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RESUMO

Este trabalho focou-se no desenvolvimento de um modelo computacional como uma alter-
nativa para estudar as características de sistemas determinados por relações genealógicas
através da teoria das redes complexas. O modelo consiste na construção de uma rede
complexa cujos nós são separados em gerações. Os nós de uma geração interagem uns
com os outros para gerar a próxima geração em uma taxa de crescimento pré-determinada,
e este ciclo se repete até que a rede atinja o limite de número de nós. Foram analisados
os coeficientes de Pearson e as distribuições de grau das redes. Os resultados revelaram
que o coeficiente de Pearson é quase sempre negativo, com valores oscilantes. A taxa de
oscilação está relacionada à taxa de crescimento da rede. Quanto às distribuições de grau,
constatou-se a existência de pelo menos dois picos, um sempre em k = 2, e o outro de
valor variável mas sempre maior que 2. O padrão das distribuições de grau não é trivial
nem tão pouco foi reportado em literatura científica, assemelhando-se a uma superposição
de gaussianas.

Palavras-chave: Sistemática Filogenética, Redes Complexas, Redes Filogenéticas, Mode-
lagem Computacional, Distribuição de Grau, Coeficiente de Pearson



ABSTRACT

This work focused on the development of a computational model as an alternative
approach to study the characteristics of systems determined by genealogical relationships
through the theory of complex networks. The model consists of constructing a complex
network whose nodes are separated into generations. The nodes of one generation
interact with each other to produce the next generation at a predetermined growth
rate, and this cycle repeats until the network reaches the maximum number of nodes.
Pearson coefficients and degree distributions of the networks were analyzed. The results
revealed that the Pearson coefficient is almost always negative, with oscillating values. The
oscillation rate is related to the growth rate of the network. As for the degree distributions,
the existence of at least two peaks was observed — one always at k = 2, and the other
at a variable value, but always greater than 2. The pattern of the degree distributions is
non-trivial and has not been previously reported in the scientific literature, resembling a
superposition of gaussians.

Keywords: Phylogenetic Systematics, Complex Networks, Phylogenetic Networks,
Computational Modelling, Degree Distribution, Pearson Coefficient
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CAPÍTULO 1

INTRODUÇÃO

Relações de parentesco constituem um dos temas mais fundamentais e estruturantes

não apenas da sociedade humana, onde são ensinadas desde a mais tenra idade, mas

de todos os sistemas biológicos. Na Biologia, essas relações transcendem o aspecto

social para se tornarem a base da própria evolução da vida, servindo como arcabouço

para compreender os processos de descendência com modificação que moldaram a

biodiversidade [1; 2]. A característica determinante das relações de parentesco é a ligação

de uma entidade a pelo menos uma outra por meio da relação de origem, onde uma

entidade nova é gerada a partir de uma anterior.

Redes complexas emergiram como ferramentas matemáticas poderosas para modelar

tais relações de parentesco. Estas estruturas, compostas por nós (vértices) e ligações (ares-

tas), permitem representar quantitativamente as conexões entre entidades biológicas [3; 4].

Enquanto os nós podem representar táxons, espécies ou indivíduos, as ligações podem

codificar relações de descendência, similaridades morfológicas ou genéticas, criando assim

um modelo matemático adequado para representar as relações filogenéticas [5; 6].

Este trabalho situa-se na intersecção entre duas áreas do conhecimento: a sistemática

filogenética (ou cladística) e a teoria das redes complexas. A cladística, desenvolvida inicial-

mente por Willi Hennig [7; 8], fornece o marco teórico para inferir relações de parentesco

evolutivo entre organismos. Na Seção 2.1 apresenta-se uma contextualização histórica

desde os trabalhos fundadores de Linnaeus [9] e Darwin [1] até o desenvolvimento da

sistemática filogenética moderna, enquanto a Seção 2.2 detalha os princípios teóricos da

abordagem cladística.
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Paralelamente, a teoria das redes complexas desenvolveu-se como disciplina mate-

mática independente, com contribuições seminais de Erdős e Rényi [10; 11] e aplicações

pioneiras em Biologia por Harary [12; 13]. A Seção 3.1 traça um panorama historiográfico

do desenvolvimento desta teoria, desde seus primórdios na teoria dos grafos [14] até

suas aplicações contemporâneas em sistemas biológicos [3? ]. A Seção 3.2 apresenta os

fundamentos matemáticos das redes complexas, e a Seção ?? ilustra sua aplicação em

problemas biológicos através do estudo de redes de disseminação de doenças [15].

A motivação central deste trabalho reside na oportunidade de aplicar o arcabouço

teórico e metodológico das redes complexas para abordar questões em sistemática fi-

logenética. Embora ambas as áreas tenham se desenvolvido de forma relativamente

independente, sua integração oferece perspectivas promissoras para a análise de dados

filogenéticos em larga escala e para a identificação de padrões macroevolutivos [6]. Esta

abordagem interdisciplinar alinha-se com a tradição de avanços significativos na Biologia

provenientes da aplicação de ferramentas da Física e da Matemática [16; 17].

No Capítulo 4 concretiza-se esta proposta através do desenvolvimento de um modelo

baseado em redes para análise de dados filogenéticos (Seção 4.1), com os algoritmos

computacionais detalhados na Seção 4.2 e os resultados preliminares apresentados na

Seção 4.3. Esta abordagem expande trabalhos anteriores em redes filogenéticas [6] e dá

continuidade a investigações iniciais em redes cladísticas [18].

As considerações finais e perspectivas futuras são discutidas no Capítulo 5, destacando

o potencial desta linha de pesquisa para contribuir tanto para o avanço do conhecimento

em Sistemática Filogenética quanto para o desenvolvimento de metodologias inovadoras

na interface entre Biologia e Ciências Exatas.



CAPÍTULO 2

SISTEMÁTICA FILOGENÉTICA

O estudo comparativo de animais e plantas surge naturalmente da necessidade de

saber as necessidades básicas desses serem na agricultura e pecuária, além de ser um

tema de grande interesse para maioria, senão para todos os grupos de seres humanos ao

longo da história. É difícil citar um povo que não tem mitos cosmogônicos sobre a criação

dos animais, plantas, e seres humanos, ou sobre a grande diversidade de seres vivos.

Vacas, cães, gatos, cabras, e cavalos, por exemplo, claramente têm alguma similaridade

aos seres humanos, visto que todos produzem leite e têm pelos; já cobras, lagartos,

crocodilos e tartarugas têm pouco em comum conosco, porém muito em comum entre si,

mas por que? Esse grande interesse nas relações entre os diversos animais culminou nos

estudos de filogenia e na sistemática filogenética.

2.1 Introdução Histórica

Os primeiros estudos sobre a relação entre seres vivos remontam aos antigos gregos,

particularmente a Aristóteles, que classificou organismos vivos com base em suas similari-

dades físicas em um sistema hierárquico e fixo, assim iniciando o campo hoje conhecido

como taxonomia1. Herdando parcialmente o idealismo platônico, Aristóteles propõe que

cada ser vivo possui uma essência teleológica, ou animus (alma) nas palavras dele, que

determina as características, comportamentos, e funções no mundo dos seres vivos e
1A palavra foi criada em 1813 pelo botânico suíço A. P. de Candolle e é formada irregularmente a partir do grego τάξις, taxis

(ordem), e νóµoς, nomos (lei), conectados pela forma francesa -o-; a forma regular seria taxinomia, como usada no ressurgimento
grego ταξινoµία
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não-vivos. É importante ressaltar que a essência de um ser é imutável, isto é, apesar de

que cada ente pode variar um pouco em relação aos seus semelhantes, todos eles são

desvios de um arquétipo ideal. Isto baseou, muitos séculos depois, o fixismo, ideia ainda

mantida viva nos dias de hoje por negadores da ciência de que os seres vivos serão e

sempre foram como são hoje.

Quanto ao aspecto teleológico, no que tange à Biologia, Aristóteles propôs que a

essência dos seres os atribuía uma função ou objetivo específico que foi projetado para

cumprir, e que essa função ou objetivo é uma parte indissociável de sua natureza. Por

exemplo, o propósito de uma muda ou fruto é se transformar em uma árvore, e o propósito

de um pássaro é voar e se reproduzir. Para Aristóteles, as diversas partes de um ser

vivo, como seus órgãos e tecidos, foram projetadas especificamente para cumprir esse

propósito, e que elas trabalham de forma coordenada para alcançar esse objetivo.

A teleologia teve um impacto significativo na Biologia nos séculos que se seguiram.

Por muitos séculos, cientistas e filósofos acreditaram que os seres vivos foram proposi-

tadamente projetados por uma força superior, e que suas diversas estruturas e funções

faziam parte de um grande plano. Essa ideia de design proposital e inteligente levou ao

desenvolvimento da teologia natural, um campo de estudo que buscava compreender o

plano divino por trás do mundo natural.

O sistema de classificação de Aristóteles categorizou organismos vivos em dois grupos

principais: plantas e animais. Dentro de cada grupo, os organismos foram divididos

em categorias menores com base em suas características físicas. Por exemplo, as plantas

foram divididas em árvores, arbustos e ervas, com base em seu tamanho e hábitos de

crescimento. Animais foram divididos em grupos como aves, mamíferos e peixes, com

base em suas características físicas, com os seres humanos como pináculo da vida.

Tomar o ser humano como o pináculo não se trata de metáfora no caso do sistema

aristotélico de classificação. Neste modelo, há de fato uma hierarquia de seres vivos

com o ser humano no topo. Tal hierarquia, chamada de scala naturae, é organizada pelo

quão complexos são os seres. Plantas, fungos, e corais estariam na base dessa hierarquia,

enquanto animais, capazes de maior movimentação e de afetar o mundo ao seu redor em

grande escala, estariam no topo [19].

No século XVIII, o botânico sueco Carolus Linnaeus desenvolveu o sistema de no-

menclatura binomial para nomear e classificar espécies com base em suas características
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físicas. Seu sistema foi amplamente adotado e se tornou a base para a taxonomia moderna,

sendo usado até hoje. O sistema de Linnaeus é fortemente baseado nas ideias fixistas de

Aristóteles [9; 20], ainda sendo usado hoje em dia, apesar de que com muitas modificações

para se adaptar ao paradigma da evolução das espécies, descrita por Darwin.

No século XIX, a teoria da evolução por seleção natural de Charles Darwin forneceu um

novo quadro para entender as relações entre organismos. Enquanto o primeiro a rejeitar o

fixismo e propor que as espécies mudam ao longo do tempo foi o naturalista francês Jean-

Baptiste Lamarck, foi Darwin quem entendeu que a ancestralidade das espécies pode ser

inferida ao estudar suas semelhanças e diferenças [1]. Enquanto houve grande resistência

à teoria evolutiva por parte de pessoas fora da academia, principalmente por motivos

religiosos, zoólogos e botânicos em geral reconheceram a validade do darwinismo [21,

p.202-226]. Todavia, uma crítica consistente contra a qual Darwin não tinha argumentos

era sobre a natureza do mecanismo de transmissão de características, hoje conhecido

como genética. Darwin, afinal, não tinha uma compreensão extensa sobre o processo de

herança de características, baseando-se principalmente no modelo de blending inheritance

(herança por mistura). Os primeiros estudos de genética feitos por Mendel, enquanto

contemporâneos aos estudos de Darwin, não ganharam projeção até o início do século XX.

A união da teoria da evolução com os estudos de Mendel deu origem ao que é conhecido

como Teoria Sintética da Evolução, ou neo-darwinismo, a qual emergiu somente na década

de 1930 [2].

Com a difusão da teoria sintética da evolução, houve uma mudança de paradigma na

taxologia. O século XX presenciou o surgimento de três grandes escolas de pensamento

nesta área: a escola genética, a escola fenética, e a escola da sistemática filogenética. A

escola genética foi a primeira a ser fundada, surgindo por volta da década de 1930, e

seus defensores foram justamente alguns dos principais proponentes do neo-darwinismo

[22, p.1-7]. A escola fenética por sua vez tem como um dos trabalhos fundadores o livro

Numerical Taxonomy (Taxonomia Numérica), publicado em 1963 [23]. Por último e mais

importante, a escola da sistemática filogenética teve seu primeiro trabalho publicado

apenas em alemão ainda em 1950 [7], com os primeiros trabalhos em inglês circulando

a partir de 1966, sendo desenvolvida por diversos pesquisadores e se tornando a forma

dominante de estudo de taxonomia nos dias de hoje.

A escola genética, também conhecida como escola da sistemática evolutiva, ou escola
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gradista, foi fundada pelos pesquisadores George Gaylord Simpson, John B.S. Haldane,

Ronald Fisher, Sewall Wright, e Theodosius Dobzhansky. A escola genética enfatizou

a importância de usar tanto dados anatômicos quanto moleculares para reconstruir a

história evolutiva dos organismos, acreditando que as relações evolutivas poderiam ser

inferidas estudando o acúmulo gradual de pequenas mudanças na composição genética

das populações ao longo do tempo. Eles também reconheceram a importância da evolução

convergente, que é a evolução independente de características semelhantes em organismos

não relacionados devido a pressões ambientais similares [24]. Todavia, a escola genética

não apresentou uma metodologia concisa e objetiva, fazendo inferências demasiado

subjetivas.

A escola fenética, por outro lado, fundada pelo botânico holandês Pieter Sneath e

pelo zoólogo britânico Robert Sokal, enfatizou a importância de usar métodos quanti-

tativos para analisar as semelhanças e diferenças entre organismos, baseados em suas

características físicas. Eles defendiam que as relações evolutivas poderiam ser inferidas

agrupando organismos com base em sua semelhança geral, sem necessariamente levar em

conta sua história evolutiva [23]. O método fenético consistia em fazer tabelas de espécies

e características e determinando números para as características de cada espécie. Por

exemplo, se a espécie 1 tivesse uma antena com 10 segmentos, a entrada da tabela seria

10, se uma outra espécie tivesse antena com 11 segmentos, seria 11, e caso uma terceira

espécie não tivesse antena, 0. Um exemplo ilustrativo é a Tabela 2.1.

Tabela 2.1: Exemplo simples de uma tabela de características por espécies usada na fenética.

Características: A B C D E
Espécie 1 9 7 8 6 2

Espécie 2 9 7 8 6 2

Espécie 3 7 1 2 8 0

Espécie 4 3 1 9 7 3

Espécie 5 7 1 2 8 0

A qual resulta na árvore de semelhanças dada na Figura 2.1.
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Figura 2.1: Árvore de semelhanças relativas entre as cinco espécies. As semelhanças foram calculadas usando o método de
agrupamento hierárquico nativo da biblioteca SciPy do Python.

O problema da escola fenética foi justamente ignorar a teoria evolutiva, visto que

há fenômenos que levam espécies diferentes a ter características semelhantes mesmo

que sejam evolutivamente distantes. Um equivalente cotidiano seria supor que todas as

pessoas de rosto parecido são irmãs, um claro absurdo. Um exemplo clássico de grupos

semelhantes, mas cujas semelhanças deram-se apenas devido a pressões ambientais

semelhantes, são os grupos dos tubarões, dos golfinhos, e dos ictiossauros. Os três

grupos são compostos por espécies aquáticas predadoras, ou seja, o ambiente seleciona

os predadores mais eficientes, isto é, os indivíduos com anatomia mais hidrodinâmica.

Como os três grupos têm hábitos e comportamentos similares, caçam da mesma maneira,

e são da linhagem dos vertebrados, o formato do corpo, ou bauplan, das espécies dos três

grupos são similares.
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Figura 2.2: Semelhanças entre tubarões, ictiossauros, e golfinhos.

Fonte: [25]

Em 1950, o entomologista alemão Willi Hennig publicou o artigo fundador da sistemática

filogenética, ou cladística, a qual trazia uma nova abordagem para a classificação sistemática.

Nas décadas seguintes, Hennig e aqueles que aderiram à cladística desenvolveram uma

teoria sólida e uma metodologia concisa e objetiva. Suas ideias revolucionaram o campo

da classificação sistemática e ainda são amplamente usadas hoje.

Hennig argumentou que as escolas gradista e fenética eram falhas, a primeira pela sua

falta de uma metodologia objetiva, e a segunda, porque não levavam em conta as histórias

evolutivas únicas de cada grupo de organismos. Ele propôs que as relações evolutivas

poderiam ser inferidas identificando características compartilhadas, ou sinapomorfias,

que são características únicas de um grupo particular de organismos e evoluíram de

um ancestral comum, em vez de mera semelhança, como fizeram os da escola fenética.
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Para tal, adotou-se o método de tabela dos fenéticos, porém com a mudança teórica e

metodológica de tratar características não meramente como semelhanças, mas como algo

que em determinado momento da evolução do grupo foi uma novidade. A diferença

metodológica é explicada em detalhes na seção 2.2.

Apesar de ter surgido entre a fundação das escola gradista e fenética, a abordagem

de Hennig representou uma convergência de ideias de ambas as escolas. Como a escola

genética, Hennig reconheceu a importância de se basear na teoria da evolução natural,

usando tanto dados morfológicos quanto moleculares, à medida que a tecnologia permitiu,

para reconstruir as relações evolutivas. Como a escola fenética, Hennig reconheceu a

importância de usar métodos quantitativos para analisar as semelhanças e diferenças

entre organismos. No entanto, a abordagem de Hennig foi além de ambas as escolas [8].

2.2 Conceitos Básicos da Sistemática Filogenética

Hennig começou o seu modelo partindo da dinâmica populacional em animais. Em

uma população de animais quaisquer, a principal relação entre os indivíduos é a relação

genética entre pais e filhos, ou tocogenética, como Hennig nomeou [8, p.17-32]. Ressalta-se

novamente que estamos nos limitando a animais por enquanto, visto que a reprodução

dialética do reino animal é uma das, senão a forma mais simples de reprodução no

que tange a modelos. Plantas, protozoários, fungos, e bactérias todos apresentam auto-

inseminação, reprodução assexuada, e outros fenômenos que complicam (apesar de

não impossibilitarem, principalmente no contexto de redes filogenéticas) a modelagem.

A figura 2.3 representa as relações tocogenéticas em uma população. Nela, fêmeas

são representadas por triângulos e machos por quadrados, ou vice-versa. Cada linha

representa uma geração, e a relação temporal dá-se de baixo para cima.
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Figura 2.3: Relações tocogenéticas ao longo das gerações de uma espécie. Machos são representados por triângulos e fêmeas, por
quadrados. As gerações mais antigas são representadas embaixo e as mais novas, em cima.

Fonte: [26]

Gradualmente e aleatoriamente, com o passar das gerações, ocorrem mutações em

alguns indivíduos, as quais se traduzem em uma ou mais características. Caso as mutações

sejam negativas, esses indivíduos se reproduzem menos ou morrem, mas caso essas

mutações sejam vantajosas ou neutras, elas gradualmente vão se fixando na população.

Quando uma característica nova se torna dominante na população, estando presente na

maioria ou totalidade dos indivíduos, ela recebe o nome de caráter.
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Figura 2.4: Processo de fixação de um caráter em uma população. O caráter é representado pela cor vermelha.

Fonte: [26]

O surgimento de caracteres ao longo de uma linhagem recebe o nome de anagênese2.

A divisão de uma população ocorre frequentemente na natureza, seja pelo surgimento

de uma barreira geográfica3, seja pela adaptação de diferentes partes da população a

diferentes nichos ecológicos4, seja por seleção sexual5, ou até mesmo por hibridização6. A

este fenômeno de ramificação dá-se o nome de cladogênese7.
2O termo "anagênese" é derivado das palavras gregas "ana", que significa "para cima" ou "para trás", e "gênese", que significa

"origem" ou "criação". O termo foi introduzido pela primeira vez pelo biólogo alemão Ernst Mayr em 1954 em seu livro "Change of
genetic environment and evolution".

3Isolamento geográfico: Quando uma população de uma espécie é fisicamente separada do restante da espécie, pode ocorrer
evolução divergente devido a diferentes pressões seletivas, deriva genética e taxas de mutação. Com o tempo, a população isolada
pode acumular diferenças genéticas e se tornar uma espécie distinta.

4Diferenciação ecológica: Quando diferentes subpopulações de uma espécie se adaptam a diferentes nichos ecológicos, como fontes
de alimento ou habitats diferentes, elas podem passar por evolução divergente e eventualmente se tornarem diferentes espécies.

5Seleção sexual: Quando a seleção sexual impulsiona a evolução do isolamento reprodutivo entre subpopulações de uma espécie,
pode levar à cladogênese. Por exemplo, se as fêmeas preferem machos com certas características, pode ocorrer a evolução de diferentes
formas morfológicas de machos em diferentes subpopulações que não são mais capazes de se reproduzir entre si.

6Hibridização: Eventos de hibridização podem levar à formação de novas espécies se a prole híbrida estiver reprodutivamente
isolada de ambas as populações parentais e puder estabelecer uma população distinta.

7O termo "cladogênese" deriva das palavras gregas "klados", que significa "ramo", e "genesis", que significa "origem" ou "criação".
O termo foi introduzido pela primeira vez pelo biólogo alemão Ernst Mayr em 1954 em seu livro "Change of genetic environment and
evolution".
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Figura 2.5: Processo de cladogênese. A barreira, indicada pela seta, pode tanto ser física quanto genética, e até mesmo cultural.

Fonte: [26]

Hennig nomeou a relação de descendência entre a população antes da cladogênese e a

que ocorre depois de relação filogenética8. O processo anagenético então passa a ocorrer

nas duas linhagens novas, e caso não interrompido, as duas populações se diferenciarão

tanto ao longo das gerações que uma não poderá mais se reproduzir com a outra, ou

seja, se tornam espécies diferentes. Ao processo pelo qual novas espécies são formadas

a partir de uma espécie ancestral dá-se o nome de especiação, e ao processo pelo qual as

populações de uma espécie se tornam mais diferentes ao longo do tempo dá-se o nome

de divergência evolutiva, processo este responsável por toda a biodiversidade do planeta.
8O termo "filogenético" vem das palavras gregas "phulon", que significa "raça"ou "tribo", e "genea", que significa "origem" ou

"descendência". O termo foi introduzido pela primeira vez em 1866 pelo biólogo alemão Ernst Haeckel em sua obra "Generelle
Morphologie der Organismen" (Morfologia Geral dos Organismos) para descrever as relações evolutivas entre diferentes organismos
[27].
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Figura 2.6: Os indivíduos das populações B, à esquerda, e C, à direita, por não mais se reproduzirem entre si, adquirem caracteres
diferentes, assim gradualmente se diferenciando. Os caracteres novos são representados pelas cores cinza e preto.

Fonte: [26]

A especiação é um processo que ocorre ao longo de milhares de gerações, levando

milhões de anos. Todavia, em organismos de reprodução rápida como bactérias, a

dinâmica acima descrita pode ser vista em tempo real. A divisão de uma população em

duas, chamada na cladística de dicotomia, é um postulado metodológico, não uma lei

imutável das dinâmicas populacionais.
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Figura 2.7: Relações tocogenéticas de uma população de animais que sofre anagênese, cladogênese, e eventualmente especiação.

Fonte: [26]
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Notemos que a Figura 2.7, que representa as relações tocogenéticas, pode ser redu-

zida à Figura 2.8, que representa as relações filogenéticas entre as espécies original e

descendentes.

Figura 2.8: Representação simples da relação entre a população ancestral A e as populações de duas espécies distintas B e C que
vieram da população A.

Fonte: HENNIG, W. Phylogenetic Systematics. [S.l.]: University of Illinois Press, 1979. [8, p.18]

A este tipo de representação das relações filogenéticas dá-se o nome de árvore filogenética,

ou cladograma, visto que essencialmente estes gráficos representam as cladogêneses. O

formato do cladograma em nada afeta a informação apresentada, desde que a topologia

seja conservada, isto é, desde que os pontos de ramificação (ou nós) e as espécies ligadas

a esses grupos de ramificações sejam conservados. Os grupos que vêm de um mesmo nó

são chamados de grupos-irmãos. Na Figura 2.9, por exemplo, A é grupo-irmão de B, e o

grupo de A e B juntos é grupo-irmão de C.
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Figura 2.9: Cladogramas em formatos diferentes, mas que representam as mesmas relações filogenéticas. Os nós estão destacados
dentro de círculos e os grupos-irmãos, dentro das elipses.

Fonte: Elaborada pelo autor com base em [28].

Deve-se ressaltar que as relações filogenéticas, enquanto neste contexto restritas apenas

a populações de indivíduos, na verdade são muito mais gerais. Se, ao invés de uma

população ancestral e suas descendentes, for trabalhado um grupo de populações an-

cestrais e seus grupos descendentes, a ideia de relação filogenética ainda se aplica. Por

exemplo, o grupo de todas as espécies com vértebras se dividiu em um grupo de espécies

com esqueleto cartilaginoso e um com esqueleto ósseo, sendo o caráter de relevância a

ossificação do esqueleto. O grupo de espécies com esqueleto ósseo se diversificou ainda

mais, como pode ser visto na Figura 2.10.
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Figura 2.10: Cladograma do grupo dos vertebrados com caracteres principais de cada sub-grupo.

Fonte: [29]

Chama-se, de forma genérica, grupo o conjunto de seres vivos que compartilham um

ancestral em comum. O grupo dos Osteichthyes, isto é, todos os seres com esqueleto ósseo,

tem como grupo-irmão o grupo dos Condrictes9, grupo-irmão sendo o grupo que com-

partilha o ancestral em comum com o grupo analisado. Um grupo que inclui o ancestral

comum e todos os seus descendentes é chamado de grupo natural, ou grupo monofilético10.

Um grupo que deixa de incluir um descendente ou ancestral é dito parafilético11.
9Composto por tubarões, raias, e quimeras.

10Do grego antigo "monos", que significa "único"ou "sozinho", e "phylon"(ϕυλoν), que significa "raça", "tribo"ou "linha de descendên-
cia".

11Formada a partir do prefixo "para-", que significa "ao lado de", "junto a", e do termo "filético", que vem do grego "phylon", e do
sufixo -ético", que denota relação, pertencimento ou afinidade.
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Figura 2.11: Comparação entre grupos parafilético (azul) e monofilético (amarelo) dentro do grupo dos tetrápodes.

Fonte: [30]. Tradução e edição feita pelo autor.

A diferença metodológica mais importante entre a sistemática filogenética e a fenética

vem justamente da consideração do modelo descrito na análise das relações dos seres

vivos. Enquanto na fenética as características eram analisadas em um contexto de mera

semelhança ou diferença, na cladística elas são tratadas como caracteres, ou seja, novidades

evolutivas daquela linhagem. É justamente ao atribuir a ideia de novidade ou antigo às

características analisadas que se pode fazer uma reconstrução cronológica das relações

filogenéticas, assim reconstruindo o processo evolutivo. Enquanto o processo de análise

matemática permanece quase inalterado da escola fenética para a filogenética, a base

filosófica é diferente, o que leva a resultados distintos. O método de construção de uma

matriz de caracteres é:

1. Identifica-se um conjunto de caracteres que sejam relevantes ao estudo. Esses caracte-
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res devem ser capazes de distinguir diferentes táxons12 e devem ser informativos do

ponto de vista evolutivo. Tipos comuns de caracteres usados em estudos filogenéticos

incluem caracteres morfológicos, moleculares, comportamentais e ecológicos.

2. Uma vez definido o conjunto de caracteres, cada táxon é pontuado para cada carac-

terística. Os estados dos caracteres são geralmente codificados como binários (0 ou

1) ou multiestados (0, 1, 2, etc.). Os estados dos caracteres devem ser baseados em

características observáveis que possam ser quantificadas.

3. Os caracteres pontuados são organizados em uma matriz, onde cada linha representa

um táxon e cada coluna representa uma característica.

4. A matriz de caracteres é avaliada para garantir que seja informativa para o estudo.

Isso envolve verificar a completude da matriz, avaliar o grau de homoplasia (a ocor-

rência de estados de caracteres semelhantes devido à convergência ou paralelismo) e

verificar a presença de dados faltantes e outras fontes de erro.

Um caráter ser antigo ou uma novidade evolutiva é algo crucial à análise filogenética.

Se um caráter já estava presente no ancestral do grupo, ele é dito primitivo, ou uma

plesiomorfia13. Se o caráter é novidade do grupo, não presente nos grupos-irmãos, então

ele é dito derivado, ou uma apomorfia14. Se uma plesiomorfia ou apomorfia é compartilhada

por vários grupos, então são ditas respectivamente simplesiomorfia e sinapomorfia15.

Em análises filogenéticas, plesiomorfias são ignoradas pois, ao se construir a matriz

de caracteres, a plesiomorfia é equivalente a uma coluna inteira constituída apenas de 1

ou 0, daí a necessidade de buscar apenas caracteres apomórficos. Incluir plesiomorfias

traria dificuldades ao se construir a topologia da árvore filogenética ou ao tentar encontrar

características que dependem do determinante da matriz. Um exemplo dessa situação é a

matriz dada na equação (2.1).

C5x5 =


0 1 1 1 0
0 1 0 1 0
0 0 1 0 1
0 1 1 0 0
0 1 1 1 1

 (2.1)

12Do grego τάξις (táxis), que significa "ordem" ou "arranjo", e do sufixo "on", que indica uma unidade ou entidade, táxon é uma
unidade taxonômica, isto é, refere-se a um grupo de organismos que são considerados como uma unidade na taxologia, seja a nível de
espécie, gênero, família, ordem, classe, filo ou qualquer outro nível hierárquico da classificação biológica.

13Do grego "πλησιoς" (plesios), que significa "próximo", "semelhante", e "µoρφή" (morphē), que significa "forma".
14Do grego antigo, formada pelos termos "apo", que significa "fora", e "morphē".
15O radical "sin" em sinapomorfia vem do grego "συν" (syn), que significa "junto" ou "com".
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Quando características de dois ou mais grupos de seres vivos são semelhantes pois

têm origem nas características de um ancestral comum, diz-se que essas características

são homólogas. Um exemplo clássico de homologia trata-se dos membros dos tetrápodas,

representado na Figura 2.12.

Figura 2.12: Homologia dos membros anteriores de diferentes tetrápodas.

Fonte: [31]

Existem diferentes tipos de homologia. A homologia anatômica refere-se a caracterís-

ticas estruturais semelhantes, como ossos ou órgãos, que podem ter diferentes funções

em organismos distintos. Já a homologia desenvolvimental envolve a semelhança na
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sequência de desenvolvimento embrionário entre organismos relacionados. Por fim, a

homologia molecular refere-se a semelhanças nas sequências de DNA, RNA ou proteínas

entre organismos diferentes.

Nem toda semelhança, no entanto, trata-se de uma homologia. Quando sob mesmas

pressões ambientais, seres vivos com ancestrais muito distantes desenvolvem adaptações

semelhantes. A este fenômeno dá-se o nome de convergência evolutiva. Um exemplo

clássico de convergência evolutiva é o desenvolvimento de asas pelo grupo dos morcegos

e das aves, cujo ancestral em comum mais recente existiu por volta de 300 milhões de

anos atrás [32]. Diz-se que estruturas cuja semelhança é resultado de uma convergência

evolutiva são análogas. As asas de insetos, por exemplo, são análogas tanto às asas de

morcegos quanto às das aves, e claramente não tem origem nenhuma em comum com as

asas desses dois grupos.
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Figura 2.13: Comparação entre asas de insetos, aves, e morcegos. A estrutura óssea das asas de aves e morcegos são homólogas
entre si, mas não com o suporte das asas de insetos. Todavia a estrutura asa serve a mesma função de voar nos três
grupos, tratando-se portanto de uma analogia.

Fonte: [33]

Em alguns casos, uma característica ancestral que foi modificada em uma linhagem

evolutiva é posteriormente restaurada, revertida para uma forma semelhante à do ances-

tral. Em outras palavras, uma característica que foi perdida em uma linhagem retorna

novamente ao longo do tempo evolutivo. A este fenômeno dá-se o nome de reversão.

Um exemplo de reversão é o kiwi, uma ave não voadora endêmica da Nova Zelândia.

Ao longo de sua evolução, o kiwi perdeu a capacidade de voar e suas asas se tornaram
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pequenas e não funcionais. No entanto, em algumas populações de kiwis, foram observa-

das reversões, onde as asas se tornaram maiores e mais estruturalmente semelhantes às

de aves voadoras. Embora essas aves ainda sejam predominantemente terrestres e não

possam voar como suas contrapartes mais antigas, a reversão parcial na estrutura das asas

representa um retorno a uma característica ancestral.

Outro fenômeno importante para o estudo da sistemática filogenética é a homoplasia16.

A homoplasia consiste na ocorrência de características semelhantes em linhagens distintas.

A convergência evolutiva é um exemplo de homoplasia causada por pressões seletivas

semelhantes, mas nem toda homoplasia é resultado de uma convergência. Há casos

quando a reversão de uma característica em uma linhagem faz com que ela fique parecida

com outra linhagem, o que também configura homoplasia. Um exemplo de homoplasia é

a perda de membros nos grupos das cobras e lagartos sem pernas.

16O termo homoplasia foi utilizado pela primeira vez por Ray Lankester em 1870. Ele é derivado das duas palavras em grego antigo:
oµóς (homós), que significa "similar, igual, o mesmo", e πλάσσω (plássō), que significa "dar forma, moldar"[34].



CAPÍTULO 3

REDES COMPLEXAS

Muitos fenômenos e estruturas observados na natureza e na sociedade podem ser

abstraídos em um conjunto de pontos, ou nós, interligados por linhas, ou ligações. Um

exemplo simples é o de locais interligados por caminhos, passagens, sendo que cada local

é representado por um ponto e cada caminho, por uma aresta. Esta forma de abstrair

certos sistemas foi originalmente utilizado por Euler ainda em 1736, estudo este que deu

origem à teoria dos grafos, mas desde então evoluiu para abranger diversos sistemas, como

relações sociais [35], ecológicas [16], e estrutura de polímeros [17], dando origem à teoria

das redes complexas.

A diferença entre grafos e redes complexas pode ser resumida na abrangência e no

objetivo de suas respectivas teorias. A teoria dos grafos estuda todo tipo de grafo,

incluindo os completos e triviais, focando-se nas propriedades matemáticas mais do que

na interpretação dos mesmos. Já a teoria das redes complexas almeja compreender o

sistema estudado a partir da compreensão da estrutura e dinâmica das redes, quase

sempre estudando redes obtidas empiricamente, as quais são nada triviais.

O estudo de redes complexas avançou bastante após o desenvolvimento da rede

mundial de computadores e dos sites de redes sociais, como Orkut e Facebook, as quais

possuem um número gigantesco de elementos [3]. O modelo de rede é perfeito para estas

duas estruturas, visto que ambas consistem de pontos ligados entre si por um vínculo,

seja este um cabo, no caso dos computadores, seja o vínculo de amizade entre pessoas, no

caso de redes sociais.
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3.1 Introdução Histórica

A raiz do estudo de redes complexas está no estudo de grafos, a qual por si começou

com o que hoje pode-se, ironicamente, chamar de uma rede de transporte. Este estudo

fundador é um artigo de Leonhard Euler de 1736 no qual o mesmo apresenta uma solução

para o problema das sete pontes de Königsberg [14].

Figura 3.1: Mapa de Königsberg de 1652.

Fonte: [36]

O problema em questão consistia em determinar se era possível sair e voltar para um

mesmo ponto da cidade, passando por cada ponte apenas uma vez. Euler simplificou o

mapa da cidade para:

Figura 3.2: Representação das sete pontes de Königsberg.

Fonte: Graph Theory 1736-1936 [14]
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Euler, para encontrar a solução do problema, entreteve a ideia de fazer uma lista de

todas as possíveis rotas, mas além de perceber que este seria um trabalho tedioso e que

muitas rotas seriam redundantes, ele também notou que, para problemas similares com

maior número de ilhas e pontes, tal método tornar-se-ia demasiado trabalhoso. Euler

portanto decidiu mudar sua metodologia, atribuindo a cada ilha uma letra maiúscula, e a

cada ponte, uma minúscula, de forma tal que o ato de ir da ilha A para a B, por qualquer

uma das duas pontes, é escrita simplesmente como AB, e fazer a rota AB e BD é denotada

por ABD, e assim por diante para rotas mais longas. Pode-se visualizar, de forma abstrata,

este método da seguinte forma:

Figura 3.3: Representação em forma de grafo do problema das sete pontes de Königsberg.

Fonte: The Structure of Complex Networks: Theory and Applications [4]

Com este método, Euler demonstrou que o número de vezes que uma ilha poderia

aparecer na rota correspondia ao número de pontes que levavam a tal ilha, e como o

número de ilhas é par e o de pontes, ímpar, uma ponte necessariamente precisará ser

atravessada mais de uma vez. A este tipo de problema geométrico ao qual não interessa

nenhuma medida de distância ou área, Euler se referiu como geometria de posição1, a qual

veio a se desenvolver na topologia moderna.

A metodologia de Euler foi formalizada por Carl Hierholzer, cujo artigo foi publicado

postumamente pelo seu colega Christian Wiener (com ajuda de Jacob Lüroth) em 1873

[14, p.10]. Nestes 142 anos, diversos matemáticos e físicos, como Kirchhoff e Cayley, já

haviam contribuído para com o que veio a ser conhecida como teoria de grafos. A palavra
1Geometria de posição iniciou-se com G. W. Leibniz [14, p.3].
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grafo vem do inglês graph e foi introduzida por James Joseph Sylvester em 1878. Ela é

abreviação de graphic formula (fórmula gráfica), termo amplamente usado em artigos de

química no século XIX [14, p.64-65], sendo atualmente conhecido como fórmula estrutural.

Fórmulas estruturais são usadas até hoje na química para diferenciar isômeros.

Já a primeira implementação de métodos estatísticos para o estudo de grafos deu-se

somente em 1959 [37, p.xii], com o artigo Graph Theory and Probability (Teoria de Grafos e

Probabilidade) [10], de Pál Erdös, trabalho o qual foi desenvolvido em 1960 por Erdös em

parceria com Alfréd Rényi em On the Evolution of Random Graphs (Sobre a Evolução de

Grafos Aleatórios) [11].

O estudo de redes (networks) começou pelo menos em 1939, bem antes dos resultados

de Erdös e Rényi [5]. A aplicação de teoria de grafos no estudo de redes, no entanto,

começou a partir dos trabalhos de Frank Harary, que ainda em 1953 começou a aplicar a

teoria matemática iniciada por Euler às ciências sociais [12], como o próprio Harary expõe

em um artigo publicado em 1985 [5]. Frank Harary foi um dos principais responsáveis

pelo desenvolvimento das aplicações da teoria de grafos às mais diversas áreas do

conhecimento humano [13; 38], de Física (aplicação em redes elétricas, por exemplo) à

Ciência de Computadores, e até Biologia [4, p.111], publicando mais de 700 artigos ao

longo de sua vida [39].

3.2 Teoria das Redes Complexas

Matematicamente, redes complexas são idênticas a grafos, havendo apenas uma varia-

ção de nomenclatura. Diz-se nó ao invés de vértice, e ligação ao invés aresta. Naturalmente

também se diz rede ao invés de grafo. A principal diferença entre grafos e redes não está

no objeto matemático em si, mas no arcabouço teórico e metodológico utilizado para

estudar tais objetos, e na atribuição de significado dos componentes das redes.

Sabendo conceitualmente o que são redes complexas e tendo visto suas origens his-

tóricas, resta saber como podemos estudá-las matematicamente. Tomemos um exemplo

simples de rede de transporte com cinco nós, isto é, locais no caso das redes de transporte,

como ponto de partida. Pode-se listar os cinco nós em uma lista ordenada de cinco

entradas, cada um correspondendo a um local diferente, lista esta a qual naturalmente

contém todos os possíveis destinos. Chamemos estes locais de A, B, C, D e E, e digamos

que há uma passagem de ida e volta de A para B, C e D, há uma passagem de C para E, e
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há um caminho de E que volta para o ponto de partida. A visualização destes caminhos é

simplesmente:

Figura 3.4: Exemplo de caminhos como uma rede complexa.

Listemos na coluna de uma tabela todos os pontos de partida e na linha, todos os

pontos de chegada. Se houver um caminho do i-ésimo ponto da linha para o j-ésimo

ponto da coluna, por exemplo A e B, então o elemento ij da tabela é 1, caso contrário é 0.

Tem-se:

Tabela 3.1: Tabela de caminhos.

A B C D E
A 0 1 1 1 0

B 1 0 0 0 0

C 1 0 0 0 1

D 1 0 0 0 0

E 0 0 1 0 1

A forma final da tabela implica imediatamente na utilização de matrizes para represen-

tar redes:

A5x5 =


0 1 1 1 0
1 0 0 0 0
1 0 0 0 1
1 0 0 0 0
0 0 1 0 1

. (3.1)

A matriz descrita é chamada matriz de adjacência da rede. Se a rede de caminhos tivesse,

por exemplo, dois caminhos diferentes que levassem de A até B, os elementos 1x2 e 2x1
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seriam 2 ao invés de 1, isto é um exemplo de multi-grafo. E se quiséssemos expressar a

distância de um ponto ao outro, poderíamos colocar a distância no lugar de 1, este sendo

um exemplo de rede com peso. Por fim, se um caminho fosse somente de ida, digamos de

A a B, então o elemento 1x2 seria 1, mas o 2x1 seria 0, este sendo um exemplo de rede

direcionada. Redes não-direcionadas, direcionadas, com ou sem peso, são os quatro tipos

principais de redes complexas estudadas. Redes podem ser não-conectadas também, isto

é pode haver um subconjunto de nós que não tem ligação alguma com o restante dos nós,

como uma rede fechada de computadores sem conexão com internet [3].

Figura 3.5: Principais tipos de redes complexas acompanhadas de suas matrizes de adjacência. Além das redes não-direcionadas (a),
direcionadas (d), e com peso (e), também há um exemplo de rede cuja aresta conecta um nó a ele mesmo (b), um de redes
com mais de uma aresta conectando dois nós (c), e um de redes cujos nós estão todos interconectados (f).

Fonte: [40]. Tradução do inglês para o português feita pelo autor.

Um grupo importante de redes, cujo estudo foi iniciado por Arthur Cayley ainda na

teoria de grafos no século XIX, é o grupo de redes acíclicas, ou redes de tipo árvore. Estas

redes são caracterizadas pela ausência de ciclos, ou caminhos fechados, em suas estruturas.

Um exemplo de rede de tipo árvore é a própria rede da Figura 3.4 se for ignorada a

ligação do nó E consigo mesmo. Se todos os componentes de uma rede não-conectada,
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isto é, as sub-redes da rede não-conectada, forem do tipo árvore, então a rede como um

todo é dita uma floresta.

Redes do tipo árvore podem ser representadas com ou sem raiz. Enquanto a diferença

é puramente estética, não afetando em nada a matemática, representar árvores com ou

sem raiz pode ser fundamental dependendo da interpretação dada à rede. Por exemplo,

todo cladograma é representado como uma árvore com raiz.

Figura 3.6: Exemplo de uma rede tipo árvore.

Figura 3.7: Mesma rede da Figura 3.6, mas na forma com raiz.

Os nós com apenas uma ligação da rede tipo árvore com raiz, isto é, os da periferia,

são chamados de folhas. O número de ligações do nó é chamado de grau do nó, e é uma

das propriedades mais fundamentais da teoria de redes complexas. Voltando ao exemplo

da rede da Figura 3.4, o grau k do i-ésimo nó é dado pela soma de todos os elementos da

linha ou da coluna. Para uma rede qualquer de N nós, a equação é:
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ki =
N

∑
j=1

Aij. (3.2)

Caso a rede fosse direcionada, diferencia-se grau de entrada de grau de saída. E caso as

ligações tivessem peso, bastaria normalizar o peso, ou seja, dividir o peso por ele próprio.

Pode-se representar com apenas um objeto o grau de cada nó através da matriz de grau:

DNxN =
[
ki
]
. (3.3)

A matriz de grau da rede da Figura 3.4 é por exemplo:

D5x5 =


3 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 0 0 1 0
0 0 0 0 2

. (3.4)

A diferença entre a matriz de graus e a de adjacência corresponde à matriz laplaciana, a

qual surge naturalmente em diversos problemas das redes complexas, como a difusão

sobre uma rede, que será trabalhado posteriormente.

LNxN = DNxN − ANxN. (3.5)

Em uma rede não-direcionada, um nó corresponde a uma unidade de grau para dois

nós diferentes. Por exemplo, se A está ligado a B, então o A e B tem grau 1, um total de

dois graus, mas a rede tem somente uma ligação. Tem-se portanto que o número m de

ligações de uma rede é:

m =
1
2

N

∑
i=1

ki. (3.6)

Já o grau médio ⟨k⟩ dos graus da rede é dado, naturalmente, pela média dos graus:

⟨k⟩ = 1
N

N

∑
i=1

ki. (3.7)

Mas segue da equação (3.6) que ∑N
i=1 ki = 2m, logo c é:

⟨k⟩ = 2m
N

. (3.8)
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Já o máximo número M de ligações possíveis de uma rede é dado pela combinação

dois-a-dois dos N nós da redes:

M =

(
N
2

)
=

1
2

N(N − 1). (3.9)

Com esta grandeza define-se a conectância da rede, ou simplesmente densidade. A

conectância ρ é dada pela razão entre m e M, e é útil no estudo da dinâmica de redes.

ρ =
m
M

=
1
2 N⟨k⟩

1
2 N(N − 1)

=
⟨k⟩

N − 1
. (3.10)

Se uma rede cresce com o tempo, mas a sua conectância tende a um número finito,

a rede é dita densa. Caso a conectância tenda a 0 conforme N tende ao infinito, a rede

é dita esparsa. A densidade da rede é uma propriedade fundamental em estudos de

disseminação de doenças, por exemplo. Tendo uma rede social de N indivíduos, se

a densidade for baixa, a doença naturalmente terá dificuldades para se espalhar pela

população, mas se a densidade da rede for alta, a doença se difundirá com facilidade.

Quanto ao exemplo da difusão de uma doença, pode-se fazer um modelo acurado da

mesma sobre a rede [3, p.152]. Sendo a doença do indivíduo i uma função ψi(t) tal que

todos os nós adjacentes ao i venham a contrair a doença, tem-se que a derivada temporal

de ψj, vizinho do indivíduo i, é:

dψj

dt
= C

N

∑
i

Aij(ψi − ψj). (3.11)

Sendo C a constante de difusão específica ao problema, e Aij o elemento da i-ésima

linha e j-ésima coluna da matriz de adjacência. Notemos que este modelo de difusão não

se limita ao problema de doenças, mas pode ser aplicado a qualquer fenômeno no qual

uma grandeza é transmitida de um nó aos seus vizinhos, como transporte de carga, de

uma mensagem ou ideia, notícias, e assim por diante. A forma de transmissão da função

ψ, isto é, a parte entre os parênteses ψi − ψj varia conforme o fenômeno escrito, como será

visto no capítulo 4, a forma mais usual de difusão é a apresentada na equação (3.11), cujo

desenvolvimento é:
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dψj

dt
= C

N

∑
i

Aij(ψi − ψj)

= C
N

∑
i

Aijψi − C
N

∑
i

Aijψj

= C
N

∑
i

Aijψi − Ck jψj

= C
N

∑
i

(
Aij − k jδij

)
ψi

= C
N

∑
i

(
Aij − k jδij

)
ψi. (3.12)

Definindo um vetor ψ⃗ cujas entradas são as funções ψj, pode-se re-escrever a equação

(3.12) em forma matricial:

dψ⃗

dt
= C(

↔

A −
↔

D)ψ⃗

= −C
↔

Lψ⃗. (3.13)

Sendo
↔

A e
↔

D as matrizes de adjacência e grau, respectivamente. Ressalta-se que a

equação resultante é a equação diferencial de Laplace, porém com o sinal do laplaciano

invertido graças à definição histórica da matriz laplaciana.

3.2.1 Grandezas Estatísticas de Redes Complexas

Estando definidas as grandezas básicas de uma rede, resta definir as grandezas que de

fato trazem informação sobre os sistemas estudados através da teoria das redes complexas.

O estudo estatístico de redes é vasto e um tanto complexo, e portanto limitar-nos-emos

às gradezas e definições relevantes ao estudo de cladogramas, aqui tratados como redes

não-direcionadas. As grandezas relevantes são a distribuição de grau e o coeficiente de

Pearson.

Tendo uma rede real, uma pergunta imediata é, escolhendo um nó aleatório, qual a

probabilidade deste nó ter grau k? A resposta para essa pergunta é uma distribuição de

probabilidade, chamada de distribuição de grau, que como o nome indica é a distribuição

estatística dos graus dos nós da rede [3, p.243-247]. Mais especificamente, trata-se da
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distribuição da grandeza pk = n(k)
N , sendo n(k) o número de nós com o grau k e N

o número de nós da rede. Os pk representam a probabilidade de, escolhendo um nó

aleatoriamente da rede, este nó ter grau k. Voltando ao exemplo da Figura 3.4, a sua

distribuição de grau é:

Figura 3.8: Distribuição de grau da rede da Figura 3.4

Saber se nós de grau alto se conectam mais com outros nós de grau baixo ou alto,

isto é, a correlação entre o grau de um nó e o grau de seus vizinhos, é outra medida

importante no estudo das redes. A correlação entre dois conjuntos de dados é denotada

matematicamente pelo coeficiente de Pearson [3, p.214-215], que para correlação entre o

grau dos nós i e j e o grau dos seus k vizinhos é:

∑
k

Aik Ajk −
kik j

N
= ∑

k
Aik Ajk −

1
N ∑

k
Aik ∑

l
Ajl

= ∑
k

Aik Ajk − N ⟨Ai⟩ ⟨Aj⟩

= ∑
k
(Aik − ⟨Ai⟩) · (Ajk − ⟨Aj⟩), (3.14)

que, normalizado, torna-se o coeficiente de Pearson:

rij =
∑k(Aik − ⟨Ai⟩) · (Ajk − ⟨Aj⟩)√

∑k(Aik − ⟨Ai⟩)2
√

∑k(Ajk − ⟨Aj⟩)2
. (3.15)
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Figura 3.9: Significados do Coeficiente de Pearson

Outras duas grandezas comumente analisadas são o diâmetro e o o coeficiente de agrupa-

mento. Tendo dois nós de uma rede, se estes nós estão conectados direta (por uma simples

ligação) ou indiretamente (ligados a outros nós conectados entre si), define-se a distância

entre eles como a soma das ligações que conectam esses nós. A maior destas medidas

é para todos os possíveis pares de nós da rede é chamado de diâmetro. Já o coeficiente

de agrupamento é uma medida de quantos caminhos fechados há em uma rede, isto é, a

razão entre o número de trios de nós interconectados e o número total de trios conectados.

Ambas medidas foram ignoradas neste estudo, pois o diâmetro não tem significado físico

relevante e o coeficiente de agrupamento é nulo visto que todas as redes são árvores.



CAPÍTULO 4

REDES FILOGENÉTICAS

Munido do conhecimento de sistemática filogenética e de redes complexas, uma

pergunta naturalmente surge: é possível estudar árvores filogenéticas através do arcabouço

teórico das redes complexas? Afinal, um cladograma e uma rede complexas tem estrutura

similar:

Figura 4.1: Equivalência entre cladogramas e redes complexas. Os nós e folhas do cladograma se traduzem como nós na rede
complexa, e os ramos, como ligações. Tendo mais dados sobre os táxons, é possível usar modelos mais avançados de
redes do que uma não-direcionada sem peso.

Se um cladograma pode ser representado como rede, há algum padrão ou informação

relevante na distribuição de grau? E na conectividade? A transmissão de características
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pode ser descrita usando a difusão? As outras propriedades de redes complexas represen-

tam algo de relevante sobre a evolução do grupo? Estas perguntas motivaram o estudo

de árvores filogenéticas no contexto das redes. A este tipo de rede foi dado o nome de

rede filogenética.

Estudos similares já foram realizados, mas limitados ao escopo da teoria de grafos. Um

notável exemplo é o livro Phylogenetic Networks: Concepts, Algorithms and Applications

publicado em 2011 e de autoria de Daniel Huson, Regula Rupp, e Celine Scornavacca

[6]. Outro relevante estudo, realizado entre 2019 e 2020, dos cladogramas de fungos do

gênero Aspergillus, serviu de base para esta tese [18].

O estudo da cladística de fungos iniciou-se na construção do cladograma das espécies

depositadas na micoteca DPUA/UFAM e, apesar da falta de dados mais robustos para

garantir confirmação, sugere que cladogramas se comportam como redes livres de escala

muito pequenas ou redes livre de escala generalizadas com o grau máximo permitido

sendo pequeno. As redes livre de escala são caracterizadas pelo grande número de hubs1

e pelo fato de que sua distribuição de grau segue uma lei de potência [18].

A grande dificuldade em obter redes filogenéticas de milhares, dezenas, ou até mesmo

centenas de milhares de espécies diferentes impossibilitou um estudo mais aprofundado

sobre as grandezas estatísticas das redes filogenéticas. Para contornar esta limitação, foi

proposto simular as redes com base nas relações tocogenéticas, as quais alicerçam as

relações filogenéticas.

No modelo proposto, para determinar o cladograma que melhor aproxima a evolução

das espécies, simula-se um ensemble estatístico de cladogramas possíveis e faz-se compa-

ração com os dados reais, buscando minimizar as diferenças. Pode-se também simular as

relações tocogenéticas sob uma pressão ambiental específica, o que permite a previsão

das possíveis adaptações de organismos de reprodução rápida, como bactérias e vírus em

uma pandemia. Isso permitiria otimizar a utilização de recursos e o tempo investido na

pesquisa e desenvolvimento de vacinas e remédios, por exemplo. Outra aplicação seria

no combate a pragas agrícolas.
1Hubs, cuja tradução mais precisa ao português possível é "eixo", no contexto de redes complexas são nós que acumulam um

grande número de vizinhos. Em redes de transporte, portos e aeroportos movimentados são um exemplo de hub; em redes sociais,
uma pessoa com muitos contatos (alguém famoso, por exemplo) é um exemplo de hub.
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4.1 Modelo

Optou-se por, ao invés de fazer um único código-fonte que simule todo e qualquer

tipo de rede filogenética em sua totalidade de fenômenos, dividir o modelo em módulos

separados, ou casos, que simulam um fenômeno de cada vez, para assim gradualmente se

construir um código único geral. Todos os casos possuem uma estrutura em comum: os

indivíduos são simulados como nós, e as relações de parentesco serão representadas pelas

ligações. Desta forma constrói-se primeiramente a rede tocogenética para depois obter a

filogenética.

Cada indivíduo pode se reproduzir com outros da sua geração, com antepassados,

com indivíduos da geração seguinte, sua prole, e até ele mesmo (em caso de plantas, por

exemplo), sendo a autofecundação permitida, ou não, caso os nós possam ser ligados

a eles mesmos. Todas essas possibilidades de reprodução são consideradas em casos

diferentes a princípio. Herança de características, passagem do tempo, ciclo da vida,

morte, localização geográfica, diferenciação de machos e fêmeas, e seleção natural e sexual

são todos casos separados. Os casos são:

• Caso ideal;

• Casos de dinâmica populacional (PD);

• Casos de herança de característica (HC);

• Casos infraestruturais;

• Casos de características biológicas (BC).

Os cinco tipos de casos diferentes podem ser categorizados em dois grupos distintos:

casos-teste e casos efetivos. Os casos-teste, o ideal, os de dinâmica populacional, e o de

herança de característica, foram desenvolvidos como base para estudar a forma mais

efetiva de modelar as redes tocogenéticas, isto é, desenvolver as funções necessárias para

redes mais complexas uma a uma. Os casos-teste também testam as grandezas mais

importantes das redes: distribuição de grau e coeficiente de Pearson (casos ideal e de

controle populacional), e difusão (caso HC). Os casos efetivos são aqueles nos quais

fenômenos mais complexos, posição espacial e passagem do tempo por exemplo, são

modelados. Para simular geografia, tempo, e as dinâmicas sexuais das populações que
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surgem graças ao espaço-tempo, tem-se de mudar a forma como as redes são geradas, daí

a diferença dos grupos. Maiores detalhes são dados na seção 4.2.

O caso ideal se caracteriza pela separação de indivíduos em gerações, pelo número

de nós-filhos de um indivíduo ser aleatório, por todos os indivíduos serem exatamente

iguais e hermafroditas, e por não haver cladogênese. O caso ideal foi desenvolvido com a

finalidade de servir de piloto para casos complexos, disto isto este estudo se limitou ao

caso ideal graças à riqueza de resultados obtidos do mesmo.

4.2 Algoritmos

O caso ideal, como dito na seção anterior, serviu de base para todos os casos-teste. Seu

algoritmo se resume em:

1. Cria-se o nó 0, chamado de ancestral primordial;

2. Cria-se a primeira geração, cujos indivíduos todos estão ligados ao ancestral primor-

dial;

3. É feita uma lista de todos os nós dividida por geração;

4. Cria-se os nós da segunda geração, cujo parentesco é escolhido aleatoriamente;

5. Atualiza-se a lista de indivíduos por geração e cria-se os nós de uma nova geração,

cujo parentesco é escolhido aleatoriamente;

6. O item 5 é repetido até a rede chegar ao limite de nós imposto pelo usuário.

A criação do ancestral primordial serve dois propósitos: evitar quaisquer problemas

no cálculo dos autovalores da rede, visto que na primeira geração pode ocorrer de um

indivíduo não ter filhos, e representar as gerações anteriores à simulação. A importância

do segundo ponto dá-se principalmente quando é necessário descrever características.

A escolha aleatória de maternidade é válida aqui pois todos os indivíduos são iguais.

O limite de número de nós da rede foi imposto pois esta é a forma mais simples de

garantir que a simulação seja feita em tempo hábil. O número de nós por geração cresce

de forma exponencial conforme o número t de gerações e com base na população da

geração anterior:
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Figura 4.2: Esquematização da simulação do processo tocogenético como uma rede complexa.

nt+1 = nt · eR·t+1 (4.1)

Alguns dos demais casos foram desenvolvidos e brevemente estudados, porém o

caso ideal sozinho gerou resultados interessantes que necessitaram atenção integral da

pesquisa.

4.3 Resultados

Foram simuladas quarenta redes para cada variável, sendo os resultados aqui apresen-

tados a média dos dados dessas simulações. Essas médias são basicamente redes virtuais

cujas medidas são a média de cada uma das medidas das quarenta redes simuladas. O

número 40 foi escolhido de forma a garantir que a regra prática do teorema central do

limite fosse válida.

A partir das redes (as árvores genealógicas), duas medidas foram feitas: a distribuição

de graus e o coeficiente de Pearson. O coeficiente de Pearson dessas redes indica o quanto

há uma tendência na população de que pais com vários filhos tenham descendentes que,

por sua vez, não tenham tantos filhos; enquanto a distribuição de graus indica o número

médio de relações genéticas diretas que um indivíduo possui, isto é, filhos mais os dois

pais. Foram criados dois conjuntos de redes: um com taxa de crescimento constante

R = 0,5 e variando Ni entre 10 e 200 em passos de 10, e outro com Ni = 200 e variando R
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entre 0,1 e 0,9 em passos de 0,1.

Figura 4.3: Distribuição de graus de 20 redes com 20.000 nós e R fixo.
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Figura 4.4: Coeficiente de Pearson de redes com R fixo e número total de nós de 1.000 a 20.000 em passos de 1.000.
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Figura 4.5: Distribuição de graus de 20 redes com 20.000 nós e Ni fixo.
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Figura 4.6: Coeficiente de Pearson de redes com Ni fixo e número total de nós de 1.000 a 20.000 em passos de 1.000.

As cores representam o valor do eixo z, sendo 0 mapeado para preto, e a cor tendendo

ao branco para maiores valores de z. As Figuras 4.3 e 4.5 possuem duas semelhanças. A

primeira é que o nó mais frequente em todas as redes é 2, o que mostra que a maioria dos

indivíduos possui apenas dois parentes diretos: mãe e pai. A segunda é que a frequência

dos graus oscila à medida que o valor no eixo y (Ni ou R) aumenta. As Figuras 4.4 e 4.6

também compartilham esse comportamento oscilatório, embora a taxa de crescimento

tenha um impacto maior no coeficiente de Pearson.

A informação mais importante das distribuições de graus não é o pico principal (k = 2),

mas sim o segundo em cada curva, que indica o número mais frequente de filhos que os

pais possuem. Com isso, seria possível, por exemplo, maximizar os esforços de repopular
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espécies ameaçadas em um novo ambiente. Os coeficientes de Pearson mostram o padrão

de estagnação da reprodução máxima em uma população. Ou seja, quando r se aproxima

de -1, a taxa de nascimentos é máxima, e quando se aproxima de 0, a população tende a

manter a taxa de nascimentos.

A curvas da distribuição de grau na figura 4.3 se assemelham a, senão são de fato,

composições de gaussianas. A primeira gaussiana tem pico em k = 2, e segunda, por volta

de k = 10. Conforme Ni cresce, o pico tende a valores mais baixos. Isso demonstra que há

dois cenários mais frequentes nas redes: o primeiro é dos indivíduos não terem filhos,

e o segundo, muitos. Outrossim, a frequência dos indivíduos com muitos descendentes

é notavelmente menor, fato evidenciado pelos picos primários (em cores quentes) e

secundários (em frias). Em redes maiores, a ocorrência de curvas terciárias ainda mais

raras é esperada.

Ambos os gráficos 4.4 e 4.6 apontam o comportamento oscilatório do crescimento das

redes. Estritamente falando, quanto mais negativo o coeficiente de Pearson dessas rede,

mais extrema é a dicotomia entre indivíduos solitários (k = 2) e indivíduos prolíficos (k »

2). As curvas do gráfico 4.6 se provam informativas aqui, pois ao comparar o número de

mínimos das curvas das redes com menores taxas de crescimento com as das redes de

maiores taxas de crescimentos, é óbvio que as primeiras tem número de mínimos maiores.

Em outras palavras, para populações crescerem na taxa imposta, o fenômeno de super

ninhadas faz-se necessário.

Mesmo essas populações simuladas simples apresentam padrões exclusivos não encon-

trados em outros tipos de redes. O segundo pico nas curvas não apenas sugere que ter

super ninhadas é vantajoso para uma espécie em ambientes sem restrições, mas também

que a população inicial pode desempenhar um papel importante no tamanho dessas super

ninhadas nas gerações futuras.



CAPÍTULO 5

CONSIDERAÇÕES FINAIS

A Distribuição de Grau Revela uma Estratégia Reprodutiva Bimodal: A observação

mais significativa foi que a distribuição de grau não segue uma lei de potência simples,

mas sim uma composição de distribuições, com picos principais em k = 2 (indivíduos

sem filhos) e secundários em valores mais altos (k 10). Isto não é um artefato do

modelo, mas sim sua principal descoberta. Ele indica que, em uma população sem

pressões seletivas, a estratégia mais comum é não deixar descendentes, mas uma fração

significativa da população adota uma estratégia de "super-ninhadas". Isto sugere que, em

ambientes sem restrições, a maximização da prole por um subconjunto de indivíduos é

uma característica emergente que impulsiona o crescimento populacional. O fato do pico

secundário diminuir com o aumento de Ni sugere que populações fundadoras maiores

diluem a necessidade ou a vantagem destas super-ninhadas.

O comportamento oscilatório e predominantemente negativo do coeficiente de Pearson

é outra descoberta crucial. Um coeficiente negativo indica que a rede é assortativa

negativamente: nós de alto grau (indivíduos prolíficos) tendem a se conectar a nós de

baixo grau (indivíduos com poucos ou nenhum filho). Isto é exatamente o que o modelo

gera: um "pai"com muitos filhos (alto grau) está conectado a "filhos"que, naquela geração,

ainda não reproduziram (baixo grau, frequentemente k = 2). As oscilações observadas nas

Figuras 4.4 e 4.6 refletem os ciclos de crescimento geracional. O aumento no número de

mínimos para taxas de crescimento (R) menores indica que populações que crescem mais

devagar passam por mais desses ciclos de "privação e abundância"para atingir o tamanho

final, tornando a dicotomia entre reprodutores e não-reprodutores mais frequente e
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pronunciada.

A simples transposição de um cladograma para uma rede complexa, como proposto

inicialmente, mostrou-se insuficiente para capturar a dinâmica subjacente. No entanto, o

modelo tocogenético mostrou-se uma ferramenta poderosa para gerar redes filogenéticas

sintéticas cujas propriedades podem ser investigadas. O modelo mostrou que redes

filogenéticas, mesmo as mais simples, exibem propriedades topológicas únicas (bimodali-

dade, assortatividade negativa) que as distinguem de outros tipos de redes complexas

conhecidas.

É importante reconhecer as limitações deste estudo. O Caso Ideal, por definição,

ignora pressões evolutivas cruciais como seleção natural, deriva genética, mutações e

limitações espaciais. Os resultados aqui apresentados representam, portanto, a "assinatura

de rede"de uma população em seu estado mais fundamental e sem restrições.

O trabalho futuro reside em executar o plano modular já delineado: introduzir os casos

de dinâmica populacional, herança de características e infraestrutura para investigar como

essas assinaturas são modificadas por pressões seletivas. O potencial aplicativo, como

na simulação de evolução de patógenos ou pragas, torna-se assim uma possibilidade

tangível.

Em suma, esta dissertação demonstrou com sucesso que a framework das redes

complexas é não apenas aplicável, mas também profundamente reveladora para o estudo

da evolução. Ao modelar a tocogenia, foi possível identificar assinaturas topológicas

específicas – a bimodalidade reprodutiva e a assortatividade negativa – que descrevem

matematicamente a dinâmica intrínseca do crescimento populacional. Estes resultados

estabelecem uma base sólida e quantitativa para a construção de modelos filogenéticos

mais realistas e preditivos, abrindo um novo caminho para unificar a teoria das redes

complexas com a biologia evolutiva.
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