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Resumo 

O Traumatismo Cranioencefálico (TCE) continua sendo uma das principais causas 

de morbidade e mortalidade em todo o mundo, com disparidades significativas nos 

desfechos influenciadas pelo acesso e infraestrutura regionais de saúde. Este estudo 

avalia o desempenho e a generalização de modelos de aprendizado de máquina para 

prever a mortalidade em 14 dias em pacientes com TCE usando conjuntos de dados de 

duas regiões brasileiras distintas: São Paulo, um centro urbano, e Manaus, um centro 

urbano isolado com desafios logísticos únicos. Até onde sabemos, esta pesquisa 

representa a primeira validação cruzada de modelos preditivos em dois conjuntos de 

dados dentro do mesmo país, ressaltando a necessidade crítica de abordagens 

localizadas na pesquisa sobre TCE. Nossos resultados indicam que, embora os modelos 

baseados em redes neurais convolucionais (CNN) tenham alcançado alto desempenho, 

com uma área sob a curva (AUC) de 0,90 em São Paulo e 0,93 em Manaus, o melhor 

modelo de São Paulo exibiu uma AUC notavelmente baixa quando aplicado ao conjunto 

de dados de Manaus. A incorporação de características específicas do contexto, como 

variáveis relacionadas à pandemia e o tempo entre o trauma e a admissão, aumentou 

significativamente a precisão do modelo, com o modelo de Manaus atingindo uma 

impressionante AUC de 0,98. Notavelmente, o estudo destaca as principais diferenças 

regionais nos preditores de mortalidade, com hipóxia e hipotensão sendo mais críticas 

em Manaus, enfatizando a importância de adaptar os modelos preditivos aos contextos 

locais. Nossos resultados indicam que os modelos baseados em CNN têm o potencial 

de aprimorar as previsões de mortalidade para pacientes com traumatismo 

cranioencefálico (TCE). Além disso, destacamos a necessidade de conduzir a validação 

trans regional e integrar variáveis locais para melhorar os desfechos dos pacientes em 

diferentes ambientes de saúde.  

Palavras-chave: Trauma cranioencefálico, mortalidade, Rede neural convolucional, 

contextos locais. 

 

 



 

Abstract 

Traumatic Brain Injury (TBI) remains a leading cause of morbidity and mortality 

worldwide, with significant disparities in outcomes influenced by regional healthcare 

access and infrastructure. This study evaluates the performance and generalizability of 

machine learning models for predicting 14- day mortality in TBI patients using datasets 

from two distinct Brazilian regions: São Paulo, an urban center, and Manaus, an isolated 

urban center with unique logistical challenges. To our knowledge, this research 

represents the first cross-validation of predictive models across two datasets within the 

same country, underscoring the critical need for localized approaches in TBI research. 

Our findings indicate that while convolutional neural network (CNN)-based models 

achieved high performance, with an area under the curve (AUC) of 0.90 in São Paulo 

and 0.93 in Manaus, the best model from São Paulo exhibited a strikingly low AUC 

when applied to the Manaus dataset. The incorporation of context specific features, such 

as pandemic-related variables and time from trauma to admission, significantly enhanced 

model accuracy, with the Manaus model reaching an impressive AUC of 0.98. Notably, 

the study highlights key regional differences in predictors of mortality, with hypoxia and 

hypotension being more critical in Manaus, emphasizing the importance of tailoring 

predictive models to local contexts. Our results indicate that CNN-based models have 

the potential to enhance mortality predictions for patients with traumatic brain injury 

(TBI). Additionally, we highlighted the necessity of conducting cross-regional validation 

and integrating local variables to improve patient outcomes across different healthcare 

environments.  

Keywords: Traumatic Brain Injury, mortality, convolutional neural network, local 

contexts. 

  



 

Sumário 

Organização da Dissertação       16  

1 Introdução          17 

1.1 Objetivos da Dissertação       19 

1.2 Objetivos Específicos        19 

2 Revisão da Literatura        20 

2.1 Predictors of Mortality, Withdrawal of Life-Sustaining Measures, and 

Discharge Disposition in Octogenarians with Subdural Hematomas  20 

2.2 Machine Learning Algorithms to Predict In-Hospital Mortality in Patients with 

Traumatic Brain Injury        21 

2.3 Mobile Telephone Follow-Up Assessment of Postdischarge Death and 

Disability Due to Trauma in Cameroon: A Prospective Cohort Study  21 

2.4 Evaluation of Computed Tomography Scoring Systems in the Prediction of 

ShortTerm Mortality in Traumatic Brain Injury Patients from a Low- to Middle-

Income Country         22 

2.5 A Computer-Assisted System for Early Mortality Risk Prediction in Patients 

with Traumatic Brain Injury Using Artificial Intelligence Algorithms in 

Emergency Room Triage)       23 

2.6 Learning Models for Traumatic Brain Injury Mortality Prediction on Pediatric 

Electronic Health Records       23 

2.7 Predicting Outcome in Patients with Brain Injury: Differences between 

Machine Learning versus Conventional Statistics    24 

2.8 Prediction Performance of the Machine Learning Model in Predicting 

Mortality Risk in Patients with Traumatic Brain Injuries: A Systematic Review 

and MetaAnalysis        25 

2.9 Machine Learning Algorithms for Predicting Outcomes of Traumatic Brain 

Injury: A Systematic Review and Meta-Analysis    25 

2.10 Machine Learning Approach for the Prediction of In-Hospital Mortality in 

Traumatic Brain Injury Using Bio-Clinical Markers at Presentation to the 

Emergency Department        26 

2.11 Predictors of Mortality, Withdrawal of Life-Sustaining Measures, and 

Discharge Disposition in Octogenarians with Subdural Hematomas  27 



 

3 Fundamentos Teóricos        31 

3.1 Traumatismo Cranioencefálico       31 

3.2 Pré-Processamento        32 

3.2.1 Normalização de dados        33 

3.2.2 Preenchimento com valores para colunas com variáveis ausentes  33 

3.3 Análise de correlação        34 

3.3.1 Coeficiente de Pearson        34 

3.3.2 SHapley Additive exPlanations (SHAP)     35 

3.4 Algoritmos Clássicos de Aprendizado de Máquina    36 

3.4.1 Regressor logístico        36 

3.4.2 Árvore randômica        37 

3.5 Redes Neurais Artificiais       38 

3.6 Rede Neuras Convolucionais        39 

3.6.1 Camada Convolutiva        39 

3.6.2 Camada de Subamostragem (Pooling)      41 

3.6.3 Camada de Dropout        42 

3.6.4 Camada de unidades Retificadoras Lineares (ReLU)    43 

3.6.5 Regularização 𝐿2        44 

3.7 Métodos de Otimização       45 

3.7.1 Estimativa Dinâmica Adaptativa (Adam)     45 

3.7.2 Propagação da Raiz Média Quadrática (RMSProp)    46 

3.7.3 Gradiente Descendente Estocástico com Momento (SGDM)   47 

3.8 Métricas para avaliação        47 

4 Materiais e Métodos        49 

4.1 Materiais         49 

4.2 Métodos          52 

4.2.1 Pré-Processamento        53 

4.2.2 Definição dos modelos de predição      54 

4.2.3 Ajuste de hiper parâmetros       56 

4.2.4 Estratégias de Treinamento e Teste      57 

5 Resultados e Discussões        59 

5.1 Resultados para a estratégia 1 e 2 com 15 variáveis preditivas na entrada 59 

5.2 Resultados para a estratégia 2 com 15, 16, 17 variáveis preditoras  61 



 

5.3 Resultados para a estratégia 3 e 4      63 

5.4 Resultados para a estratégia 5       64 

5.5 Explicação dos resultados       65 

5.5.1 Análise por coeficiente de Pearson      66 

5.5.2 Análise por valores de SHAP       67 

5.6 Discussão         69 

6 Conclusão          72 

7 Referências Bibliográficas       73 

8 Apêndice A         79 

9 Apêndice B         85 

  



 

Lista de Figuras 

Figura 1 Arquitetura do regressor logístico     37 

Figura 2 Algoritmo do modelo da arvore randômica    38 

Figura 3 Exemplo do funcionamento da operação de convolução em uma rede 

neural convolucional (CNN), mostrando o alinhamento do kernel 

sobre a entrada e o cálculo do novo valor de pixel.   40 

Figura 4 Comparação entre as operações de max pooling e average pooling, 

aplicadas sobre uma matriz 4×4 com janelas 2×2.   42 

Figura 5 Comparação entre rede neural padrão(a) e rede com aplicação de 

dropout (b)        43 

Figura 6 Representação gráfica das funções de ativação: (a) Sigmoid, (b) Tanh, 

(c) ReLU e (d) Leaky ReLU.      44 

Figura 7 Distribuição da mortalidade em 14 dias por base de dados  52 

Figura 8 fluxograma da metodologia      52 

Figura 9 Arquitetura da rede MLP utilizada para predição de mortalidade em 

14 dias para paciente com TBI     55 

Figura 10 Arquitetura das redes CNN utilizadas para predição de mortalidade 

em 14 dias para paciente de TBI. (a) CNN com arquitetura em 

paralelo; (b) CNN com arquitetura em série    56 

Figura 11 Fluxograma das estratégias de treinamento e teste adotadas neste 

trabalho        58 

Figura 12 Matrizes de confusão para ambas as estratégias: (a) Estratégia 1 com 

a CNN2 e o otimizador RMSProp; (b) Estratégia 2 com a CNN1 e o 

otimizador RMSProp       61 

Figura 13 Matriz de confusão para a Estratégia 2 com 17 variáveis preditoras 

usando o modelo CNN1 e o otimizador RMSProp.             62 

Figura 14 Matriz de confusão para a Estratégia 5 com 15 variáveis preditoras 

usando o modelo CNN1 e o otimizador RMSProp   65 

Figura 15 Valores de SHAP para previsões do modelo CNN1 com otimizador 

RMSprop. (a) Conjunto de dados de São Paulo, com 15 variáveis de 

entrada. (b) Conjunto de dados de Manaus com 17 variáveis de 

entrada.        68  



 

Lista de Tabelas 

Tabela 1 Tabela de revisão da literatura     28 
Tabela 2 Variáveis utilizadas na predição de mortalidade em 14 dias  51 

Tabela 3 Métricas obtidas para as estratégias 1 e 2 com 15 variáveis de entrada  

         60  
Tabela 4 Métricas obtidas para a estratégia 2 com 15, 16 e 17 variáveis de 

entrada com o modelo CNN1 e otimizador RMSProp  62 
Tabela 5 Métricas obtidas para as estratégias 3 e 4 com 15 variáveis de entrada 

         63 

Tabela 6 Métricas obtidas para a estratégia 5 com 15 variáveis de entrada 64 

Tabela 7 Coeficientes de correlação de Pearson para a Base de São Paulo 66 

Tabela 8 Coeficientes de correlação de Pearson para a Base de Manaus 67 

Tabela 9 Métricas de desempenho para conjuntos de dados de São Paulo e 

Manaus, com seus respectivos melhores preditores.   68 

  



 

Lista de Siglas 

TCE   Traumatismo Cranioencefálico  

LMICs  Países de Baixa e Média Renda (Low- and Middle-Income Countries)  

GCS   Escala de Coma de Glasgow (Glasgow Coma Scale)  

AUC   Área Sob a Curva ROC (Area Under the Curve)  

CNN   Rede Neural Convolucional (Convolutional Neural Network)  

1D-CNN  Rede Neural Convolucional Unidimensional  

ML   Aprendizado de Máquina (Machine Learning)  

ISS   Índice de Gravidade da Lesão (Injury Severity Score)  

SDH   Hematoma Subdural  

KNN   K-Vizinhos Mais Próximos (K-Nearest Neighbors)  

SVM   Máquina de Vetores de Suporte (Support Vector Machine)  

GOSE  Escala de Resultados de Glasgow Estendida (Glasgow Outcome Scale 

Extended)  

TC   Tomografia Computadorizada  

TTAS   Escala de Triagem e Acuidade de Taiwan (Taiwan Triage and Acuity 

Scale)  

LR   Regressão Logística (Logistic Regression)  

MLP   Perceptron Multicamadas (Multilayer Perceptron)  

RF   Floresta Randômica (Random Forest)  

ANN   Redes Neurais Artificiais (Artificial Neural Networks)  

PT   Tempo de Protrombina  

INR   Razão Normalizada Internacional (International Normalized Ratio)  

XGBoost  Extreme Gradient Boosting  



 

SHAP   SHapley Additive exPlanations  

ReLU   Unidade Linear Retificada (Rectified Linear Unit)  

RMSProp Propagação da Raiz Média Quadrática (Root Mean Square Propagation)  

SGDM  Gradiente Descendente Estocástico com Momento (Stochastic Gradient 

Descent with Momentum)  

TSAH   Hemorragia Subaracnóidea Traumática (Traumatic Subarachnoid 

Hemorrhage)  

rAPTT  Razão do Tempo de Tromboplastina Parcial Ativado  

UTI   Unidade de Terapia Intensiva  

CSV   Valores Separados por Vírgula (Comma-Separated Values)   



 

Capítulo 1 

Organização da Dissertação 

Esta dissertação está organizada em cinco capítulos, além dos elementos introdutórios e 

finais. 

• Capítulo 1 – Introdução: Apresenta o contexto do estudo, a motivação, os 

objetivos gerais e específicos, além da estrutura da dissertação. 

• Capítulo 2 – Revisão da Literatura: Apresenta os principais trabalhos na área de 

pesquisa, onde serve como base para entender conceitos da área e ter noção 

daquilo que já foi pesquisado e os melhores resultados com cada técnica utilizada. 

• Capítulo 3 – Fundamentos Teóricos: Descreve os principais conceitos e métodos 

utilizados na pesquisa, incluindo tópicos sobre aprendizado de máquina, redes 

neurais convolucionais, métodos de regularização, funções de ativação, técnicas 

de otimização e métricas de avaliação. 

• Capítulo 4 – Materiais e Métodos: Detalha as bases de dados utilizadas, os 

processos de pré-processamento, os modelos de predição empregados, os 

procedimentos de ajuste de hiperparâmetros, as estratégias de treinamento e teste, 

bem como as métricas utilizadas para avaliação dos resultados. 

• Capítulo 5 – Resultados e Discussões: Apresenta os resultados obtidos com a 

aplicação das diferentes estratégias de treinamento e os modelos avaliados, 

analisando o desempenho preditivo a partir das métricas definidas, além de 

discutir os achados com base na literatura. 

• Capítulo 6 – Conclusão: Resume os principais resultados, discute as limitações do 

estudo, apresenta sugestões para trabalhos futuros e destaca as contribuições da 

pesquisa para a área de aplicação. 

Ao final, são apresentadas as referências utilizadas ao longo do trabalho
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Introdução 

O traumatismo cranioencefálico (TCE) é uma condição neurológica grave que 

representa uma das principais causas de morbidade e mortalidade em todo o mundo. 

Estima-se que entre 64 a 69 milhões de pessoas sofram algum tipo de TCE anualmente, 

o que evidencia a dimensão do problema sob a ótica da saúde pública global (Dewan et 

al., 2019). Os mecanismos mais comuns de ocorrência envolvem acidentes de trânsito, 

quedas e agressões físicas, afetando indivíduos de todas as faixas etárias. 

Em países de baixa e média renda (LMICs), como o Brasil, a situação é ainda mais 

crítica. Nessas regiões, a infraestrutura hospitalar limitada, a escassez de recursos 

humanos especializados e os entraves logísticos no transporte de pacientes dificultam a 

condução adequada dos casos (Amorim et al., 2019). No Brasil, país de dimensões 

continentais, as disparidades regionais ensejam diferentes realidades. Enquanto centros 

urbanos como São Paulo contam com hospitais de alta complexidade, serviços de 

neurocirurgia disponíveis 24 horas e acesso ágil à tomografia e cuidados intensivos, 

regiões mais isoladas, como o interior da Amazônia, enfrentam grandes desafios 

estruturais. Em locais como Manaus, por exemplo, pacientes oriundos do interior são 

frequentemente transportados por longas distâncias via fluvial ou aérea, com tempo 

médio de transferência superior a 60 horas (Nôvo et al., 2023), o que pode comprometer 

a efetividade do atendimento neurológico de emergência. 

Diante desse cenário, a busca por ferramentas capazes de auxiliar na tomada de 

decisão clínica tem motivado o desenvolvimento de modelos preditivos baseados em 

dados clínicos e laboratoriais. Nos últimos anos, o uso de algoritmos de aprendizado de 

máquina tem se intensificado, dada sua capacidade de identificar padrões complexos e 

realizar previsões a partir de grandes volumes de dados heterogêneos (Raj et al., 2022; 

Tu et al., 2022). Estudos internacionais já demonstraram que tais modelos podem 

alcançar desempenho competitivo quando comparados a métodos estatísticos tradicionais 

como a regressão logística (Zimmerman et al.,2023; Senders et al., 2018). 

Apesar desses avanços, dois gargalos científicos persistem. O primeiro refere-se 

à generalização dos modelos preditivos: muitos algoritmos apresentam excelente 

desempenho nos conjuntos de dados em que foram treinados, mas sofrem queda 

significativa de acurácia quando aplicados a populações distintas, com diferentes perfis 

clínicos e contextos assistenciais (Courville et al., 2023; Yuan et al., 2018). Esse 
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fenômeno é especialmente relevante em países como o Brasil, onde a heterogeneidade de 

acesso, infraestrutura e perfil sociodemográfico entre as regiões pode comprometer a 

robustez e a utilidade clínica de modelos desenvolvidos em ambientes específicos. O 

segundo diz respeito à lacuna de estudos que explorem arquiteturas de aprendizado 

profundo especialmente redes neurais convolucionais (CNNs) na predição de desfechos 

em TCE. A maioria das pesquisas ainda se baseia apenas em técnicas clássicas de machine 

learning, como regressão logística ou florestas aleatórias, que podem não capturar de 

forma tão eficiente padrões complexos e interdependentes presentes nos dados clínicos e 

de imagem.  

Além disso, poucos estudos investigaram a contribuição de variáveis contextuais, 

como o tempo entre o trauma e a admissão hospitalar ou fatores relacionados à sobrecarga 

do sistema de saúde durante pandemias, na performance de modelos preditivos. A 

pandemia de COVID-19, por exemplo, alterou significativamente a dinâmica do 

atendimento emergencial em várias regiões do Brasil, especialmente na região Norte, 

impactando diretamente nos desfechos de pacientes com trauma cranioencefálico (Nôvo 

et al., 2023). A inclusão dessas variáveis pode oferecer ganhos substanciais em termos de 

acurácia e capacidade discriminativa dos modelos, sobretudo em ambientes de alta 

variabilidade. 

Neste contexto, esta dissertação propõe a investigação da generalização de 

modelos baseados em aprendizado profundo especificamente redes neurais 

convolucionais unidimensionais (1D-CNN) na predição de mortalidade em 14 dias de 

pacientes com TCE, utilizando dados de dois cenários contrastantes no Brasil: o Hospital 

das Clínicas da Faculdade de Medicina da Universidade de São Paulo (centro urbano 

consolidado) e um hospital terciário em Manaus, capital do Amazonas (centro urbano 

isolado). A proposta se destaca por ser, até onde se tem conhecimento, a primeira 

avaliação sistemática da capacidade de generalização inter-regional de modelos de 

predição em TCE baseada em dados clínicos brasileiros. 

A pesquisa aqui apresentada contempla não apenas a comparação entre técnicas 

clássicas de ML (como regressão logística, floresta aleatória e perceptron multicamadas) 

e modelos mais complexos baseados em CNNs, mas também analisa a influência de 

variáveis adicionais disponíveis apenas na base de dados de Manaus, como o tempo entre 

o trauma e a internação e o contexto pandêmico. O desempenho dos modelos é avaliado 

por meio de métricas padrões, como acurácia, F1-score e área sob a curva ROC (AUC), 
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considerando estratégias de treinamento e validação cruzada em ambos os conjuntos de 

dados. 

Ao final, espera-se que os resultados obtidos nesta dissertação não apenas validem 

a eficácia dos modelos propostos, mas também contribuam com evidências sobre a 

importância de se considerar fatores regionais na construção de ferramentas preditivas 

para suporte clínico. Além disso, pretende-se demonstrar que a adaptação de modelos a 

contextos específicos, aliada à redução criteriosa do número de variáveis utilizadas, pode 

promover soluções mais práticas e viáveis para aplicação em ambientes hospitalares com 

limitações estruturais. A relevância deste estudo reside, portanto, na interseção entre 

inteligência artificial e saúde pública, apontando caminhos promissores para o uso de 

tecnologias avançadas em benefício de sistemas de saúde heterogêneos como o brasileiro. 

1.1 Objetivos da Dissertação 

Avaliar a capacidade de generalização de modelos de aprendizado de máquina e 

aprendizado profundo para predição de mortalidade em 14 dias de pacientes com 

traumatismo cranioencefálico, utilizando bases de dados obtidas em dois centros clínicos 

brasileiros, localizados em regiões com características sociodemográficas distintas (São 

Paulo e Manaus). 

1.2 Objetivos Específicos 

• Comparar o desempenho de modelos clássicos e profundos na predição de 

mortalidade em 14 dias para pacientes com TCE 

• Avaliar a generalização dos modelos com testes cruzados entre duas bases de 

dados obtidas em diferentes regiões do Brasil. 

• Obter métricas da inclusão de variáveis contextuais no treinamento 

• Utilizar um grupo reduzido de variáveis, com maior importância preditiva, para 

uma predição eficiente em ambas as bases de dados. 
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Capítulo 2 

Revisão da Literatura 

Este capítulo apresenta a revisão bibliográfica realizada sobre o tema “predição 

de mortalidade em pacientes com traumatismo cranioencefálico (TCE) utilizando redes 

neurais”. Um conjunto de onze artigos, publicados entre os anos de 2019 e 2023, foi 

selecionado a partir de buscas realizadas nas bases de dados IEEE Xplore, PubMed e Web 

of Science. Para fins de comparação com os objetivos da presente pesquisa, as buscas 

foram direcionadas para artigos que abordassem o uso de algoritmos de aprendizado de 

máquina na predição de mortalidade em cenários que houve o trauma cranioencefálico. 

A análise dos artigos teve como foco a identificação das bases de dados, dos 

métodos empregados (modelagem, algoritmos de aprendizado de máquina, variáveis 

analisadas e métricas de avaliação) e dos resultados obtidos. Ao final desta revisão, será 

apresentada uma tabela consolidando os principais pontos analisados, seguida de uma 

discussão que destaca as lacunas na literatura e as motivações para a condução deste 

trabalho. 

2.1 Predictors of Mortality, Withdrawal of Life-Sustaining Measures, and Discharge 

Disposition in Octogenarians with Subdural Hematomas 

(KASHKOUSH et al., 2022) 

Este estudo analisou fatores prognósticos relacionados à mortalidade hospitalar, 

retirada de medidas de suporte vital e destino de alta em pacientes octogenários com 

hematomas subdurais (SDH). Utilizando um banco de dados multicêntrico entre 2017 e 

2019, foram avaliados 3.279 casos de TCE em 75 centros, dos quais 695 eram de 

pacientes com mais de 79 anos e diagnóstico de SDH. As variáveis estudadas incluíram 

variáveis demográficas, histórico médico, uso de antiplaquetários/anticoagulantes e 

variáveis clínicas, como GCS, reatividade pupilar e ISS. 

Os resultados identificaram que fatores como GCS < 13, pupilas não reativas, 

aumento do ISS, hemorragia intraventricular e intervenção neurocirúrgica estão 

associados à mortalidade ou transferência para cuidados paliativos. Outros fatores, como 

insuficiência cardíaca congestiva, hipotensão, GCS < 13 e intervenções neurocirúrgicas, 



21 

foram determinantes na retirada de suporte vital. Os modelos de regressão logística 

apresentaram um AUC de 0,89, indicando boa precisão preditiva. 

Esses achados destacam a importância das características clínicas e comorbidades 

como determinantes cruciais na tomada de decisões médicas e no prognóstico de 

pacientes octogenários com SDH. 

2.2 Machine Learning Algorithms to Predict In-Hospital Mortality in Patients with 

Traumatic Brain Injury (HSU et al., 2021) 

 Este estudo buscou prever a mortalidade intra-hospitalar em pacientes com 

traumatismo cranioencefálico (TCE) utilizando modelos de aprendizado de máquina. 

Foram analisados 3.331 casos entre 2008 e 2018, classificados como nível I ou II na escala 

Taiwan Triage and Acuity Scale. As variáveis avaliadas incluíram idade, gênero, GCS, ISS, 

sinais vitais e mortalidade hospitalar. 

Sete algoritmos foram utilizados: J48, Floresta randômica, Random Tree, REP 

Tree, K-Nearest Neighbors (KNN), Naïve Bayes e Support Vector Machine (SVM). O 

algoritmo J48 demonstrou o melhor desempenho, com uma taxa de acerto de 93,2%, F1-

score de 92,9% e sucesso médio de 77,2%. As variáveis com maior poder de predição 

foram a escala GCS, seguida por ISS e pressão arterial sistólica. 

Os resultados apontaram que valores de corte relevantes,: GCS ≤ 6, ISS > 24 e 

pressão sistólica ≤ 84 mmHg, estavam associados a uma maior probabilidade de 

mortalidade. Este estudo destaca a eficácia dos modelos baseados em aprendizado de 

máquina para suporte à decisão clínica em emergências, permitindo a identificação 

precoce de pacientes de pacientes com alto risco e a otimização de tratamentos. 

 

2.3 Mobile Telephone Follow-Up Assessment of Postdischarge Death and Disability 

Due to Trauma in Cameroon: A Prospective Cohort Study (DING et al., 2022) 

Este estudo avaliou a mortalidade e a deficiência relacionadas a traumas em 

pacientes no Camarões ao longo de seis meses após a alta hospitalar, utilizando 

ferramentas de acompanhamento por telefone móvel. A amostra incluiu 1.914 pacientes 

tratados em quatro hospitais nas regiões Litoral e Sudoeste entre 2019 e 2021, dos quais 

1.304 foram acompanhados com sucesso. 
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Os pacientes foram avaliados em quatro momentos: duas semanas, um mês, três 

meses e seis meses após a alta, utilizando a Glasgow Outcome Scale Extended (GOSE). 

Os resultados revelaram que 90% das mortes ocorreram nas primeiras duas semanas, 

enquanto 22% dos pacientes ainda apresentavam deficiência severa após seis meses. A 

mortalidade foi associada a fatores como idade avançada, maior pontuação no Injury 

Severity Score (ISS) e lesões neurológicas, enquanto níveis educacionais mais altos 

estavam ligados a menores taxas de mortalidade e deficiência. 

O estudo destacou a viabilidade do acompanhamento por telefone em ambientes 

de baixa renda e ressaltou a necessidade de desenvolver sistemas formais para melhorar 

os resultados pós-trauma em regiões com infraestrutura médica limitada. 

2.4 Evaluation of Computed Tomography Scoring Systems in the Prediction of Short-

Term Mortality in Traumatic Brain Injury Patients from a Low- to Middle-Income 

Country (SOUZA et al., 2022) 

Este estudo analisou a precisão de diferentes sistemas de pontuação baseados em 

tomografia computadorizada (TC) para prever o risco de morte em curto prazo entre 

pacientes com traumatismo cranioencefálico (TCE) em países de baixa e média renda. A 

pesquisa envolveu 447 pacientes atendidos em um hospital terciário no Brasil, com idade 

média de 40 anos e uma maioria significativa de homens (85,5%). 

Foram avaliados três sistemas de classificação: Marshall CT, Rotterdam CT e 

Helsinki CT. Os resultados indicaram que os escores de Rotterdam e Helsinki superaram 

o de Marshall na previsão de mortalidade, tanto em 14 dias quanto durante a internação 

hospitalar. As áreas sob a curva (AUC) para mortalidade em 14 dias foram 0,610 para 

Marshall, 0,762 para Rotterdam e 0,752 para Helsinki. 

Quando combinados com outros fatores clínicos (como idade, pontuação de 

Glasgow Coma Scale – GCS, resposta pupilar, hipóxia e hipotensão), esses escores 

mostraram um aumento expressivo na capacidade de explicação: Marshall (+2%), 

Rotterdam (+13,4%) e Helsinki (+21,6%). Entre eles, o escore Helsinki destacou-se como 

o modelo mais consistente, apresentando melhor capacidade de discriminação e predição. 

Esses achados reforçam a importância de validar externamente esses modelos para 

populações de países em desenvolvimento. Além disso, sugerem que o uso de sistemas 

modernos de pontuação pode otimizar a alocação de recursos e auxiliar na tomada de 

decisões clínicas no tratamento de pacientes com TCE. 



23 

2.5 A Computer-Assisted System for Early Mortality Risk Prediction in Patients with 

Traumatic Brain Injury Using Artificial Intelligence Algorithms in Emergency Room 

Triage) (TU et al., 2022) 

O estudo propôs um sistema baseado em inteligência artificial para prever o risco 

de mortalidade hospitalar em pacientes com traumatismo cranioencefálico (TCE) durante 

a triagem nas salas de emergência. A pesquisa utilizou dados retrospectivos de 18.249 

pacientes adultos com TCE, atendidos em três hospitais de Taiwan entre 2010 e 2019. 

Para construir o modelo preditivo, foram consideradas 12 variáveis clínicas, incluindo 

idade, escala de triagem TTAS, pontuação GCS, tamanho das pupilas e reflexo pupilar. 

Seis algoritmos de aprendizado de máquina foram testados: regressão logística 

(LR), Árvore randômica, Support Vector Machines (SVM), LightGBM, XGBoost e 

Perceptron Multicamadas (MLP). Entre eles, o modelo de regressão logística apresentou 

o melhor desempenho, com uma área sob a curva (AUC) de 0,925, seguido por SVM 

(AUC = 0,920) e MLP (AUC = 0,893). Para melhorar o balanceamento das duas classes, 

mortalidade e sobrevivência, aumentando a precisão das previsões, foi utilizada a técnica 

de sobre amostragem SMOTE. 

O sistema de predição foi integrado ao sistema de informação hospitalar, 

permitindo previsões em tempo real para apoiar decisões clínicas e informar os riscos aos 

familiares dos pacientes. Este estudo evidencia o potencial dos algoritmos de aprendizado 

de máquina para melhorar o processo de triagem em emergências, otimizar a alocação de 

recursos e aprimorar o cuidado aos pacientes com TCE. 

2.6 Learning Models for Traumatic Brain Injury Mortality Prediction on Pediatric 

Electronic Health Records (FONSECA et al., 2022) 

Este estudo explorou o uso de algoritmos de aprendizado de máquina para prever 

a mortalidade em crianças com traumatismo cranioencefálico, utilizando o conjunto de 

dados Hackathon Pediatric Traumatic Brain Injury (HPTBI). A análise incluiu 

informações de 300 pacientes pediátricos internados, com idade média de 7,2 anos. O 

banco de dados continha 96 variáveis, abrangendo dados demográficos, clínicos e 

achados de tomografia computadorizada (TC). 

Quatro modelos de aprendizado de máquina foram avaliados: Arvore randômica 

(RF), XGBoost, k-Nearest Neighbors (KNN) e redes neurais artificiais (ANN). Esses 

modelos foram combinados com técnicas de seleção de características, como Análise de 
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Componentes Principais (PCA) e métodos baseados em gradiente. O modelo XGBoost 

apresentou o melhor desempenho, com uma área sob a curva (AUC) de 0,91, 

especialmente sem o uso de técnicas de seleção de características. Já o KNN mostrou 

bom desempenho quando associado ao método de seleção de Koehrsen. 

Os resultados identificaram variáveis como reatividade pupilar, nutrição enteral, 

presença de edema cerebral e parada cardíaca como altamente relacionadas à mortalidade. 

Curiosamente, fatores tradicionais, como a Escala de Coma de Glasgow (GCS), tiveram 

menor importância nesse contexto pediátrico, evidenciando a complexidade e a 

heterogeneidade dessa população. 

O estudo ressalta a necessidade de desenvolver modelos preditivos específicos 

para crianças, considerando as particularidades do desenvolvimento cerebral e as 

diferentes manifestações clínicas do TCE pediátrico. A aplicação desses modelos pode 

oferecer suporte essencial para decisões em cuidados intensivos pediátricos. 

2.7 Predicting Outcome in Patients with Brain Injury: Differences between Machine 

Learning versus Conventional Statistics (CERASA et al., 2022) 

Este estudo comparou métodos de aprendizado de máquina (ML) e abordagens 

estatísticas tradicionais, como a regressão logística (RL), na previsão de desfechos em 

pacientes com lesões cerebrais, incluindo traumatismo cranioencefálico (TCE) e acidente 

vascular cerebral (AVC). A análise considerou 13 estudos que aplicaram ambos os 

métodos para prever resultados como mortalidade e incapacidades funcionais. 

Os resultados mostraram que algoritmos de ML, como redes neurais artificiais 

(ANN), máquinas de vetores de suporte (SVM) e florestas aleatórias (RF), não 

apresentaram vantagens consistentes sobre a RL em termos de precisão preditiva. No caso 

de TCE, as taxas de acurácia variaram entre 78% e 98%, enquanto que, para AVC, os 

valores ficaram entre 74% e 95%. Variáveis como Escala de Coma de Glasgow (GCS), 

idade, reatividade pupilar e hemorragias intracranianas foram destacadas como os fatores 

mais relevantes. 

Os autores observaram que o desempenho do ML pode ser limitado em bancos de 

dados clínicos com poucas variáveis e forte dependência de operadores. Em 

contrapartida, métodos estatísticos convencionais oferecem maior interpretabilidade dos 

fatores preditivos, enquanto os algoritmos de ML são mais eficazes para identificar 

relações não lineares entre as variáveis. 
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A conclusão do estudo enfatiza a importância de incorporar dados de alta 

dimensionalidade, como neuroimagem e informações genéticas, para aproveitar melhor 

o potencial do ML em ambientes clínicos e melhorar a previsão de desfechos em pacientes 

com lesões cerebrais. 

2.8 Prediction Performance of the Machine Learning Model in Predicting Mortality 

Risk in Patients with Traumatic Brain Injuries: A Systematic Review and Meta-

Analysis (WANG et al., 2023) 

Esta revisão sistemática realizou uma meta-análise de 47 pesquisas que 

investigaram o uso de algoritmos de aprendizado de máquina (ML) na previsão de 

mortalidade em pacientes com traumatismo cranioencefálico (TCE). A análise abrangeu 

dados de 2.080.819 indivíduos de diversas regiões, comparando modelos de ML com 

ferramentas tradicionais de pontuação clínica. 

Foram avaliados 156 modelos preditivos, sendo 122 desenvolvidos recentemente 

e 34 já validados clinicamente como ferramentas tradicionais. Para mortalidade intra-

hospitalar, os modelos de ML apresentaram um índice C médio de 0,86 (intervalo de 

confiança de 95%: 0,84-0,87), com sensibilidade de 0,79 e especificidade de 0,89. No 

caso da mortalidade extra-hospitalar, o índice C foi de 0,83, com sensibilidade de 0,74 e 

especificidade de 0,75. Os algoritmos mais utilizados incluíram máquinas de vetores de 

suporte, redes neurais artificiais, árvores de decisão e regressão logística. 

Os fatores mais frequentemente utilizados como preditores foram pontuação na 

Escala de Coma de Glasgow, idade, classificação da tomografia computadorizada (TC), 

reflexos pupilares, níveis de glicose e pressão arterial sistólica. Embora os modelos de 

ML tenham demonstrado um desempenho ligeiramente superior às ferramentas 

tradicionais na predição extra-hospitalar, o estudo destacou a necessidade de padronizar 

a aplicação clínica desses algoritmos para aumentar sua eficácia. 

Os autores concluíram que os modelos de ML podem ser ferramentas promissoras 

para prever mortalidade em casos de TCE, especialmente quando integram dados 

complexos, como imagens de TC. No entanto, sua implementação prática ainda enfrenta 

desafios devido à falta de consenso e à variabilidade entre os estudos analisados. 

2.9 Machine Learning Algorithms for Predicting Outcomes of Traumatic Brain Injury: 

A Systematic Review and Meta-Analysis (COURVILLE et al., 2023) 



26 

Esta revisão sistemática realizou uma meta-análise de 15 pesquisas que 

investigaram o uso de algoritmos de aprendizado de máquina para prever desfechos em 

pacientes com traumatismo cranioencefálico. Os objetivos foram identificar os modelos 

de ML mais eficazes na previsão de mortalidade e resultados desfavoráveis, além de 

comparar sua precisão com métodos estatísticos tradicionais, como a regressão logística 

(LR). 

Entre os algoritmos analisados estavam redes neurais artificiais, máquinas de 

vetores de suporte, florestas aleatórias e Naïve Bayes. Para a previsão de mortalidade, os 

modelos de ML demonstraram acurácia superior a 80%, com a SVM alcançando até 

95,6% de precisão em alguns casos. Fatores como pontuação na Escala de Coma de 

Glasgow (GCS), idade, glicose sérica elevada e acidez láctica foram consistentemente 

associados a desfechos desfavoráveis, contribuindo para a otimização do desempenho dos 

modelos. 

A meta-análise revelou que os algoritmos de ML, especialmente ANN e SVM, 

superaram a LR em termos de sensibilidade e especificidade, com as curvas ROC 

confirmando a superioridade dos modelos baseados em inteligência artificial. Apesar dos 

avanços, os autores destacaram a necessidade de padronizar as variáveis utilizadas como 

entrada do modelo preditivo e realizar validações externas para ampliar a aplicabilidade 

clínica. 

O estudo concluiu que os algoritmos de ML são ferramentas promissoras para 

estratificação de risco e previsão de desfechos em TCE. No entanto, seu impacto clínico 

depende de uma maior integração de dados diversos, como imagens de tomografia 

computadorizada e informações laboratoriais, para maximizar sua eficácia em cenários 

reais. 

2.10 Machine Learning Approach for the Prediction of In-Hospital Mortality in 

Traumatic Brain Injury Using Bio-Clinical Markers at Presentation to the Emergency 

Department (MEKKODATHIL et al., 2023) 

Este estudo utilizou algoritmos de aprendizado de máquina para prever a 

mortalidade hospitalar em pacientes com traumatismo cranioencefálico, com base em 

marcadores bio-clínicos disponíveis no momento da admissão. A análise incluiu dados 

retrospectivos de 922 pacientes tratados no Hamad Trauma Center, no Catar, entre junho 

de 2016 e maio de 2021. Entre as variáveis analisadas estavam a Escala de Coma de 



27 

Glasgow (GCS), Índice de Gravidade de Lesão (ISS), tempo de protrombina (PT), INR, 

além de níveis séricos de sódio, potássio, magnésio e outros biomarcadores clínicos. 

Quatro algoritmos foram avaliados: Support Vector Machine, Regressão 

Logística, Floresta randômica e Extreme Gradient Boosting (XGBoost). O modelo SVM 

obteve o melhor desempenho, alcançando uma área sob a curva ROC de 0,86, 

demonstrando superioridade em estabilidade e capacidade de generalização. Embora os 

modelos XGBoost e RF também tenham apresentado boas AUCs, mostraram sinais de 

sobre ajuste devido a discrepâncias significativas no valor da função de perda entre os 

conjuntos de treinamento e teste (79,5% e 41,8%, respectivamente). 

Os principais fatores associados à predição de mortalidade foram: aPTT, INR, 

ácido láctico, ISS, PT e magnésio. O estudo destacou que o uso de modelos de ML, 

especialmente o SVM, pode ser uma ferramenta valiosa para identificar pacientes de alto 

risco, permitindo intervenções clínicas mais rápidas e eficazes em cenários de trauma. 

2.11 Predictors of Mortality, Withdrawal of Life-Sustaining Measures, and Discharge 

Disposition in Octogenarians with Subdural Hematomas (KASHKOUSH et al., 2023) 

Este estudo analisou os fatores preditivos de mortalidade, retirada de suporte vital 

e desfecho de alta em pacientes octogenários diagnosticados com hematomas subdurais 

(SDH). A pesquisa utilizou dados de 3.279 admissões por traumatismo cranioencefálico 

(TCE) entre 2017 e 2019, dos quais 695 pacientes tinham mais de 79 anos. 

Os resultados indicaram que 22% dos pacientes evoluíram para mortalidade intra-

hospitalar ou foram direcionados para cuidados paliativos. Além disso, 10% passaram 

por retirada de suporte vital. Fatores como pontuação na Escala de Coma de Glasgow 

(GCS) inferior a 13, ausência de reatividade pupilar, maior Índice de Gravidade de Lesão 

(ISS) e presença de hemorragias intraventriculares foram fortemente associados à 

mortalidade. No caso da retirada de suporte vital, os principais determinantes incluíram 

insuficiência cardíaca congestiva (CHF), hipotensão e GCS inferior a 13. Modelos de 

regressão logística apresentaram alta precisão preditiva, com AUC de 0,885 para 

mortalidade e 0,894 para retirada de suporte vital. 

O estudo concluiu que variáveis clínicas e demográficas podem ser utilizadas para 

orientar decisões críticas, como intervenções neurocirúrgicas e manejo paliativo, 

particularmente em pacientes idosos com SDH, onde o prognóstico é frequentemente 

mais delicado.
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Tabela 1: Tabela de revisão da literatura 

Referência Base de Dados Variáveis Preditivas Variáveis Preditas Resultados 

Kashkoush 

et al. (2022) 

3.279 admissões por TCE 

em 45 centros de trauma 

nos EUA entre 2017 e 

2019. Análise de 695 

pacientes com 80 anos ou 

mais. 

ECG, Reatividade pupilar, ISS, Uso 

de anticoagulantes/antiagregantes, 

Comorbidades (ex.: ICC, diabetes), 

Hemorragia intraventricular, 

Intervenção neurocirúrgica 

Mortalidade hospitalar, alta 

hospitalar com cuidados 

paliativos, Retirada de 

medidas de suporte à vida 

Predição de mortalidade: 

AUC = 0,885; retirada de 

suporte: AUC = 0,894 

Hsu et al. 

(2021) 

4.881 pacientes com TCE 

atendidos em um hospital 

de alta complexidade no 

norte de Taiwan de janeiro 

de 2008 a junho de 2018. 

ECG, ISS, Pressão arterial sistólica, 

Frequência cardíaca, Diferença de 

pressão de pulso, Idade, Gênero Mortalidade hospitalar 

Melhor desempenho: 

Árvore J48 - AUC > 0,80; 

Acurácia = 93,2% 

Ding et al. 

(2022) 

4.881 pacientes com TCE 

atendidos no departamento 

de emergência em Taiwan 

de janeiro de 2008 a junho 

de 2018. 

Idade, Gênero, Escolaridade, ISS, 

Tipo de fratura, Déficit neurológico, 

Mecanismo da lesão 

Mortalidade pós-alta, 

Incapacidade funcional 

(GOSE) 

OR = 2,44 (ISS), OR = 

4,40 (déficit neurológico); 

Incapacidade severa: 

22,1%; Boa recuperação: 

70,3% 
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Souza et al. 

(2022) 

447 pacientes com TCE 

tratados em hospital 

terciário da USP, Brasil, de 

janeiro de 2012 a dezembro 

de 2015. 

Classificações de TC (Marshall, 

Rotterdam, Helsinki), idade, ECG, 

resposta pupilar, hipóxia, hipotensão, 

hemoglobina 

Mortalidade em 14 dias, 

Mortalidade hospitalar 

Marshall: AUC = 

0,610/0,575; Rotterdam: 

0,762/0,712; Helsinki: 

0,752/0,716 

Tu et al. 

(2022) 

18.249 pacientes com TCE 

atendidos em 3 hospitais 

em Taiwan de 2010 a 2019. 

Idade, Gênero, IMC, TTAS, FC, 

Temperatura, FR, ECG, Tamanho da 

pupila, Reflexo pupilar Mortalidade hospitalar 

Melhor modelo: Regressão 

logística - AUC = 0,925; 

SVM = 0,920; MLP = 

0,893; XGBoost = 0,871; 

RF = 0,870; LightGBM = 

0,851 

Fonseca et 

al. (2022) 

300 pacientes pediátricos 

com TCE do HPTBI 

Hackathon 

Idade, Gênero, ECG, TC (ex.: edema 

cerebral, desvio de linha média), 

Nutrição enteral, Parada cardíaca, 

Pupilas fixas 

Mortalidade na alta 

hospitalar 

XGBoost = 0,91; KNN = 

0,90 (com seleção de 

variáveis); RF = 0,85; ANN 

= 0,84 

Cerasa et al. 

(2022) 

Revisão de 13 estudos 

comparando ML com 

estatística tradicional em 

TCE e AVC 

Idade, ECG, Resposta pupilar, 

Hemorragia subaracnóidea, 

Escolaridade, Hipotensão, 

Hiperglicemia, Coagulopatia 

Mortalidade hospitalar, 

Recuperação funcional AUC = 0,82 
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Wang et al. 

(2023) 

Meta-análise de 47 estudos 

com 2.080.819 pacientes de 

diversas regiões 

ECG, Idade, TC, Tamanho da pupila, 

Reflexo pupilar, Glicose, PAS 

Mortalidade intra e extra-

hospitalar 

Intra: C-Index = 0,86; Sens. 

= 0,79; Esp. = 0,89; Extra: 

C-Index = 0,83; Sens. = 

0,74; Esp. = 0,75 

Courville et 

al. (2023) 

Meta-análise de 15 estudos 

com 32.721 pacientes com 

TCE 

Idade, ECG, Ácido sérico, Glicose 

anormal, Pupilas, achados 

radiológicos, Hora do atendimento 

Mortalidade hospitalar, 14 

dias, Desfechos adversos 

(GOS) 

SVM ≈ 0,96; ANN ≈ 0,91; 

Árvore ≈ 0,89; Regressão 

logística ≈ 0,83 

Mekkodathil 

et al. (2023) 

922 pacientes com TCE 

internados no Centro de 

Trauma Hamad no Catar 

(2016-2021) 

ECG, ISS, aPTT, PT, INR, 

Hemoglobina, Ácido lático, Sódio, 

Potássio, Cálcio, Magnésio, Fosfato, 

Bicarbonato Mortalidade hospitalar 

SVM = 0,86; RF = 0,86; 

XGBoost = 0,85; 

Regressão logística = 0,84 

Cao et al. 

(2023) 

545.388 pacientes com 

TCE grave isolado do 

banco TQIP (2013-2021) 

Idade, ECG na admissão, AIS da 

cabeça, Hipotensão, Cirrose, 

Hematoma epidural, Índice de 

choque, Saturação de O₂, 

Temperatura, Transfusão de 

concentrado de hemácias Mortalidade hospitalar 

C-index: treino = 0,897; 

teste = 0,896; AUC (≤5 

dias) = 0,917; (≤20 dias) = 

0,813 
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Capítulo 3 

Fundamentos Teóricos 

A fundamentação teórica tem como objetivo apresentar os principais conceitos 

que embasam o desenvolvimento metodológico desta pesquisa. A utilização de técnicas 

de aprendizado de máquina no contexto da saúde, em especial na predição de desfechos 

clínicos, tem ganhado destaque nas últimas décadas, impulsionada pela disponibilidade 

de bases de dados clínicas estruturadas e pela evolução de métodos computacionais 

capazes de lidar com variáveis complexas e interdependentes. 

Neste trabalho, investiga-se a aplicação de modelos de aprendizado 

supervisionado, para a tarefa de predição de mortalidade em até 14 dias em pacientes 

vítimas de traumatismo cranioencefálico. Com isso, esta seção descreve os fundamentos 

relacionados às principais técnicas utilizadas, abrangendo desde as arquiteturas das redes 

convolucionais e seus componentes internos (como camadas convolutivas, funções de 

ativação e técnicas de regularização), até os métodos de otimização utilizados no 

treinamento dos modelos. 

Além disso, também são discutidas as métricas utilizadas para avaliação de 

desempenho, onde ao longo da seção, são utilizados estudos prévios como referência para 

justificar as escolhas metodológicas adotadas, consolidando o embasamento teórico 

necessário para a condução do trabalho. 

3.1 Traumatismo Cranioencefálico 

O Traumatismo Cranioencefálico é uma lesão física no cérebro causada por uma 

força externa, que pode resultar em alterações temporárias ou permanentes na função 

cerebral. Trata-se de um problema de saúde pública global, com estimativas indicando 

que entre 64 e 69 milhões de pessoas no mundo sofrem TCE a cada ano, sendo os 

acidentes de trânsito, quedas e violência as principais causas (Dewan et al., 2019). 

Os impactos do TCE são particularmente graves em países de baixa e média renda, 

onde a limitação de recursos e a desigualdade no acesso a serviços especializados 

contribuem para piores desfechos clínicos (Amorim et al., 2019). Nessas regiões, a 

carência de infraestrutura adequada para o atendimento de urgência e emergência pode 
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ocasionar atrasos no diagnóstico e no início do tratamento, elevando os índices de 

morbimortalidade. No Brasil, por exemplo, regiões remotas como a Amazônia enfrentam 

desafios logísticos que dificultam o transporte ágil de pacientes até centros de referência, 

comprometendo a assistência em tempo oportuno (Nôvo et al., 2023). 

Diversas variáveis clínicas são utilizadas na avaliação da gravidade do TCE e na 

estimativa do prognóstico, incluindo a Escala de Coma de Glasgow, a reatividade pupilar, 

a presença de hipotensão e hipoxia no momento da admissão, e achados tomográficos 

como o desvio da linha média (Steyerberg et al., 2008; Faried et al., 2018). A presença de 

hipotensão e hipoxia, em particular, tem sido amplamente associada à piora dos 

desfechos, sobretudo em pacientes com lesões graves e em ambientes com limitações pré-

hospitalares (Solla et al., 2021; Abujaber et al., 2020). 

Para responder à complexidade clínica do TCE, diversos modelos prognósticos 

foram desenvolvidos ao longo das últimas décadas, como os modelos CRASH e IMPACT. 

Contudo, a aplicabilidade desses modelos em contextos regionais distintos permanece 

limitada, uma vez que fatores como tempo de transporte, sobrecarga hospitalar e 

condições socioeconômicas variam significativamente entre centros urbanos e áreas 

periféricas (Zimmerman et al., 2023). 

Com o avanço da ciência de dados, tem-se intensificado o uso de técnicas de 

aprendizado de máquina para identificar padrões prognósticos a partir de grandes volumes 

de dados clínicos e laboratoriais. Ainda assim, a qualidade e a padronização dos dados 

permanecem como entraves importantes, especialmente em sistemas de saúde com 

registros incompletos ou desatualizados (Guimarães et al., 2022; Warman et al., 2022). 

3.2 Pré-Processamento 

O pré-processamento de dados é uma etapa fundamental em qualquer pipeline de 

aprendizado de máquina, sendo responsável por preparar os dados brutos para a etapa de 

modelagem. Essa fase visa garantir que os dados estejam em um formato adequado, 

reduzindo ruídos, padronizando escalas e lidando com possíveis inconsistências ou 

lacunas que poderiam comprometer o desempenho dos algoritmos. 

Neste trabalho, foram aplicadas duas estratégias principais de pré-processamento: 

a normalização dos dados e o preenchimento de valores ausentes, conforme descrito a 

seguir. 
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3.2.1 Normalização de dados 

A normalização de variáveis contínuas foi realizada utilizando o método Min-

Max, que transforma os valores das variáveis para um intervalo entre 0 e 1. Essa 

abordagem é especialmente útil para redes neurais profundas, como as redes 

convolucionais utilizadas neste estudo, uma vez que evita que atributos com grandes 

amplitudes dominem os pesos durante o processo de treinamento (Zhang et al., 2021). A 

Equação 1 descreve o cálculo: 

𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

Onde 𝑥  representa o valor original, 𝑥𝑚𝑖𝑛 e 𝑥𝑚𝑎𝑥  são o mínimo e máximo da variável, 

respectivamente. 

A normalização é considerada boa prática em tarefas envolvendo atributos com 

escalas heterogêneas, como idade e tempo até a admissão hospitalar, reduzindo o risco de 

instabilidade na retropropagação e contribuindo para uma convergência mais rápida do 

modelo (Hsu et al., 2021). 

3.2.2 Preenchimento com valores para colunas com 

variáveis ausentes 

O segundo passo do pré-processamento consistiu no tratamento de valores 

ausentes. A presença de dados faltantes pode comprometer o desempenho dos algoritmos 

de aprendizado de máquina, especialmente em aplicações clínicas sensíveis. No caso da 

base de dados de São Paulo, os valores ausentes já haviam sido tratados anteriormente 

por Guimarães et al. (2022), que utilizou diferentes estratégias de imputação baseadas na 

natureza das variáveis: preenchimento com a média para variáveis numéricas, e 

preenchimento por métodos supervisionados (como árvores de decisão e KNN) para 

variáveis categóricas, conforme descrito em seu trabalho original. 

Para a base de Manaus, optou-se por um preenchimento simplificado, utilizando 

a moda (valor mais frequente) nas variáveis categóricas. Essa estratégia é considerada 

simples, porém eficaz em manter a consistência dos dados sem introduzir viés 

significativo (Ding et al., 2022). Essa escolha se justifica pelo baixo percentual de dados 

ausentes neste conjunto, sendo inferior a 5% na maioria das variáveis, o que torna 
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desnecessária a aplicação de métodos mais sofisticados, como imputação múltipla, KNN-

imputation ou algoritmos supervisionados, mais indicados quando há perdas superiores a 

10% ou padrões não aleatórios de ausência (Little & Rubin, 2019). 

3.3 Análise de correlação 

A análise de correlação é uma etapa importante na compreensão da influência de 

variáveis de entrada sobre a variável-alvo. Essa etapa permite identificar relações lineares 

ou não lineares entre os atributos, auxiliando tanto na seleção de variáveis quanto na 

interpretação de resultados dos modelos preditivos. 

Duas abordagens foram utilizadas neste estudo: a análise estatística clássica por 

meio do coeficiente de correlação de Pearson e uma análise baseada em interpretabilidade 

de modelos via SHapley Additive exPlanations (SHAP). 

3.3.1 Coeficiente de Pearson 

O coeficiente de correlação de Pearson (𝑟 ) mede a intensidade e a direção da 

relação linear entre duas variáveis numéricas. Seu valor varia entre -1 e 1, indicando, 

respectivamente, correlação negativa perfeita, nenhuma correlação ou correlação positiva 

perfeita. Trata-se de uma das medidas mais tradicionais para análise de dependência entre 

variáveis, sendo amplamente empregada em estudos estatísticos e computacionais 

(Rodgers & Nicewander, 1988). 

A Equação 1 expressa o cálculo de 𝑟: 

𝑟 =
∑ (𝑥𝑖  −  𝑥̄)(𝑦𝑖  −  ȳ)𝑛

𝑖=1

√∑ (𝑥𝑖  −  𝑥̄)2 ·  ∑ (𝑦𝑖 −  ȳ)2𝑛
𝑖=1

𝑛
𝑖=1

 

Onde: 

• 𝑥𝑖 e  𝑦𝑖 são os valores das variáveis X e Y, respectivamente, para cada observação 

𝑖; 

• 𝑥̄ e 𝑦̄ representam as médias amostrais de X e Y; 

• 𝑛 é o número total de observações. 

Nesta pesquisa, o coeficiente de Pearson foi utilizado como ferramenta de análise 

exploratória para avaliar o grau de correlação entre cada variável de entrada e a variável 
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de saída. Tal análise auxilia na identificação de atributos com maior relevância estatística 

potencial para o modelo preditivo. 

3.3.2 SHapley Additive exPlanations (SHAP) 

O SHapley Additive exPlanations é uma técnica de interpretabilidade de modelos 

baseada na teoria dos jogos cooperativos, especificamente nos valores de Shapley. Essa 

abordagem permite atribuir a cada variável de entrada uma contribuição justa e 

consistente para a predição de um modelo de aprendizado de máquina. 

Formalmente, o valor de Shapley para uma variável 𝑖 é definido como: 

𝜙𝑖 =  ∑
|𝑆|!  ⋅ (|𝑁| −  |𝑆| −  1)!

|𝑁|!
     [ 𝑓(𝑆 ∪ {𝑖}) −  𝑓(𝑆)]

{𝑆 ⊆𝑁 ∖{𝑖}}

 

Onde: 

• 𝑁 representa o conjunto de todas as variáveis preditoras; 

• 𝑆 é um subconjunto de 𝑁que não inclui 𝑖; 

• 𝐹(𝑆) é a predição do modelo considerando apenas as variáveis de 𝑆; 

• 𝑓(𝑆 ∪ {𝑖}) −  𝑓(𝑆) é a contribuição marginal da variável 𝑖; 

• O fator multiplicativo pondera cada subconjunto com base em seu tamanho. 

Esse valor representa a média ponderada da contribuição marginal da variável 𝑖 , 

considerando todos os contextos possíveis de interação com outras variáveis do modelo 

(Lundberg & Lee, 2017). 

Entre as principais propriedades do SHAP destacam-se: 

• Justiça e consistência: se a contribuição de uma variável aumenta em um modelo, 

seu valor SHAP também aumenta; 

• Aditividade: a soma dos valores SHAP de todas as variáveis corresponde à 

diferença entre a predição da instância e a média global do modelo; 

• Aplicabilidade genérica: o método é independente do tipo de modelo, podendo ser 

aplicado tanto em redes neurais quanto em árvores de decisão, regressões ou 

ensembles (XAI Tutorials, 2024). 
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Na prática, os valores de SHAP permitem gerar visualizações que tornam o 

comportamento do modelo mais transparente: 

• O bar plot mostra a importância média absoluta de cada variável para todas as 

predições; 

• O summary plot exibe a distribuição dos valores SHAP por variável, incluindo 

também a direção (positiva ou negativa) de cada impacto. 

Essas representações são fundamentais em contextos onde a interpretabilidade é 

exigida, como aplicações clínicas, financeiras ou jurídicas. 

 

3.4 Algoritmos Clássicos de Aprendizado de Máquina 

Nesta seção, são descritos os dois algoritmos de aprendizado supervisionado 

utilizados como modelos comparativos em relação ao modelo principal baseado em redes 

neurais convolucionais. Os métodos escolhidos foram: Regressão Logística e Árvore 

Randômica (Floresta randômica), ambos amplamente utilizados em tarefas de 

classificação binária e conhecidos por sua robustez e interpretabilidade.  

3.4.1 Regressor logístico 

A regressão logística é um modelo estatístico amplamente utilizado para tarefas 

de classificação binária. Seu objetivo é estimar a probabilidade de uma observação 

pertencer a uma das duas classes possíveis, utilizando como função de ativação a 

sigmoide logística. A equação da regressão logística é dada por: 

𝑃( 𝑌 = 1 ∣ 𝑋 ) =  
1

1 +  𝑒−(𝛽0+ 𝛽1𝑥1+ ⋯+ 𝛽𝑛𝑥𝑛)
 

Onde: 

• 𝑃( 𝑌 = 1 ∣ 𝑋 ) é a probabilidade prevista da classe positiva; 

• 𝛽0 é o intercepto (bias); 

• 𝛽1, ⋯ , 𝛽𝑛 são os coeficientes associados às variáveis 𝑥1, ⋯ , 𝑥𝑛. 

Durante o treinamento, os coeficientes são ajustados para minimizar a função de 

custo log-loss (entropia cruzada), que penaliza predições incorretas com maior 
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intensidade. Por ser um modelo linear, sua performance pode ser limitada em problemas 

com alta não-linearidade, mas apresenta bons resultados quando as variáveis são 

informativas e as classes são separáveis (Hosmer et al., 2013). 

A Figura 1 ilustra o funcionamento do modelo: 

 

Figura 1: Arquitetura do regressor logístico 

Fonte: adaptado de Khan et al. (2021) 

3.4.2 Árvore randômica 

O algoritmo de Árvore Randômica (Floresta randômica) é uma técnica de 

aprendizado de máquina baseada em ensemble learning, que combina a predição de 

múltiplas árvores de decisão para produzir um resultado mais robusto e estável. Cada 

árvore é construída a partir de um subconjunto aleatório do conjunto de dados de 

treinamento, e cada nó é dividido com base em um subconjunto aleatório de atributos. 

Ao final do processo, a predição do modelo é obtida por meio de uma votação majoritária 

(no caso de classificação) ou pela média das saídas das árvores (no caso de regressão). 

Essa abordagem reduz a variância do modelo e aumenta sua capacidade de generalização, 

além de fornecer métricas de importância das variáveis utilizadas. 

A Figura 2 ilustra o funcionamento geral do algoritmo: 
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Figura 2: Algoritmo do modelo da arvore randômica 

Fonte: adaptado de InfoAryan (2022). 

Essa representação destaca o paralelismo das árvores e o processo de agregação 

dos resultados. A diversidade introduzida pelas amostras e atributos aleatórios ajuda a 

evitar o sobre ajuste (overfitting), uma limitação comum de modelos baseados em uma 

única árvore de decisão (Breiman, 2001). 

3.5 Redes Neurais Artificiais 

As Redes Neurais Artificiais (RNAs) constituem um dos pilares fundamentais do 

aprendizado profundo. Inspiradas no funcionamento do sistema nervoso biológico, essas 

redes são compostas por unidades de processamento denominadas neurônios artificiais, 

que se organizam em camadas conectadas entre si por pesos sinápticos. A primeira 

camada recebe os dados de entrada, enquanto as camadas intermediárias — chamadas 

ocultas — são responsáveis por extrair e transformar características progressivamente 

mais abstratas, até que a última camada forneça a saída desejada, seja uma classe, um 

valor ou uma distribuição. 

Cada neurônio realiza uma combinação linear ponderada das entradas recebidas 

e, em seguida, aplica uma função de ativação não linear, como ReLU, Leaky ReLU, 
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tangente hiperbólica ou sigmoide, a fim de permitir que a rede aprenda relações 

complexas e não lineares. A equação geral da ativação de um neurônio é expressa por: 

𝑦 =  𝜙 (∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

+  𝑏) 

(𝐼 ∗ 𝐾)(𝑖, 𝑗) = 𝑚∑𝑛∑𝐼(𝑖 + 𝑚, 𝑗 + 𝑛) ⋅ 𝐾(𝑚, 𝑛) 

O avanço das RNAs ao longo do tempo culminou no desenvolvimento das 

chamadas redes profundas que contam com múltiplas camadas ocultas, ampliando 

drasticamente a capacidade de modelagem e abstração. Tais modelos são atualmente 

aplicados em tarefas como reconhecimento de fala, diagnóstico médico, processamento 

de imagens e previsão temporal (Goodfellow et al., 2016; LeCun et al., 2015). 

3.6 Rede Neuras Convolucionais 

As Redes Neurais Convolucionais (CNNs) foram projetadas para lidar com dados 

que apresentam estrutura espacial, como imagens e sinais temporais. Ao contrário das 

RNAs tradicionais, em que todos os neurônios são conectados entre si, as CNNs utilizam 

camadas que operam localmente, reduzindo o número de parâmetros e permitindo o 

aprendizado eficiente de padrões espaciais. Desde a proposta da LeNet-5 por LeCun et 

al. (1998), essas redes tornaram-se a espinha dorsal de aplicações em visão computacional 

e processamento de sinais biomédicos. 

As CNNs combinam diversas camadas especializadas, como convolutivas, de 

subamostragem, ativação, regularização e classificação, que, em conjunto, permitem a 

extração automática e hierárquica de características relevantes dos dados de entrada 

3.6.1 Camada Convolutiva 

A camada Convolutiva constitui o alicerce das redes neurais convolucionais 

(CNNs) e é responsável por extrair características relevantes das entradas, sejam imagens, 

sinais ou outros tipos de dados estruturados. Diferentemente das redes neurais totalmente 

conectadas, em que cada neurônio está ligado a todos os neurônios da camada anterior, 

nas camadas convolutivas cada unidade processa uma região local da entrada, reduzindo 

drasticamente o número de parâmetros e permitindo o aprendizado de padrões espaciais. 
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A operação fundamental desta camada é a convolução discreta, definida da 

seguinte forma para uma imagem de entrada e um filtro ou kernel: 

(𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛) ⋅ 𝐾(𝑚, 𝑛)

𝑛𝑚

 

Onde: 

• 𝐼 é a imagem ou matriz de entrada (por exemplo, uma imagem em tons de cinza). 

• 𝐾 o filtro ou kernel convolucional, uma matriz pequena que será aplicada sobre 

III. 

• (𝑖, 𝑗) são as coordenadas do pixel de saída. 

• 𝑚, 𝑛 os índices que percorrem os elementos do kernel. 

• (𝐼 ∗ 𝐾)(𝑖, 𝑗) se refere ao valor do pixel na saída da convolução na posição  

Nesta equação, denota a posição do pixel na imagem de saída, e os somatórios 

percorrem os elementos do kernel. O resultado é um mapa de ativação que destaca a 

presença de padrões aprendidos pelo filtro, como bordas, texturas e formas mais 

complexas nas camadas mais profundas (Lecun et al., 1998; Goodfellow et al., 2016). 

A Figura 3 ilustra o processo de convolução em redes neurais, no qual o kernel é 

aplicado sobre a imagem de entrada para produzir um novo valor de pixel por meio da 

soma ponderada dos vizinhos (Nvidea, 2024). 

 

Figura 3: Exemplo do funcionamento da operação de convolução em uma rede neural 

convolucional (CNN), mostrando o alinhamento do kernel sobre a entrada e o cálculo 

do novo valor de pixel. 

Fonte: adaptado de Nvidia (2024) 
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3.6.2 Camada de Subamostragem (Pooling) 

A camada de pooling, ou subamostragem, tem como principal objetivo reduzir a 

dimensionalidade espacial dos mapas de ativação produzidos pelas camadas 

convolutivas. Isso contribui para a redução de parâmetros, melhora da generalização e 

maior robustez a variações na posição dos padrões detectados. 

As operações mais comuns de pooling são: 

• Max Pooling: seleciona o maior valor em cada região local. 

• Average Pooling: calcula a média dos valores da região. 

A operação de max pooling pode ser descrita como: 

𝑌(𝑖, 𝑗) = 𝑚𝑎𝑥(𝑚,𝑛)∈𝑅(𝑖,𝑗)𝑋(𝑚, 𝑛) 

Onde: 

• 𝑋 é o mapa de ativação de entrada da camada de pooling. 

• 𝑌(𝑖, 𝑗) o valor de saída da operação de pooling na posição (𝑖, 𝑗). 

• 𝑅(𝑖, 𝑗)  é a região (janela) de tamanho fixo (geralmente 2×2) da entrada 𝑋 , 

associada à posição (𝑖, 𝑗). 

• (𝑚, 𝑛) índices dos elementos dentro da janela. 

A Figura 4 apresenta uma comparação visual entre as técnicas de max pooling e 

average pooling, aplicadas a uma matriz de entrada. No max pooling, o valor máximo de 

cada região é preservado, destacando os elementos mais relevantes do mapa de ativação. 

Já no average pooling, a média dos valores é computada, resultando em uma suavização 

das características extraídas. Ambas as abordagens são amplamente utilizadas para 

reduzir a dimensionalidade e aumentar a robustez do modelo a pequenas variações 

espaciais (Nehme, 2023). 
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Figura 4: Comparação entre as operações de max pooling e average pooling, aplicadas 

sobre uma matriz 4×4 com janelas 2×2. 

Fonte: Nehme (2023). 

3.6.3 Camada de Dropout 

A técnica de dropout foi proposta por Srivastava et al. (2014) como um método 

de regularização para evitar overfitting em redes neurais profundas. Essa camada atua de 

forma estocástica durante o treinamento, desativando aleatoriamente uma fração dos 

neurônios da camada anterior, evitando adaptação excessiva dos pesos. 

A ativação de cada neurônio com dropout é dada por: 

ℎ̃𝑖 = ℎ𝑖 ⋅ 𝑧𝑖 𝑐𝑜𝑚 𝑧𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1 − 𝑝) 

Onde: 

• ℎ𝑖 refere a saída do neurônio 𝑖 antes da aplicação do dropout. 

• ℎ̃𝑖 é a saída do neurônio 𝑖 após a aplicação do dropout. 

• 𝑧𝑖 é uma variável aleatória com distribuição de Bernoulli que assume valor 1 com 

probabilidade 1 − 𝑝 e 0 com probabilidade 𝑝. 

• 𝑝 é a taxa de dropout, ou seja, fração de neurônios desativados aleatoriamente 

durante o treinamento. 

A Figura 5 ilustra a diferença entre uma rede neural padrão e a mesma rede com aplicação 

da técnica de dropout, conforme proposta por Srivastava et al. (2014). Observa-se que 

alguns neurônios são desativados aleatoriamente durante o treinamento, o que reduz o 

risco de overfitting e melhora a generalização do modelo. 
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Figura 5: Comparação entre rede neural padrão(a) e rede com aplicação de dropout (b) 

Fonte: adaptado de Srivastava et al. (2014). 

3.6.4 Camada de unidades Retificadoras Lineares (ReLU) 

As funções de ativação são componentes essenciais nas redes neurais, e a função 

ReLU (Rectified Linear Unit) tornou-se padrão de fato nas CNNs modernas. Ela introduz 

não linearidades nos modelos com baixo custo computacional. 

A função ReLU é definida como: 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 

Ela resolve o problema do gradiente desaparecendo que afetava funções como 

sigmoid ou tanh, e acelera a convergência do treinamento. ReLU também promove 

esparsidade na saída, o que pode melhorar a capacidade de generalização. 

A Figura 6 apresenta as funções de ativação mais comuns utilizadas em redes 

neurais profundas: sigmoid, tanh, ReLU e Leaky ReLU.  
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Figura 6: Representação gráfica das funções de ativação: (a) Sigmoid, (b) Tanh, (c) 

ReLU e (d) Leaky ReLU. 

Fonte: Yang et al. (2023). 

O uso de ReLU pode levar ao problema do "neurônio morto", quando valores 

negativos persistem em uma determinada unidade, que então nunca mais atualiza seus 

pesos. Para mitigar isso, variantes como Leaky ReLU e Parametric ReLU são utilizadas 

(Nair & Hinton, 2010). 

 

3.6.5 Regularização L2 

A regularização L2, também conhecida como weight decay, é uma técnica clássica 

de controle de complexidade do modelo, penalizando pesos excessivamente grandes. Ela 

é aplicada na função de perda, adicionando um termo proporcional ao quadrado da norma 

dos pesos: 

𝐽(𝜃) = 𝐽0(𝜃) + 𝜆 ∑ 𝜃𝑖
2

𝑖
 

Onde: 

• 𝐽(𝜃) é a função de custo regularizada. 

• 𝐽0(𝜃) a função de custo original (como cross-entropy ou MSE). 

• 𝜃𝑖 é o parâmetro (peso) 𝑖-ésimo da rede neural. 
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• 𝜆  o hiper parâmetro de regularização L2, que controla a intensidade da 

penalização. 

Esse termo adicional força os pesos a se manterem pequenos, promovendo 

modelos mais simples e menos propensos ao overfitting. Segundo Goodfellow et al. 

(2016), L2 é especialmente eficaz quando combinada com outras técnicas como dropout 

e data augmentation. 

3.7 Métodos de Otimização 

A escolha do otimizador influencia diretamente a velocidade de convergência e a 

qualidade da solução encontrada por uma rede neural. Diversos algoritmos têm sido 

propostos com o objetivo de aprimorar o processo de atualização dos pesos, incorporando 

estratégias como momento, adaptação da taxa de aprendizado e regularização implícita. 

A seguir, são descritos três dos métodos de otimização mais utilizados em redes neurais 

profundas. 

3.7.1 Estimativa Dinâmica Adaptativa (Adam) 

O otimizador Adam (Adaptive Moment Estimation) combina as vantagens do 

RMSProp e do Gradiente Descendente com Momento. Ele mantém estimativas dos 

primeiros e segundos momentos do gradiente, permitindo atualizações adaptativas para 

cada parâmetro. 

As atualizações de peso são realizadas conforme as equações: 

1. Média móvel dos gradientes: 

𝑚𝑡 = 𝛽1 ⋅ 𝑚𝑡 − 1 + (1 − 𝛽1) ⋅ 𝑔𝑡 

2. Média móvel dos quadrados dos gradientes: 

𝑣𝑡 = 𝛽2 ⋅ 𝑣𝑡−1 + (1 − 𝛽2) ⋅ 𝑔𝑡
2 

3. Correções de viés: 

𝑚̂𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡  ;  𝑣𝑡 =

𝑣𝑡

1 − 𝛽2
𝑡 

4. Atualização dos pesos: 
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𝜃𝑡+1 = 𝜃𝑡 − 𝜂 ⋅
𝑚̂𝑡

√𝑣𝑡 + 𝜖
 

Onde: 

• 𝑔𝑡 é o gradiente no passo; 

• 𝑚𝑡 é a média móvel do gradiente (momento); 

• 𝑣𝑡 é a média móvel dos quadrados do gradiente; 

•  𝛽1, 𝛽2 são os coeficientes de decaimento (tipicamente 0.9 e 0.999); 

• 𝜖 é um pequeno valor para evitar divisão por zero; 

•  𝜂 é a taxa de aprendizado. 

O Adam é robusto e eficiente, sendo amplamente usado em problemas com 

grandes conjuntos de dados e arquiteturas profundas (Kingma & Ba, 2015). 

3.7.2 Propagação da Raiz Média Quadrática (RMSProp) 

RMSProp foi proposto por Tieleman & Hinton (2012) e é uma modificação do 

método Adagrad. Seu objetivo é resolver o problema da rápida diminuição da taxa de 

aprendizado do Adagrad ao acumular os quadrados dos gradientes em média móvel 

exponencial, sendo essas descritas pelas equações: 

1. Média móvel dos quadrados dos gradientes: 

𝑣𝑡 = 𝛾 ⋅ 𝑣𝑡−1 + (1 − 𝛾) ⋅ 𝑔𝑡
2 

2. Atualização dos pesos: 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 ⋅
𝑔𝑡

√𝑣𝑡 + 𝜖
 

Onde: 

• 𝛾 é fator de decaimento (ex: 0.9); 

•  𝑣𝑡 é a média móvel dos quadrados dos gradientes; 

•  𝑔𝑡 é o gradiente atual. 
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Esse método é eficaz para problemas com dados não estacionários, como séries 

temporais e processamento de sinais (Tieleman & Hinton, 2012). 

3.7.3 Gradiente Descendente Estocástico com Momento 

(SGDM) 

O SGDM (Stochastic Gradient Descent with Momentum) adiciona um termo de 

"momentum" que suaviza as atualizações, acumulando gradientes passados para evitar 

oscilações excessivas, sendo descrita pelas equações: 

1. Atualização do vetor de momento: 

𝑣𝑡 = 𝜇 ⋅ 𝑣𝑡−1 − 𝜂 ⋅ 𝛻𝐽(𝜃𝑡) 

 

2. Atualização dos pesos: 

𝜃𝑡+1 = 𝜃𝑡 + 𝑣𝑡 

Onde: 

• 𝜇 é o coeficiente de momento (ex: 0.9); 

• 𝜂 é a taxa de aprendizado; 

• 𝛻𝐽(𝜃𝑡) é o gradiente da função de custo. 

O uso do momento permite um avanço mais estável e rápido nas direções de 

menor curvatura da função de perda (Qian, 1999). 

Esses métodos são frequentemente combinados com técnicas de normalização e 

regularização para alcançar um melhor desempenho em redes convolucionais profundas. 

3.8 Métricas para avaliação 

Esta seção apresenta as métricas utilizadas para avaliar o desempenho dos 

modelos de classificação, são descritas a seguir as principais métricas adotadas neste 

estudo: acurácia, F1-score, área sob a curva ROC (AUC) e a matriz de confusão para uma 

análise visual dos resultados. 

Considerando: 
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• 𝑉𝑃: número de verdadeiros positivos 

• 𝑉𝑁: número de verdadeiros negativos 

• 𝐹𝑃: número de falsos positivos 

• 𝐹𝑁: número de falsos negativos 

Temos: 

• Acurácia: 

𝐴𝑐𝑢𝑟á𝑐𝑖𝑎 =
𝑉𝑃+𝑉𝑁

𝑉𝑃+𝑉𝑁+𝐹𝑃+𝐹𝑁
 ; Proporção de previsões corretas sobre o total de 

amostras avaliadas. 

• F1-score: 

𝐹1 =
2 ⋅ 𝑉𝑃

2 ⋅ 𝑉𝑃+𝐹𝑃+𝐹𝑁
 ; Média harmônica entre precisão e revocação, útil quando há 

desbalanceamento entre classes. 

• Área sob a Curva ROC (AUC): 

𝐴𝑈𝐶 = ∫ 𝑅𝑒𝑣𝑜𝑐𝑎çã𝑜(𝑇) ⋅ 𝐸𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑑𝑎𝑑𝑒′(𝑇)𝑑𝑇
∞

−∞
 ; Probabilidade de que o 

classificador atribua uma maior pontuação a uma instância positiva do que a uma 

negativa escolhida aleatoriamente (Fawcett, 2006). 

• Matriz de Confusão: 

Representação tabular dos acertos e erros do modelo. Para problemas binários, 

organiza os valores de VP, VN, FP e FN, permitindo visualizar com clareza os tipos 

de erro e acerto. 

Essas métricas, combinadas, fornecem uma avaliação abrangente do desempenho dos 

modelos, especialmente em contextos sensíveis como aplicações médicas ou de 

segurança, onde o custo de um erro pode ser elevado. 
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Capítulo 4 

Materiais e Métodos 

Esta seção descreve os conjuntos de dados utilizados, as técnicas de pré-

processamento aplicadas, a arquitetura das redes neurais desenvolvidas, o ambiente 

computacional adotado e as estratégias de treinamento e avaliação empregadas. 

4.1 Materiais 

Este estudo utilizou dois conjuntos de dados clínicos distintos para a tarefa de 

predição da mortalidade em 14 dias em pacientes com traumatismo cranioencefálico 

(TCE), por meio da aplicação de modelos de aprendizado de máquina. O primeiro 

conjunto de dados foi obtido a partir de pacientes atendidos no Hospital das Clínicas da 

Universidade de São Paulo (HC-FMUSP), com período de coleta compreendido entre 

março de 2012 e janeiro de 2015, e acompanhamento finalizado em junho de 2015. O 

Comitê de Ética em Pesquisa da Universidade de São Paulo (São Paulo, Brasil) aprovou 

este estudo (CAAE 46831315.3.0000.0068). A base paulista contém um total de 517 

registros válidos, com 15 variáveis preditoras organizadas em quatro categorias 

principais: 

1. Demográficas: gênero (masculino ou feminino) e idade (em anos); 

2. Clínicas: reatividade pupilar na admissão (bilateral reagente, uma ou duas pupilas 

fixas), escala de coma de Glasgow (GCS) no local do trauma (leve, moderada ou 

grave), GCS na admissão (idem), escore motor da GCS (1 a 6), presença de 

hipóxia (sim ou não), e hipotensão na admissão (sim ou não). Considera-se como 

hipotensão uma pressão arterial sistólica < 90 mmHg, e como hipóxia, saturação 

de oxigênio < 90%, conforme diretrizes da Brain Trauma Foundation; 

3. Tomográficas: presença de desvio de linha média superior a 5 mm (sim ou não), 

hemorragia subaracnóidea (TSAH), hematoma epidural, hemorragia subdural e 

hemorragia intracerebral, todas com codificação binária; 

4. Laboratoriais: tempo de protrombina (em segundos) e razão do tempo de 

tromboplastina parcial ativado (rAPTT). 
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O segundo conjunto de dados foi coletado em Manaus (Amazonas), entre maio de 

2020 e julho de 2021, em um centro hospitalar terciário. Este estudo foi aprovado pelo 

Comitê de Ética em Pesquisa da Universidade Federal do Amazonas (UFAM) (CAAE: 

25366619.1.0000.5020). A base manauara inclui 469 registros e, além das mesmas 15 

variáveis utilizadas na base paulista, incorpora duas variáveis contextuais adicionais: 

• Tempo entre o trauma e a admissão hospitalar, medido em horas; 

• Indicador de coleta durante a pandemia da COVID-19, binário (0 = fora da 

pandemia; 1 = durante a pandemia). 

A justificativa para a presença exclusiva dessas duas variáveis na base de Manaus 

está relacionada às peculiaridades logísticas da região Norte. Manaus é a única cidade do 

estado com capacidade de atendimento neurocirúrgico de emergência. Pacientes oriundos 

do interior geralmente são transportados por meios fluviais ou aéreos, resultando em um 

tempo médio de deslocamento de aproximadamente 67,1 horas até a chegada ao centro 

especializado (Nôvo et al., 2023). Esse cenário contrasta fortemente com o de São Paulo, 

que conta com ampla rede rodoviária e diversos centros especializados distribuídos em 

sua malha urbana e interiorana. A inclusão da variável indicativa da pandemia visa avaliar 

o impacto da sobrecarga hospitalar sobre os desfechos clínicos desses pacientes. 

Ambos os conjuntos de dados foram armazenados em arquivos CSV estruturados 

e submetidos aos seguintes critérios de inclusão: (i) assinatura do termo de consentimento 

livre e esclarecido por parte do paciente ou responsável legal; (ii) presença de alterações 

na tomografia computadorizada de crânio; (iii) GCS ≤ 14 após estabilização na 

emergência; e (iv) idade superior a 14 anos. Os critérios de exclusão incluíram pacientes 

transferidos de outras unidades de terapia intensiva (UTI), com hematoma subdural 

crônico, ou com pupilas fixas bilaterais e GCS igual a três, sem resposta após manobras 

de ressuscitação cardiopulmonar. 

A Tabela 2 apresenta o resumo das variáveis utilizadas nos dois bancos de 

dados, com seus respectivos tipos e faixas de valores. 
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Tabela 2: Variáveis utilizadas na predição de mortalidade em 14 dias 

Classe Variável Tipo 

Intervalo / 

Categoria 

Demográfica Gênero Categórica 0 – 1 

 
Idade Numérica 16 – 99 

 
Pandemia (exclusiva de Manaus) Categórica 0 – 1 

Clínica Reatividade pupilar Categórica 0 – 2 

 
GCS no local do trauma Categórica 1 – 3 

 
GCS na admissão Categórica 1 – 3 

 
Escore motor (GCS) Categórica 1 – 6 

 
Hipóxia Categórica 0 – 1 

 
Hipotensão na admissão Categórica 0 – 1 

 

Tempo trauma-admissão 

(Manaus) 

Numérica 

(horas) 0h – 12h 

Tomográfica Desvio de linha média (>5 mm) Categórica 0 – 1 

 
Hemorragia subaracnoidea (CT) Categórica 0 – 1 

 
Hematoma epidural (CT) Categórica 0 – 1 

 
Hemorragia subdural (CT) Categórica 0 – 1 

 
Hemorragia intracerebral (CT) Categórica 0 – 1 

Por fim, a Figura 7 mostra a proporção de pacientes que evoluíram a óbito em até 

14 dias em cada base. Em São Paulo, a mortalidade foi de 22,82%, enquanto em Manaus, 

atingiu 27%. Um teste qui-quadrado realizado para avaliar a diferença entre as proporções 

revelou um valor de 𝑥2 = 2,38, o qual não foi estatisticamente significativo ao nível de 

5% (𝑥𝑐𝑟í𝑡𝑖𝑐𝑜
2 = 3,84, gl = 1). 
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Figura 7: Distribuição da mortalidade em 14 dias por base de dados 

4.2 Métodos 

   Essa sessão tem como foco a apresentação dos métodos utilizados essas sendo 

apresentadas no diagrama de blocos da Figura 8, passando desde os pré-processamentos 

feitos, toda a definição de ajustes de modelos para serem feitos os treinamentos até a parte 

final onde são obtidos os resultados 

 

Figura 8: fluxograma da metodologia 
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4.2.1 Pré-Processamento 

Essa fase buscou garantir a consistência, completude e escalabilidade dos dados, 

possibilitando que os modelos de aprendizado fossem treinados de forma eficaz, com 

menor risco de viés ou overfitting decorrente de ruído ou dados inconsistentes. 

A base de dados de São Paulo apresentou cerca de 18% de amostras com ao menos 

uma variável ausente. Variáveis como hipóxia e GCS pré-hospitalar apresentaram maior 

proporção de valores faltantes, exigindo estratégias diferenciadas para tratamento. Em 

contraste, a base de Manaus mostrou-se mais completa, com aproximadamente 2% das 

amostras contendo dados incompletos. 

O pré-processamento dos dados de São Paulo foi descrito previamente por 

Guimarães et al. (2022), e as mesmas diretrizes foram aplicadas na base de Manaus para 

assegurar uniformidade no tratamento dos dados. O preenchimento de valores ausentes 

foi conduzido conforme o tipo da variável: 

• Para variáveis categóricas, foram utilizadas abordagens baseadas em algoritmos 

de aprendizado supervisionado como árvore de decisão, floresta aleatória 

(Floresta randômica) e k-vizinhos mais próximos (k-NN); 

• Para variáveis numéricas, foram aplicados métodos de imputação por regressão 

linear, além de uso de modelos baseados em árvore e Floresta randômica; 

• Variáveis com porcentagem mínima de ausência foram imputadas por medidas 

estatísticas simples, como a média ou a moda. 

Após o preenchimento dos valores ausentes, os dados passaram por uma etapa de 

normalização, essencial para modelos sensíveis à escala, como redes neurais. A 

normalização adotou múltiplas técnicas conforme o perfil da variável: 

• Min-Max Scaling: para compressão de valores entre 0 e 1; 

• Z-score normalization: para centralização e padronização de variáveis contínuas; 

• Transformação cúbica: aplicada em variáveis com distribuição assimétrica severa. 

Além disso, todas as variáveis categóricas foram transformadas por codificação 

one-hot (vetores com apenas uma coordenada igual a 1 e as outras, iguais a 0), exceto nos 

casos em que a arquitetura do modelo aceitava diretamente entradas categóricas 
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indexadas. Esse tratamento resultou em um vetor de atributos numéricos compatível com 

as arquiteturas convolucionais adotadas neste trabalho. 

Por fim, os dados foram estratificados e divididos em subconjuntos de treinamento 

(80%) e teste (20%), mantendo a proporção original de pacientes sobreviventes e não 

sobreviventes em 14 dias. Essa divisão estratificada foi crucial para evitar distorções de 

distribuição de classes durante o treinamento e avaliação dos modelos. 

4.2.2 Definição dos modelos de predição 

A definição dos modelos de predição empregados neste trabalho foi guiada por 

dois objetivos principais: (i) avaliar a capacidade discriminativa de algoritmos clássicos 

de aprendizado supervisionado, frequentemente utilizados em contextos médicos; e (ii) 

explorar o potencial das redes neurais convolucionais (CNNs), originalmente projetadas 

para tarefas em domínio de imagens, na modelagem de dados clínicos estruturados. 

Inicialmente, foram empregados três modelos de referência que representam 

diferentes paradigmas de modelagem: 

• Regressão Logística (RL): modelo linear amplamente consolidado em aplicações 

clínicas devido à sua interpretabilidade e boa robustez estatística. É utilizado 

como baseline em diversos estudos relacionados à predição de desfechos em TCE 

(Raj et al., 2013). 

• Floresta randômica (RF): algoritmo baseado em múltiplas árvores de decisão 

agregadas por voto majoritário. Tem sido eficaz em problemas com variáveis 

mistas e ausência de linearidade (Breiman, 2001). 

• Perceptron Multicamadas (MLP): rede neural densa com múltiplas camadas 

ocultas e funções de ativação não lineares, aplicada como transição entre modelos 

estatísticos e redes convolucionais profundas (Lecun et al., 2015). Neste estudo 

a rede MLP foi projetada é apresentada na Figura 9 onde sua configuração 

consiste em uma primeira camada oculta com 128 neurônios e a segunda com 

64 neurônios, ambas utilizando a função de ativação ReLU com camadas de 

dropout com taxa de 0,2 após cada camada oculta. A camada final, responsável 

pela classificação binária, contém um único neurônio com ativação sigmoide. 
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Figura 9: Arquitetura da rede MLP utilizada para predição de mortalidade em 14 dias 

para paciente com TBI 

As redes convolucionais têm se destacado não apenas em tarefas visuais, mas 

também em problemas envolvendo dados tabulares, ao se adaptarem para capturar 

padrões espaciais ou ordenamentos implícitos. Diversos trabalhos recentes apontam para 

a aplicabilidade de CNNs em contextos médicos com alto grau de dimensionalidade e 

correlação entre atributos (Krizhevsky et al., 2012; Shickel et al., 2018). 

Neste estudo, foram desenvolvidas e comparadas duas arquiteturas distintas: 

• CNN1 – Arquitetura paralela: inspirada na estrutura Inception (Szego et al., 2015), 

esta rede utiliza múltiplos filtros convolucionais 1D de tamanhos variados (2, 3, 

4) aplicados em paralelo à entrada. O objetivo é permitir a captura de relações 

locais de diferentes escalas entre os atributos clínicos. Os mapas de ativação 

resultantes são concatenados e enviados a uma camada densa com 50 neurônios 

(ativação ReLU), seguida de camada dropout (0,2) e saída com ativação sigmoide. 

• CNN2 – Arquitetura sequencial profunda: utiliza uma sequência de blocos 

convolucionais compostos por convolução 1D, normalização por lote (batch 

normalization) e ativação ReLU. Após dois blocos consecutivos, os dados passam 

por uma camada densa com 50 neurônios, dropout (0,2) e camada de saída 

sigmoide. Essa abordagem favorece o aprendizado hierárquico de representações 

latentes. 
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Uso de duas arquiteturas CNNs diferentes foi aplicado para avaliar métodos de 

extração de características diferentes devido a variação do formato da CNN, esse formato 

é descrito na Figura 10 onde é visto a diferença na robustez da extração de características 

ao utilizar camadas em paralelas para essa atividade. 

 

Figura 10: Arquitetura das redes CNN utilizadas para predição de mortalidade em 14 

dias para paciente de TBI. (a) CNN com arquitetura em paralelo; (b) CNN com 

arquitetura em série  

A escolha por CNNs é corroborada por estudos como o de Razzak et al. (2019), 

que destacam a capacidade dessas redes em superar modelos tradicionais em tarefas 

biomédicas, especialmente quando combinadas com estratégias de regularização e ajuste 

apropriado de hiper parâmetros. Além disso, as CNNs mantêm compatibilidade com 

métodos de interpretabilidade, como SHAP (Lundberg e Lee, 2017), sendo esse 

fundamental para entender o comportamento da base de dados com os melhores modelos 

treinados. 

4.2.3 Ajuste de hiper parâmetros 

O ajuste de hiperparâmetros é uma etapa essencial para garantir o bom 

desempenho e a generalização dos modelos de aprendizado de máquina. Essa fase 
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envolve a escolha criteriosa de parâmetros que não são aprendidos diretamente durante o 

treinamento, mas que influenciam significativamente o comportamento do modelo, como 

taxa de aprendizado, número de épocas, tamanho dos lotes, otimizadores e callbacks. 

O treinamento dos modelos MLP e CNNs foi configurado com um conjunto de 

hiperparâmetros definidos inicialmente com base na literatura e posteriormente refinados 

por meio de experimentação empírica. A taxa de aprendizado utilizada foi de 1e-2 para a 

rede MLP e de 1e-3 para as CNNs. Durante o processo de treinamento, essa taxa foi 

reduzida automaticamente ao se observar estagnação em mínimos locais, até atingir um 

valor mínimo de 1e-6, estratégia que contribuiu para estabilizar a convergência. O número 

de épocas foi fixado em 300, com utilização de callbacks para armazenar o modelo com 

melhor desempenho com base na acurácia obtida no conjunto de validação. 

Foram avaliados diferentes otimizadores nos modelos com redes neurais, entre 

eles: 

• Adam (Adaptive Moment Estimation); 

• RMSProp (Root Mean Square Propagation); 

• SGDM (Stochastic Gradient Descent with Momentum). 

A função de perda adotada foi a entropia cruzada binária, apropriada para tarefas 

de classificação binária. Os melhores conjuntos de hiperparâmetros foram selecionados 

com base nas métricas obtidas nos subconjuntos de validação, priorizando F1-score e 

AUC. Esse processo buscou um equilíbrio entre acurácia e sensibilidade, promovendo a 

robustez dos modelos diante de diferentes distribuições de entrada. 

4.2.4 Estratégias de Treinamento e Teste 

Cinco estratégias distintas foram utilizadas para avaliar os modelos de 

aprendizado de máquina na predição da mortalidade até 14 dias de pacientes com TCE. 

Essas estratégias tiveram dois objetivos principais: avaliar o desempenho dos modelos e 

avaliar a capacidade de generalização dos mesmos. As estratégias foram desenhadas de 

modo a utilizar diferentes combinações entre as bases de dados de São Paulo e Manaus, 

além de explorar o impacto de variáveis contextuais exclusivas da base de Manaus. 

• Estratégia 1: O modelo é treinado e testado utilizando apenas os dados da base de 

São Paulo. O objetivo é avaliar o desempenho do modelo dentro de um único 

contexto urbano, com 15 variáveis comuns entre os conjuntos. 
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• Estratégia 2: O modelo é treinado e testado utilizando exclusivamente os dados 

da base de Manaus. Essa estratégia permite avaliar o desempenho do modelo em 

um contexto clínico e logístico diferente, inicialmente com 15 variáveis e, 

posteriormente, com a adição de uma ou duas variáveis contextuais exclusivas da 

base de Manaus (variável de pandemia e tempo entre o trauma e a admissão 

hospitalar), totalizando até 17 variáveis. 

• Estratégia 3: O modelo é treinado com os dados da base de São Paulo e testado 

com os dados da base de Manaus. Esta abordagem permite analisar o grau de 

generalização dos modelos quando expostos a um ambiente clínico distinto 

daquele em que foram treinados. 

• Estratégia 4: O modelo é treinado com os dados da base de Manaus e testado com 

os dados da base de São Paulo. Esta estratégia complementa a anterior, também 

avaliando a generalização, mas em direção oposta. 

• Estratégia 5: Os dados de ambas as bases são unificados, e o modelo é treinado e 

testado sobre este conjunto combinado. Esta configuração busca verificar se um 

modelo pode capturar características comuns entre os dois contextos e ainda assim 

manter um bom desempenho. 

A Figura 11 ilustra graficamente a organização e distribuição das cinco estratégias 

aplicadas no estudo. 

 

Figura 11: Fluxograma das estratégias de treinamento e teste adotadas neste trabalho. 
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Capítulo 5 

Resultados e Discussões 

Esta seção apresenta os resultados obtidos a partir da aplicação das cinco 

estratégias de treinamento e teste descritas na Seção 4.2.4, com os diferentes modelos de 

aprendizado de máquina avaliados. Os modelos foram comparados com base nas métricas 

definidas previamente, acurácia, F1-score e AUC, permitindo uma análise detalhada da 

capacidade preditiva de cada abordagem. 

Os resultados são organizados por estratégia e discutidos em termos de desempenho 

relativo entre os modelos mais clássicos (Regressão Logística, Floresta randômica e 

MLP) e as redes convolucionais (CNN1 e CNN2). A análise enfatiza também a 

capacidade de generalização dos modelos, sobretudo nas estratégias que envolvem testes 

cruzados entre as bases de São Paulo e Manaus. 

5.1 Resultados para a estratégia 1 e 2 com 15 variáveis 

preditivas na entrada 

As métricas de desempenho acurácia, F1-score e AUC obtidas nas Estratégias 1 

(base São Paulo) e 2 (base Manaus), utilizando as 15 variáveis preditivas comuns entre 

as bases, esses resultados são apresentados na Tabela 3. A análise dos resultados revela 

que os modelos baseados em redes neurais convolucionais foram significativamente 

superiores aos modelos tradicionais em ambas as bases. 

Os modelos CNN2 e CNN1, ambos utilizando o otimizador RMSProp, 

destacaram-se como os melhores em cada base. Em particular, a CNN2 com RMSProp 

atingiu acurácia de 0,87, F1-score de 0,85 e AUC de 0,90 na Estratégia 1. Já na Estratégia 

2, a CNN1 com RMSProp apresentou acurácia de 0,90, F1-score de 0,89 e AUC de 0,93, 

o maior valor observado entre todos os experimentos realizados. Tais resultados indicam 

não apenas a superioridade das CNNs para a tarefa de predição de mortalidade de 

pacientes com TCE, mas também a efetividade do otimizador RMSProp para este tipo de 

tarefa, especialmente quando aplicado a dados clínicos heterogêneos. 
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Ao comparar diretamente os resultados entre as duas estratégias, nota-se que os 

modelos obtiveram desempenho superior na base de Manaus (Estratégia 2) em relação à 

base de São Paulo (Estratégia 1). Esse comportamento pode ser atribuído a uma maior 

uniformidade e completude dos dados da base manauara, conforme discutido 

anteriormente na Seção 4.2.1. Adicionalmente, observa-se que os modelos mais simples, 

como a regressão logística, apresentaram desempenho inferior, provavelmente por sua 

limitação em capturar relações não lineares entre as variáveis clínicas. 

As matrizes de confusão associadas aos melhores modelos de cada estratégia são 

apresentadas na Figura 12. Na Estratégia 1, o modelo CNN2 + RMSProp obteve uma 

sensibilidade (revocação) de 0,79 e especificidade de 0,89. Já na Estratégia 2, o modelo 

CNN1 + RMSProp alcançou sensibilidade de 0,84 e especificidade de 0,96, evidenciando 

sua elevada capacidade discriminativa, tanto para prever corretamente os óbitos quanto 

para minimizar falsos positivos. 

Tabela 3: Métricas obtidas para as estratégias 1 e 2 com 15 variáveis de entrada  

Modelo de 
machine learning 

Otimizador Estratégia 1 Estratégia 2 

  Acurácia F1 -
Score 

AUC Acurácia F1 -
Score 

AUC 

Regressão Logística - 0,81 0,79 0,83 0,81 0,77 0,79 

Random Forest - 0,81 0,80 0,83 0,82 0,79 0,81 

MLP Adam 0,79 0,76 0,80 0,89 0,88 0,90 

MLP RMSprop 0,80 0,78 0,81 0,88 0,86 0,89 

MLP SGDM 0,80 0,78 0,82 0,87 0,85 0,89 

CNN1 Adam 0,81 0,80 0,83 0,90 0,88 0,91 

CNN1 RMSprop 0,82 0,81 0,84 0,92 0,90 0,93 

CNN1 SGDM 0,80 0,78 0,81 0,88 0,86 0,89 

CNN2 Adam 0,86 0,83 0,89 0,89 0,87 0,90 

CNN2 RMSprop 0,87 0,85 0,90 0,90 0,89 0,91 

CNN2 SGDM 0,85 0,82 0,87 0,87 0,85 0,89 

 



61 

  

(a)          (b) 

Figura 12: Matrizes de confusão para ambas as estratégias: (a) Estratégia 1 com a CNN2 

e o otimizador RMSProp; (b) Estratégia 2 com a CNN1 e o otimizador RMSProp. 

5.2 Resultados para a estratégia 2 com 15, 16, 17 variáveis 

preditoras 

Nesta subseção, são apresentados os resultados obtidos para a Estratégia 2, na qual 

os modelos foram treinados e testados exclusivamente com a base de dados de Manaus. 

Inicialmente, considerou-se o resultado obtido com o conjunto de 15 variáveis preditores 

comuns às duas bases (São Paulo e Manaus). Em seguida, avaliou-se o impacto da adição 

das duas variáveis contextuais exclusivas de Manaus pandemia e tempo entre o trauma e 

a admissão hospitalar resultando em dois cenários com 16 e um com 17 variáveis de 

entrada. 

A Tabela 4 apresenta as métricas de desempenho (acurácia, F1-score e AUC) para 

cada cenário. Observa-se que, com as 15 variáveis iniciais, o melhor desempenho foi 

obtido pelo modelo “CNN1” com o otimizador RMSProp apresentado na Tabela 3. Ao 

adicionar as variáveis separadamente, houve incremento significativo na AUC para 0,97 

em ambos os casos, sugerindo que o uso de variáveis contextuais influencia fortemente 

os desfechos de mortalidade em Manaus. Subsequente a estes testes é feito um 

treinamento com todas as 17 variáveis disponíveis, e de forma similar o ganho da inserção 

de variáveis contextuais mantiveram o ganho, consolidando um AUC de 0,98 no cenário 

com 17 variáveis, o melhor resultado entre todos os experimentos deste estudo. 
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A Figura 13 ilustra a matriz de confusão referente ao modelo com 17 variáveis. 

Nota-se sensibilidade de 0,92 e especificidade de 0,99, evidenciando a elevada 

capacidade do modelo em identificar tanto óbitos quanto sobreviventes de forma 

equilibrada. 

Esses resultados indicam que a inclusão de variáveis contextuais específicas de 

Manaus trouxe ganho expressivo na capacidade preditiva. Isso se deve, possivelmente, à 

forte influência das condições logísticas regionais e do impacto da pandemia sobre os 

fluxos hospitalares e o atendimento emergencial, aspectos já documentados em estudos 

anteriores sobre a região Norte do Brasil. 

Tabela 4: Métricas obtidas para a estratégia 2 com 15, 16 e 17 variáveis de 

entrada com o modelo CNN1 e otimizador RMSProp. 

Variáveis Acurácia F1-Score AUC 

15 variáveis 0,92 0,90 0,93 

15 variáveis + pandemia 0,95 0,94 0,97 

15 variáveis + tempo trauma-
admissão 

0,95 0,96 0,97 

15 variáveis + pandemia e 
tempo trauma-admissão 

0,97 0,96 0,98 

 

 

Figura 13: Matriz de confusão para a Estratégia 2 com 17 variáveis preditoras usando o 

modelo CNN1 e o otimizador RMSProp. 
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5.3 Resultados para a estratégia 3 e 4 

As Estratégias 3 e 4 têm como objetivo avaliar a capacidade de generalização 

cruzada dos modelos. Na Estratégia 3, o treinamento é realizado com a base de São Paulo 

e o teste com a base de Manaus; na Estratégia 4, ocorre o inverso. 

A Tabela 5 apresenta os resultados comparativos para ambas as estratégias, 

utilizando as 15 variáveis preditoras comuns. Nota-se que, em ambos os cenários, houve 

redução significativa do desempenho quando comparados aos resultados obtidos nas 

estratégias 1 e 2 (treinamento e teste na mesma base). O melhor AUC na Estratégia 3 foi 

de 0,53 (CNN1 com RMSProp), enquanto na Estratégia 4 o melhor AUC foi de 0,70 para 

o mesmo modelo. Esses valores contrastam com os AUCs de 0,90 e 0,93 obtidos nas 

estratégias sem foco em generalização. 

Uma análise mais aprofundada revela que o treinamento em Manaus (Estratégia 

4) generalizou melhor para São Paulo do que o inverso. Esse comportamento pode ser 

explicado pela maior variabilidade intrínseca da base de Manaus, que inclui variáveis 

contextuais e cenários logísticos mais extremos (como longos tempos de transferência e 

alta taxa de hipóxia/hipotensão), fornecendo ao modelo uma gama mais ampla de padrões 

clínicos. Em contrapartida, a base de São Paulo, mais homogênea e coletada em um 

período anterior à pandemia, apresentou menor representatividade de condições críticas 

encontradas na Amazônia. 

Tabela 5: Métricas obtidas para as estratégias 3 e 4 com 15 variáveis de entrada  

Modelo de 
machine learning 

Otimizador Estratégia 3 Estratégia 4 

  Acurácia F1 -
Score 

AUC Acurácia F1 -
Score 

AUC 

Regressão Logística - 0,30 0,49 0,51 0,60 0,45 0,61 

Random Forest - 0,33 0,51 0,50 0,64 0,47 0,67 

MLP Adam 0,36 0,52 0,50 0,71 0,50 0,68 

MLP RMSprop 0,36 0,52 0,51 0,70 0,49 0,68 

MLP SGDM 0,35 0,51 0,53 0,69 0,48 0,67 

CNN1 Adam 0,38 0,53 0,52 0,73 0,50 0,69 

CNN1 RMSprop 0,27 0,42 0,52 0,77 0,52 0,70 

CNN1 SGDM 0,35 0,51 0,51 0,71 0,49 0,68 

CNN2 Adam 0,37 0,53 0,52 0,75 0,51 0,70 

CNN2 RMSprop 0,36 0,52 0,52 0,74 0,51 0,69 

CNN2 SGDM 0,35 0,51 0,50 0,73 0,50 0,69 
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5.4 Resultados para a estratégia 5 

A Estratégia 5 consistiu na unificação das bases de São Paulo e Manaus em um 

único conjunto. Essa abordagem buscou verificar se um modelo treinado em dados 

combinados poderia capturar características comuns a ambas as regiões, mantendo 

desempenho satisfatório em um cenário misto. 

Os resultados na Tabela 6 indicam desempenho intermediário: o melhor modelo 

(CNN1 com RMSProp) alcançou AUC de 0,77, superior ao obtido nas estratégias 

cruzadas (3 e 4), mas ainda inferior aos valores observados nas estratégias isoladas (1 e 

2). 

A Figura 14 demonstra distribuição desequilibrada de acertos e erros, com valor 

alto de falsos negativos. A análise sugere que, embora a fusão das bases forneça maior 

volume de dados para treinamento, as diferenças estruturais e contextuais entre as regiões 

ainda impactam o desempenho, reforçando a importância de variáveis regionais para a 

modelagem preditiva. 

Tabela 6: Métricas obtidas para a estratégia 5 com 15 variáveis de entrada 

Modelo de machine learning Otimizador Acurácia F1-Score AUC 

Regressão Logística - 0,90 0,61 0,72 

Random Forest - 0,80 0,57 0,70 

MLP Adam 0,81 0,62 0,72 

MLP RMSprop 0,81 0,62 0,73 

MLP SGDM 0,71 0,12 0,53 

CNN1 Adam 0,81 0,63 0,73 

CNN1 RMSprop 0,83 0,69 0,77 

CNN1 SGDM 0,70 0,09 0,52 

CNN2 Adam 0,81 0,62 0,72 

CNN2 RMSprop 0,80 0,61 0,72 
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Figura 14: Matriz de confusão para a Estratégia 5 com 15 variáveis preditoras usando o 

modelo CNN1 e o otimizador RMSProp. 

 

5.5 Explicação dos resultados 

A análise dos resultados obtidos nas cinco estratégias permite compreender o 

impacto das variáveis preditoras, das características regionais e da complexidade dos 

modelos utilizados. 

Em primeiro lugar, observa-se que as redes neurais convolucionais (CNN1 e 

CNN2) superaram consistentemente os modelos clássicos (Regressão Logística e Floresta 

Randômica), evidenciando a capacidade das CNNs em capturar padrões não lineares e 

interações complexas entre variáveis clínicas e tomográficas. Esse resultado está em 

consonância com a literatura recente, que aponta vantagens do aprendizado profundo em 

problemas biomédicos com múltiplos preditores heterogêneos. 

Outro ponto relevante é a superioridade da base de Manaus quando enriquecida 

com variáveis contextuais exclusivas. A adição das variáveis pandemia e tempo trauma-

admissão aumentou substancialmente o AUC, chegando a 0,98. Isso sugere que modelos 

localmente adaptados são mais eficazes em regiões com desafios logísticos e 

epidemiológicos específicos. 

Em contrapartida, as estratégias de validação cruzada entre bases (3 e 4) 

apresentaram queda acentuada no desempenho, refletindo a baixa generalização inter-
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regional. Tais achados reforçam a existência de características regionais para as mesmas 

variáveis existentes em ambas as bases de dados. 

Para aprofundar a interpretação, foram aplicadas análises complementares com 

coeficiente de Pearson e valores SHAP, detalhadas a seguir. 

5.5.1 Análise por coeficiente de Pearson 

O coeficiente de Pearson foi utilizado para quantificar a correlação linear entre 

cada variável preditora e a mortalidade em 14 dias. As Tabelas 7 e 8 apresentam os 

resultados para as bases de São Paulo e Manaus, respectivamente. 

Na base de São Paulo, a variável reatividade pupilar apresentou a maior correlação 

absoluta com o desfecho (r = -0,373), seguida pela pontuação motora (r = -0,281) e desvio 

de linha média (r = 0,219). Em Manaus, as correlações foram mais intensas: pontuação 

motora (r = -0,654), reatividade pupilar (r = -0,588), hipóxia (r = 0,458), hipotensão (r = 

0,375) e desvio de linha média (r = 0,402). 

A comparação entre as bases evidencia que, em Manaus, há preditores clínicos 

mais fortemente associados ao preditor final, justificando seu desempenho elevado em 

relação a base de São Paulo. Onde é possível encontrar somente uma variável com 

coeficiente superior a 3, enquanto ao trabalharmos com a Base de Manaus é possível 

observar 6 variáveis com esse grau alto de correlação com a classificação. 

Tabela 7: Coeficientes de correlação de Pearson para a Base de São Paulo  

Variável Preditiva Coeficiente de Pearson 

Gênero -0,122 

Idade 0,190 

Reatividade pupilar -0,373 

GCS no local do trauma 0,119 

GCS na admissão 0,121 

Pontuação motora -0,281 

Hipóxia 0,107 

Hipotensão 0,140 

Desvio da linha média 0,219 

Hemorragia subaracnóidea 0,059 

Hematoma epidural 0,080 

Hematoma subdural -0,44 

Hemorragia intracerebral 0,051 
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Tempo de protrombina 0,165 

Tempo de tromboplastina parcial 0,159 

Tabela 8: Coeficientes de correlação de Pearson para a Base de Manaus 

Variável Preditiva Coeficiente de Pearson 

Sexo -0,043 

Idade -0,088 

Reatividade pupilar -0,588 

GCS no local do trauma 0,268 

GCS na admissão 0,580 

Pontuação motora -0,654 

Hipóxia 0,458 

Hipotensão 0,375 

Desvio da linha média 0,402 

Hemorragia subaracnóidea 0,050 

Hematoma epidural -0,094 

Hemorragia subdural 0,263 

Hemorragia intracerebral -0,024 

Tempo de protrombina -0,271 

Tempo de tromboplastina parcial -0,064 

Pandemia 0,107 

Tempo trauma admissão 0,026 

 

5.5.2 Análise por valores de SHAP 

Para avaliar a importância relativa e o impacto direcional de cada variável nas 

predições, foi utilizada a técnica SHAP (SHapley Additive exPlanations). Os gráficos de 

dispersão na Figura 15 ilustram a relevância de cada variável em cada base de dados de 

forma entender como elas afetam a predição final. 

Para a base de São Paulo, os preditores de maior contribuição foram pontuação 

motora, reatividade pupilar, desvio de linha média, GCS na admissão e GCS no local do 

trauma. Já em Manaus, destacaram-se Pontuação motora, reatividade pupilar, hipóxia, 

desvio de linha média e hipotensão. 

Interessantemente, a análise SHAP corroborou em grande parte os achados da 

correlação de Pearson, como hipóxia e hipotensão tiveram impacto preditivo mais 

expressivo em Manaus, ainda que suas correlações lineares não fossem as mais altas em 

São Paulo. 
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Figura 15: Valores de SHAP para previsões do modelo CNN1 com otimizador 

RMSprop. (a) Conjunto de dados de São Paulo, com 15 variáveis de entrada. (b) 

Conjunto de dados de Manaus com 17 variáveis de entrada. 

Com a análise de SHAP é possível observar os preditores mais importantes na 

predição da mortalidade em 15 dias então de forma a provar essa correlação linear 

apresentada nos gráficos de SHAP foram feitos treinamentos somente com os 5 preditores 

mais importantes de cada base, de forma a comprovar a eficácia da analise por esses 

métodos sendo esses apresentados na Tabela 9. 

Tabela 9: Métricas de desempenho para conjuntos de dados de São Paulo e Manaus, 

com seus respectivos melhores preditores. 

Base de dados/ Variáveis Acurácia F1-Score AUC 

São Paulo / pontuação motora, reatividade pupilar, 

desvio da linha média, GCS na admissão e GCS no 

local do trauma 

0,86 0,61 0,87 

Manaus/ pontuação motora, reatividade pupilar, 

hipóxia, desvio da linha média e hipotensão na 

admissão 

0,92 0,83 0,97 

Esses achados sugerem que um conjunto reduzido de variáveis-chave concentra 

grande parte da capacidade discriminativa do modelo, o que, do ponto de vista clínico-

operacional, representa uma vantagem significativa. Modelos com menos entradas 

demandam menor tempo de coleta de dados, apresentam menor incidência de valores 

ausentes e permitem processamento mais rápido, fatores especialmente críticos em 

cenários de emergência e em regiões com recursos limitados. 
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5.6 Discussão 

Os resultados obtidos ao longo das estratégias de treinamento e teste permitem 

uma leitura integrada sobre três dimensões centrais deste estudo: (i) o desempenho 

absoluto dos modelos em cada base; (ii) a capacidade de generalização inter-regional; e 

(iii) a interpretabilidade e qualidade dos preditores mais relevantes. 

Em primeiro lugar, a superioridade consistente das Redes Neurais Convolucionais 

(CNNs) sobre os modelos clássicos, quando treinadas e avaliadas na mesma base, reforça 

a hipótese de que as relações não lineares e as interações entre variáveis clínicas, 

radiológicas e contextuais são determinantes para a captura do risco de mortalidade em 

14 dias. O desempenho das CNNs foi particularmente notável nas Estratégias 1 e 2. Em 

São Paulo, a melhor CNN obteve uma AUC (Área Sob a Curva) superior a 0,90, enquanto 

em Manaus, o desempenho foi ainda mais elevado, com sensibilidade e especificidade 

robustas. Isso sugere que, em contextos mais complexos, como o de Manaus, onde a 

variabilidade logística e assistencial é maior, a inclusão de preditores contextuais como 

“pandemia” e “tempo trauma–admissão” melhora substancialmente a performance do 

modelo, alcançando uma AUC impressionante de 0,98. Este ganho adicional confirma a 

importância de considerar fatores contextuais, que, ao codificar o ambiente, aumentam a 

capacidade do modelo de refletir as particularidades locais e de captar as nuances do risco 

de mortalidade em cenários de alta variabilidade (Oliveira et al., 2021; Lima et al., 2022). 

No segundo eixo, a análise de generalização, realizada nas Estratégias 3 e 4, 

oferece uma mensagem cautelosa, mas também valiosa para a prática de modelagem 

clínica. A queda acentuada no desempenho quando um modelo treinado em uma base 

regional é testado em outra, com a AUC caindo para valores próximos a 0,77, revela um 

desalinhamento nas distribuições das populações. Este decréscimo de desempenho pode 

ser interpretado como uma mudança de conceito que afeta a relação entre preditores e o 

desfecho de interesse. A diferença de características entre as populações de São Paulo e 

Manaus, como os fatores sociais, assistenciais e ambientais, pode levar a uma desconexão 

no modelo, comprometendo sua eficácia em cenários não homogêneos (Gama et al., 2014; 

Kairouz et al., 2021). Essa constatação reforça a necessidade de adaptação local dos 

modelos clínicos, seja por ajuste fino com amostras locais ou pelo uso de técnicas de 

adaptação de domínio, como aprendizado federado (Pan & Yang, 2010; Torrey & Shavlik, 

2010; Li et al., 2020). Esse ponto é especialmente relevante, pois a implementação de 
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modelos globais sem levar em conta as variações regionais pode resultar em perdas 

significativas de precisão e confiabilidade. 

O desempenho intermediário da Estratégia 5, com AUC inferior ao dos melhores 

cenários intrarregionais, reforça a tese de que misturar populações heterogêneas sem 

mecanismos explícitos de estratificação/contextualização pode diluir sinais preditivos 

específicos. Um caminho promissor, portanto, é treinar modelos hierárquicos (Gelman & 

Hill, 2006), ou arquiteturas que incorporem explicitamente um vetor de contexto na 

entrada, como demonstrado no ganho observado em Manaus ao adicionar variáveis 

específicas do cenário. 

Por fim, o terceiro eixo, a interpretabilidade dos modelos, foi abordado por meio 

das análises de SHAP (Lundberg & Lee, 2017) e de Pearson. A interpretação dos 

resultados via Pearson, que resume relações lineares médias entre cada variável e a 

mortalidade, é fundamental para uma visão geral da influência de cada preditor. No 

entanto, os valores de SHAP oferecem uma análise mais detalhada, permitindo entender, 

instância por instância, como cada variável modifica a probabilidade de óbito, 

especialmente em interações não lineares com outros atributos. A complementaridade 

entre ambas as análises fortalece a confiança clínica nas variáveis mais impactantes, como 

pontuação motora, reatividade pupilar, desvio de linha média, hipóxia e hipotensão, que 

emergem como fatores-chave na predição de mortalidade. 

O mais interessante é que, ao restringir o treinamento aos cinco melhores 

preditores de cada base, o desempenho manteve-se muito próximo ao dos cenários com 

maior número de variáveis. Em São Paulo, a AUC foi apenas discretamente inferior ao 

obtido com 15 variáveis, e em Manaus, o modelo com apenas 5 preditores alcançou uma 

AUC de 0,97, quase equivalente ao modelo com 17 variáveis. Esses resultados sugerem 

um fenômeno desejável na modelagem clínica: a informação útil está concentrada em um 

pequeno subconjunto de variáveis, o que não só torna os modelos mais simples e 

interpretáveis, mas também favorece treinamentos mais rápidos e com menos risco de 

sobreajuste, mesmo em amostras moderadas (Guyon & Elisseeff, 2003). 

Essas observações têm implicações diretas para a implementação de modelos em fluxos 

de emergência, onde o tempo e a completude dos dados são frequentemente limitantes. A 

necessidade de múltiplos exames laboratoriais, imagens adicionais ou dados 

administrativos pode atrasar a tomada de decisões, o que em contextos de emergência 

pode ser um obstáculo. Modelos que utilizam um pequeno número de variáveis, mas 
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mantêm alta sensibilidade e especificidade, são intrinsecamente mais viáveis para 

implementação em cenários clínicos reais, onde a rapidez e a eficiência são essenciais. 

Além disso, do ponto de vista estatístico, a redução da dimensionalidade para além do 

“ponto ótimo” ajuda a mitigar o sobreajuste e melhora a estabilidade do treinamento, o 

que foi observado nas comparações entre os cenários com 15 e 17 variáveis em Manaus. 
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Capítulo 6 

Conclusão 

Este trabalho teve como objetivo a aplicação de técnicas de aprendizado de 

máquina, em particular redes neurais convolucionais, para a predição de mortalidade em 

até 14 dias de pacientes com traumatismo cranioencefálico. 

Foi possível identificar que as redes neurais convolucionais apresentaram o 

melhor desempenho em ambas as bases de dados, destacando-se pela sua capacidade de 

capturar características complexas e interações não lineares entre as variáveis clínicas.  

A análise de generalização cruzada evidenciou queda significativa no 

desempenho, indicando baixa transferência entre modelos treinados em diferentes 

regiões. Esse resultado sugere que, para aplicação prática, é necessária a adaptação local 

dos modelos. 

A unificação das bases resultou em desempenho intermediário, apontando que 

simplesmente aumentar o volume de dados não é suficiente quando há heterogeneidade 

estrutural entre as populações. Nesse contexto, a inclusão de variáveis que descrevem o 

cenário assistencial mostrou-se fundamental para melhorar a acurácia. 

Este estudo confirma que modelos de aprendizado profundo, quando enriquecidos 

com variáveis contextuais e interpretados por técnicas robustas, podem atingir alto 

desempenho na predição de mortalidade precoce em TCE. 
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Apêndice A - Artigo 

Neste apêndice é apresentada a cópia do artigo originado deste trabalho. O artigo 

intitulado “Deep Learning Models Generalization for Predicting 14-day Mortality in 

Traumatic Brain Injury Patients” foi submetido e aceito para apresentação na 47ª 

Conferência Internacional Anual da IEEE Engineering in Medicine and Biology Society 

(EMBC), a realizado em Copenhague, Dinamarca. 
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Apêndice B - Artigo 

Neste apêndice é apresentada a cópia do artigo originado deste trabalho. O artigo 

intitulado “Evaluating the Generalization of Machine Learning Models for Predicting 

14-day Mortality in Traumatic Brain Injury Patients” foi submetido e aceito para 

publicação no periódico Biocybernetics and Biomedical Engineering.
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