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Resumo

A rápida evolução dos dados em fluxo impõe desafios significativos aos modelos de

aprendizado de máquina, frequentemente expostos ao fenômeno da mudança de con-

ceito, caracterizado por alterações na distribuição conjunta das instâncias ao longo

do tempo. Embora abordagens de reação à mudança de conceito sejam amplamente

utilizadas, como aprendizado incremental e o retreino completo do classificador, há

uma lacuna na literatura quanto ao uso de descritores da mudança de conceito como

evidências para orientar a escolha da estratégia de reação mais adequada. Esta tese tem

como objetivo demonstrar que descritores da mudança de conceito, incluindo severi-

dade, zona de influência, velocidade, frequência, recorrência e previsibilidade, podem

subsidiar a definição de uma estratégia de reação capaz de preservar o desempenho

de classificadores em cenários dinâmicos. Para tanto, foram conduzidas três etapas de

investigação: (i) revisão sistemática e proposta de uma nova taxonomia de métodos

não supervisionados de detecção de mudança de conceito; (ii) análise experimental do

impacto dos descritores sobre o desempenho do classificador, utilizando 32 cenários

distintos e 5 bases de dados sintéticas; e (iii) avaliação abrangente de cinco estratégias de

reação à mudança de conceito (estática, retreino completo, aprendizado incremental, es-

quecimento e oráculo) sob diferentes configurações de descritores, complementada por

testes estatísticos, análise do tamanho de efeito e um estudo de ablação. Os resultados



obtidos evidenciam que a adequação da estratégia de reação está diretamente relaci-

onada às características da mudança. Identificou-se que descritores como severidade

e velocidade exercem forte influência no desempenho dos classificadores, enquanto

recorrência e frequência se mostram determinantes em cenários de reaparecimento de

padrões. Ademais, verificou-se que a estratégia de reação mais amplamente adotada na

literatura, o retreino completo, não é plenamente eficaz, sendo que, em determinadas

situações, abordagens como o aprendizado incremental com esquecimento ou mesmo

a não reação apresentaram desempenho superior. As principais contribuições desta

pesquisa incluem: (i) a proposição de uma taxonomia sistemática para métodos não

supervisionados de detecção de mudança de conceito; (ii) a caracterização empírica

das inter-relações entre descritores e seu impacto no desempenho do classificador; (iii)

definição, com base em evidências, da estratégia de reação à mudança; e (iv) a disponi-

bilização de uma estrutura experimental robusta e replicável. Os resultados reforçam a

importância de considerar a natureza da mudança de conceito no desenvolvimento de

sistemas de aprendizado adaptativos, oferecendo subsídios tanto para a pesquisa aca-

dêmica quanto para aplicações práticas em domínios sensíveis, como saúde, segurança

e finanças.

Palavras-chave: Mudança de Conceito, Descritores, Estratégia de Reação, Classificação

Taxonômica.
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Abstract

The rapid evolution of data streams poses significant challenges to machine learning

models, which are frequently exposed to the phenomenon of concept drift, character-

ized by changes in the joint distribution of instances over time. Although adaptive

approaches such as incremental learning and full retraining are widely employed, the

literature still presents a gap regarding the use of concept drift descriptors as evidence

to guide the choice of the most suitable reaction strategy. This thesis aims to demon-

strate that concept drift descriptors, including severity, influence zone, speed, frequency,

recurrence, and predictability, can support the definition of a reaction strategy capable

of preserving classifier performance in dynamic scenarios. To this end, three stages of in-

vestigation were conducted: (i) a systematic review and the proposal of a new taxonomy

for unsupervised concept drift detection methods; (ii) an experimental analysis of the

impact of descriptors on classifier performance across 32 distinct scenarios and 5 syn-

thetic datasets; and (iii) a comprehensive evaluation of five reaction strategies to concept

drift (static, full retraining, incremental learning, forgetting, and oracle) under different

descriptor configurations, complemented by statistical tests, effect size analysis, and an

ablation study. The results show that the adequacy of the reaction strategy is directly

related to the characteristics of the drift. It was found that descriptors such as severity

and speed strongly influence classifier performance, while recurrence and frequency



are determinant in scenarios of pattern reappearance. Furthermore, the widely adopted

strategy in the literature, full retraining, proved not to be fully effective, as in certain

situations approaches such as incremental learning with forgetting, or even no reaction,

yielded superior performance. The main contributions of this research include: (i) the

proposition of a systematic taxonomy for unsupervised concept drift detection methods;

(ii) the empirical characterization of the interrelationships among descriptors and their

impact on classifier performance; (iii) the evidence-based definition of reaction strate-

gies to concept drift; and (iv) the presentation of a robust and replicable experimental

framework. The findings highlight the importance of considering the nature of concept

drift when developing adaptive learning systems, offering support both for academic

research and for practical applications in sensitive domains such as healthcare, security,

and finance.

Keywords: Concept Drift, Descriptors, Reaction Strategies, Taxonomic Classification.
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CAPÍTULO 1

Introdução

A
rápida evolução dos dados em fluxo desafia os modelos de aprendizado

de máquina, que frequentemente enfrentam o fenômeno conhecido como

mudança de conceito. Introduzido por Schlimmer e Granger (1986), esse

termo descreve alterações na distribuição conjunta das instâncias e suas variáveis-alvo

ao longo do tempo, as quais podem impactar significativamente o desempenho dos

preditores (BAYRAM; AHMED; KASSLER, 2022). Essas mudanças podem variar desde

mudanças locais menores até mudanças globais, exigindo abordagens que adaptem os

modelos para manter alta a acurácia preditiva (GAMA et al., 2014). Embora os preditores

possam ser classificadores ou regressores, este trabalho concentra-se na mudança de

conceito em tarefas de classificação.

A perda de desempenho pode tornar o classificador inadequado para sua fi-

nalidade, exigindo, portanto, abordagens de adaptação para ajustar o modelo à nova

distribuição dos dados. Essas abordagens adaptativas visam preservar ou restaurar o

desempenho do classificador a níveis aceitáveis, ajustando sua estrutura ou parâme-

tros em resposta às mudanças. Exemplos dessas abordagens incluem o aprendizado

incremental, no qual o classificador é continuamente atualizado com novas instâncias

enquanto mantém o conhecimento previamente adquirido (LEO; KALITA, 2024); e o

retreino periódico, em que o classificador é retreinado utilizando os dados mais recentes,

descartando os mais antigos. Essa estratégia parte do pressuposto de que instâncias

mais recentes são mais relevantes por representarem melhor o conceito atual, enquanto

a relevância dos dados antigos diminui ao longo do tempo (GEMAQUE et al., 2020).

Na literatura, a estratégia de reação mais comumente empregada é o retreino

completo do classificador atual, sem levar em consideração outros aspectos, como a

disponibilidade de instâncias rotuladas do novo conceito. Métodos clássicos de detecção
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de mudança de conceito como Drift Detection Method (DDM) (GAMA et al., 2004)

e Early Drift Detection Method (EDDM) (BAENA-GARCíA et al., 2006) utilizam essa

estratégia. Embora eficaz em determinados cenários, essa abordagem pode ser onerosa

e inadequada, especialmente em ambientes com dados rotulados limitados, altos custos

computacionais ou na presença de mudanças de conceito com características complexas,

como baixa severidade ou baixo impacto local (COSTA; GIUSTI; SANTOS, 2025).

Uma abordagem mais adequada seria identificar as características das mudanças

que afetam os dados, a fim de determinar a estratégia de reação ideal considerando

a natureza dessas mudanças. Essas características podem ser capturadas por meio de

descritores como severidade, zona de influência, velocidade, frequência, recorrência

e previsibilidade. No entanto, existe uma lacuna evidente na literatura em relação

a estudos que explorem a natureza da mudança de conceito e a conexão entre as

características da mudança, definidas por seus descritores, e a adequação de diferentes

estratégias de reação.

Por outro lado, compreender as relações entre os descritores da mudança e

estratégias de reação é essencial para enfrentar problemas do mundo real em ambientes

dinâmicos, uma vez que, nesses ambientes, a adaptabilidade e a tomada de decisão

baseada em dados são requisitos fundamentais. Mouchaweh (2016) estabelece que

o ambiente dinâmico é caracterizado pela chegada de dados em fluxo contínuo e

potencialmente ilimitado, em alta velocidade, e que a distribuição que os gera pode

modificar ao longo do tempo.

Por exemplo, na área da saúde, modelos de aprendizado de máquina são utiliza-

dos para prever o comportamento de doenças, analisar sinais de dispositivos médicos

e interpretar imagens clínicas. Quando empregados em ambientes que sofrem mu-

danças ao longo do tempo e estão sujeitos à mudança de conceito, os descritores de

recorrência e frequência desempenham papel central na definição da estratégia ideal de

reação, especialmente em cenários envolvendo doenças sazonais. Nesses casos, retreinar

completamente o classificador ao final de cada manifestação da doença pode ser um

processo oneroso e desnecessário, pois o mesmo padrão pode reaparecer posteriormente

(ROTALINTI et al., 2023; RIOS et al., 2020; KORE et al., 2024). Contudo, em situações
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de pandemia, como a COVID-19, ocorre uma mudança abrupta nos padrões de com-

portamento. Nesses casos, os descritores de velocidade e severidade tornam-se mais

importantes na definição da estratégia de reação ideal (SUSNJAK; MADDIGAN, 2023).

Outro exemplo de problema do mundo real propenso à mudança de conceito é a

detecção de fraudes (ambientes adversariais). Nesse caso, fraudadores frequentemente

alteram seus padrões em curtos intervalos com o objetivo de validar comportamentos

fraudulentos. Portanto, qualquer estratégia de reação deve considerar se o tempo

necessário para atualizar o classificador é suficiente para torná-lo eficaz antes que

ocorra uma nova mudança. Além disso, em muitos cenários reais, a rotulagem de

instâncias requer intervenção humana, o que inviabiliza o uso de estratégias como

o aprendizado incremental (FARRUGIA et al., 2021; SHAMITHA; ILANGO, 2022),

já que esses métodos dependem da disponibilidade contínua de rótulos verdadeiros.

Assim, a ausência de diretrizes que associem características específicas da mudança

com as estratégias de reação mais adequadas dificulta a adoção efetiva de abordagens

adaptativas em cenários do mundo real.

Apesar dos avanços na detecção e caracterização de mudanças de conceito,

ainda há uma lacuna significativa na definição de estratégias de reação orientadas por

descritores. A literatura apresenta estudos isolados que relacionam alguns descritores,

no entanto, carece de uma análise abrangente e sistemática que utilize o conjunto de

descritores como evidências para a escolha da estratégia de reação mais adequada.

Dado esse contexto, esta tese assume como hipótese e problema de pesquisa:

1.1 Hipótese de Pesquisa
A estimativa e a utilização dos descritores de mudança de conceito, como severidade,

zona de influência, velocidade, frequência, recorrência e previsibilidade, permitem

selecionar estratégias de reação capazes de preservar ou melhorar, em média, o desem-

penho do classificador quando comparadas à estratégia de reagir treinando um novo

classificador.
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1.2 Problema de Pesquisa
Como os descritores da mudança de conceito podem ser utilizados como evidências

para orientar a seleção da estratégia de reação mais adequada, de modo a preservar o

desempenho de classificadores em cenários dinâmicos?

1.3 Objetivos
O objetivo principal desta tese é demonstrar que descritores da mudança de conceito po-

dem ser utilizados como evidências para a definição da estratégia de reação à mudança

mais adequada.

Os objetivos específicos são:

1. Conduzir uma revisão sistemática da literatura sobre detecção não supervisionada

de mudança de conceito.

2. Propor uma nova classificação taxonômica sobre detecção não supervisionada de

mudança de conceito;

3. Identificar os descritores que têm maiores impactos no desempenho do classifica-

dor;

4. Estabelecer as relações entre os descritores de mudança de conceito e a definição,

baseada em evidências, da estratégia de reação mais adequada para preservação

do desempenho do classificador em cenários dinâmicos.

1.4 Contribuições da Tese
Esta tese fornece importantes contribuições para o campo de mudança de conceito, em

especial a classificação taxonômica dos métodos de detecção não supervisionados, a

compreensão da natureza da mudança e a definição de estratégias de reação à mudança

mais adequadas. As contribuições estão organizadas em três grupos.

Classificação Taxonômica

• Propor uma taxonomia das abordagens do estado-da-arte para detecção não

supervisionada de mudança de conceito.
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Compreensão da Natureza da Mudança de Conceito

• Classificação dos descritores: A análise dos descritores permitiu classificá-los em

duas dimensões (espacial e temporal).

• Identificação de descritores com alto e baixo impacto na mudança de conceito: os

resultados desta pesquisa demonstram que as características de uma mudança

afetam o desempenho do classificador de maneiras distintas. Assim, identificar

quais características têm maior impacto permite priorizá-las na definição de uma

estratégia de reação baseada em evidências.

Descritores e Estratégia de Reação

• Análise conjunta de descritores e estratégias de reação: este é o primeiro estudo a

analisar simultaneamente quatro descritores e cinco estratégias de reação, possibi-

litando uma avaliação abrangente do impacto dessas estratégias no desempenho

dos classificadores de acordo com as características da mudança de conceito;

• Estrutura experimental: este trabalho propõe uma estrutura experimental robusta,

incorporando testes estatísticos e um estudo de ablação, com potencial de replica-

ção em pesquisas futuras; e

• Reação baseada em evidências: este estudo fornece evidências práticas para apoiar

a seleção da estratégia de reação mais adequada com base nas características da

mudança de conceito.

1.5 Publicações
• GEMAQUE, R. N. et al. An overview of unsupervised drift detection methods. WI-

REs Data Mining and Knowledge Discovery, v. 10, n. 6, p. e1381, 2020. Disponível

em: <https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.1381>.

• COSTA, A.; GIUSTI, R.; SANTOS, E. M. d. Analysis of descriptors of concept drift

and their impacts. Informatics, v. 12, n. 1, 2025. ISSN 2227-9709. Disponível em:

<https://www.mdpi.com/2227-9709/12/1/13>.
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• COSTA, A.; GIUSTI, R.; SANTOS, E. M. d. Concept Drift and Reaction Strategies:

A Comprehensive Analysis Using Descriptors. Submetido ao periódico Machine

Learning. ISSN 0885-6125 (in peer review).

1.6 Organização da Tese
A partir deste ponto, a tese está organizada da seguinte maneira:

O Capítulo 2 apresenta os conceitos fundamentais para a compreensão do traba-

lho. O Capítulo 3 reúne e discute a literatura relevante em três grupos: detectores da

mudança de conceito; os trabalhos que abordam a natureza da mudança de conceito;

e os trabalhos que consideram as características da mudança para a definição de uma

estratégia de reação mais adequada. O Capítulo 4 apresenta uma análise sistemática do

impacto dos descritores de mudança de conceito em ambientes supervisionados, semi-

supervisionado e não supervisionado. O Capítulo 5 analisa a relação entre mudança

de conceito e estratégias de reação adotadas. O Capitulo 6 apresenta as conclusões,

limitações da tese e sugestões de trabalhos futuros. Por fim, o Apêndice A apresenta

uma visão geral dos métodos não supervisionados de detecção de mudança de conceito,

propondo uma taxonomia que organiza as principais abordagens existentes.
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CAPÍTULO 2

Fundamentação Teórica

N
este capítulo, os conceitos fundamentais para o entendimento deste trabalho

são apresentados. Inicialmente, o termo conceito e o fenômeno da mudança

de conceito são fundamentados. Em seguida, as fontes probabilísticas e os

descritores utilizados para caracterizar a mudança são considerados.

2.1 Conceito e Mudança de Conceito
Na perspectiva probabilística, o termo conceito é uma tupla composta pela probabili-

dade a priori da variável aleatória Y e pela probabilidade condicional de X em relação à

Y , ou seja, P (X|Y)(KUNCHEVA, 2004; HOENS; POLIKAR; CHAWLA, 2012; WEBB et

al., 2016). Essas variáveis determinam a distribuição da probabilidade conjunta P (X ,Y).

No contexto de aprendizado de máquina, X e Y representam, respectivamente,

o conjunto de instâncias descritas por vetores de características que compõem o espaço

de entrada e o conjunto de variáveis-alvo. Essas variáveis são definidas nas Equações

2.1 e 2.2:

X = {x1, x2, x3, ..., xn}, xn ∈ Rd, d ∈ N∗, (2.1)

Y = {y1, y2, y3, ..., yn}, yn ∈ N∗, (2.2)

de tal forma, um conceito é definido como a distribuição da probabilidade conjunta

entre X e Y , conforme expresso na Equação 2.3:

Conceito = p(X ,Y). (2.3)
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O termo mudança de conceito refere-se ao fenômeno de alteração na distribuição

dos dados de um problema específico ao longo do tempo (SCHLIMMER; GRANGER,

1986; GEMAQUE et al., 2020; BAYRAM; AHMED; KASSLER, 2022). Diversos autores

propuseram definições formais para esse fenômeno (GAMA et al., 2014; ŽLIOBAITĖ;

HOLLMÉN, 2015; LOSING; HAMMER; WERSING, 2016; LU et al., 2016; GUO et al.,

2022), dentre os quais, a definição de Gama et al. (2014) é amplamente aceita na literatura

e está sumarizada na Equação 2.4.

∃x : pti(x, y) 6= ptj(x, y), ti < tj, (2.4)

em que x é um vetor de características (x ∈ X ), que descreve uma instância, e y

representa a variável alvo (y ∈ Y). Uma mudança de conceito ocorre no tempo tj se

a distribuição conjunta (ptj ) difere significativamente da distribuição conjunta (pti) no

tempo ti. No contexto de dados em fluxo, j tende ao infinito (LU et al., 2019).

Webb et al. (2016) propõem uma definição mais abrangente para mudança

de conceito ao considerar não somente o paradigma supervisionado, mas também o

paradigma de aprendizado não supervisionado (Equação 2.5).

∃x : pt0(x) 6= ptn(x), (2.5)

a Equação 2.5 difere-se da Equação 2.4 por relaxar a restrição da variável alvo (Y) ser

conhecida. Neste trabalho adota-se a definição expressa na Equação 2.4.

Na literatura, há divergências nas terminologias adotadas para identificar a

mudança de conceito (BAYRAM; AHMED; KASSLER, 2022). Por exemplo, Quiñonero-

Candela et al. (2009) utilizam o termo dataset shift, enquanto Widmer e Kubat (1996)

empregam o termo concept shift. Por sua vez, Moreno-Torres et al. (2012) definem dataset

shift como uma generalização que abrange os termos covariate shift, prior probability shift

e mudança de conceito.

A mudança de conceito pode impactar o desempenho do classificador ao alterar

a fronteira de decisão no espaço de entrada. A Figura 1 apresenta um problema de



Capítulo 2. Fundamentação Teórica 26

Figura 1 – Exemplo de mudança de conceito: a fronteira de decisão é deslocada entre
os conceitos, o que pode ocasionar perda de desempenho do classificador. A
região sombreada indica a diferença entre os conceitos.

1 5 10
X1

1

5

10

X 2

(a) Conceito atual

1 5 10
X1

(b) Conceito novo

Fonte: Própria.

classificação binária definido pela equação da reta (Equação 2.6).

classe =


azul, se x+ y ≤ θ

verde, se x+ y > θ,

(2.6)

onde θ assume os valores 8 e 10, respectivamente, nos conceitos atual e novo. A alteração

no espaço de entrada ocasionada pela mudança de conceito é representada pela área

destacada em cinza na Figura 1.

A mudança de conceito é composta por fontes probabilísticas (IWASHITA; PAPA,

2019; CASTELLANI; SCHMITT; HAMMER, 2021; YAN, 2020; FAHY; YANG; GON-

GORA, 2022; TAN; LEE; SALEHI, 2022; COSTA; GIUSTI; SANTOS, 2025) e por des-

critores (MINKU; WHITE; YAO, 2010; MOUCHAWEH, 2016; KHAMASSI et al., 2018;

COSTA; GIUSTI; SANTOS, 2025), conforme apresentado na Figura 2. As fontes pro-

babilísticas são divididas nas probabilidades a priori, condicional e a posteriori. Por

sua vez, a literatura estabelece seis descritores: velocidade, frequência, recorrência,

severidade, zona de influência e previsibilidade (MOUCHAWEH, 2016; LU et al., 2019;

COSTA; GIUSTI; SANTOS, 2025). Esses dois componentes da mudança de conceito são

detalhados e exemplificados, respectivamente, nas Seções 2.2 e 2.3.
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Figura 2 – Componentes da mudança de conceito: a) Fontes Probabilísticas e b) Descri-
tores.

MUDANÇA DE CONCEITO

FONTES PROBABILÍSTICAS DESCRITORES

Fonte: Própria.

2.2 Fontes da Mudança de Conceito
As fontes probabilísticas da mudança de conceito correspondem às alterações nas

componentes da distribuição conjunta formalizadas na Equação 2.4. Nesta seção, essas

fontes são identificadas. Em seguida, as mudanças são classificadas conforme sua fonte,

e discute-se como cada uma delas impacta o espaço de entrada do problema.

Figura 3 – Fontes probabilísticas da mudança de conceito.

FONTES PROBABILÍSTICAS

PRIORI CONDICIONAL POSTERIORI

VIRTUAL REAL VIRTUAL REAL

Fonte: Própria.

As fontes probabilísticas da mudança de conceito incluem as alterações nas pro-

babilidades a priori, condicional e a posteriori. No primeiro caso, o resultado implica em

mudança de conceito virtual ou real, dependendo da variável afetada. Já alterações na

probabilidade condicional de X caracterizam mudanças virtuais. Por fim, modificações

na probabilidade a posteriori geram mudanças de conceito reais (Figura 3).

A probabilidade condicional é definida conforme a Equação 2.7, com a restrição
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de p(y) > 0 (BISHOP, 2006; DUDA; HART et al., 2006).

p(x|y) =
p(x, y)

p(y)
. (2.7)

Aplicando a propriedade do produto dos meios pelos extremos na Equação 2.7,

tem-se,

p(x, y) = p(x|y) · p(y), (2.8)

e de forma similar, conforme explicitado em Mouchaweh (2016):

p(x, y) = p(y|x) · p(x), (2.9)

portanto, as probabilidades condicionais da Equação 2.4 podem ser reescritas na forma

das Equações 2.8 e 2.9.

Observa-se que os quatro termos que compõem o Teorema de Bayes (2.10) estão

presentes nas Equações 2.8 e 2.9 (MOUCHAWEH, 2016; BAYRAM; AHMED; KASSLER,

2022).

p(y|x) =
p(x|y) · p(y)∑

y∈Y
p(x|y) · p(y)

, (2.10)

aplicando a Lei da Probabilidade Total (BISHOP, 2006; DUDA; HART et al., 2006) na

Equação 2.10, obtém-se a forma final do Teorema de Bayes (2.11).

p(y|x) =
p(x|y) · p(y)

p(x)
, (2.11)

correlacionando às Equações 2.11 e 2.4, identifica-se as quatro fontes probabilísticas da

mudança de conceito:

• p(x) a probabilidade a priori de x,

• p(y) a probabilidade a priori de y,

• p(x|y) a probabilidade condicional e

• p(y|x) a probabilidade a posteriori.
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Os autores Mouchaweh (2016), Bayram, Ahmed e Kassler (2022) e Fahy, Yang e

Gongora (2022) divergem quanto à possibilidade de uma mudança de conceito ter como

fonte uma mudança em p(x). Mouchaweh (2016) sustenta que p(x) é constante para

todas as classes, enquanto os demais autores apresentam entendimento oposto. Nesta

pesquisa seguimos o entendimento destes últimos, por considerá-lo mais abrangente.

Destaca-se que nas figuras da Seção 2.2, as instâncias que aparecem com trans-

parência representam a posição de cada instância no conceito inicial projetada junto à

posição dessas no conceito atual com o objetivo de facilitar a visualização do processo de

mudança de conceito. Similarmente, a linha tracejada representa a fronteira de decisão

entre as classes.

2.2.1 Probabilidade a priori

A mudança de conceito pode ter como fonte alterações na probabilidade a priori do vetor

de características que descreve as instâncias (x) ou da variável alvo (y). Mudanças em

p(x) correspondem à chamada mudança de conceito do tipo virtual, que se caracteriza

por não modificar a fronteira de separação (p(y|x)) e, consequentemente sem impacto

no desempenho do classificador (MOUCHAWEH, 2016; LU et al., 2019; AGRAHARI;

SINGH, 2021; FAHY; YANG; GONGORA, 2022; TAN; LEE; SALEHI, 2022).

Por sua vez, mudanças na probabilidade a priori da variável alvo (y) podem

gerar tanto mudanças de conceito virtual quanto real, a depender de seus efeitos sobre

a distribuição condicional (p(y|x)). A mudança de conceito real é caracterizada por

modificações na fronteira de decisão, o que, por sua vez, impacta o desempenho do

classificador (GAMA et al., 2014; MOUCHAWEH, 2016; AGRAHARI; SINGH, 2021;

FAHY; YANG; GONGORA, 2022; TAN; LEE; SALEHI, 2022).
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2.2.1.1 Probabilidade a priori de x

A mudança de conceito que afeta somente a probabilidade a priori de x, sem impactar y,

é formalizada por Bayram, Ahmed e Kassler (2022), conforme as Equações 2.12 e 2.13:

pt0(y|x) = ptn(y|x), (2.12)

pt0(x) 6= ptn(x). (2.13)

A Figura 4 exemplifica uma mudança de conceito virtual. Em (a) apresenta-se o

conceito inicial, enquanto em (b) está o conceito surgido após a mudança. Observa-se

que nessa situação a mudança não altera a fronteira de separação entre as classes.

Figura 4 – Exemplo de mudança de conceito virtual ocasionada por mudança em p(x).

(a) Conceito inicial. (b) Mudança de conceito virtual
pt0(y|x) = ptn(y|x) e pt0(x) 6= ptn(x).

Fonte: Adaptado de Gama et al. (2014), Mouchaweh (2016),Bayram, Ahmed e Kassler
(2022),Fahy, Yang e Gongora (2022) e Tan, Lee e Salehi (2022).

Mudanças na probabilidade a priori de x podem gerar dois subtipos: mudança

de conceito virtual local e mudança de conceito virtual por evolução de características

(BAYRAM; AHMED; KASSLER, 2022). O primeiro é caracterizado por alterações em

regiões limitadas do espaço de características e descrito conforme a Equação 2.14

(TSYMBAL et al., 2008; BAYRAM; AHMED; KASSLER, 2022):

pt0(y|x) = ptn(y|x),

pt0(x1) 6= ptn(x1),

pt0(x2) = ptn(x2).

(2.14)
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A Figura 5 exemplifica a mudança de conceito virtual local, a qual afeta somente

o atributo x1, enquanto o atributo x2 permanece inalterado após a mudança de conceito.

Figura 5 – Exemplo de mudança de conceito virtual ocasionada por mudança em parte
dos atributos.

(a) Conceito inicial.
(b) Mudança de conceito virtual local

pt0(y|x) = ptn(y|x),
pt0(x1) 6= ptn(x1) e pt0(x2) = ptn(x2).

Fonte: Adaptado de Gama et al. (2014),Mouchaweh (2016),Bayram, Ahmed e Kassler
(2022),Fahy, Yang e Gongora (2022) e Tan, Lee e Salehi (2022).

A mudança de conceito virtual por evolução de características está associado ao

surgimento de novas características com a passagem do tempo, conforme descrito na

Equação 2.15 (MASUD et al., 2010):

pt0(y|x) = ptn(y|x),

xt0 = {x1, x2},

xtn = {x1, x2, x3},

com n > 0.

(2.15)

A Figura 6 exemplifica esse subtipo: uma nova características (x3) surge com a

passagem do tempo.

2.2.1.2 Probabilidade a priori de y

Esse tipo de mudança é caracterizado por variação no balanceamento entre as classes

existentes (Figura 7), surgimento de novas classes (Figura 8) ou desaparecimento de
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Figura 6 – Exemplo de mudança de conceito virtual ocasionada por surgimento de novo
atributo.

(a) Conceito inicial.
(b) Mudança de conceito virtual local

pt0(y|x) = ptn(y|x),
pt0(x1) 6= ptn(x1) e pt0(x2) = ptn(x2).

Fonte: Adaptado de Gama et al. (2014),Mouchaweh (2016),Bayram, Ahmed e Kassler
(2022),Fahy, Yang e Gongora (2022) e Tan, Lee e Salehi (2022).

classes existentes (Figura 9). As mudanças nessa fonte (Equação 2.16) ocasionam a

degradação no desempenho do classificador (BAYRAM; AHMED; KASSLER, 2022):

pt0(y) 6= ptn(y), (2.16)

esse tipo de mudança é denominado de mudança de conceito real.

É importante citar que mudanças na probabilidade a priori de y que afetam a

probabilidade a posteriori (p(y|x)) mas não a probabilidade condicional (p(x|y)) são cha-

madas mudança de conceito real do tipo I (MOUCHAWEH, 2016; BAYRAM; AHMED;

KASSLER, 2022). Por sua vez, alterações em p(y) que não afetam p(y|x) não caracterizam

mudança de conceito e estão relacionadas com o problema de desbalanceamento de

classes (FANGYU et al., 2021). A evolução do conceito e o desaparecimento de classes

são, respectivamente, tratados em (MASUD et al., 2010) e (ELWELL; POLIKAR, 2011).
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Figura 7 – Exemplo de mudança de conceito real ocasionada por variação no balancea-
mento entre as classes.

(a) Conceito inicial.
(b) Mudança de conceito real tipo I.
pt0(y) 6= ptn(y), pt0(y|x) 6= ptn(y|x)

e pt0(x) 6= ptn(x).

Fonte: Adaptado de Gama et al. (2014),Mouchaweh (2016),Bayram, Ahmed e Kassler
(2022),Fahy, Yang e Gongora (2022) e Tan, Lee e Salehi (2022).

Figura 8 – Exemplo de mudança de conceito real ocasionada por evolução do conceito.

(a) Conceito inicial.
(b) Mudança de conceito real por

evolução do conceito.
pt0(y) 6= ptn(y).

Fonte: Adaptado de Gama et al. (2014), Mouchaweh (2016),Bayram, Ahmed e Kassler
(2022),Fahy, Yang e Gongora (2022) e Tan, Lee e Salehi (2022).

2.2.2 Probabilidade condicional de x

Esse tipo de mudança (p(x|y)) impacta somente a distribuição dentro da mesma classe,

sem modificar a fronteira de decisão. Portanto, trata-se de mudança de conceito virtual

(MOUCHAWEH, 2016), descrita conforme a Equação 2.17.

pt0(y|x) = ptn(y|x),

pt0(x|y) · p(y) 6= ptn(x|y) · p(y),

pt0(y) = ptn(y)− Restrição,

(2.17)
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Figura 9 – Exemplo de mudança de conceito real ocasionada pelo desaparecimento de
uma classe.

(a) Conceito inicial.
(b) Mudança de conceito real por
desaparecimento de uma classe.

pt0(y) 6= ptn(y).

Fonte: Adaptado de Gama et al. (2014), Mouchaweh (2016),Bayram, Ahmed e Kassler
(2022),Fahy, Yang e Gongora (2022) e Tan, Lee e Salehi (2022).

a restrição é necessária porque mudanças em p(y) impactam a fronteira de separação

entre as classes, caracterizando mudanças de conceito real. Além disso, a restrição gera a

mesma descrição para mudanças na probabilidade a priori de x. Portanto, as mudanças

em p(x|y) são as mesmas apresentadas na probabilidade a priori de x.

2.2.3 Probabilidade a posteriori

Essas mudanças afetam a fronteira de separação entre as classes e degradam o desem-

penho do classificador, o que exige a adoção de estratégias de reação. São classificadas

como mudança de conceito real (GAMA et al., 2014; MOUCHAWEH, 2016; BAYRAM;

AHMED; KASSLER, 2022; FAHY; YANG; GONGORA, 2022; TAN; LEE; SALEHI, 2022).

Os seguintes autores sustentam que mudanças em p(y|x) geram exclusivamente

mudanças de conceito real (GAMA et al., 2014; MOUCHAWEH, 2016; FAHY; YANG;

GONGORA, 2022; TAN; LEE; SALEHI, 2022). Por sua vez, Bayram, Ahmed e Kassler

(2022) afirmam que mudanças nessa fonte produzem dois tipos principais e três subtipos

de mudanças de conceito. Essa classificação é detalhada a seguir.

A primeira é denominada de mudança de conceito real do tipo I, descrita con-
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forme a Equação 2.18:

pt0(y|x) 6= ptn(y|x),

pt0(x) 6= ptn(x),
(2.18)

observa-se que alterações em p(y|x) estão associadas à alterações em p(x). Esse tipo de

mudança (Figura 10) afeta a fronteira de decisão (BAYRAM; AHMED; KASSLER, 2022).

Figura 10 – Exemplo de mudança de conceito real do tipo I ocasionada por mudança
em pt0(y|x) 6= ptn(y|x) e pt0(x) 6= ptn(x).

(a) Conceito inicial.
(b) Mudança de conceito real tipo I.
pt0(y) 6= ptn(y), pt0(y|x) 6= ptn(y|x)

e pt0(x) 6= ptn(x).

Fonte: Adaptado de Gama et al. (2014),Mouchaweh (2016),Bayram, Ahmed e Kassler
(2022),Fahy, Yang e Gongora (2022) e Tan, Lee e Salehi (2022).

A segunda mudança é denominada mudança de conceito real do tipo II e é

descrita conforme a Equação 2.19:

pt0(y|x) 6= ptn(y|x),

pt0(x) = ptn(x),
(2.19)

observa-se que alterações em p(y|x) não estão associadas à alterações em p(x). Esse tipo

(Figura 11) afeta a fronteira de decisão (BAYRAM; AHMED; KASSLER, 2022).

Por fim, os três subtipos identificados nas mudanças na probabilidade a posteriori

são denominados: i) mudança de conceito real inconsistente, ii) mudança de conceito

real plena e iii) mudança de conceito real cruzada (FORMAN, 2006; MINKU; WHITE;

YAO, 2010; WEBB et al., 2016; BAYRAM; AHMED; KASSLER, 2022).
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Figura 11 – Exemplo de mudança de conceito real do tipo II ocasionada por mudança
em pt0(y|x) 6= ptn(y|x) e pt0(x) = ptn(x).

(a) Conceito inicial. (b) Mudança de conceito real tipo II.
pt0(y|x) 6= ptn(y|x) e pt0(x) = ptn(x).

Fonte: Adaptado de Gama et al. (2014),Mouchaweh (2016),Bayram, Ahmed e Kassler
(2022),Fahy, Yang e Gongora (2022) e Tan, Lee e Salehi (2022).

A mudança de conceito real inconsistente é caracterizada pela existência de ao

menos uma instâncias que modifica sua classe com a passagem do tempo. É descrita

conforme a Equação 2.20 (FORMAN, 2006; BAYRAM; AHMED; KASSLER, 2022):

∃x(arg max pt0(y|x) = c1 ∩ arg max ptn(y|x) = c2. (2.20)

Figura 12 – Exemplo de mudança de conceito real inconsistente - ∃x(arg max pt0(y|x) =
c1 ∩ arg max ptn(y|x) = c2).

(a) Conceito inicial.
(b) Mudança de conceito real inconsistente.

∃x(arg max pt0(y|x) = c1∩
arg max ptn(y|x) = c2).

Fonte: Adaptado de Gama et al. (2014),Mouchaweh (2016),Bayram, Ahmed e Kassler
(2022),Fahy, Yang e Gongora (2022) e Tan, Lee e Salehi (2022).

A Figura 12 apresenta um exemplo desse subtipo de mudança. O círculo em
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vermelho indica a instância que alterou sua classe e, como consequência, alterou a

fronteira de decisão entre as classes com a passagem do tempo.

A mudança de conceito real plena é caracterizada pela alteração de classe de

todas as instâncias com a passagem do tempo. É descrita conforme a Equação 2.21

(MINKU; WHITE; YAO, 2010; BAYRAM; AHMED; KASSLER, 2022):

∀x(arg max pt0(y|x) = c1 ∩ arg max ptn(y|x) = c2). (2.21)

A Figura 13 apresenta um exemplo desse subtipo. Todas as instâncias mudaram

de classe com a passagem do tempo e, como consequência, a fronteira de decisão entre

as classes foi alterada. Esse subtipo também é referenciado na literatura como reversão

de conceitos (GAMA et al., 2004; PINAGE; SANTOS, 2015; IWASHITA; PAPA, 2019;

GâLMEANU; ANDONIE, 2021).

Figura 13 – Exemplo de mudança de conceito real plena - ∀x(arg max pt0(y|x) = c1 ∩
arg max ptn(y|x) = c2).

(a) Conceito inicial.
(b) Mudança de conceito real plena.

∀x(arg max pt0(y|x) = c1∩
arg max ptn(y|x) = c2).

Fonte: Adaptado de Gama et al. (2014),Mouchaweh (2016),Bayram, Ahmed e Kassler
(2022),Fahy, Yang e Gongora (2022) e Tan, Lee e Salehi (2022).

A mudança real cruzada implica em modificações de classe de instâncias delimi-

tadas em uma sub-região (BAYRAM; AHMED; KASSLER, 2022). É descrita conforme a

Equação 2.22 (WEBB et al., 2016; BAYRAM; AHMED; KASSLER, 2022):

∃x(arg max pt0(y|x) = c1 ∩ arg max ptn(y|x) = c2)∩

∃z(arg max pt0(y|z) = c1 ∩ arg max ptn(y|z) = c2).
(2.22)
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A Figura 14 apresenta um exemplo desse último subtipo. As instâncias circuns-

critas em um círculo vermelho indicam as sub-regiões do espaço de entrada em que as

mudanças ocorrem.

Figura 14 – Exemplo de mudança de conceito real cruzada - ∃x(arg max pt0(y|x) = c1 ∩
arg max ptn(y|x) = c2) ∩ ∃z(arg max pt0(y|z) = c1 ∩ arg max ptn(y|z) = c2).

(a) Conceito inicial.

(b) Mudança de conceito real cruzada.
∃x(arg max pt0(y|x) = c1∩
arg max ptn(y|x) = c2)∩
∃z(arg max pt0(y|z) = c1∩

arg max ptn(y|z) = c2)

Fonte: Adaptado de Gama et al. (2014),Mouchaweh (2016),Bayram, Ahmed e Kassler
(2022),Fahy, Yang e Gongora (2022) e Tan, Lee e Salehi (2022).

2.2.4 Síntese das Fontes de Mudança de Conceito

A Tabela 1 sintetiza a relação entre as fontes de mudança de conceito discutidas nesta

seção e os respectivos tipos identificados na literatura. Nota-se que determinados tipos

de mudança podem estar associados a mais de uma fonte. Ressalta-se, ainda, que os

tipos posicionados acima da linha tracejada correspondem a mudanças virtuais, sem

impacto no desempenho do classificador, enquanto aqueles abaixo da linha referem-se

a mudanças reais, que comprometem o desempenho do modelo.

Esta seção discutiu o primeiro componente da mudança de conceito. A discussão

sobre o segundo componente é apresentada na próxima seção.
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Tabela 1 – Resumo das fontes probabilísticas de mudança de conceito.

Fonte
p(x) p(y) p(x|y) p(y|x)

M
ud

an
ça

de
co

nc
ei

to

Virtual 3 3

Virtual local 3 3

Virtual evolução de características 3 3

Real tipo I 3 3

Real tipo II 3

Real inconsistente 3

Real plena 3

Real cruzada 3

Real evolução de conceitos 3

Real exclusão de conceitos 3

Fonte: Própria.

2.3 Descritores da Mudança de Conceito
Um descritor é uma propriedade inerente ao fenômeno da mudança de conceito que

permite sua caracterização. Na literatura há seis descritores conhecidos, dos quais cinco

podem ser agrupados em função da dimensionalidade considerada.

• Dimensão espacial: severidade e zona de influência, e

• Dimensão temporal: velocidade, frequência e recorrência.

O sexto descritor, previsibilidade, não está relacionado a nenhuma das duas

dimensões. A Figura 15 detalha a estrutura dos descritores de mudança de conceito.

O descritor de severidade caracteriza a mudança de conceito como de alta ou

baixa severidade, enquanto o de zona de influência a caracteriza como global ou local.

No que se refere aos descritores da dimensão temporal, a mudança pode ser: repentina

ou gradual (velocidade); periódica ou não periódica (frequência); e recorrente ou não

recorrente (recorrência). Por fim, o descritor de previsibilidade indica se a mudança

possui propriedades que podem ou não ser previstas.

Os descritores buscam respostas à perguntas específicas a fim de caracterizar as

mudanças de conceito, estando essas expressas a seguir. Os descritores de velocidade,

severidade e zona de influência permitem compreender a estrutura da mudança ge-

rando respostas, respectivamente, às questões um, dois e três (LU et al., 2019). Quanto
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Figura 15 – Mudança de conceito na perspectiva do seus descritores.
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Fonte: Adaptado de Costa, Giusti e Santos (2025).

à frequência e à recorrência, esses descritores estabelecem, respectivamente, respostas

para as perguntas quatro e cinco (LU et al., 2019; MOUCHAWEH, 2016). Já o descritor

de previsibilidade busca responder a pergunta seis, dado que em ambientes onde as

mudanças ocorrem de forma plenamente aleatória, a detecção só é possível após o início

dos seus efeitos, como a degradação do desempenho do preditor por exemplo.

1. Qual é a duração da mudança (descritor de velocidade)?

2. Qual a intensidade da mudança (descritor de severidade)?

3. Onde a mudança ocorre (descritor de zona de influência)?

4. Quantas vezes a mudança ocorre em um determinado intervalo de tempo (descri-

tor de frequência)?

5. A mudança tem comportamento cíclico (descritor de recorrência)?

6. Há algum padrão na ocorrência das mudanças (descritor de previsibilidade)?

Portanto, a caracterização da mudança de conceito por meio de seus descritores

constitui uma abordagem relevante para compreender sua natureza e orientar a defi-
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nição da estratégia de reação mais adequada (MOUCHAWEH, 2016; LU et al., 2019;

COSTA; GIUSTI; SANTOS, 2025).

As definições dos descritores apresentadas aqui estão fundamentadas nos traba-

lhos de Lazarescu, Venkatesh e Bui (2004), Minku, White e Yao (2010) e Žliobaitė (2010),

compilados por Mouchaweh (2016); nos trabalhos de Kosina, Gama e Sebastião (2010),

Jia, Koh e Dobbie (2017) e Webb et al. (2016), compilados por Goldenberg e Webb (2019);

e nas contribuições mais recentes (LU et al., 2019) e (COSTA; GIUSTI; SANTOS, 2025).

2.3.1 Dimensão Espacial

As alterações no espaço de entrada decorrentes da mudança de conceito são descritas

pelos descritores da dimensão espacial, que fornecem parâmetros relativos à sua mag-

nitude e localização. Em particular, os descritores de severidade e zona de influência

permitem mensurar a dissimilaridade entre os conceitos e identificar as regiões do

espaço impactadas, respectivamente.

2.3.1.1 Severidade

Mensura a dissimilaridade do espaço de entrada entre os conceitos válidos no tempo i e

j, com i < j (MOUCHAWEH, 2016; WEBB et al., 2016; LU et al., 2019; COSTA; GIUSTI;

SANTOS, 2025). O descritor é formalizado na Equação 2.23.

∆ = δ(pti(X ,Y), ptj(X ,Y)), i < j, (2.23)

onde δ é uma função de dissimilaridade entre duas distribuições de dados, e ti e tj

representam dois pontos distintos no tempo. Geralmente ∆ é não negativo e, quanto

maior o valor de ∆, maior é a severidade da mudança (LU et al., 2019).

A mudança de conceito é descrita em termos de severidade em alta (global)

ou baixa (parcial). É considerada alta quando o conceito atual é majoritariamente

substituído por um novo, enquanto a baixa severidade corresponde a alterações que

afetam apenas uma parte da região ocupada pelo conceito atual (MOUCHAWEH, 2016).
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Figura 16 – Descritor de severidade. O lado esquerdo representa uma mudança de
conceito de baixa severidade: as áreas em amarelo em (a) e (b) indicam,
respectivamente, as regiões que devem ser esquecidas e aprendidas após
a mudança. O lado direito representa uma mudança de conceito de alta
severidade: as áreas em amarelo em (c) e (d) indicam, respectivamente, as
regiões que devem ser esquecidas e aprendidas após a mudança.
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Fonte: Adaptado de Costa, Giusti e Santos (2025).

A quantificação dessa propriedade pode ser realizada por meio de métricas que avaliam

a dissimilaridade entre distribuições de probabilidade, como a divergência de Kullback-

Leibler (KULLBACK; LEIBLER, 1951; DASU et al., 2006). Apesar dessas abordagens, a

distinção formal entre os dois níveis de severidade ainda é considerada uma questão

em aberto na literatura (LU et al., 2019).

Minku, White e Yao (2010) classificam a mudança em termos de severidade

em severa e cruzada. A severa corresponde à situação em que todas as instâncias

modificam seus rótulos devido à mudança de conceito, gerando uma reversão dos

conceitos, conforme mostra a Figura 13 (b). Já na mudança de conceito cruzada, uma

parte das instâncias do conceito atual mantém seus rótulos, conforme mostra Figura 14.

As classificações propostas por Minku, White e Yao (2010) e Mouchaweh (2016)

para as mudanças de conceito de alta severidade assemelham-se, porém são conceitual-

mente distintas. Para os primeiros autores, deve ocorrer uma reversão completa dos

conceitos. Enquanto Mouchaweh (2016) considera as alterações causadas pela mudança

de conceito, independentemente de haver mudanças na fronteira de decisão. Este traba-

lho adota a definição de Mouchaweh (2016), pois essa distingue melhor a severidade da

zona de influência.

A Figura 16 apresenta dois exemplos de mudança de conceito com severidades

distintas no contexto de um problema de classificação binária, de duas dimensões. No

primeiro exemplo, à esquerda na figura, as imagens (a) e (b) representam, respectiva-
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mente, o mesmo espaço de entrada antes e depois da mudança de conceito. As regiões

destacadas em amarelo indicam as regiões impactadas pela mudança. Observa-se que

estas representam uma pequena parte do espaço, caracterizando uma mudança de con-

ceito de baixa severidade. Nesse cenário, reagir à mudança retreinando o classificador

significaria esquecer o espaço de entrada e ter que reaprender todas as áreas do espaço

de entrada não afetadas pela mudança por causa de uma pequena parte afetada.

Por sua vez, no exemplo à direita da Figura 16, em que as imagens (c) e (d) tam-

bém representam o mesmo espaço de entrada antes e depois da mudança de conceito,

respectivamente, observa-se que as regiões impactadas pela mudança representam uma

grande parte do espaço. Isso caracteriza uma mudança de conceito de alta severidade.

Nesse cenário, praticamente toda a classe verde foi afetada, sendo provavelmente o

retreino a melhor estratégia para reagir a esse tipo de mudança.

Esse cenário evidencia a importância de se considerar o nível de severidade da

mudança de conceito na definição de estratégias de reação. Tomando como exemplo

a estratégia mais comumente adotada na literatura, que é baseada no retreino total

do preditor, observa-se que, além de apresentar elevado custo computacional, essa

abordagem demanda, na maioria dos casos, a obtenção dos rótulos verdadeiros das

instâncias. No entanto, o processo de rotulagem pode ser oneroso e, em muitas situações,

inviável, a depender da tarefa preditiva em questão. Diante disso, em vez de reagir à

mudança independentemente do nível de severidade, é útil estabelecer um limiar de

severidade que determine quando a reação se justifica, de modo a executá-la apenas

quando estritamente necessário.

2.3.1.2 Zona de Influência

Caracteriza as regiões do espaço de entrada impactadas pela ocorrência da mudança

(MOUCHAWEH, 2016). Essas regiões são consideradas regiões de conflito entre o con-

ceito atual e o novo, onde pti(X ,Y) e ptj(X ,Y), i < j apresentam diferença significativa

(LU et al., 2019). A zona de influência descreve a mudança como local ou global. A

primeira ocorre quando uma área restrita do espaço de entrada é impactada, enquanto
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Figura 17 – Descritor de zona de influência. (a) representa o espaço de entrada do
conceito inicial. Nos exemplos (b) e (c), as regiões destacadas em amarelo
apresentam probabilidade conjunta de classificar as instâncias diferentes
em relação à (a), tornando-as regiões de conflito entre os conceitos.

0 5 100

5

10 (a)

0 5 10
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Fonte: Própria.

na segunda uma região significativa do espaço de entrada é afetada, especialmente

próxima à fronteira de separação entre as classes (COSTA; GIUSTI; SANTOS, 2025).

A Figura 17 ilustra o descritor zona de influência. A parte (a) representa o

conceito inicial, enquanto as partes (b) e (c) destacam, em amarelo, as regiões do

espaço de entrada que diferem do conceito original após a mudança. Essas regiões

correspondem às áreas de conflito entre os conceitos, nas quais ocorre alteração na

probabilidade condicional de classificação.

Conhecer a zona de influência da mudança de conceito é útil para definir uma

estratégia de reação que preserve o desempenho do classificador e evite retreinamentos

desnecessários. Quando a zona de influência é global (Figura 17(c)), afetando grande

parte do espaço de entrada e, geralmente, associada a uma mudança de alta severidade,

a estratégia mais adequada tende a ser o retreino completo do modelo. Por outro lado,

quando a mudança ocorre de forma local, como ilustrado na Figura 17(b), a estratégia

de reação deve ser ajustada conforme outros descritores (GAMA et al., 2014; IWASHITA;

PAPA, 2019; BAYRAM; AHMED; KASSLER, 2022; CASTELLANI; SCHMITT; HAMMER,

2021; YAN, 2020; FAHY; YANG; GONGORA, 2022; TAN; LEE; SALEHI, 2022).



Capítulo 2. Fundamentação Teórica 45

Figura 18 – Exemplo de mudança de conceito repentina, caracterizada pela substituição
do conceito antigo pelo novo em um curto intervalo de tempo, com Vmc =
tmf − tmi = 1.

Fonte: Adaptado de Minku, White e Yao (2010),Mouchaweh (2016) e Lu et al. (2019).

2.3.2 Dimensão Temporal

As características temporais da mudança de conceito; como a duração, a frequência e a

recorrência; são descritas pelos descritores da dimensão temporal.

2.3.2.1 Velocidade

Esse descritor está relacionado ao tempo de duração do processo de transição entre os

conceito atual e novo. A velocidade da mudança é definida como o inverso do tempo

necessário para que o conceito atual seja substituído pelo novo (MINKU; WHITE; YAO,

2010). A velocidade é calculada pela Equação 2.24 (MOUCHAWEH, 2016):

Vmc =
1

tmf − tmi

, (2.24)

onde tmf e tmi indicam, respectivamente, o ponto de fim e o ponto de início da transição

entre os conceitos. Do ponto de vista numérico, a velocidade da mudança tem o valor

máximo igual a 1 quando o intervalo entre conceitos é mínimo, e tende a 0 quando esse

intervalo tende ao máximo.

O descritor de velocidade classifica as mudanças de conceito em repentina e gra-

dual (MINKU; WHITE; YAO, 2010; MOUCHAWEH, 2016; LU et al., 2019). A mudança

gradual é subdividida em gradual contínua e gradual probabilística (MOUCHAWEH,
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2016; COSTA; GIUSTI; SANTOS, 2025). Considera-se uma mudança repentina quando

Vmc = 1, e gradual nos demais casos.

A mudança repentina é caracterizada pela substituição do conceito antigo pelo

conceito novo em um curto intervalo de tempo (tmf − tmi ≈ 1). Em geral, um valor

próximo a 1 indica uma mudança repentina (MINKU; WHITE; YAO, 2010; LU et al.,

2016). A Figura 18 ilustra a substituição repentina do conceito atual no tempo t por um

novo conceito no tempo t+1. Nesse exemplo, a mudança ocorre em apenas uma unidade

de tempo, e a velocidade de mudança atinge seu valor máximo, com Vmc = 1
tmf−tmi

= 1.

Por sua vez, os dois subtipos de mudança gradual são caracterizados por um

intervalo de transição maior entre os conceitos, o que implica uma menor velocidade

de mudança. Esse tipo de mudança tende a ser mais difícil de detectar, uma vez que

envolve um período de incerteza entre os conceitos (MOUCHAWEH, 2016).

Na mudança gradual contínua, há uma lenta transformação do conceito atual

para o novo, havendo um período de transição de tamanho n, onde instâncias dos dois

conceitos aparecerem simultaneamente, gerando n conceitos intermediários. Não há coe-

xistências entre os conceitos atual e novo, conforme exposto na Figura 19 (BRZEZINSKI,

2010; MOUCHAWEH, 2016; LU et al., 2019). Já na mudança gradual probabilística, a

transição entre conceitos ocorre de forma lenta e envolve a coexistência do conceito

atual e do novo. Com o tempo, a probabilidade associada ao conceito atual decresce

progressivamente até se anular, enquanto a probabilidade do novo conceito aumenta

até atingir o valor máximo, conforme exposto na Figura 20.

A Figura 21 apresenta exemplos de mudanças de conceito com diferentes velo-

cidades. De acordo com a definição de Minku, White e Yao (2010), apenas a mudança

ilustrada em (b) é considerada repentina. Entretanto, Webb et al. (2016) definem mu-

dança de conceito repentina conforme a Equação 2.25:

Ia+1 − Fa ≤ δ, (2.25)

sendo que Ia+1 e Fa representam, respectivamente, funções que retornam o ponto no

tempo de início e de fim dos conceitos estáveis a e a+ 1, e δ ∈ N∗ é um valor definido

dependendo do contexto que indica a duração máxima aceita para uma mudança de
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Figura 19 – Exemplo de mudança de conceito gradual contínua caracterizada pela subs-
tituição suave do conceito antigo pelo conceito novo sem coexistência de
conceitos.

Fonte: Adaptado de Minku, White e Yao (2010),Mouchaweh (2016) e Lu et al. (2019).

Figura 20 – Exemplo de mudança de conceito gradual probabilística caracterizada pela
substituição suave do conceito antigo pelo conceito novo com coexistência
de conceitos.

Fonte: Adaptado de Minku, White e Yao (2010),Mouchaweh (2016) e Lu et al. (2019).

conceito repentina.

De acordo a definição de Webb et al. (2016), qualquer um dos exemplos da

Figura 21 pode ser classificado como uma mudança repentina, a depender do valor

atribuído à δ. Essa definição permite uma interpretação contextualizada ao problema a

ser resolvido, embora haja a necessidade de definir o valor de δ. Até o momento, não

foram identificadas pesquisas que abordem a definição desse parâmetro. Embora essa

definição seja mais flexível, esta pesquisa adotou a definição de Minku, White e Yao
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Figura 21 – Descritor de velocidade.
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Fonte: Própria.

(2010), por ser amplamente aceita na literatura.

Em relação à estratégia de reação, mudanças de alta velocidade apresentam um

desafio maior, pois o período de transição entre conceitos é curto e, como consequência,

poucas instâncias estarão disponíveis para adotar a estratégia de retreinar o classificador.

Por outro lado, mudanças com período maior de transição entre os conceitos permitem

que mais instâncias sejam acumuladas para adotar a estratégia de retreino. Portanto,

descrever a mudança em termos de sua velocidade é um elemento importante para

definir a melhor estratégia de reação.
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Figura 22 – Descritor de Frequência. Dois exemplos de frequência não periódica da
mudança de conceito. A primeira mudança entre os conceitos amarelo
e verde tem frequência igual a 1

4
. A segunda mudança tem a frequência

definida em 1
5

(conceito verde e rosa). Na figura i < j < k < l.

Fonte: Própria.

2.3.2.2 Frequência

Esse descritor caracteriza o número de ocorrências de mudança em um determinado

intervalo de tempo. É definido como o inverso do intervalo entre os pontos de início de

dois conceitos consecutivos (KUH; PETSCHE; RIVEST, 1990; WIDMER; KUBAT, 1996;

WEBB et al., 2016) e formalizado na Equação 2.26 (MOUCHAWEH, 2016):

f =
1

T
, (2.26)

onde, T é o intervalo entre o início de dois conceitos. Assim, quando as mudanças ocor-

rem em intervalos constantes, são classificadas como periódicas; quando apresentam

intervalos variáveis ao longo do tempo, são classificadas como não periódicas (Figura

22) (COSTA; GIUSTI; SANTOS, 2025).

Mudanças com alta frequência praticamente inviabilizam adotar a estratégia

de reação baseada em retreino, pois demandam reação constante. Além disso, essas

mudanças podem afetar pouco a fronteira de decisão, não necessitando do retreino

do classificador. Por sua vez, mudanças de baixa frequência possibilitam que mais

instâncias estejam disponíveis, fornecendo mais conhecimento para a definição da

estratégia de reação.
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Figura 23 – Descritor de Recorrência - exemplo de mudança de conceito recorrente cí-
clica. As frequências f1 e f2 representam os conceitos 1 e 2, respectivamente.

Fonte: Adaptado de Mouchaweh (2016).

2.3.2.3 Recorrência

Representa uma mudança que reativa um conceito previamente aprendido, caracteri-

zando a repetição de padrões (NARASIMHAMURTHY; KUNCHEVA, 2007; MINKU;

WHITE; YAO, 2010; MOUCHAWEH, 2016; WEBB et al., 2016; RAMíREZ-GALLEGO

et al., 2017; SUáREZ-CETRULO; QUINTANA; CERVANTES, 2023). É formalizada con-

forme Equação 2.27, adaptada da definição proposta por Ramírez-Gallego et al. (2017):

∃x : ptj(x, y) = pti(x, y), ti < tj, (2.27)

onde pti representa um conceito anteriormente conhecido.

Nesse contexto, mudanças podem ser classificadas em recorrentes ou não recor-

rentes (MINKU; WHITE; YAO, 2010; MOUCHAWEH, 2016; KHAMASSI et al., 2018).

As mudanças recorrentes podem ser cíclicas (Figura 23), quando o ressurgimento de

conceitos antigos ocorre em intervalos constantes, ou acíclicas (Figura 24), quando não

há um padrão na reativação desses conceitos.

Em relação à reação, ambientes em que as mudanças são periódicas permi-

tem que os padrões de modificações dos conceitos sejam, em tese, conhecidos. Esse

conhecimento é útil na definição do tempo ideal para manter o classificador.
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Figura 24 – Descritor de Recorrência - exemplo de mudança de conceito recorrente
acíclica. Os conceitos previamente observados reaparecem em intervalos
irregulares.

Fonte: Adaptado de Mouchaweh (2016).

2.3.3 Sem Dimensão - Previsibilidade

A previsibilidade está relacionada ao fato da mudança de conceito possuir algum

padrão a ser previsto. Caso contrário, será uma mudança completamente aleatória,

não sendo possível antecipar sua ocorrência (MOUCHAWEH, 2016; KHAMASSI et al.,

2018; WEBB et al., 2016). Qualquer aspecto da mudança pode ser previsível, como por

exemplo, os pontos de início e de fim da mudança, as regiões afetadas, dentre outros.

É importante considerar o descritor de previsibilidade por duas razões. A primeira é

que em uma mudança previsível é mais fácil entender a sua origem e seus efeitos. A

segunda razão está associada às taxas de atrasos e de falsas detecções mínimas quando a

mudança é previsível, sendo essas características desejadas nos detectores de mudança

(KHAMASSI et al., 2018).

A propriedade de previsibilidade é chave na definição da estratégia de reação à

mudança. Quando a mudança é plenamente aleatória, onde nenhum dos descritores

possuem padrões a serem previstos, a detecção só será possível quando o desempenho

do classificador já estiver afetado. Dessa forma, a estratégia de reação deverá lidar com

a mitigação da perda de desempenho (COSTA; GIUSTI; SANTOS, 2025).
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2.4 Considerações Finais
Neste capítulo, a base teórica que sustenta os conceitos abordados ao longo desta tese

foi apresentada. Inicialmente, o termo “conceito” foi definido, bem como o fenômeno da

mudança de conceito fundamentado. Por fim, as fontes probabilísticas e os descritores

da mudança de conceito foram formalizados e exemplificados.

O próximo capítulo apresenta os trabalhos relacionados, organizados de acordo

com as três áreas de contribuições desta tese.
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CAPÍTULO 3

Trabalhos Relacionados

O
s trabalhos relacionados com as três áreas de contribuições desta tese são

apresentados neste capítulo. Inicialmente, os trabalhos sobre detectores de

mudança de conceito, em especial os utilizados nos Capítulos 4 e 5. Em

seguida, os trabalhos que abordam os descritores da mudança e seus impactos no

desempenho do classificador. E por fim, os trabalhos que abordam os descritores da

mudança e as estratégias de reação à mudança.

3.1 Uma Visão Geral dos Métodos de Detecção de Mu-

dança de Conceito
As abordagens de detecção da mudança de conceito são categorizadas conforme a

disponibilidade de instâncias rotuladas. Essa classificação se divide em três tipos: 1)

supervisionada, quando os rótulos das instâncias estão plenamente disponíveis; 2)

semissupervisionada, quando o acesso aos rótulos verdadeiros é limitado; e 3) não

supervisionada, quando não há disponibilidade de rótulos verdadeiros.

Na abordagem supervisionada, a detecção costuma apoiar-se em métricas de

desempenho do classificador, como a taxa de erro ou sua variação estatística ao longo do

tempo, baseando-se no fato de que essas variações refletem instabilidade no conceito. Na

abordagem semissupervisionada, geralmente são utilizados comitês de classificadores

e medidas de incerteza ou de pseudoerro para identificar eventuais mudanças de

conceito. Por sua vez, na abordagem não supervisionado, a detecção, em geral, baseia-se

em mudanças estruturais nas distribuições dos dados, variações na densidade das

instâncias ou em discrepâncias no comportamento entre os classificadores, de modo



Capítulo 3. Trabalhos Relacionados 54

que possam sinalizar instabilidades no conceito e a ocorrência de mudança (GAMA et

al., 2014; WEBB et al., 2016; KRAWCZYK et al., 2017; LU et al., 2019).

No contexto supervisionado, um dos detectores mais populares é o DDM (GAMA

et al., 2004). Esse método monitora alterações na taxa de erro do classificador, seguindo

o modelo de Probably Approximately Correct (PAC), ou Aprendizado Aproximadamente

Correto, o qual sugere que um aumento significativo nessa taxa pode sinalizar uma

mudança de conceito. Os autores destacam que o DDM apresenta melhor desempenho

na detecção de mudanças repentinas. Para aumentar sua eficácia na detecção de mu-

danças graduais, foi proposto, com base no DDM, o EDDM (BAENA-GARCíA et al.,

2006). Em vez de acompanhar diretamente a taxa de erro, o EDDM monitora o intervalo

entre erros consecutivos. Uma redução nesse intervalo pode indicar uma mudança de

conceito, enquanto a estabilidade do intervalo sugere um ambiente estacionário.

No ambiente semissupervisionado, temos o método proposto em (PINAGÉ;

SANTOS; GAMA, 2020), denominado de Dynamic Selection Drift Detector (DSDD). Esse

método realiza a seleção dinâmica de classificadores a partir de um comitê inicial e

utiliza um detector auxiliar de mudança, guiado por uma taxa de erro aproximada

(pseudoerro) como métrica para detectar mudanças de conceito. O DSDD é composto

por três módulos: (a) criação do comitê; (b) seleção dinâmica; e (c) detecção de mudança.

O primeiro módulo cria um comitê de classificadores com alta diversidade, enquanto

o segundo seleciona o classificador mais competente para rotular instâncias desco-

nhecidas. O terceiro módulo monitora a taxa de pseudoerro para detectar mudanças,

utilizando detectores como DDM e EDDM.

Por sua vez, o MD3-EGM (SETHI; KANTARDZIC, 2017) utiliza um comitê de

classificadores para formar uma margem genérica entre classes, com base na divergên-

cia entre os classificadores ao rotular as instâncias. Esse comitê é criado por meio de

subespaços aleatórios do espaço original de atributos, para o treinamento de n classifi-

cadores. A detecção de mudança ocorre pelo monitoramento da diversidade entre os

classificadores, sinalizando mudança de conceito quando há aumento na discordância

entre as atribuições de classe para amostras desconhecidas dentro da janela de detecção.

Por fim, no ambiente não supervisionado, o método Drift Detection Method Based



Capítulo 3. Trabalhos Relacionados 55

on Active Learning (DDAL), proposto em (COSTA; ALBUQUERQUE; SANTOS, 2018),

baseia-se na hipótese de que variações na densidade das instâncias mais significativas

podem sinalizar uma mudança de conceito. Dessa forma, é estruturado em duas fases:

a primeira fase gera um classificador utilizando instâncias dentro de uma janela de

referência, enquanto a segunda fase é dividida em três módulos: detecção de mudança,

reação e classificação. Nessa segunda fase, o DDAL monitora continuamente a mudança

de conceito em cada novo lote de dados não rotulados e, com base nos resultados da

detecção, aciona os módulos de reação e classificação conforme necessário.

Outro método de detecção não supervisionada é o Student–Teacher for Unsuper-

vised Drift Detection (STUDD), proposto em (CERQUEIRA et al., 2022). O STUDD é

estruturado em duas fases. Na fase offline, um modelo professor é treinado, e suas predi-

ções são utilizadas para treinar um modelo aluno, que aprende a imitar o professor. Na

fase online, a discrepância entre as predições do aluno e do professor serve como métrica

para detecção de mudança, utilizando-se um detector como o teste de Page-Hinkley.

Quando uma mudança é detectada, o modelo adapta-se por meio do retreinamento

com observações recentes, permitindo que o aluno se ajuste ao novo conceito.

3.2 Análise dos Descritores de Mudança de Conceito e

seus Impactos.
Esta seção apresenta um resumo dos trabalhos que abordam a natureza da mudança

de conceito, bem como a compreensão dessa natureza pode fornecer evidências para

a definição da estratégia de reação à mudança. Os trabalhos estão divididos em dois

grupos, considerando a similaridade com a pesquisa apresentada no Capítulo 4. O

primeiro grupo é composto por estudos que abordam a detecção da mudança de

conceito, considerando ao menos um descritor. Por sua vez, o segundo grupo engloba

os estudos que analisam as características da mudança e seus potenciais impactos no

desempenho do classificador.
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3.2.1 Detectores de Mudança de Conceito

A abordagem proposta por Guo et al. (2022) identifica a velocidade e a recorrência

da mudança com base na saída de um detector clássico operando com duas janelas

de tempo sobre os dados. A velocidade é calculada conforme definido na Equação

2.24. Enquanto a frequência é obtida a partir da razão histórica entre as acurácias do

classificador em cada janela. Trata-se de uma abordagem supervisionada, o que limita

sua aplicabilidade em problemas do mundo real.

A abordagem proposta por Dasu et al. (2006) utiliza a divergência de Kull-

back–Leibler (KULLBACK; LEIBLER, 1951) para mensurar a dissimilaridade entre

duas janelas de dados, identificando as sub-regiões do espaço de entrada com maior

divergência e, assim, localizando a região onde ocorre a mudança de conceito. Já em

(HINDER; HAMMER, 2021), o espaço de entrada é decomposto em sub-regiões homo-

gêneas por meio de uma árvore de decisão, cujo critério de divisão é baseado no ρ-valor

do teste de Kolmogorov–Smirnov (LOPES, 2011). A árvore resultante é denominada

Kolmogorov-Tree (MBALLO; DIDAY, 2004).

O método Competence-Based Discrepancy Density Estimator (CDDE), proposto por

Dong et al. (2017), identifica as sub-regiões do espaço de entrada em que ocorre a mu-

dança, por meio do mapeamento das discrepâncias entre duas janelas consecutivas de

dados. Em (DONG et al., 2021), a identificação das regiões segue abordagem semelhante

à de Dong et al. (2017), sendo que essas regiões contêm as instâncias mais antigas, que

devem ser descartadas. A principal diferença entre os métodos de Dong et al. (2017) e

Dong et al. (2021) reside na forma de detecção da mudança.

O método Disposition-Based Drift Detection Method (DBDDM), proposto por

Agrahari e Singh (2022), adota uma abordagem baseada em duas janelas: uma fixa

e outra deslizante. A janela fixa armazena exemplos representativos do conceito atual,

enquanto a janela deslizante contém os exemplos mais recentes. A frequência é deter-

minada por um teste aleatório aproximado que avalia se há diferença estatisticamente

significativa entre as duas janelas consecutivas. Quando a divergência excede um deter-

minado limiar, um contador é incrementado, representando a frequência da mudança.

O Interpretable Drift Detector (IDD), proposto por Mattos et al. (2021), identifica a
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causa, as regiões afetadas e a severidade da mudança de conceito. O IDD emprega uma

estrutura de árvore de decisão para analisar a acurácia dos nós. Variações na acurácia

são utilizadas como base para mensurar a severidade da mudança, e o caminho entre

a raiz e o nó indica as regiões afetadas. Por ser um método supervisionado, o IDD

apresenta limitações em aplicações práticas nas quais a obtenção de rótulos verdadeiros

é restrita.

3.2.2 Características da Mudanças de Conceitos e Seus Impactos

no Desempenho do Classificador

Um método para descrever a mudança de conceito por meio de fluxos, caracterizando

a direção e a magnitude das alterações na distribuição dos dados ao longo do tempo,

foi apresentado por Hinder, Kummert e Hammer (2020). A proposta formaliza mate-

maticamente o problema e oferece uma solução inicial baseada em modelos lineares,

com o objetivo de possibilitar uma análise explicável das características mais afetadas

pela mudança. Por meio de experimentos com dados sintéticos e reais, os autores de-

monstram a utilidade da abordagem em tarefas como transferência de aprendizado e

visualização de mudanças. A pesquisa destaca a relevância de abordagens explicáveis

no monitoramento de sistemas técnicos, e indica o uso de redes RBF e técnicas de

agrupamento para esse fim.

Em (AGUIAR; CANO, 2024), uma análise abrangente do impacto da localidade

(zona de influência) da mudança de conceito sobre o desempenho de classificadores

e detectores é apresentada. Esse estudo também apresentou uma nova proposta de

categorização da mudança de conceito com base em sua localização e na quantidade

de classes afetadas. Foram propostas quatro categorias: (i) Mudança de Conceito Local

de Classe Única: há apenas uma classe afetada pela mudança, impactando no máximo

50% de sua distribuição; (ii) Mudança de Conceito Global de Classe Única: há apenas

uma classe afetada pela mudança, impactando ao menos 50% de sua distribuição; (iii)

Mudança de Conceito Local de Múltiplas Classes: mais de uma classe é afetada pela

mudança, impactando no máximo 50% da distribuição de cada classe; (iv) Mudança
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de Conceito Global de Múltiplas Classes: mais de uma classe é afetada pela mudança,

impactando ao menos 50% da distribuição de cada classe. Os autores indicam que

a localização da mudança influencia o desempenho do classificador, de modo que

compreender onde a mudança ocorre é essencial para definir a estratégia de reação mais

apropriada, a qual não envolve, necessariamente, o retreinamento.

Hammer, Vaquet e Hinder (2024) apresentam uma análise da localidade no

contexto da mudança de conceito, realizada sob a perspectiva da detecção não super-

visionada. O estudo fornece uma formalização matemática para identificar as regiões

do espaço de dados afetadas pela mudança e destaca a importância de traduzir essas

alterações em descrições compreensíveis para operadores humanos. Diversas estraté-

gias são discutidas, como métodos baseados em kdq-tree, técnicas de vizinhança local

(LDD-DIS (LIU et al., 2017)) e abordagens centradas em modelos (MB-DL). Experimen-

tos com dados sintéticos demonstram que o método MB-DL alcançou maior acurácia,

especialmente em cenários de alta dimensionalidade, desde que técnicas adequadas

de pré-processamento fossem aplicadas. Além disso, os autores enfatizam que expli-

car as mudanças é um passo fundamental para melhorar a interpretação e a resposta

em sistemas baseados em aprendizado de máquina. Também apontam que as pesqui-

sas nessa área ainda são incipientes, indicando caminhos promissores para avanços

metodológicos e práticos.

A abordagem denominada Quadruple-Based Approach for Understanding Concept

Drift in Data Streams (QuadCDD), proposta em (WANG et al., 2024), tem como objetivo

não apenas detectar a mudança, mas também fornecer informações relevantes para

apoiar a decisão sobre estratégias de reação com base na velocidade e na severidade.

O QuadCDD utiliza informações prévias sobre os pontos de início e fim da mudança

para definir a velocidade. Também utiliza os rótulos verdadeiros das amostras para

mensurar a severidade. Portanto, essa abordagem é totalmente supervisionada, uma

vez que pressupõe o conhecimento prévio dos pontos de início e término da mudança.

Ressalta-se que, nessa abordagem, a severidade é definida como a diferença na acurácia

do classificador. Essa definição diverge daquela apresentada na Seção 2.3.1.1.
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3.2.3 Análise crítica-comparativa dos trabalhos relacionados

Em relação ao primeiro grupo de trabalhos relacionados, algumas observações podem

ser feitas. Primeiramente, os descritores baseados na dimensão espacial são os mais

frequentemente abordados, sendo a zona de influência examinada em (DASU et al.,

2006),(HINDER; HAMMER, 2021),(DONG et al., 2017) e (DONG et al., 2021), e a severi-

dade em (HINDER; KUMMERT; HAMMER, 2020) e (MATTOS et al., 2021). Isso sugere

que há um entendimento mais consolidado da dimensão espacial na literatura que trata

do fenômeno da mudança.

Uma segunda observação é que esses estudos, com exceção de (GUO et al., 2022),

abordam apenas um descritor, indicando que a combinação de descritores aumenta

a complexidade do problema, o que, consequentemente, constitui um ponto menos

explorado na literatura.

Por fim, nenhum dos trabalhos desse grupo realiza uma análise da natureza da

mudança de conceito e de seus potenciais impactos no desempenho do classificador.

Diferentemente desses trabalhos, a pesquisa apresentada no Capítulo 4 foca na análise

do impacto dos descritores sobre o desempenho do classificador e na identificação de

evidências úteis para a definição de uma melhor estratégia de reação. Além disso, esta

pesquisa não se restringe aos descritores baseados na dimensão espacial, considerando

também a relação entre diferentes descritores, e não apenas de forma isolada.

Por sua vez, os trabalhos englobados no segundo grupo são os mais semelhantes

à abordagem apresentada neste trabalho. No entanto, enquanto os trabalhos deste

grupo se limitam à análise de dois descritores (WANG et al., 2024) ou de um único

descritor (HINDER; KUMMERT; HAMMER, 2020; AGUIAR; CANO, 2024; HAMMER;

VAQUET; HINDER, 2024), o presente estudo se destaca por analisar quatro descritores.

Quanto ao paradigma de aprendizado, em (HINDER; KUMMERT; HAMMER, 2020),

(WANG et al., 2024) e (AGUIAR; CANO, 2024), é analisado apenas o paradigma su-

pervisionado, enquanto (HAMMER; VAQUET; HINDER, 2024) focam exclusivamente

no paradigma não supervisionado. Pelo que se tem conhecimento, este é o primeiro

trabalho a analisar os paradigmas supervisionado, semi-supervisionado e não super-

visionado, distinguindo-se por oferecer uma análise mais abrangente e integrada das
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Tabela 2 – Comparação dos trabalhos relacionados em termos do descritor avaliado.

Descritor1

Trabalho
VE SV ZI FQ RR PV

Grupo

Guo et al. (2022) • •
Dasu et al. (2006) •
Hinder e Hammer (2021) •
Dong et al. (2017) •
Dong et al. (2021) •
Agrahari e Singh (2022) •
Mattos et al. (2021) •

1

Hinder, Kummert e Hammer (2020) •
Aguiar e Cano (2024) •
Hammer, Vaquet e Hinder (2024) •
Wang et al. (2024) • •
Este trabalho (Capítulo 4) • • • •

2

1 VE:Velocidade - SV:Severidade. - ZI:Zona de Influência - FQ:Frequência -RR:Recorrência -
PV:Previsibilidade.

características da mudança de conceito.

A Tabela 2 sintetiza a comparação dos trabalhos relacionados.

3.3 Mudança de Conceito e Estratégias de Reação: Uma

Análise Abrangente com o Uso de Descritores
Há diversos trabalhos na literatura que abordam unicamente a detecção de mudança

de conceito, como os descritos em (IWASHITA; PAPA, 2019),(GEMAQUE et al., 2020) e

(HINDER; VAQUET; HAMMER, 2024). Entretanto, há um número reduzido de estudos

que exploram a natureza desse fenômeno, bem como as relações entre suas caracterís-

ticas, os mecanismos de detecção e as estratégias de reação. Nesta seção, alguns dos

trabalhos que exploram essa lacuna são detalhados. Os trabalhos foram classificados de

acordo com sua abordagem principal e estão organizados em dois grupos: (i) trabalhos

que abordam principalmente a detecção da mudança de conceito e (ii) trabalhos que

abordam principalmente a natureza da mudança de conceito.
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3.3.1 Estudos sobre Detecção de Mudança de Conceito

O QuadCDD (WANG et al., 2024), em complemento a descrição realizada na Seção

3.2.2, é uma abordagem para a detecção e compreensão da mudança de conceito. A

proposta visa superar limitações de métodos tradicionais que focam apenas no ponto

de início da mudança, incorporando quatro dimensões: início, fim, severidade e tipo

da mudança (Ds, De, Dv, Dt). A arquitetura do QuadCDD combina pré-treinamento,

ajuste fino adaptativo, detecção e tomada de decisão, utilizando redes neurais com

camadas bidirecionais LSTM para gerar quádruplos informativos. A severidade é

calculada com base na queda de acurácia entre os conceitos, enquanto que a velocidade

é classificada como repentina ou incremental. O modelo demonstrou elevadas taxas de

predição de pontos de mudança em experimentos com bases de dados artificiais e reais,

alcançando acurácia média de 93, 9% na identificação do tipo de mudança e reduzindo

atraso na detecção. A proposta oferece um avanço ao integrar diagnóstico detalhado e

mecanismos de reação adaptativos, com o aprendizado incremental e o retreino total,

mantendo estabilidade e precisão preditiva em ambientes de dados dinâmicos.

Por sua vez, Yang et al. (2025) propõem o Causal Drift Detection and Rationalization

Method (CDDRM), um método unificado para detecção e racionalização da mudança

de conceito, baseado na análise de relações causais entre os atributos e a variável alvo.

Diferentemente das abordagens tradicionais que se baseiam em medidas de erro ou

associação, o CDDRM detecta mudanças significativas na intensidade e importância

das relações causais, utilizando o algoritmo NOTEARS para descoberta causal e o

teste qui-quadrado (χ2) para validação estatística. A mudança é classificada em quatro

tipos: mudança de causa (Tipo 1 e 2), mudança na importância (Tipo 3) e mudança na

intensidade da relação causal (Tipo 4). O método demonstrou desempenho superior aos

métodos clássicos, como DDM, HDDM, ADWIN, PHM e LLDD, com F1 score médio

de até 0, 91 em experimentos com as bases de dados STAGGER e Agrawal, incluindo

cenários de mudança real e virtual. A abordagem também foi aplicada a dados reais

de mineração de carvão, destacando mudanças na relação entre pressão hidráulica e

energia micro-sísmica como potenciais indicadores de risco operacional. O CDDRM

utiliza a estratégia de retreino total adotada pelos detectores comparado.
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3.3.2 Estudos sobre a Natureza da Mudança de Conceito

Adicionalmente a descrição realizada na Seção 3.2.2, Hinder, Kummert e Hammer (2020)

propuseram um método para explicação de mudança de conceito por meio de fluxos

vetoriais, isto é, mudanças de direção e magnitude no espaço de dados ao longo do

tempo. O enfoque central é estimar a direção média da mudança como uma função

vetorial linear que representa a transformação do conjunto de dados de um instante para

o seguinte. O método formaliza o problema por meio da minimização da divergência de

Kullback-Leibler entre distribuições observadas e previstas, considerando tanto dados

determinísticos quanto probabilísticos. A abordagem utiliza diferentes variantes da

média vetorial para acomodar distintos cenários de amostragem. Testes empíricos em

dados sintéticos e reais mostraram que a técnica permite identificar variáveis mais

afetadas pela mudança e oferece desempenho competitivo em tarefas de transferência

de aprendizado, além de permitir interpretação direta da dinâmica da mudança.

Em um novo trabalho, Hinder et al. (2022) propuseram uma estrutura formal

para a localização da mudança, com o objetivo de identificar pontos de dados específicos

e regiões do espaço de entrada afetadas pela mudança. Diferentemente da maioria das

abordagens que se concentram na detecção ou quantificação global da mudança, o mé-

todo proposto reformula a localização da mudança como um problema de classificação

supervisionada, permitindo o uso de modelos de aprendizado de máquina clássicos

(por exemplo, árvores de decisão, k-NN e florestas aleatória) para aproximar a proba-

bilidade de ocorrência da mudança em um determinado ponto. O núcleo do método

é um teste estatístico baseado em métricas de informatividade derivadas da incerteza

do classificador, como a divergência de Kullback-Leibler entre distribuições preditas e

uniformes. A abordagem superou o kdq-Tree (DASU et al., 2006) e o LDD-DIS (LIU et

al., 2017) em bases de dados de referência como SEA e Blobs, alcançando identificação

mais precisa das regiões afetadas pela mudança. Adicionalmente, o método permite a

análise de relevância de atributos, auxiliando na interpretação das origens da mudança.

Aguiar e Cano (2024) também investigam a localidade da mudança de conceito,

destacando a intensidade (severidade) e da localização (zona de influência) da mudança

no desempenho dos classificadores. Os autores propõem uma nova categorização
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baseada no número de classes afetadas e na severidade da mudança (mudança local vs.

global; monoclasses vs. multiclasse), e constroem um banco de testes com 2.760 bases

de dados sintéticas, geradas a partir dos algoritmos Random RBF e Random Tree. Nove

detectores supervisionados são comparados, incluindo ADWIN (BIFET; GAVALDà,

2007), PH (PAGE, 1954) e FHDDM (PESARANGHADER; VIKTOR, 2016), sob diferentes

níveis de dificuldade, abrangendo mudanças repentinas, graduais e incrementais. Os

resultados revelam que detectores como PH e ADWIN apresentam desempenho mais

equilibrado entre precisão e tempo de detecção, enquanto outros, como EDDM e STEPD

(NISHIDA; YAMAUCHI, 2007), obtêm alta sensibilidade com custo de muitos falsos

positivos. A análise evidencia que mudanças incrementais e locais são mais desafiadoras

de detectar, especialmente em cenários multiclasse, e propõe diretrizes para futuras

pesquisas, incluindo a necessidade de detectores menos sensíveis à distribuição de erro

e mais eficazes em cenários realistas.

Hammer, Vaquet e Hinder (2024) apresentam uma revisão abrangente sobre mé-

todos para localização e explicação da mudança de conceito, com ênfase em abordagens

não supervisionadas. Os autores formalizam rigorosamente o conceito de mudança

em processos de distribuição ao longo do tempo e introduzem a noção de drift locus,

a menor região no espaço de dados cuja remoção tornaria o processo estacionário. O

artigo analisa criticamente quatro estratégias principais de localização: kdq-tree (DASU

et al., 2006), LDD-DIS (LIU et al., 2017), segmentação por deriva e métodos baseados

em modelos supervisionados. Para cada abordagem, são discutidos os quatro estágios

operacionais (aquisição de dados, construção do descritor, cálculo de dissimilaridade e

normalização) e suas implicações práticas. A análise experimental revela que métodos

baseados em modelos, especialmente aqueles que utilizam florestas aleatórias, supe-

ram as abordagens baseadas em partições fixas (exemplo, kdq-tree), especialmente em

cenários com mudanças de alta severidade. O estudo também discute as limitações

das técnicas tradicionais de detecção baseadas no desempenho do modelo e defende o

uso de técnicas explicativas como complemento essencial para operadores humanos,

especialmente em sistemas críticos.

Por fim, Komorniczak e Ksieniewicz (2024) investigaram a capacidade de meta-



Capítulo 3. Trabalhos Relacionados 64

atributos na identificação de conceitos em dados não estacionários, com foco na detecção

implícita da mudança de conceito. Os autores avaliaram mais de 160 meta-atributos

provenientes de nove categorias (complexidade, estatística, teoria da informação, en-

tre outras), em bases de dados sintéticos, semi-sintéticos e reais, com mudanças de

diferentes velocidades (repentina, gradual e incremental). Cinco experimentos foram

conduzidos para verificar a efetividade desses meta-atributos na identificação de con-

ceitos, incluindo análises de similaridade, classificação, seleção de atributos e análise

de variância. Os resultados apontam que os meta-atributos da categoria estatística são

altamente eficazes em dados sintéticos e semi-sintéticos, enquanto nos dados reais se

destacam meta-atributos de teoria da informação, agrupamento e complexidade. Um

conjunto reduzido de 17 meta-atributos foi proposto como promissor para reconheci-

mento de conceito, sendo validados em múltiplos classificadores. Os autores concluem

que a origem dos dados influencia diretamente o valor preditivo dos meta-atributos e

recomendam a seleção personalizada conforme o tipo de dado.

3.3.3 Uma breve análise comparativa dos trabalhos relacionados

A Tabela 3 apresenta uma comparação entre os trabalhos relacionados quanto aos

descritores de mudança abordados, estratégias de reação adotadas e suas respectivas

abordagens. Observa-se que poucos estudos consideram descritores variados.

O trabalho de Wang et al. (2024), por exemplo, incorpora os descritores de

velocidade e severidade, com estratégias de reação do tipo incremental e de retreino

total. Outros estudos, como (HINDER; KUMMERT; HAMMER, 2020), (HINDER et al.,

2022) e (HAMMER; VAQUET; HINDER, 2024), focam em apenas um descritor específico,

sem propor estratégias de reação. Por sua vez, Aguiar e Cano (2024) consideram a zona

de influência, mas com abordagem reativa limitada. Destacam-se ainda os trabalhos que

propõem abordagens alternativas: baseado em causalidade (YANG et al., 2025) e que

adota meta-atributos como substitutos aos descritores tradicionais (KOMORNICZAK;

KSIENIEWICZ, 2024).

A pesquisa descrita no Capítulo 5 diferencia-se por integrar quatro descritores
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(VE, SV, FQ, RR) e analisar cinco estratégias de reação (estática, padrão, incremental,

esquecimento e oráculo), contribuindo para uma análise mais abrangente da mudança

e reforçando a importância de alinhar a detecção à natureza do fenômeno observado.

Tabela 3 – Comparação dos trabalhos relacionados em termos de descritor avaliado.

Descritor1

Trabalho
VE SV ZI FQ RR PV ER2 Abordagem

Wang et al. (2024) • • Incremental,
Padrão

Yang et al. (2025) Causalidade3 ×
Detecção

Hinder, Kummert e
Hammer (2020)

• ×

Hinder et al. (2022) • ×

Aguiar e Cano (2024) • Incremental,
Padrão

Hammer, Vaquet e Hin-
der (2024)

• ×

Komorniczak e Ksieni-
ewicz (2024)

Meta-atributos4 ×

Análise

Este trabalho (Capítulo
5)

• • • •

Estática,
Padrão,
Incremental,
Esquecimento,
Oráculo

Análise

1 VE:Velocidade - SV:Severidade. - ZI:Zona de Influência - FQ:Frequência -RR:Recorrência -
PV:Previsibilidade.

2 ER: Estratégia de Reação.
3 Em vez de utilizar descritores tradicionais como velocidade, severidade, zona de influência ou

frequência da mudança de conceito, o estudo propõe uma abordagem baseada em causalidade para
detectar e racionalizar a mudança de conceito.

4 Em vez de utilizar descritores tradicionais como velocidade, severidade, zona de influência ou
frequência da mudança de conceito, o estudo propõe uma abordagem baseada em meta-atributos
para caracterizar a mudança de conceito.

3.4 Considerações Finais
Neste capítulo, os trabalhos relacionados às contribuições desta tese foram brevemente

apresentados, analisados e comparados com o presente trabalho. O próximo capítulo

apresenta uma análise dos descritores de mudança de conceito e seus impactos.
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CAPÍTULO 4

Análise dos Descritores de Mudança de Conceito e seus Impactos

N
este capítulo nós analisamos a influência de descritores na mudança de con-

ceito por meio da variação dos valores de cada descritor. Para alcançar esse

objetivo foram conduzidos experimentos com cinco bases de dados sintéti-

cas em nove contextos distintos: seis diferentes detectores de mudança amplamente

conhecidos na literatura - dois supervisionados, DDM (GAMA et al., 2004) e EDDM

(BAENA-GARCíA et al., 2006); dois semi-supervisionados, DSDD (PINAGE; SANTOS,

2015) e MD3-EGM (SETHI; KANTARDZIC, 2017); e dois não-supervisionados, DDAL

(COSTA; ALBUQUERQUE; SANTOS, 2018) e STUDD (CERQUEIRA et al., 2022).

Para tentar avaliar os descritores em um ambiente de detecção perfeita, versões

oráculos dos detectores supervisionados foram incorporadas ao experimento (DDM-O e

EDDM-O). Um oráculo representa um detector ideal, que conhece previamente todos os

pontos de ocorrência de mudança, não havendo perdas, falsas detecções ou atrasos nas

detecções. O nono contexto é o sem detecção (SD), que foi analisado para prover uma

visão do impacto dos descritores no cenário em que não ocorre detecção de mudança.

Foram investigadas 32 variações de valores dos descritores, chamadas aqui de

cenários. Considerando as cinco bases de dados estudadas, um total de 160 cenários

distintos foram testados nos nove contextos descritos acima. Em todos os cenários foi

utilizada uma Árvore de Decisão como classificador, sendo ao todo analisadas 1.440

combinações distintas. É importante mencionar que todos os detectores foram aplicados

usando os valores padrões definidos por seus autores.

Os experimentos foram divididos em duas séries (Figura 25). A primeira série é

constituída por quatro etapas e tem como objetivo mensurar o desempenho do classifi-

cador (C) em termos de erro prequencial, e o desempenho do detector (D) em relação

aos percentuais de falsas detecções, perdas e atraso das detecções. Nesse cenário, uma
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Figura 25 – Visão geral do experimento.

falsa detecção é definida como sendo uma detecção que ocorre antes de uma mudança

conhecida; uma perda ocorre quando uma mudança conhecida não é detectada; e o

atraso é definido como sendo uma detecção que ocorre após uma mudança conhecida

mas que não se caracteriza como uma falsa detecção.

Os resultados obtidos na primeira série são utilizados como entrada para a

segunda série de experimentos. Esta é constituída por duas etapas e tem como objetivo

identificar as combinações de valores dos descritores de mudança de conceito que

geram os melhores e os piores resultados considerando o ranqueamento dos cenários

feito com base na mediana do erro prequencial. É importante destacar que ambas as

séries são repetidas para cada um dos nove contextos.

Na primeira etapa, as métricas (Mi) de desempenho do detector são calculadas

para cada um dos 32 cenários de cada uma das cinco bases de dados utilizadas. Do

mesmo modo, para cada cenário é computada a mediana do erro prequencial (MDi)
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do classificador na segunda etapa. Na terceira etapa, a média das (MDi) é calculada

considerando as medianas do erro prequencial do mesmo cenário i para cada uma das

bases de dados. As médias formam uma lista do desempenho mediano do classificador

em cada cenário nas diferentes bases. Finalmente, a lista gerada na etapa anterior é

ordenada de forma crescente na última etapa. Essa lista indica em quais cenários o

classificador e o detector obtiveram os melhores e os piores desempenhos. Observa-se

que, por se tratar de erro prequencial, quanto menor o valor, melhor é o desempenho.

A segunda série dos experimentos tem como foco fazer análise estatística dos

resultados. Para tanto, inicia com a quinta etapa, que divide os cenários ranqueados

na etapa anterior de acordo com os valores dos descritores para cada um dos quatro

descritores analisados. Para os descritores de velocidade, severidade e recorrência, os

subgrupos formados são comparados por meio do teste estatístico de Mann-Whitney

(MANN; WHITNEY, 1947) e os subgrupos formados no descritor de frequência são

comparados por meio do teste estatístico de Friedman (FRIEDMAN, 1937), todos na

etapa seis. Em ambos os testes, o nível de significância foi definido em 0, 05. No final,

os resultados gerados indicam qual valor por descritor leva a um melhor ou pior

desempenho (Vd), considerando os cenários analisados (Seção 4.2).

Os resultados obtidos nas duas séries de experimentos são discutidos nas Seções

4.4 e 4.5. Inicialmente, apresenta-se as bases de dados sintéticas utilizadas, em sequência

os cenários analisados.

4.1 Bases de Dados
No contexto de mudança de conceito, as bases de dados reais apresentam limitações

significativas, principalmente devido à dificuldade em determinar com precisão a

localização das mudanças ou mesmo em comprovar sua existência. Além disso, há um

número restrito de bases de dados reais conhecidas que efetivamente contêm mudanças

(LU et al., 2019; SOUZA et al., 2020; KOMORNICZAK; KSIENIEWICZ, 2024).

Algumas abordagens sugerem a injeção de mudanças em bases de dados reais.

Entretanto, essas estratégias geralmente se limitam à alteração do descritor de veloci-
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dade (MASTELINI et al., 2018; STEVANOSKI et al., 2024), o que é insuficiente para os

objetivos deste estudo. Este trabalho foca nos descritores de velocidade, severidade,

frequência e recorrência, cuja análise demanda maior controle sobre as características

das mudanças. Bases de dados sintéticas, por sua vez, permitem modificar direta-

mente os valores das instâncias para simular alterações nos descritores, oferecendo uma

oportunidade de compreender melhor o impacto de cada um.

Por essa razão, optou-se pela utilização exclusiva de bases de dados sintéticas

nos experimentos, uma vez que a avaliação do impacto dos descritores seria limitada

ou mesmo inviável em muitos casos com bases de dados reais. Ressalta-se que essa

escolha não constitui uma limitação do estudo, mas sim uma decisão metodológica que

visa assegurar a execução adequada da pesquisa e a consistência dos resultados.

Portanto, no presente trabalho foram geradas 32 variações para cada uma das

cinco bases de dados sintéticas fornecidas em (MINKU; WHITE; YAO, 2010). Cada base

representa um problema de classificação binária com 10.000 instâncias, balanceado, sem

ruído e com dois atributos, com exceção da base Hiperplane que contém três atributos.

As bases Line e Hiperplane são definidas pela Equação 4.1:

Σd
i=1aixi, (4.1)

sendo d = 1 e d = 2 para as bases Line e Hiperplano, respectivamente. Nos experimentos,

o valor de ai foi variado. Já as bases SineH e SineV são definidas pela Equação 4.2:

y = asin(bx) + c, (4.2)

sendo que o valor de b foi variado em SineH, afetando o eixo horizontal, enquanto em

SineV foi variado o valor de c, afetando o eixo vertical. Por fim, a base Circle é definida

pela Equação 4.3:

(x− a)2 + (y − b)2 = r2, (4.3)

com o valor de r sendo variado em nossos experimentos.

Adicionalmente, para cada base de dados, parâmetros específicos foram ajusta-

dos para simular diferentes tipos de mudança de conceito. Por exemplo, na base Line,
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mudanças de alta severidade foram criadas variado o valor de a0 em 0, 70 para cada

conceito, enquanto para mudanças de baixa severidade, os valores foram variados em

0, 15. Similarmente, na base Circle, mudanças de alto severidade foram criadas deslo-

cando o valor do raio do círculo (r) por 0, 30 para cada novo conceito, enquanto para

mudanças de baixa severidade o valor foi deslocado em 0, 10.

Em todas as bases de dados, mudanças recorrentes foram simuladas repetindo

os conceitos a partir da metade das mudanças conhecidas. As frequências da mudança

de conceito foram simuladas ajustando o intervalo entre as ocorrências das mudanças.

Por exemplo, nos cenários de alta frequência, uma mudança ocorre a cada 250 instâncias,

enquanto que em cenários de baixa frequência, a mudança ocorre a cada 3, 000 instâncias.

Por último, mudanças repentinas foram simuladas substituindo o conceito atual pelo

novo conceito após uma única instância, enquanto que mudanças graduais foram

simuladas por uma substituição progressiva do conceito atual a cada 250 instâncias. A

Tabela 13 (Apêndice B) fornece um resumo detalhado do ajuste de cada parâmetro. As

variações dos valores em cada base estão indicadas nas colunas Início, Fim e Passo.

4.2 Cenários
Os cenários avaliados no experimento estão descritos na Tabela 4 e foram gerados por

meio da variação dos valores dos descritores de mudança de conceito. Quatro descritores

foram analisados: velocidade, severidade, recorrência e frequência. O descritor Zona

de Influência não foi incluído na análise devido à limitação em simular com precisão a

localização da mudança dentro do fluxo de dados.

Na Tabela 4, a primeira coluna apresenta o identificador do cenário. A segunda

coluna exibe os descritores de mudança, seguindo a ordem: Velocidade – Severidade –

Recorrência – Frequência. Os valores de cada descritor são representados por suas inici-

ais e estão detalhados no rodapé da tabela. A coluna Qtd. Mudanças indica o número

de mudanças presentes, e as duas últimas colunas representam, respectivamente, a

velocidade e a frequência da mudança. Cenários em que a frequência apresenta apenas

um valor indicam que a mudança é periódica. Mudanças não periódicas são indicadas
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Tabela 4 – Valores dos descritores em cada cenário.

Cenário Descrição1 Qtd.
Mudanças Velocidade Frequência

1 R-A-R-PA 39 1 250
2 R-A-R-PM 9 1 1000
3 R-A-R-PB 3 1 3000
4 R-A-R-NP 9 1 Alt2

5 R-A-NR-PA 39 1 250
6 R-A-NR-PM 9 1 1000
7 R-A-NR-PB 3 1 3000
8 R-A-NR-NP 9 1 Alt2

9 R-B-R-PA 39 1 250
10 R-B-R-PM 9 1 1000
11 R-B-R-PB 3 1 3000
12 R-B-R-NP 9 1 Alt2

13 R-B-NR-PA 39 1 250
14 R-B-NR-PM 9 1 1000
15 R-B-NR-PB 3 1 3000
16 R-B-NR-NP 9 1 Alt2

17 G-A-R-PA 39 250 250
18 G-A-R-PM 9 250 1000
19 G-A-R-PB 3 250 3000
20 G-A-R-NP 9 250 Alt2

21 G-A-NR-PA 39 250 250
22 G-A-NR-PM 9 250 1000
23 G-A-NR-PB 3 250 3000
24 G-A-NR-NP 9 250 Alt2

25 G-B-R-PA 39 250 250
26 G-B-R-PM 9 250 1000
27 G-B-R-PB 3 250 3000
28 G-B-R-NP 9 250 Alt2

29 G-B-NR-PA 39 250 250
30 G-B-NR-PM 9 250 1000
31 G-B-NR-PB 3 250 3000
32 G-B-NR-NP 9 250 Alt2

1 Descrição:Velocidade-Severidade-Recorrência-Frequência. Velocidade (R)Repentina (G) Gradual.
Severidade (A) Alta (B) Baixa. Recorrência (R) Recorrente (NR) Não Recorrente. Frequência (PA)
Periódica Alta (PM) Periódica Média (PB) Periódica Baixa (NP) Não-Periódica.

2 Alt = [1000 4000 4250 4500 4750 5000 8000 9000 9250].

por "Alt", e seus valores estão detalhados em nota de rodapé. Como exemplo, no cenário

1, a mudança de conceito é definida como (R) Repentina, (A) Alta, (R) Recorrente e

(PA) Periódica Alta, respectivamente para os descritores de velocidade, severidade,

recorrência e frequência. Nesse cenário, ocorrem 39 mudanças, todas com velocidade

igual a 1, ocorrendo a cada 250 instâncias.
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4.3 Detectores de Mudança de Conceito
A análise apresentada neste capítulo abrange os ambientes supervisionado, semisu-

pervisionado e não supervisionado, considerando dois detectores para cada um dos

ambientes, o que representa um diferencial em relação ao trabalho de Aguiar e Cano

(2024), que se limita ao ambiente supervisionado. Os detectores utilizados no presente

experimento foram descritos na Seção 3.1.

4.4 Primeira Série de Experimentos
Os resultados da primeira série de experimentos estão resumidos nas figuras do Apên-

dice C. Destaca-se que os cenários DDM-O, EDDM-O e SD não estão representados nas

figuras porque a detecção é perfeita (oráculo) nos dois primeiros; e não há detecção no

último.

Ao considerar os detectores supervisionados, o DDM e o EDDM apresentaram

as menores taxas de atraso na detecção. No entanto, o DDM alcançou taxas de perda

de detecção geralmente superiores a 60%, além de uma alta porcentagem de detecções

falsas, com algumas exceções. Em relação ao EDDM, a porcentagem de perda de

detecção não segue um padrão claro e depende do cenário, enquanto a taxa de detecção

falsa geralmente permanece abaixo de 50%.

Nos cenários não supervisionados, surpreendentemente, o DDAL e o STUDD

não detectaram mudança de conceito. Consequentemente, as porcentagens de detecção

falsa e atrasada foram zero, enquanto a perda de detecção foi máxima. O desempenho

dos detectores não supervisionados foi, portanto, semelhante ao cenário sem detecção.

Por fim, os dois métodos semissupervisionados apresentaram resultados divergentes

entre si. Por um lado, o MD3-EGM e o DSDD tiveram desempenhos opostos em relação

à perda de detecção. Por outro, o MD3-EGM apresentou uma menor taxa de detecção

com atraso, enquanto o DSDD obteve uma menor taxa de falsa detecção.

A comparação direta entre os seis detectores indica uma relação de ordem entre

eles. DDM e EDDM apresentaram o melhor desempenho, seguidos por DSDD e MD3-

EGM. Os piores foram os métodos não supervisionados, pois não detectaram nenhuma

mudança de conceito. Esse desempenho insatisfatório pode ser atribuído aos valores dos

hiperparâmetros dos modelos. O sucesso de métodos não supervisionados geralmente
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Figura 26 – Valores das medianas dos erro prequencial nas bases de dados.

depende do ajuste fino de diversos hiperparâmetros. No entanto, nos experimentos,

foram utilizados os valores padrão dos métodos, sem ajuste-fino.

Ao analisar as medianas do erro prequencial do classificador em cada contexto,

apresentadas na Figura 26, é possível destacar o seguinte. Os contextos DDM e MD3-

EGM apresentaram o pior desempenho, conforme indicado por suas maiores medianas

de erro prequencial em todos os conjuntos de dados. Além disso, o DDM-O também

apresentou uma alta taxa de erro no conjunto de dados Circle. Resultados opostos são

observados para o EDDM, que alcançou a menor mediana de erro em todos os cenários.

Esse resultado é consistente com as taxas de falsa detecção e de atraso obtidas pelo

EDDM (Figura 42).

Também é importante comparar os detectores supervisionados com suas versões
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oráculo em termos de erro prequencial. O DDM-O superou o DDM, exceto no conjunto

de dados Circle. Por sua vez, o EDDM apresentou desempenho melhor ou igual ao do

EDDM-O. Considerando o contexto sem detecção, seu desempenho foi semelhante ao

dos demais contextos. Isso sugere que a melhor forma de reagir à mudança de conceito

nem sempre é retreinar os modelos. Essa observação é reforçada quando se consideram

os métodos não supervisionados, cujos desempenhos são semelhantes aos observados

em cenários sem detecção de mudança.

4.5 Segunda Série de Experimentos
Os resultados desta série de experimentos são apresentados na Tabela 5 e nas Figuras

27 e 28. O objetivo desta etapa é comparar os valores dos descritores a fim de identificar

aqueles com maior influência sobre a mudança de conceito, considerando todos os

cenários e conjuntos de dados analisados. A Figura 27 ilustra essa comparação entre os

detectores supervisionados e suas versões oráculo, enquanto a Figura 28 apresenta os

resultados obtidos com os demais detectores.

A Tabela 5 apresenta a mediana do erro prequencial obtida mediante a variação

dos valores dos descritores. Os valores em negrito indicam o valor do descritor que

gerou a menor mediana de erro prequencial, ou seja, o melhor desempenho. Os valores

sublinhados indicam diferenças estatísticas significativas entre as medianas de erro

prequencial associadas a diferentes valores do descritor, conforme identificado por meio

de teste estatístico apropriado. Quanto menor a mediana do erro prequencial associada

a um valor de descritor, mais facilmente a mudança de conceito é tratada no cenário

gerado por esse valor. A partir Tabela 5, podem ser feitas algumas observações:
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Tabela 5 – Comparação dos descritores em cada contexto por meio de testes estatísticos1.

Velocidade Severidade Recorrência Frequência
Contexto

R G ρ-Valor A B ρ-Valor R NR ρ-Valor PA PM PB NP ρ-Valor

DDM 16, 9 16,6 0, 98 18, 3 14,5 < 0, 05 17, 5 16,0 0, 34 14,2 17, 1 17, 8 17, 2 0, 89

EDDM 16,2 17, 0 0, 78 19, 8 15,1 0, 19 20, 4 12,7 < 0, 05 22, 1 20, 2 9,4 14, 3 < 0, 05

DDM-O 19, 3 15,4 0, 13 19, 2 14,9 < 0, 05 14,3 19, 0 < 0, 05 18, 7 18, 4 9,2 16, 5 < 0, 05

EDDM-O 17, 6 15,8 0, 11 19, 5 13,6 < 0, 05 18, 5 14,5 < 0, 05 17, 0 15,4 16, 7 15, 7 0, 61

DDAL 15, 9 14,5 0, 58 19, 5 12,2 < 0, 05 16, 5 15,1 0, 28 23, 9 16, 8 10,2 13, 3 < 0, 05

STUDD 16, 7 14,9 0, 68 20, 2 12,1 < 0, 05 17, 5 13,8 0, 20 23, 6 18, 0 10,0 11, 8 < 0, 05

MD3-EGM 16, 8 16,9 0, 89 18, 5 14,8 < 0, 05 17, 5 15,9 0, 32 14,4 17, 5 17, 9 17, 2 0, 78

DSDD 17, 6 15,8 0, 11 19, 5 13,6 < 0, 05 18, 5 14,5 < 0, 05 17, 0 15,4 16, 7 15, 7 0, 61

SD 15, 9 14,7 0, 49 19, 8 12,0 < 0, 05 16, 6 14,8 0, 23 23, 2 16, 9 10,0 13, 0 < 0, 05

1 Valores em negrito indicam a menor mediana do erro prequencial entre os cenários da primeira série
de experimentos. Valores sublinhados indicam diferença estatística significativa segundo os testes
estatísticos aplicados. Os testes foram conduzidos com nível de significância de 0,05.

• Para o descritor de velocidade, o valor gradual apresentou o melhor desempenho

em todos os contextos, exceto no EDDM. Essa exceção pode estar associada ao fato

de que o EDDM foi proposto especificamente para lidar com mudanças repentinas.

No entanto, não houve nenhum contexto em que se observou diferença estatística

significativa entre os valores repentino e gradual, o que sugere que a velocidade

exerce pouco impacto sobre a mudança de conceito.

• O descritor de severidade apresentou comportamento oposto, uma vez que mu-

danças de baixa severidade resultaram em melhor desempenho em todos os

contextos. O teste estatístico indicou diferenças significativas em todos os con-

textos, com exceção do EDDM. Esse resultado pode ser interpretado como uma

evidência robusta de que a severidade exerce forte impacto sobre a mudança de

conceito.

• Em relação à recorrência, os cenários não recorrentes apresentaram melhor desem-

penho, com exceção do DDM-O. O teste estatístico indicou diferenças significativas

em quatro dos nove contextos avaliados, sugerindo que a recorrência possui im-

pacto limitado sobre a mudança de conceito, sendo relevante apenas em situações

específicas.
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Figura 27 – Variação da mediana do erro prequencial nos cenários investigados vari-
ando o valor de cada descritor considerando os detectores supervisionados.

• Uma situação semelhante foi observada em relação ao descritor frequência. Nesse

caso, os melhores resultados foram geralmente associados a cenários com baixa

frequência. O teste estatístico indicou diferenças significativas em cinco dos nove

contextos avaliados. Todas as diferenças significativas foram obtidas em cenários

de baixa frequência, o que sugere que mudanças com baixa frequência tendem a

impactar positivamente o desempenho da detecção. Contudo, influências ocasio-

nais de outros descritores podem atenuar o impacto do descritor frequência.

Por fim, com base nos resultados apresentados na Tabela 5 e nas Figuras 27 e
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Figura 28 – Variação da mediana do erro prequencial em todos os cenários investiga-
dos variando o valor de cada descritor considerando os detectores semi-
supervisionados, não supervisionado e o contexto sem detecção.

28, a Tabela 6 resume as combinações de valores dos descritores que resultaram nos

melhores desempenhos, bem como aquelas que conduziram aos piores desempenhos no
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tratamento da mudança de conceito. Por exemplo, entre os nove contextos analisados, os

melhores resultados foram obtidos em oito deles quando o valor do descritor velocidade

foi gradual.

Tabela 6 – Valores dos descritores para os melhores e os piores resultados.

Velocidade Severidade Recorrência Frequência
Resultados1

R G A B R NR PA PM PB NP

Melhor 1/9 8/9 0/9 9/9 1/9 8/9 2/9 2/9 5/9 0/9
Pior 8/9 1/9 9/9 0/9 8/9 1/9 7/9 0/9 2/9 0/9

1 Valores em negrito indicam a maior frequência de ocorrência por valor de cada descritor. A fração
representa a frequência com que o descritor assumiu o respectivo valor nos cenários de melhor e pior
desempenho, considerando os diferentes contextos analisados.

4.6 Considerações Finais
Neste capítulo, foi analisado o impacto de quatro descritores da mudança de conceito

sobre o desempenho de classificadores base e detectores de mudança, com o objetivo

de identificar os descritores mais relevantes para o processo de reação à mudança. Os

experimentos foram conduzidos em cinco conjuntos de dados distintos, considerando

32 variações nos valores dos descritores, oito detectores diferentes e um contexto sem

detecção, totalizando 1.440 combinações distintas avaliadas. Os resultados indicaram

que mudanças de conceito caracterizadas por baixa velocidade, baixa severidade, não

recorrência e baixa periodicidade geraram menores impactos no desempenho dos clas-

sificadores. Por outro lado, mudanças com alta velocidade (repentina), alta severidade,

recorrência e alta periodicidade resultaram em maior impacto sobre o desempenho dos

classificadores.

A primeira conclusão deste estudo é que a reação à mudança de conceito não

pode ser uniforme para todos os tipos de mudança. Ao contrário, ela deve considerar as

características específicas de cada mudança e, em alguns casos, pode-se argumentar que

a melhor resposta é, simplesmente, não reagir. Ao detalhar os resultados apresentados

na Tabela 6, observou-se que os descritores de velocidade, severidade e recorrência

apresentaram valores bem definidos nos cenários com melhor e pior desempenho,
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enquanto a frequência demonstrou um comportamento muito menos definido. Isso

sugere que os três primeiros descritores exercem maior influência sobre a mudança

de conceito. No entanto, ao combinar esses resultados com os da Tabela 5, observa-se

que apenas os resultados relacionados à severidade apresentam, predominantemente,

diferenças estatisticamente significativas, seguidos pelos descritores de frequência e

recorrência.

A segunda conclusão é que os descritores de severidade, recorrência e frequência

exercem, respectivamente e em ordem decrescente, os impactos mais relevantes sobre a

mudança de conceito. Destaca-se que o impacto isolado da severidade se mostra mais

expressivo do que o dos demais descritores. Por sua vez, a velocidade não apresentou

indícios de exercer influência significativa sobre o fenômeno. Diante disso, qualquer es-

tratégia de reação deve considerar, prioritariamente, os descritores com maior impacto.

Por fim, a terceira conclusão é que há uma necessidade de incorporar mecanismos de

descrição da mudança de conceito ao processo de tratamento desse fenômeno. Esse

mecanismo pode ser executado de forma concorrente à detecção, sendo que as proprie-

dades extraídas a partir da descrição devem ser utilizadas para orientar a definição da

estratégia de reação mais eficaz a ser adotada.

Com base nessas conclusões, o próximo capítulo é focado em identificar a es-

tratégia de reação à mudança de conceito mais adequada, considerando as diferentes

características das mudanças.
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CAPÍTULO 5

Mudança de Conceito e Estratégias de Reação: Uma Análise Abrangente com o

Uso de Descritores

O
objetivo deste capítulo é identificar a estratégia de reação à mudança de

conceito mais adequada, considerando as diferentes características das mu-

danças. Os experimentos realizados foram estruturados em dois estágios,

seguidos de um teste de ablação. A Figura 29 resume esses dois estágios e o teste de

ablação. Os experimentos foram conduzidos utilizando os mesmos cinco conjuntos de

dados sintéticos investigados no capítulo anterior, cada um com 32 variações (também

denominadas cenários), e cinco estratégias distintas de reação (Figura 30). O teste de

ablação foi realizado para avaliar a influência do detector nos resultados obtidos. No

total, 1.000 foram testes realizados.

O EDDM (BAENA-GARCíA et al., 2006) foi selecionado como detector para a

primeira e a segunda etapas dos experimentos em razão de seu desempenho superior

demonstrado no experimento apresentado no Capítulo 4. Para o teste de ablação, o

DDM (GAMA et al., 2004) foi utilizado por ser amplamente empregado na literatura e

apresentar semelhanças operacionais com o EDDM. Em todas as etapas, a árvore de

decisão de Hoeffding (BIFET; GAVALDÀ, 2009) foi adotada como classificador, uma vez

que sua capacidade de aprendizado incremental é exigida por algumas das estratégias

testadas. Os detectores e o classificador foram aplicados com seus valores de parâmetros

padrão, conforme definidos por seus autores originais.

O objetivo da primeira etapa foi comparar a Estratégia Estática (EE), que não

utiliza um detector, com a Estratégia Padrão (EP), que substitui o classificador por

um novo treinado com as instâncias mais recentes. Essa comparação visou identificar

cenários em que as diferenças decorrentes da mudança de conceito não justificariam

a adoção de estratégias de reação que alterassem o conhecimento do classificador. O
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Figura 29 – Visão geral do experimento.

principal critério para essa avaliação foi o custo de reaprender regiões do espaço de

entrada além da zona de influência da mudança. Esse aspecto é especialmente crítico

quando não há garantia de obtenção de instâncias suficientes para possibilitar o rea-

prendizado, o que pode, potencialmente, resultar em uma degradação do desempenho

do novo classificador em relação ao anterior.

O erro prequencial (DAWID; VOVK, 1999) foi utilizado como métrica de desem-

penho. Os resultados foram comparados por meio do teste estatístico de Mann-Whitney

(MANN; WHITNEY, 1947), com nível de significância de 0, 05. É importante destacar

que a estratégia EP incorre em custo de retreinamento, enquanto a EE não. Portanto,

a análise isolada do resultado do teste estatístico não é suficiente para determinar a

estratégia de reação mais apropriada. Por esse motivo, a magnitude da diferença de

desempenho foi mensurada utilizando o tamanho de efeito η2 (RICHARDSON, 2011;

WILCOX, 2022). O tamanho de efeito é uma estatística que reflete a magnitude quan-
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Tabela 7 – Interpretação do tamanho do efeito.

Intervalo de η2 Efeito
< 0, 01 Insignificante

0, 01 ≤ η2 < 0, 06 Pequeno
0, 06 ≤ η2 < 0, 14 Médio

≥ 0, 14 Forte

titativa de um fenômeno. Em síntese, ele complementa o ρ-valor, que indica se um

efeito existe, abordando o significado prático e mostrando quão grande o efeito precisa

ser para ter relevância no mundo real (HEDGES; VEVEA, 2001; PARDO; ANTIVILO-

BRUNA; MIGUEZ, 2020).

A interpretação de η2 proposta por Cohen (1988) foi adotada neste trabalho,

conforme apresentado na Tabela 7. Ao final do primeiro estágio, a estratégia EP foi

considerada a mais apropriada apenas nos cenários em que o teste estatístico indicou

diferença significativa com tamanho de efeito forte (η2 ≥ 0, 14). Esses cenários foram,

então, testados no segundo estágio do experimento. Nos demais cenários, a estratégia

ES foi considerada a mais adequada. Nesses casos, nenhuma reação foi realizada.

O objetivo do segundo estágio dos experimentos foi definir a melhor estratégia

de reação com base nos descritores de mudança de conceito. Quatro estratégias de reação

foram investigadas: Estratégia Padrão (EP), Estratégia Incremental (EI), Estratégia com

Esquecimento (EQ) e Estratégia Ótima (EO), detalhadas na Seção 5.1.

Seus desempenhos, em termos de erro prequencial, foram comparadas utili-

zando o teste estatístico de Kruskal-Wallis (KRUSKAL; WALLIS, 1952) e o teste post-hoc

de Mann-Whitney (MANN; WHITNEY, 1947), ambos com nível de significância em

0, 05. Por fim, o teste de ablação teve como objetivo analisar a influência do EDDM nos

resultados. Para isso, o EDDM foi substituído pelo DDM, e os cenários do segundo

estágio experimental foram reavaliados, considerando especificamente as estratégias

que apresentaram melhor desempenho nesse estágio. Os resultados obtidos no pri-

meiro e no segundo estágios dos experimentos e no teste de ablação são discutidos,

respectivamente, nas Seções 5.3, 5.4 e 5.5.
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5.1 Estratégias de Reação
Conforme mencionado anteriormente, cinco estratégias de reação são investigadas neste

trabalho. A Figura 30 ilustra essas estratégias. A primeira, denominada EE, opera sob

a suposição de um ambiente estável, ou seja, não utiliza um detector. O objetivo de

testar essa estratégia é identificar cenários nos quais a diferença entre os conceitos não

seja significativa o suficiente para justificar os custos de atualização do classificador. A

segunda estratégia é a EP, considerada padrão na literatura. Ela consiste em substituir

o classificador por um novo, treinado com as instâncias mais recentes, denominadas

aqui de janela de alerta. Esse método é adotado por detectores clássicos como o DDM

(GAMA et al., 2004), EDDM (BAENA-GARCíA et al., 2006) e HDDM (FRíAS-BLANCO

et al., 2015).

EE

Base
Treino

C
Gera

Classifica

Instâncias

...

EI

Base
Treino

C
Gera

Instâncias

Detector

Janela de
Alerta

Atualiza o classificador atual

...

Mudança

Classifica

EP

Base
Treino

C
Gera

Classifica

Instâncias

Detector

Janela de
Alerta

Gera um novo classificador

Mudança

...

EQ

Base
Treino

C
Gera

Classifica/Atualiza
Instâncias

Detector

Janela de
Alerta

Gera um novo classificador

Mudança

...

EO

Base
Treino

C
Gera

Classifica/Atualiza

Instâncias

Detector

n
instâncias.

Gera um novo classificador

......

Mudança

Figura 30 – Visão geral das estratégias de reação investigadas neste trabalho. C indica o
classificador.
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A terceira é a Estratégia Incremental (EI), que consiste na atualização incremental

do classificador com instâncias da janela de alerta, sempre que uma mudança for detec-

tada. Portanto, os conceitos previamente aprendidos não são esquecidos. O objetivo de

testar a EI é analisar o impacto da ausência de esquecimento completo na estratégia de

reação. Por outro lado, na Estratégia de Esquecimento (EQ), o classificador é atualizado

incrementalmente com todas as instâncias, ou seja, à medida que as instâncias chegam

de forma contínua e sequencial, elas são classificadas e utilizadas para atualizar o clas-

sificador atual. Quando uma mudança é detectada, o classificador atual é substituído

por um novo, treinado com as instâncias da janela de alerta, assim como é feito na

EP. O objetivo da EQ é analisar o impacto do esquecimento parcial do classificador na

estratégia de reação. A estratégia EQ é empregada pelo método de detecção de mudança

baseado em dissimilaridade (PINAGE; SANTOS, 2015).

Por fim, a Estratégia Oráculo (EO) considera a existência de um detector ideal,

capaz de identificar com precisão todas as mudanças. Ao detectar uma mudança, um

novo classificador é treinado com as primeiras n instâncias do novo conceito, sendo

n um hiperparâmetro da estratégia de reação. O objetivo de testar essa estratégia é

minimizar as influências do conceito anterior, bem como reduzir falsas detecções, perdas

e atrasos na detecção.

5.2 Bases de Dados e Cenários
As bases de dados e os cenários testados nesta pesquisa estão descritos nas Seções 4.1 e

4.2; respectivamente.

5.3 Primeiro Estágio do Experimento
Os resultados deste estágio são apresentados nas Figuras 31, 32 e 33. A Figura 31 indica

que, como esperado, a estratégia EP apresentou desempenho superior à estratégia EE

na maioria dos casos. As exceções são o cenário 6 da base Circle; os cenários 8, 20,

27 e 28 da Line; o cenário 26 da Hiperplane; e os cenários 11, 15, 18, 24 e 27 da base
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Mapa de Calor das Diferenças Entre as Estratégias de Reação (EE - EP)
Valores positivos indicam que EP (azul) teve um erro menor.

Figura 31 – Valores positivos indicam que a estratégia EP alcançou os menores erros. X
indica que não há diferença significativa entre EP e EE, no nível de signifi-
cância de 0, 05.

SineH. Diferentemente da EE, a estratégia EP envolve um custo de retreinamento, como

previamente mencionado. Portanto, uma análise mais precisa e justa dos resultados

deve considerar o tamanho do efeito da diferença estatística.

O tamanho do efeito calculado para cada cenário em cada base de dados está

resumido na Figura 32. A linha vertical tracejada vermelha indica o ponto a partir do

qual a diferença passa a ter um efeito forte, e os círculos em azul ou vermelho indicam

o valor do efeito calculado. Aqueles localizados à esquerda da linha representam

situações em que não houve diferença significativa entre as estratégias ou em que a

diferença apresenta efeito desprezível (η2 < 0, 01), efeito pequeno (0, 01 ≤ η2 < 0, 06)

ou efeito médio (0, 06 ≤ η2 < 0, 14). Nesses casos, assume-se EE como a estratégia

mais apropriada. Já os círculos à direita da linha indicam situações em que a diferença

significativa entre as estratégias apresenta um grande efeito, sendo a EP considerada a

estratégia de reação mais adequada.
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Figura 32 – Tamanho do efeito dos testes estatísticos. A linha vermelha pontilhada
indica o ponto a partir do qual o efeito é considerado forte (η2 ≥ 0, 14).

O resultado do primeiro estágio dos experimentos está resumido na Figura

33. Em um determinado cenário, uma estratégia é considerada superior se obtiver os

melhores resultados na maioria simples das bases de dados avaliadas. Como exemplo,

a estratégia EP, representada pelo quadrado azul, apresentou melhor desempenho em

quatro das cinco bases de dados utilizadas no cenário 1 (Circle, Hiperplane, SineH e

SineV), enquanto a estratégia EP, representada pelo quadrado amarelo, obteve melhor

desempenho apenas na base de dados Line.
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Figura 33 – O mapa de calor ilustra o desempenho de cada estratégia de reação nos
cenários em cada base de dados.
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Considerando cada cenário por base de dados, a estratégia EE superou a estra-

tégia EP nos cenários 3, 7, 10, 11, 12, 15, 23, 27, 28 e 31. Ao analisar esses cenários em

termos de seus descritores, observou-se que todos apresentam frequência periódica

baixa. Além disso, em sete dos oito cenários com frequência periódica baixa, a estraté-

gia EE obteve melhor desempenho. Esses resultados indicam que, para mudanças de

conceito caracterizadas por frequência periódica baixa, não retreinar o modelo tende a

ser a estratégia de reação mais apropriada. Essa constatação representa uma importante

conclusão deste trabalho. Nos demais cenários, há evidências estatísticas de que a estra-

tégia de reação mais adequada é o retreinamento do modelo. No entanto, nesses casos,

é necessário definir a forma ideal de retreinamento. Para esse fim, esses cenários são

utilizados como entrada para o segundo estágio dos experimentos.

5.4 Segundo Estágio do Experimento
Os resultados obtidos no segundo estágio dos experimentos estão resumidos nas Tabelas

8 e 9, e na Figura 34. Esse estágio tem como objetivo identificar a estratégia de reação

à mudança de conceito mais apropriada para os cenários em que os descritores da

mudança indicam a necessidade de retreinamento do classificador. Os desempenhos

foram comparados por meio do teste estatístico de Kruskal-Wallis (KRUSKAL; WALLIS,

1952) e do teste de Mann-Whitney como procedimento post-hoc (MANN; WHITNEY,

1947), ambos com nível de significância em 0, 05. As estratégias analisadas neste estágio

são EP, EI, EQ e EO. O erro prequencial foi utilizado como métrica de desempenho.

Os valores das medianas do erro prequencial obtidos nos cenários e nas bases de

dados investigados para as quatro estratégias de reação analisadas são apresentados

nas Tabelas 8 e 9. Os valores em negrito indicam a estratégia com a menor mediana

do erro prequencial, enquanto os valores sublinhados indicam diferença significativa

entre os desempenhos das estratégias, de acordo com o teste estatístico aplicado. O

teste de Kruskal-Wallis indicou diferenças significativas em todas as comparações (ρ-

valor = 0, 00). Por sua vez, o teste post-hoc de Mann-Whitney indicou, em sua maioria,

diferenças significativas nas comparações pareadas entre as estratégias, com exceção de
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Tabela 8 – Comparando as estratégias de reação em cada cenário em todas as bases de
dados utilizando teste estatístico.

Circle1 Line1 Hiperplane1

Cenário
EP EI EQ EO ρ-v2 EP EI EQ EO ρ-valor EP EI EQ EO ρ-v2

1 0, 19 0, 17 0,04 0, 11 0, 00 0, 06 0, 20 0,04 0, 08 0, 00 0, 05 0, 13 0,04 0, 08 0, 00

2 0, 06 0, 08 0,03 0,04 0, 00 0,03 0, 11 0, 05 0, 04 0, 00 0, 04a 0, 09 0,04b 0, 05 0, 00

4 0, 02 0, 08 0,02 0, 02 0, 00 0, 04 0, 04 0,03 0, 04 0, 00 0,03 0, 05 0, 04 0, 06 0, 00

5 0, 05 0, 18 0,03 0, 12 0, 00 0, 03 0, 04 0,03 0, 08 0, 00 0,04 0, 05 0,04 0, 09 0, 00

6 0, 50 0, 14 0,03 0, 05 0, 00 0,04 0, 05 0, 04 0, 05 0, 00 0, 05 0,06 0,04 0, 07 0, 00

8 0,02 0, 16 0, 03 0, 05 0, 00 0, 50 0, 05 0,03 0, 04 0, 00 0, 05 0, 15 0,04 0, 06 0, 00

9 0, 04 0, 11 0,03 0, 09 0, 00 0, 04 0, 09 0,03 0, 07 0, 00 0, 06 0, 08 0,05 0, 09 0, 00

13 0, 04a 0, 17 0,03b 0, 10 0, 00 0, 04 0, 05 0,03 0, 08 0, 00 0, 05 0, 05 0,04 0, 09 0, 00

14 0, 02 0, 12 0,01 0, 03 0, 00 0, 04 0, 05 0,02 0, 06 0, 00 0,03 0, 04 0, 04 0, 05 0, 00

16 0, 03 0, 18 0,02 0, 03 0, 00 0,02 0, 07 0, 02 0, 03 0, 00 0, 05a 0, 03b 0,03 0, 04 0, 00

17 0,06 0, 17 0, 06 0, 12 0, 00 0, 04 0, 11 0,04 0, 08 0, 00 0, 05 0, 07 0,04 0, 09 0, 00

18 0,03 0, 10 0, 05 0, 05 0, 00 0, 04 0, 10 0,03 0, 06 0, 00 0, 06 0, 09 0,04 0, 08 0, 00

19 0,01 0, 03 0, 03 0, 04 0, 00 0,01 0, 04 0, 02 0, 12 0, 00 0,04 0, 07 0, 04 0, 09 0, 00

20 0, 02a 0, 09 0,02 0, 05b 0, 00 0, 13 0, 05 0,04 0, 08 0, 00 0, 05 0, 08 0,05 0, 06 0, 00

21 0, 08 0, 19 0,04 0, 11 0, 00 0, 04 0, 05 0,03 0, 07 0, 00 0,04 0, 06 0, 04 0, 09 0, 00

22 0, 03 0, 17 0,03 0, 06 0, 00 0, 04 0, 05 0,03 0, 05 0, 00 0, 05 0, 06 0,04 0, 05 0, 00

24 0,02 0, 30 0, 04 0, 07 0, 00 0, 04 0, 06 0,02 0, 03 0, 00 0,03 0, 04 0, 03 0, 07 0, 00

25 0, 03 0, 10 0,02 0, 09 0, 00 0, 04 0, 11 0,03 0, 08 0, 00 0,04 0, 15 0, 05 0, 09 0, 00

26 0, 03 0, 06 0,01 0, 03 0, 00 0, 04 0, 04 0,02 0, 05 0, 00 0, 86 0, 06 0,05 0, 08 0, 00

29 0, 04 0, 15 0,02 0, 10 0, 00 0,03 0, 04 0, 03 0, 07 0, 00 0,03 0, 04 0, 03 0, 09 0, 00

30 0, 03 0, 11 0,01 0, 03 0, 00 0, 02 0, 05 0,02 0, 04 0, 00 0, 04 0, 08 0,04 0, 06 0, 00

32 0, 03 0, 07 0,01 0, 03 0, 00 0, 03 0, 04 0,02 0, 05 0, 00 0, 03 0, 08 0,03 0, 04 0, 00

1 Valores em negrito indicam o menor valor da mediana do erro prequencial dos cenários na segunda
etapa dos experimentos. Valores sublinhados indicam diferença estatística significativa segundo os
testes estatísticos aplicados para todos os descritores. Testes com nível de significância de 0, 05.

2 ρ-valor.

oito comparações; marcadas com as letras minúsculas "a"e "b"nas Tabelas 8 e 9. Para

evitar excesso de informação, apenas as comparações sem diferença significativa no

teste posthoc foram marcadas com letras minúsculas. Cabe esclarecer que valores iguais

de medianas com interpretações distintas nas Tabelas 8 e 9 devem-se à limitação da

representação com duas casas decimais.

Ao detalhar os resultados, observa-se que, na base de dados Circle, a estratégia

EQ apresentou o melhor desempenho em 17 dos 22 cenários analisados, sendo superada

pela estratégia EP apenas nos cenários 8, 17, 18, 19 e 24. As demais estratégias não

apresentaram o melhor desempenho em nenhum dos cenários. A EQ também foi o

melhor método na base de dados Line em 17 cenários, enquanto a EP apresentou melhor
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Tabela 9 – Comparando as estratégias de reação em cada cenário em todas as bases de
dados utilizando teste estatístico.

SineH1 SineV1

Cenário
EP EI EQ EO ρ-valor EP EI EQ EO ρ-valor

1 0, 18 0, 24a 0,17 0, 24b 0, 00 0,03 0, 13 0, 04 0, 07 0, 00

2 0, 18a 0, 31 0,18b 0, 19 0, 00 0, 03 0, 12 0,02 0, 05 0, 00

4 0, 22 0, 21 0,19 0, 20 0, 00 0, 02a 0, 12 0,02b 0, 03 0, 00

5 0, 25 0, 28 0,18 0, 22 0, 00 0, 02 0, 03 0,02 0, 08 0, 00

6 0, 22 0,18 0, 19 0, 19 0, 00 0, 03 0, 06 0,02 0, 04 0, 00

8 0, 19 0, 19 0,18 0, 21 0, 00 0, 03 0, 12 0,02 0, 02 0, 00

9 0,19 0, 19 0, 20 0, 24 0, 00 0, 04 0, 06 0,03 0, 07 0, 00

13 0, 20 0, 39 0,19 0, 23 0, 00 0, 02 0, 05 0,02 0, 07 0, 00

14 0, 19 0, 39 0,18 0, 19 0, 00 0, 03 0, 06 0,03 0, 04 0, 00

16 0,18 0, 34 0, 18 0, 18 0, 00 0,02 0, 07 0, 03 0, 05 0, 00

17 0, 29 0, 20 0,19 0, 24 0, 00 0, 04 0, 10 0,03 0, 06 0, 00

18 0, 50 0, 20 0,19 0, 20 0, 00 0, 03 0, 09 0,03 0, 09 0, 00

19 0,14 0, 23 0, 17 0, 16 0, 00 0,04 0, 43 0, 04 0, 24 0, 00

20 0, 19 0, 33 0,19 0, 23 0, 00 0, 03 0, 06 0,02 0, 04 0, 00

21 0, 20 0,18 0, 19 0, 22 0, 00 0,02 0, 06 0, 02 0, 07 0, 00

22 0, 20 0, 39 0,19 0, 21 0, 00 0, 03 0, 05 0,02 0, 06 0, 00

24 0, 44 0,18 0, 19 0, 21 0, 00 0,02 0, 02 0, 02 0, 06 0, 00

25 0, 19 0,19 0, 19 0, 23 0, 00 0, 03 0, 11 0,03 0, 08 0, 00

26 0, 19 0, 33 0,18 0, 21 0, 00 0,05 0, 07 0, 05 0, 09 0, 00

29 0, 19 0,19a 0, 19b 0, 23 0, 00 0,02 0, 03 0, 02 0, 07 0, 00

30 0, 20 0, 20 0,19 0, 21 0, 00 0, 03 0, 05 0,03 0, 06 0, 00

32 0,18 0, 29 0, 19 0, 21 0, 00 0, 03 0, 15 0,02 0, 05 0, 00

1 Valores em negrito indicam a menor mediana do erro prequencial nos cenários da segunda etapa
dos experimentos. Valores sublinhados indicam diferença estatística significativa segundo os testes
aplicados para todos os descritores. Os testes foram realizados com nível de significância de 0, 05.

desempenho nos cinco cenários restantes (2, 6, 16, 19 e 29). O mesmo comportamento

foi observado na base de dados Hiperplane: a EQ obteve o melhor desempenho em 15

cenários; a EP superou a EQ em sete cenários (4, 14, 19, 21, 24, 25 e 29). Para a base SineV,

a superioridade da EQ também foi observada em 15 cenários. Novamente, a EP foi a

melhor opção nos sete cenários restantes (1, 16, 19, 21, 24, 26 e 29). Por fim, na base de

dados SineH, a EQ também superou os demais métodos, embora essa superioridade

tenha ocorrido em apenas 13 cenários. Além disso, diferentemente das outras bases de

dados, a estratégia EI apresentou o segundo melhor desempenho em cinco cenários (6,

21, 24, 25 e 29), enquanto a EP foi superior nos cenários 9, 16, 19 e 32.

A Figura 34 resume os resultados obtidos no experimento. Conforme ilustrado,
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Figura 34 – O mapa de calor ilustra os cenários em que cada estratégia alcançou o
melhor resultado.

a estratégia EQ apresentou o melhor desempenho em 18 cenários, enquanto a EP foi

a melhor nos cenários 16, 19, 24 e 29. Assim, a EQ pode ser considerada a estratégia

mais adequada para reagir à mudança de conceito. Algumas observações podem ser

feitas a partir desses resultados. Primeiramente, destaca-se que, em 100% dos cenários

caracterizados por mudanças repentinas, de alta severidade, com ou sem recorrência

(cenários 1, 2, 5 e 6) a EQ obteve o melhor desempenho. Isso indica que mudanças com

essas características específicas são mais bem tratadas por estratégias que incorporam

mecanismos de esquecimento.

A segunda observação também diz respeito aos mecanismos de esquecimento.

Considerando que o objetivo da estratégia EQ foi analisar o impacto do esquecimento

parcial do classificador na estratégia de reação, seu alto desempenho indica que, ao me-

nos em ambientes supervisionados, uma estratégia de reação eficaz deve incorporar me-

canismos de esquecimento. Isso se insere no chamado dilema estabilidade–plasticidade

(GROSSBERG, 1988; BAYRAM; AHMED; KASSLER, 2022), no qual a estabilidade se

refere à preservação do conhecimento relevante, enquanto a plasticidade implica na

substituição do conhecimento obsoleto. A necessidade de incorporar mecanismos de

esquecimento ao reagir a mudanças de conceito constitui a segunda principal conclusão

deste trabalho.

5.5 Teste de Ablação
Estudo de ablação é um método de pesquisa utilizado mais comumente nas áreas da

Medicina e Psicologia, no qual o desempenho de um organismo é analisado após a
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remoção de determinadas partes (SHEIKHOLESLAMI, 2019). No contexto de apren-

dizado de máquina, um estudo de ablação é definido como um experimento em que

componentes individuais de uma solução são removidos ou substituídos, com o objetivo

de avaliar sua contribuição para o desempenho geral da solução (COHEN; HOWE,

1988; NEWELL, 1975).

Circle Line Hiperplane SineH SineV

1
2

4
5

6
8

9
13

14
16

17
18

19
20

21
22

24
25

26
29

30
32

Ce
ná

rio
s

0.10 0.28 0.00 0.07 0.09
0.16 -0.02 0.45 0.01 0.02
0.05 0.14 0.12 0.18 0.03
-0.02 0.01 0.05 0.01 0.04
0.10 0.46 0.06 0.31 0.06
0.23 0.12 0.20 0.07 0.31
0.13 0.06 0.20 0.02 0.30
0.08 0.00 0.01 -0.01 0.03
0.04 0.02 0.02 0.03 0.31
0.06 0.05 0.17 0.02 0.07
0.45 0.08 0.15 0.15 0.42
0.09 0.18 0.03 0.31 0.15
0.15 0.01 0.06 0.12 0.03
0.05 0.11 -0.01 0.00 0.12
0.14 0.04 0.46 0.05 0.01
0.48 0.01 0.13 0.06 0.20
0.10 0.08 0.35 0.04 0.03
0.32 0.00 0.03 0.00 -0.01
0.26 0.01 0.01 0.01 0.21
0.02 0.00 0.04 0.00 0.12
0.14 0.03 0.02 0.10 0.03
0.03 0.30 0.04 0.32 0.47

X

X X

   EP    EQ

Mapa de Calor das Diferenças Entre as Estratégias de Reação (EP - EQ)
Valores positivos indicam que EQ (verde) teve um erro menor.

Figura 35 – Valores positivos indicam que EQ alcançou a menor taxa de erro. X indica
que não há diferença significativa entre EQ e EP, no nível de significância
0, 05.

Com base nos resultados obtidos no segundo estágio do experimento, o objetivo

do estudo de ablação conduzido neste trabalho foi avaliar o impacto do EDDM como

detector de mudanças no desempenho observado. Para isso, o EDDM foi substituído

pelo DDM (GAMA et al., 2004), e os cenários da segunda etapa dos experimentos foram

reanalisados, com foco apenas nas estratégias EP e EQ. Os resultados, apresentados na

Figura 35, indicam que o alto desempenho da estratégia EQ não se deve a características

particulares do detector EDDM. Mesmo após a substituição do EDDM pelo DDM, a EQ

continuou apresentando os melhores resultados na maioria dos cenários. Para comparar
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as diferenças de desempenho, foi aplicado o teste estatístico de Mann-Whitney com

nível de significância de 0, 05.

5.6 Considerações Finais
No estudo apresentado neste capítulo, investigou-se o impacto dos descritores de

mudança de conceito no desempenho dos classificadores e nas estratégias de reação.

Para isso, foram realizadas análises experimentais em cinco bases de dados sintéticas,

abrangendo 32 cenários distintos. Aplicaram-se cinco diferentes estratégias de reação,

incluindo abordagens tradicionais e incrementais. Além disso, foram utilizados testes

estatísticos, análise do tamanho de efeito e realizado um teste de ablação para validar a

robustez das conclusões obtidas. Os experimentos foram divididos em duas etapas e

um teste de ablação, totalizando 1.000 testes individuais conduzidos.

Os resultados demonstram que a escolha da estratégia de reação à mudança de

conceito está fortemente associada às características da própria mudança. A adoção

de uma estratégia padrão, frequentemente relatada na literatura, pode levar à redução

do desempenho do classificador em determinados cenários. Em particular, optar por

não reagir à mudança é a estratégia mais adequada para lidar com mudanças de

baixa frequência e periódicas. Nesses casos, os custos de retreinamento do classificador

superam os possíveis benefícios da adaptação ao novo conceito. Esta constitui a nossa

primeira conclusão principal.

Em cenários nos quais o retreinamento se mostrou necessário, a estratégia mais

comumente utilizada também não foi a mais efetiva. Em vez disso, a abordagem de

aprendizado incremental que incorporou o esquecimento de instâncias antigas apre-

sentou melhores resultados. Esse resultado destaca um elemento crucial, porém pouco

explorado na literatura sobre mudança de conceito: o mecanismo de esquecimento. As-

sim, concluí-se que abordagens voltadas ao tratamento da mudança de conceito devem

incorporar mecanismos eficazes de esquecimento. Esta é a nossa segunda conclusão

principal.

Além disso, os resultados dos experimentos também indicaram que caracterizar
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a mudança de conceito com base em seus descritores ajuda a evitar custos desnecessários

de retreinamento e melhora o desempenho do classificador em cenários específicos,

especialmente quando essa caracterização é incorporada às estratégias de reação. Esta é

a nossa terceira conclusão principal.

O presente estudo contribui de forma significativa para a compreensão do papel

dos descritores na definição de estratégias de reação à mudança de conceito. No entanto,

algumas limitações devem ser consideradas. Primeiramente, este trabalho não abordou

explicitamente mudanças de conceito causadas pelo surgimento ou desaparecimento

de novos atributos ou classes, conforme proposto por Bayram, Ahmed e Kassler (2022).

Isso pode limitar a aplicabilidade dos resultados em ambientes que apresentam essas

características, embora tais mudanças sejam relativamente raras. Ainda assim, é impor-

tante observar que, entre os 32 cenários testados, mudanças com essas características

são implicitamente contempladas, o que minimiza o impacto dessa limitação.

Outra limitação está relacionada à ausência de testes envolvendo o descritor

zona de influência. Essa limitação se deve à dificuldade de simular com precisão o local

onde as mudanças ocorrem. No entanto, os potenciais efeitos da zona de influência

sobre a generalização são conhecidos e afetam exclusivamente mudanças virtuais com

alta severidade. Nesse caso, a zona de influência não impacta a fronteira de decisão,

pois o descritor severidade superestima a severidade real da mudança, fazendo com

que uma mudança virtual seja tratada como uma mudança real.

O próximo capítulo discute as conclusões gerais desta tese e apresentas sugestões

para trabalhos futuros.
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CAPÍTULO 6

Conclusões

E
sta tese abordou o fenômeno da mudança de conceito, que pode acarretar

em perda de desempenho dos classificadores. Esse problema é amplamente

explorado na literatura a partir da perspectiva de métodos de detecção supervi-

sionados. Esses métodos assumem como premissa que os rótulos verdadeiros estarão

sempre disponíveis, o que não é uma condição realística em ambientes reais. Além disso,

as estratégias de reação à mudança amplamente utilizadas não levam em consideração

as características das mudanças, que podem ser insumos úteis para a tomada de decisão

baseada em evidências.

Dado esse contexto, esta tese aborda o fenômeno da mudança de conceito con-

siderando os pontos destacados no parágrafo anterior, resultando em três principais

contribuições, organizadas nos três estudos realizados. O primeiro estudo abordou

uma revisão sistemática da literatura sobre métodos de detecção não supervisionados

considerados estado-da-arte, com a proposição de uma nova classificação taxonômica.

A revisão sistemática da literatura identificou dois grupos de publicações: i) arti-

gos de revisão e análise de diferentes abordagens de detecção de mudança de conceito;

e ii) artigos que apresentam métodos não supervisionados. O primeiro grupo evidencia

a escassez de trabalhos que sintetizem tais abordagens, enquanto o segundo permitiu

agrupar métodos não supervisionados e semissupervisionados em duas categorias

principais: baseados em lote e online.

Os métodos em lote e online referem-se exclusivamente ao componente de detec-

ção. No primeiro, a mudança é identificada mediante o processamento de conjuntos de

instâncias, ao passo que, no segundo, a detecção ocorre instância a instância ao longo

do fluxo de dados.

O segundo trabalho conduzido analisou o impacto de quatro descritores da
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mudança de conceito no desempenho do classificador, com o objetivo de identificar os

descritores mais relevantes para o processo de reação à mudança. Os resultados desse

estudo indicam que a reação à mudança de conceito não deve ser uniforme, mas sim

ajustada às características específicas de cada cenário, sendo que em determinadas situ-

ações a melhor resposta pode ser não reagir. Observou-se que velocidade, severidade e

recorrência apresentaram valores bem definidos em cenários de melhor e pior desempe-

nho, enquanto a frequência mostrou comportamento menos consistente. No entanto,

apenas a severidade se destacou de forma predominante, seguida pela frequência e pela

recorrência, ao passo que a velocidade não demonstrou impacto significativo. Dessa

forma, severidade, recorrência e frequência configuram os descritores mais relevantes

para orientar estratégias de reação, com destaque para a severidade como o fator isolado

de maior influência. Por fim, ressalta-se a importância de incorporar mecanismos de

descrição da mudança de conceito, executados de forma concorrente à detecção, de

modo que as propriedades descritas subsidiem a escolha da estratégia de reação mais

adequada.

O último estudo realizado analisou o impacto dos descritores da mudança de

conceito no desempenho do classificador e na estratégia de reação. O estudo demonstrou

que a escolha da estratégia de reação à mudança de conceito depende fortemente das

características do fenômeno. Em cenários de mudanças de baixa frequência e periódicas,

a melhor resposta pode ser simplesmente não reagir, evitando custos desnecessários de

retreinamento. Quando o retreinamento se mostrou necessário, a estratégia incremental

com esquecimento de instâncias antigas superou a abordagem padrão, o que evidencia

a relevância do mecanismo de esquecimento, ainda pouco explorado na literatura,

como componente essencial das estratégias de reação. Além disso, verificou-se que a

caracterização da mudança por meio de descritores potencializa a definição de reações

mais adequadas, reduz custos e melhora o desempenho dos classificadores.

Ao correlacionar os resultados dos Capítulos 4 e 5, observa-se que o descritor

com maior influência no desempenho do classificador é a severidade. Os cenários de alta

severidade requerem a adoção de uma estratégia de retreino total ou de aprendizado

incremental, indicando a necessidade de um custo maior de rotulagem. Esses resultados



Capítulo 6. Conclusões 96

reforçam tanto o impacto do descritor de severidade, como a definição de uma estratégia

de acordo com as características da mudança. Outra correlação relevante diz respeito ao

descritor de recorrência. No Capítulo 4, todos os experimentos foram conduzidos com

a estratégia padrão de reação, e verificou-se que as mudanças recorrentes impactaram

mais o desempenho do que as não recorrentes. Por sua vez, no Capítulo 5, os resultados

demonstraram que, em cenários de recorrência, a melhor estratégia foi não reagir,

reforçando a hipótese da tese de que a definição da estratégia deve estar fundamentada

nas evidências fornecidas pelos descritores. Essa correlação também se verifica nas

mudanças de baixa frequência, em que a melhor estratégia é não reagir, e nas de alta

frequência, em que estratégias adaptativas demonstraram resultados superiores. Dessa

forma, adotar a estratégia padrão resultaria em desempenho inferior em comparação às

demais estratégias.

6.1 Limitações e Trabalhos Futuros
A tese contribui de forma significativa para o entendimento da relevância das caracte-

rísticas da mudança de conceito no desempenho dos classificadores, assim como de

sua influência na escolha da estratégia de reação mais adequada. Entretanto, algumas

limitações devem ser consideradas.

Primeiramente, a tese não abordou explicitamente a mudança de conceito cau-

sada pelo surgimento ou desaparecimento de novos atributos ou classes, conforme

proposto por Bayram, Ahmed e Kassler (2022). Isso pode limitar a aplicabilidade de

nossos resultados em ambientes que apresentem essas características, embora tais mu-

danças sejam relativamente raras. Ainda assim, é importante destacar que, entre os 32

cenários testados nos experimentos do Capítulo 5, mudanças com essas características

estão implicitamente contempladas, o que minimiza o impacto dessa limitação.

Outra limitação está relacionada à ausência de testes envolvendo o descritor de

zona de influência. Essa limitação decorreu da dificuldade em simular a localização

exata onde as mudanças ocorrem. Contudo, os potenciais efeitos da zona de influência

sobre a generalização são conhecidos e afetam exclusivamente mudanças virtuais de
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alta severidade. Nesse caso, a zona de influência não impacta a fronteira de decisão,

pois o descritor de severidade superestima a severidade real da mudança, fazendo com

que uma mudança virtual seja tratada como real.

Para pesquisas futuras, em relação à revisão sistemática da literatura e à classifi-

cação taxonômica proposta, recomenda-se expandir esse estudo por meio da avaliação

e da comparação dos métodos revisados em experimentos computacionais, como reali-

zado por Barros e Santos (2018) para detectores supervisionados. Também sugere-se

uma sistematização dos detectores de mudança de conceito de acordo com as estratégias

de reação adotadas.

Em relação à compreensão da natureza da mudança de conceito, sugere-se:

(i) analisar o impacto mútuo entre os descritores; (ii) aprofundar a investigação das

relações existentes entre os descritores; (iii) desenvolver mecanismos para caracterizar

a mudança em termos desses descritores em tempo execução; (iv) avaliar os impactos

da mudança em modelos de aprendizado profundo e verificar se diferem daqueles

observados em modelos rasos; (v) investigar de que forma características específicas de

problemas do mundo real podem influenciar a ação dos descritores sobre as estratégias

de reação; e (vi) projetar detectores que considerem tais características.

Por fim, em relação aos descritores e à definição de estratégias de reação, sugere-

se também alguns trabalhos futuros. Primeiramente, analisar explicitamente mudanças

geradas pelo surgimento ou desaparecimento de atributos ou classes. Em segundo lugar,

é importante investigar se mudanças no número de atributos ou classes representam

um novo descritor espacial para a mudança de conceito, dado que essas alterações

modificam o espaço de entrada, em vez de constituírem apenas outro tipo de mudança.

No que se refere a novos descritores, também se sugere a exploração de caracterís-

ticas adicionais que possam descrever a mudança de conceito, como a Entropia da

Informação (SHANNON, 1948; SUN; MI; JIN, 2024), os metaatributos discutidas em

(KOMORNICZAK; KSIENIEWICZ, 2024) e as relações causais entre atributos abordadas

em (YANG et al., 2025). Recomenda-se ainda o desenvolvimento ou aprimoramento de

métodos para mensurar as características das mudanças de conceito. Por fim, o estudo

de mecanismos de esquecimento, com especial atenção ao dilema entre estabilidade e
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plasticidade, pode ser abordado em trabalhos futuros.
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ŽLIOBAITĖ, I. Controlled permutations for testing adaptive learning models. Knowledge
and Information Systems, v. 39, n. 3, p. 565–578, Jun 2014. ISSN 0219-3116. 129
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APÊNDICE A

Uma Visão Geral dos Métodos Não Supervisionados de Detecção de Mudança

de Conceito

Há na literatura revisões sobre o tema da detecção de mudanças, como as de

Lu et al. (2019),Hu, Kantardzic e Sethi (2019),Wares, Isaacs e Elyan (2019) e

Khamassi et al. (2018). No entanto, observa-se que nenhum desses trabalhos é

especificamente voltado à detecção de mudanças não supervisionada, embora Khamassi

et al. (2018) considerem uma categoria que inclui métodos desse tipo. Nesse cenário,

o trabalho apresentado neste Apêndice concentra-se exclusivamente em métodos de

detecção não supervisionada. Assim, a taxonomia aqui proposta é inédita e distingue-se

das anteriores por tratar especificamente das propriedades de detectores projetados

para operar em ambientes não supervisionados.

Lu et al. (2019) propuseram uma categorização dos métodos de detecção de

mudança em três grandes classes. A primeira classe inclui métodos que monitoram

taxas de erro, como o DDM (GAMA et al., 2014), o EDDM (BAENA-GARCíA et al.,

2006) e outros (XU; WANG, 2017; GOMES et al., 2019). A segunda classe é composta

por métodos que utilizam medidas de distância para estimar a similaridade entre as

distribuições dos dados anteriores e atuais. A última classe inclui métodos que fazem

uso de testes de hipóteses múltiplas para detectar a mudança de conceito. Nenhuma

dessas classes é específica para métodos não supervisionados; entretanto, os trabalhos

de Haque, Khan e Baron (2016), Chandra et al. (2016) e Hosseini, Gholipour e Beigy

(2015) são apresentados como métodos não supervisionados ou semissupervisionados

que pertencem às duas últimas classes. Portanto, se considerada a taxonomia proposta

em Lu et al. (2019), detectores não supervisionados podem ser enquadrados nas duas

últimas categorias.

Hu, Kantardzic e Sethi (2019) apresentaram uma categorização dos métodos

de detecção de mudança de conceito em dois grandes grupos: abordagens baseadas

em desempenho e abordagens baseadas na distribuição dos dados. Os métodos ba-
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seados em desempenho monitoram continuamente alguma métrica relacionada ao

erro, como acurácia, F-score, precisão e revocação. Em geral, uma mudança é sinali-

zada quando se observa uma queda significativa nessa métrica. Como esses métodos

requerem rótulos verdadeiros para estimar os erros, eles não são aplicáveis a tarefas

não supervisionadas. Por sua vez, as abordagens baseadas na distribuição utilizam

medidas de monitoramento da distribuição dos dados, como localização, densidade e

amplitude. Os métodos pertencentes a essa categoria podem ser supervisionados ou

não supervisionados. Ressalta-se que esse grupo abrange os métodos das duas últimas

classes da categorização apresentada por Lu et al. (2019).

Wares, Isaacs e Elyan (2019) descrevem uma categorização para métodos su-

pervisionados, em que os métodos são classificados em quatro grupos: i) métodos

estatísticos, ii) métodos baseados em janelas, iii) comitês baseados em blocos e iv) co-

mitês baseados em aprendizado incremental. O primeiro grupo abrange detectores

que utilizam testes estatísticos, como a Soma Cumulativa (Cumulative Sum) e o teste de

Page-Hinckley (PAGE, 1954). Esse grupo inclui o DDM (GAMA et al., 2014), o EDDM

(BAENA-GARCíA et al., 2006) e o método de detecção de mudança de McDiarmid

(PESARANGHADER; VIKTOR; PAQUET, 2018). O segundo grupo compreende méto-

dos baseados em janelas, que, em geral, monitoram a acurácia do classificador sobre

as instâncias contidas em uma janela deslizante. Os dois úlimos grupos englobam

métodos que monitoram a acurácia de comitês de classificadores, diferenciando-se pela

forma como os dados são processados durante a reação à mudança: métodos do terceiro

realizam o retreinamento dos classificadores em blocos de instâncias, enquanto os do

último grupo o fazem de forma incremental, a cada nova instância observada.

Khamassi et al. (2018) introduzem uma taxonomia guiada pelas seguintes per-

guntas: "Como os dados são processados?", "Como o aprendizado é realizado?", "Como

a mudança de conceito é monitorada?", "Como a mudança de conceito é tratada?"e

"Quais são os critérios de desempenho?". Com relação à terceira pergunta, os métodos

são agrupados de acordo com o tipo de detecção, especificamente se ela é supervisio-

nada, não supervisionada ou semi-supervisionada. Os autores refinam ainda mais a

classificação dos métodos não supervisionados em: similaridade no tempo, similaridade

no espaço e medidas de complexidade do modelo.

O primeiro grupo refere-se a como a distribuição evolui entre dois instantes

de tempo, sendo que, geralmente, as diferenças são detectadas por meio de testes de
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hipóteses (KUNCHEVA; ZLIOBAIT, 2009; ALIPPI; ROVERI, 2008; SHAKER; LUGHO-

FER, 2014). O segundo grupo inclui métodos que monitoram a evolução da distribuição

dos dados no espaço utilizando funções de distância, como as distâncias Euclidiana,

Euclidiana-Heterogênea com sobreposição e de Mahalanobis; conforme observado em

TRAN (2019), Tsymbal e Puuronen (2000) e Jr e Barros (2013), respectivamente. O último

grupo foca em mudanças na estrutura ou nos parâmetros do modelo.

Na taxonomia proposta por Khamassi et al. (2018), o grupo de similaridade no

tempo é composto por trabalhos publicados antes do limite temporal deste trabalho

(2015). De fato, conforme mencionado por Wares, Isaacs e Elyan (2019), há poucos

estudos que consideram a dependência temporal na detecção de mudança de conceito.

Como o foco deste trabalho está na análise de características mais recentes dos métodos

de detecção não supervisionada de mudanças, esse critério não é considerado em nossa

taxonomia. Ao observar a categoria de similaridade no espaço, é possível notar que

todos os métodos discutidos neste artigo podem ser incluídos nesse grupo. Assim,

a taxonomia proposta expande essa categoria de métodos. Por fim, o último grupo

é dependente do algoritmo, enquanto os trabalhos descritos neste artigo podem ser

gerados utilizando qualquer algoritmo de aprendizado de máquina.

Em Aprendizado de Máquina, a forma como os dados devem ser processados

depende de características específicas determinadas pelo modo de acesso e pela dispo-

nibilidade dos dados. No caso de dados em fluxo, eles se diferenciam de outras formas

de dados pelo fato de que as instâncias chegam de forma contínua e sequencial. Com o

tempo, a distribuição subjacente dos dados pode mudar dinamicamente. Esse fenômeno

é conhecido como mudança de conceito, e representa um desafio relevante que pode

impactar diversos domínios de aplicação. Esse fato pode explicar o elevado número de

estudos de revisão publicados na última década, conforme resumido na Figura 36, os

quais se concentram em investigar abordagens para lidar com a mudança de conceito

em diferentes áreas de aplicação, incluindo saúde; como predição de cirurgias (BEYENE

et al., 2015) e avaliação da qualidade do sono (CHIANG; WU, 2018); segurança da infor-

mação; como filtragem de spam (GUZELLA; CAMINHAS, 2009), detecção de fraudes

(ABDALLAH; MAAROF; ZAINAL, 2016) e cibersegurança (BOBOWSKA; CHORáS;

WOźNIAK, 2018); além de sensores inteligentes baseados em dados (KADLEC; GRBIć;

GABRYS, 2011). De modo geral, os métodos descritos nesses trabalhos não se baseiam

exclusivamente em técnicas de aprendizado de máquina, uma vez que são métodos
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dependentes do problema.
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Figura 36 – O crescente número de publicações entre os anos de 2009 e 2019 em formato
de revisão da literatura sobre detecção de mudança de conceito.

Estudos de revisão sobre soluções baseadas em aprendizado de máquina também

têm atraído o interesse da comunidade científica (GAMA et al., 2014; LU et al., 2019; HU;

KANTARDZIC; SETHI, 2019). No entanto, apesar do crescente volume de publicações

sobre mudança de conceito nesse contexto, a ampla maioria dos trabalhos concentra-

se em abordagens supervisionadas. De fato, diversos métodos supervisionados para

detecção de mudança de conceito foram compilados em revisões como as de Lu et

al. (2019) e Barros e Santos (2018). Por exemplo, Barros e Santos (2018) apresentam

uma ampla comparação de 14 detectores supervisionados de mudança de conceito.

Os autores indicam que abordagens ou semi-supervisionadas ou não supervisionadas

poderiam ser exploradas em estudos futuros. Já Krawczyk et al. (2017) e Barros e Santos

(2019) discutem a mudança de conceito em dados em fluxos com ênfase em abordagens

baseadas em comitês, não sendo, portanto, voltadas principalmente para métodos

não supervisionados. Iwashita e Papa (2019) destacam a expressiva concentração de

publicações sobre abordagens supervisionadas, representando aproximadamente 85%

dos estudos, em comparação com 12% de semi-supervisionados e apenas 5% de não

supervisionados. Por fim, de acordo com Lu et al. (2019), que analisaram mais de

130 publicações sobre mudança de conceito, a detecção e adaptação de mudanças em

cenários não supervisionados ou semi-supervisionados constitui uma área de pesquisa
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ainda pouco explorada.

Por outro lado, ao considerar problemas do mundo real, é mais realista tentar

resolver o problema da mudança de conceito de forma não supervisionada, uma vez

que dispor dos rótulos das instâncias que chegam imediatamente após sua classificação,

na maioria das vezes, não é viável. Até onde se tem conhecimento, não há revisões

sistemáticas que descrevam o estado da arte em abordagens não supervisionadas para

detecção de mudança de conceito e que proponham uma taxonomia específica para

esses métodos. Esta revisão tem como objetivo preencher essa lacuna na literatura.

A presente revisão foi elaborada para responder às seguintes perguntas de

pesquisa:

• P1) Quais são as abordagens não supervisionadas para detecção de mudança de

conceito propostas na literatura?;

• P2) Essas abordagens foram propostas para dados em fluxo online ou em lotes?;

• P3) Como categorizar essas abordagens em uma taxonomia significativa?; e

• P4) Qual é a contribuição da taxonomia proposta em relação às taxonomias exis-

tentes na literatura?

Para responder às perguntas de pesquisa, foi adotada uma metodologia de

revisão sistemática (OKOLI, 2015). A seleção das referências utilizadas nesta revisão

foi realizada por meio de uma string de busca no mecanismo de meta-pesquisa Scopus

(<www.scopus.com>). A primeira string de busca foi elaborada para recuperar estudos

de revisão da literatura (overviews, surveys e reviews) que abordassem o fenômeno

da mudança de conceito no período de 2009 a 2019, resultando em 106 documentos.

Em seguida, a busca foi refinada para incluir apenas artigos publicados em inglês e

disponíveis em periódicos ou anais de conferências. Esse novo filtro resultou em 78

documentos. Uma verificação preliminar deste grupo revelou uma maior concentração

de publicações após 2014. Assim, com o objetivo de revisar os avanços mais recentes

sobre detecção de mudança de conceito por meio de estratégias não supervisionadas, a

busca foi limitada ao período de 2015 a 2019. Essa etapa retornou 55 documentos.

Como resultado, o presente trabalho descreve 16 métodos de detecção não

supervisionada de mudança de conceito, conforme apresentados nas Tabelas 10 e 11.

www.scopus.com
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Esses métodos são detalhados nas seções sobre os métodos baseados em lote e sobre os

online. As principais etapas da metodologia estão descritas a seguir:

• Etapa 1: Mecanismo de busca. Ambas as buscas foram realizadas utilizando o

mecanismo de meta-pesquisa Scopus (<www.scopus.com>), que realiza pesqui-

sas nas bases de dados Science Direct (<www.sciencedirect.com>), ACM Digi-

tal Library (<dl.acm.org>), IEEE Xplore (<ieeexplore.ieee.org>) e Springer Link

(<link.springer.com>);

• Etapa 2: Seleção dos documentos. Triagem preliminar dos artigos: A primeira

busca foi baseada em palavras-chave. Os artigos foram então selecionados como

referências caso: 1) apresentassem nova teoria, algoritmo ou metodologia na área

de mudança de conceito; ou 2) relatassem uma aplicação relacionada à mudança

de conceito;

• Etapa 3: Filtragem dos resultados para os artigos. Os artigos selecionados na Etapa

2 foram divididos em dois grupos: detecção de mudança de conceito em lote e

detecção de mudança de conceito em dados em fluxo online. As referências de cada

grupo foram novamente filtradas com base no período de publicação (2016-2020);

e

• Etapa 4: Seleção dos métodos. A última etapa analisa todos os documentos para

extrair apenas os artigos que propõem um componente de detecção de mudança

semi-supervisionado ou não supervisionado.

A principal contribuição desta revisão é propor uma taxonomia dos estado-da-

arte das abordagens para detecção de mudança de conceito baseadas em estratégias

não supervisionadas, bem como apresentar uma visão abrangente das abordagens

que lidam com a mudança de conceito em problemas de classificação de forma não

supervisionada.

Portanto, as principais diferenças entre a taxonomia proposta e as atualmente

existentes são:

• Uma taxonomia específica para métodos de detecção de mudança de conceito não

supervisionada, e

www.scopus.com
www.sciencedirect.com
dl.acm.org
ieeexplore.ieee.org
link.springer.com
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• Categorização dos métodos com base em como a detecção da mudança é realizada,

ao contrário de outras taxonomias que se concentram em como os classificadores

são treinados ou em como reagem à mudança.

Classificação Taxonômica

Na revisão sistemática da literatura realizada, foram identificados atributos

comuns entre os métodos de detecção de mudança de conceito não supervisionados e

semissupervisionados, com o objetivo de propor uma taxonomia. As categorias dessa

taxonomia são apresentadas de forma resumida na Figura 37, e serão detalhadas nas

subseções seguintes.

Detector de 
Mudança de Conceito

Lote Online

Janela de 
Referência
 Deslizante

Janela de
Referência

 Fixa

Detecção em
Lote-Parcial

Detecção em
Lote-Completo

Figura 37 – Taxonomia proposta de métodos não supervisionados de detecção de mu-
dança de conceito.

Embora a mudança de conceito não seja exclusiva de dados em fluxo, todos

os métodos identificados nesta revisão lidam com as instâncias por meio de alguma

forma de janela aplicada a um fluxo de instâncias. Em geral, pelo menos uma das

janelas contém as instâncias consideradas como pertencentes ao conceito mais recente

conhecido, que foram utilizadas para treinar ou atualizar o classificador mais recente.

E, pelo menos uma janela contém as instâncias que podem ter sofrido uma mudança

de conceito. Embora cada autor adote sua própria terminologia, neste trabalho essas

janelas são denominadas de janela de referência e janela de detecção. Todas as categorias

da taxonomia proposta podem ser explicadas com base em como essas janelas e as

instâncias contidas nelas são tratadas pelos algoritmos.
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No primeiro nível da categorização, os métodos são diferenciados de acordo

com a forma como a janela de detecção é construída. Observa-se facilmente que os

detectores de mudança não supervisionados baseiam-se ou no acúmulo de um lote

de instâncias ou na verificação de mudança a cada nova instância, o que reforça os

achados apresentados em Khamassi et al. (2018). Assim, os métodos do primeiro grupo

são descritos como métodos de detecção de mudança em lote, enquanto os do segundo

grupo são categorizados como métodos de detecção de mudança online. É importante

destacar que essa classificação considera apenas como os métodos diferem no momento

de detectar a mudança, e não como treinam, atualizam ou reprocessam seus modelos,

ou realizam qualquer outra tarefa específica após a detecção da mudança.

No segundo nível da taxonomia, os detectores de mudança baseados em lote são

categorizados de acordo com a forma como manipulam os dados na janela de detecção.

Embora os métodos se diferenciem em vários aspectos; incluindo se o tamanho do lote

é fixo ou dinâmico;, a diferença mais notável entre eles é se utilizam todas as instâncias

do lote ou apenas uma amostra para detectar mudanças. Assim, a divisão no segundo

nível contempla as categorias detecção com lote-completo e detecção com lote-parcial.

Por sua vez, os detectores online foram categorizados de acordo com a forma

como manipulam a janela de referência. Nesses métodos, a janela de detecção é sempre

deslizante, avançando conforme novas instâncias chegam, e refere-se ao conceito atual

no fluxo de dados. Por outro lado, a janela de referência pode ser fixa ou deslizante.

Portanto, esses métodos são categorizados como detectores com janela de referência

fixa e detectores com janela de referência deslizante.

Não se faz distinção entre os métodos quanto à estratégia de reação à mudança

de conceito. Em geral, todos treinam um novo modelo (ou comitê de modelos), ou

atualizam o modelo (ou comitê), utilizando as instâncias contidas na janela de detecção

no momento em que a mudança é identificada. Em seguida, a janela de detecção passa a

ser a próxima janela de referência. Além disso, essas janelas podem ou não se sobrepor

e, no caso de detectores online, pode haver um período de inatividade até que a nova

janela de detecção atinja o número mínimo de amostras necessário para a detecção da

mudança.

Métodos Baseados em Lote

Na taxonomia proposta, os detectores baseados em lote diferenciam-se pela

forma como as instâncias no lote são utilizadas. Os termos "lote"e "janela"são utilizados
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1º módulo:

2º módulo:

3º módulo:

4º módulo:

Acúmulo de dados
Janelas fixas

Instâncias de entrada
Fluxo de dados

Janela de referência Janela de detecção

Seleção de Instâncias
(Opcional)

Cálculos estatísticos Cálculos estatísticosModelagem de dados

Comparação de distribuições

Teste de hipótese

Medida de
 (di)similaridade

Teste de 
significância

Figura 38 – Estrutura geral de métodos não supervisionados de detecção de mudança
de conceito em lote.

de forma intercambiável. No primeiro grupo, denominado detecção em lote-completo,

todo o lote é utilizado no processo de detecção. No segundo grupo, chamado detecção

em lote-parcial, apenas um subconjunto do lote é utilizado.

Seleção de instâncias

Aprendizado ativo Margem do classificador Margem genérica

Figura 39 – Estratégias de seleção de instâncias empregadas nos métodos de detecção
por lote parcial analisados.
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Um arcabouço geral para métodos de detecção baseados em lote, adaptado de

Lu et al. (2019), é apresentado na Figura 38. Esse arcabouço combina quatro módulos:

acumulação de dados; modelagem dos dados; comparação de distribuições; e teste

de hipótese. O primeiro módulo tem como objetivo acumular as instâncias iniciais

em uma janela de referência de tamanho fixo, e as instâncias subsequentes em uma

janela de detecção também de tamanho fixo, uma vez que os dados chegam de forma

contínua e sequencial. Como etapa opcional, um subconjunto de instâncias da janela de

detecção pode ser selecionado por meio de uma abordagem de seleção de instâncias,

conforme resumido na Figura 39, para gerar uma janela de detecção menor nos métodos

de detecção com lote parcial. Em seguida, o segundo módulo visa representar os dados

de ambas as janelas por meio de estatísticas e outras informações, como resumos ou

quantificações, a fim de expressar a distribuição dos dados. Depois, esses valores são

utilizados como entrada para o terceiro módulo, que aplica medidas de similaridade

ou dissimilaridade para comparar as janelas. Por fim, o último módulo utiliza testes

de hipótese para avaliar limiares e decidir quando uma mudança de conceito deve ser

sinalizada.

Uma lista dos trabalhos considerados para a definição da taxonomia dos métodos

de detecção de mudança de conceito baseados em lote é apresentada na Tabela 10.

Tabela 10 – Categorização dos métodos de detecção de mudança de conceito baseados
em lote.

Categoria Subcategoria Método Referência

Lote

Detecção
Lote-Completo

NN-DVI Liu et al. (2018)

FAAD Li et al. (2019)

UDetect Bashir, Petrovski e Doolan (2017)

SQSI-IS Maletzke, Reis e Batista (2018)

Detecção
Lote-Parcial

MD3 Sethi e Kantardzic (2015)

MD3-EGM* Sethi e Kantardzic (2017)

PDetect* Sethi e Kantardzic (2018)

DDAL Costa, Albuquerque e Santos (2018)
* Os nomes marcados com asterisco foram introduzidos neste trabalho porque os métodos não foram

nomeados em seus trabalhos originais.

Detecção em Lote-Completo

O primeiro método descrito nesta subcategoria é um dos detectores baseados em

lote mais proeminentes. O algoritmo Nearest Neighbor-based Density Variation Identification
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(NN-DVI) foi proposto por Liu et al. (2018) para lidar com mudanças de conceito

regionais. Segundo os autores, detectores de mudança baseados em distribuição são

orientados a mudanças globais e frequentemente não detectam mudanças causadas por

variações na densidade regional. O NN-DVI é um método de detecção de mudança

baseado em distribuição, fundamentado na estimativa de densidade regional, composto

por três módulos: 1) particionamento do espaço baseado em k-NN para modelagem

dos dados; 2) função de distância para acumular as discrepâncias de densidade; e 3)

teste de significância estatística.

Esse método funciona comparando a janela de referência com a janela de detec-

ção da seguinte forma. Em seu primeiro módulo, o NN-DVI concentra-se na criação de

partições de dados com base na vizinhança de cada exemplo. Essa estratégia resulta

em cada instância sendo agrupada com sua partícula de instância para formar uma

partição. A partícula de uma instância xi é composta por xi e seus vizinhos. Em seguida,

grupos de partículas de instância são criados levando-se em conta a vizinhança compar-

tilhada, ou seja, cada instância de dados é representada por um conjunto de partículas

de instância compartilhadas, e uma função de multiplicidade é utilizada para fornecer

um multiconjunto de partículas para cada instância, de forma a representar instâncias

com pesos uniformes. O objetivo desse primeiro módulo é permitir que o NN-DVI seja

mais sensível a pequenas discrepâncias na distribuição dos dados. As diferenças de

densidade entre as partições, calculadas considerando as partículas de instância, são

utilizadas na medição de similaridade no segundo módulo do NN-DVI. Uma medida

de dissimilaridade baseada em conjuntos, também chamada de medida de distância,

é aplicada para quantificar as diferenças no número de partículas de instância entre

pares de multiconjuntos de instâncias. Ao comparar os conjuntos amostrais, a distância

entre dois conjuntos é calculada em termos de suas diferenças acumuladas no número

de partículas de instância. Por fim, o último módulo envolve a aplicação de um teste

estatístico de significância adaptado para indicar a ocorrência de mudança. Os autores

assumem que as instâncias nas janelas de tempo são independentes e demonstram

que os valores de distância dos conjuntos amostrais seguem uma distribuição normal.

Como resultado, utilizam o método da máxima verossimilhança para estimar a média

e a variância das distribuições de distância dos conjuntos amostrais. Em seguida, a

função de distribuição acumulada é comparada com um limiar de mudança definido

pelo usuário para decidir se uma mudança foi observada ou não. Um classificador Naive
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Bayes é utilizado como aprendiz base. Quando uma mudança é detectada, a janela de

detecção atual passa a representar o novo conceito.

O segundo é denominado de Fast and Accurate Anomaly Detection (FAAD), que foi

proposto por Li et al. (2019) para lidar com a detecção não supervisionada de anomalias

em sequências, no contexto de problemas envolvendo sequências multidimensionais

em fluxos de dados sujeitos à mudança de conceito. Esse tipo de aplicação refere-se à

análise das relações de ordenação em sequências com o objetivo de detectar anomalias.

Para alcançar esse objetivo desafiador, o FAAD é composto por três algoritmos distintos.

O primeiro é um método de seleção de atributos baseado em informação mútua e

incerteza simétrica, com a finalidade de reduzir a redundância entre atributos e lidar

melhor com sequências multidimensionais. Em seguida, o segundo algoritmo realiza

a detecção de anomalias por meio da construção de modelos utilizando amostragem

aleatória de atributos e cálculo de escores de anomalia com esses modelos. Os escores

de anomalia são comparados a um limiar definido pelo usuário para determinar se uma

sequência é considerada anômala. Por fim, o algoritmo Anomaly Buffer based on Model

Dynamic Adjustment (ABMDA) é proposto para detectar mudanças de conceito. Esse

terceiro componente é detalhado a seguir.

A principal questão no FAAD é distinguir entre anomalias verdadeiras e sequên-

cias normais que são incorretamente detectadas como anomalias devido à mudança

de conceito. Consequentemente, o algoritmo ABMDA é dividido em duas etapas de

detecção de anomalias. Somente as anomalias identificadas em ambas as etapas são

consideradas como verdadeiras anomalias. A segunda etapa é executada utilizando o se-

gundo componente do FAAD, enquanto o detector de mudança é utilizado na primeira

etapa. Esse detector opera com base em um escore obtido a partir de duas considerações:

1) distribuição das anomalias; e 2) estatísticas utilizadas para expressar a distribuição

dos dados. Em ambos os procedimentos de modelagem de dados, o ABMDA compara

a janela de referência com a janela de detecção. O primeiro procedimento é projetado

para calcular a proporção de anomalias na janela de detecção, enquanto se assume

que essa proporção na janela de referência segue uma distribuição normal; a média e a

variância das anomalias de referência são calculadas previamente. Por fim, calcula-se

a diferença entre ambas as proporções. Parte-se do pressuposto de que a proporção

de anomalias é baixa quando o fluxo de dados está estável. Assim, quanto maior for o

desvio da proporção de anomalias em cada período de tempo em relação à proporção



APÊNDICE A. Uma Visão Geral dos Métodos Não Supervisionados de Detecção de Mudança de Conceito 123

de anomalias de referência, maior será a probabilidade de que anomalias falsas estejam

sendo detectadas devido à mudança de conceito.

No segundo procedimento, o algoritmo compara duas matrizes de frequência

de palavras M : uma proveniente dos dados de referência e outra dos dados de detec-

ção. Cada matriz M é calculada da seguinte forma: dado um atributo xi, calcula-se

a frequência de ocorrência do valor vj para xi ao longo de seu respectivo lote, arma-

zenando esse valor em Mi,j . A diferença entre as duas matrizes está correlacionada

com uma maior probabilidade de que tenha ocorrido uma mudança de conceito. Em

seguida, é calculada uma soma ponderada entre a diferença de proporção de anomalias

mencionada anteriormente e a 1-norma da diferença entre as matrizes de frequência.

Se essa soma for superior a um limite definido pelo usuário, então as anomalias atuais

são armazenadas em um buffer de anomalias. Quando esse buffer atinge seu tamanho

máximo, um novo modelo é gerado e adicionado ao conjunto de modelos iniciais; os

quais estão sujeitos a atualizações de pesos e à remoção de modelos para manter o

número total sob controle. Posteriormente, o segundo algoritmo do FAAD é utilizado

para detectar sequências anômalas no buffer. Quando as sequências são classificadas

como anomalias nesse segundo processo de detecção, elas são consideradas anomalias

verdadeiras. Por fim, a distribuição das anomalias detectadas e a matriz de frequência

são utilizadas para atualizar os dados de referência. É importante destacar que o FAAD

é uma abordagem dependente da aplicação, cujo foco está voltado para a detecção de

anomalias nos dados, e não especificamente para a detecção de mudanças de conceito.

No terceiro método, Bashir, Petrovski e Doolan (2017) propuseram uma estru-

tura em dois níveis baseada em distribuição, chamada Unsupervised Change Detection

for Activity Recognition (UDetect). Essa estrutura baseia-se na premissa de que uma

mudança de conceito é indicada por uma alta variância nas instâncias classificadas com

um determinado rótulo, em relação às instâncias de treinamento desse mesmo rótulo.

No primeiro nível, o UDetect treina um classificador e coleta dados para caracterizar

cada classe. O segundo nível é não supervisionado e coleta lotes de dados para cada

classe, verificando se as instâncias dessas classes diferem significativamente dos dados

previamente coletados.

Mais especificamente, durante o treinamento, os dados são divididos em blocos

de tamanho fixo, de forma que nenhum bloco contenha instâncias pertencentes a mais

de uma classe. Cada bloco é resumido em um único parâmetro, que é a distância média
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de todas as suas instâncias até o seu centróide. Em seguida, os parâmetros de cada

classe são utilizados para calcular limiares por meio de três heurísticas diferentes. A

estrutura não impõe nenhuma restrição ao classificador, e a totalidade dos dados pode

ser utilizada para treinar um modelo. O resultado dessa fase é um classificador e um

conjunto de limiares para cada classe.

A segunda fase está relacionada ao uso do modelo com o lote de dados que

chega. Para cada classe conhecida na primeira fase, a estrutura designa um buffer com

capacidade idêntica ao tamanho dos blocos da fase anterior. O objetivo desse buffer é

acumular um lote de instâncias que foram atribuídas a um rótulo específico. Quando

uma quantidade suficiente de dados é coletada para essa classe, o bloco é resumido

utilizando as mesmas heurísticas empregadas na primeira fase. O parâmetro resultante

é comparado aos limiares utilizando gráficos de Shewhart (TOBIAS, 2001), e picos

são identificados para sinalizar que ocorreu uma mudança de conceito. A estrutura

proposta foi avaliada com dois conjuntos de dados de reconhecimento de atividades,

nos quais os participantes realizavam atividades como caminhar, sentar, ficar em pé, e

etc. Apesar do nome, o artigo não fornece uma indicação clara de que o método seja

específico para reconhecimento de atividades.

Por fim, o último método Maletzke, Reis e Batista (2018) é uma versão aprimo-

rada do Stream Quantification by Score Inspection (SQSI) (MALETZKE; REIS; BATISTA,

2017), uma metodologia de quantificação de dados em fluxos que emprega um detector

de mudança de conceito baseado em distribuição. O problema da quantificação está

intimamente relacionado à classificação, na medida em que a tarefa do quantificador é

estimar o número de instâncias de cada classe em uma amostra. De fato, uma aborda-

gem comum, conhecida como classificar e depois contar (classify-then-count), consiste

em primeiro classificar um conjunto de instâncias e, em seguida, contar os rótulos.

O SQSI detecta mudança de conceito por meio de um teste em duas etapas,

com o objetivo de verificar se a distribuição dos erros do classificador foi alterada

(MALETZKE; REIS; BATISTA, 2017). À medida que novas instâncias chegam, elas são

agrupadas em uma janela de detecção com tamanho definido pelo usuário. Quando essa

janela está completa, um classificador fornece scores para cada instância de forma não

supervisionada, os quais podem ser quaisquer estatísticas que representem a confiança

do classificador naquela instância; como, por exemplo, a distância da instância até

o hiperplano em uma Máquina de Vetores de Suporte (MVS). Em seguida, um teste
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estatístico é aplicado para verificar se os scores atuais provêm da mesma distribuição

dos scores estimados a partir dos dados de referência; que, inicialmente, correspondem

aos dados de treinamento. Caso a hipótese nula seja rejeitada, uma transformação linear

é aplicada aos dados de referência, de modo que as instâncias da janela tenham a mesma

média e desvio padrão dos dados de detecção (o conceito atual). Novos scores são então

calculados e o teste estatístico é reaplicado. Se a hipótese nula ainda for rejeitada, o

SQSI sinaliza a ocorrência de uma mudança de conceito. Após detectar a mudança,

o SQSI solicita os rótulos verdadeiros para todas as instâncias presentes na janela de

detecção. No entanto, se algum dos testes não rejeitar a hipótese nula, uma nova janela

de detecção é iniciada, sem sobreposição de instâncias com a anterior; ou seja, um novo

lote.

O SQSI com Seleção de Instâncias (SQSI-IS) (MALETZKE; REIS; BATISTA, 2018)

aprimora a versão inicial do SQSI (MALETZKE; REIS; BATISTA, 2018). Tanto o SQSI

quanto o SQSI-IS realizam a verificação em duas etapas mencionada anteriormente e

treinam um novo classificador após a detecção de uma mudança de conceito, utilizando

a janela de detecção como dados de referência para identificar a próxima mudança.

No entanto, enquanto o SQSI solicita os rótulos verdadeiros de todas as instâncias, o

SQSI-IS emprega técnicas de seleção de instâncias e auto-aprendizado para requisitar

os rótulos verdadeiros de apenas uma fração das instâncias no lote.

O teste utilizado em ambos os algoritmos foi o Kolmogorov-Smirnov (KS), que

é um teste não paramétrico utilizado para identificar se duas amostras provêm da

mesma distribuição (LOVRIC, 2011). Como o teste KS é muito sensível a mudanças

na proporção das classes (MALETZKE et al., 2018), os autores sugerem o uso de um

nível de confiança bastante rigoroso (no máximo 0,001), caso contrário, uma quantidade

significativa de falsos alarmes tende a ser gerada. Para problemas em que a proporção

entre as classes não muda de forma tão significativa; por exemplo, em classificação; um

teste ou nível de confiança diferente pode ser empregado.

Detecção em Lote-Parcial

Nesta subcategoria, os detectores de mudança envolvem a seleção de um sub-

conjunto de instâncias da janela de detecção para verificar se uma mudança de conceito

ocorreu. Em geral, esse módulo pode ser executado utilizando qualquer estratégia

de seleção de instâncias, variando desde a margem do MVS (SETHI; KANTARDZIC,

2015) até Aprendizado Ativo (COSTA; ALBUQUERQUE; SANTOS, 2018). Todos os
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métodos discutidos nesta seção empregam uma das estratégias de seleção de instâncias

resumidas na Figura 39.

Em Sethi e Kantardzic (2015), o principal objetivo do método proposto, Margin

Density Drift Detection (MD3), é monitorar mudanças na margem do classificador; região

do espaço de decisão onde as predições são altamente incertas. Parte-se do pressuposto

de que variações na densidade acima de um limiar definido pelo usuário indicam a

ocorrência de uma mudança de conceito. O número de instâncias localizadas na região

delimitada pela margem é utilizado para calcular a densidade da margem. Esta primeira

versão do MD3 é um detector de mudança não supervisionado que emprega MVS para

determinar a margem do classificador. Um classificador MVS é gerado utilizando o

conjunto de dados de treinamento inicial. Em seguida, duas medidas de referência são

obtidas: a densidade máxima e a densidade mínima histórica. A densidade é então

calculada para o novo lote de dados que chega. Quando o número de amostras não

rotuladas dentro da margem aumenta, isso indica uma mudança gradual. Por outro lado,

quando esse número diminui, sinaliza-se uma mudança repentina. O MD3 utiliza uma

janela deslizante para processar o fluxo de dados. Após a detecção de uma mudança,

o método utiliza dados rotulados para substituir o classificador MVS e também para

atualizar os valores de densidade de referência. O principal problema desse método é

que ele funciona apenas com o MVS como algoritmo de aprendizado.

Essa limitação motivou Sethi e Kantardzic (2017) a proporem uma versão apri-

morada do MD3 para contornar a desvantagem mencionada da primeira versão. Nesta

nova versão, denominada neste levantamento como MD3 Ensemble Generic Margin

(MD3-EGM), utiliza-se um ensemble de classificadores para produzir uma margem

genérica, definida como o conjunto de instâncias desconhecidas com maior incerteza. A

incerteza é medida pelo grau de discordância entre os classificadores do conjunto ao atri-

buírem um rótulo a cada instância. O ensemble é construído por meio da abordagem de

subespaços aleatórios (random subspace), ou seja, selecionam-se aleatoriamente n subes-

paços do espaço original de atributos para treinar n classificadores diferentes. A detecção

de mudança é realizada monitorando a diversidade entre os classificadores, de modo

que se espera a ocorrência de uma mudança sempre que houver aumento da discordân-

cia do ensemble ao classificar amostras desconhecidas contidas na janela de detecção.

No entanto, como essa nova versão do MD3 pode gerar altas taxas de falso positivo, foi

adicionado ao método um módulo de confirmação supervisionada da mudança. Assim,
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este método é considerado um detector de mudança semi-supervisionado.

O monitoramento da discordância é realizado da seguinte forma. Quatro medi-

das de referência são obtidas a partir da janela de referência utilizando um procedimento

de validação cruzada 10-fold para treinamento e teste: discordância e desempenho predi-

tivo, juntamente com seus respectivos desvios padrão. Em seguida, a discordância entre

os classificadores do comitê é calculada com base nas instâncias da janela de detecção.

Considerando as instâncias situadas na margem, o detector de mudança é dividido em

dois níveis principais: indicadores de mudança não supervisionados e supervisionados.

Ambos os níveis utilizam um limiar ponderado com base no desvio padrão das me-

didas de referência. No primeiro nível de detecção, a discordância acumulada atual é

comparada à discordância de referência. Se a diferença entre esses valores for superior

ao limiar estabelecido, o segundo indicador de mudança é acionado. Esse segundo nível

funciona selecionando um grupo de instâncias do lote atual para serem rotuladas e

incluídas em um conjunto de dados, que será utilizado para calcular o desempenho

preditivo atual. Esse desempenho é então comparado ao desempenho de referência.

Assume-se que ocorreu uma mudança de conceito quando a diferença entre os valores

excede o limiar. A seleção das instâncias consiste em rotular uma quantidade fixa de

instâncias que chegam após a primeira indicação de mudança. Por fim, o comitê de

classificadores é retreinado utilizando o conjunto de dados criado após a confirmação

da mudança no segundo nível. Vale ressaltar que esse método pode ser aplicado a

classificadores que não possuam margens explícitas, porém exige uma confirmação

supervisionada da mudança para tomar uma decisão final.

A estrutura de classificação em fluxo Predict-Detect, proposto por Sethi e Kantard-

zic (2018), e que será referido nesta revisão como PDetect, foi desenvolvido para lidar

com uma aplicação específica: ataques adversariais. Parte-se da premissa de que tais

ataques levam a alterações na distribuição dos dados e à redução da capacidade predi-

tiva dos modelos. Quando esse tipo de problema é tratado no contexto de mineração de

dados em fluxo, essas alterações são denominadas mudanças adversariais de conceito.

Segundo os autores, propor um método dependente da aplicação é essencial nesse tipo

de problema, pois a natureza independente de aplicação dos detectores de mudança

baseados em distribuição pode representar uma desvantagem frente à mudanças adver-

sariais. O problema surge porque esses detectores podem ser vulneráveis à manipulação

adversarial em tempo de teste. Para superar essa limitação, os autores propõem um
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método de detecção de mudança consciente da presença de adversários, desenvolvido

como uma estrutura baseada em comitês e independente do tipo de classificador.

A estrutura proposta divide o espaço de atributos do conjunto de dados de

treinamento em dois subconjuntos disjuntos para treinar dois modelos de classifica-

ção: (1) predict (predizer) e (2) detect (detectar). A divisão do espaço de atributos é

realizada classificando todas as variáveis disponíveis de acordo com seu valor-F obtido

via ANOVA, distribuindo-as entre os dois classificadores por meio de uma estratégia

de round robin, com o objetivo de obter classificadores com alto poder preditivo. O

classificador de previsão é responsável por atribuir rótulos às instâncias desconhecidas

da janela de detecção, enquanto o classificador de detecção é encarregado de indicar

atividade adversarial. O primeiro tende a ser alvo de ataques em algum momento. Já o

segundo é considerado invulnerável à manipulação adversarial em tempo de teste, uma

vez que é um componente oculto no processo de predição. Esses dois classificadores

compõem um esquema de auto monitoramento. Quando o desacordo entre suas pre-

dições diminui significativamente ao longo do tempo, isso pode indicar uma possível

mudança de conceito.

O detector de mudança funciona conforme descrito em Sethi e Kantardzic (2017).

Aqui, no entanto, apenas dois classificadores são considerados. Consequentemente, este

método emprega um detector de mudança semissupervisionado. Uma vez detectada a

mudança, os dois classificadores são retreinados utilizando o conjunto de dados criado

após a primeira indicação de mudança. Em relação à partição dos atributos, a divisão

pode ser mantida ou uma nova pode ser gerada.

Costa, Albuquerque e Santos (2018) também propuseram um método de detecção

de mudança baseado na hipótese de que a variação de densidade das instâncias mais

significativas pode indicar uma mudança. No trabalho, o procedimento de seleção de

instâncias é baseado em Aprendizado Ativo. O método proposto, denominado Drift

Detection Method Based on Active Learning (DDAL), é dividido em duas fases. A primeira

fase envolve a geração de um classificador utilizando instâncias contidas na janela de

referência (primeiro lote de dados), enquanto a segunda é subdividida em três módulos:

detecção de mudança, reação e classificação. Na segunda fase, o DDAL monitora a

ocorrência de mudança de conceito para cada novo lote de dados não rotulados e,

dependendo do resultado da detecção de mudança, também executa os módulos de

reação e classificação.
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O módulo de detecção funciona calculando a densidade das instâncias mais

significativas selecionadas da janela de detecção, utilizando a estratégia de Incerteza Fixa

(ŽLIOBAITĖ, 2014), da seguinte forma: margens virtuais são criadas como projeções de

hiperplanos, definidos com base em um limiar de incerteza determinado pelo usuário,

que são equidistantes ao hiperplano separador. Para cada instância na janela de detecção,

calcula-se a probabilidade posterior máxima fornecida pelo classificador e a compara-

se ao limiar de incerteza. Todas as instâncias cujo valor de confiança for inferior ao

limiar são consideradas dentro do subespaço delimitado pelas margens virtuais e,

consequentemente, são selecionadas para o cálculo da densidade. O valor da densidade

é obtido dividindo-se o número de instâncias que caem dentro do subespaço delimitado

pelas margens virtuais pelo número total de instâncias na janela de detecção. Em

seguida, esse valor de densidade é comparado com os valores máximos e mínimos de

densidade de referência. Os novos valores substituem os valores de referência quando

são superiores ao máximo de referência ou inferiores ao mínimo de referência. Por fim,

se a diferença entre esses dois valores for maior que um limiar de mudança definido

pelo usuário, então uma mudança de conceito é sinalizada e o módulo de reação é

ativado. No módulo de reação, um novo classificador é gerado utilizando os dados

da janela de detecção em substituição ao classificador atual. Somente nesse ponto as

verdadeiras classes das instâncias são requeridas, uma vez que um novo conjunto de

treinamento deve ser fornecido. Por outro lado, se nenhuma mudança for detectada,

o DDAL avança para o seu módulo de classificação, no qual as amostras da janela de

detecção são classificadas. Em seguida, o DDAL retorna ao módulo de detecção para

monitorar o próximo lote de instâncias não rotuladas.

Métodos Online

Conforme discutido anteriormente, os métodos baseados em lotes funcionam

acumulando instâncias em um lote de dados e, quando o lote está completo, um ou mais

algoritmos são acionados para detectar se ocorreu uma mudança de conceito desde

que o último classificador foi treinado. Em contraste, os métodos baseados em fluxo

contínuo (online) verificam a ocorrência de mudança a cada nova instância que chega;

possivelmente após um período de inicialização para acumular instâncias antes que

a primeira verificação possa ser realizada. Todos os métodos online analisados neste

estudo empregam uma janela deslizante de detecção. No entanto, alguns deles diferem

pelo fato de a janela de referência ser fixa sobre as instâncias de treinamento, enquanto
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outros fazem a janela de referência deslizar para incluir as amostras não rotuladas que

chegam após a mudança; possivelmente sobrepondo-se à janela de detecção. Portanto,

a taxonomia proposta refina a categoria online em métodos que utilizam janelas de

referência fixas e deslizantes. Os trabalhos analisados em cada categoria são discutidos

nas próximas subseções, e Kim e Park (2017) é tratado na na seção sobre múltiplas

abordagens, uma vez que o método proposto pelos autores possui variantes tanto para

janelas de referência fixas quanto deslizantes.

Uma estrutura geral de métodos não supervisionados de detecção de mudança

de conceito online é apresentado na Figura 40. A estrutura é dividida em três módulos:

recuperação de dados; medidas de (dis)similaridade; e teste de significância. O primeiro

módulo é responsável por receber as instâncias de dados que chegam, a fim de gerar a

janela de referência, que, como mencionado anteriormente, pode ser fixa ou deslizante.

Este primeiro módulo também é responsável por manipular a janela de detecção, que

é sempre uma janela deslizante. O segundo e o terceiro módulos são semelhantes,

respectivamente, ao terceiro e ao quarto módulos da estrutura dos métodos baseados

em lotes. Uma lista dos trabalhos considerados para a definição da taxonomia de

métodos online de detecção de mudança de conceito é apresentada na Tabela 11.

Tabela 11 – Categorização dos métodos de detecção de mudança de conceito online.

Categoria Subcategoria Método Referência

Online

Janela de
Referência Fixa

IKS-bdd* Reis et al. (2016)

CD-TDS Koh (2016)

OMV-PHT* Lughofer et al. (2016)

NM-DDM* Mustafa et al. (2017)
Janela de

Referência Deslizante Plover* Mello et al. (2019)

SAND Haque, Khan e Baron (2016)

DSDD Pinagé, Santos e Gama (2020)

Múltiplas Abordagens DbDDA* Kim e Park (2017)
* Os nomes marcados com asterisco foram introduzidos neste trabalho porque os métodos não foram

nomeados em seus trabalhos originais.

Janela de Referência Fixa

O teste Incremental de Kolmogorov-Smirnov é uma variante online do teste KS

proposta em Reis et al. (2016). Ele utiliza uma estrutura de dados treap para inserir e

remover observações em um conjunto dinâmico, permitindo atualizar o valor de p do
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Fluxo de dados

Janelas fixas/deslizantes Janelas deslizantes

Medida de
 (di)similaridade

Teste de 
significância

Janela de referência Janela de detecção

Instâncias de entrada

1º módulo:
Coleta de dados

3º módulo:
Teste de hipótese

Fluxo de dados

2º módulo:
Comparação de distribuições

Figura 40 – Estrutura geral de métodos não supervisionados de detecção de mudança
de conceito online.

teste KS sem a necessidade de revisitar lotes inteiros de dados. A vantagem do IKS é

que ele se comporta exatamente como o teste KS tradicional, mas com complexidade

temporal total muito menor quando aplicado repetidas vezes à medida que uma amostra

é atualizada com novos elementos.

Reis et al. (2016) também propuseram um método online não supervisionado de

detecção de mudança utilizando o IKS, IKS-based Drift Detector (IKS-bdd). O princípio

por trás do IKS-bdd é aplicar o teste IKS individualmente a cada atributo. Isso elimina

a necessidade de utilizar testes multivariados ou funções de mapeamento, reduzindo

assim a quantidade de dados necessária. A detecção de uma mudança em um único

atributo pode ser suficiente para acionar a detecção de mudança de conceito. A desvan-

tagem dessa abordagem é que algumas mudanças podem não ser detectáveis quando

as variáveis são analisadas individualmente, embora um detector multivariado possa

funcionar para os mesmos dados.

Para cada atributo, o IKS-bdd mantém duas janelas de tamanho W . A janela

de referência é fixa e contém os dados utilizados para treinar o modelo mais recente.

A janela de detecção é deslizante e contém dados provenientes do fluxo. À medida
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que cada instância chega, ela é classificada e o teste IKS é realizado, comparando a

distribuição dos dados na janela de referência com a da janela de detecção. Se a hipótese

nula de que as distribuições são idênticas for rejeitada, uma mudança é sinalizada. Caso

contrário, a janela é deslocada e uma nova instância é retirada do fluxo.

Os autores propõem três reações à mudança. A primeira é a Substituição de

Modelo (Model Replacement – MR), que consiste em solicitar os rótulos verdadeiros para

todas as instâncias na janela de detecção e, em seguida, treinar um novo classificador. A

segunda abordagem é a transformação AB, que envolve: (1) aplicar uma transformação

linear aos dados de referência, de modo que os atributos envolvidos na mudança

passem a ter média e desvio padrão idênticos aos das instâncias nos dados de detecção;

e (2) realizar novamente o teste KS, recorrendo à MR caso a hipótese nula ainda seja

rejeitada. A terceira abordagem é uma árvore de decisão modificada: quando uma

mudança é detectada, os rótulos verdadeiros são solicitados apenas para as instâncias

que alcançam folhas com decisão baseada no atributo que desencadeou a mudança.

Koh (2016) propuseram um método não supervisionado de detecção de mu-

dança de conceito especificamente para fluxos de dados transacionais; problemas que

envolvem representar interações entre entidades ou itens. O método é denominado

Change Detection in Transactional Data Stream for Frequent Pattern Mining (CD-TDS) e

pode ser dividido em duas partes: i) Detecção Local de Mudança; e ii) Detecção Global

de Mudança. Quando há mudanças em alguns itens, mas não são observadas alterações

nas conexões entre eles, esse comportamento pode indicar uma mudança local, mais

precisamente uma mudança de conceito virtual. No caso da detecção global de mu-

dança, as conexões entre os itens precisam mudar para indicar uma mudança devido à

geração de um novo conceito ou ao desaparecimento de um conceito antigo.

O procedimento principal da detecção local da mudança envolve a comparação

de duas janelas W0 e W1 de um fluxo S utilizando o limite de Hoeffding. A diferença

entre as médias amostrais das duas janelas é comparada a um valor ε definido pelo

limite de Hoeffding. Uma mudança é sinalizada quando essa diferença é maior que

ε. É importante destacar que esse processo de monitoramento de mudança local é

semelhante ao utilizado no ADWIN (BIFET; GAVALDà, 2007).

Para detectar a mudança global, é empregada uma estrutura em árvore para

representar as conexões entre itens em S. Dessa forma, as duas janelas S0 e S1 são

representadas por grafos. Para determinar se as duas janelas apresentam ou não alta
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dissimilaridade, é utilizado um teste estatístico pareado para avaliar a discordância

entre as duas estruturas de árvore. Diversas métricas de discordância reportadas na

literatura podem ser empregadas para medir essa diversidade, como distância de edição,

maior subárvore comum e menor super árvore comum. Koh (2016) trabalharam com a

distância de edição de Levenshtein (GILLELAND, 2020).

Janela de Referência Deslizante

Lughofer et al. (2016) propuseram duas técnicas para lidar com mudanças de

conceito com poucas instâncias rotuladas e até mesmo sem instâncias rotuladas: a

primeira técnica emprega filtros de aprendizado ativo de passagem única para selecionar

as amostras mais relevantes para classificação supervisionada, e a segunda considera a

sobreposição entre duas classes na distribuição da saída de um classificador. Em ambos

os casos, é executada uma versão online modificada do teste de Page-Hinkley (MOUSS

et al., 2004) para detectar mudanças; denominada de Versão Online Modificada do Teste

de Page-Hinkley (OMV-PHT). O PHT é utilizado para detectar mudanças repentinas

em um sinal Gaussiano x, empregando a diferença entre x(t) e a média anterior xt−1.

Esse sinal corresponde ao indicador de desempenho do classificador. No cenário

semissupervisionado, o aprendizado ativo é utilizado para selecionar as instâncias mais

significativas a fim de estimar o erro do classificador. A técnica não supervisionada

para detecção de mudança baseia-se na ideia proposta por Donmez, Lebanon e Bala-

subramanian (2010) para estimar erros de classificação sem rótulos. Assume-se que as

estimativas de incerteza das duas classes mais prováveis correspondem a uma distri-

buição bimodal e que essa distribuição pode ser considerada como duas distribuições

Gaussianas distintas. A sobreposição dessas distribuições pode ser utilizada como uma

estimativa do erro. Assim, o grau de variação dessa sobreposição é usado como sinal

para o PHT.

Mustafa et al. (2017) propuseram um detector de novas classes, Non-parametric

Multidimensional Drift Detection Method (NM-DDM), que é baseado em denoising autoen-

coders e em um método não paramétrico multidimensional de detecção de mudança

baseado em logaritmo da verossimilhança de caminho aleatório. O interesse recai sobre

o primeiro. Esse método de detecção de mudança baseia-se no cálculo da razão de ve-

rossimilhança entre dados de duas janelas: uma anterior ao ponto potencial de mudança

e a outra posterior. A verossimilhança é estimada para cada dimensão (atributo) e, se a

maior razão entre as duas janelas for superior a um limiar, uma mudança é sinalizada.
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Após uma mudança ser identificada, as amostras da última janela são utilizadas para

treinar um novo classificador. As instâncias com valores de confiança baixos são rotula-

das por um componente externo, enquanto as amostras com valores de confiança altos

são rotuladas usando o rótulo previsto.

Plover (MELLO et al., 2019) é um algoritmo de prova de conceito. Os autores

realizaram uma análise dos fundamentos teóricos e das garantias de aprendizado na

detecção não supervisionada de mudança de conceito. Eles concluem que, enquanto

os métodos supervisionados são amparados pela teoria do aprendizado estatístico,

as abordagens não supervisionadas dependem de métricas internas ou externas que

não contam com garantias semelhantes. Métricas internas, como a compacidade de

agrupamento e a distância entre centróides, são calculadas a partir da estrutura dos

dados, enquanto métricas externas dependem de rótulos supervisionados; os quais não

podem ser realisticamente considerados disponíveis em tarefas verdadeiramente não

supervisionadas.

O conceito de Estabilidade de Algoritmo (BOUSQUET; ELISSEEFF, 2002) estabe-

lece condições para que qualquer função arbitrária convirja para o seu valor esperado.

O Plover é um algoritmo de detecção de mudança de conceito uniformemente estável

derivado desse conceito. De forma semelhante a outros métodos online discutidos nesta

seção, ele calcula a divergência entre uma janela deslizante de detecção e uma janela

de referência e, se essa diferença for maior que um limiar, uma mudança é sinalizada.

Segundo os autores, duas premissas são necessárias para empregar a teoria proposta: i)

a função deve ser escolhida de forma independente dos dados de entrada; e ii) os dados

de entrada devem ser independentes e identicamente distribuídos. Tal função deve ser

adequada ao problema em questão; por exemplo, média, variância, potência espectral,

etc.

Haque, Khan e Baron (2016) propuseram um método para detecção de mudança

de conceito e de novas classes em dados em fluxos denominado Semi-supervised Adaptive

Novel Class Detection and Classification over Data Stream (SAND). O SAND utiliza um

conjunto de classificadores de k-vizinhos mais próximos e é dividido em dois módulos:

detecção de outliers e detecção de mudança de conceito. Além disso, o método também

é voltado para a autoanotação de dados. À medida que o sistema observa um número

crescente de outliers, um algoritmo baseado em agrupamento verifica se esses outliers

são instâncias de uma nova classe, a fim de treinar posteriormente o conjunto com
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amostras dessa nova classe.

A cada novo exemplo desconhecido xi, o SAND prevê seu rótulo por meio de vo-

tação majoritária e estima a confiança de cada classificador utilizando duas heurísticas:

associação e pureza. A heurística de associação estima a confiança de um classificador

medindo a distância entre xi e seu pseudoponto mais próximo; definido pelos autores

como uma estrutura que contém o centróide, o raio e o número de pontos de dados

pertencentes a cada classe. A segunda heurística concentra-se principalmente em moni-

torar a classe mais frequente no pseudoponto associado a xi. Em seguida, uma janela

de tamanho variável armazena xi, sua previsão de classe e os escores de confiança.

Após a instância ser classificada, o SAND monitora os escores de confiança para

detectar mudanças. O processo de detecção é realizado assumindo que os valores de

confiança seguem uma distribuição beta. Os valores armazenados na janela de tamanho

variável são usados para estimar os parâmetros dessa distribuição, e o resultado é com-

parado a um limiar. Se uma mudança for detectada, o SAND solicita apenas os rótulos

verdadeiros para as instâncias com escores de confiança baixos. Essas instâncias são

incorporadas ao novo conjunto de treinamento, juntamente com aquelas autoanotadas,

e o conjunto é então atualizado utilizando o novo conjunto de treinamento.

Em linha com a ideia desenvolvida em Haque, Khan e Baron (2016); Pinagé,

Santos e Gama (2020) propuseram um método não supervisionado de detecção de

mudança que também permite autoanotação. Esse método, denominado de Dynamic

Selection Drift Detector (DSDD), realiza a seleção dinâmica de classificadores a partir

de um conjunto inicial de classificadores e utiliza um detector de mudança auxiliar

configurável, guiado por uma taxa de pseudoerro como métrica para detectar mudanças.

Ele é dividido em três módulos: 1) criação do conjunto; 2) seleção dinâmica; e 3) detecção.

O primeiro módulo funciona particionando um lote inicial de instâncias rotuladas;

composto pelas primeirasm instâncias recebidas; em conjuntos de dados de treinamento

e validação.

O primeiro conjunto de dados é utilizado para gerar um conjunto de classifi-

cadores por meio de uma versão modificada do algoritmo Online Bagging (MINKU;

WHITE; YAO, 2010), ou seja, cada classificador membro é treinado com n cópias de

cada instância, onde n é definido pela distribuição de Poisson. Os autores destacam que

valores baixos de n proporcionam alta diversidade entre os membros do conjunto. Eles

definem valores suficientemente altos para resultar em diversidade significativa, de
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modo a gerar diferentes classificadores membros. As instâncias do segundo conjunto

de dados são usadas como regiões de competência de referência no módulo de seleção

dinâmica, que parte do pressuposto de que cada classificador membro é um especialista

em uma região de competência. Esse segundo módulo funciona da seguinte forma:

quando uma instância desconhecida xi chega, define-se uma região em termos de sua

vizinhança no conjunto de validação. Em seguida, calcula-se a competência de cada

classificador membro. O classificador com maior competência é escolhido para atribuir

um rótulo a xi. Essa decisão é considerada o pseudo-rótulo verdadeiro de xi.

Por fim, o módulo de detecção aplica um detector de mudança para cada classifi-

cador membro. Como a proposta não é utilizar os rótulos verdadeiros das instâncias, a

questão central nesse método é comparar a previsão fornecida por cada classificador

membro para xi com seu pseudo-rótulo verdadeiro, em um processo de monitoramento

de pseudoerro. Esse pseudoerro pode ser usado como métrica em diversos detectores

de mudança supervisionados disponíveis na literatura. Os autores utilizaram tanto o

DDM (GAMA et al., 2004) quanto o EDDM (BAENA-GARCíA et al., 2006). Quando

um número fixo de classificadores membros indica uma mudança, este é sinalizado e

o conjunto de validação é atualizado com novas amostras rotuladas. Caso contrário,

o aprendizado online do conjunto de classificadores prossegue utilizando os rótulos

autoanotados.

Múltiplas Abordagens

Kim e Park (2017) propuseram uma abordagem de detecção de mudança baseada

em distribuição, Distribution-based Drift Detection Approach (DbDDA). O DbDDA sinaliza

mudanças quando a incerteza do classificador se torna muito alta. Inicialmente, um

classificador é treinado utilizando instâncias rotuladas. Em seguida, para cada nova

instância xi, é estimado um vetor de probabilidade a posteriori f(xi). Um segundo

vetor ȳ(xi) também é determinado. Esse vetor possui valor 1 apenas no componente

correspondente à classe prevista para xi, enquanto os demais recebem valor 0. A variável

aleatória X é obtida a partir das distâncias X(xi) = ||f(xi)− ȳ(xi)||2 e é utilizada para

estimar a incerteza do classificador.

O método proposto monitora as diferenças X(xi) para as instâncias na janela

de referência e na janela de detecção. Como o classificador é treinado com dados da

janela de referência, as instâncias nessa janela provêm do conceito atual, enquanto as

instâncias na janela de detecção podem ter sido geradas a partir de um novo conceito.
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Antes de iniciar a classificação, o algoritmo determina um intervalo de confiança para

X a partir dos dados da janela de referência. À medida que cada novo exemplo chega,

o valor médio de X(xi) é calculado a partir das instâncias na janela de detecção. Se

essa diferença for maior que o limite superior do intervalo de confiança, assume-se

que ocorreu uma mudança. Nesse caso, os rótulos verdadeiros são solicitados para as

instâncias na janela de detecção, e essas instâncias são utilizadas para treinar um novo

classificador.

A janela de detecção é sempre uma janela de tempo deslizante. No entanto,

os autores propõem três estratégias diferentes para a janela de referência. As duas

primeiras são as clássicas janelas fixa e deslizante. Em ambos os casos, a janela de

referência não se sobrepõe à janela de detecção. A terceira abordagem, Conjunto de

Janelas de Referência, do inglês Ensemble of Reference Windows (ERW), baseia-se no uso

de cartas de controle de médias e desvios-padrão. Essas cartas monitoram mudanças na

distribuição usando a média das médias das janelas e a média dos desvios; padrão das

janelas. Enquanto nos métodos anteriores é utilizada apenas uma janela de referência,

no ERW um novo par de janelas; referência e detecção; é introduzido à medida que

cada instância chega, até que uma mudança seja detectada.

Além disso, Kim e Park (2017) propõem uma abordagem para a situação em

que não há dados rotulados disponíveis. Nesse caso, não é possível construir um

modelo inicial. Os autores, então, sugerem aplicar o k-means para obter uma estrutura

de agrupamento, resultando em um classificador virtual. Em seguida, o procedimento

de classificação e detecção de mudança é realizado conforme explicado anteriormente.

Discussão

Mudança de conceito é um problema desafiador para o aprendizado em cenários

de dados em fluxo. Uma forma de lidar com essa questão é monitorar os fluxos e

atualizar os classificadores atuais com novos conceitos quando mudanças significativas

ocorrem. Por um lado, é amplamente aceito que, devido ao enorme volume de dados

recebidos dos fluxos, os rótulos verdadeiros geralmente não estão disponíveis de forma

imediata. Além disso, dependendo da tarefa a ser resolvida, rotular esses dados pode

ser um processo custoso que, em alguns casos, também pode envolver trabalho manual

de vários especialistas no domínio. Por outro lado, é facilmente observável a predo-

minância de métodos que abordam o problema de mudança de conceito monitorando

a evolução de indicadores ou medidas baseadas na taxa de erro do(s) modelo(s) de
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predição atual(is). Por exemplo, o DDM (GAMA et al., 2004) que funciona contando o

número de erros. Outro exemplo é o EDDM (BAENA-GARCíA et al., 2006), baseado no

monitoramento da distância entre dois erros de classificação.

Em vista das dificuldades das abordagens supervisionadas, foram propostos

detectores de mudança capazes de operar em modo não supervisionado. Espera-se

que essas abordagens reduzam significativamente a dependência de rótulos, ao mesmo

tempo em que possam fazer melhor uso dos dados disponíveis, já que dados não

rotulados são mais frequentemente acessíveis. Além disso, elas podem auxiliar no

tratamento da mudança de conceito virtual, ou seja, quando os limites de decisão não

são afetados pelas mudanças ocorridas (KHAMASSI et al., 2018). De acordo com o

levantamento apresentado neste artigo, os métodos não supervisionados descritos se

enquadram em duas categorias básicas: abordagens baseadas em lote e abordagens

online. No entanto, ambos os grupos tratam o problema de mudança de conceito sob o

mesmo ponto de vista: a distribuição subjacente dos dados deve ser monitorada para

identificar os pontos em que essa distribuição sofre uma mudança significativa. Ainda

assim, cada abordagem emprega estratégias para lidar com essa questão que diferem

em seus detalhes e tendem a apresentar limitações distintas.

A descrição apresentada neste artigo permite observar várias propriedades dis-

cutidas nesta seção e resumidas na Tabela 12. Primeiramente, a maioria dos métodos

não supervisionados é voltada para a detecção de mudanças globais. Consequente-

mente, uma grande desvantagem é a possibilidade de não detectar mudanças regionais,

o que pode levar a problemas como: baixa ou alta sensibilidade e alta taxa de falsos

alarmes, especialmente na detecção de conceitos que mudam de forma muito gradual.

Considerando que os métodos baseados em abordagem online monitoram cada instância

individualmente à medida que ela chega, esses métodos são menos propensos a deixar

de detectar mudanças locais, mesmo quando se concentram apenas na detecção de

mudanças globais. As abordagens baseadas em lote, no entanto, podem ser mais severa-

mente impactadas, já que monitoram mudanças considerando todo o conjunto amostral,

mesmo nos casos de lotes-parciais. Como resultado das tentativas de superar essa

limitação, algumas estratégias foram desenvolvidas. Por exemplo, o NN-DVI (LIU et al.,

2018) concentra-se em definir vizinhanças para lidar com mudanças regionais, enquanto

o FAAD (LI et al., 2019) realiza seleção de subconjuntos de atributos e amostragem de

atributos.
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Tabela 12 – Compilação de algumas características de detectores de mudança não su-
pervisionados encontrados na literatura, destacando o tipo de mudança
tratada; se há dependência da aplicação; se é realizada autoanotação; e a
dependência de dados rotulados.

Método Tipo de
Mudança Aplicação Autoanotação Requer

Rótulos

NN-DVI Local Independente

FAAD Local/Global Detecção de Anomalias
em Sequência

UDetect Global Independente
SQSI-IS Global Independente X

MD3 Global Independente
MD3-EGM Global Independente X

PDetect Global Ataque Adversarial X
DDAL Global Independente X

IKS-bdd Global Independente
CD-TDS Local/Global Dados Transacionais

OMV-PHT Global Independente
NM-DDM Global Independente X

Plover Global Independente
SAND Global Independente X X
DSDD Global Independente X X

DbDDA Global Independente X

A partir da Tabela 12, também é possível observar que os métodos estudados são,

em sua maioria, independentes de aplicação. Eles geralmente são testados em dados

sintéticos e em poucos conjuntos de dados reais. Quando conjuntos de dados do mundo

real são investigados, estes são, em geral, de pequena escala e se assemelham mais a

bases de dados de referência simples (toy benchmarks) quando comparados aos conjun-

tos de dados reais recentes de grande escala. Há, entretanto, trabalhos que utilizam

conjuntos de dados reais de maior escala e mais desafiadores, como o IKS-bdd (REIS et

al., 2016), e trabalhos que investigam problemas de aplicação recentes, como ataques

adversariais, estudados no PDetect (SETHI; KANTARDZIC, 2018). Vale destacar que

a falta de bases de dados de referência para avaliação é uma limitação da literatura

existente sobre mudança de conceito em geral (WARES; ISAACS; ELYAN, 2019). Ainda

assim, um cenário diferente é observado para os detectores de mudança supervisiona-

dos, cuja avaliação tem sido realizada com conjuntos de dados mais realistas e recentes;

por exemplo, demanda por redes de táxi (SAADALLAH et al., 2020).

Embora esta pesquisa esteja principalmente voltada para métodos não super-
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visionados de detecção de mudança, algumas técnicas revisadas envolvem instâncias

rotuladas. No grupo de detecção lote-parcial, por exemplo, um problema central é que

essas abordagens podem ser fortemente afetadas pela estratégia de seleção de instâncias

empregada. Além disso, a redução no número de instâncias utilizadas para monitorar

a distribuição dos dados pode resultar em altas taxas de detecção falsa. Métodos que

buscam lidar com essa questão, como o MD3-EGM (SETHI; KANTARDZIC, 2017) e o

PDetect (SETHI; KANTARDZIC, 2018), incluem confirmação supervisionada de mu-

dança para reduzir as taxas de detecção falsa. No entanto, a confirmação supervisionada

adiciona dependência de rótulos reais, em contraste com a independência de rótulos

buscada pelos detectores não supervisionados. Alguns métodos online também podem

sofrer dessa limitação, como o DSDD (PINAGÉ; SANTOS; GAMA, 2020), que retém

um subconjunto de instâncias rotuladas para ser usado como conjunto de validação,

permitindo a seleção dinâmica de classificadores.

Uma vantagem distinta de alguns métodos não supervisionados é a capacidade

de encontrar amostras não rotuladas informativas para serem autoanotadas e adicio-

nadas ao conjunto de treinamento, o que é especialmente importante para detectores

empregados em cenários de aprendizado online. O critério utilizado para a seleção de

amostras é basicamente o mesmo: os rótulos de classe só são solicitados para instâncias

cujos valores de confiança sejam baixos, como observado no SAND (HAQUE; KHAN;

BARON, 2016), no NM-DDM (MUSTAFA et al., 2017) e no DSDD (PINAGÉ; SANTOS;

GAMA, 2020). Por fim, há métodos não supervisionados cujo objetivo não é apenas

estabelecer um detector de mudança. Nesses casos, seu objetivo final é uma tarefa

diferente, como a detecção de anomalias, no FAAD (LI et al., 2019), ou a detecção de

novas classes, no NM-DDM (MUSTAFA et al., 2017).

Há propriedades adicionais que merecem ser mencionadas. Uma delas é a neces-

sidade de acumular um lote de instâncias em uma janela de detecção antes de tentar

identificar uma mudança nas abordagens baseadas em lote. Isso pode ser apontado

como uma limitação pelos seguintes motivos: 1) mudanças podem ocorrer em intervalos

que não são limitados pelo tamanho da janela; e 2) lidar com mudança de conceito exige

a atualização contínua dos modelos. Esse problema é ainda mais evidente em abor-

dagens que assumem premissas mais restritivas. Por exemplo, no UDetect (BASHIR;

PETROVSKI; DOOLAN, 2017), como um tamanho específico de janela é fixado para

cada classe, o detector de mudança precisa acumular um número fixo de instâncias para
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cada classe antes de determinar se uma mudança de conceito ocorreu.

Essa última limitação é evitada nos métodos baseados em abordagem online, pois

eles monitoram cada instância individualmente à medida que ela chega. No entanto,

embora se possa argumentar que as abordagens baseadas em batch têm baixo consumo

de memória e baixa sobrecarga de tempo de execução; já que se concentram apenas

no monitoramento das medidas extraídas da janela de referência, e não das instâncias

presentes na própria janela; o oposto é observado no grupo online. Esse grupo de

abordagens, especialmente os métodos com janela de referência fixa, como o IKS-bdd

(REIS et al., 2016), geralmente precisa manter as instâncias da janela de referência na

memória para conseguir detectar as mudanças na distribuição causadas pelas novas

instâncias. Uma alternativa para enfrentar esse problema é o uso de representações dos

dados, como as estruturas de árvore e de pseudopoints empregadas, respectivamente,

em Koh (2016) e Haque, Khan e Baron (2016).

Conclusão

Neste trabalho, foi proposta uma taxonomia para algumas abordagens de detec-

ção de mudança de conceito não supervisionadas consideradas como estado da arte.

Realizou-se uma revisão sistemática da literatura (OKOLI, 2015) para reunir dois grupos

de publicações científicas recentes sobre detectores de mudança de conceito: i) Artigos

que revisam e analisam diferentes abordagens de detecção de mudança de conceito,

e ii) Artigos que propõem métodos não supervisionados para detecção de mudança

de conceito. O primeiro grupo permitiu observar que pouquíssimos trabalhos têm se

dedicado a resumir as abordagens não supervisionadas. O segundo grupo, por sua vez,

possibilitou agrupar os métodos de detecção de mudança de conceito não supervisiona-

dos e semi-supervisionados em duas categorias principais: métodos baseados em lotes

e métodos baseados em execução online. Os métodos online e em lote referem-se apenas

ao componente de detecção da estratégia. Por um lado, os métodos online indicam a

ocorrência de uma mudança no fluxo de dados uma instância por vez. Por outro, os

métodos em lote precisam processar um conjunto de instâncias de forma conjunta para

conseguir sinalizar uma mudança.

Neste estudo, foram analisados oito métodos baseados em lotes, observando-se

que a principal diferença entre eles está em monitorar ou não mudanças significativas na

distribuição dos dados em todo o lote de instâncias que chega ou apenas em um subcon-

junto selecionado de instâncias. Também foram analisados oito métodos baseados em
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execução online. Esse grupo foi subdividido em duas categorias, de acordo com a forma

como comparam as duas janelas envolvidas na detecção de mudança, denominadas

janela de referência e janela de detecção. Um grupo difere do outro quanto ao uso de

janelas de referência fixas ou deslizantes para detectar mudanças de conceito. Traba-

lhos futuros podem se concentrar em expandir este estudo preliminar para avaliar e

comparar os métodos destacados por meio de experimentos computacionais, conforme

realizado em Barros e Santos (2018) para detectores supervisionados de mudança de

conceito.
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APÊNDICE B

Valores dos parâmetros das bases de dados.

Tabela 13 – Valores dos parâmetros nas bases de dados Line, Hiperplane, Circle, SineH
and Sine por cenário.

Line Hiperplane Circle
a0 a0 rCenário

a1 Início Fim Passo a1 a2 Início Fim Passo a b Início Fim Passo
1|17 0, 10 0, 10 13, 40 0, 70 0, 10 0, 10 0, 70 71, 00 3, 70 0, 50 0, 50 0, 20 5, 90 0, 30
2|18 0, 10 0, 10 2, 90 0, 70 0, 10 0, 10 0, 70 15, 50 3, 70 0, 50 0, 50 0, 20 1, 40 0, 30
3|19 0, 10 0, 10 0, 80 0, 70 0, 10 0, 10 0, 70 11, 80 3, 70 0, 50 0, 50 0, 20 0, 50 0, 30
4|20 0, 10 0, 10 2, 90 0, 70 0, 10 0, 10 0, 70 15, 50 3, 70 0, 50 0, 50 0, 20 1, 40 0, 30
5|21 0, 10 0, 10 27, 40 0, 70 0, 10 0, 10 0, 70 145, 00 3, 70 0, 50 0, 50 0, 20 11, 90 0, 30
6|22 0, 10 0, 10 6, 40 0, 70 0, 10 0, 10 0, 70 34, 00 3, 70 0, 50 0, 50 0, 20 2, 90 0, 30
7|23 0, 10 0, 10 2, 20 0, 70 0, 10 0, 10 0, 70 11, 80 3, 70 0, 50 0, 50 0, 20 1, 10 0, 30
8|24 0, 10 0, 10 6, 40 0, 70 0, 10 0, 10 0, 70 34, 00 3, 70 0, 50 0, 50 0, 20 2, 90 0, 30
9|25 0, 10 0, 10 3, 25 0, 15 0, 10 0, 10 2, 00 15, 30 0, 70 0, 50 0, 50 0, 20 2, 10 0, 10
10|26 0, 10 0, 40 1, 0 0, 15 0, 10 0, 10 2, 00 4, 80 0, 70 0, 50 0, 50 0, 20 0, 60 0, 10
11|27 0, 10 0, 40 0, 55 0, 15 0, 10 0, 10 2, 00 2, 70 0, 70 0, 50 0, 50 0, 20 0, 30 0, 10
12|28 0, 10 0, 10 2, 00 4, 80 0, 10 0, 10 2, 00 4, 80 0, 70 0, 50 0, 50 0, 20 0, 60 0, 10
13|29 0, 10 0, 40 6, 25 0, 15 0, 10 0, 10 2, 00 29, 30 0, 70 0, 50 0, 50 0, 20 4, 10 0, 10
14|30 0, 10 0, 10 2, 00 8, 30 0, 10 0, 10 2, 00 8, 30 0, 70 0, 50 0, 50 0, 20 1, 10 0, 10
15|31 0, 10 0, 10 2, 00 4, 10 0, 10 0, 10 2, 00 4, 10 0, 70 0, 50 0, 50 0, 20 1, 10 0, 10
16|32 0, 10 0, 40 1, 75 0, 15 0, 10 0, 10 2, 00 8, 30 0, 70 0, 50 0, 50 0, 20 0, 50 0, 10

SineH SineV
b cCenário a c Início Fim Passo a b Início Fim Passo

1|17 5.00 5.00 0.00 59.66 3.14 1.00 1.00 −8.00 277.0 15.00
2|18 5.00 5.00 0.00 12.56 3.14 1.00 1.00 −8.00 52.00 15.00
3|19 5.00 5.00 0.00 3.14 3.14 1.00 1.00 −8.00 7.00 15.00
4|20 5.00 5.00 0.00 12.56 3.14 1.00 1.00 −8.00 52.00 15.00
5|21 5.00 5.00 0.00 122.46 3.14 1.00 1.00 −8.00 577.00 15.00
6|22 5.00 5.00 0.00 28.26 3.14 1.00 1.00 −8.00 127.00 15.00
7|23 5.00 5.00 0.00 9.42 3.14 1.00 1.00 −8.00 37.00 15.00
8|24 5.00 5.00 0.00 28.26 3.14 1.00 1.00 −8.00 127.00 15.00
9|25 5.00 5.00 0.00 14.82 0.78 1.00 1.00 −2.00 55.00 3.00
10|26 5.00 5.00 0.00 3.12 0.78 1.00 1.00 −2.00 10.00 3.00
11|27 5.00 5.00 0.00 0.78 0.78 1.00 1.00 −2.00 1.00 3.00
12|28 5.00 5.00 0.00 0.78 3.14 1.00 1.00 −2.00 10.00 3.00
13|29 5.00 5.00 0.00 30.42 0.78 1.00 1.00 −2.00 115.00 3.00
14|30 5.00 5.00 0.00 7.02 0.78 1.00 1.00 −2.00 25.00 3.00
15|31 5.00 5.00 0.00 2.34 0.78 1.00 1.00 −2.00 7.00 3.00
16|32 5.00 5.00 0.00 7.02 0.78 1.00 1.00 −2.00 25.00 3.00
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APÊNDICE C

Métricas de desempenho dos detectores em cada cenário por contexto.

O eixo horizontal de cada mapa de calor representa cada cenário. O eixo vertical

representa as bases de dados Circle (C), Line (L), Hiperplane (H), SineV (SV) e SineH (SH).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C
L
H

SV
SH%

 Fa
lsa

s

DDM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C
L
H

SV
SH%

 A
tra

sa
da

s DDM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
C
L
H

SV
SH%

 P
er

di
da

s

DDM

Figura 41 – Cenário DDM.



APÊNDICE C. Métricas de desempenho dos detectores em cada cenário por contexto. 145

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C
L
H

SV
SH%

 Fa
lsa

s

EDDM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C
L
H

SV
SH%

 A
tra

sa
da

s EDDM
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C
L
H

SV
SH%

 P
er

di
da

s

EDDM

Figura 42 – Cenário EDDM.
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Figura 43 – Cenário DDAL.
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Figura 44 – Cenário STUDD.
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Figura 45 – Cenário MD3-EGM.
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Figura 46 – Cenário DSDD.
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