

UNIVERSIDADE FEDERAL DO AMAZONAS INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA PROGRAMA DE PÓS - GRADUAÇÃO EM FÍSICA

TUNELAMENTO RESSONANTE DE BURACOS EM HETEROESTRUTURAS SEMICONDUTORAS DE DUPLA BARREIRA SUBMETIDAS A PRESSÕES

SALOMÉ FONTÃO CUNHA

Dissertação submetida ao programa de pósgraduação em Física da Universidade Federal do Amazonas como parte dos requisitos para obtenção do título de mestre em Física.

Orientador: Prof. Dr. Antonio Carlos Rodrigues Bittencourt

Manaus-Amazonas 2005

UFAM UNIVERSIDADE FEDERAL DO AMAZONASS INSITUTO DE CIÊNCIAS EXATAS PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA (PPGFIS-UFAM)

TUNELAMENTO RESSONANTE DE BURACOS EM HETEROESTRUTURAS SEMICONDUTORAS DE DUPLA BARREIRA SUBMETIDAS A PRESSÕES

SALOMÉ FONTÃO CUNHA

Orientador: Prof. Dr. Antonio Carlos Rodrigues Bittencourt

MANAUS - AM 2005

Este trabalho foi realizado com apoio financeiro da CNPQ.

AGRADECIMENTOS

Gostaria de deixar meus sinceros agradecimentos a todos que de alguma forma contribuíram para o êxito deste trabalho, e em especial:

- a Deus, pela luz, pela força, coragem e perseverança ao longo de todo este período;
- a meu orientador, Dr. Antonio Carlos Rodrigues Bittencourt, pela atenção concedida, pela orientação e pela oportunidade de desenvolvimento desta dissertação de mestrado;
- aos professores da Pós-Graduação da UFAM pelo valioso conhecimento que me forneceram e em especial aos professores José Ricardo, Abraham Cohen, Fernando Aguiar e José Wilson;
- a meus pais e familiares, pelo apoio em todos os sentidos ... este trabalho é dedicado a vocês!
- a meus amigos, Dilma, Ellen, Enoque, Fernando, Márcio, Rosana, Peta, Vasti, Yamilles e Wanna, por todo incentivo e companheirismo;
- a meu "irmão" Deivis, responsável direto pelas mudanças ocorridas em minha vida nos últimos anos, através da qual foi possível a realização deste trabalho

RESUMO

Estudamos o transporte de buracos em dupla barreira ressonante submetida a *stress* uniaxial, usando a técnica da matriz de espalhamento na aproximação de massa efetiva do modelo de *Luttinger-Kohn-Pikus*. A transmissividade é calculada para k = 0 e $k \neq 0$ para o sistema GaAs /AlAs para os esforços de compressão (T < 0) e tração (T > 0). Para k = 0, os buracos leves e pesados são desacoplados e observa-se um deslocamento rígido nas curvas de transmissividades e inversão do estado fundamental, HH1 \rightarrow LH1 para o esforço de tração. No caso $k \neq 0$, além da mistura das bandas que aumenta a probabilidade de transmissão, o *stress* muda o caráter das partícula HH \leftrightarrow LH, a separação relativa entre os estados HH e LH no poço quântico, e indiretamente, influência na mistura dos estados de valência, aumentando ou diminuindo as transmissividades dos buracos dependendo do tipo de esforço aplicado.

Índice

Ι	Intr	odução	8	
	1.1	Tunelamento Ressonante	8	
	1.2	Motivações e Formalismo	11	
	1.3	Oranização da Tese	13	
II	Mo	delo Teórico	16	
	2.1	A aproximação de Massa Efetiva	17	
	2.2	Hamiltoniano de Luttinger na Representação $k \cdot p$	22	
	2.3	Hamiltoniano de Bir-Pikus	28	
II	III Técnica da Matriz de Espalhamento para o Cálculo da Transmissivi-			
	dad	e	32	
	3.1	Solução da Equação de Massa Efetiva	33	
	3.2	Natureza das soluções de k $_z$	35	
		3.2.1 Compressão	35	
		3.2.2 Tração	37	
	3.3	Formalismo da Matriz de Espalhamento	40	
	3.4	Transmissividade	45	
IV	$^{\prime}\mathrm{Res}$	ultados da Transmissividade	47	
	4.1	Transmissividade para $k_{\rho} = 0$	50	
		4.1.1 Sem Stress	50	

	4.1.2	Compressão	52
	4.1.3	Tração	54
4.2	Transi	missividade para $k_{\rho} \neq 0$	58
	4.2.1	Sem stress	58
	4.2.2	Compressão	60
	4.2.3	Tração	64

V Conclusões

Lista de Figuras

1.1	Tunelamento ressonante de elétrons em dupla barreira ressonante	10
1.2	Efeito do $stress$ uniaxial na estrutura de bandas do Ga As para os esforços	
	de tração, compressão e sem <i>stress.</i>	12
2.1	Estruturas de bandas dos compostos III-V próximos ao ponto $\Gamma.$ O gap	
	fundamental é denotado por E_G e a energia spin-órbita Δ	26
3.1	Estrutura de banda dos buracos leves (LH) e pesados (HH) para o $bulk$ de	
	GaAs, ilustrando a quebra de degenerescência em $k_{\rho}=0,$ devido ao $stress,$	
	nos casos: (a) compressão, (b) sem stress e (c) tração	34
3.2	Representação da parte real (b) e imaginária (a) da solução de k_z , com	
	$T=-3~kbar$ (compressão) e $k_{\rho}=2\times 10^6~cm^{-1}$, dos buracos leves (linha	
	pontilhada) e pesados (linha contínua) para o $bulk$ do GaAs. As energias	
	críticas $E_{C_1}, E_{C_2}, E_{C_3}, E_{C_4}, E_{C_T}$ dividem o espectro de energia em cinco	
	regiões (i) , (ii) , (iii) , (iv) e (v) cuja natureza está de acordo com a Tab.	
	(3.1)	39
3.3	(a) Dispersão dos buracos leves e (b) Velocidade de grupo dos buracos	
	leves em função de k_z para $k_{\rho} = 2 \times 10^6 \ cm^{-1}$. Entre os pontos A e B a	
	velocidade de grupo $V_{gl} < 0$ para $k_z < 0 \dots \dots \dots \dots \dots \dots$	40
3.4	Estrutura dupla de barreirasmostrando os coeficientes das ondas incidentes	
	e das ondas, refletidas ou espalhadas, em cada região	41

4.1	Representação esquemática do perfil de potencial de uma heteroestrutura	
	de dupla barreira de GaAs/AlAs com dimensões (L_{B1}, L_P, L_{B2}), sub-	
	metida a stress uniaxial T na direção (001). A descontinuidade da banda	
	de valência nas interfaces vale $\Delta E_V = 550 \ meV.$	49
4.2	Transmissividade dos buracos pesados (abaixo) e leves (acima) através da	
	heteroestrutura de dupla barreira de GaAs/AlAs, (30,50,30) com k_ρ =	
	$0 \in T = 0 \text{ (sem stress)}.$	51
4.3	Transmissividade dos buracos pesados (abaixo) e leves (acima) para o	
	sistema de dupla barreira (30,60,30) de GaAs/AlAs para $T=0$ (sem	
	stress) com $k_{\rho} = 0.$	52
4.4	Transmissividade dos buracos pesados (abaixo) e leves (acima) para o	
	sistema de dupla barreira (30,50,30) de GaAs/AlAs par a $T=-3$ kbar	
	$\operatorname{com} k_{\rho} = 0. \dots \dots \dots \dots \dots \dots \dots \dots \dots $	53
4.5	Transmissividade dos buracos pesados (abaixo) e leves (acima) para o	
	sistema de dupla barreira (30,60,30) de GaAs/AlAs par a $T=-3\ kbar$ e	
	$k_{\rho} = 0. \ldots $	54
4.6	Transmissividade dos buracos pesados (abaixo) e dos buracos leve (acima),	
	através de uma hetero estrutura de dupla barreira de GaAs/AlAs, $(30,\!60,\!30)$	
	com $k_{\rho} = 0$, para um esforço de tração $T = 3 \ kbar$ (curva preta) e $T = 0$,	
	sem <i>stress</i> (curva verde)	55
4.7	Transmissividade dos buracos pesados (abaixo) e dos buracos leve (acima),	
	através de uma hetero estrutura de dupla barreira de GaAs/AlAs, $(30,\!60,\!30)$	
	com $k_{\rho} = 0$, para um esforço de tração $T = 8 \ kbar$	56
4.8	Transmissividade dos buracos (a) pesados e (b) leves, através de hetero-	
	estrutura de barreiras assimétricas de GaAs/AlAs $(10,50,30)$ (curva verde)	
	e simétrica (30,50,30) (curva preta) com $k_{\rho} = 0$ e $T = 2$	57

4.9	Transmissividade dos buracos pesados e leves, através de heteroestrutura	
	de dupla barreira (30,50,30) de GaAs/AlAs com $k_{\rho} = 3 \times 10^6 \text{ cm}^{-1} \text{ e } T = 0.$	
	(a) e (b) para o Hamiltoniano <i>upper</i> ; (c) e (d) para o Hamiltoniano <i>lower</i> .	59
4.10	Transmissividade dos buracos pesados e leves, através de heteroestrutura	
	de dupla barreira (30,50,30) de GaAs/AlAs com $k_{\rho}~=~3\times10^{6}~{\rm cm^{-1}}$ e	
	$T = -3 \ kbar$. (a) e (b) para o Hamiltoniano upper; (c) e (d) para o	
	Hamiltoniano lower.	61
4.11	Transmissividade dos buracos pesados (HH out) através de heteroestru-	
	tura de dupla barreira (30,50,30) de GaAs/AlAs para $T = -3 \ kbar$ nos	
	casos $k_{\rho} = 3 \times 10^6 cm^{-1}$ (acima) $e k_{\rho} = 0$ (abaixo).	62
4.12	Transmissividade dos buracos pesados e leves para o Hamiltoniano <i>upper</i> ,	
	através de hetero estrutura de dupla barreira (30,50,30) de GaAs/AlAs com	
	$k_{ ho} = 3 \times 10^6 \ cm^{-1}$, para $T = 0$ (sem stres) e $T = -6 \ kbar$, (a) HH in	
	\rightarrow HH out, (b) HH in \rightarrow LH out ; (c)) LH in \rightarrow HH out e (d) LH in \rightarrow LH	
	out	63
4.13	Transmissividade dos buracos pesados e leves, atrav és de heteroestrutura	
	de dupla barreira (30,50,30) de GaAs/AlAs com k_{ρ} = 3 \times $10^{6}~{\rm cm^{-1}}$ e	
	$T = 3 \ kbar$. (a) e (b) para o Hamiltoniano $upper$; (c) e (d) para o	
	Hamiltoniano lower.	65
4.14	HH in \rightarrow HH out , através da hetero estrutura de dupla barreira (30,50,30)	
	de GaAs/AlAs com $k_{\rho} = 3 \times 10^6 \text{ cm}^{-1}$ e $T = 3 \text{ kbar}$. Note que devido ao	
	mixing, transmissividade é maior para o esforço de tração	66
4.15	LH in ${\rightarrow}{\rm LH}$ out , a través da heteroestrutura de dupla barreira (30,50,30)	
	de GaAs/Al As com $k_{\rho}=3\times 10^6~{\rm cm^{-1}}$ e $T=3~kbar.$ Note que a transmis-	
	sividade é menor para o esforço de tração	67

Lista de Tabelas

3.1	Natureza das soluções de k_z para o esforço de compressão	36
3.2	Natureza das soluções de k_z para o esforço de tração com $k_\rho < K_T.$	38
3.3	Natureza das soluções de k_z para o esforço de tração com $k_\rho > K_T.$	38
4.1	Parâmetros de massa efetiva e potenciais de deformação	50

Capitulo I

Introdução

Desde a pioneira proposta de *Esaki* e Tsu sobre as heteroestruturas semicondutoras, o tunelamento de elétrons [1] e buracos [2] em dupla barreira ressonante tem sido objeto de considerável investigação tanto teorica como experimental devido ao grande potencial de aplicação tecnologica na forma de detetores, modulares, lasers etc. Nesta dissertação de mestrado investigamos o tunelamento ressonante de buracos em heteroestruras de dupla barreira de GaAs/AlAs submetidas a tensõe externas (*stress*).

1.1 Tunelamento Ressonante

O Tunelamento de partículas através des barreiras de potencial representa um dos problemas clássicos da mecânica quântica, conhecido como *efeito túnel*, cuja ocorrência é uma manifestação do comportamento ondulatório da matéria, não tendo, por isso, análogos clássicos. O conceito quântico de tunelamento foi primeiro aplicado por *Gamov* (1928) para explicar o decaimento- α de núcleos pesados, por *Oppenheimer*, para a ionização dos átomos de hidrogênio. Na Física do Estado Sólido, este efeito foi introduzido inicialmente por *Fowler* e *Nordhein* [3] para emissão eletrônica por metais e por *Zener* [4] em 1934 para estudar o movimento de elétrons através de bandas de energia proibidas. Em 1958, *Leo Esaki* incorporou este efeito ao funcionamento do diodo túnel, dando início a era dos dispositivos quânticos, fato que lhe rendeu o prêmio Nobel de Física de 1973. Em um trabalho não aceito para publicação de 1971, Esaki e Tsu mostraram que o fenômeno de tunelamento dos elétrons poderia ser muito melhor explorado se houvesse a possibilidade de construir junções perfeitas entre dois materiais semicondutores diferentes (heterojunções). Graças ao grande desenvolvimento alcançado, pelas técnicas de crescimento epitaxial nas últimas três décadas, notadamente, o MBE (Molecular Beam Epitaxy) e o MOCVD (Metal Metalorganic Chemical Vapour Deposition), foi possível construir essas heteroestruturas em uma escala de engenharia atômica ($10^{-9} m a 10^{-10} m$), dando origem ao que chamamos de materiais nanoestruturados utilizados em larga escala na moderna. nanoeletrônica. Isto possibilitou a construção de uma grande variedades de estruturas com dimensionalidade reduzida, produzidas artificialmente como, poços quânticos, super-redes, dupla barreira, etc .

A partir de então, as heteroestruturas têm despertando grande interesse, tanto na ciência quanto na tecnologia, devido às inúmeras propriedades e fenômenos observados em baixas e altas temperaturas, e ao grande potencial de aplicação tecnológica. Um desses fenômenos é o tunelamento ressonante em *dupla barreira*, que aparece como picos de valores unitários na curva de transmissividade, quando as energias E da partícula incidente se igualam àquelas dos estados *quase-ligados*, E_n , da região do poço.

O tunelamento ressonante de elétrons em dupla barreira, foi teoricamente investigado por *Esaki* e *Tsu* [5], e realizado experimentalmente nos laboratórios da IBM por *Esaki*, *Tsu* e *Chang* [6], utilizando uma dupla barreira do tipo GaAs/GaAlAs como ilustrado na parte (a) Fig. (1.1). A corrente flui através da heteroestrutura entre os dois eletrodos e a ressonância ocorre quando a energia de Fermi ($E_{\rm F}$) na região do emissor se alinha com um nível ressonante dentro do poço quântico.

A condutância diferencial negativa presente na curva de saída ($\mathbf{I} \times \mathbf{V}$) [veja a parte (b) da Fig. (1.1)] pode ser explicada, através da conservação do momento do elétron no plano das camadas. A conservação de energia implica também na conservação de momento paralelo às camadas para que haja o alinhamento do nível do poço com o nível

Figura 1.1: Tunelamento ressonante de elétrons em dupla barreira ressonante. A parte (a) mostra um esquemático de um sistema de dupla barreira submetido a uma diferença de potencial V entre o emissor e o coletor. A parte (b) mostra a forma qualitativa da corrente de tunelamento em dispositivos de dupla barreira.

de Fermi E_F do emissor. Assim, quando o nível ressonante desalinha-se do nível de Fermi, a conservação do momento deixa de existir, produzindo uma queda brusca da corrente, que é refletida na curva ($\mathbf{I} \times \mathbf{V}$) como uma condutância diferencial negativa.

A investigação experimental do tunelamento ressonante de buracos em heteroestruturas semicondutoras foi feita pela primeira vez por *Mendez et al* [2], cujos resultados experimentais revelaram um forte acoplamento entre as bandas de buracos leves e pesados. Apesar de ser menos investigado do que o tunelamento de elétrons, o tunelamento de buracos é um importante mecanismo de transporte, uma vez que, devido à forte mistura dos estados de valência (buracos leves e pesados) temos dois canais de tunelamento, LH out (buraco leve) e HH out (buraco pesado), o que o torna um mecanismo de transporte de bastante interesse, tanto teórico como experimental.

1.2 Motivações e Formalismo

Nosso objetivo nessa dissertação de mestrado, é estudar a transmissividade de buracos em heteroestruturas semicondutoras de dupla barreira submetida a pressões externas (*stress*), usando a técnica da matriz de espalhamento na aproximação de massa efetiva do modelo de *Luttinger-Kohn*. A escolha desse tema deveu-se a dois motivos: (1) A importância do *stress*; o *stress* como uma perturbação externa, desempenha um papel importante na investigação das propriedades óticas e de transporte em heteroestruturas semicondutoras e oferece a possibilidade de projetar dispositivos opto-eletrônicos e de alta velocidade [7] com a perfomace desejável. A aplicação de um stress *uniaxial*, tem uma profunda influência na estruturas de bandas dos materiais semicondutores, modificando *gaps*, massas efetivas, reduzindo a simetrias e consequentemente quebrando a degenerescência dos estados de buraco pesado (HH) e buraco leve (LH), como visto na Fig. (1.2). Assim o *stress* torna-se uma ferramenta importante para monitorar os estados eletrônicos dos cristais semicondutores tanto de *gap* direto como indireto ; (2) O método analítico para o cálculo da transmissividade em dupla barreira, permite um

Figura 1.2: Efeito do *stress* uniaxial na estrutura de bandas do GaAs para os esforços de tração, compressão e sem *stress*.

bom entendimento de várias técnicas, como aproximação de massa efetiva, matriz de transferência, matriz de espalhamento, método $\mathbf{k} \cdot \mathbf{p}$, que podem ser usadas futuramente em outros problemas; (3) Embora exista um numeroso estudo sobre os efeitos do *stress* na estrutura das bandas de valência e, no tunelamento de elétrons, pouca investigação tem sido feita no efeito do *stress* [8] sobre a dinâmica de buracos.

Em geral a técnica mais utilizada para o cálculo das transmissividades em sistemas de dupla barreira é a matriz de transferência, entretanto a mesma apresenta instabilidade numérica quando as dimensões da região barreira são grandes (em geral para comprimentos da barreira $L_b >> 10$ Å). A origem dessa instabilidade é bem conhecida [9, 10], sendo devida ao crescimento exponencial dos estados na barreira, cujas amplitudes variam rapidamente nas regiões de transmissão ressonante. A técnica da matriz de transferência trata o crescimento e decaimento dos estados identicamente, resultando na perda do decaimento exponencial da função de onda durante a computação, como resultado da presença da função de onda exponencialmente crescente. Vários esquemas vem sendo propostos [9, 10] para a solução deste problema. Entretanto, eles são simplesmente truncamento de esquemas de diferentes grau de complexidade. Em vista dessas dificuldades que o método da matriz de transferência apresenta, optamos pela técnica da matriz de espalhamento [11], que é de fácil adaptação ao esquema de massa efetiva para a inclusão de campos elétricos, e pressões externas (*stress*).

A base do método da matriz espalhamento é resolver a equação de massa efetiva em cada camada da heteroestrutura para uma energia e momento paralelo fixados, e então formar um completo autoestado em todo o sistema usando as condições de contorno nas interfaces. Na prática isto é feito usando matrizes de propagação descrevendo a mudança de fase através das camadas e matrizes de espalhamento nas interfaces.

1.3 Oranização da Tese

Neste trabalho investigamos o tunelamento de buracos em heteroestruturas de dupla barreira com camadas submetidas tensões externas, usando a técnica da matriz de espalhamento na aproximação de massa efetiva do modelo $\mathbf{k} \cdot \mathbf{p}$ de *Luttinger-Kohn*. Escolhemos esse modelo por ser de fácil adaptação ao esquema de massa efetiva e incorpora de forma natural a mistura (*mixing*) de bandas e efeitos de campos externos como o *stress* e campo elétrico. Dessa forma reservamos o capítulo 2 para uma breve revisão dos aspectos principais do formalismo $\mathbf{k} \cdot \mathbf{p}$ e da aproximação de massa efetiva. Nesse mesmo capítulo, incluimos o *stress* como um potencial perturbativo, que não depende de *k*, chamado de Hamiltoniano de *Bir-Pikus* [4]. O Hamiltoniano total que é a soma do Hamiltoniano de *Luttinger*, mais *Bir-Pikus* é bloco-diagonalizado em duas matrizes (2 × 2), *upper* e *lower* usando a aproximação axial.

Escolhido o modelo para descrever o movimento dos buracos leves e pesados na banda de valência, no capítulo 3, apresentamos o formalismo da matriz de espalhamento para o cálculo da transmissividade em heteroestruturas de dupla barreira submetidas a tensões externas. No capitulo 4, apresentamos e discutimos os resultados numéricos da transmissividade em heteroestruturas semicondutoras do tipo I (elétrons e buracos confinados na mesma região) para sistema de dupla barreira de GaAs/AlAs submetidos a *stress* uniaxial na direção de crescimento (001). Os resultados são analisados para $k_{\rho} = 0$ e $k \neq 0$ e mostram que o *stress* muda a separação relativa entre os estados HH e LH no poço quântico, e indiretamente, influência na mistura dos estados de valência aumentando ou diminuindo as .transmissividades dos buracos.dependendo do tipo de *stress* aplicado.

Referências

- [1] L. Esaki, R. Tsu, IBM J. Res. Dev. 14, 61–65 (1970).
- [2] E. E. Mendez, W. I. Wang, B. Ricco, L. Esaki, Appl. Phys. Lett. 47, 415 (1985).
- [3] H, Fowler, L. Nordheim, Proc. Roy. Soc. London A119, 173–181 (1928).
- [4] C. Zener, Proc. Roy. Soc. London A145, 523 (1934).
- [5] R. Tsu, Leo Esaki, App. Phys. Lett. **22**, 562 (1973).
- [6] L. L. Chang, Leo Esaki, R. Tsu, App. Phys. Lett. 24, 593 (1974).
- [7] G. C. Osbourn, Phys Rew B . 27, 5126 (1983).
- [8] M. U. Erdogan and K. W. Kim, Superlattices and Microstructures, 17, 3 (1996).
- [9] S. Brand, D. T. Hughes, Semicond. Sci. Technol. 2, 607 (1987).
- [10] C. Mailhoit, D. L. Smith, Phys. Rev. B **33**, 8360 (1986).
- [11] M. Cahay, M. McLennan, S. Datta. Phys. Rev. B 17, 10125 (1988).
- [12] G. E. Pikus and G. L. Bir, Sov. Phys-Solid State, 1, 1502 (1959).

Capitulo II

Modelo Teórico

Desde a pioneira proposta de *Esaki e Tsu* [1] das heteroestruturas semicondutoras, tornou-se crescente o estudo tanto teórico como experimental das propriedades ópticas e de transportes dos compostos semicondutores III - V. Dispositivos semicondutores com o principio de funcionamento baseado nessas propriedades, tais como, moduladores, fotodetectores e *laser*, possuem as mais diversas aplicações. Para compreendermos as propriedades de transporte em heteroestruturas semicondutoras submetidas a campos elétricos, magnéticos, *strain, stress* etc., é essencial conhecermos sua estrutura eletrônica. Vários métodos tem sido utilizados no cálculo da estrutura eletrônica, como a aproximação *Tight-binding, Pseudopotenciais, Densidade funcional*, etc [2]. Além da complexidade inerente de cada um deles, os alto custos computacionais limitam a utilização dos mesmos a um grupo reduzido de locais com uma boa infraestutura computacional.

Em vista dessas dificuldades, nessa dissertação optamos pelo modelo de Luttinger [3], baseado no método $\mathbf{k} \cdot \mathbf{p}$ para descrever as propriedades de transporte de buracos em heteroestruturas semicondutoras submetidas a tensões externas (*stress*). Este método é de fácil adaptação ao esquema de massa efetiva e incorpora facilmente perturbações externas como campo elétrico, magnético, *stress* etc. Dessa forma resevamos este capítulo para uma rápida descrição do formalismo de massa efetiva e do modelo de Luttinger, levando em conta o efeito do *stress*, chamado Hamiltoniano de *Bir-Pikus* [4].

2.1 A aproximação de Massa Efetiva

A aproximação de massa efetiva consiste em transformar um problema, inicialmente complicado, do movimento de um portador num cristal sujeito a um potencial externo adicional, num problema mais simples, correspondente ao movimento do portador no espaço livre com o mesmo potencial externo, onde todos os efeitos da estrutura cristalina (potencial interno) estão embutidos em um tensor denominado de massa efetiva, cujos elementos são determinados pelos parâmetros que descrevem essa aproximação.

Considere um cristal infinito com uma banda isolada, com um extremo num ponto $\mathbf{k}_0 = 0$. A equação de *Schrödinger* independente do tempo que descreve o movimento dos elétrons nessa banda é dada por:

$$H_0\psi_{\mathbf{k}}(\mathbf{r}) = \varepsilon(\mathbf{k})\psi_{\mathbf{k}}(\mathbf{r}),\tag{2.1}$$

onde H_0 Hamiltoniano do sistema não perturbado e $\varepsilon(\mathbf{k})$ é a energia do elétron em cada estado rotulado pelo índice \mathbf{k} .

As soluções da Eq. (2.1) são as funções de *Bloch*:

$$\psi_{\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} u_{\mathbf{k}}(\mathbf{r}), \qquad (2.2)$$

onde $u_{\mathbf{k}}(\mathbf{r})$ é a parte periódica da função de *Bloch*.

A função de Bloch $\psi_{\mathbf{k}}(\mathbf{r})$ pode ainda ser escrita como combinação linear das funções de Wannier $a(\mathbf{r} - \mathbf{R}_j)$ associadas a cada um dos N sítios \mathbf{R}_j da rede de Bravais e que satisfazem a relação de ortogonalidade [5]:

$$\int a^*(\mathbf{r} - \mathbf{R}_j) \ a(\mathbf{r} - \mathbf{R}_i) d\mathbf{r} = \delta_{ij}.$$
(2.3)

Desta forma obtem-se

$$\psi_{\mathbf{k}}(\mathbf{r}) = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} e^{i\mathbf{k}\cdot\mathbf{R}_j} a(\mathbf{r} - \mathbf{R}_j).$$
(2.4)

Da Eq. (2.4), observa-se que a função de *Wannier* é a transformada de *Fourier* inversa da função de *Bloch* e, portanto, invertendo a Eq. (2.4) obtem-se

$$a(\mathbf{r} - \mathbf{R}_j) = \frac{1}{\sqrt{N}} \sum_{\mathbf{k}} e^{-i\mathbf{k}\cdot\mathbf{R}_j} \psi_{\mathbf{k}}(\mathbf{r}).$$
(2.5)

Vamos agora adicionar, ao potencial cristalino, uma perturbação descrita por um potencial adicional $V(\mathbf{r})$, variando lentamente com a posição dentro de uma célula unitária do cristal, de modo que os seus elementos de matriz na base de *Wannier* são dados por:

$$V_{ij} = \int a^*(\mathbf{r} - \mathbf{R}_i) V(\mathbf{r}) a(\mathbf{r} - \mathbf{R}_j) d\mathbf{r} \cong V(\mathbf{R}_i) \delta_{ij}.$$
 (2.6)

O Hamiltoniano do sistema perturbado, $H = H_0 + V(\mathbf{r})$, satisfaz a equação de Schrödinger

$$[H_0 + V(\mathbf{r})]\Psi(\mathbf{r}) = E\Psi(\mathbf{r}).$$
(2.7)

Como o potencial $V(\mathbf{r})$ varia fracamente com a posição, podemos expandir a função de onda do cristal perturbado, $\Psi(\mathbf{r})$, na base de *Wannier* que contém as características do sistema não perturbado. Sendo assim obtem-se

$$\Psi(\mathbf{r}) = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} F(\mathbf{R}_j) a(\mathbf{r} - \mathbf{R}_j), \qquad (2.8)$$

onde as funções $F(\mathbf{R}_j)$ são as chamadas funções envelopes, que dependem fracamente da posição e que modulam as funções de *Wannier* em cada sítio \mathbf{R}_j .

Substituindo a Eq. (2.8) na Eq. (2.7) e projetando o resultado em um elemento da base de *Wannier* obtemos

$$\sum_{j} \left[(H_0)_{ij} + V_{ij} \right] F(\mathbf{R}_j) = EF(\mathbf{R}_i), \qquad (2.9)$$

onde usamos as condições (2.3) e (2.6), sendo:

$$(H_0)_{ij} = \int a^* (\mathbf{r} - \mathbf{R}_i) H_0 \, a(\mathbf{r} - \mathbf{R}_j) d\mathbf{r}, \qquad (2.10)$$

os elementos de matriz do Hamiltoniano do cristal perfeito, H_0 , na base de *Wannier*. Podemos ainda escrever

$$(H_0)_{ij} \equiv H_0(\mathbf{R}_i - \mathbf{R}_j), \tag{2.11}$$

uma forma que expressa a invariância translacional de H_0 .

Desta maneira, a Eq. (2.9) torna-se

$$\sum_{j} H_0(\mathbf{R}_i - \mathbf{R}_j)F(\mathbf{R}_j) + V(\mathbf{R}_i)F(\mathbf{R}_i) = E F(\mathbf{R}_i), \qquad (2.12)$$

que é exata, exceto pela aproximação indicada na Eq. (2.6).

Como temos N sítios, a Eq. (2.12) é equivalente a um sistema de N equações relacionando as N incógnitas $F(\mathbf{R}_j)$. Considerando o fato de que as funções envelopes variam fracamente com a posição e admitindo que as mesmas sejam obtidas dos valores de uma função contínua $F(\mathbf{r})$ para cada sítio, $\mathbf{r} = \mathbf{R}_j$, podemos expandir as quantidades $F(\mathbf{R}_j)$ em série de Taylor em torno do sítio \mathbf{R}_i . Assim sendo obtem-se

$$F(\mathbf{R}_j) = \left[1 + (\mathbf{R}_j - \mathbf{R}_i) \cdot \mathbf{\nabla} + \frac{(\mathbf{R}_j - \mathbf{R}_i)^2}{2!} \nabla^2 + \cdots\right] F(\mathbf{R}_i), \qquad (2.13)$$

ou seja,

$$F(\mathbf{R}_j) = e^{i\mathbf{k}\cdot(\mathbf{R}_j - \mathbf{R}_i)}F(\mathbf{R}_i), \qquad (2.14)$$

onde usamos a substituição formal $\nabla \leftrightarrow i\mathbf{k}$.

Substituindo a Eq. (2.14) na Eq. (2.12) obtem-se

$$\sum_{j} H_0(\mathbf{R}_i - \mathbf{R}_j) e^{-i\mathbf{k} \cdot (\mathbf{R}_i - \mathbf{R}_j)} F(\mathbf{R}_i) + V(\mathbf{R}_i) F(\mathbf{R}_i) = E F(\mathbf{R}_i).$$
(2.15)

Por outro lado, substituindo a Eq. (2.4) na Eq. (2.1), projetando o resultado em um elemento $a(\mathbf{r} - \mathbf{R}_i)$ da base de *Wannier* e utilizando a Eq. (2.11), encontraremos

$$\sum_{j} H_0(\mathbf{R}_i - \mathbf{R}_j) e^{-i\mathbf{k} \cdot (\mathbf{R}_i - \mathbf{R}_j)} = \varepsilon(\mathbf{k}).$$
(2.16)

Usando agora este último resultado na Eq. (2.15), obtem-se

$$\varepsilon(-i\boldsymbol{\nabla})F(\mathbf{r}) + V(\mathbf{r})F(\mathbf{r}) = EF(\mathbf{r}).$$
(2.17)

que é a equaação de massa efetiva para o modelo de uma banda.

Podemos generalizar os resultados anteriores para um cristal semicondutor infinito com várias bandas acopladas, cujas extremidades ocorrem no ponto $\mathbf{k}_0 = 0$, sujeito a uma perturbação externa, $V(\mathbf{r})$, que varia fracamente com a posição dentro de uma célula unitária centrada em um sítio, \mathbf{R}_j , e satisfazendo a uma condição análoga à da Eq. (2.6):

$$V_{\mu\nu}^{ij} = \int a_{\mu}^{*}(\mathbf{r} - \mathbf{R}_{i})V(\mathbf{r})a_{\nu}(\mathbf{r} - \mathbf{R}_{j})d\mathbf{r} \cong V(\mathbf{R}_{i})\delta_{\mu\nu}\delta_{ij}, \qquad (2.18)$$

onde $a_{\nu}(\mathbf{r} - \mathbf{R}_j)$ é a função de *Wannier*, para cada banda ν , centrada no sítio $\mathbf{r} = \mathbf{R}_j$.

Expandindo a função de onda do sistema perturbado $\Psi(\mathbf{r})$ na base de *Wannier* obtemos

$$\Psi(\mathbf{r}) = \frac{1}{\sqrt{N}} \sum_{j,\nu} F_{\nu}(R_j) a_{\nu}(\mathbf{r} - \mathbf{R}_j).$$
(2.19)

Procedendo então da mesma maneira como no modelo de uma banda, obtemos a equação de *Schrödinger*, análoga a Eq. (2.12):

$$\sum_{j\nu} H^0_{\mu\nu}(\mathbf{R}_i - \mathbf{R}_j) F_\nu(\mathbf{R}_j) + V(\mathbf{R}_i) F_\mu(\mathbf{R}_i) = E F_\mu(\mathbf{R}_i).$$
(2.20)

onde, devido a simetria de translação do cristal perfeito, podemos escrever

$$H^{0}_{\mu\nu}(\mathbf{R}_{i}-\mathbf{R}_{j}) = (H_{0})^{ij}_{\mu\nu} \equiv \int a^{*}_{\mu}(\mathbf{r}-\mathbf{R}_{i})H_{0}a_{\nu}(\mathbf{r}-\mathbf{R}_{j})d\mathbf{r}.$$
 (2.21)

Como as funções envelopes dependem fracamente da posição, podemos expandir $F_{\nu}(\mathbf{R}_{j})$ em série de *Taylor* em torno do sítio \mathbf{R}_{i} , isto é:

$$F_{\nu}(\mathbf{R}_{j}) = e^{-i\mathbf{k}\cdot(\mathbf{R}_{i}-\mathbf{R}_{j})}F_{\nu}(\mathbf{R}_{i}), \qquad (2.22)$$

onde $\mathbf{k} \rightarrow -i\boldsymbol{\nabla}$.

Substituindo esse resultado na Eq. (2.20) e usando-se o análogo da Eq. (2.16) para o modelo multibandas:

$$H^{0}_{\mu\nu}(\mathbf{k}) = \sum_{j} e^{-i\mathbf{k}\cdot(\mathbf{R}_{i}-\mathbf{R}_{j})} H^{0}_{\mu\nu}(\mathbf{R}_{i}-\mathbf{R}_{j}), \qquad (2.23)$$

obtemos

$$\sum_{\nu} \left[H^0_{\mu\nu}(\mathbf{k} \to -i\boldsymbol{\nabla}) + V(\mathbf{R}_i)\delta_{\mu\nu} \right] F_{\nu}(\mathbf{R}_i) = EF_{\mu}(\mathbf{R}_i), \qquad (2.24)$$

que é a generalização da equação de massa efetiva para o modelo de multibandas.

Como as funções envelopes $F_{\nu}(\mathbf{R}_j)$ podem ser obtidas a partir de uma função continua $F_{\nu}(\mathbf{r})$, a equação de massa efetiva pode ainda ser escrita como:

$$\sum_{\nu} \left[H^0_{\mu\nu}(\mathbf{k} \to -i\boldsymbol{\nabla}) + V(\mathbf{r})\delta_{\mu\nu} \right] F_{\nu}(\mathbf{r}) = EF_{\mu}(\mathbf{r}), \qquad (2.25)$$

que é a equação de massa efetiva para o modelo multibandas. Podemos ainda mostrar que a função de onda, $\Psi(\mathbf{r})$, do sistema perturbado pode ser escrita como:

$$\Psi(\mathbf{r}) = \sum_{\nu} F_{\nu}(\mathbf{r}) u_{\nu 0}(\mathbf{r})$$
(2.26)

Uma vez obtida a equação de massa efetiva multibandas que descreve o movimento dos portadores (elétrons e buracos) em heteroestruturas semicondutoras, o passo seguinte é escolher o melhor Hamiltoniano para descrever adequadamente as propriedades cristal perfeito. Como neste trabalho estamos interessados no cálculo da transmissividade de buracos, usaremos o modelo *Luttinger* com *stress*, cujos detalhes serão discutidos nas próximas seções.

2.2 Hamiltoniano de Luttinger na Representação $k \cdot p$

Inicialmente utilizado para determinar massa efetivas e funções de onda próximo a pontos de alta simetria no espaço-k, o método $\mathbf{k} \cdot \mathbf{p}$ tornou-se uma técnica atraente para o cálculo da estrutura de bandas em semicondutores com *gap direto*. Isso se deve ao fato de que as propriedades eletrônicas usuais, tais como, tunelamento, absorção ótica, etc.. dependem fortemente dos detalhes da estrutura de bandas nas vizinhança dos seus extremos, permitindo aproximações específicas e simplificações nos cálculos.

Sem o acoplamento spin-órbita, os estados eletrônicos de um elétron de massa m, movendo-se num cristal sujeito a um potencial periódico, U(r), são obtidos resolvendo a equação de *Schrödinger*:

$$H_0\psi_{\nu k}(\mathbf{r}) = E_{\nu}(k)\psi_{\nu k}(\mathbf{r}) \tag{2.27}$$

onde

$$H_0 = \frac{\mathbf{p}^2}{2m} + U(\mathbf{r}) \tag{2.28}$$

é o Hamiltoniano do cristal perfeito, sendo $\mathbf{p} = -i\hbar \nabla$ o operador momento. Devido a periodicidade do potencial cristalino podemos fazer uso do teorema de *Bloch* e as soluções

da equação acima são da forma:

$$\psi_{\nu \mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} \, u_{\nu \mathbf{k}}(\mathbf{r}). \tag{2.29}$$

Como o potencial $U(\mathbf{r})$ é periódico, as energias com vetor de onda \mathbf{k} dentro da primeira zona de *Brillouin* são quantizadas, na forma $E_{\nu}(\mathbf{k})$, onde ν o índice que classifica esta função em várias bandas de energia.

Substituindo a função de *Bloch* na equação de *Schrödinger* e utilizando o Hamiltoniano dado na Eq. (2.27), encontramos a equação de autovalores

$$\left(H_0 + \frac{\hbar \mathbf{k} \cdot \mathbf{p}}{m} + \frac{\hbar^2 k^2}{2m}\right) u_{\nu \mathbf{k}}(\mathbf{r}) = E_{\nu}\left(\mathbf{k}\right) u_{\nu \mathbf{k}}(\mathbf{r})$$
(2.30)

 com

$$H\left(\mathbf{k}\right) = H_0 + \frac{\hbar\mathbf{k}\cdot\mathbf{p}}{m} + \frac{\hbar^2\mathbf{k}^2}{2m},\tag{2.31}$$

sendo $H(\mathbf{k})$ a representação $\mathbf{k} \cdot \mathbf{p}$ do Hamiltoniano H_0 . Com a inclusão da interação spin-órbita, este Hamiltoniano toma a forma

$$H(k) = H_0 + \frac{\hbar \mathbf{k} \cdot \mathbf{p}}{m} + \frac{\hbar^2 \mathbf{k}^2}{2m} + H_{pso} + H_{kso}, \qquad (2.32)$$

onde aparecem dois novos termos,

$$H_{pso} = \frac{\hbar}{4m^2c^2} \left[\nabla U(\mathbf{r}) \times \mathbf{p} \right] \cdot \boldsymbol{\sigma}, \qquad (2.33)$$

$$H_{kso} = \frac{\hbar^2}{4m^2c^2} \left[\boldsymbol{\sigma} \times \boldsymbol{\nabla} U(\mathbf{r}) \right] \cdot \mathbf{k}.$$
(2.34)

O termo H_{pso} representa a interação do spin com o campo magnético interno, devido ao movimento orbital dos elétrons, com momento \mathbf{p} , em torno do núcleo e, o termo H_{kso} , representa a interação do spin com um campo magnético efetivo, produzido pelo movimento do elétron, com momento $\hbar \mathbf{k}$, no cristal. Dessa forma, como a velocidade do elétron em órbita atômica é muito maior que a velocidade do elétron no cristal com momento **k** próximo do extremo (ponto Γ), o termo H_{kso} é muito menor que H_{pso} e portanto, pode ser desprezado em cristais com simetria *zincblende*.

A Eq. (2.30) representa uma equação de autovalores para $u_{\nu \mathbf{k}}(\mathbf{r})$ no pequeno volume de uma célula unitária do cristal, onde essas funções são normalizadas e, como H(k) é um operador hermitiano, as funções $u_{\nu \mathbf{k}}(\mathbf{r})$, para um dado \mathbf{k} , formam um conjunto completo de funções. Escolhendo um ponto de referência $\mathbf{k} = \mathbf{k}_0$, para o qual $E_{\nu}(\mathbf{k})$ e $u_{\nu \mathbf{k}}(\mathbf{r})$ são conhecidos, obtemos a equação de autovalores

$$H(\mathbf{k}_0) u_{\nu \mathbf{k}_0}(\mathbf{r}) = E_{\nu}(\mathbf{k}_0) u_{\nu \mathbf{k}_0}(\mathbf{r})$$
(2.35)

onde, da Eq. (2.31), $H(\mathbf{k}_0)$ é da forma:

$$H(\mathbf{k}_0) = H_0 + \frac{\hbar}{m} \mathbf{k}_0 \cdot \mathbf{p} + \frac{\hbar^2}{2m} \mathbf{k}_0^2$$
(2.36)

Isolando o valor de H_0 e substituindo na Eq. (2.30) encontramos

$$\left(H(\mathbf{k}_0) + \frac{\hbar}{m}(\mathbf{k} - \mathbf{k}_0) \cdot \mathbf{p} + \frac{\hbar^2}{2m}(\mathbf{k} - \mathbf{k}_0)^2\right) \ u_{\nu\mathbf{k}}(\mathbf{r}) = E_{\nu}(\mathbf{k})u_{\nu\mathbf{k}}(\mathbf{r})$$
(2.37)

O próximo passo é transformar a equação acima em um sistema matricial de autovalores. Isto é feito, expandindo-se as não conhecidas funções *Bloch* $u_{\nu \mathbf{k}}(\mathbf{r})$ na base completa , $\{u_{\nu \mathbf{k}_0}(\mathbf{r})\}$, dos estados de *Bloch* no ponto de alta simetria localizada no ponto $\mathbf{k}_0 = 0$,

$$u_{\nu \mathbf{k}}(\mathbf{r}) = \sum_{\mu} c_{\nu \mu} u_{\mu 0}(\mathbf{r}).$$
(2.38)

Substituindo esta expressão na Eq. (2.37) e projetando o resultado em um estado particular $u_{\nu 0}(\mathbf{r})$, e integrando obtemos a equação matricial de autovalores:

$$\sum_{\mu} \left[H_{\nu\mu}(\mathbf{k}) - E_{\nu}(\mathbf{k}) \delta_{\nu\mu} \right] c_{\nu\mu}$$
(2.39)

sendo

$$H'_{\nu\mu}(\mathbf{k}) = \left[E_{\nu}\left(0\right) + \frac{\hbar^{2}\mathbf{k}^{2}}{2m}\right]\delta_{\nu\mu} + \frac{\hbar}{m}\sum_{\alpha}k_{\alpha}p_{\nu\mu}^{\alpha}$$
(2.40)

 $\operatorname{com} \alpha = x, y, z e$

$$p_{\nu\mu}^{\alpha} = \int u_{\nu0}^{*}\left(\mathbf{r}\right) p^{\alpha} u_{\mu0}\left(\mathbf{r}\right) d\mathbf{r}$$
(2.41)

sendo os elementos de matriz do operador momento, entre os estados de *Bloch* no ponto $k_0 = 0$ calculados no volume da célula unitária. Embora a Eq. (2.40) seja correta para qualquer valor de \mathbf{k} , ela é mais útil quando \mathbf{k} está mais próximo de zero, de modo que a parte não diagonal do Hamiltoniano, $\frac{\hbar}{m} \sum_{\alpha} k_{\alpha} p^{\alpha}_{\nu\mu}$, pode ser tratado como uma perturbação. Este tratamento foi feito por *Kane* [6] usando uma teoria de perturbação desenvolvida por *Löwdin* [7]. Ao contrário da teoria de perturbação ordinária, que diagonaliza o Hamiltoniano H(k) por um processo interativo, a teoria de *Löwdin* considera os estados do sistema divididos em duas categorias, $\mathcal{A} \in \mathcal{B}$. Os estados pertencentes à categoria \mathcal{A} , por hipótese os mais importantes, interagem fortemente entre si, porém fracamente com os da categoria \mathcal{B} . As interações entre os estados da categoria \mathcal{A} renormalizados. Até a segunda ordem de perturbação temos:

$$H'_{\nu\mu} = H_{\nu\mu} + \sum_{\gamma}^{\mathcal{B}} \frac{H_{\nu\gamma} H_{\gamma\mu}}{H_{\nu\nu} - H_{\gamma\gamma}}$$
(2.42)

onde os índices ν , μ pertecem a categoria $\mathcal{A} \in \gamma$ a categoria \mathcal{B} . Na aproximação de *Kane* os estados da categoria \mathcal{A} são os estados de condução e valência (buraco leve e pesado e *split-off*), e todas as outras bandas petencem a categoria \mathcal{B} . Esses estados e os pontos de simetria Γ são ilustrados na Fig. (2.1) para uma estrutura *zincblende*. Essa estrutura

Figura 2.1: Estruturas de bandas dos compostos III-V próximos ao ponto Γ . O gap fundamental é denotado por E_G e a energia spin-órbita Δ .

cristalina pode ser visualizada como duas redes *fcc*, cada uma possuindo um tipo de átomo, o que introduz uma quebra na simetria de inversão espacial presente na estrutura cristalina do diamante que tem um tipo de átomo.

Como nosso intesse nesse trabalho é calcular a transmissividade de buracos leves e pesados em heteroestruturas de dupla barreira, optamos pelo modelo de *Luttinger* [3]. Na aproximação de *Luttinger*, os estados mais importantes (\mathcal{A}) são os de valência (Γ_8) e os demais estados da classe (\mathcal{B}), dentre eles, os da banda de buraco separado (Γ_7) e condução (Γ_6), sendo tratados com uma pequena perturbação, pois o *gap* de energia E_G e a medida da interação spin-orbita Δ , são muito grandes, quando comparada com as energias de interesse.

Quando incluímos o spin do elétron as funções de *Bloch* no topo da banda de valência são usualmente representadas por: $\{|\uparrow X\rangle, |\uparrow Y\rangle, |\uparrow Z\rangle, |\downarrow X\rangle, |\downarrow Y\rangle, |\downarrow Z\rangle\}$. Entretanto com o objetivo de simplificar o modelo de *Luttinger*, transformamos o Hamiltoniano efetivo para a base $|J, M_J\rangle$ dos autoestados de momento angular total $\mathbf{J} = \mathbf{L} + \mathbf{S}$, onde a interação spín-órbita é diagonal, entrando como uma parte não renormalizada na teoria de *Löwdin*. Essa base é obtida aplicando a técnica de *Clebsch-Gordon* para a adição de momentos angulares e tem a forma:

$$u_{3/2,3/2} \to |h\uparrow\rangle = -\frac{i}{\sqrt{2}} |(X+iY)\uparrow\rangle$$

$$u_{3/2,-1/2} \to |l\downarrow\rangle = \frac{i}{\sqrt{6}} [(X-iY)\uparrow\rangle + 2 |Z\downarrow\rangle]$$

$$u_{3/2,-3/2} \to |h\downarrow\rangle = -\frac{i}{\sqrt{2}} |(X-iY)\downarrow\rangle$$

$$u_{3/2,1/2} \to |l\uparrow\rangle = \frac{-i}{\sqrt{6}} [|(X+iY)\downarrow\rangle - 2 |Z\uparrow\rangle]$$
(2.43)

Dessa forma, aplicando a teoria de perturbação de *Löwdin*, juntamente com operações de simetria, o Hamiltoaniano de *Luttinger* pode ser escrita como:

$$H_{\nu\mu}'(\mathbf{k}) = \left[E_{\nu}(0) + \frac{\hbar^{2}\mathbf{k}^{2}}{2m}\right]\delta_{\nu\mu} + \frac{\hbar^{2}}{m^{2}}\sum_{\gamma\neq\nu}^{B}\sum_{\alpha,\beta}\frac{k_{\alpha}k_{\beta}p_{\nu\gamma}^{\alpha}p_{\gamma\mu}^{\alpha}}{E_{\nu}(0) - E_{\gamma}(0)}$$
(2.44)

onde $\alpha, \beta = x, y, z \in \nu, \mu \in \mathcal{A}$.

$$\mathbf{H}_{L} = \begin{pmatrix} P_{k} + Q_{k} & -S_{k} & R_{k} & 0 \\ -S_{k}^{\dagger} & P_{k} - Q_{k} & 0 & R_{k} \\ R_{k}^{\dagger} & 0 & P_{k} - Q_{k} & S \\ 0 & R_{k}^{\dagger} & S^{\dagger} & P_{k} + Q_{k} \end{pmatrix}$$
(2.45)

onde os elementos da matriz são dados por:

$$P_{k} = \frac{\hbar^{2}}{2m} \gamma_{1} \left(k_{x}^{2} + k_{y}^{2} + k_{z}^{2} \right), \qquad Q_{k} = \frac{\hbar^{2}}{2m} \gamma_{2} \left(k_{x}^{2} + k_{y}^{2} - 2k_{z}^{2} \right)$$

$$S_{k} = \frac{\hbar^{2}}{2m} 2\sqrt{3} \gamma_{3} \left(k_{x} - ik_{y} \right) k_{z}, \quad R_{k} = \frac{\hbar^{2}}{2m} \sqrt{3} \left[-\gamma_{2} \left(k_{x}^{2} - k_{y}^{2} \right) + 2i\gamma_{3} k_{x} k_{y} \right]$$
(2.46)

e os parâmetros de Luttinger γ_1, γ_2 e γ_3 são constantes reais e são obtidos a partir das massa efetivas do buraco pesado (m_{hh}^*) e buraco leve (m_{lh}^*) ao longo da direção [100] e do buraco pesado $(m_{hh}^{*[111})$ ao longo da direção [111]:

$$\gamma_{1} = \frac{1}{2} \left(\frac{m_{0}}{m_{lh}^{*}} + \frac{m_{0}}{m_{hh}^{*}} \right)
\gamma_{2} = \frac{1}{4} \left(\frac{m_{0}}{m_{lh}^{*}} - \frac{m_{0}}{m_{hh}^{*}} \right)
\gamma_{2} = \frac{1}{4} \left(\frac{m_{0}}{m_{lh}^{*}} + \frac{m_{0}}{m_{hh}^{*}} - \frac{m_{0}}{m_{hh}^{*[111}} \right)$$
(2.47)

2.3 Hamiltoniano de Bir-Pikus

O Hamiltoniano de *Luttinger* foi derivado sob a hipótese de que o parâmetro de rede do cristal hospedeiro era igual ao parâmetro de rede do substrato, onde o material foi crescido e, que não existe nehuma pressão externa (*stress*) aplicado ao cristal. Dessa forma o nosso sistema está livre de tensões internas (*strain*) e externas (*stress*). Como acontece com a maioria das heteroestruturas obtidas por crescimento epitaxial, a introdução de pressões externas podem mudar a estrutura de bandas do material. Nosso objetivo nesse trabalho é estudar como essas pressões (compressão ou tração) modificam as propriedades de transporte em dupla barreira ressonante.

O *stress* é incorporado na estrutura de bandas como um termo perturbativo de primeira ordem na forma [8]

$$\left(\mathbf{H}_{\varepsilon}\right)_{ij} = \sum_{\alpha\beta} \mathcal{D}_{ij}^{\alpha\beta} \varepsilon_{\alpha\beta} \tag{2.48}$$

onde $\varepsilon_{\alpha\beta}$ são os coeficientes do tensor stress e $\mathcal{D}_{ij}^{\alpha\beta}$ são os elementos de matriz do operador defomação $\mathbf{D}^{\alpha\beta}$ satisfazendo as relações de simetria $\mathbf{D}^{\alpha\beta} = \mathbf{D}^{\beta\alpha}$ e $\varepsilon_{\alpha\beta} = \varepsilon_{\beta\alpha}$. Na base dos estados de *Bloch* em $|J, M_J\rangle$ o Hamiltoniano \mathbf{H}_{ε} pode ser escrito como:

$$\mathbf{H}_{\varepsilon} = \begin{pmatrix} P_{\varepsilon} + Q_{\varepsilon} & -S_{e} & R_{e} & 0\\ -S_{e}^{\dagger} & P_{\varepsilon} - Q_{\varepsilon} & 0 & R_{e} \\ R_{e}^{\dagger} & 0 & P_{\varepsilon} - Q_{\varepsilon} & S_{e} \\ 0 & R_{e}^{\dagger} & S_{e}^{\dagger} & P_{\varepsilon} + Q_{\varepsilon} \end{pmatrix}$$
(2.49)

conhecido como hamiltoniano de Bir-Pikus [4]. Os termos $P_{\varepsilon}, Q_{\varepsilon}, R_{\varepsilon} \in S_{\varepsilon}$ são dados por:

$$P_{\varepsilon} = a_{v} \left(\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz} \right), \qquad Q_{\varepsilon} = -\frac{b}{2} \left(\varepsilon_{xx} + \varepsilon_{yy} - 2\varepsilon_{zz} \right)$$

$$R_{\varepsilon} = \frac{\sqrt{3}}{2} b \left(\varepsilon_{xx} - \varepsilon_{yy} \right) - i d\varepsilon_{xy}, S_{\varepsilon} = -d \left(\varepsilon_{zx} - i\varepsilon_{yz} \right)$$

$$(2.50)$$

sendo a_v , $b \in d$ os potenciais de deformação de *Bir-Pikus* que são determinados experimentalmente. Neste trabalho, vamos nos restringir ao *stress* externo uniaxial onde as componentes do tensor deformação satisfazem a relação

$$\varepsilon_{xx} = \varepsilon_{yy} = \frac{C_{11} + C_{12}}{C_{11}^2 + C_{11}C_{12} - C_{12}^2}T$$
(2.51)
$$C_{11}$$

$$\varepsilon_{zz} = -\frac{C_{11}}{C_{11}^2 + C_{11}C_{12} - C_{12}^2}T$$

$$R_{\varepsilon} = S_{\varepsilon} = 0,$$
(2.52)

onde C_{11}, C_{12} , são constantes elásticas determinadas experimentalmente [11], T é a pressão externa aplicada, T < 0 (compressão) e T > 0 (tração).

Aplicando uma transformação unitária [9], o Hamiltoniano total $\mathbf{H}_t = \mathbf{H}_{\varepsilon} + \mathbf{H}_L$ pode ser bloco-diagonalizado em duas matrizes (2 × 2). Na nova base $|1\rangle$, $|2\rangle$, $|3\rangle \in |4\rangle$ [10] o Hamiltoniano pode ser escrito como:

$$\mathbf{H} = \mathbf{U}\mathbf{H}_t \mathbf{U}^{\dagger} = \begin{pmatrix} \mathbf{H}^U & 0\\ 0 & \mathbf{H}^L \end{pmatrix}$$
(2.53)

onde os blocos upper e $lower \ \mathbf{H}^U$ e \mathbf{H}^L são dados por:

$$\mathbf{H}^{U} = \begin{pmatrix} P + Q & \widetilde{R} \\ \widetilde{R}^{\dagger} & P - Q \end{pmatrix}, \mathbf{H}^{L} = \begin{pmatrix} P + Q & \widetilde{R}^{\dagger} \\ \widetilde{R} & P - Q \end{pmatrix}$$
(2.54)

onde $P = P_k + P_{\varepsilon}, \ Q = Q_k + Q_{\varepsilon}, \ \widetilde{R} = \frac{\hbar^2}{2m} \sqrt{3} (\overline{\gamma} k_{\rho}^2 - 2i\gamma_3 k_{\rho} k_z)$ e o mometo paralelo

 $k_{\rho}^2 = (k_x^2 + k_y^2)$. A quantidade P_{ε} (hidrostático) introduz um *shifit* na banda de valência, enquanto o termo anisótropico Q_{ε} (*shear*) produz uma quebra da degenerescência das bandas de buracos em k = 0. Por simplicidade nós assumimos neste trabalho a aproximação axial, que significa assumir na expressão para R_k , $\gamma_2 = \gamma_3 = \overline{\gamma} \mod \overline{\gamma} = \frac{\gamma_2 + \gamma_3}{2}$.

Uma vez obtido o Hamiltoniano $\mathbf{k} \cdot \mathbf{p}$ dentro do formalismo de massa efetiva, o próximo passo desse trabalho é descrever a técnica da matriz de espalhamento para o cálculo da transmissividade em heteroestruturas de dupla barreira submetidas a tensões externas.

Referências

- [1] L. Esaki and R. Tsu, IBM J. Res. Dev. 14, 61 (1970).
- [2] N. W. Aschroft and N. D. Mermin, Solid Stat Physics (Holt, Rinehart and Winston, 1976) p.176.
- [3] J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).
- [4] G. E. Pikus and G. L. Bir, Sov. Phys-Solid State, 1, 1502 (1959).
- [5] J. M. Ziman, *Principles of Solids* (cambridge University Press, London, 1972).
- [6] E.O. Kane, J. Phys. Chem. Solids, 1,249,1957.
- [7] P. Lowdin, J. Chem. Phys. 19, 1396 (1955).
- [8] J. M. Hinkley and J. singh, Phys. Rev. B 42, 3546 (1990).
- [9] Broido, D.A. e Sham, S., Phys. Rev. B31, 888 (1985).
- [10] S. L Chuang Phys. Rev. B40, 10379 (1989).
- [11] R. F. S. Hearmon, Rev. Mod. Phys. 18, 409 (1946).
Capitulo III

Técnica da Matriz de Espalhamento para o Cálculo da Transmissividade

Um grande número de trabalhos teóricos tem sido desenvolvidos para simular e estudar o tunelamento ressonante em sistemas de baixa dimensionalidade. A técnica da matriz de transferência desenvolvida por *Wessel* e *Altarelli* [1] na aproximação de massa efetiva é sem dúvida uma das mais utilizadas. Entretanto, é bem conhecido que essa técnica é numericamente instável quando aplicado a sistemas cuja largura da barreira excede alguns angstrons ($\simeq 10$ Å).

Em vista dessas dificuldades que essa técnica apresenta, vamos discutir neste capítulo o cálculo da transmissividade ressonante em heteroestruturas semicondutoras de barreira dupla, cujas camadas estão submetidas a esforços de compressão e tração, usando a técnica da matriz de espalhamento na aproximação da massa efetiva do modelo de *Luttinger-Kohn*. Diferentemente do formalismo da matriz de transferência, a técnica da matriz de espalhamento é numericamente mais estável, permitindo o cálculo da transmissividade para sistemas com barreiras muito grandes ($L_B >> 10$ Å). De uma maneira geral, a técnica da matriz de espalhamento consiste em relacionar os coeficientes das ondas incidentes na heteroestrutura (emissor e coletor) com os coeficientes das ondas espalhadas (refletidas) nessas mesmas regiões. O procedimento básico para a obtenção da matriz de espalhamento na aproximação de massa efetiva, envolve as seguintes etapas: (1) inicialmente, resolve-se a equação de massa efetiva do cristal perfeito (*bulk*) para uma energia $E e k_{\rho}$ fixados e determinam-se funções envelopes para cada tipo de portador; (2) em seguida, constrói -se a função de onda total em cada região da heteroestrutura como combinações linear das funções envelopes do cristal perfeito; (3) finalmente usa-se a continuidade da função de onda e da densidade de corrente em cada interface e obtem-se a matriz de espalhamento, que relaciona os coeficientes das ondas incidentes (emissor e coletor) na heteroestrutura com os coeficientes das ondas espalhadas (refletidas).

3.1 Solução da Equação de Massa Efetiva

Como vimos no capítulo 2, o Hamiltoniano *upper* e *lower* com *stress*, que descreve o movimento dos buracos da banda de valência pode ser escrito como

$$\mathbf{H}^{U} = \begin{pmatrix} P+Q & \widetilde{R} \\ \widetilde{R}^{\dagger} & P-Q \end{pmatrix}, \mathbf{H}^{L} = \begin{pmatrix} P+Q & \widetilde{R}^{\dagger} \\ \widetilde{R} & P-Q \end{pmatrix}.$$
 (3.1)

No cristal perfeito, devido a simetria de translação, podemos escrever as funções envelopes $\mathbf{F}(\mathbf{r})$ na seguinte forma $\mathbf{F}(\mathbf{r}) = \mathbf{F}(\mathbf{k})e^{i\mathbf{k}\cdot\mathbf{r}}$. Assim, a equação de massa efetiva pode ser escrita como

$$\mathbf{H}^{U,L}\mathbf{F}_{v}(\mathbf{k}) = E\mathbf{F}_{v}(\mathbf{k}), \qquad (3.2)$$

onde v = (l, h) fixa o tipo de buraco leve ou pesado. As soluções para os autovetores nas bases $|1\rangle$, $|2\rangle$ (*upper*) e $|3\rangle$, $|4\rangle$ (*lower*) são respectivamente

$$\mathbf{F}_{h}^{U}(\mathbf{k}) = \begin{pmatrix} P - Q - E \\ -\widetilde{R}^{\dagger} \end{pmatrix} \quad \mathbf{e}, \quad \mathbf{F}_{l}^{U}(\mathbf{k}) = \begin{pmatrix} -\widetilde{R} \\ P + Q - E \end{pmatrix}$$
(3.3)

$$\mathbf{F}_{h}^{L}(\mathbf{k}) = \begin{pmatrix} P - Q - E \\ -\widetilde{R} \end{pmatrix} \quad \mathbf{e}, \quad \mathbf{F}_{l}^{L}(\mathbf{k}) = \begin{pmatrix} -\widetilde{R}^{\dagger} \\ P + Q - E \end{pmatrix}. \tag{3.4}$$

Figura 3.1: Estrutura de banda dos buracos leves (LH) e pesados (HH) para o *bulk* de GaAs, ilustrando a quebra de degenerescência em $k_{\rho} = 0$, devido ao *stress*, nos casos: (a) compressão, (b) sem *stress* e (c) tração.

No *bulk*, sem a presença de campos elétricos que quebram a simetria de inversão espacial, os autovalores do Hamiltoniano *upper* e *lower* são degenerados:

$$E = P_k + P_{\varepsilon} \pm sgn(Q_{\varepsilon})\sqrt{(Q_k + Q_{\varepsilon})^2 + \left|\widetilde{R}\right|^2}$$
(3.5)

onde o sinal (+) refere-se ao *heavy-hole* (HH) e o sinal (-) para o *light-hole* (LH). O sinal sgn(Q_{ε}) na Eq. (3.5) é necessário, porque Q_{ε} pode ser negativo (compressão) ou positivo (tração), enquanto a raiz quadrada é convencionalmente tomada como positiva.

Na Fig. (3.1) mostramos a relação de dispersão do *bulk* para o material GaAs no caso de: (a) compressão ($T = -3 \ kbar$), (b) sem *stress* (T = 0) e (c) tração ($T = 3 \ kbar$), onde observamos o efeito do *stress* sobre a estrutura de bandas na direção k_z . Nos casos (a) e (c), observa-se a quebra da degenerescência em $k_{\rho} = 0$ por uma quantidade $2Q_{\varepsilon}$, quando comparados com o caso sem *stress*. No caso da tração podemos ainda observar uma troca na posição relativa das bandas HH e LH em relação aos casos (a) e (b).

3.2 Natureza das soluções de k_z

No esquema de cálculo da matriz de espalhamento o valor de k_z é uma quantidade importante para a construção da função de onda em cada região da heteroestrutura. Da Eq. (3.5), podemos expressar o valor de k_z em função da E e k_{ρ} , para $k_{\rho} \neq 0$. Sendo assim:

$$k_{z}^{2} = \frac{1}{2(B^{2} - A^{2})} \left\{ (2A^{2} - G^{2})k_{\rho}^{2} - 2EA + 2BQ_{\varepsilon} \pm \left\{ \left[(G^{2} - 2A^{2})k_{\rho}^{2} + 2EA - 2BQ_{\varepsilon} \right]^{2} - 4(B^{2} - A^{2}) \left[(\frac{B}{2}k_{\rho}^{2} + Q_{\varepsilon})^{2} + D^{2}k_{\rho}^{4} - (E' - Ak_{\rho}^{2})^{2} \right] \right\}^{1/2} \right\}$$

$$(3.6)$$

onde

$$A^{2} = \left(\frac{\hbar^{2}\gamma_{1}}{2m}\right)^{2}, \quad B^{2} = 4\left(\frac{\hbar^{2}\gamma_{2}}{2m}\right)^{2}, \quad C^{2} = 12\left(\frac{\hbar^{2}\gamma_{3}}{2m}\right)^{2}$$
(3.7)

$$D^{2} = 3\left[\frac{\hbar^{2}}{2m}\left(\frac{\gamma_{2}+\gamma_{3}}{2}\right)\right]^{2}, E' = E - P_{\varepsilon}, \ G^{2} = C^{2} - B^{2}$$
(3.8)

e o sinal (+) refere-se ao heavy-hole e (-) ao light-hole.

Os valores de k_{zh} e k_{zl} nem sempre são reais na região do poço e imaginários na região da barreira, mas dependem das magnitudes dos valoes de k_{ρ} e da energia E. De fato, fixando-se k_{ρ} na Eq. (3.6) e impondo-se as condições necessárias para termos soluções reais ou complexas encontramos para quais intervalos de energia essas condições se verificam, dependendo do tipo de pressão aplicada, compressão ou tração.

3.2.1 Compressão

Para o caso de camadas comprimidas (esforço de compressão) as condições acima citadas, podem ser representadas por cinco energias críticas $(E_{C_1}, E_{C_2}, E_{C_3}, E_{C_4}, E_{C_T})$ definidas como:

Região	Energia	k _{zh}	k_{zl}
i	$E > E_{C_4}$	Real (positivo)	Real (positivo)
ii	$E_{C_4} > E > E_{C_3}$	Real (positivo)	Imaginário Puro
iii	$E \sim E \sim E$ $\int E_{C_3} > E_{C_T}$	Real (positivo)	Real (negativo)
	$E_{C_3} > E > E_{C_2} \{ E_{C_3} < E_{C_T} \}$	Imaginário Puro	Imaginário Puro
iv	$E_{C_2} > E > E_{C_1}$	Complexo	Complexo
v	$E_{C_1} > E$	Imaginário Puro	Imaginário Puro

Tabela 3.1: Natureza das soluções de k_z para o esforço de compressão.

$$E_{C_1} = P_{\varepsilon} + Ak_{\rho}^2 - 4\left[G^2k_{\rho}^2 - 2BQ_{\varepsilon}\right]A - \frac{1}{2B^2} \left\{ \left[G^2k_{\rho}^2 - 2BQ_{\varepsilon}\right]^2A^2 \right\}$$
(3.9)

$$-B^{2}\left[\left[G^{2}k_{\rho}^{2}-2BQ_{\varepsilon}\right]^{2}-4(B^{2}-A^{2})\left[\left(\frac{B}{2}k_{\rho}^{2}+Q_{\varepsilon}\right)^{2}+D^{2}k_{\rho}^{4}+Q_{\varepsilon}^{2}+D^{2}k_{\rho}^{4}\right]\right]\right\}^{\frac{1}{2}}$$

$$E_{C_2} = P_{\varepsilon} + Ak_{\rho}^2 - 4\left[G^2k_{\rho}^2 - 2BQ_{\varepsilon}\right]A + \frac{1}{2B^2} \left\{ \left[G^2k_{\rho}^2 - 2BQ_{\varepsilon}\right]^2A^2 \right\}$$
(3.10)

$$-B^{2}\left[\left[G^{2}k_{\rho}^{2}-2BQ_{\varepsilon}\right]^{2}-4(B^{2}-A^{2})\left[\left(\frac{B}{2}k_{\rho}^{2}+Q_{\varepsilon}\right)^{2}+D^{2}k_{\rho}^{4}+Q_{\varepsilon}^{2}+D^{2}k_{\rho}^{4}\right]\right]\right\}^{\frac{1}{2}}$$

$$E_{C_3} = P_{\varepsilon} + Ak_{\rho}^2 - \left\{ \left(\frac{B}{2} k_{\rho}^2 + Q_{\varepsilon} \right)^2 + D^2 k_{\rho}^4 \right\}^{\frac{1}{2}}$$
(3.11)

$$E_{C_4} = P_{\varepsilon} + Ak_{\rho}^2 + \left\{ \left(\frac{B}{2} k_{\rho}^2 + Q_{\varepsilon} \right)^2 + D^2 k_{\rho}^4 \right\}^{\frac{1}{2}}$$
(3.12)

$$E_{C_T} = P_{\varepsilon} + Ak_{\rho}^2 + \frac{(B^2 - C^2)k_{\rho}^2 + 2BQ_{\varepsilon}}{2A}.$$
 (3.13)

Essas energias críticas dividem o espectro de energia em cinco regiões (i), (ii), (iii), (iv)e (v). A natureza de k_z para o esforço de compressão é mostrada na Tab. (3.1). Essa natureza coincide com aquelas verificadas para o caso sem *stress* descritas na Ref. [1].

3.2.2 Tração

No caso de camadas tracionadas, nem sempre as superfícies de energia críticas existem para todos valores dos parâmetros k_{ρ} . A partir das definições de E_{C_1} e E_{C_2} , podemos mostrar que para valores de k_{ρ} , pertencentes ao intervalo $0 < k_{\rho} < K_T$ essas energias críticas tornam-se funções complexas deste parâmetro, ao contrário do que acontece com o caso sem *stress* ou esforço de compressão, onde essas energias são sempre funções reais para todo o domínio dos parâmetro k_{ρ} . A constante K_T que depende da intensidade do esforço de tração é definida como

$$K_T = 2\sqrt{\frac{BQ_{\varepsilon}C^2}{(C^4 - 2B^2C^2 - 4B^2D^2)}}$$
(3.14)

onde os valores de A, B, $C \in D$ são funções dos parâmetros de Luttinger definidos na Eq. (3.7) e, Q_{ε} é o potencial de deformação (stress), como visto no capítulo anterior. Sendo assim, a natureza de k_z para as camadas tracionadas, podem ser classificadas de acordo com os valores de k_{ρ} , relacionados com o intervalo abaixo referido.

(a) $0 < k_{\rho} < K_T$. Para os valores de k_{ρ} pertencentes a este intervalo, as energias E_{C_1} e E_{C_2} são funções complexas desse parâmetro e, diferentemente do esforço de compressão só temos duas energias críticas, E_{C_3} e E_{C_4} que dividem o espectro de energia em três regiões (i), (ii), (iii). Desta forma a natureza das soluções para k_z no esforço de tração com k_{ρ} pertencente ao intervalo $0 < k_{\rho} < K_T$ são classificadas de acordo com a Tab.(3.2). Analisando essa tabela podemos verificar que a natureza de k_z , nas regiões (ii) e (iii), para valores de k_{ρ} no intervalo acima referido, é diferente do caso do material sem stress ou stress compressivo [vê Tab. (3.1)]. No caso da região (ii) o esforço de tração é responsável pela inversão $hh \Leftrightarrow lh$ da natureza das soluções de k_z , tornando k_{zh} imaginário puro e k_{zl} real.

(b) $k_{\rho} > K_T$. Neste caso todas as energias críticas são funções reais desse parâmetro, dadas pelas Eqs. [3.9, 3.10, 3.11, 3.12, 3.13] e, do mesmo modo que para as camadas comprimidas, E_{C_1} , E_{C_2} , E_{C_3} , E_{C_4} e E_{C_T} dividem o espectro de energia em cinco regiões

Região	Energia	\mathbf{k}_{zh}	\mathbf{k}_{zl}
i	$E > E_{C_4}$	Real (positivo)	Real (positivo)
ii	$E_{C_4} > E > E_{C_3}$	Imaginário Puro	Real (positivo)
iii	$E_{C_3} > E$	Imaginário Puro	Imaginário Puro

Tabela 3.2: Natureza das soluções de k_z para o esforço de tração com $k_{\rho} < K_T$.

Região	Energia	k_{zh}	\mathbf{k}_{zl}
i	$E > E_{C_4}$	Real (positivo)	Real (positivo)
ii	$E_{C_4} > E > E_{C_3}$	Imaginário Puro	Real (positivo)
iii	$E \sim E \sim E$ $\int E_{C_3} > E_{C_T}$	Real (negativo)	Real (positivo)
	$\begin{bmatrix} E_{C_3} > E > E_{C_2} \\ E_{C_3} < E_{C_T} \end{bmatrix}$	Imaginário Puro	Imaginário Puro
iv	$E_{C_2} > E > E_{C_1}$	Complexo	Complexo
v	$E_{C_1} > E$	Imaginário Puro	Imaginário Puro

Tabela 3.3: Natureza das soluções de k_z para o esforço de tração com $k_{\rho} > K_T$.

(i), (ii), (iv), (iv), (v). Neste caso, a natureza de k_z , para essas regiões é classificada de acordo com a Tab. (3.3).

Como mostra a Tab. (3.3), a natureza de k_z nas regiões (*ii*) e (*iii*) para o esforço de tração, com $k_{\rho} > K_T$ é diferente do esforço de compressão, como vemos na Tab. (3.1). O esforço de tração provoca uma inversão da natureza das soluções de k_z ; assim na região (*iii*) k_{zh} torna-se real negativo e k_{zl} real positivo. A natureza de k_z para o esforço de compressão como função da energia e $k_{\rho} = 2 \times 10^6 cm^{-1}$ é ilustrada na Fig. (3.2).

De um modo geral, cada uma das regiões acima mencionadas representa uma situação física bem definida, quando o movimento da partícula é descrito em função da energia. Uma das regiões mais interessantes é a região (iii), tanto na compressão quanto na tração, quando $E_{C_3} > E_{CT}$. Nessa região para o esforço de compressão, a velocidade de grupo dos buracos leves, $V_{gl} = \frac{1}{\hbar} \frac{\partial E}{\partial k_z} < 0$ para $k_{zl} > 0$, o que nos leva a uma velocidade de grupo de sentido contrário a direção de propagação; assim para termos uma $V_{gl} > 0$ com uma onda propagante na direção z-positiva, devemos ter $k_{zl} < 0$. O mesmo acontece para o esforço de tração para termos $V_{gh} > 0$ devemos ter $k_{zh} < 0$. Essa situação para a compressão é ilustrado na Fig (3.3), onde mostramos o gráfico da velocidade de grupo dos buracos leves em função de k_z para $T = -3 \ kbar$ e $k_{\rho} = 2 \times 10^6 \ cm^{-1}$. Os valores

Figura 3.2: Representação da parte real (b) e imaginária (a) da solução de k_z , com $T = -3 \, kbar$ (compressão) e $k_{\rho} = 2 \times 10^6 \, cm^{-1}$, dos buracos leves (linha pontilhada) e pesados (linha contínua) para o *bulk* do GaAs. As energias críticas $E_{C_1}, E_{C_2}, E_{C_3}, E_{C_4}, E_{C_T}$ dividem o espectro de energia em cinco regiões (i), (ii), (iii), (iv) e (v) cuja natureza está de acordo com a Tab. (3.1).

Figura 3.3: (a) Dispersão dos buracos leves e (b) Velocidade de grupo dos buracos leves em função de k_z para $k_\rho = 2 \times 10^6 \ cm^{-1}$. Entre os pontos A e B a velocidade de grupo $V_{gl} < 0$ para $k_z < 0$.

 $k_z < 0$ que vão de A até B correspondem a energias no intervalo $E_{C_2} < E(k_z, k_\rho) < E_{C_3}$ (região *iii*) onde a velocidade de grupo $V_{gl} > 0$.

3.3 Formalismo da Matriz de Espalhamento

Nas seções anteriores discutimos as soluções da equação de massa efetiva e a natureza de k_z necessárias para a construção da função de onda total em cada região da heteroestrutura. Nesta seção, essas soluções serão usadas na obtenção da matriz de espalhamento para o cálculo da transmissividade ressonante em dupla barreira, submetidas a tensões externas.

A técnica da matriz de espalhamento consiste em relacionar os coeficientes $(\mathbf{a}_0, \mathbf{b}_N)$,

Figura 3.4: Estrutura dupla de barreirasmostrando os coeficientes das ondas incidentes e das ondas, refletidas ou espalhadas, em cada região.

das ondas que incidem nas interfaces de uma heteroestrutura, com os coeficientes das ondas espalhadas (refletidas), $(\mathbf{a}_N, \mathbf{b}_0)$ como esquematizado na Fig. 3.4. A função de onda em cada região da heteroestrutura é obtida, tomando-se combinações lineares das soluções no cristal perfeito com os mesmos valores de energia E e momento paralelo k_{ρ} para os correspondente valores de $k_z = \pm k_{zh}, \pm k_{zl}$. Dessa forma, a função de onda total em cada região n da heteroestrutura pode ser escrita como

$$\mathbf{F}(\mathbf{z}) = \sum_{\upsilon=h,l} a_{\upsilon,j} \mathbf{F}_{\upsilon,j}(k_{z,\upsilon}) e^{ik_{z\upsilon}(z-z_n)} + b_{\upsilon,j} \mathbf{F}_{\upsilon,j}(-k_{z,\upsilon}) e^{-ik_{z\upsilon}(z-z_n)},$$
(3.15)

aqui, estamos omitindo a função de Bloch u_0 , uma vez que as camadas semicondutoras que formam o sistema de dupla barreira (GaAs, AlAs) são de gap direto, e portanto, dentro da aproximação de massa efetiva para as heteroestruturas com camadas alaternadas ABAB.... $u_0^{(A)} = u_0^{(B)}$. Aplicando as condições de contorno na interface n + 1, ou seja, a conservação da densidade de probabilidade e da densidade de corrente

$$\begin{cases} \mathbf{F}(z_j) \mid_{z_j} = \text{contínuo} \\ \mathbf{J}_z \mathbf{F}(z_j) \mid_{z_j} = \text{contínuo} \end{cases}$$
(3.16)

sendo \mathbf{J}_z o operador densidade de corrente para o Hamiltoniano de Luttinger, que tem a seguinte forma:

$$\mathbf{J}_{z}^{U} = \frac{\hbar}{m} \begin{pmatrix} (\gamma_{1} - 2\gamma_{2})k_{z} & -i\sqrt{3}\gamma_{3}k_{\rho} \\ i\sqrt{3}\gamma_{3}k_{\rho} & (\gamma_{1} + 2\gamma_{2})k_{z} \end{pmatrix}$$

para o Hamiltoniano upper

$$\mathbf{J}_{z}^{L} = \frac{\hbar}{m} \begin{pmatrix} (\gamma_{1} - 2\gamma_{2})k_{z} & i\sqrt{3}\gamma_{3}k_{\rho} \\ -i\sqrt{3}\gamma_{3}k_{\rho} & (\gamma_{1} + 2\gamma_{2})k_{z} \end{pmatrix}$$

para o Hamiltoniano lower, encontramos a seguinte equação matricial:

$$\begin{pmatrix} \mathbf{M}_{n_{11}} & \mathbf{M}_{n_{12}} \\ \mathbf{M}_{n_{21}} & \mathbf{M}_{n_{22}} \end{pmatrix}_{4\times 4} \times \begin{pmatrix} \mathbf{a}_n \\ \mathbf{b}_n \end{pmatrix} = \begin{pmatrix} \mathbf{M}_{n+1_{11}} & \mathbf{M}_{n+1_{12}} \\ \mathbf{M}_{n+1_{21}} & \mathbf{M}_{n+1_{22}} \end{pmatrix}_{4\times 4} \times \begin{pmatrix} \mathbf{a}_{n+1} \\ \mathbf{b}_{n+1} \end{pmatrix}$$
(3.17)

onde as submatrizes de dimensão (2×2) , $\mathbf{M}_{n_{11}}$, $\mathbf{M}_{n_{12}}$, $\mathbf{M}_{n_{21}}$ e $\mathbf{M}_{n_{22}}$ são os elementos que formam a matriz de transferência usual \mathbf{M} [3].

$$\mathbf{M} = \begin{bmatrix} \mathbf{F}_{h}^{+} & \mathbf{F}_{l}^{+} & \mathbf{F}_{h}^{-} & \mathbf{F}_{l}^{-} \\ \mathbf{J}_{zh}^{+}\mathbf{F}_{h}^{+} & \mathbf{J}_{zl}^{+}\mathbf{F}_{l}^{+} & \mathbf{J}_{zh}^{-}\mathbf{F}_{h}^{-} & \mathbf{J}_{zl}^{-}\mathbf{F}_{l}^{-} \end{bmatrix}$$
(3.18)

onde usamos uma notação comprimida para os elementos na forma $\mathbf{F}_{\nu}^{\pm} \equiv \mathbf{F}_{\nu}(\pm k_{z\nu}), \mathbf{J}_{z\nu}^{\pm} = \mathbf{J}_{z\nu}(\pm k_{z\nu}), \nu = h, l$ O coeficiente \mathbf{a}_n é o vetor que representa a amplitude da onda incidente para os buracos leves e pesados e \mathbf{b}_n para as ondas refletidas. Manipulando algebricamente a Eq. (3.17), podemos relacionar os coeficientes das ondas espalhadas numa interface ($\mathbf{a}_{n+1} \in \mathbf{b}_n$) com as incidentes ($\mathbf{a}_n \in \mathbf{b}_{n+1}$), na forma :

$$\begin{pmatrix} \mathbf{a}_{n+1} \\ \mathbf{b}_n \end{pmatrix} = \mathbf{S}_{n+1} \begin{pmatrix} \mathbf{a}_n \\ \mathbf{b}_{n+1} \end{pmatrix}$$
(3.19)

 sendo

$$\mathbf{S}_{n+1} = \begin{pmatrix} \mathbf{M}_{n+1_{11}} & -\mathbf{M}_{n_{12}} \\ \mathbf{M}_{n+1_{21}} & -\mathbf{M}_{n_{22}} \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{M}_{n_{11}} & -\mathbf{M}_{n+1_{12}} \\ \mathbf{M}_{n_{21}} & -\mathbf{M}_{n+1_{22}} \end{pmatrix}$$
(3.20)

a matriz de espalhamento para a interface n + 1.

Aplicando as condições de contorno nas interfaces localizadas nas posições $z = z_1$ e $z = z_2$, obtemos:

$$\begin{pmatrix} \mathbf{a}_1 \\ \mathbf{b}_0 \end{pmatrix} = \mathbf{S}_1 \begin{pmatrix} \mathbf{a}_0 \\ \mathbf{b}_1 \end{pmatrix}$$
(3.21)

$$\begin{pmatrix} \mathbf{a}_2 \\ \mathbf{b}_1 \end{pmatrix} = \mathbf{S}_2 \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{b}_2 \end{pmatrix}, \qquad (3.22)$$

que relaciona os coeficientes das ondas espalhadas e incidentes na heteroestrutura. Os coeficientes das ondas que entram na região 1 $(\mathbf{a}_1, \mathbf{b}_1)$, estão relacionados com os coeficientes que saem $(\mathbf{a}_1, \mathbf{b}_1)$, através da equação matricial

$$\begin{pmatrix} \mathbf{a}_{1} \\ \mathbf{b}_{1} \end{pmatrix} = \mathbf{P}_{1} \begin{pmatrix} \mathbf{a}_{1} \\ \mathbf{b}_{1} \end{pmatrix}$$
(3.23)

onde

$$\mathbf{P}_{1} = \begin{pmatrix} e^{ik_{zh}d} & 0 & 0 & 0 \\ & e^{ik_{zl}d} & & \\ & & e^{-ik_{zh}d} \\ & & & e^{-ik_{zl}d} \end{pmatrix}$$
(3.24)

é a matriz de espalhamento na região 1 de largura d. Os valores $k_{zh} e k_{zl}$ são vetores de onda ao longo da direção de propagação z, que são obtidos através da relação de dispersão $k_z = f(E, k_{\rho})$. A partir das Eqs. (3.22) e (3.23), obtemos a seguinte relação:

$$\begin{pmatrix} \mathbf{a}_2 \\ \mathbf{b}_1 \end{pmatrix} = \mathbf{P}_1 \otimes \mathbf{S}_2 \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{b}_2 \end{pmatrix}$$
(3.25)

onde \otimes é o símbolo que representa a composição em série de duas matrizes, cuja regra do produto é dado na Ref. [11]. Da mesma forma usando as Eqs. (3.22) e (3.25), podemos combinar $\mathbf{S}_1 \in \mathbf{P}_1 \otimes \mathbf{S}_2$:

$$\begin{pmatrix} \mathbf{a}_2 \\ \mathbf{b}_0 \end{pmatrix} = \mathbf{S}_1 \otimes \mathbf{P}_1 \otimes \mathbf{S}_2 \begin{pmatrix} \mathbf{a}_0 \\ \mathbf{b}_2 \end{pmatrix}.$$
(3.26)

Aplicando as condições de contorno nas outras interfaces e sempre combinando ondas incidentes e espalhadas em cada estágio da heteroestrutura, obtem-se

$$\begin{pmatrix} \mathbf{a}_{4} \\ \mathbf{b}_{0} \end{pmatrix} = \mathbf{S}_{1} \otimes \mathbf{P}_{1} \otimes \mathbf{S}_{2} \otimes \mathbf{P}_{2} \otimes \mathbf{S}_{3} \otimes \mathbf{P}_{3} \otimes \mathbf{S}_{4} \begin{pmatrix} \mathbf{a}_{0} \\ \mathbf{b}_{4} \end{pmatrix}$$
(3.27)

onde

$$\mathbf{S} = \mathbf{S}_1 \otimes \mathbf{P}_1 \otimes \mathbf{S}_2 \otimes \mathbf{P}_2 \otimes \mathbf{S}_3 \otimes \mathbf{P}_3 \otimes \mathbf{S}_4 \tag{3.28}$$

é a matriz de espalhamento total para uma heteroestrutura de dupla barreira. Redefinindo os coeficientes na região do emissor e coletor, como

$$\mathbf{a}_{4} = \mathbf{t} = \begin{pmatrix} t_{h} \\ t_{l} \end{pmatrix}, \mathbf{b}_{0} = \mathbf{r} = \begin{pmatrix} r_{h} \\ r_{l} \end{pmatrix}$$
(3.29)

e usando o fato de que não temos nenhuma onda incidente na região do coletor, a Eq. 3.27 pode ser reescrita como:

$$\begin{pmatrix} \mathbf{t} \\ \mathbf{r} \end{pmatrix} = \begin{pmatrix} \mathbf{S}_{11} & \mathbf{S}_{12} \\ \mathbf{S}_{21} & \mathbf{S}_{21} \end{pmatrix} \begin{pmatrix} \mathbf{a}_0 \\ \mathbf{0} \end{pmatrix}$$
(3.30)

onde, t $\,{\bf e}\,{\bf r}$ determinam respectivamente as amplitudes de probabilidade de tunelamentos

e reflexões de cada tipo de portador, \mathbf{a}_0 é o coeficiente de entrada e $\mathbf{S}_{11}, \mathbf{S}_{12}, \mathbf{S}_{21}, \mathbf{S}_{21}$ são os elementos da matriz de espalhamento com dimensão 2 × 2. Assim os coeficientes das ondas transmitidas obtidos da Eq. (3.30) podem ser escritos como $\mathbf{t} = \mathbf{S}_{11}a_0$.

3.4 Transmissividade

Uma vez determinado a matriz de espalhamento, que relaciona os coeficientes das ondas incidentes e espalhadas nas regiões do emissor e coletor, o próximo passo é calcular a transmissividade em um sistema de dupla barreira. A transmissividade é uma propriedade importante através do qual podemos determinar os níveis de energia (estados *quase-ligados*) na região do poço, bem como o tempo de vida de cada um desses níveis, pois quando a energia incidente do buraco estiver em ressonância com um desses níveis, surgirá picos nas curvas de transmissão versus energia.

Como mostrado na Ref. [1] a corrente de probabilidade para o portadores, $\nu = h, l$ em termos das funções envelopes $\mathbf{F}(\mathbf{k})$, e do operador densidade de corrente pode ser escrita como $j_{z,\nu} = \text{Re}(\mathbf{F}_{\nu}^{\dagger}\mathbf{J}_{z\nu}\mathbf{F}_{\nu})$. Assim seguindo a discursão da Ref. [1] e tomando a normalização $|a_0| = 1$ nós definimos a transmissividade e refletividade como

$$T_{\nu} = \frac{\left|t_{\nu}\right|^{2} \mathbf{Re} \left[\mathbf{F}_{\nu}^{+\dagger} J_{z} \mathbf{F}_{\nu}^{+}\right]_{N}}{\mathbf{Re} \left[\mathbf{F}_{\nu}^{+\dagger} J_{z} \mathbf{F}_{\nu}^{+}\right]_{0}}$$
(3.31)

$$R_{\nu} = \frac{|r_{\nu}|^2 \operatorname{\mathbf{Re}} \left[\mathbf{F}_{\nu}^{+^{\dagger}} J_z \mathbf{F}_{\nu}^{+} \right]_N}{\operatorname{\mathbf{Re}} \left[\mathbf{F}_{\nu}^{+^{\dagger}} J_z \mathbf{F}_{\nu}^{+} \right]_0}$$
(3.32)

com a condição $\sum_v T_\nu + R_\nu,$ onde $\nu = -h, l$, $N \in 0$ indicam as regiões de coletor e emissor, respectivamente.

No próximo capítulo usaremos o formalismo da matriz de espalhamento para calcular a transmissividade em sistemas de dupla barreira, cujas camadas estão sujeitas tensões externas.

Referências

- [1] R. Wessel and M. Altarelli, Phys. Rev. B **39**, 12 802 (1989).
- [2] C. Y. P. Chao and S. L. Chuang, Phys. Rev. B 43, 7 027 (1990).
- [3] A. C. Bittencourt, A. M Cohen and G. E. Marques Phys. Rev. B 57, 4525 (1998).

M. Cahay, M. McLennan, S. Datta. Phys. Rev. B 17, 10125 (1988).

Capitulo IV

Resultados da Transmissividade

Neste capítulo, usaremos os métodos numéricos descritos anteriormente, para estudar, discutir e apresentar os resultados para o tunelamento ressonante de buracos em uma heteroestrutura semicondutora de dupla barreira do tipo GaAs/AlAs, submetidas à pressões externas, compressão e tração, usando a técnica da matriz de espalhamento na aproximação de massa efetiva do modelo de *Luttinger-Kohn*. Todo o processo de cálculo da transmissividade usando a técnica da matriz de espalhamento pode ser resumido como segue:

(a) inicialmente, resolve-se analiticamente a equação de massa efetiva em cada região da heteroestrutura, usando-se o Hamiltoniano de Luttinger com stress, obtendo-se os autovalores e autovetores (funções envelopes). A partir da expressão da energia, deriva-se as soluções para o vetor de onda k_z satisfazendo às condições $k_{zv} = f(E - V, k_{\rho})$, sendo essas soluções para os estados classificados como heavy-hole e light-hole. As funções envelopes obtidas das soluções da equação de massa efetiva, são $\mathbf{F}_{\nu}^{U,L}(\mathbf{k})$ para os Hamiltonianos upper e lower; (b) em seguida, constrói-se a função de onda total em cada região da heteroestrutura como combinação linear das quatro ondas planas, correspondentes às quatro soluções $\mathbf{F}(\mathbf{k})$, substituindo-se $k_{zv} = \pm k_{zh}, \pm k_{zl}$ para um dado valor de energia E e momento paralelo $k_{\rho} = (k_x, k_y)$; (c) usando as duas condições de contorno em cada interface, uma que garanta a continuidade da função de onda total e a outra, a conservação da densidade de probabilidade de corrente, podemos obter uma equação matricial que relaciona os coeficientes das ondas incidentes na heteroestrutura (emissor e coletor) com os coeficientes das ondas espalhadas, através da matriz de espalhamento.

No esquema de cálculo descrito acima, devemos conhecer os coeficientes de entrada na região de incidência, $a_0 = (a_{0_{hh}}, a_{0_{\ell h}})$, o que significa dizer que estabelecemos as condições iniciais para o movimento. Cada um desses coeficientes está relacionado com o tipo de buraco no estado *upper* ou *lower*, e dependende da escolha inicial da partícula incidente. Assim, por exemplo, para uma partícula incidente do tipo *heavy-hole* no estado *upper* ou *lower* (que denotaremos por HH in) os coeficientes de entrada são $a_0 = (1,0)$; por outro lado, se incidirmos na entrada uma partícula no estado de valência *light-hole* (LH in), para Hamiltonianos *upper* ou *lower* os coeficientes de entrada são (0, 1). Para ambos os Hamiltonianos, *upper* ou *lower* as curvas de transmissividades serão denotadas por HH out e LH out qualquer que seja a partícula incidente.

Os resultados dessa dissertação estão divididos em seções, relacionados aos caso $k_{\rho} = 0$ e $k_{\rho} \neq 0$, já que as interpretações de cada uma dessas situações são conceitualmente diferentes. Como já mencionamos neste trabalho, o método da massa efetiva adotado, não inclui acoplamento entre os estados de valência quando o momento lateral $k_{\rho} = 0$, dando origem a dois canais de tunelamento independentes, um para partícula do tipo *heavy-hole* (HH) e outro, *light-hole* (LH) puros. Entretanto, na situação $k_{\rho} \neq 0$, os estados são acoplados (*mixing*) e não podem ser distinguidos; assim usaremos as notações HH e LH apenas por questão de conveniência.

Para estudar o efeito do stress no tunelamento de buracos, escolhemos a heteroetrutura de dupla barreira de GaAs/AlAs submetida a stress uniaxial T aplicado na direção (001), conforme ilustrado na Fig. (4.1); quanto às dimensões do sistema, usamos a seguinte notação para representar as larguras do poço e barreiras: (L_{B1}, L_P, L_{B2}) , onde L_{B1} representa a largura da barreira da esquerda, L_P a largura do poço e L_{B2} a largura da barreira da direita. O stress com T < 0 e T > 0, correspondem aos esforços de compressão e tração respectivamente, sendo dados em unidades de kbar. Em todos os

Figura 4.1: Representação esquemática do perfil de potencial de uma heteroestrutura de dupla barreira de GaAs/AlAs com dimensões (L_{B1} , L_P , L_{B2}), submetida a *stress* uniaxial T na direção (001). A descontinuidade da banda de valência nas interfaces vale $\Delta E_V = 550 \ meV$.

casos usamos o band-offset $\Delta E_{\rm V} = 550$ meV.

Quando nos referimos ao caso sem *stress*, estamos considerando os termos do Hamiltoniano de *Bir-Pikus*, $P_{\varepsilon} \in Q_{\varepsilon}$ nulos; esses termos aparecem na diagonal do Hamiltoniano de *Luttinger*, sendo responsáveis no *bulk*, pelo *shifit* hidrostático (P_{ε}) da banda de valência e pela separação dos extremos das bandas HH e LH. Os parâmetros de massa efetiva, potenciais de deformação e constantes elásticas para a heteroestrutura de GaAs e AlAs estão listados na Tab. (4.1) [1]. Desde que as constantes elásticas para o GaAs e AlAs são as mesmas, a componente hidrostática P_{ε} somente introduz um *shifit* no potencial da estrutura, e isto não muda o potencial da barreira (os *shifits* nos extremos das bandas de valência do GaAs e AlAs são iguaiss). Contudo devido ao *splitting* $2Q_{\varepsilon}$ o alinhamento relativo entre os estados HH e LH no poço quântico são alterados.

Parâmetros	GaAs	AlAs
γ_1	6,85	3,45
γ_2	2, 1	0,68
γ_3	2,9	1,29
$C_{11} (\mathrm{dyn/cm^2})$	11,88	11,88
$C_{12} (\mathrm{dyn/cm^2})$	5, 38	5,38
$E_G (eV)$	1,42	2,766
a (eV)	-9,77	-9,77
b~(eV)	-1,7	-1,7

Tabela 4.1: Parâmetros de massa efetiva e potenciais de deformação.

4.1 Transmissividade para $k_{\rho} = 0$

Nos casos tratados nessa seção, iremos considerar a situação em que o buraco caminha da esquerda para a direita com incidência normal, ou seja, $k_{\rho} = 0$. Essa é a situação mais simples para esse tipo de problema, já que os estados de valência *heavy-hole* e tipo *light-hole* são desacoplados entre si, o que nos fornece dois canais de tunelamento independentes. Ambos os Hamiltonianos *upper* e *lower* são idênticos nesse caso. Os resultados são obtidos usando-se o modelo de *Luttinger* fazendo-se $k_{\rho} = 0$.

4.1.1 Sem Stress

A Fig. (4.2) mostra o comportamento do buraco pesado (HH) e buraco leve (LH) para uma heteroestrutura de dupla barreira (30,50,30) do tipo GaAs/AlAs. Podemos observar dois canais de transmissão independentes, como já foi mencionado anteriormente, pois os estados de valência HH e LH são desacoplados para $k_{\rho} = 0$. Como a massa efetiva da partícula LH (*light-hole*) é bem menor que a da partícula HH (*heavy-hole*), esta apresenta uma probabilidade muito maior de tunelamento. Porém, pelo fato da partícula HH ser mais pesada, este canal apresenta um número maior de picos ressonantes, ou seja, um maior número de estados quase-ligados dentro do poço. Esses resultados estão em perfeita concordância com a Fig. (3) na Ref. [1], onde a transmissividade é calculada pelo método da matriz de transferência e não de espalhamento.

Figura 4.2: Transmissividade dos buracos pesados (abaixo) e leves (acima) através da heteroestrutura de dupla barreira de GaAs/AlAs, (30,50,30) com $k_{\rho} = 0$ e T = 0 (sem *stress*).

Figura 4.3: Transmissividade dos buracos pesados (abaixo) e leves (acima) para o sistema de dupla barreira (30,60,30) de GaAs/AlAs para T = 0 (sem stress) com $k_{\rho} = 0$.

Na Fig. (4.3) mostramos o gráfico da transmissividade dos buracos pesados (HH) e leves (LH) para uma heteroestrutura de dupla barreira (30,60,30) do tipo GaAs/AlAs, para o caso sem *stress*. Novamente a curva de transmissividade do canal LH é maior pois sua massa efetiva é menor. O número de estados *quase-ligados* cresce, uma vez que o aumento da largura do poço aumenta o confinamento dos buracos (HH e LH). O terceiro estado de buraco leve por se menos ligado, aparece na curva transmissividade com um pico mais largo, o que evidencia um menor tempo de vida desse buraco nesse estado.

4.1.2 Compressão

Na Fig. (4.4), mostramos a transmissividade dos buracos leves e pesados para um sistema de dupla barreira (30,50,30) de GaAs/AlAs, para um esforço $T = -3 \ kbar$ (compressão,

Figura 4.4: Transmissividade dos buracos pesados (abaixo) e leves (acima) para o sistema de dupla barreira (30,50,30) de GaAs/AlAs para T = -3 kbar com $k_{\rho} = 0$.

linha contínua preta) e T = 0 (sem *stress*, linha contínua verde). A transmissividade do buraco leve é maior que a do buraco pesado, já que sua massa efetiva é menor. Notamos que a seqüência dos primeiros estados ressonantes quando o *stress* é considerado continua a mesma da Fig. (4.2), onde o estado ressonante mais baixo corresponde ao *heavy-hole* puro (HH1) e o segundo estado corresponde a um *light-hole* puro (LH1), etc.

Quando o stress é aplicado verificamos que ocorre um maior deslocamento do pico ressonante para a direita do *light-hole* (LH1) do que o deslocamento do pico para direita do *heavy-hole* (HH1). Isto acontece porque o stress quebra a degenerescência dos estados de valência em $k_{\rho} = 0$ e o termo diagonal $P_{\varepsilon} - Q_{\varepsilon}$ na compressão ($P_{\varepsilon} > 0, Q_{\varepsilon} < 0$) confina menos os buracos leves produzindo maior deslocamento dos níveis ressonantes para esse portador. Diferentemente do caso com strain mostrado na Ref. [3] o deslocamento dos

Figura 4.5: Transmissividade dos buracos pesados (abaixo) e leves (acima) para o sistema de dupla barreira (30,60,30) de GaAs/AlAs para $T = -3 \ kbar$ e $k_{\rho} = 0$.

picos ressonantes para os dois portadores é sempre na direção de crescimento da energia, uma vez que $P_{\varepsilon} > Q_{\varepsilon}$.

Na Fig. (4.5) mostramos o gráfico da transmissividade de *light-hole* e *heavy-hole* para um esforço de compressão, $T = -3 \ kbar$ (curva preta) e T = 0 (curva verde) para o sistema (30, 60, 30). Como acontece na Fig. (4.3), com as mesmas escalas, ocorre um aumento o número de picos tanto para *light-hole* quanto para *heavy-hole*.

4.1.3 Tração

Vamos agora discutir resultados referentes a transmissividade dos buracos leves e pesados em uma heteroestrutura de dupla barreira GaAs/AlAs, quando submetida a um esforço de tração (T > 0), para $k_{\rho} = 0$. Neste caso $P_{\varepsilon} < 0$, $Q_{\varepsilon} > 0$, com $|P_{\varepsilon}| > |Q_{\varepsilon}|$.

Na Fig. (4.6) comparamos a transmissividade dos buracos leves e pesados para um

Figura 4.6: Transmissividade dos buracos pesados (abaixo) e dos buracos leve (acima), através de uma heteroestrutura de dupla barreira de GaAs/AlAs, (30,60,30) com $k_{\rho} = 0$, para um esforço de tração $T = 3 \ kbar$ (curva preta) e T = 0, sem stress (curva verde).

Figura 4.7: Transmissividade dos buracos pesados (abaixo) e dos buracos leve (acima), através de uma heteroestrutura de dupla barreira de GaAs/AlAs, (30,60,30) com $k_{\rho} = 0$, para um esforço de tração $T = 8 \ kbar$.

esforço de tração $T = 3 \ kbar$ (curva preta) e T = 0 (curva verde), para um sistema (30,60,30), usando os parâmetros de acordo com a Tab. (4.1). Diferentemente do esforço de compressão ocorre um deslocamento dos picos ressonantes para a esquerda (menores energia), uma vez que $P_{\varepsilon} < 0$ e $|P_{\varepsilon}| > |Q_{\varepsilon}|$. Esse deslocamento é muito maior para os buracos leves do que para os buracos pesados, e o nível LH1 fica bem mais próximo do nível fundamental HH1. É de se esperar portanto que para valores de T muito grande o esforço de tração provoque uma inversão do estado fundamental, passando de HH1 para LH1. Isso é verificado na Fig. (4.7) para $T = 8 \ kbar$, onde observamos que o estado LH1 passa a ser o estado fundamental.

Finalizamos esta seção, mostrando na Fig. (4.8), a transmissividade dos buracos leves (lado esquerdo) e pesados (lado direito) para uma heteroestrutura com barreiras simétri-

Figura 4.8: Transmissividade dos buracos (a) pesados e (b) leves, através de heteroestrutura de barreiras assimétricas de GaAs/AlAs (10,50,30) (curva verde) e simétrica (30,50,30) (curva preta) com $k_{\rho} = 0$ e T = 2.

cas (30,50,30) (curva preta) e assimétricas (10,50,30) (curva verde) para um esforço de tração $T = 2 \, kbar$. Notamos que a diminuição na largura da barreira, produz um considerável aumento na transmissividade dos buracos leves e pesados. Verifica-se ainda que as posições dos picos mais confinados HH1, HH2 e LH1 continuam praticamente ao mesmos, quando comparadas com o caso de barreiras simétricas, o mesmo não acontecendo para os estados de maior energia HH4 e LH2 que estão próximos do contínuo. Podemos observar ainda um alargamento dos picos de transmissividade no caso de barreiras assimétricas, o que indica que o tempo de vida de uma partícula nesses estados quase-ligados diminui em relação ao caso das barreiras simétricas.

Os resultados discutidos até agora foram obtidos para $k_{\rho} = 0$, ou seja, numa situa-

ção onde *light-hole* e *heavy-hole* são desacoplados. Na próxima seção apresentaremos os resultados da transmissividade para $k_{\rho} \neq 0$ que leva em conta a estrutura de bandas na região do coletor.

4.2 Transmissividade para $k_{\rho} \neq 0$

Quando confinamos os buracos leves e pesados na região do poço de dupla barreira em heteroestruturas, surgirá subbandas de valência E_{HHn} (k_{ρ}) e E_{LHn} (k_{ρ}) , que podem ser derivadas da aproximação de massa efetiva. Para valores de $k_{\rho} \neq 0$, essas subbandas podem interagir fortemente, modificando as massas efetivas dessas partículas, quando comparadas com aquelas observadas no cristal perfeito, o que pode indicar que a transmissividade deve mudar sensivelmente com o parâmetro k_{ρ} . Essa interação é descrita em termos dos elementos fora da diagonal do Hamiltoniano de *Luttinger* que são proporcionais a k_{ρ} . Já os termos nas diagonais $P_{\varepsilon} - Q_{\varepsilon} \in P_{\varepsilon} + Q_{\varepsilon}$ mudam a separação relativa entre os estados HH e LH no poço quântico, e indiretamente, influenciam na mistura dos estados de valência.

Analisaremos nesta seção, os resultados no processo de tunelamento dos buracos leves e pesados em heteroestrutura de dupla barreira constituídas pelos mesmos materiais do caso $k_{\rho} = 0$, sendo agora nosso parâmetro $k_{\rho} \neq 0$. A partir de agora, os símbolos usados para rotularem os estados ressonantes HHn e LHn, serão usados somente por conveniência de notação, já que o acoplamento entre as bandas acaba com o significado que dá origem a essas denominações. Assim por exemplo o acoplamento é responsável pelo aparecimento de picos HHn (LHn) na energia ressonante de LHn (HHn).

4.2.1 Sem stress

Na Fig. [(4.9) (a)-(d)] mostramos a transmissividade de buracos leves e pesados na aproximação axial para uma dupla barreira de GaAs/AlAs (30,50,30) com momento $k_{\rho} = 3 \times 10^6 \text{ cm}^{-1}$ e T = 0. O forte acoplamento (*mixing*) entre a partícula *light-hole* e *heavy-hole*

Figura 4.9: Transmissividade dos buracos pesados e leves, através de heteroestrutura de dupla barreira (30,50,30) de GaAs/AlAs com $k_{\rho} = 3 \times 10^6$ cm⁻¹ e T = 0. (a) e (b) para o Hamiltoniano *upper*; (c) e (d) para o Hamiltoniano *lower*.

é evidenciado pelas curvas de transmissividade HH out e LH out que estão em magnitudes mais próximas uma das outras.

Para o caso heavy-hole incidente (HH in), [Figs. 4.9 (a) e (b)] os picos ressonantes dos buracos leves e pesados emergem na curva de transmissividade para a mesma energia, mostrando a forte mistura entre eles. A transmissividade para a saída heavy (HH out) é aumentada devido à mistura, comparando-se ao caso $k_{\rho} = 0$, onde essa situação não ocorre. Para o caso light-hole incidente (LH in), [Figs. 4.9 (c) e (d)], o acoplamento entre os estados de valência também aparece como um pico no canal light hole na energia ressonante correspondentes ao estados quase estacionários HH na região do poço. Note que para os Hamiltonianos upper e lower, as magnitudes curvas de transmissividade HH in \rightarrow LH out são diferentes, embora as posições dos picos sejam as mesmas. Observe ainda que a separação de energia ΔE entre os dois primeiros estados, HH e LH vale $\Delta E = 29, 3 \text{ meV}.$

4.2.2 Compressão

Na Fig. [4.10 (a)-(d)], mostramos os gráficos da transmissividade de buracos leves e pesados através da heteroestrutura de dupla barreira de GaAs/AlAs (30,50,30) para um esforço de compressão $T = -3 \ kbar$ e $k_{\rho} = 3 \times 10^6 \ cm^{-1}$. Neste caso stress compressivo aumenta a separação entre os estados fundamentais HH1 e LH1, $\Delta E = 35, 04 \ meV$ em comparação com o caso sem stress, reduzindo um o mixing entre esses estados. Para o caso light-hole incidente (LH in) [Figs. 4.10 (c) e (d)], observa-se a não ocorrência da ressonância para o nível HH1, uma vez que neste caso, o tunelamento só se inicia a partir da energia $E_{C_4} = 50, 94 \ meV$ e a pico ressonante HH1 corresponde a uma energia $E_{HH1} = 47, 59 < E_{C_4}$. Para o caso heavy-hole incidente (HH in) [Figs. 4.10 (a) e (b], o tunelamento se inicia a partir de $E_{C_3} = 21, 9 \ meV < E_{HH1}$, neste caso as transmissividades HH out e LH out emergem em todos os níveis ressonantes do poço (HH1, LH1, HH2, HH3, LH2, HH4). A transmissividade para a saída heavy (HH out) é aumentada devido a mistura (mixing), comparando-se ao caso $k_{\rho} = 0$; isto é mostrado

Figura 4.10: Transmissividade dos buracos pesados e leves, através de heteroestrutura de dupla barreira (30,50,30) de GaAs/AlAs com $k_{\rho} = 3 \times 10^6$ cm⁻¹ e T = -3 kbar. (a) e (b) para o Hamiltoniano upper; (c) e (d) para o Hamiltoniano lower.

Figura 4.11: Transmissividade dos buracos pesados (HH out) através de heteroestrutura de dupla barreira (30,50,30) de GaAs/AlAs para $T = -3 \ kbar$ nos casos $k_{\rho} = 3 \times 10^6 cm^{-1}$ (acima) $e \ k_{\rho} = 0$ (abaixo).

na Fig. (4.11), onde comparamos essa transmissividade (HH out) para o Hamiltoniano upper com a transmissividade HH para $k_{\rho} = 0$. A redução do mixing na compressão é ilustrado na Fig. (4.12), onde mostramos os canais HH in \rightarrow HH out, HH in \rightarrow LH out, LH in \rightarrow LH out e LH in \rightarrow HH out para Hamiltoniano upper nos casos de compressão, $T = -6 \ kbar$ e sem stress, T = 0, para $k_{\rho} = 3 \times 10^6 \ cm^{-1}$; note que a magnitude da transmissividade fora da ressonância dos buracos pesados, HH out e LH out diminui com a presença dos stress uniaxial para ambas as entradas HH in e LH in, observe ainda nas Figs [4.12 (c)-(d)], que o stress suprime o nível LH1 nas transmissividades HH out e LH in, uma vez que esse nível está abaixo da energia E_{C4} , onde os buracos leves tem vetores de onda k_z complexos.

Figura 4.12: Transmissividade dos buracos pesados e leves para o Hamiltoniano *upper*, através de heteroestrutura de dupla barreira (30,50,30) de GaAs/AlAs com $k_{\rho} = 3 \times 10^6$ cm^{-1} , para T = 0 (sem stres) e T = -6 kbar, (a) HH in \rightarrow HH out, (b) HH in \rightarrow LH out; (c)) LH in \rightarrow HH out e (d) LH in \rightarrow LH out.

4.2.3 Tração

Nesta subseção, vamos discutir os resultados para a transmissividade de buracos leves e pesados para esforço de tração (T > 0), usando o mesmo material do caso de compressão. Como no *bulk*, este esforço muda completamente o caráter das soluções para energia E, e vetor de onda k_z , é responsável pela mudança de ordenamento dos picos ressonantes, e como veremos, também, pelo fato da curva de transmissividade do *heavy-hole* estar acima da curva *light-hole* para qualquer canal de entrada.

Na Fig. [4.13 (a)-(d)], mostramos os gráficos da transmissividade de buracos leves e pesados através da heteroestrutura de dupla barreira de GaAs/AlAs (30,50,30) para um esforço de tração $T = 3 \ kbar$ e $k_{\rho} = 3 \times 10^6 \ cm^{-1}$. Note que a magnitude da transmissividade dos buracos pesados (HH out) para qualquer canal de entrada em ambos os Hamiltonianos (upper ou lower) é maior que dos buracos leves (LH out). Ocorre uma redução da separação em energia dos estados fundamentais HH1 e LH1, ΔE = 24,24 meV em comparação com os caso sem stress ($\Delta E = 29,3 \ meV$) e compressão $(\Delta E = 35, 04 \text{ meV})$, aumentando o mixing (mistura) entre os estados HH e LH. Note que para os Hamiltonianos upper e lower, as magnitudes curvas de transmissividade HH in \rightarrow LH out, LH in \rightarrow HH out, são diferentes principalmente para regiões fora de ressonância, embora as posições dos picos sejam as mesmas. Da mesma forma que nos casos anteriores, para o caso HH in incidente Fig. [4.13 (a)-(b)], a transmissividade para a saída heavy (HH out) é fortemente aumentada devido à mistura. Isso é mostrado na Fig. (4.14) onde comparamos canal HH in \rightarrow HH out para o Hamiltoniano upper para os esfoços de tração, compressão e sem stress para $k_{\rho}=3\,\times\,10^6~cm^{-1};\,$ note que a magnitude da curva da transmissividade para a tração é bem maior que os outros esforços para o mesmo valor de k_{ρ} . Sendo assim, além dos efeitos do mixing (mistura) entre os estados de valência, que é responsável pelo aumento da probabilidade de transmissão, em comparação com o caso $k_{\rho} = 0$, o esforço de tração é um outro mecanismo que pode ser usado para aumentar o transporte de partículas na direção do crescimento dessas heteroestruturas. O mesmo não acontece para a particula mais leve, a tração aumenta

Figura 4.13: Transmissividade dos buracos pesados e leves, atrav és de heteroestrutura de dupla barreira (30,50,30) de GaAs/AlAs com $k_{\rho} = 3 \times 10^6$ cm⁻¹ e T = 3 kbar. (a) e (b) para o Hamiltoniano upper; (c) e (d) para o Hamiltoniano lower.

Figura 4.14: HH in \rightarrow HH out , através da heteroestrutura de dupla barreira (30,50,30) de GaAs/AlAs com $k_{\rho} = 3 \times 10^6$ cm⁻¹ e T = 3 kbar. Note que devido ao mixing, transmissividade é maior para o esforço de tração.

a mistura, aumentado a sua massa efetiva ; asssim as curvas de transmissividades LH out estão abaixo da curva HH out. Isto é evidenciado na Fig. (4.15) onde comparamos canal LH in \rightarrow LH out para o Hamiltoniano *upper* para os esfoços de tração, compressão e sem *stress* para o momento $k_{\rho} = 3 \times 10^6 \text{ cm}^{-1}$; note que a magnitude da curva da transmissividade para o esforço de tração menor do que esforço de compressão para o mesmo valor de k_{ρ} .

Para finalizar, mostramos a transmissividade de buracos leves e pesados, numa heteroestrutura de dupla barreira, (30,50,30), Fig. (4.16) para $k_{\rho} = 3 \times 10^6 \ cm^{-1} \ e \ T = 3 \ kbar$,

Figura 4.15: LH in \rightarrow LH out , através da hetero
estrutura de dupla barreira (30,50,30) de GaAs/AlAs com
 $k_{\rho} = 3 \times 10^{6}$ cm⁻¹ e $T = 3 \ kbar$. Note que a transmissividade é menor para o esforço de tração.

Figura 4.16: Transmissividade de buracos atrav és de heteroestrutura de dupla barreira simétrica (30,50,30) de GaAs/AlAs para $k_{\rho} = 3 \times 10^6$ cm⁻¹ e T = 3,sujeito a um campo elétrico de intensidade F = 100 kV/cm, mostrando apenas os picos ressonantes HH2 e HH3, para os quais os efeitos do campo se torna melhor visualizados.

através do canal HH in \rightarrow HH out, na presença de um campo elétrico aplicado na direçãoz, cuja intensidade é F = 100 kV/cm. O efeito do potencial de confinamento associado a presença do campo elétrico quebra a simetria de inversão espacial, resultando numa separação dos estados degenerados *upper e lower* (degenerescência de *Kramer*).

Referências

- [1] Shun. Lien.Chuang, Phys. Rev. B 43, 9649 (1991).
- [2] C. Y. P. Chao and S. L. Chuang, Phys. Rev. B 43, 7 027 (1990).
- [3] A. C. Bittencourt, A. M Cohen and G. E. Marques Phys. Rev. B 57, 4525 (1998).

Capitulo V

Conclusões

Apresentamos nesta dissertação o cálculo da transmissividade ressonante de buracos em heteroestruturas semicondutoras de GaAs/AlAs submetidas a tensões externas, usando a técnica da matriz de espalhamento na aproximação de massa efetiva do modelo de *Luttinger-Kohn*.

Esse problema, foi teoricamente investigado por *Chao* e *Wessel* [1], onde também foi utilizado o material do tipo GaAs/AlAs sem *stress*, porém com a técnica da matriz de transferência. Como resultado, observou-se um forte acoplamento entre os estados de *heavy-hole* e *light-hole*, o que resultou em um aumento da probabilidade de tunelamento de buracos nesses materiais. O *mixing* (mistura) é um forte mecanismo que muda a dinâmica dos buracos. Assim, um controle desse *mixing* é fundamental para melhorar as perfomaces dos dispositivos opto-eletrônicos, lasers, fotodetectores etc ; isso pode ser feito através de campos externos, como o campo elétrico e *stress*. Portanto o *stress* como uma perturbação externa, desempenha um papel importante na investigação das propriedades óticas e de transporte em heteroestruturas semicondutoras e oferece a possibilidade de projetar dispositivos opto-eletrônicos e de alta velocidade com a perfomace desejável.

Motivados pela versatilidade da técnica da matriz de espalhamento, que incorpora facilmente perturbações externas como campos elétricos e *stress*, nos propusemos nessa dissertação estudar os efeitos de pressões externas no tunelamento ressonante de buracos na banda de valência, para um sistema de dupla barreira do tipo GaAs/AlAs, na presença ou não de campo elétrico.

No cálculo das propriedades de transporte, usando a técnica da matriz de espalhamento, é fundamental conhecermos a natureza das soluções de k_z e as funções envelopes $\mathbf{F}(\mathbf{r})$ no cristal perfeito. Isso foi feito no capítulo 3 através da aproximação de massa efetiva. Afim de diminuir o custo computacional o Hamiltoniano de *Luttinger-Kohn-Pikus* foi bloco-diagonalizado em duas matrizes (2 × 2), upper e lower usando a aproximação axial. Os estados upper e lower E_{hh} e E_{lh} são degenerados sem a presença de campo elétrico

Dentro do esquema da matriz de espalhamento o momento k_z é uma quantidade importante para a construção da função de onda em cada região da heteroestrura, cuja a natureza para os dois tipos de portadores (buraco leve ou pesado) depende da energia E, do momento paralelo as camadas k_{ρ} e do tipo de esforço, tração (T > 0) e compressão(T > 0). Como foi visto no capítulo 3, para o esforço de compressão existem cinco energias críticas E_{C_1} , E_{C_2} , E_{C_3} e E_{C_4} , E_{CT} que dividem espectro de energia em cinco regiões, das quais dependem a natureza de k_z . Para o esforço de tração as energias críticas E_{C_1} e E_{C_2} , são funções reais, apenas a partir de um certo momento crítico, K_T , $= 2\sqrt{\frac{BQ_cC^2}{(C^4-2B^2C^2-4B^2D^2)}}$. Assim a natureza de k_z para a tração se divide em dois casos: (a) $0 < |k_{\rho}| < K_T$ e (b) $|k_x| > K_T$. Nos dois casos ocorre uma inversão da natureza das soluções de k_z (HH \Leftrightarrow LH), nas regiões (ii) e (iii) quando comparadas com o esforço de tração, provocando uma inversão nas magnitudes das curvas de transmissividades (HH out \Leftrightarrow LH out).

No capítulo IV, apresentamos e discutimos os resultados para a transmissividade de buracos em heteroestruturas semicondutoras de dupla barreira do tipo GaAs/AlAs sujeitas a *stress* uniaxial na direção de crescimento para os caso de $k_{\rho} = 0 \text{ e } k_{\rho} \neq 0$. Nesses resultados temos usado o fato de que as constantes elásticas no GaAs e AlAs são iguais, assim o termo hidrostático P_{ε} produz um *shifit* em toda a heteroestrutura, mais não muda a altura da barreira. Contudo, o termo Q_{ε} produz uma quebra de degenerescência dos estados de valência, provocando uma separação relativa dos níveis de buracos HH e LH na região do poço.

Como resultado geral, para $k_{\rho} = 0$ os buracos leves e pesados são desacoplados, e observa-se que a transmissividade dos buracos leves é maior que dos buracos pesados para qualquer tipo de esforço. Na compressão, $P_{\varepsilon} > 0$, $Q_{\varepsilon} < 0$; e como $|P_{\varepsilon}| > |Q_{\varepsilon}|$ observase um deslocamento rígido dos picos ressonantes na direção de crescimento da energia quando comparados com caso sem stress (T = 0). O inverso ocorre para a tração, onde $P_{\varepsilon} < 0$, $Q_{\varepsilon} < 0$, $|P_{\varepsilon}| > |Q_{\varepsilon}|$. Em ambos os esforços o deslocamento dos picos é maior para o buraco leve, que é a partícula mais leve. Dessa forma na tração, ocorre uma inversão do estado fundamental no poço quântico, passando de HH1 para LH1, isso foi verificado para $T = 8 \ kbar$.

Para $k \neq 0$, sem stress, ocorre um aumento das probabilidades de transmissão para qualquer canal de entrada, principalmente para os buracos pesados, quando comparados com o caso k = 0, que evidencia um forte acoplamento entre subbandas de buracos (HH,LH), que modifica suas massas efetivas na região do poço quântico. A inclusão do stress através do termo anisotrópico Q_{ε} , modifica a separação relativa entre os estados HH e LH e indiretamente modifica a estensão do *mixinq* (mistura). Assim na compressão, ocorre uma redução do mixing diminuindo a probabilidade de transmissão dos buracos pesados e leves. Como no caso sem *stress*, as curvas HH out estão sempre abaixo da curva LH out. Para o esforço de tração ocorre uma inversão da natureza de k_z e as probabilidades dos buracos pesados HH out é maior que dos buracos leves LH out. Ocorre uma redução da separação em energia dos estados fundamentais HH e LH no poço quântico em comparação com os caso sem stress e compressão, aumentando o mixing (mistura) entre os estados. Assim, devido ao aumento indireto do *mixing*, ocorre um aumento da transmissividade dos buracos pesados HH out e uma diminuição nos buracos leves LH out em comparação com os caso sem stress e compressão, para o mesmo valor de k_{ρ} .

Portanto o stress é um mecanismo importante que pode controlar a mistura dos

estados, as probalilidades e o tempo de tunelamento dos portadores, sendo um mecanismo importante que pode ser usado em dispositivos semicondutores para aumentar ou diminuir o transporte de partículas na direção de crescimento dessas heteroestruturas.

Para finalizar, entendemos que todos esses efeitos seriam melhor investigados através do cálculo da corrente de tunelamento. Infelizmente devido ao custo computacional e a limitação do tempo para o término dessa dissertação, reservamos essa tarefa para trabalhos futuros.

Referências

C. Y. P. Chao and S. L. Chuang, Phys. Rev. B 43, 7 027 (1990), R. Wessel and M. Altarelli, Phys. Rev. B 39, 12 802 (1989).