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Resumo

O Traumatismo Cranioencefalico (TCE) continua sendo uma das principais causas
de morbidade e mortalidade em todo o mundo, com disparidades significativas nos
desfechos influenciadas pelo acesso e infraestrutura regionais de saude. Este estudo
avalia o desempenho e a generalizagdo de modelos de aprendizado de maquina para
prever a mortalidade em 14 dias em pacientes com TCE usando conjuntos de dados de
duas regides brasileiras distintas: Sao Paulo, um centro urbano, e Manaus, um centro
urbano isolado com desafios logisticos Unicos. Até onde sabemos, esta pesquisa
representa a primeira validagao cruzada de modelos preditivos em dois conjuntos de
dados dentro do mesmo pais, ressaltando a necessidade critica de abordagens
localizadas na pesquisa sobre TCE. Nossos resultados indicam que, embora os modelos
baseados em redes neurais convolucionais (CNN) tenham alcanc¢ado alto desempenho,
com uma darea sob a curva (AUC) de 0,90 em S3o Paulo e 0,93 em Manaus, o melhor
modelo de S3ao Paulo exibiu uma AUC notavelmente baixa quando aplicado ao conjunto
de dados de Manaus. A incorporacdo de caracteristicas especificas do contexto, como
variaveis relacionadas a pandemia e o tempo entre o trauma e a admissdo, aumentou
significativamente a precisdo do modelo, com o modelo de Manaus atingindo uma
impressionante AUC de 0,98. Notavelmente, o estudo destaca as principais diferencas
regionais nos preditores de mortalidade, com hipdxia e hipotensdo sendo mais criticas
em Manaus, enfatizando a importancia de adaptar os modelos preditivos aos contextos
locais. Nossos resultados indicam que os modelos baseados em CNN tém o potencial
de aprimorar as previsbes de mortalidade para pacientes com traumatismo
cranioencefalico (TCE). Além disso, destacamos a necessidade de conduzir a validacdo
trans regional e integrar varidveis locais para melhorar os desfechos dos pacientes em

diferentes ambientes de saude.

Palavras-chave: Trauma cranioencefdlico, mortalidade, Rede neural convolucional,

contextos locais.



Abstract

Traumatic Brain Injury (TBI) remains a leading cause of morbidity and mortality
worldwide, with significant disparities in outcomes influenced by regional healthcare
access and infrastructure. This study evaluates the performance and generalizability of
machine learning models for predicting 14- day mortality in TBI patients using datasets
from two distinct Brazilian regions: Sao Paulo, an urban center, and Manaus, an isolated
urban center with unique logistical challenges. To our knowledge, this research
represents the first cross-validation of predictive models across two datasets within the
same country, underscoring the critical need for localized approaches in TBI research.
Our findings indicate that while convolutional neural network (CNN)-based models
achieved high performance, with an area under the curve (AUC) of 0.90 in Sao Paulo
and 0.93 in Manaus, the best model from Sdo Paulo exhibited a strikingly low AUC
when applied to the Manaus dataset. The incorporation of context specific features, such
as pandemic-related variables and time from trauma to admission, significantly enhanced
model accuracy, with the Manaus model reaching an impressive AUC of 0.98. Notably,
the study highlights key regional differences in predictors of mortality, with hypoxia and
hypotension being more critical in Manaus, emphasizing the importance of tailoring
predictive models to local contexts. Our results indicate that CNN-based models have
the potential to enhance mortality predictions for patients with traumatic brain injury
(TBI). Additionally, we highlighted the necessity of conducting cross-regional validation
and integrating local variables to improve patient outcomes across different healthcare

environments.

Keywords: Traumatic Brain Injury, mortality, convolutional neural network, local

contexts.
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Capitulo 1

Organizagao da Dissertacao

Esta dissertacdo esta organizada em cinco capitulos, além dos elementos introdutorios e

finais.

e Capitulo 1 — Introdugdo: Apresenta o contexto do estudo, a motivagdo, os

objetivos gerais e especificos, além da estrutura da dissertacao.

e Capitulo 2 — Revisdo da Literatura: Apresenta os principais trabalhos na area de
pesquisa, onde serve como base para entender conceitos da area e ter nogao

daquilo que ja foi pesquisado e os melhores resultados com cada técnica utilizada.

e Capitulo 3 — Fundamentos Tedricos: Descreve os principais conceitos € métodos
utilizados na pesquisa, incluindo topicos sobre aprendizado de maquina, redes
neurais convolucionais, métodos de regularizagdo, fun¢des de ativagdo, técnicas

de otimizagao e métricas de avaliacdo.

e Capitulo 4 — Materiais e Métodos: Detalha as bases de dados utilizadas, os
processos de pré-processamento, os modelos de predicio empregados, os
procedimentos de ajuste de hiperparametros, as estratégias de treinamento e teste,

bem como as métricas utilizadas para avaliagdo dos resultados.

e Capitulo 5 — Resultados e Discussdes: Apresenta os resultados obtidos com a
aplicacdo das diferentes estratégias de treinamento e os modelos avaliados,
analisando o desempenho preditivo a partir das métricas definidas, além de

discutir os achados com base na literatura.

e Capitulo 6 — Conclusdo: Resume os principais resultados, discute as limitagdes do
estudo, apresenta sugestdes para trabalhos futuros e destaca as contribui¢des da

pesquisa para a area de aplicagao.

Ao final, sdo apresentadas as referéncias utilizadas ao longo do trabalho



Introducao

O traumatismo cranioencefalico (TCE) ¢ uma condi¢do neurologica grave que
representa uma das principais causas de morbidade e mortalidade em todo o mundo.
Estima-se que entre 64 a 69 milhdes de pessoas sofram algum tipo de TCE anualmente,
o que evidencia a dimensao do problema sob a o6tica da satde publica global (Dewan et
al., 2019). Os mecanismos mais comuns de ocorréncia envolvem acidentes de transito,

quedas e agressoes fisicas, afetando individuos de todas as faixas etarias.

Em paises de baixa e média renda (LMICs), como o Brasil, a situacdo ¢ ainda mais
critica. Nessas regides, a infraestrutura hospitalar limitada, a escassez de recursos
humanos especializados e os entraves logisticos no transporte de pacientes dificultam a
conducao adequada dos casos (Amorim et al., 2019). No Brasil, pais de dimensdes
continentais, as disparidades regionais ensejam diferentes realidades. Enquanto centros
urbanos como S3o Paulo contam com hospitais de alta complexidade, servigos de
neurocirurgia disponiveis 24 horas e acesso agil a tomografia e cuidados intensivos,
regides mais isoladas, como o interior da Amazonia, enfrentam grandes desafios
estruturais. Em locais como Manaus, por exemplo, pacientes oriundos do interior sdo
frequentemente transportados por longas distancias via fluvial ou aérea, com tempo
médio de transferéncia superior a 60 horas (Novo et al., 2023), o que pode comprometer

a efetividade do atendimento neuroldgico de emergéncia.

Diante desse cenario, a busca por ferramentas capazes de auxiliar na tomada de
decisdo clinica tem motivado o desenvolvimento de modelos preditivos baseados em
dados clinicos e laboratoriais. Nos ultimos anos, o uso de algoritmos de aprendizado de
maquina tem se intensificado, dada sua capacidade de identificar padrdes complexos e
realizar previsdes a partir de grandes volumes de dados heterogéneos (Raj et al., 2022;
Tu et al., 2022). Estudos internacionais ja demonstraram que tais modelos podem
alcancar desempenho competitivo quando comparados a métodos estatisticos tradicionais

como a regressao logistica (Zimmerman et al.,2023; Senders et al., 2018).

Apesar desses avancos, dois gargalos cientificos persistem. O primeiro refere-se
a generalizacdo dos modelos preditivos: muitos algoritmos apresentam excelente
desempenho nos conjuntos de dados em que foram treinados, mas sofrem queda
significativa de acurdcia quando aplicados a populagdes distintas, com diferentes perfis
clinicos e contextos assistenciais (Courville ef al., 2023; Yuan et al., 2018). Esse
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fenomeno ¢ especialmente relevante em paises como o Brasil, onde a heterogeneidade de
acesso, infraestrutura e perfil sociodemografico entre as regides pode comprometer a
robustez e a utilidade clinica de modelos desenvolvidos em ambientes especificos. O
segundo diz respeito a lacuna de estudos que explorem arquiteturas de aprendizado
profundo especialmente redes neurais convolucionais (CNNs) na predi¢ao de desfechos
em TCE. A maioria das pesquisas ainda se baseia apenas em técnicas classicas de machine
learning, como regressao logistica ou florestas aleatérias, que podem ndo capturar de
forma tao eficiente padroes complexos e interdependentes presentes nos dados clinicos e

de imagem.

Além disso, poucos estudos investigaram a contribui¢do de varidveis contextuais,
como o tempo entre o trauma e a admissao hospitalar ou fatores relacionados a sobrecarga
do sistema de saude durante pandemias, na performance de modelos preditivos. A
pandemia de COVID-19, por exemplo, alterou significativamente a dindmica do
atendimento emergencial em varias regides do Brasil, especialmente na regido Norte,
impactando diretamente nos desfechos de pacientes com trauma cranioencefalico (N6vo
et al.,2023). A inclusdo dessas variaveis pode oferecer ganhos substanciais em termos de
acuracia e capacidade discriminativa dos modelos, sobretudo em ambientes de alta

variabilidade.

Neste contexto, esta dissertacdo propde a investigagdo da generalizacdo de
modelos baseados em aprendizado profundo especificamente redes neurais
convolucionais unidimensionais (1D-CNN) na predi¢do de mortalidade em 14 dias de
pacientes com TCE, utilizando dados de dois cenarios contrastantes no Brasil: o Hospital
das Clinicas da Faculdade de Medicina da Universidade de Sdo Paulo (centro urbano
consolidado) e um hospital tercidrio em Manaus, capital do Amazonas (centro urbano
isolado). A proposta se destaca por ser, at¢ onde se tem conhecimento, a primeira
avaliacdo sistematica da capacidade de generalizagdo inter-regional de modelos de

predicdo em TCE baseada em dados clinicos brasileiros.

A pesquisa aqui apresentada contempla ndo apenas a comparacao entre técnicas
classicas de ML (como regressao logistica, floresta aleatoria e perceptron multicamadas)
e modelos mais complexos baseados em CNNs, mas também analisa a influéncia de
variaveis adicionais disponiveis apenas na base de dados de Manaus, como o tempo entre
o trauma e a internagao e o contexto pandémico. O desempenho dos modelos ¢ avaliado

por meio de métricas padrdes, como acuracia, F1-score e 4rea sob a curva ROC (AUC),
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considerando estratégias de treinamento e validacao cruzada em ambos os conjuntos de

dados.

Ao final, espera-se que os resultados obtidos nesta dissertacdo ndo apenas validem
a eficacia dos modelos propostos, mas também contribuam com evidéncias sobre a
importancia de se considerar fatores regionais na constru¢ao de ferramentas preditivas
para suporte clinico. Além disso, pretende-se demonstrar que a adaptagdo de modelos a
contextos especificos, aliada a reducao criteriosa do nimero de variaveis utilizadas, pode
promover solu¢des mais praticas e viaveis para aplicagdo em ambientes hospitalares com
limitagdes estruturais. A relevancia deste estudo reside, portanto, na interse¢dao entre
inteligéncia artificial e satide publica, apontando caminhos promissores para o uso de

tecnologias avancadas em beneficio de sistemas de satde heterogéneos como o brasileiro.
1.1 Objetivos da Dissertagao

Avaliar a capacidade de generalizacdo de modelos de aprendizado de maquina e
aprendizado profundo para predi¢do de mortalidade em 14 dias de pacientes com
traumatismo cranioencefalico, utilizando bases de dados obtidas em dois centros clinicos
brasileiros, localizados em regides com caracteristicas sociodemograficas distintas (Sao

Paulo e Manaus).

1.2 Objetivos Especificos

e Comparar o desempenho de modelos classicos e profundos na predicdo de

mortalidade em 14 dias para pacientes com TCE

e Avaliar a generalizagdo dos modelos com testes cruzados entre duas bases de

dados obtidas em diferentes regides do Brasil.
e Obter métricas da inclusdo de varidveis contextuais no treinamento
e Utilizar um grupo reduzido de varidveis, com maior importancia preditiva, para

uma predicao eficiente em ambas as bases de dados.
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Capitulo 2

Revisao da Literatura

Este capitulo apresenta a revisao bibliografica realizada sobre o tema “predigao
de mortalidade em pacientes com traumatismo cranioencefalico (TCE) utilizando redes
neurais”. Um conjunto de onze artigos, publicados entre os anos de 2019 e 2023, foi
selecionado a partir de buscas realizadas nas bases de dados /EEE Xplore, PubMed e Web
of Science. Para fins de comparacdo com os objetivos da presente pesquisa, as buscas
foram direcionadas para artigos que abordassem o uso de algoritmos de aprendizado de

maquina na predicdo de mortalidade em cenarios que houve o trauma cranioencefalico.

A andlise dos artigos teve como foco a identificacdo das bases de dados, dos
métodos empregados (modelagem, algoritmos de aprendizado de maquina, varidveis
analisadas e métricas de avaliagdo) e dos resultados obtidos. Ao final desta revisao, sera
apresentada uma tabela consolidando os principais pontos analisados, seguida de uma
discussdo que destaca as lacunas na literatura e as motivagdes para a conducgdo deste

trabalho.

2.1 Predictors of Mortality, Withdrawal of Life-Sustaining Measures, and Discharge
Disposition in Octogenarians with Subdural Hematomas

(KASHKOUSH et al., 2022)

Este estudo analisou fatores progndsticos relacionados a mortalidade hospitalar,
retirada de medidas de suporte vital e destino de alta em pacientes octogenarios com
hematomas subdurais (SDH). Utilizando um banco de dados multicéntrico entre 2017 e
2019, foram avaliados 3.279 casos de TCE em 75 centros, dos quais 695 eram de
pacientes com mais de 79 anos e diagnostico de SDH. As variaveis estudadas incluiram
varidveis demograficas, histérico médico, uso de antiplaquetarios/anticoagulantes e

variaveis clinicas, como GCS, reatividade pupilar e ISS.

Os resultados identificaram que fatores como GCS < 13, pupilas ndo reativas,
aumento do ISS, hemorragia intraventricular e interven¢do neurocirurgica estdo
associados a mortalidade ou transferéncia para cuidados paliativos. Outros fatores, como
insuficiéncia cardiaca congestiva, hipotensdao, GCS < 13 e intervengdes neurocirargicas,
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foram determinantes na retirada de suporte vital. Os modelos de regressao logistica

apresentaram um AUC de 0,89, indicando boa precisdo preditiva.

Esses achados destacam a importancia das caracteristicas clinicas e comorbidades
como determinantes cruciais na tomada de decisdes médicas e no progndstico de

pacientes octogenarios com SDH.

2.2 Machine Learning Algorithms to Predict In-Hospital Mortality in Patients with
Traumatic Brain Injury (HSU et al., 2021)

Este estudo buscou prever a mortalidade intra-hospitalar em pacientes com
traumatismo cranioencefalico (TCE) utilizando modelos de aprendizado de mdquina.
Foram analisados 3.331 casos entre 2008 e 2018, classificados como nivel | ou Il na escala
Taiwan Triage and Acuity Scale. As varidveis avaliadas incluiram idade, género, GCS, ISS,

sinais vitais e mortalidade hospitalar.

Sete algoritmos foram utilizados: J48, Floresta randomica, Random Tree, REP
Tree, K-Nearest Neighbors (KNN), Naive Bayes e Support Vector Machine (SVM). O
algoritmo J48 demonstrou o melhor desempenho, com uma taxa de acerto de 93,2%, F1-
score de 92,9% e sucesso médio de 77,2%. As variaveis com maior poder de predi¢ao

foram a escala GCS, seguida por ISS e pressao arterial sistolica.

Os resultados apontaram que valores de corte relevantes.: GCS < 6, ISS > 24 e
pressdo sistolica < 84 mmHg, estavam associados a uma maior probabilidade de
mortalidade. Este estudo destaca a eficacia dos modelos baseados em aprendizado de
maquina para suporte a decisdo clinica em emergéncias, permitindo a identificacdo

precoce de pacientes de pacientes com alto risco e a otimizacao de tratamentos.

2.3 Mobile Telephone Follow-Up Assessment of Postdischarge Death and Disability
Due to Trauma in Cameroon: A Prospective Cohort Study (DING et al., 2022)

Este estudo avaliou a mortalidade e a deficiéncia relacionadas a traumas em
pacientes no Camardes ao longo de seis meses apds a alta hospitalar, utilizando
ferramentas de acompanhamento por telefone mével. A amostra incluiu 1.914 pacientes
tratados em quatro hospitais nas regides Litoral e Sudoeste entre 2019 e 2021, dos quais

1.304 foram acompanhados com sucesso.
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Os pacientes foram avaliados em quatro momentos: duas semanas, um mes, trés
meses e seis meses apos a alta, utilizando a Glasgow Outcome Scale Extended (GOSE).
Os resultados revelaram que 90% das mortes ocorreram nas primeiras duas semanas,
enquanto 22% dos pacientes ainda apresentavam deficiéncia severa apds seis meses. A
mortalidade foi associada a fatores como idade avangada, maior pontuacao no Injury
Severity Score (ISS) e lesdes neuroldgicas, enquanto niveis educacionais mais altos

estavam ligados a menores taxas de mortalidade e deficiéncia.

O estudo destacou a viabilidade do acompanhamento por telefone em ambientes
de baixa renda e ressaltou a necessidade de desenvolver sistemas formais para melhorar

os resultados pos-trauma em regides com infraestrutura médica limitada.

2.4 Evaluation of Computed Tomography Scoring Systems in the Prediction of Short-
Term Mortality in Traumatic Brain Injury Patients from a Low- to Middle-Income

Country (SOUZA et al., 2022)

Este estudo analisou a precisdo de diferentes sistemas de pontuacao baseados em
tomografia computadorizada (TC) para prever o risco de morte em curto prazo entre
pacientes com traumatismo cranioencefalico (TCE) em paises de baixa e média renda. A
pesquisa envolveu 447 pacientes atendidos em um hospital terciario no Brasil, com idade

média de 40 anos e uma maioria significativa de homens (85,5%).

Foram avaliados trés sistemas de classificagao: Marshall CT, Rotterdam CT e
Helsinki CT. Os resultados indicaram que os escores de Rotterdam e Helsinki superaram
o de Marshall na previsdo de mortalidade, tanto em 14 dias quanto durante a internagao
hospitalar. As areas sob a curva (AUC) para mortalidade em 14 dias foram 0,610 para

Marshall, 0,762 para Rotterdam e 0,752 para Helsinki.

Quando combinados com outros fatores clinicos (como idade, pontuagdo de
Glasgow Coma Scale — GCS, resposta pupilar, hipdxia e hipotensdo), esses escores
mostraram um aumento expressivo na capacidade de explicacdo: Marshall (+2%),
Rotterdam (+13,4%) e Helsinki (+21,6%). Entre eles, o escore Helsinki destacou-se como

o modelo mais consistente, apresentando melhor capacidade de discriminagado e predi¢ao.

Esses achados reforcam a importancia de validar externamente esses modelos para
populagdes de paises em desenvolvimento. Além disso, sugerem que o uso de sistemas
modernos de pontuagdo pode otimizar a alocacdo de recursos e auxiliar na tomada de

decisoes clinicas no tratamento de pacientes com TCE.
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2.5 A Computer-Assisted System for Early Mortality Risk Prediction in Patients with
Traumatic Brain Injury Using Artificial Intelligence Algorithms in Emergency Room

Triage) (TU et al., 2022)

O estudo propos um sistema baseado em inteligéncia artificial para prever o risco
de mortalidade hospitalar em pacientes com traumatismo cranioencefalico (TCE) durante
a triagem nas salas de emergéncia. A pesquisa utilizou dados retrospectivos de 18.249
pacientes adultos com TCE, atendidos em trés hospitais de Taiwan entre 2010 e 2019.
Para construir o modelo preditivo, foram consideradas 12 variaveis clinicas, incluindo

idade, escala de triagem TTAS, pontuagdao GCS, tamanho das pupilas e reflexo pupilar.

Seis algoritmos de aprendizado de maquina foram testados: regressao logistica
(LR), Arvore randdmica, Support Vector Machines (SVM), LightGBM, XGBoost e
Perceptron Multicamadas (MLP). Entre eles, o modelo de regressao logistica apresentou
o melhor desempenho, com uma area sob a curva (AUC) de 0,925, seguido por SVM
(AUC =0,920) e MLP (AUC = 0,893). Para melhorar o balanceamento das duas classes,
mortalidade e sobrevivéncia, aumentando a precisdo das previsdes, foi utilizada a técnica

de sobre amostragem SMOTE.

O sistema de predicdo foi integrado ao sistema de informacdo hospitalar,
permitindo previsdes em tempo real para apoiar decisoes clinicas e informar os riscos aos
familiares dos pacientes. Este estudo evidencia o potencial dos algoritmos de aprendizado
de maquina para melhorar o processo de triagem em emergéncias, otimizar a alocagao de

recursos e aprimorar o cuidado aos pacientes com TCE.

2.6 Learning Models for Traumatic Brain Injury Mortality Prediction on Pediatric
Electronic Health Records (FONSECA et al., 2022)

Este estudo explorou o uso de algoritmos de aprendizado de méaquina para prever
a mortalidade em criangas com traumatismo cranioencefalico, utilizando o conjunto de
dados Hackathon Pediatric Traumatic Brain Injury (HPTBI). A andlise incluiu
informacdes de 300 pacientes pediatricos internados, com idade média de 7,2 anos. O
banco de dados continha 96 variaveis, abrangendo dados demograficos, clinicos e

achados de tomografia computadorizada (TC).

Quatro modelos de aprendizado de maquina foram avaliados: Arvore randdmica
(RF), XGBoost, k-Nearest Neighbors (KNN) e redes neurais artificiais (ANN). Esses

modelos foram combinados com técnicas de selecao de caracteristicas, como Analise de
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Componentes Principais (PCA) e métodos baseados em gradiente. O modelo XGBoost
apresentou o melhor desempenho, com uma area sob a curva (AUC) de 091,
especialmente sem o uso de técnicas de selecdo de caracteristicas. J& o KNN mostrou

bom desempenho quando associado ao método de selecao de Koehrsen.

Os resultados identificaram variaveis como reatividade pupilar, nutricao enteral,
presenca de edema cerebral e parada cardiaca como altamente relacionadas a mortalidade.
Curiosamente, fatores tradicionais, como a Escala de Coma de Glasgow (GCS), tiveram
menor importancia nesse contexto pediatrico, evidenciando a complexidade e a

heterogeneidade dessa populagao.

O estudo ressalta a necessidade de desenvolver modelos preditivos especificos
para criangas, considerando as particularidades do desenvolvimento cerebral e as
diferentes manifestacdes clinicas do TCE pediatrico. A aplicacdo desses modelos pode

oferecer suporte essencial para decisdes em cuidados intensivos pediatricos.

2.7 Predicting Outcome in Patients with Brain Injury: Differences between Machine
Learning versus Conventional Statistics (CERASA et al., 2022)

Este estudo comparou métodos de aprendizado de maquina (ML) e abordagens
estatisticas tradicionais, como a regressao logistica (RL), na previsdo de desfechos em
pacientes com lesoes cerebrais, incluindo traumatismo cranioencefalico (TCE) e acidente
vascular cerebral (AVC). A andlise considerou 13 estudos que aplicaram ambos os

métodos para prever resultados como mortalidade e incapacidades funcionais.

Os resultados mostraram que algoritmos de ML, como redes neurais artificiais
(ANN), méaquinas de vetores de suporte (SVM) e florestas aleatorias (RF), nao
apresentaram vantagens consistentes sobre a RL em termos de precisdo preditiva. No caso
de TCE, as taxas de acuracia variaram entre 78% e 98%, enquanto que, para AVC, os
valores ficaram entre 74% e 95%. Variaveis como Escala de Coma de Glasgow (GCS),
idade, reatividade pupilar e hemorragias intracranianas foram destacadas como os fatores

mais relevantes.

Os autores observaram que o desempenho do ML pode ser limitado em bancos de
dados clinicos com poucas varidveis e forte dependéncia de operadores. Em
contrapartida, métodos estatisticos convencionais oferecem maior interpretabilidade dos
fatores preditivos, enquanto os algoritmos de ML sdo mais eficazes para identificar

relagdes nao lineares entre as variaveis.
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A conclusdo do estudo enfatiza a importancia de incorporar dados de alta
dimensionalidade, como neuroimagem e informagdes genéticas, para aproveitar melhor
o potencial do ML em ambientes clinicos e melhorar a previsdo de desfechos em pacientes

com lesoOes cerebrais.

2.8 Prediction Performance of the Machine Learning Model in Predicting Mortality
Risk in Patients with Traumatic Brain Injuries: A Systematic Review and Meta-

Analysis (WANG et al., 2023)

Esta revisdo sistematica realizou uma meta-andlise de 47 pesquisas que
investigaram o uso de algoritmos de aprendizado de maquina (ML) na previsdo de
mortalidade em pacientes com traumatismo cranioencefalico (TCE). A andlise abrangeu
dados de 2.080.819 individuos de diversas regides, comparando modelos de ML com

ferramentas tradicionais de pontuagao clinica.

Foram avaliados 156 modelos preditivos, sendo 122 desenvolvidos recentemente
e 34 ja validados clinicamente como ferramentas tradicionais. Para mortalidade intra-
hospitalar, os modelos de ML apresentaram um indice C médio de 0,86 (intervalo de
confianca de 95%: 0,84-0,87), com sensibilidade de 0,79 e especificidade de 0,89. No
caso da mortalidade extra-hospitalar, o indice C foi de 0,83, com sensibilidade de 0,74 ¢
especificidade de 0,75. Os algoritmos mais utilizados incluiram méquinas de vetores de

suporte, redes neurais artificiais, arvores de decisdo e regressao logistica.

Os fatores mais frequentemente utilizados como preditores foram pontuacio na
Escala de Coma de Glasgow, idade, classificacdo da tomografia computadorizada (TC),
reflexos pupilares, niveis de glicose e pressdo arterial sistolica. Embora os modelos de
ML tenham demonstrado um desempenho ligeiramente superior as ferramentas
tradicionais na predi¢do extra-hospitalar, o estudo destacou a necessidade de padronizar

a aplicagdo clinica desses algoritmos para aumentar sua eficacia.

Os autores concluiram que os modelos de ML podem ser ferramentas promissoras
para prever mortalidade em casos de TCE, especialmente quando integram dados
complexos, como imagens de TC. No entanto, sua implementacdo pratica ainda enfrenta

desafios devido a falta de consenso e a variabilidade entre os estudos analisados.

2.9 Machine Learning Algorithms for Predicting Qutcomes of Traumatic Brain Injury:
A Systematic Review and Meta-Analysis (COURVILLE et al., 2023)
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Esta revisdo sistematica realizou uma meta-andlise de 15 pesquisas que
investigaram o uso de algoritmos de aprendizado de maquina para prever desfechos em
pacientes com traumatismo cranioencefalico. Os objetivos foram identificar os modelos
de ML mais eficazes na previsao de mortalidade e resultados desfavoraveis, além de
comparar sua precisao com métodos estatisticos tradicionais, como a regressao logistica

(LR).

Entre os algoritmos analisados estavam redes neurais artificiais, maquinas de
vetores de suporte, florestas aleatorias e Naive Bayes. Para a previsdao de mortalidade, os
modelos de ML demonstraram acuracia superior a 80%, com a SVM alcangando até
95,6% de precisdao em alguns casos. Fatores como pontuagdo na Escala de Coma de
Glasgow (GCS), idade, glicose sérica elevada e acidez lactica foram consistentemente
associados a desfechos desfavoraveis, contribuindo para a otimiza¢ao do desempenho dos

modelos.

A meta-andlise revelou que os algoritmos de ML, especialmente ANN e SVM,
superaram a LR em termos de sensibilidade e especificidade, com as curvas ROC
confirmando a superioridade dos modelos baseados em inteligéncia artificial. Apesar dos
avangos, os autores destacaram a necessidade de padronizar as variaveis utilizadas como
entrada do modelo preditivo e realizar validacdes externas para ampliar a aplicabilidade

clinica.

O estudo concluiu que os algoritmos de ML sdo ferramentas promissoras para
estratificacdo de risco e previsao de desfechos em TCE. No entanto, seu impacto clinico
depende de uma maior integracdo de dados diversos, como imagens de tomografia
computadorizada e informagdes laboratoriais, para maximizar sua eficacia em cenarios

reais.

2.10 Machine Learning Approach for the Prediction of In-Hospital Mortality in
Traumatic Brain Injury Using Bio-Clinical Markers at Presentation to the Emergency

Department (MEKKODATHIL et al., 2023)

Este estudo utilizou algoritmos de aprendizado de maéquina para prever a
mortalidade hospitalar em pacientes com traumatismo cranioencefalico, com base em
marcadores bio-clinicos disponiveis no momento da admissdo. A analise incluiu dados
retrospectivos de 922 pacientes tratados no Hamad Trauma Center, no Catar, entre junho

de 2016 e maio de 2021. Entre as variaveis analisadas estavam a Escala de Coma de
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Glasgow (GCS), Indice de Gravidade de Lesdo (ISS), tempo de protrombina (PT), INR,

além de niveis séricos de sodio, potassio, magnésio e outros biomarcadores clinicos.

Quatro algoritmos foram avaliados: Support Vector Machine, Regressao
Logistica, Floresta randomica e Extreme Gradient Boosting (XGBoost). O modelo SVM
obteve o melhor desempenho, alcangando uma éarea sob a curva ROC de 0,86,
demonstrando superioridade em estabilidade e capacidade de generalizagdo. Embora os
modelos XGBoost ¢ RF também tenham apresentado boas AUCs, mostraram sinais de
sobre ajuste devido a discrepancias significativas no valor da func¢ao de perda entre os

conjuntos de treinamento e teste (79,5% e 41,8%, respectivamente).

Os principais fatores associados a predicdo de mortalidade foram: aPTT, INR,
acido lactico, ISS, PT e magnésio. O estudo destacou que o uso de modelos de ML,
especialmente o SVM, pode ser uma ferramenta valiosa para identificar pacientes de alto

risco, permitindo intervengdes clinicas mais rapidas e eficazes em cendrios de trauma.

2.11 Predictors of Mortality, Withdrawal of Life-Sustaining Measures, and Discharge
Disposition in Octogenarians with Subdural Hematomas (KASHKOUSH et al., 2023)

Este estudo analisou os fatores preditivos de mortalidade, retirada de suporte vital
e desfecho de alta em pacientes octogendrios diagnosticados com hematomas subdurais
(SDH). A pesquisa utilizou dados de 3.279 admissdes por traumatismo cranioencefélico

(TCE) entre 2017 e 2019, dos quais 695 pacientes tinham mais de 79 anos.

Os resultados indicaram que 22% dos pacientes evoluiram para mortalidade intra-
hospitalar ou foram direcionados para cuidados paliativos. Além disso, 10% passaram
por retirada de suporte vital. Fatores como pontuacdo na Escala de Coma de Glasgow
(GCS) inferior a 13, auséncia de reatividade pupilar, maior indice de Gravidade de Lesdo
(ISS) e presenca de hemorragias intraventriculares foram fortemente associados a
mortalidade. No caso da retirada de suporte vital, os principais determinantes incluiram
insuficiéncia cardiaca congestiva (CHF), hipotensao e GCS inferior a 13. Modelos de
regressdao logistica apresentaram alta precisao preditiva, com AUC de 0,885 para

mortalidade e 0,894 para retirada de suporte vital.

O estudo concluiu que variaveis clinicas e demograficas podem ser utilizadas para
orientar decisdes criticas, como interven¢des neurocirirgicas € manejo paliativo,
particularmente em pacientes idosos com SDH, onde o progndstico ¢ frequentemente

mais delicado.
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Tabela 1: Tabela de revisao da literatura

Referéncia

Base de Dados

Variaveis Preditivas

Variaveis Preditas

Resultados

Kashkoush
et al. (2022)

3.279 admissdes por TCE
em 45 centros de trauma
nos EUA entre 2017 e
2019. Analise de 695
pacientes com 80 anos ou

mais.

ECG, Reatividade pupilar, ISS, Uso
de anticoagulantes/antiagregantes,
Comorbidades (ex.: ICC, diabetes),
Hemorragia intraventricular,

Intervengao neurocirurgica

Mortalidade hospitalar, alta

hospitalar com cuidados
paliativos, Retirada de

medidas de suporte a vida

Predi¢ao de mortalidade:
AUC = 0,885; retirada de
suporte: AUC = 0,894

4.881 pacientes com TCE
atendidos em um hospital

de alta complexidade no

ECG, ISS, Pressao arterial sistolica,

Melhor desempenho:

Hsu et al. norte de Taiwan de janeiro  Frequéncia cardiaca, Diferenga de Arvore J48 - AUC > 0,80
(2021) de 2008 a junho de 2018.  pressdo de pulso, Idade, Género Mortalidade hospitalar Acuracia = 93,2%
4.881 pacientes com TCE OR =2,44 (ISS), OR =
atendidos no departamento 4,40 (déficit neurologico);
de emergéncia em Taiwan Idade, Género, Escolaridade, ISS, Mortalidade pos-alta, Incapacidade severa:
Ding et al.  de janeiro de 2008 a junho  Tipo de fratura, Déficit neurologico,  Incapacidade funcional 22,1%; Boa recuperagao:
(2022) de 2018. Mecanismo da lesao (GOSE) 70,3%
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447 pacientes com TCE
tratados em hospital

terciario da USP, Brasil, de

Classificacdes de TC (Marshall,
Rotterdam, Helsinki), idade, ECG,

Marshall: AUC =
0,610/0,575; Rotterdam:

Souza et al. janeiro de 2012 a dezembro resposta pupilar, hipdxia, hipotensdo, Mortalidade em 14 dias, 0,762/0,712; Helsinki:
(2022) de 2015. hemoglobina Mortalidade hospitalar 0,752/0,716
Melhor modelo: Regressao
logistica - AUC = 0,925;
SVM = 0,920; MLP =
18.249 pacientes com TCE Idade, Género, IMC, TTAS, FC, 0,893; XGBoost=0,871;
Tu et al. atendidos em 3 hospitais Temperatura, FR, ECG, Tamanho da RF =0,870; LightGBM =
(2022) em Taiwan de 2010 a 2019. pupila, Reflexo pupilar Mortalidade hospitalar 0,851
Idade, Género, ECG, TC (ex.: edema XGBoost =0,91; KNN =
300 pacientes pediatricos cerebral, desvio de linha média), 0,90 (com selecao de
Fonsecaet com TCE do HPTBI Nutricao enteral, Parada cardiaca, Mortalidade na alta variaveis); RF = 0,85; ANN
al. (2022)  Hackathon Pupilas fixas hospitalar =0,84
Revisdo de 13 estudos Idade, ECG, Resposta pupilar,
comparando ML com Hemorragia subaracnoidea,
Cerasa et al. estatistica tradicional em Escolaridade, Hipotensao, Mortalidade hospitalar,

(2022)

TCE e AVC

Hiperglicemia, Coagulopatia

Recuperagao funcional

AUC=10,82
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Wang et al.
(2023)

Meta-analise de 47 estudos

com 2.080.819 pacientes de ECG, Idade, TC, Tamanho da pupila,

diversas regides

Reflexo pupilar, Glicose, PAS

Mortalidade intra e extra-

hospitalar

Intra: C-Index = 0,86; Sens.
=0,79; Esp. = 0,89; Extra:
C-Index = 0,83; Sens. =
0,74; Esp. = 0,75

Courville et

Meta-analise de 15 estudos

com 32.721 pacientes com

Idade, ECG, Acido sérico, Glicose

anormal, Pupilas, achados

Mortalidade hospitalar, 14

dias, Desfechos adversos

SVM = 0,96; ANN = 0,91;

Arvore ~ 0,89; Regressao

al. (2023) TCE radiologicos, Hora do atendimento (GOS) logistica =~ 0,83
922 pacientes com TCE ECG, ISS, aPTT, PT, INR,
internados no Centro de Hemoglobina, Acido latico, Sédio, SVM = 0,86; RF = 0,86;
Mekkodathil Trauma Hamad no Catar Potassio, Calcio, Magnésio, Fosfato, XGBoost = 0,85;
et al. (2023) (2016-2021) Bicarbonato Mortalidade hospitalar Regressao logistica = 0,84
Idade, ECG na admissao, AIS da
cabeca, Hipotensao, Cirrose,
Hematoma epidural, Indice de C-index: treino = 0,897;
545.388 pacientes com choque, Saturacao de O, teste = 0,896; AUC (<5
Cao et al. TCE grave isolado do Temperatura, Transfusdo de dias) = 0,917; (<20 dias) =
(2023) banco TQIP (2013-2021) concentrado de hemadcias Mortalidade hospitalar 0,813
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Capitulo 3

Fundamentos Teoricos

A fundamentac¢do tedrica tem como objetivo apresentar os principais conceitos
que embasam o desenvolvimento metodologico desta pesquisa. A utilizagao de técnicas
de aprendizado de maquina no contexto da satide, em especial na predi¢cao de desfechos
clinicos, tem ganhado destaque nas ultimas décadas, impulsionada pela disponibilidade
de bases de dados clinicas estruturadas e pela evolucdo de métodos computacionais

capazes de lidar com variaveis complexas e interdependentes.

Neste trabalho, investiga-se a aplicagdo de modelos de aprendizado
supervisionado, para a tarefa de predi¢do de mortalidade em até 14 dias em pacientes
vitimas de traumatismo cranioencefalico. Com isso, esta se¢do descreve os fundamentos
relacionados as principais técnicas utilizadas, abrangendo desde as arquiteturas das redes
convolucionais € seus componentes internos (como camadas convolutivas, fungdes de
ativacdo e técnicas de regularizagdo), até os métodos de otimizagdo utilizados no

treinamento dos modelos.

Além disso, também sdao discutidas as métricas utilizadas para avaliacdo de
desempenho, onde ao longo da se¢do, sdo utilizados estudos prévios como referéncia para
justificar as escolhas metodologicas adotadas, consolidando o embasamento teodrico

necessario para a conducao do trabalho.
3.1 Traumatismo Cranioencefalico

O Traumatismo Cranioencefalico ¢ uma lesdo fisica no cérebro causada por uma
for¢ca externa, que pode resultar em alteragdes temporarias ou permanentes na funcao
cerebral. Trata-se de um problema de saude publica global, com estimativas indicando
que entre 64 e 69 milhdes de pessoas no mundo sofrem TCE a cada ano, sendo os

acidentes de transito, quedas e violéncia as principais causas (Dewan et al., 2019).

Os impactos do TCE sao particularmente graves em paises de baixa e média renda,
onde a limitagdo de recursos e a desigualdade no acesso a servigos especializados
contribuem para piores desfechos clinicos (Amorim et al., 2019). Nessas regioes, a

caréncia de infraestrutura adequada para o atendimento de urgéncia e emergéncia pode
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ocasionar atrasos no diagndstico e no inicio do tratamento, elevando os indices de
morbimortalidade. No Brasil, por exemplo, regides remotas como a Amazonia enfrentam
desafios logisticos que dificultam o transporte agil de pacientes até centros de referéncia,

comprometendo a assisténcia em tempo oportuno (Novo et al., 2023).

Diversas variaveis clinicas sao utilizadas na avaliacao da gravidade do TCE e na
estimativa do progndstico, incluindo a Escala de Coma de Glasgow, a reatividade pupilar,
a presenca de hipotensdo e hipoxia no momento da admissdo, e achados tomograficos
como o desvio da linha média (Steyerberg et al., 2008; Faried ef al., 2018). A presenga de
hipotensao e hipoxia, em particular, tem sido amplamente associada a piora dos
desfechos, sobretudo em pacientes com lesdes graves e em ambientes com limitagdes pré-

hospitalares (Solla et al., 2021; Abujaber et al., 2020).

Para responder a complexidade clinica do TCE, diversos modelos prognosticos
foram desenvolvidos ao longo das tltimas décadas, como os modelos CRASH e IMPACT.
Contudo, a aplicabilidade desses modelos em contextos regionais distintos permanece
limitada, uma vez que fatores como tempo de transporte, sobrecarga hospitalar e
condi¢des socioeconOmicas variam significativamente entre centros urbanos e areas

periféricas (Zimmerman et al., 2023).

Com o avanco da ciéncia de dados, tem-se intensificado o uso de técnicas de
aprendizado de maquina para identificar padrdes progndsticos a partir de grandes volumes
de dados clinicos e laboratoriais. Ainda assim, a qualidade e a padroniza¢do dos dados
permanecem como entraves importantes, especialmente em sistemas de satde com

registros incompletos ou desatualizados (Guimaraes ef al., 2022; Warman et al., 2022).

3.2 Pré-Processamento

O pré-processamento de dados ¢ uma etapa fundamental em qualquer pipeline de
aprendizado de maquina, sendo responsavel por preparar os dados brutos para a etapa de
modelagem. Essa fase visa garantir que os dados estejam em um formato adequado,
reduzindo ruidos, padronizando escalas e lidando com possiveis inconsisténcias ou

lacunas que poderiam comprometer o desempenho dos algoritmos.

Neste trabalho, foram aplicadas duas estratégias principais de pré-processamento:
a normalizacdo dos dados e o preenchimento de valores ausentes, conforme descrito a

seguir.
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3.2.1 Normalizacao de dados

A normaliza¢dao de variaveis continuas foi realizada utilizando o método Min-
Max, que transforma os valores das varidveis para um intervalo entre 0 e 1. Essa
abordagem ¢ especialmente util para redes neurais profundas, como as redes
convolucionais utilizadas neste estudo, uma vez que evita que atributos com grandes
amplitudes dominem os pesos durante o processo de treinamento (Zhang et al., 2021). A

Equagao 1 descreve o célculo:

X X~ Xnmin
norm —
Xmax — Xmin

Onde x representa o valor original, X, € X;nax 80 0 minimo e maximo da varidvel,

respectivamente.

A normalizagdo ¢ considerada boa pratica em tarefas envolvendo atributos com
escalas heterogéneas, como idade e tempo até a admiss@o hospitalar, reduzindo o risco de
instabilidade na retropropagacao e contribuindo para uma convergéncia mais rapida do

modelo (Hsu et al., 2021).

3.2.2 Preenchimento com valores para colunas com

variaveis ausentes

O segundo passo do pré-processamento consistiu no tratamento de valores
ausentes. A presenca de dados faltantes pode comprometer o desempenho dos algoritmos
de aprendizado de maquina, especialmente em aplicagdes clinicas sensiveis. No caso da
base de dados de Sdo Paulo, os valores ausentes ja haviam sido tratados anteriormente
por Guimaraes ef al. (2022), que utilizou diferentes estratégias de imputagao baseadas na
natureza das varidveis: preenchimento com a média para variaveis numéricas, €
preenchimento por métodos supervisionados (como arvores de decisdo e KNN) para

varidveis categoricas, conforme descrito em seu trabalho original.

Para a base de Manaus, optou-se por um preenchimento simplificado, utilizando
a moda (valor mais frequente) nas variaveis categoricas. Essa estratégia ¢ considerada
simples, porém eficaz em manter a consisténcia dos dados sem introduzir viés
significativo (Ding et al., 2022). Essa escolha se justifica pelo baixo percentual de dados

ausentes neste conjunto, sendo inferior a 5% na maioria das varidveis, o que torna
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desnecessaria a aplicagdo de métodos mais sofisticados, como imputagao multipla, KNN-
imputation ou algoritmos supervisionados, mais indicados quando hé perdas superiores a

10% ou padrdes nao aleatorios de auséncia (Little & Rubin, 2019).
3.3 Analise de correlacao

A andlise de correlagdo € uma etapa importante na compreensao da influéncia de
variaveis de entrada sobre a varidvel-alvo. Essa etapa permite identificar relagdes lineares
ou ndo lineares entre os atributos, auxiliando tanto na selecdo de variaveis quanto na

interpretagdo de resultados dos modelos preditivos.

Duas abordagens foram utilizadas neste estudo: a andlise estatistica classica por
meio do coeficiente de correlacdo de Pearson e uma analise baseada em interpretabilidade

de modelos via SHapley Additive exPlanations (SHAP).
3.3.1 Coeficiente de Pearson

O coeficiente de correlacao de Pearson () mede a intensidade e a direcao da
relacdo linear entre duas variaveis numéricas. Seu valor varia entre -1 e 1, indicando,
respectivamente, correlagdo negativa perfeita, nenhuma correlacio ou correlagio positiva
perfeita. Trata-se de uma das medidas mais tradicionais para analise de dependéncia entre
variaveis, sendo amplamente empregada em estudos estatisticos € computacionais

(Rodgers & Nicewander, 1988).
A Equagdo 1 expressa o calculo de 7:

. (e — 0@ — )
VIR (g — 02 X (s — §)?

Onde:

e Xx; € y; sdo os valores das variaveis X e Y, respectivamente, para cada observagao

I
e X ey representam as médias amostrais de X e Y;
e n ¢ o numero total de observagdes.

Nesta pesquisa, o coeficiente de Pearson foi utilizado como ferramenta de anélise

exploratdria para avaliar o grau de correlacdo entre cada variavel de entrada e a variavel
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de saida. Tal analise auxilia na identificacao de atributos com maior relevancia estatistica

potencial para o modelo preditivo.
3.3.2 SHapley Additive exPlanations (SHAP)

O SHapley Additive exPlanations ¢ uma técnica de interpretabilidade de modelos
baseada na teoria dos jogos cooperativos, especificamente nos valores de Shapley. Essa
abordagem permite atribuir a cada varidvel de entrada uma contribui¢do justa e

consistente para a predi¢do de um modelo de aprendizado de méaquina.

Formalmente, o valor de Shapley para uma variavel i ¢ definido como:

SIt-(N| = |S[— D!
p= Y BN RIZ D s upp - o)

. IN|!
{sSN\p

e N representa o conjunto de todas as variaveis preditoras;

e S ¢éum subconjunto de Nque ndo inclui i;

e F(S) ¢ apredicao do modelo considerando apenas as variaveis de S;

o f(S U{i}) — f(S) éacontribuicdo marginal da variavel i;

e O fator multiplicativo pondera cada subconjunto com base em seu tamanho.

Esse valor representa a média ponderada da contribuicdo marginal da varidvel i,
considerando todos os contextos possiveis de interacdo com outras varidveis do modelo

(Lundberg & Lee, 2017).
Entre as principais propriedades do SHAP destacam-se:

o Justica e consisténcia: se a contribui¢cdo de uma variavel aumenta em um modelo,

seu valor SHAP também aumenta;

e Aditividade: a soma dos valores SHAP de todas as varidveis corresponde a

diferenca entre a predi¢do da instancia e a média global do modelo;

e Aplicabilidade genérica: o método ¢ independente do tipo de modelo, podendo ser
aplicado tanto em redes neurais quanto em arvores de decisdo, regressoes ou

ensembles (XAI Tutorials, 2024).
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Na pratica, os valores de SHAP permitem gerar visualizagdes que tornam o

comportamento do modelo mais transparente:

e O bar plot mostra a importancia média absoluta de cada variavel para todas as

predicodes;

e O summary plot exibe a distribuicao dos valores SHAP por variavel, incluindo

também a direcdo (positiva ou negativa) de cada impacto.

Essas representagdes sdo fundamentais em contextos onde a interpretabilidade ¢

exigida, como aplicagdes clinicas, financeiras ou juridicas.

3.4 Algoritmos Classicos de Aprendizado de Maquina

Nesta secdo, sdo descritos os dois algoritmos de aprendizado supervisionado
utilizados como modelos comparativos em relagcdo ao modelo principal baseado em redes
neurais convolucionais. Os métodos escolhidos foram: Regressdo Logistica e Arvore
Randémica (Floresta randdmica), ambos amplamente utilizados em tarefas de

classificagdo binaria e conhecidos por sua robustez e interpretabilidade.
3.4.1 Regressor logistico

A regressdo logistica ¢ um modelo estatistico amplamente utilizado para tarefas
de classificacdo binaria. Seu objetivo € estimar a probabilidade de uma observagao
pertencer a uma das duas classes possiveis, utilizando como fun¢do de ativacdo a
sigmoide logistica. A equagdo da regressao logistica ¢ dada por:

1
1 + e~ (Bot Bixi+ -+ Pnxn)

P(Y=11X)=

Onde:
e P(Y =1 |X)éaprobabilidade prevista da classe positiva;
e [, ¢ o intercepto (bias);
e f34, *++, B, sdo os coeficientes associados as variaveis xq, -+, Xy.

Durante o treinamento, os coeficientes sdo ajustados para minimizar a fun¢ao de

custo log-loss (entropia cruzada), que penaliza predi¢cdes incorretas com maior
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intensidade. Por ser um modelo linear, sua performance pode ser limitada em problemas
com alta ndo-linearidade, mas apresenta bons resultados quando as variaveis sdo

informativas e as classes sdo separaveis (Hosmer et al., 2013).

A Figura 1 ilustra o funcionamento do modelo:

Entrada

Soma Sigmoide

) f Predi¢ao

Pesos

Viés
Figura 1: Arquitetura do regressor logistico

Fonte: adaptado de Khan et al. (2021)
3.4.2 Arvore randomica

O algoritmo de Arvore Randoémica (Floresta randdmica) é uma técnica de
aprendizado de maquina baseada em ensemble learning, que combina a predicao de
multiplas arvores de decisdo para produzir um resultado mais robusto e estavel. Cada
arvore ¢ construida a partir de um subconjunto aleatério do conjunto de dados de

treinamento, e cada n6 ¢ dividido com base em um subconjunto aleatério de atributos.

Ao final do processo, a predigao do modelo € obtida por meio de uma votagao majoritaria
(no caso de classificagdo) ou pela média das saidas das arvores (no caso de regressao).
Essa abordagem reduz a variancia do modelo e aumenta sua capacidade de generalizacao,

além de fornecer métricas de importancia das variaveis utilizadas.

A Figura 2 ilustra o funcionamento geral do algoritmo:
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Figura 2: Algoritmo do modelo da arvore randdmica
Fonte: adaptado de InfoAryan (2022).

Essa representagdo destaca o paralelismo das arvores e o processo de agregacao
dos resultados. A diversidade introduzida pelas amostras e atributos aleatorios ajuda a
evitar o sobre ajuste (overfitting), uma limitagdo comum de modelos baseados em uma

unica arvore de decisdo (Breiman, 2001).
3.5 Redes Neurais Artificiais

As Redes Neurais Artificiais (RNAs) constituem um dos pilares fundamentais do
aprendizado profundo. Inspiradas no funcionamento do sistema nervoso bioldgico, essas
redes sdo compostas por unidades de processamento denominadas neuronios artificiais,
que se organizam em camadas conectadas entre si por pesos sinapticos. A primeira
camada recebe os dados de entrada, enquanto as camadas intermediarias — chamadas
ocultas — sdo responsaveis por extrair e transformar caracteristicas progressivamente
mais abstratas, até que a ultima camada fornega a saida desejada, seja uma classe, um

valor ou uma distribuigao.

Cada neurdnio realiza uma combinacao linear ponderada das entradas recebidas

e, em seguida, aplica uma funcdo de ativacdo nao linear, como ReLU, Leaky ReLU,



tangente hiperbdlica ou sigmoide, a fim de permitir que a rede aprenda relagdes

complexas e ndo lineares. A equagdo geral da ativagdo de um neurdnio € expressa por:

y = ¢<zn:wixi+ b)
i=1

(I =K)(i,j) =mdnYI(i+m,j+n) K(mmn)

O avango das RNAs ao longo do tempo culminou no desenvolvimento das
chamadas redes profundas que contam com multiplas camadas ocultas, ampliando
drasticamente a capacidade de modelagem e abstragcdo. Tais modelos sdo atualmente
aplicados em tarefas como reconhecimento de fala, diagndstico médico, processamento

de imagens e previsao temporal (Goodfellow ef al., 2016; LeCun ef al., 2015).
3.6 Rede Neuras Convolucionais

As Redes Neurais Convolucionais (CNNs) foram projetadas para lidar com dados
que apresentam estrutura espacial, como imagens e sinais temporais. Ao contrario das
RNAs tradicionais, em que todos os neurdnios sao conectados entre si, as CNNs utilizam
camadas que operam localmente, reduzindo o niimero de parametros e permitindo o
aprendizado eficiente de padrdes espaciais. Desde a proposta da LeNet-5 por LeCun et
al. (1998), essas redes tornaram-se a espinha dorsal de aplicagdes em visdo computacional

e processamento de sinais biomédicos.

As CNNs combinam diversas camadas especializadas, como convolutivas, de
subamostragem, ativagdo, regularizagdo e classificagcdo, que, em conjunto, permitem a

extracdo automatica e hierarquica de caracteristicas relevantes dos dados de entrada

3.6.1 Camada Convolutiva

A camada Convolutiva constitui o alicerce das redes neurais convolucionais
(CNNs) e ¢ responsavel por extrair caracteristicas relevantes das entradas, sejam imagens,
sinais ou outros tipos de dados estruturados. Diferentemente das redes neurais totalmente
conectadas, em que cada neuronio estd ligado a todos os neurdnios da camada anterior,
nas camadas convolutivas cada unidade processa uma regiao local da entrada, reduzindo

drasticamente o numero de parametros e permitindo o aprendizado de padrdes espaciais.
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A operagao fundamental desta camada ¢ a convolugdo discreta, definida da

seguinte forma para uma imagem de entrada e um filtro ou kernel:
I+ K)(Q, ) = ZZI(L' +m,j +n) - K(m,n)
m n

Onde:

e [ éaimagem ou matriz de entrada (por exemplo, uma imagem em tons de cinza).

e K o filtro ou kernel convolucional, uma matriz pequena que sera aplicada sobre
II1.

e (i,j) sao as coordenadas do pixel de saida.

e m,n os indices que percorrem os elementos do kernel.

e (I*K)(i,j) serefere ao valor do pixel na saida da convolu¢do na posi¢ao

Nesta equagdo, denota a posicao do pixel na imagem de saida, e os somatorios
percorrem os elementos do kernel. O resultado é um mapa de ativagdo que destaca a
presenga de padrdes aprendidos pelo filtro, como bordas, texturas e formas mais

complexas nas camadas mais profundas (Lecun ef al., 1998; Goodfellow ef al., 2016).

A Figura 3 ilustra o processo de convolu¢do em redes neurais, no qual o kernel ¢
aplicado sobre a imagem de entrada para produzir um novo valor de pixel por meio da

soma ponderada dos vizinhos (Nvidea, 2024).

CONVOLUCAO

O elemento central do kernel é
colocado sobre o pixel fonte.

O pixel fonte é entdo substituido
por uma soma ponderada

= ‘ de si mesmo e dos pixels proximos.

Pixel de Origem ( | i

Nucleo Convolucional
(filtro)

Novo valor do pixel

Figura 3: Exemplo do funcionamento da opera¢do de convolu¢do em uma rede neural
convolucional (CNN), mostrando o alinhamento do kernel sobre a entrada e o célculo

do novo valor de pixel.
Fonte: adaptado de Nvidia (2024)
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3.6.2 Camada de Subamostragem (Pooling)

A camada de pooling, ou subamostragem, tem como principal objetivo reduzir a
dimensionalidade espacial dos mapas de ativagdo produzidos pelas camadas
convolutivas. Isso contribui para a reducdo de parametros, melhora da generalizagdo e

maior robustez a variagdes na posi¢ao dos padrdes detectados.
As operacdes mais comuns de pooling sdo:
e Max Pooling: seleciona o maior valor em cada regido local.
e Average Pooling: calcula a média dos valores da regido.
A operacgdo de max pooling pode ser descrita como:
Y(i,)) = maxmnyer, X (m,n)
Onde:

e X ¢ o mapa de ativagdo de entrada da camada de pooling.

e Y(i,j) ovalor de saida da operagdo de pooling na posi¢ao (i, j).

e R(i,j) ¢ a regido (janela) de tamanho fixo (geralmente 2x2) da entrada X,
associada a posi¢ao (i, j).

e (m,n) indices dos elementos dentro da janela.

A Figura 4 apresenta uma comparacao visual entre as técnicas de max pooling e
average pooling, aplicadas a uma matriz de entrada. No max pooling, o valor maximo de
cada regido € preservado, destacando os elementos mais relevantes do mapa de ativagao.
J& no average pooling, a média dos valores ¢ computada, resultando em uma suavizagao
das caracteristicas extraidas. Ambas as abordagens sdo amplamente utilizadas para
reduzir a dimensionalidade e aumentar a robustez do modelo a pequenas variagdes

espaciais (Nehme, 2023).
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Figura 4: Comparagao entre as operacoes de max pooling € average pooling, aplicadas
sobre uma matriz 4x4 com janelas 2x2.

Fonte: Nehme (2023).
3.6.3 Camada de Dropout

A técnica de dropout foi proposta por Srivastava et al. (2014) como um método
de regularizacdo para evitar overfitting em redes neurais profundas. Essa camada atua de
forma estocastica durante o treinamento, desativando aleatoriamente uma fracdo dos

neurdnios da camada anterior, evitando adaptagdo excessiva dos pesos.
A ativagdo de cada neuronio com dropout ¢ dada por:
h; = h; - z; com z; ~ Bernoulli(1 — p)
Onde:
e h; refere a saida do neurdnio i antes da aplicacdo do dropout.
e« h; éasaida do neurdnio i apods a aplicagdo do dropout.

e z; ¢ uma varidvel aleatoria com distribuicao de Bernoulli que assume valor 1 com

probabilidade 1 — p e 0 com probabilidade p.

e p ¢ a taxa de dropout, ou seja, fragdo de neuronios desativados aleatoriamente

durante o treinamento.

A Figura 5 ilustra a diferenga entre uma rede neural padrao e a mesma rede com aplicacao
da técnica de dropout, conforme proposta por Srivastava et al. (2014). Observa-se que
alguns neuronios sdo desativados aleatoriamente durante o treinamento, o que reduz o

risco de overfitting e melhora a generalizagdo do modelo.
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(a) Rede Neural Padrio (b) Rede apos aplicagdo de dropout

Figura 5: Comparagao entre rede neural padrao(a) e rede com aplicagdo de dropout (b)

Fonte: adaptado de Srivastava et al. (2014).
3.6.4 Camada de unidades Retificadoras Lineares (ReLU)

As fungdes de ativagao sao componentes essenciais nas redes neurais, € a fungao
ReLU (Rectified Linear Unit) tornou-se padrao de fato nas CNNs modernas. Ela introduz

nao linearidades nos modelos com baixo custo computacional.
A funcao ReLU ¢ definida como:
f(x) = max(0,x)

Ela resolve o problema do gradiente desaparecendo que afetava fungdes como
sigmoid ou tanh, e acelera a convergéncia do treinamento. ReLU também promove

esparsidade na saida, o que pode melhorar a capacidade de generalizagao.

A Figura 6 apresenta as funcdes de ativacdo mais comuns utilizadas em redes

neurais profundas: sigmoid, tanh, ReLU e Leaky ReLU.
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Figura 6: Representacao grafica das fungdes de ativagdo: (a) Sigmoid, (b) Tanh, (c)
ReLU e (d) Leaky ReLU.
Fonte: Yang et al. (2023).

O uso de ReLU pode levar ao problema do "neurdnio morto", quando valores
negativos persistem em uma determinada unidade, que entdo nunca mais atualiza seus
pesos. Para mitigar isso, variantes como Leaky ReLU e Parametric ReLU sao utilizadas

(Nair & Hinton, 2010).

3.6.5 Regularizagao L,

A regularizagdo Lo, também conhecida como weight decay, € uma técnica cldssica
de controle de complexidade do modelo, penalizando pesos excessivamente grandes. Ela
¢ aplicada na fung¢do de perda, adicionando um termo proporcional ao quadrado da norma

dos pesos:
J©) =Jo(®) +2 ) 62

Onde:

e J(6) ¢ afungdo de custo regularizada.
e Jo(8) afungdo de custo original (como cross-entropy ou MSE).

e 0, é o parametro (peso) i-ésimo da rede neural.
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e A o hiper parametro de regularizagdo L2, que controla a intensidade da

penalizagao.

Esse termo adicional for¢a os pesos a se manterem pequenos, promovendo
modelos mais simples e menos propensos ao overfitting. Segundo Goodfellow et al.
(2016), L ¢ especialmente eficaz quando combinada com outras técnicas como dropout

e data augmentation.
3.7 M¢étodos de Otimizacao

A escolha do otimizador influencia diretamente a velocidade de convergéncia e a
qualidade da solu¢do encontrada por uma rede neural. Diversos algoritmos tém sido
propostos com o objetivo de aprimorar o processo de atualizagdo dos pesos, incorporando
estratégias como momento, adaptacao da taxa de aprendizado e regularizacdo implicita.
A seguir, sdo descritos trés dos métodos de otimizagao mais utilizados em redes neurais

profundas.
3.7.1 Estimativa Dinamica Adaptativa (Adam)

O otimizador Adam (Adaptive Moment Estimation) combina as vantagens do
RMSProp e do Gradiente Descendente com Momento. Ele mantém estimativas dos
primeiros e segundos momentos do gradiente, permitindo atualizagdes adaptativas para

cada parametro.
As atualizacdes de peso sdo realizadas conforme as equacgdes:
1. Média movel dos gradientes:
me=p-m—1+1—pB1) g:
2. Meédia movel dos quadrados dos gradientes:
ve =By ver + (1= B2) - g¢

3. Corregoes de viés:

4. Atualizagdo dos pesos:
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Onde:
e ;¢ o gradiente no passo;
e m; ¢ amédia mdvel do gradiente (momento);
e v, ¢ amédia movel dos quadrados do gradiente;
e [31,[, sao os coeficientes de decaimento (tipicamente 0.9 ¢ 0.999);
e € ¢ um pequeno valor para evitar divisdo por zero;
e 7 ¢ ataxa de aprendizado.

O Adam ¢ robusto e eficiente, sendo amplamente usado em problemas com

grandes conjuntos de dados e arquiteturas profundas (Kingma & Ba, 2015).
3.7.2 Propagac¢do da Raiz Média Quadratica (RMSProp)

RMSProp foi proposto por Tieleman & Hinton (2012) e ¢ uma modificagdo do
método Adagrad. Seu objetivo € resolver o problema da rapida diminui¢do da taxa de
aprendizado do Adagrad ao acumular os quadrados dos gradientes em média modvel

exponencial, sendo essas descritas pelas equacdes:
1. Média moével dos quadrados dos gradientes:
Ve =V v+ (1 -y) g¢

2. Atualizagdo dos pesos:

Onde:
e v ¢ fator de decaimento (ex: 0.9);
e v, ¢ amédia mével dos quadrados dos gradientes;

e g. ¢ o gradiente atual.
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Esse método ¢ eficaz para problemas com dados nao estacionarios, como séries

temporais e processamento de sinais (Tieleman & Hinton, 2012).

3.7.3 Gradiente Descendente Estocastico com Momento

(SGDM)

O SGDM (Stochastic Gradient Descent with Momentum) adiciona um termo de
"momentum" que suaviza as atualiza¢des, acumulando gradientes passados para evitar

oscilagdes excessivas, sendo descrita pelas equagdes:

1. Atualizagdo do vetor de momento:

Ve =V — 1 V](6)

2. Atualizagdo dos pesos:
Orv1 =0t + vy
Onde:
e u ¢ o coeficiente de momento (ex: 0.9);
e 1 ¢ ataxa de aprendizado;
e VJ(6:) ¢ o gradiente da fungédo de custo.

O uso do momento permite um avanco mais estavel e rapido nas direcdes de

menor curvatura da funcdo de perda (Qian, 1999).

Esses métodos sdo frequentemente combinados com técnicas de normalizagdo e

regularizacdo para alcangar um melhor desempenho em redes convolucionais profundas.
3.8 Métricas para avaliacao

Esta secdo apresenta as métricas utilizadas para avaliar o desempenho dos
modelos de classificagdo, sdo descritas a seguir as principais métricas adotadas neste
estudo: acuracia, F1-score, area sob a curva ROC (AUC) e a matriz de confusao para uma

analise visual dos resultados.

Considerando:
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e VP: niimero de verdadeiros positivos

e VN:numero de verdadeiros negativos

FP: niimero de falsos positivos
e FN: numero de falsos negativos
Temos:

e Acuracia:

;. VP+VN ~ C o~
Acuracia = —————— ; Propor¢do de previsdes corretas sobre o total de
VP+VN+FP+FN

amostras avaliadas.

e Fl-score:

F1 = 2-VP

= STUpirriEN M¢édia harmonica entre precisao e revocacao, util quando ha

desbalanceamento entre classes.

« Area sob a Curva ROC (AUC):

AUC = ffom Revocacio(T) - Especificidade’(T)dT ; Probabilidade de que o
classificador atribua uma maior pontuacdo a uma instancia positiva do que a uma
negativa escolhida aleatoriamente (Fawcett, 2006).

e Matriz de Confusao:

Representagdo tabular dos acertos e erros do modelo. Para problemas binarios,
organiza os valores de VP, VN, FP e FN, permitindo visualizar com clareza os tipos

de erro e acerto.

Essas métricas, combinadas, fornecem uma avaliagdo abrangente do desempenho dos
modelos, especialmente em contextos sensiveis como aplicagdes médicas ou de

seguranga, onde o custo de um erro pode ser elevado.
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Capitulo 4

Materiais € Métodos

Esta secdo descreve os conjuntos de dados utilizados, as técnicas de pré-
processamento aplicadas, a arquitetura das redes neurais desenvolvidas, o ambiente

computacional adotado e as estratégias de treinamento e avaliagdo empregadas.
4.1 Materiais

Este estudo utilizou dois conjuntos de dados clinicos distintos para a tarefa de
predicao da mortalidade em 14 dias em pacientes com traumatismo cranioencefalico
(TCE), por meio da aplicacdo de modelos de aprendizado de maquina. O primeiro
conjunto de dados foi obtido a partir de pacientes atendidos no Hospital das Clinicas da
Universidade de Sao Paulo (HC-FMUSP), com periodo de coleta compreendido entre
marco de 2012 e janeiro de 2015, e acompanhamento finalizado em junho de 2015. O
Comité de Etica em Pesquisa da Universidade de Sdo Paulo (Sdo Paulo, Brasil) aprovou
este estudo (CAAE 46831315.3.0000.0068). A base paulista contém um total de 517
registros validos, com 15 varidveis preditoras organizadas em quatro categorias

principais:
1. Demograficas: género (masculino ou feminino) e idade (em anos);

2. Clinicas: reatividade pupilar na admissao (bilateral reagente, uma ou duas pupilas
fixas), escala de coma de Glasgow (GCS) no local do trauma (leve, moderada ou
grave), GCS na admissdo (idem), escore motor da GCS (1 a 6), presenca de
hipoxia (sim ou ndo), e hipotensdo na admissao (sim ou nao). Considera-se como
hipotensdo uma pressao arterial sistolica < 90 mmHg, e como hipdxia, saturagao

de oxigénio < 90%, conforme diretrizes da Brain Trauma Foundation;

3. Tomograficas: presenca de desvio de linha média superior a 5 mm (sim ou nao),
hemorragia subaracnoidea (TSAH), hematoma epidural, hemorragia subdural e

hemorragia intracerebral, todas com codificacao binaria;

4. Laboratoriais: tempo de protrombina (em segundos) e razdo do tempo de

tromboplastina parcial ativado (rAPTT).
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O segundo conjunto de dados foi coletado em Manaus (Amazonas), entre maio de
2020 e julho de 2021, em um centro hospitalar tercidrio. Este estudo foi aprovado pelo
Comité de Etica em Pesquisa da Universidade Federal do Amazonas (UFAM) (CAAE:
25366619.1.0000.5020). A base manauara inclui 469 registros e, além das mesmas 15

variaveis utilizadas na base paulista, incorpora duas variaveis contextuais adicionais:

e Tempo entre o trauma ¢ a admissao hospitalar, medido em horas;
e Indicador de coleta durante a pandemia da COVID-19, binario (0 = fora da

pandemia; 1 = durante a pandemia).

A justificativa para a presenca exclusiva dessas duas varidveis na base de Manaus
esta relacionada as peculiaridades logisticas da regido Norte. Manaus € a tnica cidade do
estado com capacidade de atendimento neurocirurgico de emergéncia. Pacientes oriundos
do interior geralmente sdo transportados por meios fluviais ou aéreos, resultando em um
tempo médio de deslocamento de aproximadamente 67,1 horas até a chegada ao centro
especializado (Novo et al., 2023). Esse cendrio contrasta fortemente com o de Sdo Paulo,
que conta com ampla rede rodoviaria e diversos centros especializados distribuidos em
sua malha urbana e interiorana. A inclusdo da varidvel indicativa da pandemia visa avaliar

o impacto da sobrecarga hospitalar sobre os desfechos clinicos desses pacientes.

Ambos os conjuntos de dados foram armazenados em arquivos CSV estruturados
e submetidos aos seguintes critérios de inclusdo: (i) assinatura do termo de consentimento
livre e esclarecido por parte do paciente ou responsavel legal; (ii) presen¢a de alteragdes
na tomografia computadorizada de cranio; (iii) GCS < 14 apods estabilizacdo na
emergéncia; e (iv) idade superior a 14 anos. Os critérios de exclusao incluiram pacientes
transferidos de outras unidades de terapia intensiva (UTI), com hematoma subdural
crénico, ou com pupilas fixas bilaterais e GCS igual a trés, sem resposta apés manobras

de ressuscitagdo cardiopulmonar.

A Tabela 2 apresenta o resumo das variaveis utilizadas nos dois bancos de

dados, com seus respectivos tipos e faixas de valores.
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Tabela 2: Variaveis utilizadas na predi¢ao de mortalidade em 14 dias

Intervalo /

Classe Variavel Tipo Categoria
Demografica Género Categorica 0-1
Idade Numérica 16 —99
Pandemia (exclusiva de Manaus) Categorica 0-1
Clinica Reatividade pupilar Categorica 0-2
GCS no local do trauma Categorica 1-3
GCS na admissao Categorica 1-3
Escore motor (GCS) Categorica 1-6
Hipoxia Categorica 0-1
Hipotensao na admissao Categorica 0-1
Tempo trauma-admissao Numérica
(Manaus) (horas) Oh —12h
Tomografica Desvio de linha média (>5 mm) Categdrica 0-1
Hemorragia subaracnoidea (CT) Categorica 0-1
Hematoma epidural (CT) Categorica 0-1
Hemorragia subdural (CT) Categorica 0-1
Hemorragia intracerebral (CT)  Categorica 0-1

Por fim, a Figura 7 mostra a proporcao de pacientes que evoluiram a dbito em até
14 dias em cada base. Em Sao Paulo, a mortalidade foi de 22,82%, enquanto em Manaus,
atingiu 27%. Um teste qui-quadrado realizado para avaliar a diferenca entre as proporgoes
revelou um valor de x? = 2,38, o qual ndo foi estatisticamente significativo ao nivel de

5% (xgrl’tico =384,gl=1).
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Distribuicao dos dados de morte em 14 dias por base de dados

200 4 399 N 0 (Sem mortalidade)

1 (Com mortalidade)

350 A

250 A

200 4

Numero de pacientes

150 1

100 A

S&o Paulo Manaus
Base de dados

Figura 7: Distribuicao da mortalidade em 14 dias por base de dados

4.2 Métodos

Essa sessdo tem como foco a apresentagdo dos métodos utilizados essas sendo
apresentadas no diagrama de blocos da Figura 8, passando desde os pré-processamentos
feitos, toda a defini¢do de ajustes de modelos para serem feitos os treinamentos até a parte

final onde sdo obtidos os resultados

Construgdo das bases de dados Avaliagio dos resultados
Y A
Pré-processamento Definigdo das estratégias de treino/teste

Y A

Defini¢do dos modelos de predigio ——®| Ajuste de hiperparametros

Figura 8: fluxograma da metodologia
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4.2.1 Pré-Processamento

Essa fase buscou garantir a consisténcia, completude e escalabilidade dos dados,
possibilitando que os modelos de aprendizado fossem treinados de forma eficaz, com

menor risco de viés ou overfitting decorrente de ruido ou dados inconsistentes.

A base de dados de Sao Paulo apresentou cerca de 18% de amostras com ao menos
uma variavel ausente. Varidveis como hipoxia e GCS pré-hospitalar apresentaram maior
propor¢ao de valores faltantes, exigindo estratégias diferenciadas para tratamento. Em
contraste, a base de Manaus mostrou-se mais completa, com aproximadamente 2% das

amostras contendo dados incompletos.

O pré-processamento dos dados de Sdao Paulo foi descrito previamente por
Guimaraes ef al. (2022), e as mesmas diretrizes foram aplicadas na base de Manaus para
assegurar uniformidade no tratamento dos dados. O preenchimento de valores ausentes

foi conduzido conforme o tipo da variavel:

o Para variaveis categoricas, foram utilizadas abordagens baseadas em algoritmos
de aprendizado supervisionado como arvore de decisdo, floresta aleatoria

(Floresta randomica) e k-vizinhos mais proximos (k-NN);

e Para varidveis numéricas, foram aplicados métodos de imputagdo por regressao

linear, além de uso de modelos baseados em arvore e Floresta randomica;

e Variaveis com porcentagem minima de auséncia foram imputadas por medidas

estatisticas simples, como a média ou a moda.

Ap0s o preenchimento dos valores ausentes, os dados passaram por uma etapa de
normalizag¢do, essencial para modelos sensiveis a escala, como redes neurais. A

normaliza¢do adotou multiplas técnicas conforme o perfil da variavel:
e Min-Max Scaling: para compressao de valores entre 0 e 1;
e Z-score normalization: para centraliza¢do e padronizagdo de varidveis continuas;
o Transformagdo cubica: aplicada em variaveis com distribuicao assimétrica severa.

Além disso, todas as varidveis categdricas foram transformadas por codificacao
one-hot (vetores com apenas uma coordenada igual a 1 e as outras, iguais a 0), exceto nos

casos em que a arquitetura do modelo aceitava diretamente entradas categoricas
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indexadas. Esse tratamento resultou em um vetor de atributos numéricos compativel com

as arquiteturas convolucionais adotadas neste trabalho.

Por fim, os dados foram estratificados e divididos em subconjuntos de treinamento
(80%) e teste (20%), mantendo a proporcao original de pacientes sobreviventes e nao
sobreviventes em 14 dias. Essa divisdo estratificada foi crucial para evitar distor¢des de

distribuicdo de classes durante o treinamento e avaliacao dos modelos.
4.2.2 Definicao dos modelos de predigdo

A definicao dos modelos de predicao empregados neste trabalho foi guiada por
dois objetivos principais: (i) avaliar a capacidade discriminativa de algoritmos classicos
de aprendizado supervisionado, frequentemente utilizados em contextos médicos; ¢ (ii)
explorar o potencial das redes neurais convolucionais (CNNs), originalmente projetadas

para tarefas em dominio de imagens, na modelagem de dados clinicos estruturados.

Inicialmente, foram empregados trés modelos de referéncia que representam

diferentes paradigmas de modelagem:

o Regressdo Logistica (RL): modelo linear amplamente consolidado em aplicagdes
clinicas devido & sua interpretabilidade e boa robustez estatistica. E utilizado
como baseline em diversos estudos relacionados a predi¢ao de desfechos em TCE

(Raj et al., 2013).

e Floresta randomica (RF): algoritmo baseado em multiplas arvores de decisdo
agregadas por voto majoritario. Tem sido eficaz em problemas com varidveis

mistas e auséncia de linearidade (Breiman, 2001).

e Perceptron Multicamadas (MLP): rede neural densa com multiplas camadas
ocultas e fung¢des de ativagdo nao lineares, aplicada como transi¢do entre modelos
estatisticos e redes convolucionais profundas (Lecun ef al., 2015). Neste estudo
a rede MLP foi projetada é apresentada na Figura 9 onde sua configuracdo
consiste em uma primeira camada oculta com 128 neurdnios e a segunda com
64 neurdnios, ambas utilizando a funcdo de ativacdo RelU com camadas de
dropout com taxa de 0,2 apds cada camada oculta. A camada final, responsavel

pela classificacdo bindria, contém um Unico neurdnio com ativacdo sigmoide.
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(Camada de entrada)
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( Camada densa )
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(Camada de dropout)

( Camada densa )

(Camada de drapout)

v

( Camada de saida )

Figura 9: Arquitetura da rede MLP utilizada para predi¢do de mortalidade em 14 dias

para paciente com TBI

As redes convolucionais tém se destacado ndo apenas em tarefas visuais, mas
também em problemas envolvendo dados tabulares, ao se adaptarem para capturar
padrdes espaciais ou ordenamentos implicitos. Diversos trabalhos recentes apontam para
a aplicabilidade de CNNs em contextos médicos com alto grau de dimensionalidade e

correlacdo entre atributos (Krizhevsky et al., 2012; Shickel et al., 2018).
Neste estudo, foram desenvolvidas e comparadas duas arquiteturas distintas:

e (NNI1 —Arquitetura paralela: inspirada na estrutura Inception (Szego et al., 2015),
esta rede utiliza multiplos filtros convolucionais 1D de tamanhos variados (2, 3,
4) aplicados em paralelo a entrada. O objetivo ¢ permitir a captura de relagdes
locais de diferentes escalas entre os atributos clinicos. Os mapas de ativagdo
resultantes sdo concatenados e enviados a uma camada densa com 50 neurdnios

(ativagdo ReLU), seguida de camada dropout (0,2) e saida com ativagao sigmoide.

e CNN2 — Arquitetura sequencial profunda: utiliza uma sequéncia de blocos
convolucionais compostos por convolugcdo 1D, normaliza¢do por lote (batch
normalization) e ativagdo ReLLU. Ap0s dois blocos consecutivos, os dados passam
por uma camada densa com 50 neurdnios, dropout (0,2) e camada de saida
sigmoide. Essa abordagem favorece o aprendizado hierarquico de representagdes

latentes.
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Uso de duas arquiteturas CNNs diferentes foi aplicado para avaliar métodos de
extragdo de caracteristicas diferentes devido a variacdo do formato da CNN, esse formato
¢ descrito na Figura 10 onde ¢ visto a diferenca na robustez da extragdo de caracteristicas

ao utilizar camadas em paralelas para essa atividade.

Camada densa
/—‘L—\
5 convolugido | | convolugdo
comvougi - e
— D
e . ) mm"e
m mﬁo ___________________ m g
" b2 Ixk caracteristicas 1
v
Bloco de
Filtro de e
- caracteristicas k
: i v
(“Camads doraa ) (Commin dons )
Y
M (Camada de dropout)
Camada de saida (' Camada de saida )
(@) (b)

Figura 10: Arquitetura das redes CNN utilizadas para predicao de mortalidade em 14
dias para paciente de TBI. (a) CNN com arquitetura em paralelo; (b) CNN com

arquitetura em série

A escolha por CNNs ¢ corroborada por estudos como o de Razzak et al. (2019),
que destacam a capacidade dessas redes em superar modelos tradicionais em tarefas
biomédicas, especialmente quando combinadas com estratégias de regularizacio e ajuste
apropriado de hiper parametros. Além disso, as CNNs mantém compatibilidade com
métodos de interpretabilidade, como SHAP (Lundberg e Lee, 2017), sendo esse
fundamental para entender o comportamento da base de dados com os melhores modelos

treinados.
4.2.3 Ajuste de hiper parametros

O ajuste de hiperparametros ¢ uma etapa essencial para garantir o bom

desempenho e a generalizacdo dos modelos de aprendizado de maquina. Essa fase
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envolve a escolha criteriosa de parametros que ndo sao aprendidos diretamente durante o
treinamento, mas que influenciam significativamente o comportamento do modelo, como

taxa de aprendizado, nimero de épocas, tamanho dos lotes, otimizadores e callbacks.

O treinamento dos modelos MLP e CNNs foi configurado com um conjunto de
hiperparametros definidos inicialmente com base na literatura e posteriormente refinados
por meio de experimentagao empirica. A taxa de aprendizado utilizada foi de le-2 para a
rede MLP e de le-3 para as CNNs. Durante o processo de treinamento, essa taxa foi
reduzida automaticamente ao se observar estagnacdo em minimos locais, até atingir um
valor minimo de 1e-6, estratégia que contribuiu para estabilizar a convergéncia. O nimero
de épocas foi fixado em 300, com utilizagdo de callbacks para armazenar o modelo com

melhor desempenho com base na acurécia obtida no conjunto de validacao.

Foram avaliados diferentes otimizadores nos modelos com redes neurais, entre

eles:
e Adam (4daptive Moment Estimation);,
e RMSProp (Root Mean Square Propagation);
e  SGDM (Stochastic Gradient Descent with Momentum).

A funcdo de perda adotada foi a entropia cruzada bindria, apropriada para tarefas
de classificagdo binaria. Os melhores conjuntos de hiperparametros foram selecionados
com base nas métricas obtidas nos subconjuntos de validagdo, priorizando F1-score e
AUC. Esse processo buscou um equilibrio entre acurécia e sensibilidade, promovendo a

robustez dos modelos diante de diferentes distribuicdes de entrada.
4.2.4 Estrategias de Treinamento e Teste

Cinco estratégias distintas foram utilizadas para avaliar os modelos de
aprendizado de maquina na predi¢do da mortalidade até 14 dias de pacientes com TCE.
Essas estratégias tiveram dois objetivos principais: avaliar o desempenho dos modelos e
avaliar a capacidade de generalizacdo dos mesmos. As estratégias foram desenhadas de
modo a utilizar diferentes combinagdes entre as bases de dados de Sao Paulo e Manaus,

além de explorar o impacto de varidveis contextuais exclusivas da base de Manaus.

o Estratégia 1: O modelo ¢ treinado e testado utilizando apenas os dados da base de
Sao Paulo. O objetivo ¢ avaliar o desempenho do modelo dentro de um tunico

contexto urbano, com 15 varidveis comuns entre 0s conjuntos.
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o Estratégia 2: O modelo ¢ treinado e testado utilizando exclusivamente os dados
da base de Manaus. Essa estratégia permite avaliar o desempenho do modelo em
um contexto clinico e logistico diferente, inicialmente com 15 varidveis e,
posteriormente, com a adi¢ao de uma ou duas variaveis contextuais exclusivas da
base de Manaus (varidvel de pandemia e tempo entre o trauma ¢ a admissao

hospitalar), totalizando até 17 variaveis.

o Estratégia 3: O modelo ¢ treinado com os dados da base de Sao Paulo e testado
com os dados da base de Manaus. Esta abordagem permite analisar o grau de
generalizagdo dos modelos quando expostos a um ambiente clinico distinto

daquele em que foram treinados.

e Estratégia 4: O modelo ¢ treinado com os dados da base de Manaus e testado com
os dados da base de Sdo Paulo. Esta estratégia complementa a anterior, também

avaliando a generaliza¢cdo, mas em dire¢do oposta.

o Estratégia 5: Os dados de ambas as bases s3o unificados, e 0 modelo € treinado e
testado sobre este conjunto combinado. Esta configuragdo busca verificar se um
modelo pode capturar caracteristicas comuns entre os dois contextos e ainda assim

manter um bom desempenho.

A Figura 11 ilustra graficamente a organizacdo e distribuicdo das cinco estratégias

aplicadas no estudo.

-

Base de dados de Base de dados de
Sao Paulo Manaus
J
| |
v ¥ v R
amostras de treino amostras de teste amostras de treino amostras de teste
80% 20% 80% 20%

Y A 4 Y Y

Y Y
{Estratégia ‘I} ‘ Estratégia 2 ‘ ‘ Estratégia 3} ‘ Estratégia 4} Estratégia 5

Figura 11: Fluxograma das estratégias de treinamento e teste adotadas neste trabalho.
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Capitulo 5

Resultados e Discussoes

Esta secdo apresenta os resultados obtidos a partir da aplicagdo das cinco
estratégias de treinamento e teste descritas na Secao 4.2.4, com os diferentes modelos de
aprendizado de maquina avaliados. Os modelos foram comparados com base nas métricas
definidas previamente, acuracia, F1-score ¢ AUC, permitindo uma analise detalhada da

capacidade preditiva de cada abordagem.

Os resultados sao organizados por estratégia e discutidos em termos de desempenho
relativo entre os modelos mais cldssicos (Regressdo Logistica, Floresta randomica e
MLP) e as redes convolucionais (CNN1 e CNN2). A andlise enfatiza também a
capacidade de generalizacdo dos modelos, sobretudo nas estratégias que envolvem testes

cruzados entre as bases de Sdo Paulo e Manaus.

5.1 Resultados para a estratégia 1 e 2 com 15 varidveis
preditivas na entrada

As métricas de desempenho acuracia, F1-score e AUC obtidas nas Estratégias 1
(base Sao Paulo) e 2 (base Manaus), utilizando as 15 varidveis preditivas comuns entre
as bases, esses resultados sdo apresentados na Tabela 3. A analise dos resultados revela
que os modelos baseados em redes neurais convolucionais foram significativamente

superiores aos modelos tradicionais em ambas as bases.

Os modelos CNN2 e CNNI, ambos utilizando o otimizador RMSProp,
destacaram-se como os melhores em cada base. Em particular, a CNN2 com RMSProp
atingiu acuracia de 0,87, F1-score de 0,85 e AUC de 0,90 na Estratégia 1. Ja na Estratégia
2, a CNNI1 com RMSProp apresentou acuracia de 0,90, F1-score de 0,89 e AUC de 0,93,
o maior valor observado entre todos os experimentos realizados. Tais resultados indicam
ndo apenas a superioridade das CNNs para a tarefa de predicdo de mortalidade de
pacientes com TCE, mas também a efetividade do otimizador RMSProp para este tipo de

tarefa, especialmente quando aplicado a dados clinicos heterogéneos.

59



Ao comparar diretamente os resultados entre as duas estratégias, nota-se que os
modelos obtiveram desempenho superior na base de Manaus (Estratégia 2) em relacdo a
base de Sao Paulo (Estratégia 1). Esse comportamento pode ser atribuido a uma maior
uniformidade e completude dos dados da base manauara, conforme discutido
anteriormente na Secao 4.2.1. Adicionalmente, observa-se que os modelos mais simples,
como a regressdo logistica, apresentaram desempenho inferior, provavelmente por sua

limitagcdo em capturar relagdes ndo lineares entre as varidveis clinicas.

As matrizes de confusao associadas aos melhores modelos de cada estratégia sao
apresentadas na Figura 12. Na Estratégia 1, o modelo CNN2 + RMSProp obteve uma
sensibilidade (revocagdo) de 0,79 e especificidade de 0,89. Ja na Estratégia 2, o modelo
CNN1 + RMSProp alcangou sensibilidade de 0,84 e especificidade de 0,96, evidenciando
sua elevada capacidade discriminativa, tanto para prever corretamente os Obitos quanto

para minimizar falsos positivos.

Tabela 3: Métricas obtidas para as estratégias 1 e 2 com 15 varidveis de entrada

Modelo de Otimizador Estratégia 1 Estratégia 2
machine learning
Acuracia F1- AUC  Acurdcia F1- AUC
Score Score

Regressdo Logistica - 0,81 0,79 0,83 0,81 0,77 0,79
Random Forest - 0,81 0,80 0,83 0,82 0,79 0,81
MLP Adam 0,79 0,76 0,80 0,89 0,88 0,90
MLP RMSprop 0,80 0,78 0,81 0,88 0,86 0,89
MLP SGDM 0,80 0,78 0,82 0,87 0,85 0,89
CNN1 Adam 0,81 0,80 0,83 0,90 0,88 0,91
CNN1 RMSprop 0,82 0,81 0,84 0,92 0,90 0,93
CNN1 SGDM 0,80 0,78 0,81 0,88 0,86 0,89
CNN2 Adam 0,86 0,83 0,89 0,89 0,87 0,90
CNN2 RMSprop 0,87 0,85 0,90 0,90 0,89 0,91
CNN2 SGDM 0,85 0,82 0,87 0,87 0,85 0,89

60



Matriz de Confusao Matriz de Confusao

g 70 g 60
1] 1]
=] =]
5 60 T
: 4 € 4 50
= =
— E 50 — E
g a g3 “
o o
5 05
o, S - 30
h=} =]
=g -3 ~ g
E E -20
5 9 15 -0 £- 3 22
= =
E £
-10
S -10 S
I I | I
Sem Mortalidade Com Mortalidade Sem Mortalidade Com Mortalidade
Valor Predito Valor Predito
(a) (b)

Figura 12: Matrizes de confusdo para ambas as estratégias: (a) Estratégia 1 com a CNN2

e o otimizador RMSProp; (b) Estratégia 2 com a CNN1 e o otimizador RMSProp.

5.2 Resultados para a estratégia 2 com 15, 16, 17 variaveis
preditoras

Nesta subsec¢ao, sdo apresentados os resultados obtidos para a Estratégia 2, na qual
os modelos foram treinados e testados exclusivamente com a base de dados de Manaus.
Inicialmente, considerou-se o resultado obtido com o conjunto de 15 variaveis preditores
comuns as duas bases (Sao Paulo e Manaus). Em seguida, avaliou-se o impacto da adi¢ao
das duas varidveis contextuais exclusivas de Manaus pandemia e tempo entre o trauma e
a admissdo hospitalar resultando em dois cenarios com 16 e um com 17 varidveis de

entrada.

A Tabela 4 apresenta as métricas de desempenho (acurécia, F1-score e AUC) para
cada cenario. Observa-se que, com as 15 variaveis iniciais, o melhor desempenho foi
obtido pelo modelo “CNN1” com o otimizador RMSProp apresentado na Tabela 3. Ao
adicionar as variaveis separadamente, houve incremento significativo na AUC para 0,97
em ambos 0s casos, sugerindo que o uso de varidveis contextuais influencia fortemente
os desfechos de mortalidade em Manaus. Subsequente a estes testes ¢ feito um
treinamento com todas as 17 varidveis disponiveis, e de forma similar o ganho da inser¢ao
de varidveis contextuais mantiveram o ganho, consolidando um AUC de 0,98 no cenario

com 17 varidveis, o melhor resultado entre todos os experimentos deste estudo.
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A Figura 13 ilustra a matriz de confusdo referente ao modelo com 17 variaveis.
Nota-se sensibilidade de 0,92 e especificidade de 0,99, evidenciando a elevada
capacidade do modelo em identificar tanto Obitos quanto sobreviventes de forma

equilibrada.

Esses resultados indicam que a inclusao de varidveis contextuais especificas de
Manaus trouxe ganho expressivo na capacidade preditiva. Isso se deve, possivelmente, a
forte influéncia das condicdes logisticas regionais ¢ do impacto da pandemia sobre os
fluxos hospitalares e o atendimento emergencial, aspectos ja documentados em estudos

anteriores sobre a regido Norte do Brasil.

Tabela 4: Métricas obtidas para a estratégia 2 com 15, 16 e 17 variaveis de

entrada com o modelo CNNI1 e otimizador RMSProp.

Variaveis Acuracia F1-Score AUC

15 variaveis 0,92 0,90 0,93

15 variaveis + pandemia 0,95 0,94 0,97

15 variaveis + tempo trauma- 0,95 0,96 0,97
admissdo

15 varidveis + pandemia e 0,97 0,96 0,98

tempo trauma-admissao
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Figura 13: Matriz de confusdo para a Estratégia 2 com 17 variaveis preditoras usando o

modelo CNNI e o otimizador RMSProp.
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5.3 Resultados para a estratégia 3 ¢ 4

As Estratégias 3 e 4 tém como objetivo avaliar a capacidade de generalizacao
cruzada dos modelos. Na Estratégia 3, o treinamento ¢ realizado com a base de Sao Paulo

e o teste com a base de Manaus; na Estratégia 4, ocorre o inverso.

A Tabela 5 apresenta os resultados comparativos para ambas as estratégias,
utilizando as 15 variaveis preditoras comuns. Nota-se que, em ambos 0s cenarios, houve
redugdo significativa do desempenho quando comparados aos resultados obtidos nas
estratégias 1 e 2 (treinamento e teste na mesma base). O melhor AUC na Estratégia 3 foi
de 0,53 (CNN1 com RMSProp), enquanto na Estratégia 4 o melhor AUC foi de 0,70 para
o mesmo modelo. Esses valores contrastam com os AUCs de 0,90 e 0,93 obtidos nas

estratégias sem foco em generalizacao.

Uma analise mais aprofundada revela que o treinamento em Manaus (Estratégia
4) generalizou melhor para Sdo Paulo do que o inverso. Esse comportamento pode ser
explicado pela maior variabilidade intrinseca da base de Manaus, que inclui varidveis
contextuais e cendrios logisticos mais extremos (como longos tempos de transferéncia e
alta taxa de hipoxia/hipotensdo), fornecendo ao modelo uma gama mais ampla de padrdes
clinicos. Em contrapartida, a base de Sdo Paulo, mais homogénea e coletada em um
periodo anterior a pandemia, apresentou menor representatividade de condigdes criticas

encontradas na Amazonia.

Tabela 5: Métricas obtidas para as estratégias 3 e 4 com 15 variaveis de entrada

Modelo de Otimizador Estratégia 3 Estratégia 4
machine learning
Acuracia F1- AUC  Acurdcia F1- AUC
Score Score

Regressdo Logistica - 0,30 0,49 0,51 0,60 0,45 0,61
Random Forest - 0,33 0,51 0,50 0,64 0,47 0,67
MLP Adam 0,36 0,52 0,50 0,71 0,50 0,68
MLP RMSprop 0,36 0,52 0,51 0,70 0,49 0,68
MLP SGDM 0,35 0,51 0,53 0,69 0,48 0,67
CNN1 Adam 0,38 0,53 0,52 0,73 0,50 0,69
CNN1 RMSprop 0,27 0,42 0,52 0,77 0,52 0,70
CNN1 SGDM 0,35 0,51 0,51 0,71 0,49 0,68
CNN2 Adam 0,37 0,53 0,52 0,75 0,51 0,70
CNN2 RMSprop 0,36 0,52 0,52 0,74 0,51 0,69
CNN2 SGDM 0,35 0,51 0,50 0,73 0,50 0,69

63



5.4 Resultados para a estratégia 5

A Estratégia 5 consistiu na unificacdo das bases de Sao Paulo ¢ Manaus em um
unico conjunto. Essa abordagem buscou verificar se um modelo treinado em dados
combinados poderia capturar caracteristicas comuns a ambas as regides, mantendo

desempenho satisfatério em um cendrio misto.

Os resultados na Tabela 6 indicam desempenho intermediario: o melhor modelo
(CNN1 com RMSProp) alcancou AUC de 0,77, superior ao obtido nas estratégias
cruzadas (3 e 4), mas ainda inferior aos valores observados nas estratégias isoladas (1 e

2).

A Figura 14 demonstra distribui¢do desequilibrada de acertos e erros, com valor
alto de falsos negativos. A analise sugere que, embora a fusdo das bases forne¢a maior
volume de dados para treinamento, as diferencas estruturais e contextuais entre as regides
ainda impactam o desempenho, reforcando a importincia de varidveis regionais para a

modelagem preditiva.

Tabela 6: Métricas obtidas para a estratégia 5 com 15 varidveis de entrada

Modelo de machine learning Otimizador Acurdcia F1-Score AUC
Regressdo Logistica - 0,90 0,61 0,72
Random Forest - 0,80 0,57 0,70
MLP Adam 0,81 0,62 0,72

MLP RMSprop 0,81 0,62 0,73

MLP SGDM 0,71 0,12 0,53

CNN1 Adam 0,81 0,63 0,73

CNN1 RMSprop 0,83 0,69 0,77

CNN1 SGDM 0,70 0,09 0,52

CNN2 Adam 0,81 0,62 0,72

CNN2 RMSprop 0,80 0,61 0,72
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Figura 14: Matriz de confusdo para a Estratégia 5 com 15 variaveis preditoras usando o

modelo CNNI1 e o otimizador RMSProp.

5.5 Explicacao dos resultados

A analise dos resultados obtidos nas cinco estratégias permite compreender o
impacto das variaveis preditoras, das caracteristicas regionais e da complexidade dos

modelos utilizados.

Em primeiro lugar, observa-se que as redes neurais convolucionais (CNNI1 e
CNN2) superaram consistentemente os modelos cldssicos (Regressdo Logistica e Floresta
Randdmica), evidenciando a capacidade das CNNs em capturar padrdes ndo lineares e
interacdes complexas entre varidveis clinicas e tomograficas. Esse resultado esta em
consonancia com a literatura recente, que aponta vantagens do aprendizado profundo em

problemas biomédicos com multiplos preditores heterogéneos.

Outro ponto relevante ¢ a superioridade da base de Manaus quando enriquecida
com variaveis contextuais exclusivas. A adi¢do das variaveis pandemia e tempo trauma-
admissao aumentou substancialmente o AUC, chegando a 0,98. Isso sugere que modelos
localmente adaptados sdo mais eficazes em regides com desafios logisticos e

epidemioldgicos especificos.

Em contrapartida, as estratégias de validagdo cruzada entre bases (3 e 4)

apresentaram queda acentuada no desempenho, refletindo a baixa generalizagdo inter-

65



regional. Tais achados reforgam a existéncia de caracteristicas regionais para as mesmas

variaveis existentes em ambas as bases de dados.

Para aprofundar a interpretacdo, foram aplicadas anélises complementares com

coeficiente de Pearson e valores SHAP, detalhadas a seguir.
5.5.1 Analise por coeficiente de Pearson

O coeficiente de Pearson foi utilizado para quantificar a correlagdo linear entre
cada variavel preditora ¢ a mortalidade em 14 dias. As Tabelas 7 e 8 apresentam os

resultados para as bases de Sao Paulo e Manaus, respectivamente.

Na base de Sao Paulo, a variavel reatividade pupilar apresentou a maior correlagao
absoluta com o desfecho (r=-0,373), seguida pela pontuagao motora (r =-0,281) e desvio
de linha média (r = 0,219). Em Manaus, as correlagdes foram mais intensas: pontuagao
motora (r = -0,654), reatividade pupilar (r = -0,588), hipoxia (r = 0,458), hipotensao (r =
0,375) e desvio de linha média (r = 0,402).

A comparagdo entre as bases evidencia que, em Manaus, héa preditores clinicos
mais fortemente associados ao preditor final, justificando seu desempenho elevado em
relacdo a base de Sdo Paulo. Onde ¢ possivel encontrar somente uma variavel com
coeficiente superior a 3, enquanto ao trabalharmos com a Base de Manaus ¢ possivel

observar 6 variaveis com esse grau alto de correlacdo com a classificagao.

Tabela 7: Coeficientes de correlacdo de Pearson para a Base de Sdo Paulo

Variavel Preditiva Coeficiente de Pearson
Género -0,122
Idade 0,190
Reatividade pupilar -0,373
GCS no local do trauma 0,119
GCS na admissao 0,121
Pontuacdo motora -0,281
Hipoxia 0,107
Hipotensao 0,140
Desvio da linha média 0,219
Hemorragia subaracnéidea 0,059
Hematoma epidural 0,080
Hematoma subdural -0,44
Hemorragia intracerebral 0,051
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Tempo de protrombina 0,165
Tempo de tromboplastina parcial 0,159

Tabela 8: Coeficientes de correlagdao de Pearson para a Base de Manaus

Variavel Preditiva Coeficiente de Pearson
Sexo -0,043
Idade -0,088
Reatividade pupilar -0,588
GCS no local do trauma 0,268
GCS na admissdo 0,580
Pontuagdao motora -0,654
Hipoxia 0,458
Hipotensao 0,375
Desvio da linha média 0,402
Hemorragia subaracndidea 0,050
Hematoma epidural -0,094
Hemorragia subdural 0,263
Hemorragia intracerebral -0,024
Tempo de protrombina -0,271
Tempo de tromboplastina parcial -0,064
Pandemia 0,107
Tempo trauma admissao 0,026

5.5.2 Analise por valores de SHAP

Para avaliar a importancia relativa e o impacto direcional de cada variavel nas
predi¢des, foi utilizada a técnica SHAP (SHapley Additive exPlanations). Os graficos de
dispersdo na Figura 15 ilustram a relevancia de cada variavel em cada base de dados de

forma entender como elas afetam a predigao final.

Para a base de Sao Paulo, os preditores de maior contribuicdo foram pontuacao
motora, reatividade pupilar, desvio de linha média, GCS na admissao e GCS no local do
trauma. J& em Manaus, destacaram-se Pontuacdo motora, reatividade pupilar, hipodxia,

desvio de linha média e hipotensao.

Interessantemente, a analise SHAP corroborou em grande parte os achados da
correlagdo de Pearson, como hipdxia e hipotensdo tiveram impacto preditivo mais
expressivo em Manaus, ainda que suas correlacdes lineares ndo fossem as mais altas em

Sdo Paulo.
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Figura 15: Valores de SHAP para previsdes do modelo CNN1 com otimizador
RMSprop. (a) Conjunto de dados de Sao Paulo, com 15 variaveis de entrada. (b)

Conjunto de dados de Manaus com 17 variaveis de entrada.

Com a andlise de SHAP ¢ possivel observar os preditores mais importantes na
predi¢ao da mortalidade em 15 dias entdo de forma a provar essa correlagdo linear
apresentada nos graficos de SHAP foram feitos treinamentos somente com os 5 preditores
mais importantes de cada base, de forma a comprovar a eficacia da analise por esses

métodos sendo esses apresentados na Tabela 9.

Tabela 9: Métricas de desempenho para conjuntos de dados de Sao Paulo e Manaus,

com seus respectivos melhores preditores.

Base de dados/ Variaveis Acuracia  F1-Score AUC
Sao Paulo / pontuacdo motora, reatividade pupilar, 0,86 0,61 0,87
desvio da linha média, GCS na admissdo e GCS no
local do trauma
Manaus/ pontuagdo motora, reatividade pupilar, 0,92 0,83 0,97

hipoxia, desvio da linha média e hipotensdo na
admissado

Esses achados sugerem que um conjunto reduzido de variaveis-chave concentra
grande parte da capacidade discriminativa do modelo, o que, do ponto de vista clinico-
operacional, representa uma vantagem significativa. Modelos com menos entradas
demandam menor tempo de coleta de dados, apresentam menor incidéncia de valores
ausentes e permitem processamento mais rapido, fatores especialmente criticos em

cenarios de emergéncia e em regides com recursos limitados.
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5.6 Discussao

Os resultados obtidos ao longo das estratégias de treinamento e teste permitem
uma leitura integrada sobre trés dimensdes centrais deste estudo: (i) o desempenho
absoluto dos modelos em cada base; (ii) a capacidade de generalizagdo inter-regional; e

(iii) a interpretabilidade e qualidade dos preditores mais relevantes.

Em primeiro lugar, a superioridade consistente das Redes Neurais Convolucionais
(CNNs) sobre os modelos classicos, quando treinadas e avaliadas na mesma base, reforga
a hipotese de que as relagdes ndo lineares e as interagdes entre varidveis clinicas,
radiologicas e contextuais sdo determinantes para a captura do risco de mortalidade em
14 dias. O desempenho das CNNs foi particularmente notavel nas Estratégias 1 ¢ 2. Em
Sao Paulo, a melhor CNN obteve uma AUC (Area Sob a Curva) superior a 0,90, enquanto
em Manaus, o desempenho foi ainda mais elevado, com sensibilidade e especificidade
robustas. Isso sugere que, em contextos mais complexos, como o de Manaus, onde a
variabilidade logistica e assistencial ¢ maior, a inclusdo de preditores contextuais como
“pandemia” e “tempo trauma—admissdo” melhora substancialmente a performance do
modelo, alcancando uma AUC impressionante de 0,98. Este ganho adicional confirma a
importancia de considerar fatores contextuais, que, ao codificar o ambiente, aumentam a
capacidade do modelo de refletir as particularidades locais e de captar as nuances do risco

de mortalidade em cenarios de alta variabilidade (Oliveira et al., 2021; Lima et al., 2022).

No segundo eixo, a analise de generalizacdo, realizada nas Estratégias 3 e 4,
oferece uma mensagem cautelosa, mas também valiosa para a pratica de modelagem
clinica. A queda acentuada no desempenho quando um modelo treinado em uma base
regional ¢ testado em outra, com a AUC caindo para valores proximos a 0,77, revela um
desalinhamento nas distribui¢des das populagdes. Este decréscimo de desempenho pode
ser interpretado como uma mudanca de conceito que afeta a relagdo entre preditores e o
desfecho de interesse. A diferenga de caracteristicas entre as populagdes de Sao Paulo e
Manaus, como os fatores sociais, assistenciais € ambientais, pode levar a uma desconexao
no modelo, comprometendo sua eficacia em cenarios ndo homogéneos (Gama et al., 2014;
Kairouz et al., 2021). Essa constatacdo reforca a necessidade de adaptacdo local dos
modelos clinicos, seja por ajuste fino com amostras locais ou pelo uso de técnicas de
adaptacao de dominio, como aprendizado federado (Pan & Yang, 2010; Torrey & Shavlik,

2010; Li et al., 2020). Esse ponto ¢ especialmente relevante, pois a implementagdo de
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modelos globais sem levar em conta as variagdes regionais pode resultar em perdas

significativas de precisdo e confiabilidade.

O desempenho intermediario da Estratégia 5, com AUC inferior ao dos melhores
cenarios intrarregionais, reforca a tese de que misturar populagdes heterogéneas sem
mecanismos explicitos de estratificacdo/contextualizacdo pode diluir sinais preditivos
especificos. Um caminho promissor, portanto, ¢ treinar modelos hierarquicos (Gelman &
Hill, 2006), ou arquiteturas que incorporem explicitamente um vetor de contexto na
entrada, como demonstrado no ganho observado em Manaus ao adicionar varidveis

especificas do cenério.

Por fim, o terceiro eixo, a interpretabilidade dos modelos, foi abordado por meio
das analises de SHAP (Lundberg & Lee, 2017) e de Pearson. A interpretagdo dos
resultados via Pearson, que resume relagdes lineares médias entre cada variavel e a
mortalidade, ¢ fundamental para uma visdo geral da influéncia de cada preditor. No
entanto, os valores de SHAP oferecem uma analise mais detalhada, permitindo entender,
instancia por instancia, como cada variavel modifica a probabilidade de obito,
especialmente em interacdes ndo lineares com outros atributos. A complementaridade
entre ambas as analises fortalece a confianga clinica nas variaveis mais impactantes, como
pontuagdo motora, reatividade pupilar, desvio de linha média, hipdxia e hipotensao, que

emergem como fatores-chave na predi¢cao de mortalidade.

O mais interessante ¢ que, ao restringir o treinamento aos cinco melhores
preditores de cada base, o desempenho manteve-se muito préximo ao dos cenarios com
maior nimero de varidveis. Em Sao Paulo, a AUC foi apenas discretamente inferior ao
obtido com 15 variaveis, e em Manaus, o modelo com apenas 5 preditores alcangou uma
AUC de 0,97, quase equivalente ao modelo com 17 variaveis. Esses resultados sugerem
um fendmeno desejavel na modelagem clinica: a informacao util estd concentrada em um
pequeno subconjunto de varidveis, o que ndo sO torna os modelos mais simples e
interpretaveis, mas também favorece treinamentos mais rapidos e com menos risco de

sobreajuste, mesmo em amostras moderadas (Guyon & Elisseeft, 2003).

Essas observagdes tém implicagdes diretas para a implementacdo de modelos em fluxos
de emergéncia, onde o tempo e a completude dos dados sdo frequentemente limitantes. A
necessidade de multiplos exames laboratoriais, imagens adicionais ou dados
administrativos pode atrasar a tomada de decisdes, o que em contextos de emergéncia

pode ser um obstaculo. Modelos que utilizam um pequeno nimero de varidveis, mas
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mantém alta sensibilidade e especificidade, sdo intrinsecamente mais vidveis para
implementagdo em cenarios clinicos reais, onde a rapidez e a eficiéncia sdo essenciais.
Além disso, do ponto de vista estatistico, a redu¢do da dimensionalidade para além do
“ponto 6timo” ajuda a mitigar o sobreajuste e melhora a estabilidade do treinamento, o

que foi observado nas comparagdes entre os cenarios com 15 e 17 variaveis em Manaus.
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Capitulo 6

Conclusao

Este trabalho teve como objetivo a aplicacdo de técnicas de aprendizado de
maquina, em particular redes neurais convolucionais, para a predigao de mortalidade em

até 14 dias de pacientes com traumatismo cranioencefalico.

Foi possivel identificar que as redes neurais convolucionais apresentaram o
melhor desempenho em ambas as bases de dados, destacando-se pela sua capacidade de

capturar caracteristicas complexas e interagdes ndo lineares entre as variaveis clinicas.

A andlise de generalizacdo cruzada evidenciou queda significativa no
desempenho, indicando baixa transferéncia entre modelos treinados em diferentes
regides. Esse resultado sugere que, para aplicacdo pratica, ¢ necessaria a adaptacao local

dos modelos.

A unifica¢do das bases resultou em desempenho intermediario, apontando que
simplesmente aumentar o volume de dados ndo ¢ suficiente quando hé heterogeneidade
estrutural entre as populagdes. Nesse contexto, a inclusdo de variaveis que descrevem o

cenario assistencial mostrou-se fundamental para melhorar a acurécia.

Este estudo confirma que modelos de aprendizado profundo, quando enriquecidos
com varidveis contextuais e interpretados por técnicas robustas, podem atingir alto

desempenho na predi¢do de mortalidade precoce em TCE.
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Member {EEE, Henngue Oliveira Martins, Cicero Ferreira Fernandes Costa Filho, Member [EEE

Abstract— Une of the leading causes of morbidity and
mortality in the world is Trauwmatic Brain Injury (TBI).
Different outcomes are influenced bay regional access and health
infrastructure. In this study, using 17 predictor variables, we
evaluate machine learning models performance and
generalizability with two different datasets of Brazilian regions.
The first region is Manaus, an isolated wrban center with
differentiated logistical challenges. The second, is Sfo Paulo, an
urban center. To the best of our knowledge, this study is the first
one that evaluate predictive models in two distinct datasets in the
same country. In the resulis obtained with 1-IN convolutional
neural network (CNN) models, the area under the ROC curve
(AUC) in Sio Paulo and Manaos were 090 and 0.93,
respectively. The model trained in S&o Paulo does not perform
well in Manaus. The incorporation of context-specific features,
such as time between trauma and admission, and pandemic-
related variable significantly increased the model's accuracy in
Manaus model, achieving a remarkable AUC of 0.9,

Clinical Relevance— We  highlighted the necessity of
integrating local variables to improve TBI prediction in different
healthcare environments.

I INTRODUCTION

Traumatic Brain Injury (TBI) contributes to death and
disability across all age groups, being a significant global
health concern. An estimated 6469 million individuals
worldwide suffer from TBIs each vear, with falls, violence and
road traffic being the most common canses [1]. In low-and
middle-income countries, where limited resources often hinder
optimal management and rehabilitation of patients [2], the
burden of TBI is particularly high. Brazil, with varving access
to healthcare in its vast territory, faces huge challenges in
addressing  the epidemiological consequences of TBI,
particularly in remote areas such as the Amazon region [3].

Aiming at guiding clinical decisions and improving patient
care, several predictive models have been developed in
recently research. Nevertheless, developing reliable and
generalizable models is challenging, especially in populations
with differing healthcare infrastructures [4]. The delay in
treatment access, the variability in available clinical data and
diversity of trauma contribute to the low performance of
models trained in different contexts.

In Cerasa et al. [5], the authors aimed o evaluate a
comparison of the classical line regression (LR) with machine

*Research supporied by SAMSUNG da Amaxinia - Brazil.

F. A S Araijo and M. G. F. Costa are with B& [} Center in Electronic and
Information Technology, Federal University of Amazonss, Manaus 69067 -
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C. F. F. Costa Fillso is with R&D Center in Electronic and Information
Technology, Federal University of Amazonas, Manaus 69067-005, Brasl

learning (ML) models in predicting the outcome after TBI. The
ML models compared were Support Vector Machine (SVM]),
K-Nearest-MNeighbor (KNN), naive Bayes (NB), decision tree
(DT) and an ensemble of ML models. The accuracy for two
classes, positive outcome (Glasgow recovery and moderate
disability) and negative outcome (severe disability, persistent
vegetative state, and death) with 10 cross validations with
classical linear model was 84 69%, and with an ensemble of
models was 83.67%. The conclusion of the authors was that
ML algorithms do not perform better than more traditional
regression models in predicting the outcome after TBI. The
dataset was acquired in aly,

In a systematic review and meta-analysis study [6], the
authors retrieved information from 47 selected papers. These
papers include 122 newly developed ML models and 34
clinically recommended tools. There were 24 ML models
predicting out-of-hospital mortality. For these models, the
mean values of the sensitivity and specificity were 0,74 and
0.75, respectively. There were 98 ML models predicting in-
hospital mortality of TBI patients. For these models, the mean
values of the sensitivity and specificity were 0.79 and 0.89,
respectively, According to the authors, ML models are
relatively accurate in predicting the mortality of TBL A single
model often outperforms traditional scoring tools, but the
pooled accuracy of models is close to that of raditional scoring
tools.

In Courville et al. [7], the authors presented another
systematic review and meta-analysis study. They retrieved
information from 15 papers with ML and LR predicting tools.
In thirteen sdies, the ML tools significantly improved
performance when compared with LR method. With both
tools, the accuracy was over 80%. The mean AUC values of
0.96, 0.91, 0.89 and 083 were obtained for SVM, artificial
neural network (ANN), DT and LR, respectively.

In Mekkodathil et al. [8], the authors aimed to identify
predictors of in-hospital monality in TBI patients using ML
methods. The dataset was comprised of 922 hospitalized TBI
patients. The feature importance analysis indicates that lactic
acid, prothrombin time, international normalized ratio (INR),
activated partial thromboplastin time (aPTT) and IS5 are the
maost important features in prediction. The AUC scores for LR,
SVM, RF and XGBoost models were 0,84, 0.86, 0086 and
0.85, respectively. The dataset was acquired in Qatar,
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Almost all of the papers published in the lierature on
predicting the mortality of patients with TBI use ML
technigues. In this study, we propose new archilectures using
deep convolutional neural networks for mortality prediction.

This sidy [lls an impornant gap in e lerature. the
evaluation of predictive models across two distinct datasets
from different geographic regions. By comparing data from
Manaus, a remote area with unique logistical challenges, with
540 Paulo, a densely populated urban center, we aim 1o
evaluate the peneralizability of these models. Integrating
region-specific vanables, such as time to hospital admission,
offers a unique opportunity o evaluate how these factors
influence TBI outcomes in diverse settings. Finally, we aim to
evaluate whether models trained in one region can effectively
predict outcomes in another and to identify the most critical
variables that impact mortality prediction in these distinet
healthcare environments. This research not only contributes o
the understanding of TBI outcomes in Brazil but also seeks 1o
inform clinical practices and improve patienl management
strategies in varying healthcare contexts.

II. METHODOLOGY

A Marterials

Two different datasets are used in this study o predict 14-
day mortality in patients with traumatic brain injury { TBI).

The first dataset was generated from data collected from
patients who were referred to Hospital das Clinicas { S8o Paulo,
Brazil). The data collection period was from March 2012 w0
January 2015, The final follow-up of patients ended in June
2015. The Institutional Review Board of the University of Sio
Paulo (S&o Paulo, Brazil) approved this sudy (CAAE
4683 1315.3.0000.0068).

The second dataset was collected in Manaus ( Amazonas,
Brazil), with 469 samples. Data collection was carried out
from May 2020 to July 2021, in a tertiary center in the city of
Manaus. This study was approved by the Ethics Commitiee of
the Federal Umversity of Amazonas (UFAM) (CAAE:
25366619, 1.0000_5020).

The first dataset comprises 517 records and 15 predictor
variables, categorized in four classes: 1. Demographic: pender
(categorical: male or female) and age (numerical: years), 2.
Clinical: level of pupil reactivity at admission (categorical:
bilateral reagent, one or two fixed pupils), GCS at trauma site
(categorical: mild, moderate, and severe), GCS at admission
(cateporical: mild, moderate, and severe), the motor score
component of the GCS (cateporical, 1-6), presence of hypoxia
(categonical: ves or no) and hypolension at admission
{categornical: ves or no). Hypotension corresponds to a svstolic
blood pressure < 90 mmbg and hypoxia corresponds to
oxygen safuration < 90%, as recommended by the Brain
Trauma Foundation, at any time before hospital admission
[12]; 3. Tomographic: midline shift (MLS) on CT greater than
5 mm (categorical: ves or no), subarachnoid hemorrhage —
TSAH (categorical: yes or no), epidural hematoma
{categorical: ves or no), subdural hemorthage, mtracerebral
hemorthage (cateporical: yes or no). These variables refer o
hospital admission tomography or the first CT scan findings
for patients who come from other hospitals; 4. Laboratory:

prothrombin - time  (numerical:  seconds) and  partial
thromboplastin time ratio - tAPTT (numerical: seconds).

The same 15 vanables of Sio Paulo dataset, were also
collected in Manaus dataset. Additionally, the Manaus dataset
included two exia variables: whether the data was collecied
during the COVID-19 pandemic or not (pandemic — 1 or
0).and time from trauma o admission (time trauma admission
- hours).

The reason variable x is only present in the Manaus
database is as follows: Manaus, the capital of Amaronas state,
is the only city in the state that has a medical center that reats
patients in need of acute neurosurgical care. Patients from the
countryside are transported by niver and aerial transfer [21].
Even through aerial transfer, the mean time for the patients o
reach the hospital for a neurological emergency consultation
was 67.1 hours [3]. This 15 not the case for patients of S&o
Paulo, which has an excellent road network and several
medical centers for patients in need of acute neurosurgical care
in the countryside.

Concerning the pandemic variable, its inclusion in Manaus
dataset was only possible because part of the data collection
took place during the pandemic. Its inclusion aimed to assess
whether the overload of the hospital network during the
pandemic influenced the 14-day mortality of TBI patients.

B Methods

Fig. 1 shows a block diagram of the methodology proposed
in this study.

=

T

Defining training
Adjusting
.'dl m”" thmJ

Figure 1. Proposad Methodology

{ Ewvaluating the
results

The Sio Paulo dataset preprocessing was already described
by Guimardes et al. [14]. The preprocessing steps reported in
this study included filling in missing values using different
methods, depending on the varable type. For numerical
values, decision tree, random forest, and linear repression were
applied. For categorical variables, techniques such as decision
tree, random forest, and k-nearest-neighbor were used to fill in
the missing values. Additionally, data normalization was
performed to ensure that variables such as age and motor score,
which had different ranges, were standardized, using
techniques like min-max normalization. The Manaus dataset
was preprocessed using the same steps previously described:
data normalization and filling in missing values.

In this study we employed two CNN architectures. These
architectures were designed to extract and refine features from
the input data progressively. The first architecture, CNNI,
shown in Fig. 2{a), has a parallel structure and, like the
inception block of the Google Met [9], use filters with different
kemels size: 112, 1x3, . lxk. With a smaller filter, less
predicting inputs are used in 1D convolution. With a large
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filter, more predicting inputs are used in 1D convolution. The
variation in kemel size makes it possible to integrate

contributions from different predicting variable sets into the
final prediction The hest resulis were achieved with a kemel

of size 4. The parallel outputs are concatenated and passed
through a dense layer, with 50 neurons and Rel.U activation.
To mitigate the overfiting, improving the CNN
generalization, we used a dropout layer with a rate of 0.2, The
output laver uses a sigmoid activation function for binary
classification.

The second architecture, CNN2, shown in Fig. 2(b), has a
sequential structure comprising 1D convolutional blocks of
characteristic extraction. Each extraction block is comprised
of a 1D convolutional layer, followed by batch normalization
and Rel.U activation. The convolution operations maintain the
size of the inpul representation. The best results were achieved
with two characteristic extraction blocks. After charactenstic
extraction blocks, we have a dense layer, with 50 neurons and
RelU activation, followed by a dropout laver with a rate of
02, To mitigate the overfiting, improving the CNN
generalization, we used a dropout layer with a rate of 0.2, The
output laver uses a sigmoid activation function for binary
classification.

Figure {2 CMN architectures used for predicting 14-day monality
in patients with TBL {2) CRM1 with parallel architecture; (b) CNM2
with sequential architecure.

Afier some experiments, the CNNs training were
configured with a set of the following hyperparameters:
learning rate: le-3; optimizers: oplimization algorithm: roo
mean square propagation (RMSProp), number of training
epochs: 300; callbacks for saving the best result in training,
using the validation accuracy. During the training, the learning
rate was progressively reduced, until reaches a value of 1e-6.

To assess the predictive power of deep learning models on
14-day mortality, 5 strategies were emploved in this study,
using several data combinations (Fig. 3). In experiments 1 and
2, the models are trained and tested separately with each
dataset’s training and test sets. The aim is to venfy the
predictive power on each dataset, separately. In experiments
3 and 4, the models are trained with the training set from one
dataset and tested with the test set from the other dataset. The

aim is 1o assess the generalization power of the models rained
on different datasets. In experiment 5, the models are trained
and tested with both the training and test sets from both

datasets The aim is to assess whether a model can capiure the
peculiarities of each dataset and performs well. Strategies 1, 3,
4 and 5 use only the 15 input variables common to both
datasets and shown in Table 2. Strategy 2 uses 15, 16 and 17
variables present in Manaus dataset.

n‘-m'-l‘

i 1idd
s s I vl e Y
Figure 3. Experiments planned for training and testing the deep
leaming models

The models” performances were evaluated using the
metrics accuracy, Fl-score, and the area under the ROC curve
{AUC). The accuracy of a classification system is the degree
of closeness of the classification to its actual value. The F1-
score is the harmonic mean of the precision and recall,
symmetrically representing both metrics. The AUC expresses
the trade-off between sensitivity and specificity for different
cutedt points in the estimated probability. The higher the AUC
value, the greater the discriminatory power of a model
[10[11].

In this work, a negative classification indicates the
patient’s survival in 14 days and a positive classification
indicates the patient's death within 14 days. The accuracy and
F1l-score are described in (1) and (2).

aceuracy = (TP + TN)/(TP + TN + FP + FN) (1)

Fl-score = 2% prec.*recall) /(prec.+recall) (2)
Where: TP — True Positive: FP — False Positive; TN — True
Negative and FN — False Negative.

1L RESLLTS

This section presents results for experiments | to 3, using
the metrics presented in the last section, and confusion matrix
tables. To explain the results, we will show values obtained by
the SHapley Additive exPlanations (SHAP) technique [12].
(SHAP) is a game theory-based method for explaining the
output of classifying models. SHAP uses Shapley values to
assign credit to each feature or featre value for a model’s
prediction.

Table 1 shows the results of experiments 1 and 2, while Fig.
4 shows the confusion table for both experiments, with 15
input variables.
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All the metric values for expeiment 2 are better than those
abtained for experiment 1. Particularly, the best AUC value for
the Manaus dataset is 0093, while for the Sdo Paulo dataset 15
0.91. These wvalues were obiained with the RMSProp
optimizer. From the confusion matrix shown in Fig. 4, the
sensitivity and specificity for experiment | are 0.79 and 0.89,
respectively. For experiment 2, (.84 and 0.96, respectively.

Table 11 shows the results for expeniment 2, with 15, 16 and
1T input variables, while Fig.5 shows the confusion table for
experiment 11 with 17 variables. The pandemic varable
provides imporiant context regarding whether the data was
collected during the COVID-19 pandemic. The time trauma
admission variable captures the time between the trauma and
hospital admission. As shown, when using the 17 variables,
the AUC increases to 0.98. From the confusion matrix shown
in Fig. 5 shows, for 17 vanables, the sensitivity and specificity
are 0.92 and 0.99, respectively.

Figune 5. Confusson matrix for experment 2 with 17 varables and
EMSProp oplimieer.

Table 111 shows the results for experiments 3 and 4, with
15 input vanables. Compared with the results of experiments
| and 2 shown in Table 1, the models performances decreased.
For example, the best AUC for experiments 3 and 4, obtained
with CNNI and REMSProp optimizer, are 0.77 and 0.70,
respectively. These values are lower than those obtained with
experiments | and 2, (.90 and (.93, respectively. We also note

TABLEL RESULTS FOR EXPERIMENTS | AND 2 WITH 15 INPUT VARIABLES.  that training with the Manaus dataset and testing with data
™% Optimi Experiment | Expesiment 2 from the S3o Paulo dataset (experiment 3) resulis in better
Aceuracy  Fl-Seore AU Accuracy Fl-Score  AUC metric values than training with the Sio Paulo dataset and
CHNI Adam [T 04 0E  os 0 091 . : :
s . ps o nes e g testing with the Manaus dataset (experiment 4).
el - od  oN ox i am TABLE LIl RESULTS FOR EPXERIMENT 3 AND 4, WITH 15 [NPUT VARIABLES
CHNI  Adam 086 03 0¥ 0E9 0% 09 AND RMSPROF OPTIMIZER
CMNI BMSgrop 47 n4s 09 0w 0E8 09
CNKZ SGDM .45 042 0BT 087 0% 0.49 LN _Optimlwr Experiment 3 Experiment 4
Mecursey Fl-Seore AUC Accursey Fl-Seore AL
CHNL  Adem 03% 053 052 073 FERETT]
CHNL BMSpop 02T 04x  0s2 077 0s2 a7
e CHNL  SGDM 03 TETIE I e ] 049 oel
CHN2  Adem 03T 053 052 075 s a7
i " q CHNI RMSpop 03 051 052 074 051 osd
CHNI  SGDM 038 n51 @& 073 05 0
1 - 1
] ]
g 5 . - . Table I'V shows the results for experiment 5, with 15 input
varighles, while Fig. 6 shows the respectively confusion
malrix. Compared with the results of experiments | and 2,
- - shown in Table 1, the models performances decreased. For
(@) (b) example, the best AUC for expeniment 5, obtained with CHNI

Figure 4. Confusion matnces for: (a) experiment 1, with the CNM2
and RMS Prop optimizer, (b) experiment 2, with CHM 1 and RMS5Prop
oplimizer,

TABLEIL RESULTS FOR EFXERIMENT 2, WITH 15, 16 AxD 17 INPUT
VARIABLES, WITH RMSFROP OPTIMIZER

Experiment/ M. of
vari ubles
Experiment 2/ 15
varsahles
Experiment 2/ 15
wartables + pandemic
Experiment 2/ 15
varizhles+ Lime

Accuracy Fl-Score ALC

4z by .93

0.95 094 b7

095 094 097
Erauma admassion
Experiment’ 15
wartables + pandemic
* Lime Erauma

admission

47 096 R

and RMSProp optimizer, is 0.83. This value 15 lower than
those obtained with expriments | and 2, 0.90 and 093,
respectively, but better than the value obtained with strategies
Jand 4.

Fig. 7 shows the SHAP plots for both datasets. In each plot,
the Y-axis indicates the feature names in order of importance
from top to bottom. The X-axis represents the SHAP values,
which means the degree of change in log odds. The color of
each pomnt on the graph represents the value of the
corresponding feature, with red indicating high values and
blue indicating low values. Each point represents a row of data
from the original dataset.

As shown in the SHAP plot for the Sao Paulo dataset (Fig.
T(a)), the 5 most essential vanables in model prediction
include motor score, pupil reactivity, midiing shiff, /CS at
admission and (CS at trauma site. As shown in the SHAP plot
for the Manaus dataset (Fig. T(h)), the 5 most essential
varighles in model prediction include motor score, pupil
reactivity, hyporia, midline shift and  Aypotension  at
admizsion.

Manuscript 892 submitted to 47th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMEBC) . Received February 6, 2025.
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TABLE IV. RESULTS FOR EPXERIMENT 5, WITH 15 INPUT VARIABLES AND
RMSPROP OFTIMIZER

Model Optimizer Accuracy Fl- AUC
Score

CNN1  Adam 0.81 063 073
CNN1  RMSprop 0.83 069 077
CNN1  SGDM 0.70 009 052
CNN2  Adam 0.81 062 072
CNN2  RMSprop 0.80 061 072
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: :
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Figure 6. Confisson matnix for experiment S with 15 vanables and
RMSProp optimizer
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Figure 7. Shap values for predictons of model CNN1 with RMSprop
oplimizer. (a) Sdo Paulo dstaset, with 15 mput vansbles(b) Manaus
dataset with 17 inpet varsables.

IV. DiscussioN AND CONCLUSION

This study aimed to assess the performance and
transferability of deep learning models for predicting 14-day
mortality in TBI patients across two distinct Brazilian regions.
The results shown that models trained in one region faced
challenges in maintaining their predictive power when
applied to data from the other. This suggests that regional
factors significantly shape TBI patient outcomes, a
conclusion supported by previous research that highlights the
variability in healthcare access and infrastructure across
different geographical settings [13][2]. The deep models
performed well in each separated dataset, with Sio Paulo
achieving an area under the curve (AUC) of 0.90 and Manaus
showing an AUC of 0.93. This performance was anticipated
and aligns with previous findings from our group when
studying the Sao Paulo dataset [14][2].

In Manaus dataset, incorporation of context-specific
features, particularly those related to the COVID-19
pandemic and the time from trauma to admission,
significantly enhanced model accuracy, achieving an
impressive AUC of 0.98 upon their inclusion. Manaus, as one
of the epicenters of the COVID-19 pandemic, faced unique
challenges that influenced healthcare delivery and patient
outcomes during this period [15]. Therefore, the pandemic
may exacerbated issues related to healthcare access,
particularly for individuals residing in rural areas where road
infrastructure is limited [3]. The addition of these features not
only improved the models' performance but also underscored
the necessity of tailoring predictors to enhance inter-regional
applicability.

In terms of generalizability, our findings offer insights into
the broader applicability of mortality prediction models for
TBI patients across differing healthcare environments.
Although performance varied by region, the incorporation of
locally relevant variables led to more accurate predictions,
particularly for the Manaus dataset.
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Apéndice B - Artigo

Neste apéndice ¢ apresentada a copia do artigo originado deste trabalho. O artigo
intitulado “Evaluating the Generalization of Machine Learning Models for Predicting
14-day Mortality in Traumatic Brain Injury Patients” foi submetido e aceito para

publicacdo no periddico Biocybernetics and Biomedical Engineering.

Evaluating the Generalization of Machine Learning Models for
Predicting 14-day Mortality in Traumatic Brain Injury Patients

Abstract

Traumatic Brain Injury (TBI) remains a leading cause of morbidity and mortality worldwide, with
significant disparities in outcomes influenced by regional healthcare access and infrastructure. This
study evaluates the performance and generalizability of machine learning models for predicting 14-
day mortality in TBI patients using datasets from two distinct Brazilian regions: Sdo Paulo, an urban
center, and Manaus, an isolated urban center with umique logistical challenges. To our knowledge, this
rescarch represents the first cross-validation of predictive models across two datasets within the same
country, underscoring the critical need for localized approaches in TBI research. Our findings indicate
that while convolutional neural network (CNIN)-based models achieved high performance, with an area
under the curve (AUC) of 0.90 in Sio Paulo and 0.93 in Manaus, the best model from Sio Paulo
exhibited a strikingly low AUC when applied to the Manaus dataset. The incorporation of context-
specific features, such as pandemic-related variables and time from trauma to admission, significantly
enhanced model accuracy, with the Manaus model reaching an impressive AUC of 0.98. Notably, the
study highlights key regional differences in predictors of mortality, with hypoxia and hypotension
being more critical in Manaus, emphasizing the importance of tailoring predictive models to local
contexts. Our results indicate that CMNN-based models have the potential to enhance mortality
predictions for patients with traumatic brain injury (TBI). Additionally, we highlighted the necessity
of conducting cross-regional validation and integrating local variables to improve patient outcomes
across different healthcare environments.

Keywords: Traumatic brain injury, Machine Learning, Mortality, LMIC, Convolutional Neural
MNetworks

1. Introduction

Traumatic Brain Injury (TBI) is a significant global health concern, contributing to death and
disability across all age groups. Each year, an estimated 64 to 69 million individuals worldwide suffer
from TBls, with road traffic accidents, falls, and violence being the most common causes [1]. The
burden of TBI 1s particularly high in low- and middle-income countries, where limited resources often
hinder optimal management and rehabilitation of patients [2]. Brazil, with its vast ternitory and varying
access to healthcare, faces considerable challenges in addressing the epidemiological consequences of
TBI, particularly in remote areas such as the Amazon region [3].

The development of predictive models for TBI cutcomes has been a focus of recent research
aimed at guiding clinical decisions and improving patient care. However, building reliable and
generalizable models i1s challenging, particularly in heterogeneous populations with differing
healthcare infrastructures [4]. Factors such as vanability in available clinical data, diversity of trauma
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mechanisms, and delays in treatment access complicate the ability of models to accurately predict
outcomes like mortality [5][6]. Machine leaming techniques have shown promise in enhancing
predictive accuracy; for instance, studies have demonstrated that machine leaming models can
outperform traditional logistic regression in predicting TBI mortality [2][7]. Nevertheless, the lack of
external validation across diverse datasets remains a key obstacle [8].

Table 1 shows a summary of the literature review on papers published in the last years about
mortality prediction of traumatic brain injury (TBI) patients.

None of the reviewed studies applied deep neural models to predict mortality in patients with TBI.
In Tu et al. [5], to predict in-hospital mortality of TBI patients, the authors evaluated the performance
of & machine learning (ML) models: linear regression (LR), random forest (RF), support vector
machine (SWM), LigthGBM, XGBoost, and multilayer perceptron (MLP). In Cerasa et al. [9], the
authors aimed to evaluate a comparison of the classical LR with machine learning models in predicting
the outcome after TBL. The ML models compared were SVM, K-Nearest-Neighbor (KNN), naive
Bayes (NB), decision tree (DT) and an ensemble of ML models. In Wang et al. [10], in a systematic
review and meta-analysis study, the authors retrieved information from 47 selected papers. These
papers include 122 newly developed ML models.

MNone of the studies addressed the generalization power of models trained on different datasets. In

Hsu et al. [11]. to predict patient in-hospital mortality using clinical and demographic data, the only
dataset used, with 3,331 TBI patients, was acquired in Taiwan Triage and Acuity Scale from January
2008 to June 2018. In Ding et al. [12], the authors evaluated TBI-related death with a dataset was
acquired in Cameroon. In Fonseca et al. [13], the authors examine the mortality of pediatric TBI
patients using only a dataset acquired in Denver, Colorado, USA. In Rodrigues de Souza et al. [14],
the author’s objective was to evaluate, in the prediction of 14-day in-hospital mortality, the increase in
variance explained when adding each of three computer tomography (CT) classification systems:
Marshall computerized tomography (CT) classification and Rotterdam and Helsinki CT scores. The
only dataset used was acquired i 530 Paulo, Brazil.
In systematic literature reviews [15] and [10], there is a divergence in evaluating the performance of
machine learning methods against classic linear regression methods. In Courville et al. [15], the authors
retrieved information from 15 papers with ML and classical linear regression predicting tools. In
thirteen studies, the ML learning tools significantly improved performance when compared with
classical linear regression method. With both tools, the accuracy was over 80%. The mean AUC values
of 0.96, 0.91, 0.89 and 0.83 were obtained for SWVM, artificial neural network ( ANN), DT and classical
LR, respectively. In another systematic review, Wang et al. [10], the authors retrieved information
from 47 selected papers. There were 98 ML models predicting in-hospital mortality of TBI patients.
According to the authors, ML models are relatively accurate in predicting the mortality of TBL. A
single model often outperforms traditional scoring tools, but the pooled accuracy of models is close to
that of traditional scoring tools.

This study addresses a significant gap in the literature: the validation of predictive models
across two distinct datasets. Thus, the primary objective of this paper is to evaluate the performance
and generalizability of classical and deep machine leaming models for predicting 14-day mortality in
TBI patients using datasets from two centers in Brazil: 380 Paulo, a densely populated urban center,
and Manaus, in the Amazon region, a more remote area with unique logistical challenges. We aim to
explore whether models trained in one region can effectively predict outcomes in another and to
identify the most critical variables that impact mortality prediction in these distinct healtheare
environments. Using techniques that assess the importance of vanables in the performance of
prediction tools, we identify a reduced set of the most important vanables and investigate the
performance of the best predictor when it 1s trained with this reduced set. This research not only
contributes to the understanding of TBI outcomes in Brazil, but also secks to inform clinical practices
and improve patient management strategies in varying healthcare contexts.
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Summary of literature review
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4. Materials and Methods
4. 1. Mareriails

This study utilized two distinct datasets to predict 14-day mortality in patients with traumatic brain
injury { TBI) using machine learning models. The first database was generated from data collected from
patients who were referred to Hospital das Clinicas (Sio Paulo, Brazil). Data collection was carned
out from March 2012 to January 2015. The final follow-up of patients ended in June 2015. This
database contains 517 records with 15 predictor variables, categorized in four classes: 1. Demographic:
gender and age in years; 2. Clinical: level of pupil reactivity at admission (bilateral reagent, one or two
fixed pupils), GCS at trauma site (mild, moderate, and severe), GCS at admission (mild, moderate,
and severe), the motor score component of the GCS, presence of hypoxia (ves or no) and fiypotension
at admission (yes or no). Hyvpoetension corresponds to a systolic blood pressure < 90 mmHg and hypoxia
corresponds to oxygen saturation < 90%, as recommended by the Brain Trauma Foundation, at any
time before hospital admission [11]; 3. Tomographic: midiine shift (MLS) on CT greater than 5 mm
(ves or no), subarachnoid hemarrhage — TSAH (yes or no), epidural hemaroma (yes or no), subdural
hemarrhage, intracerebral hemorrhage (yes or no). These variables refer to hospital admission
tomography or the first CT scan findings for patients who come from other hospitals; 4. Laboratory:
prothrombin time (seconds) and partial thromboplastin time ratio - tAPTT (seconds). The Institutional
Review Board of the University of Sio Paulo (S&o Paulo, Brazil) approved this study (CAAE
46831315.3.0000.0068).

The second dataset was collected in Manaus (Amazonas, Brazil), compnsing 469 samples. Data
collection was carried out from May 2020 to July 2021, in a tertiary center in the city of Manaus. This
study was approved by the Ethics Committee of the Federal University of Amazonas (UFAM) (CAAE:
25366619.1.0000.5020).
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Both datasets included crucial demographic, clinical, and laboratory information relevant to the
prognosis of TRI patients, ensuring a rohnst fonndation for model development. The zame 15 vanahles
collected in Sdo Paulo dataset, were also collected in Manaus dataset. Additionally, the Manaus dataset
included two extra variables: ime from trauma to admission ( fime trauma admission - hours), whether
the data was collected during the COVID-19 pandemic or not (pandemic — 1 or ().

The following arguments justify the inclusion of the vanable time trauma admission only in the
Manaus dataset: Manaus, the capital of Amazonas state, 1s the only city in the state that has a medical
center that treats patients in need of acute neurcsurgical care. Patients from the countryside are
transported by river and aenal transfer [19]. In [3]. the authors started that, even though aerial transfer,
the mean time for the patients to reach the hospital for a neurological emergency consultation was 67.1
hours. In this work, nevertheless, the maximum transport time was 12 hours. The reason for such high
times, even using air transport, is that aircraft is not available in the city where the TBI occurred. The
waiting time for an aircraft 1s longer than the flight time. This is not the case for patients of Sao Paulo,
which has an excellent road network and several medical centers for patients in need of acute
neurosurgical care in the countryside. Including the pandemic variable in the Manaus dataset was only
possible because part of the data collection took place during the pandemic. Its inclusion aimed to
account for contextual changes during the pandemic peniod, which may have encompassed factors such
as healthcare system strain, shifts in trauma epidemiology, delays in referral and treatment, and broader
logistical challenges, all of which could influence 14-day mortality.

Table 2 shows a list of all vanables used in both databases, showing the class, type, range,
frequency of values and evaluating the statistical significance of the frequency differences. Both
datasets were stored in csv files. Patients were recruited consecutively following the inclusion criteria:
patients or their legal guardians who signed the informed consent; patients” vichims of TBI with brain
CT scan abnormalities; and patients with GCS less than or equal to 14 after stabilization at the
emergency room and older than 14 years. In Table 2, the GCS vanable takes values in the range 1-3.
The value | corresponds to severe TBL 2 to moderate TBL and 3 to severe TBL. The exclusion criteria
adopted were the following: patients transferred from a different Intensive Care Unit (ICU), patients
with chronic subdural hematoma, and patients with medium-fixed pupils with a GCS of three without
recovery after cardiopulmonary resuscitation.

Figure | shows, for each dataset, the number of patients who died within 14 days and of patients
who survived in 14 days. In Sdo Paulo, 22.82% of the patients died in 14 days, while in Manaus, 27%
of patients died in 14 days. Applying the chi-square test for evaluating the differences between different
mortality in the two datasets, we obtained y° = 2.38. This value is not significant at 5% U’iﬂrfc =

3.84,dof = 1).

-y
-] et

s P e
kit

Fig. 1. For cach dataset, the number of patients who died within 14 days
and of patients that survived m 14 days

4.2 Methods

Figure 2 shows a block diagram of the proposed methodology. Next, we'll evaluate each step of this
methodology.
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Tahble 2.

Vanables used in the study for 14-day mortality prediction
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4.2.1. Preprocessing

Fig. 2. Proposed Methodology

Given the importance of data completeness, evaluating and addressing missing values in both
datasets was necessary. In the Sio Paulo dataset, approximately 18% of the samples had at least one
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missing value, with some vanables, such as "Hypoxia” and "GCS at trauma site,” showing higher levels
of missing data. In contrast, the Manaus dataset presented a lower percentage of missing data, with
around 2% of the samples containing incomplete information.

As shown in Table 2, most of the vanables used in this study are categorical. Only two varables,
“age” and “time of trauma admission”, are numerical. Missing values were more prevalent in the
categorical variables. The techniques used for filling missing values in both type of variables were
already desecribed by Guimardes et al. [20]. The best performances were obtained with random forest
and decision tree methods. For the categorical vanables hypoxia, hypotension at admission and level
of pupil reactivity at admission, the best results for filling in missing values were obtained with the
random forest method (accuracy = 0.809, 0.871, and (0.777, respectively). For the categorical variables
GCS at trauma site, GCS at admission and motor score, the best results for filling in the missing values
were obtained with the decision tree method (accuracy = 0.508, 0.454 and 0.901, respectively).

Additionally, data normalization was performed to ensure that variable “age” and “time trauma
admission”, which have different ranges, were standardized using techniques like min-max
normalization, cubic root transformation, and z-score normalization, as desenbed i [20].

4.2.2 Defining Machine Learning Predicting Models

In this study, the following models were used for predicting 14-day mortality of TBI patients:
logistic regression LR ), random forest (RF), multlayer perceptron (MLP), and convolutional neural
networks (CNN) [21][22][23]. Each model has a binary output of 1, to indicate the patient's 14-day
mortality, or (), to indicate patient survival in 14 days.

The LR model is the most straightforward neural architecture available, with only one neuro layer,
and can be used for both classification and regression tasks. For multiclass classification, the softmax
function is used in the output layer. Both the softmax and the sigmoid function can be used for binary
classification. This implements a binary classification, using the sigmoid activation function in the
cutput layer. To prevent overfitting, it was implemented with L, regulanzation. The stopping criterion
used for training was 100 epochs.

The RF model is an ensemble leaming technique that utilizes multiple decision trees to improve
predictive accuracy and control overfitting. In this method, several datasets are built using the bagging
technique, and the predictors are randomly chosen for each decision tree. For this study, the random
forest model was configured with the following hyperparameters: number of trees: 100; node impurity
function: Ginl index; maximum tree depth: none (nodes are expanded until all leaves are pure or
contain fewer than the minimum samples required to split); minimum samples split: 2; minimum
samples per leaf: 1.

The MLP model used in this study. designed to capture complex relationships in the data, used two
hidden layers. According to Ismayilova et al. [24], two hidden layer neural networks can precisely
represent continuous, discontinuous bounded and all unbounded multivanate functions. The MLP
architecture shown in Figure 3 consists of an input layer, followed by two hidden neuron layers, with
128 and 64 meurons, respectively, all utilizing the RelLU activation function. To prevent overfitting,
dropout layers with a dropout rate 0.2 were introduced after the first and second hidden layers. The
final layer is a classification layer with a single neuron using a sigmoid activation fumction for binary
classification.

Fig. 3. Multilayer perceptron architecture used for predicting 14-day mortality in patients with TBI
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This study employved two CNN architectures to capture patterns within the data. These
architectures were designed to extract and refine features from the input data progressively. The first
architecture, CNN1, shown in Figure 4(a), features a parallel structure and, like the inception block of
the Google Net [25], use filters with different kernels size: 1x2, 1x3, ... 1x & With a smaller filter, less
predicting inputs are used in 1D convolution. With a large filter, more predicting inputs are used in 1D
convolution. This variation in kemel size makes it possible to integrate contnibutions from different
predicting variable sets into the final prediction. We evaluated several & values, but the best results
were achieved with k=4, The parallel outputs are concatenated and passed through a dense layer, with
50 neurons and Rel U activation, followed by a dropout layer with a rate of 0.2 to nutigate overfitting,
improving the CNN generalization. Finally, the output layer uses a sigmoid activation function for
binary classification.

The second architecture, CWN2, shown in Figure 4(b), features a sequential structure
comprising |D convolutional blocks of characteristic extraction. Each extraction block 1s comprised
of a 1D convolutional layer, followed by batch normalization and ReLU activation. The convolution
operations maintain the size of the input representation. We evaluated several & values, but the best
results were achieved with £=2. After the last characteristic extraction block, the signal passes through
a dense layer, with 50 neurons and Rel.U activation, followed by a dropout layer with a rate of 0.2, to
mitigate overfitting, improving the CNN generalization. Finally, the output layer uses a sigmoid
activation function for binary classification.

1xk
convolution

comialution

[m

(a) {b)
Fig. 4. CNN architectures used for predicting 14-day mortality in patients with TBL {a) CNN1 with parallel
architecture; (b) CHN2 with sequential architecture.

4.2.3 Adjusting hyperparameters

The MLP and CNNs training were configured with a set of hyperparameters, obtained through
experiments, that optimized the prediction performance: learning rate: le-2 for MLP and le-3 for
CNMs; optimizers: root mean square propagation (RMSProp), adaptive moment (Adam) and stochastic
gradient descent with moment (SGDM); number of training epochs: 300); callbacks for saving the best
result in training, using the validation accuracy. During the training, the learning rate was progressively
reduced, until reaches a value of le-6.

4.2 4 Defining training and testing strategies

As shown in Figure 5, the goal of the strategies defined in this study was to assess the predictive
power of classical and deep machine learning models on 14-day mortality, across various
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configurations and data combinations. In strategies | and 2, the models are trained and tested separately
with each dataset's training and test sets. The aim is to verify the predictive power on each dataset,
separately. In strategies 3 and 4, the models are trained with the training set from one dataset and
tested with the test set from the other dataset. The aim is to assess the generalization power of the
models trained on different datasets. In strategy 5, the models are trained and tested with both the
training and test sets from both datasets. The aim i1s to assess whether a model can capture the
peculiarities of each dataset and performs well. Strategies 1, 3. 4 and 5 use only the 15 input vanables
common to both datasets and shown in Table 2. Strategy 2 uses 15, 16 and 17 variables present in
Manaus dataset.

e (o] (o]

] [

Fig. 5. Strategies adopted for traning and testing
4.2.5 Metrics for evaluating the results

The performances of the models were evaluated using the following metrics: accuracy, Fl-score,
and the area under the ROC curve (AUC). The accuracy of a classification system is the degree of
closeness of the classification to its actual value. The Fl-score is the harmonic mean of the precision
and recall, symmetrically representing both metrics. The AUC demonstrates the trade-off between
sensitivity and specificity for different cutoff points in the estimated probability. The higher the AUC
value, the greater the discriminatory power of a model [26][27].

In this work, a positive classification indicates the patient's death within 14 days, and a negative
classification indicates the patient’s survival in 14 days. The accuracy and F1-score are described as
follows:

accuracy = (TP+TN)}/(TF+ TN + FP + FN) (1)

Fl-score=2%Precision "Recall) /{Precision+Kecall) (2)

Where: TP — True Positive; FP — False Positive; TN — True Negative and FN — False
Negative.

5. Results

In this section, we will present the results for strategies 1 to 5 using the metrics presented in the last
section, and confusion matrix tables. To explain the results, we will show tables with Pearson's
coefficient of the correlation between each variable and the 14-day mortality, and values obtained by
the SHapley Additive exPlanations (SHAP) technique [28]. (SHAP) 1s a game theory-based method
for explaining the output of machine leaming models. SHAP uses Shapley values to assign credit to
each feature or feature value for a model's prediction. Finally, from the SHAP values, we obtain a set
with 5 variables with the most significant positive impact on predicting mortality in 14 days, and
evaluate the performance of CNN1 predictor in strategies 1, 2 and 5.
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5.1 Results for strategies I, with 15 input variables, and for sirategy 2 with, 15, 16 and 17 input
variables

The performance metrics accuracy, Fl-score, and AUC, calculated for strategies 1 (S0 Paulo
dataset) and 2 (Manaus dataset), with 15 input variables, are shown in Table 3. As shown, the CNN
models achieved the best performances on both datasets. In contrast, the Logistic Regression model,
being a linear model, performed worse. All the metric values for strategy 2 are better than those
obtained for strategy 1. In particular, the AUC for the Manaus dataset is 0.93, while for the Sio Paulo
dataset 1s (1.91. These values were obtained with CNN1 and CNN2, respectively, using the BMSProp
optimizer shows the best performance in both strategies. The confusion matrices for both strategies,
obtained with the best predictors are shown in Figure 6. The sensitivity and specificity for strategy 1
are (.79 and (.89, respectively. For strategy 2, 0.84 and 0.96, respectively.

To explore the impact of the additional vanables available in the Manaus dataset, we conducted a
series of experiments by incrementally adding the extra vanables (pandemic and time trauma
admission) to the 15 shared variables common to both datasets. The pandemic variable provides
important context regarding whether the data was collected dunng the COVID-19 pandemic. The time
trauma admission variable captures the time between the trauma and hospital admission. Table 4 shows
the results obtained for strategy 2 with these two new extra vanables, using the best predictor in
Manaus dataset. The goal was to determine whether these extra variables could improve the model's
predictive power. As shown, when using the 17 variables, the AUC increases to 0.98. Figure 7 shows,
for strategy 2, with 17 variables, the confusion matrix obtained with the best model. The sensitivity
and specificity are 0.92 and 0.99, respectively.

Table 3 Performance metrics for strategies | and 2 with 15 input vanables

Machine
learning Optimizer Strategy 1 Strategy 2
muodel
Accuracy q:.:l__e AUC  Accoracy MFT;: ALC
Logistic - 0.81 0.7% 083 .81 077 0. 79
Regression
Random - 0.81 0.80 083 (.82 .79 0.81
Forest
MLFP Adam 0.79 0.76 080 (.89 (.88 0.90
MLP RMSprop .80 0.78 .81 088 (.86 0.89
MLP SGDM 080 0.7% 0.82 (.87 (L85 0.89
CNMI Adam 0.81 0.80 083 (L.50 (.88 0.91
CNNI RMSprop 0.82 (.81 0.84 (.92 (.90 0.93
CNMI SGDM 080 0.7% 081 (L8R (.86 0.89
CNN2 Adam .86 0.83 0.8 (.89 (.87 0.90
CHNN2 RMSprop 0.87 0.85 090 (L50 (.89 0.91
CHN2 SGDM (.85 0.82 087 (.87 (L85 (.89

1 ]

]
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(a) (b}
Fig. 6. Confusion matrices for both strategies: (a) using the CNN2 with RMSProp optimizer for strategy 1; (b) using
CHNMN1 with RMSProp optimizer for strategy 2.
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Table 4 Results for strategy 2, with 15, 16 and 17 varables, with the best model

Vanables Accuracy  F1-Score AUC

15 variables 092 .50 003

15 variables + pandemic variable 0.95 094 097

15 variables+ time trauma 0.95 0.9 097
admission variable

15 variables + pandemic and time .97 0.9 0.95

trauma admission variables

[ R

b

& L

Fig. 7. Confusion matrices for strategy 2 with 17 mput variables, using the model CNN1 with RMSProp optimizer.

5.2 Results for Strategies 3 and 4 with 15 input variables

The results for strategies 3 and 4, are shown in Table 5. Compared with the results of strategies |
and 2 shown in Table 3, the models performances decreased. For example, the best AUC for strategies
3 and 4 are also obtained with CNN1 and RMSProp optimizer, 0.77 and 0.70, respectively. These
values are lower than those obtained with strategies | and 2, 0.90 and 0.93, respectively. We also note
that training with the Manaus dataset and testing with data from the Sio Paulo dataset (strategy 3)
results in better metric values than training with the Sdo Paulo dataset and testing with the Manaus
dataset.

5.3 Results for Strategy 5 with 15 input variables

The performance metrics calculated for strategy 5 are shown in Table 5. Compared with the results
of strategies 1 and 2, shown in Table 3, the models performances decreased. For example, the best
AUC for strategy 5 is also obtained with CNN1 and RMSProp optimizer, 0.83. This value is lower
than those obtained with strategies 1 and 2, (.90 and 0.93, respectively, but better than the value
obtained with strategies 3 and 4. Figure 8 shows the confusion matrix obtained with the best model
for strategy 5.

5.4 Explaining Results
5.4.1 Pearson's cogfficient analysis

To understand the correlation between predictor variables and 14-day mortality in both datasets, we
used Pearson’s correlation coefficient. Pearson's correlation measures the strength and direction of the
relationship between predictor vanables and 14-day mortality, helping to identify critical factors that
may contribute to patient outcomes. Table 7 shows Pearson’s correlation coefficients to the Sao Paulo
dataset, while Table 8 shows Pearson’s correlation coefficients to the Manaus dataset.

For the Sio Paulo dataset, variables such as pupil reactivity, motor score, midline shifi, age and p-
prothrombin time showed the highest absolute correlation values with 14-day mortality. Pupil
reactivity and motor score showed a negative correlation with survival outcomes, while midline shifi
age and prothrombin time showed a positive correlation.
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For the Manaus dataset, motor score, pupil reactivity, hypoxia, midiine shift and hypotension were
among the most strongly correlated variables. As in the 530 Paulo dataset, motor score and pupil
reactivity emerged as ceritical predictors, showing a robust negative correlation with 14-day mortality,
-0.654 and -0.588, respectively. Additionally, the variable pandemic and time trauma admission
showed lower values of Person’s coefficients.

Comparing the absolute values of Pearson’s correlation coefficient between the Manaus dataset and
the Sdo Paulo dataset, we verified that, in the Manaus dataset, the five variables cited before have
absolute values above (.3, In contrast. in the Sdo Paulo dataset, only one variable has an absolute value
above 0.3, pupil reactivity.

5.4.2 SHAP values analysis

To gain insight inte the importance of each feature and its impact on model predictions, we used
SHAP (SHapley Additive exPlanations) values for the best model. SHAP analysis helps explain the
contribution of each variable to the prediction, providing transparency to the model’s decision-making
process. Figure 8 shows the SHAP plots for both datasets. In each plot, the Y -axis indicates the feature
names in order of importance from top to bottom. The X-axis represents the SHAP values, which
means the degree of change in log odds. The color of each point on the graph represents the value of
the corresponding feature, with red indicating high values and blue indicating low values. Each point
represents a row of data from the onginal dataset.

Table 5 Results for strategies 3 and 4, with 15 input vanables

Maching
learning  Optimizer Strategy 3 Strategy 4
maodel
Accuracy  Fl-Score ALC Accuracy  Fl-Score ALC
LR - (30 49 0.51 060 0.45 06l
RF - (33 (.51 (.50 0.64 0.47 067
MLF Adam (36 .52 (050 0.71 0.50 .68
MLP RMSprop (36 .52 0.51 0.70 049 .68
MLP SGDM (35 (.51 0.53 0.69 0.48 067
CHNNI Adam (38 (.53 .52 0.73 0.50 0.6%9
CHMI RMSprop .27 .42 0.52 0.77 0.52 0.70
CNNI SGDM (35 (.51 0.51 0.71 0.49 .68
CNNZ Adam (37 (.53 .52 0.75 0.51 0.70
CHN2 RMSprop .36 .52 0.52 0.74 0.51 0.69
CNNX SGDM 35 (.51 (.50 0.73% 0.50 .69

Table 6 Results for strategy 5 with 15 mput vanables

Model Optimizer Accuracy F1-Scoore AUC
LE - 0.90 0.61 0.72
RF - 0.80 0.57 0.70
MLP Adam 0.81 0.62 0.72
ML RMSprop 0.81 062 0.73
ML SGDM 0.7 0.12 0.53
CNN1 Adam 0.81 063 0.73
CNN1 RMSprop 0.83 ] 0.77
CNN1 SGDM 0.70 0.09 052
CNN2 Adam 0.81 0.62 0.72
CNN2 RMSprop 0.80 .61 0.72
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Fig. 8. Confusion matrix for strategy 5 using the best model, CNN1 with EMSProp optimizer., and 15 variables.

As shown in the SHAP plot for the Sao Paulo dataset, Figures %a), the 5 most essential vanables
in madel prediction include motar score, pupil reactivity, midline shifi, GCS at admission and GCS at
trauma site. As shown in the SHAP plot for the Manaus dataset, Figure %b), the 5 most essential
variables in model prediction include motor score, pupil reactivity, hypoxia, midline shifi and
hypotension at admission.

Table 7 Pearson's correlation
coefficients to the Sio Paulo dataset Table 8 Pearson's correlation
coefficients to the Manaus dataset

" .. Pearson
Predictor Variahle Cocffics
-gellicient Predictor Variable Pearson Coefficient

Sex 4.122 Sex 043
Age 0190 Age 0088
Pupil reactivity -0.373 Pupil reactivity .588
GCS at trauma site 0.119 GUS at trauma site 0.268
GICS at admission 0121 GUS at admission 0580
Motor score -0.281 Motor Score .654
Hypoxia 0.107 Hypoxia 0.458
Hypotension 0.140 Hypotension 0.375
Midline shafi 0219 Midline shift 0.402
Subarachnoid hemorrhage (s Subarachmoid 0,050

Epidural hematoma (OB hemorrhage
Subdural hemorrhage -0.044 Epidural hematoma (094
Intracerebral hemomhage 0.051 Subdural hemorrhage 0.263
Prothrombin time 0165 Intracerebral hemorrhage 024
Partial thromboplastin time (159 Prothrombin time 0271
Partial thromboplastin (064

time

Pandemic 0107
Time trauma admission 0.026
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Fig. 9. Shap values for predictions of model CNN1 with RMSprop optimizer. (a) 550 Paulo dataset, with 15 mput
variables{b) Manaus dataset with 17 input variables.

For the Sio Paulo dataset. motor score had the most significant positive impact on predicting
mortality, while pupil reactivity and GCS at the frauma site have less importance. In contrast, midline
shift on CT had a relatively lower impact. In the Manaus dataset. motor score remained the most critical
vanable, but pupil reactivity and hypoxia also played significant roles in predictions. Additionally,
hvpotension and gender had more influence on predictions in the Manaus dataset than in the Sio Paulo
dataset.

Comparing Pearson's analysis with the SHAP analysis, we notice a good agreement for the Manaus
dataset. The 5 variables with the highest absolute values for the Pearson coefficient correspond to the
5 variables with the highest SHAP values. For the Sio Paulo dataset, this coincidence of highest values
15 only for 3 variables. Table 8 shows the results of training the best model with strategies 1, 2 and 5,
using the sets of 5 most significant impact variables on SHAP analysis, for both datasets.

Table 9 shows the results for the Sdo Paulo and Manaus databases, using the 5 best vanables
mentioned before and the best predictor for each of them

Table 9 Results for Sio Paulo and Manaus datasets, with best predictors and 5 best vanables for each of them

Dataset/ Variables Accuracy  F1-Score AUC
Sao Paulo { motor score, puppil
reactivity, midline shift, GCS at

admassion and GCS at frauma site

086 061 087

Manaus/ motor score, pupil
reactivity, hypoxia, midline shift 0.9z 0.83 0.97
and hypotension at admission

As shown in Table 9, for Sao Paulo dataset, the AUC obtained using only 5 best variables for the
Sdo Paulo, 0.87, 15 a little smaller than the AUC obtained with 15 variables, 0.91 (Table 3). For Manaus
dataset, Tabel 9 shows that the AUC obtained only with 5 best variables (.97, is better than the AUC
obtained with 15 variables, 0.93 (Table 3), but worse than the AUC obtained with 17 variables, (.98
{Table 4).

6. Discussion

This study aimed to assess the performance and transferability of machine learmning models for
predicting 14-day mortality in TBI patients across two distinct Brazihan regions. Our findings indicate
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that models trained in one region faced challenges in maintaining their predictive power when applied
to data from the other. This suggests that regional factors significantly shape TBI patient outcomes, a
conclusion supported by previous research that highlights the vamability in healthcare access and
infrastructure across different geographical settings Warman et al. [29], Amorim et al. [2] Notably,
deep models, using CNN-based models—specifically CNN1 and CNN2 optimized via the RMSprop
method—demonstrated high performance across both datasets, when compared to classic machine
learning methods. The model performed well in each separated dataset, with Sao Paulo achieving an
area under the curve (AUC) of 0.90 and Manaus showing an AUC of 0.93, both for the best model
(CNMN1 with RMSProp). This performance was anticipated and aligns with previous findings from our
group when studying the Sao Paulo dataset [20][2].

The mcorporation of context-specific features, particularly those related to the COVID-19 pandemic
and the time from trauma to admission, significantly enhanced model accuracy, with the Manaus model
achieving an impressive AUC of (.98 upon their inclusion. Manaus, as one of the epicenters of the
COVID-19 pandemic, faced umique challenges that influenced healthcare delivery and patient
outcomes during this period [30]. Therefore, the pandemic may exacerbated issues related to healtheare
access, particularly for individuals residing in rural areas where road infrastructure is limited [3]. This
finding aligns with Zimmerman study [6], that emphasizes the role of localized vanables in improving
predictive models, especially in low-resource environments. The addition of these features not only
improved the models’ performance but also underscored the necessity of tailoring predictors to enhance
inter-regional applicability. Such adaptations are crucial, particularly when considering the differences
in healthcare access and infrastructure between urban centers like Sio Paulo and more isolated cities
as Manaus [2][31].

The inclusion of the COVID-19 pandemic variable in the Manaus dataset provided valuable
contextual information, reflecting both systemic strain and changes in trauma patterns during that
period. Manaus faced a severe collapse in its healtheare infrastructure, including overcrowded ICUs
and delayed access to neurosurgical care. These conditions likely contributed to higher early mortality
among TBI patients. At the same time, lockdown measures may have reduced certain trauma
mechanisms, such as road traffic accidents. The significant improvement in model performance with
the addition of the pandemic variable suggests that context-specific variables can meaningfully
enhance predictive accuracy, especially in regions experiencing extreme healthcare fluctuations.

When comparing the most important variables associated with outcomes, we found that motor score,
pupil reactivity, and midline shift were significant predictors in both models. Motor score and pupil
reactivity, which consistently emerged as top predictors, reflect core aspects of neurological function
and injury severity—mnamely, brainstem integrity and intracranial pressure dynamics. Midline shift on
CT is a radiological indicator of mass effect and potential hermiation, directly associated with increased
mortality risk. While age was a critical factor in 8io Paulo, hypoxia and hypotension emerged as more
important predictors in Manaus. These physiological derangements are known to exacerbate primary
bram immjury through mechanisms such as reduced cercbral perfusion and impaired autoregulation.
Together, these findings align with established TBI pathophysiology and highlight the importance of
integrating clinically meaningful variables into predictive modeling, especially in heterogeneous and
resource-limited environments. Moreover, this observation is consistent with existing literature, which
indicates that these vanables are highly correlated with outcomes and are present in both the CRASH
and IMPACT models [32][33]. In the IMPACT model, midline shift (MLS) is implicitly represented
through the Marshall Classification, while the CRASH model does not explicitly include motor score,
as it is incorporated within the Glasgow Coma Scale (GCS). Notably, hypoxia and hypotension are
absent from the CRASH model, which may limit its applicability in settings where these factors are
prevalent. Several authors argue that higher rates of hypoxia and hypotension comrelate with poorer
pre-hospital assessments [34] [35]). In the Manaus cohort, 25.9% of patients exhibited hypotension,
and 21.1% presented with hypoxia, with these conditions occurring more frequently in severe TBI
patients (55.3% and 43.8%, respectively) - the baseline data of the Manaus cohort will be published in
another paper. In contrast, in Sio Paulo, hypotension and hypoxia were observed in 21.2% and 13.2%
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of patients, respectively, with rates in severe TBI patients being 25.3% and 14.8% [2]. These findings
depict the differences in pre-hospital management between the two settings and highlight the
importance of addressing these variables in the Manaus cohort.

However, the interpretation of these findings must be approached with caution due to the inherent
variability within the datasets. Merchant et al. [36] consistently underscored the complexity of creating
effective prediction through trauma scoring systems in trauma patients in a LMIC. While our models
and comparisons provided a broad evaluation, it also complicated the identification of a single “best”
model even in a unique country due to its inherent inequalities, especially in LMIC. However, the use
of ML models shed a light to science to potentially create faster personalized predictions, considering
diverse factors that is hidden such as socioeconomic factors and previous mental status, for instance.
Collecting data 1s crucial and 1s more challenging in LMIC. Recently, Tritt et al. [37] demonstrated
that 19 clusters of TBI outcomes can be predicted from mntake data, a ~ 6% improvement in precision
over clinical standards. They used supervised and unsupervised approaches to 1dentify the clusters. In
our study. deep models, with CMN models showed better performance than simpler logistic regression
models, likely due to their inability to capture the intricate relationships within the data. This pattern
is consistent with previous research indicating that advanced algorithms generally outperform
traditional methods, particularly in complex datasets [29] [34].

Table 4 shows that the experiment carried out with only the 5 best variables in each dataset showed
a very relevant result. For the Sdo Paulo dataset, the AUC was only slightly lower than that obtained
with 15 vanables. For the Manaus database, the AUC was better than that obtained with 15 vanables.
Increasing the complexity to 15 and 17 vanables, implied a small decrease in performance and a small
gain in performance, respectively. The main reason for this is the small size of both databases. The
higher the ratio between the number of training patterns and the number of classifier parameters, the
better the generalization properties of the neural network [23]. Many input variables are directly
translated into a large number of predictor parameters. Thus, for a finite and usually limited number of
N training patterns, keeping the number of variables as small as possible 1s in line with our desire to
design predictors with generalization capabilities.

From a medical point of view, good prediction values obtained with a reduced set of variables are
essential because it is very difficult to record many variables for patients with TBI in emergency
medical settings.

The findings from this study represent a significant contribution to the broader discourse on TBI
research, as it marks, to the best of our knowledge, the first tentative cross-validation of predictive
models across two datasets from the same country, Brazil. The stark differences in healthcare access
and infrastructure between Sio Paulo and Manaus likely account for the observed vanations in model
performance. These disparities highlight the necessity for models trained in better-equipped settings to
undergo substantial adjustments to function effectively in regions with limited resources [2]. By
illustrating these regional disparities, our study underscores the importance of localized approaches in
the development and validation of predictive models for TBI outcomes in continental countries.

In terms of generalizability, our findings offer insights into the broader applicability of mortality
prediction models for TBI patients across differing healthcare environments. Although performance
varied by region, the incorporation of locally relevant variables led to more accurate predictions,
particularly for the Manaus dataset. This indicates that similar adaptations may benefit models intended
for other low-resource environments, although broader application could still be constrained by region-
specific factors, such as healthcare access, transportation logistics, and available resources [29][2].

This study has several notable limitations. First, although both datasets were prospectively
collected, reliance on retrospective analysis can introduce bias, particularly in handling missing data,
where imputation methods were employed but may not fully capture certain unmeasured variables.
Furthermore, the focus on only two regions, while beneficial for direct companson, limits the study’s
relevance to other regions with distinct healthcare systems. Additionally, potential confounding
factors, such as transfer times and pandemic-related variables, may have influenced mortality
predictions, particularly in the Manaus dataset, thereby reducing external vahdity.
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7. Conclusion

This study aimed to assess the performance and transferability of machine learning models for
predicting l4-day mortality in TBI patients across two distinct Brazilian regions, Sio Paulo and
Manaus. Deep models, using CNN-based models demonstrated high performance across both datasets,
when compared to classic machine leaming methods. The top-performing mode]l demonstrated strong
results across both datasets, achieving an AUC of 0.90 for Sdo Paulo and an impressive AUC of (.98
for Manaus. However, our findings indicate that models trained in one region faced challenges in
maintaining their predictive power when applied to data from the other.

Author Contributions: Conceptualization, M.G.F.C.; methodology, F A5 A, CFF.C.F., M.GF.C.
and R.L.O.A.; software, F.A.5.A.; formal analysis, FAS A, CFF.C.F, and M.G.F.C.; investigation,
RLOA, FASA, HOM., M.GF.C. and CFF.CF.; data curation, M.G.F.C, H.O.M.: writing—
original draft preparation, C.F.F.C.F, M.GF.C., FASA. and RL.OA.; writing—review and
editing, C.F.F.C.F.; visualization, M.G.F.C.; supervision, CF.F.C.F., RL.O.A. and M.G.F.C.; project
administration, R.L.O.A. and C.F.F.C.F.; funding acquisition, M.G.F.C. All authors have read and
agreed to the published version of the manuscript.

References

[1] M.C.Dewan eral, “Estimating the global incidence of traumatic brain injury..” J. Neurosurg.,
vol. 130, no. 4, pp. 1080-1097, Apr. 2019, doi: 10.317L/2017.10.JNS17352.

[2] R L. Amorim er al., “Prediction of Early TBI Mortality Using a Machine Learning Approach
ina LMIC Population.,” Front. Newrol., vol. 10, p. 1366, 2019, doi: 10,3389/ fneur. 2019.01366.

[3] P C.Novo, 5. A. B. de Farias, V. do V. Guttemberg, V. R. Felix Dos Santos, J. P. Moreira
Guilherme, and R. L. O. de Amonm, “Neurosurgical Emergencies in the Amazon: An
Epidemiclogic Study of Patients Referred by Air Transport for Neurosurgical Evaluation at a
Referral Center in Amazonas.,” World Newrosurg., vol. 173, pp. €359-e363, May 2023, doi:
10.1016/).wneu.2023.02.056.

[4] R. Raj er al. “Dynamic prediction of mortality after traumatic brain injury using a machine
learning algorithm,” npj Digit. Med., vol. 5, no. 1, p. 96, 2022, doi: 10.1038/s41746-022-00652-
3.

[5] K. C.Tuertal, “A Computer-Assisted System for Early Mortality Risk Prediction in Patients
with Traumatic Brain Injury Using Artificial Intelligence Algorithms in Emergency Room
Triage,” Brain Sciences, vol. 12, no. 5. 2022, doi: 10.3390/brainscil 2050612,

[6] A Zimmerman ef al, “*Machine learning models to predict traumatic brain injury outcomes in
Tanzama: Using delays to emergency care as predictors..” PLOS Glob. public Heal, vol. 3, no.
10, p. 0002156, 2023, doi: 10.1371/journal pgph.0002156.

[7T] 1 T. Senders er al., “Machine Learning and Neurosurgical Outcome Prediction: A Systematic
Review.," World Newrosurg., wol. 109, pp. 476-486.el, Jan. 2018, doi
10.1016/.wnew.2017.09.149.

[8] E. Courville er al., “Machine learming algorithms for predicting outcomes of traumatic brain
injury: A systematic review and meta-analysis.,” Surg. Newrol. Int., vol. 14, p. 262, 2023, doi:
10.25259/3N1_312_2023.

[9] A. Cerasa ef al., “Predicting Outcome in Patients with Brain Injury: Differences between
Machine Learning versus Conventional Statistics,” Biomedicines, vol. 10, no. 9. 2022, doi:
10.3390/biomedicines | 0092267.

[10] ). Wang, M. J. Yin, and H. C. Wen, “Prediction performance of the machine learning model in
predicting mortality risk in patients with traumatic brain injuries: a systematic review and meta-
analysis,” BMC Medical Informatics and Decision Making, vol. 23, no. 1. 2023, doi:
10.1186/512911-023-02247-8.

101



(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]
[23]
[24]

[25]

[26]

[27]

[28]

[29]

5. Der Hsu, E. Chao, S. I. Chen, D. Y. Hueng, H. Y. Lan, and H. H. Chiang, “Machine learning
algorithms to predict in-hospital mortality in patients with traumatic brain injury,”.J. Pers. Med.,
vol. 11, mo. 11, 2021, doi: 10.3390/)pm11111144.

K. Ding et al., “Mobile telephone follow-up assessment of postdischarge death and disability
due to trauma in Cameroon: a prospective cohort study.” BAL open, vol. 12, no. 4. p. e056433,
2022, doi: 10.1136/bmjopen-2021-056433.

). Fonseca, X. Liu, H. P. Oliveira, and T. Pereira, “Leamning Models for Traumatic Brain Injury
Mortality Prediction on Pediatric Electronic Health Records.” Front. Mewrol., vol. 13, no. June,
pp- 1-11, 2022, doi: 10.3389/fneur.2022.859068.

M. Rodngues de Souza ef al., “Evaluation of Computed Tomography Scoring Systems i the
Prediction of Short-Term Mortality in Traumatic Brain Injury Patients from a Low- to Middle-
Income Country.,” Newrotrauma reports, vol 3, no. 1. pp. 168-177, 2022, doi:
10.1089/neur.202 1.0067.

E. Courville er al., “*Machine learning algorithms for predicting outcomes of traumatic brain
injury: A systematic review and meta-analysis,” Surgical Newrology International, vol. 14,
2023, doi: 10.25259/SN1_312_2023.

A, Kashkoush, J. C. Petit, H. Ladhani, ¥. P. Ho, and M. L. Kelly, “Predictors of Mortality,
Withdrawal of Life-Sustaining Measures, and Discharge Disposition in Octogenarians with
Subdural Hematomas.pdf,” Waorld Newrosurgerysurg., vol. 157, no. January, pp. €l79%-¢187,
2022, doi: doi:10.10164.wneu.2021.09.121.

A, Mekkodathil, A. El-Menyar, M. Naduvilekandy, 5. Rizoli, and H. Al-Thani, “Machine
Learning Approach for the Prediction of In-Hospital Mortality in Traumatic Brain Injury Using
Bio-Clinical Markers at Presentation to the Emergency Department,” Diagnostics, vol. 13, no.
15. 2023, doi: 10.3390/diagnostics 13152605,

Y. Cao, M. P. Forssten, B. Sarami, S. Montgomery, and 5. Mohseni, “Development and
Walidation of an XGBoost-Algonthm-Powered Survival Model for Predicting In-Hospital
Mortality Based on 545,388 Isolated Severe Traumatic Brain Injury Patients from the TQIP
Database,” J. Pers. Med., vol. 13, no. 9, 2023, doi: 10.3390/jpm13091401.

M. C. P. Campos, R. Venzel, L. P. de Oliveira, F. Reis, and B. L. 0. de Amorim, “Management
of Traumatic Brain Injury at a Medium Complexity Hospital in a Remote Area of Amazonas,
2017-2019," World Neurosurg., vol. 148, pp. 151-154, 2021, doa: 10,1016/ wneu.2020.12.088.
E. AL A Guimardes, R. L. O. de Amonm, M. G. F. Costa, and C. F. F. Costa Filho, *Predicting
early traumatic brain injury mortality with 1D convolutional neural networks and conventional
machine leamning techniques,” Informatics Med. Unlocked, vol. 31, pp. 1-23, 2022, doi:
10.1016/.0mu.2022. 100984,

Charu C. Aggarwal, Newral Networks and Deep Learning. 2023,

F. Chollet, Deep Learning with Pythan. 2021,

5. Theodoridis and K. Koutroumbas, Pattern Regeonition. 2009,

A, Ismayilova and V. E. Ismailov, “On the Kolmogorov neural networks,” Newral Networks,
vol. 176, pp. 1-14, 2024, doi: 10.1016/).neunet.2024. 106333,

C. Szegedy, V. Vanhoucke, 5. loffe, J. Shlens, and Z. Wojna, “Rethinking the Inception
Architecture for Computer Vision,” Proc. JEEE Compur. Soc. Conf. Comput. Vis. Pattern
Recognit., vol. 2016-Decem, pp. 2818-2826. 2016, doi: 10.1109/CVPR.2016.308.

T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit. Lett., vol. 27, no. &, pp. 861
874, 2006, doi: 10.1016/).patrec.2005.10.010.

D. M. W. Powers, “Evaluation: from precision, recall and F-measure to ROC, informedness,
markedness and correlation,™ no. May, 2020, [Omline]. Awvailable:
http:/farxiv.org/abs/2010.16061.

5. M. Lundberg and S. 1. Lee, “A umified approach to interpreting model predictions,” Adv.
Newral Inf. Process. Syst., vol. 2017-Decem, no. Section 2, pp. 4766-4775, 2017.

P. I. Warman er al., “Machine Leamning for Predicting In-Hospital Mortality After Traumatic

102



[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Brain Injury in Both High-Income and Low- and Middle-Income Countries.,” Newrosurgery,
vol. 9, no. 5, pp. 605-612, May 2022, doi: 10.1227/new.0000000000001 898,

E. Fermandes er @i, "Exploring Prehospital Dara for Pandemic Preparedness: A Western
Brazilian Amazon Case Study on COVID-19.." fne. J. Environ. Res. Public Health, vol. 21, no.
9, Sep. 2024, doi: 10.3390/1jerph21091229.

M. Rodrigues De Souza ef al., “Evaluation of Computed Tomography Scoring Systems in the
Prediction of Short-Term Mortality in Traumatic Brain Injury Patients from a Low- to Middle-
Income Country,” Newrotrauma Reports, vol. 3, no. 1. pp. 168177, 2022, doi:
10.1089/neur.202 1.0O0GT.

A, Fanied, F. C. Satriawan, and M. Z. Arifin, “Feasibility of Online Traumatic Brain Injury
Prognostic Corticosteroids Randomisation After Significant Head Injury (CRASH) Model as a
Predictor of Mortality.,” World Newrosurg., vol. 116, pp. €239-¢245, Aug. 2018, doi:
10.1016/.wneu. 201 8.04.180.

E. W. Steyerberg ef al., “Predicting outcome after traumatic brain injury: Development and
international validation of prognostic scores based on admission characteristics,” PLaS Med.,
vol. 5, no. 8, pp. 1251-1261, 2008, doi: 10.1371/journal. pmed.0050165.

A Abujaber, A. Fadlalla, D. Gammoh, H. Abdelrahman, M. Mollazehi. and A. El-Menyar.
“Prediction of in-hospital mortality in patients with post traumatic brain injury using National
Trauma Registry and Machine Learming Approach..” Scand. J. Trauma. Resusc. Emerg. Med.,
vol. 28, no. 1, p. 44, May 2020, doi: 10.1186/s13049-020-00738-5.

L. R. Huie, C. A. Almeida, and A. R. Ferguson, “Neurotrauma as a big-data problem,” Curr.
Opin. Newrol., vol. 31, no. 6, 2018, [Online]. Available: https:/journals. lww.com/co-
neurclogy/fulltext/201 8/12000/neurotrauma _as a big_data problem.7.aspx.

Ao AL H. Merchant er al., “Which curve is better? A comparative analysis of trauma scoring
systems in a South Asian country..” Trauma Surg. acute care apen, vol. & no. 1, p. 001171,
2023, doi: 10.1136/tsaco-2023-001171.

A, Tritt et al., “Data-driven distillation and precision prognosis in traumatic brain injury with
interpretable machine learning..” Sci. Rep, vol. 13, no. 1, p. 21200, Dec. 2023, doi:
10.1038/541598-023-48054-z.

103



