados na elaboração de outros artefatos,

como diagramas de casos de uso, elaboração dobacklogde produto, planejamento

de sprints e definição de tarefas para os desenvolvedores:�É utilizado durante a

criação do backlog e no planejamento da Sprint.�(P1).

Alguns participantes relataram que os protótipos são inicialmente criados sem

muitos detalhes (baixa fidelidade) para depois das primeiras validações com o

cliente serem complementados:�Com base no protótipo de baixa fidelidade, o

designer inicia a criação das telas de alta fidelidade.�(P1). Essas atualizações

são feitas para cobrir outras funcionalidades do software ou refiná-lo em desenhos

gráficos de alta fidelidade, protótipos navegáveis ou protótipos funcionais na lin-

guagem de programação-alvo, conforme relata o participante P29:�Os protótipos

são complementados para cobrirem todos os cenários mapeados e serem utilizados

nas etapas seguintes.�.

No caso de protótipos navegáveis, o protótipo é fornecido ao cliente para

utilização, como citam os participantes P43 e P55:�P43 - É enviado um link do

protótipo, onde o cliente pode fazer anotações em cada tela. Ao final de cada sprint,

é marcada uma reunião para avaliar tudo o que foi feito.�; �P55 - (...) sempre

informamos o cliente e deixamos que ele mesmo experimente antes de começarmos

a fazer algo.�. Essa avaliação permite a realização de discussões mais ricas entre

desenvolvedores e clientes sobre os requisitos da aplicação a ser desenvolvida:�Os

protótipos são o passo inicial para especificação visual e de experiência de uso

do software. (...) É um passo importante para fomentar discussões ricas entre os

envolvidos.� (P29).

Este tipo de protótipo é utilizado para que os clientes possam ter uma visão

mais profunda do software e terem discussões mais ricas sobre o produto a ser

desenvolvido. A Figura 3.5 ilustra os códigos relacionados às finalidades de uso

de protótipos de alta fidelidade.

As versões de protótipos mais complexas são aproveitadas em alguns casos

na etapa de implementação para criar estruturas de código reaproveitáveis ou

	Introdução
	Objetivos
	Metodologia
	Organização do Trabalho

	Referencial Teórico
	Prototipação de Interfaces de Usuário
	Técnicas de Inspeção de Interfaces de Usuário
	Abordagens Automatizadas para Detecção de Defeitos em Interfaces de Software
	Identificação de Significado em Interfaces de Usuário
	Trabalhos Relacionados
	Originalidade e Relevância da Pesquisa

	Ambiente: Prototipação no Desenvolvimento de Software
	Metodologia
	Resultados
	QP1: Finalidade da Prototipação
	QP2: Prototipação no Processo de Desenvolvimento
	QP3: Prototipação e Qualidade de Software

	Discussão
	Lições
	Limitações

	Considerações Finais

	Catálogo Heurísticas de Inspeção Funcional (CHIF)
	Introdução
	Obtenção de Conjunto de Protótipos
	Método de Especificação de Heurísticas de Inspeção Funcional
	Estágio Exploratório
	Estágio Experimental
	Estágio Descritivo
	Estágio Correlacional
	Estágio de Seleção
	Estágio de Especificação
	Estágio de Validação
	Estágio de Refinamento
	Heurísticas de Inspeção Funcional

	Validação das Heurísticas com Especialistas
	Preparação e Execução
	Resultados

	Considerações Finais
	Limitações

	Expansão do Catálogo de Heurísticas de Inspeção Funcional (CHIF-E)
	Introdução
	Adição de novas funcionalidades ao CHIF
	Planejamento
	Anotação Iterativa em Lote
	Adjudicação - Especificação de novas heurísticas

	UIProtoCheck: Um checklist genérico para inspeção funcional de protótipos de interface
	Avaliação
	Experimento Controlado: CHIF-E X UIProtoCheck
	Planejamento
	Execução

	Estudo Experimental: Inspeção de Projetos de Interface Utilizando o CHIF-E
	Planejamento
	Execução

	Resultados
	QP1: Suporte do CHIF-E e do UIProtoCheck à inspeção funcional de protótipos de Interface de Usuário
	QP2: Tipos de defeitos encontrados durante a inspeção funcional de protótipos de interface usando o CHIF-E

	Ameaças à Validade
	Considerações Finais

	GUIPFI – Uma Ferramenta para Inspeção Funcional de Protótipos de Interface
	Design da Ferramenta GUIPFI
	Recomendação
	Assistente de Inspeção
	Avaliação do desempenho do LLM na sugestão de heurísticas relevantes

	Avaliação da GUIPFI na Academia
	Planejamento
	Execução
	Resultados

	Considerações Finais

	GUIPFI: Estudo de Campo na Indústria de Software
	Planejamento
	Melhorias nas heurísticas do CHIF-E
	Melhorias na GUIPFI
	Ajustes no prompt do Recomendador

	Execução
	Resultados
	Ameaças à Validade
	Considerações Finais

	Conclusão
	Contribuições da Pesquisa
	Artigos Publicados

	Trabalhos Futuros

	Referências Bibliográficas
	Catálogo de Heurísticas de Inspeção Funcional - CHIF-E
	Funcionalidades Básicas
	Funcionalidades Específicas

	Termo de Consentimento Livre e Esclarecido – TCLE
	Artefatos do Primeiro Ciclo de Design
	Cenário da Avaliação das Heurísticas por Especialistas
	Roteiro de Atividades do Grupo Focal

	Artefatos do Segundo Ciclo de Design
	Protótipos de interface inspecionados no experimento controlado
	Instruções para condução da inspeção

	Artefatos do Terceiro Ciclo de Design
	Instruções para Realização da Atividade de Inspeção
	Material da Aula - Inspeção Funcional de Protótipos de Interface de Usuário

	Artefatos do Estudo de Validação na Indústria
	Carta Convite
	Instruções para realização do estudo

