
 

UNIVERSIDADE FEDERAL DO AMAZONAS 
FACULDADE DE TECNOLOGIA 

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA 
ELÉTRICA 

 

 

 

 

 

 

ARQUITETURA REUTILIZÁVEL DE HARDWARE E 
SOFTWARE PARA SUPERVISÃO E CONTROLE REMOTOS 

DE SISTEMAS DE AUTOMAÇÃO INDUSTRIAL 

 

 

 

 

 

VICTOR ENRIQUE LAURIA VALENZUELA 

 

 

 

 

 

 

 

Manaus 

2013 



UNIVERSIDADE FEDERAL DO AMAZONAS 
FACULDADE DE TECNOLOGIA 

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA 
ELÉTRICA 

 

 

 

 

VICTOR ENRIQUE LAURIA VALENZUELA 

 

 

 

 

 

ARQUITETURA REUTILIZÁVEL DE HARDWARE E 
SOFTWARE PARA SUPERVISÃO E CONTROLE REMOTOS 

DE SISTEMAS DE AUTOMAÇÃO INDUSTRIAL 

 

 

 

Dissertação apresentada para o curso de 

Mestrado em Engenharia Elétrica do Programa 

de Pós-graduação em Engenharia Elétrica da 

Universidade Federal do Amazonas 

 

 

Orientador: Prof. Dr. –Ing. Vicente Ferreira de Lucena Júnior 

Co-Orientador: Prof. Dr. –Ing. Nasser Jazdi 

 

 

Manaus 

2013 



Ficha Catalográfica

V161a    Arquitetura de Hardware e Software para Supervisão e Controle
Remotos de Sistemas de Automação Industrial / Victor Enrique
Lauria Valenzuela. 2013
   123 f.: il. color; 30 cm.

   Orientador: Vicente Ferreira de Lucena Júnior
   Dissertação (Mestrado em Engenharia Elétrica) - Universidade
Federal do Amazonas.

   1. protocolos de automação industrial. 2. tecnologias web. 3.
supervisão remota. 4. automação industrial. I. Lucena Júnior,
Vicente Ferreira de II. Universidade Federal do Amazonas III. Título

Ficha catalográfica elaborada automaticamente de acordo com os dados fornecidos pelo(a) autor(a).

Valenzuela, Victor Enrique Lauria



VICTOR ENRIQUE LAURIA VALENZUELA 
 

 

 

 

 

 

 

ARQUITETURA REUTILIZÁVEL DE HARDWARE E 

SOFTWARE PARA SUPERVISÃO E CONTROLE REMOTOS 

DE SISTEMAS DE AUTOMAÇÃO INDUSTRIAL 

 

Dissertação de Mestrado em Engenharia Elétrica apresentada para a obtenção do título de M.Sc 

através do Programa de Pós-Graduação em Engenharia Elétrica da Universidade Federal do 

Amazonas. 

 

 

 

 

Banca examinadora 

 

 

 

Prof. Dr. –Ing. Vicente Ferreira de Lucena Júnior 

Universidade Federal do Amazonas – UFAM 

 

 

Prof. Dr. Lucas Carvalho Cordeiro  
Universidade Federal do Amazonas – UFAM 

 

 

Prof. Dr. Raimundo da Silva Barreto  
Universidade Federal do Amazonas – UFAM 



 

Resumo 

 

 

Com o aumento das demandas de mercado a nível mundial, em resposta ao crescimento 

econômico, os sistemas de automação industrial tornaram-se maiores e mais complexos a fim 

de atendê-las, o que também aumentou o número de falhas e a necessidade de manutenção. No 

entanto, as soluções em automação muitas vezes envolvem configurações proprietárias dos 

fabricantes de equipamentos industriais, prevenindo sistemas de automação de serem 

reutilizados em diferentes aplicações industriais sem grandes esforços de desenvolvimento. 

Então, sistemas reutilizáveis em um grande número de aplicações industriais diferentes são 

desejados por muitas empresas, visto que se podem reduzir os custos com o desenvolvimento, 

manutenção e treinamento, ainda mais se também permitem coleta remota de informação sobre 

seu estado de funcionamento. 

O presente trabalho apresenta uma arquitetura reutilizável, composta de hardware e de 

software, para monitorar e controlar os sistemas de automação. Esta, por sua vez, não se limita 

a uma única aplicação, podendo ser ligada a outras, desde que uma porta de acesso ao protocolo 

de automação esteja disponível. Isto é alcançado através da utilização de tecnologias 

padronizadas nas interfaces entre os componentes da arquitetura, bem como definindo as 

estruturas para o software em execução nos mesmos. Um protótipo foi desenvolvido com base 

na arquitetura proposta e seus casos de aplicação são apresentados em uma máquina industrial 

de café, ativada por voz e com protocolo CANOpen, bem como em uma rede de sensores e 

atuadores sem fio, com dispositivos ZigBee. Finalmente, o processo de implantação é descrito 

em um caso de aplicação generalizado. 

 
Palavras-chave: 

Protocolos de automação industrial, tecnologias web, supervisão remota, automação 

industrial. 



 

 

Abstract 

 

 

As market demands increased worldwide in response to economic growth, industrial 

automation systems became larger and more complex in order to meet these demands. This also 

increased the number of failures and maintenance necessity. However, solutions in automation 

often involve proprietary setups from manufacturers of industrial devices, preventing 

automation systems to be reused in different industrial applications without large efforts of 

development. Thus, systems that can be applied to a large number of industrial applications are 

desired by many companies, since they can reduce costs with deployment, maintenance and 

training, and even more if these systems also enable remote collection of information from their 

operation status. 

This work proposes a reusable hardware and software architecture to monitor and 

control industrial automation systems, which is not limited to a single industrial application; 

instead, it can be connected to any other one, as long as a communication port is available to 

access the process automation protocol. This is achieved by utilizing standardized technologies 

in the interfaces between components of the architecture, as well as by defining the structures 

of the software running on the hardware devices. A prototype was developed based on the 

proposed architecture and its application cases are later shown in a voice-activated coffee 

dispenser with a CANOpen protocol and in a wireless network of sensors and actuators with 

ZigBee-enabled devices. Finally, the deployment procedures of the prototype are described in 

a generalized application case. 

 
Keywords: 

Process automation protocols, web technologies, remote supervision, automation 

systems. 



 

Lista de Figuras 

 

 

Figura 0.1: Os níveis de automação fabril do padrão ANSI/ISA-95, usando a tecnologia 

ArchestrA (WONDERWARE).......................................................................................... 17 

Figura 0.2: Infraestrutura atual (esquerda) e proposta (direita) para redes industriais (BR&L 

CONSULTING). ............................................................................................................... 18 

Figura 0.3: Diagrama de componentes e interfaces. .......................................................... 25 

Figura 0.4: Componentes de software com a interface universal destacada. .................... 33 

Figura 0.5: Plataforma de hardware com as conexões para módulos de comuniação 

destacados. ......................................................................................................................... 34 

Figure 1.1: The ANSI/ISA-95 standard's levels of factory automation using the ArchestrA 

technology (WONDERWARE). ....................................................................................... 36 

Figure 1.2: Current (left) and proposed (right) IT infrastructure of industrial networks 

(BR&L CONSULTING). .................................................................................................. 37 

Figure 2.1: Stack Architecture for Web Services (WORLD WIDE WEB CONSORTIUM, 

2004b). ............................................................................................................................... 43 

Figure 2.2: SOAP Message Request and Response (WORLD WIDE WEB 

CONSORTIUM, 2000). .................................................................................................... 43 

Figure 2.3: HTTP request and response using REST constraints...................................... 45 

Figure 2.4: Examples of embedded systems. On the left there is an ECU from a car, and on 

the right, an iPhone 4. ........................................................................................................ 46 

Figure 2.5: Example of an industrial PLC from GE Fanuc. .............................................. 47 

Figure 2.6: Examples of programming languages used to program PLC. ........................ 48 

Figure 2.7: Examples of network topologies. .................................................................... 49 

Figure 2.8: Example of a SCADA system interface. ......................................................... 50 

Figure 4.1: Diagram of the components and interfaces. .................................................... 57 

Figure 4.2: Overview of the system architecture based on the requirements. ................... 58 

Figure 4.3: Use case scenario. ........................................................................................... 59 

Figure 4.4: Organization of knowledge for the distributed arrangement. ......................... 60 

Figure 4.5: Example of multiple devices to control and monitor automation systems. .... 61 

Figure 4.6: Organization of knowledge for the centralized arrangement. ......................... 61 

Figure 4.7: Remote access’s compatibility and flexibility illustration with the distributed 

arrangement. ...................................................................................................................... 62 

Figure 4.8: Overview of the architectural concept for the embedded platform. ............... 64 

Figure 4.9: Overview of the concept for different AS applications. ................................. 64 

Figure 4.10: Concept illustration for flexibility and modularity increase of the 

communication bus. ........................................................................................................... 65 

Figure 5.1: Use case diagram. ........................................................................................... 67 



 

Figure 5.2: Use case diagram with the components' boundaries ....................................... 68 

Figure 5.3: Proposed workflow based on the use case diagram. ....................................... 69 

Figure 5.4: Hardware components diagram. ..................................................................... 69 

Figure 5.5: Software architecture. ..................................................................................... 72 

Figure 5.6: User interface's realization diagram. ............................................................... 75 

Figure 5.7: Knowledge Base's realization diagram. .......................................................... 76 

Figure 5.8: Abstract data frame (a) and actual data frame (b) comparison. ...................... 77 

Figure 5.9: Example of CANOpen abstract message's conversion to XML format: (a) 

writing message and (b) reading message. ........................................................................ 79 

Figure 5.10: Example of ZigBee abstract message's conversion to XML format. ............ 79 

Figure 5.11: Examples of XML data returned in HTTP GET method responses. ............ 80 

Figure 5.12: Examples of POST (a) and GET (b) HTTP requests. ................................... 80 

Figure 5.13: Examples of POST (a) and GET (b) HTTP responses. ................................ 81 

Figure 5.14: Web Service server’s URI organization........................................................ 82 

Figure 5.15: Thread diagram and shared memory. ............................................................ 84 

Figure 5.16: Example of the preferences XML file........................................................... 85 

Figure 5.17: Relation between the Driver Management and the Protocol Stack 

subcomponents. ................................................................................................................. 86 

Figure 5.18: Structure of an initialized Driver Management thread. ................................ 86 

Figure 5.19: Composition of the Protocol Stack for different communication protocols. 87 

Figure 5.20: The hardware components expanded. ........................................................... 89 

Figure 5.21: Example of transceiver board for CAN protocol. ......................................... 90 

Figure 5.22: Diagram of electronic circuits present in the motherboard. .......................... 92 

Figure 6.1: The CombiNation S from WMF. .................................................................... 94 

Figure 6.2: Connection diagram of the Voice activated coffee machine. ......................... 95 

Figure 6.3: RCOM-HomeBee automation board from Rogercom (ROGERCOM). ......... 97 

Figure 6.4: Connection diagram of the Voice activated coffee machine. ......................... 98 

Figure 6.5: Software components with the universal interface highlighted. ................... 100 

Figure 6.6: Hardware platform with highlighted connections for communication 

modules. ........................................................................................................................... 101 

Figure A.1: OEM Boards examples: (a) Embedded Artists' EA3250, (b) FriendlyArm's 

Tiny6410 and (c) Critical Link's MityARM-1808. ......................................................... 111 

Figure A.2: Embedded Artists' LPC3250 OEM board. ................................................... 111 

Figure A.3: OEM board's components diagram. ............................................................. 111 

Figure A.4: OEM board's width and height measurements (frontal view). ..................... 113 

Figure A.5: OEM board's depth measurements (side view). ........................................... 113 

Figure A.6: SO-DIMM connector from Tyco Electronics. ............................................. 115 

Figure A.7: The embedded platform, top view. .............................................................. 116 

Figure A.8: The motherboard, top and bottom views...................................................... 116 

Figure A.9: CAN transceiver board using SPI interface. ................................................ 117 

Figure A.10: RS232 transceiver using UART’s serial interface. .................................... 118 

Figure A.11: MAXIM'S MAX134301E RS485 transceiver. .......................................... 118 



 

Figure B.1: Motherboard schematics, page 1: SODIMM connector and current 

measurer........................................................................................................................... 120 

Figure B.2: Motherboard schematics, page 2: power supply and Ethernet connector. ... 121 

Figure B.3: Motherboard schematics, page 3: USB host and USB debugging port. ...... 122 

Figure B.4: Motherboard schematics, page 4: GPIO, SD/MMC card interface and 

transceiver interfaces. ...................................................................................................... 123 



 

Lista de Tabelas 

 

 

Tabela 0.1: Tabela de comparação baseada na análise dos parâmetros de flexibilidade, 

modularidade e compatibilidade. ....................................................................................... 24 

Tabela 0.2: Tabela de comparação de implementações dos casos de uso. ........................ 32 

Tabela 0.3: Configuração de pinos da interface para transceptores. ................................. 33 

Table 3.1: Comparison chart based on the analysis of flexibility, modularity, and 

compatibility parameters. .................................................................................................. 55 

Table 5.1: Comparison between SOAP and REST approaches for Web Services............ 78 

Table 6.1: Comparison chart of the implementations for both application cases.............. 99 

Table A.1: Transceiver interface's pin configuration ...................................................... 114 



 

Lista de Abreviações 

 

 

ABS Anti-lock Braking System 

ADC Analog-Digital Converter 

ANSI American National Standards Institute 

API Application Programming Interface 

ARM Advanced RISC Machine 

CAN Controller Area Network 

CANOpen Application-layer protocol for CAN network 

CIM Computer-Integrated Manufacturing 

CISC Complex Instruction Set Computer 

CPU Central Processing Unit 

DAC Digital-Analog Converter 

EMC Electromagnetic   

ESD Electrostatic Discharge 

FCS Flight Control System 

FTP File Transfer Protocol 

GPIO General Purpose Input and Output 

GPS Global Positioning System 

GUI Graphic User Interface 

HMI Human-Machine-Interface 

HTML Hypertext Markup Language 

HTTP Hypertext  Transfer Protocol 

IAS Institut für Automatisierungs- und Softwaretechnik 

IC Integrated Circuit 

ID Identifier 

IEEE Institute for Electrical and Electronics Engineering 

I²C Inter-Integrated Circuit 



 

IPC Industrial Personal Computer 

ISA International Society of Automation 

JSON  JavaScript Object Notation 

LED Light Emitting Diode 

LAN Local Area Network 

M2M Machine to machine 

MES Manufacturing Execution Systems 

MESA Manufacturing Enterprise Solutions Association 

MMU Memory Management Unit 

OEM Original Equipment Manufacturer 

OPC Object Linking and Embedding for Process Control 

OS Operating System 

PC Personal Computer 

PCB Printed Circuit Board 

PHY Physical layer 

PLC Programmable Logic Controller 

RAM Random Access Memory 

REST Representational State Transfer 

REPAC Ready, Execute, Process, Analyze, and Coordinate 

RISC Reduced Instruction Set Computer 

RF Radio Frequency 

ROM Read-Only Memory 

RPC Remote Procedure Call 

RTC Real-Time Clock 

SCADA Supervisory Control and Data Acquisition  

SCOR Supply-Chain Operations Reference 

SDK Software Development Kit 

SMTP Simple Mail Transfer Protocol 

SPI Serial Peripheral Interface 

SoC System-on-a-Chip 

SODIMM Small Outline Dual In-line Memory Module 

SOAP Simple Object Access Protocol 

UART Universal Asynchronous Receiver/Transmitter 



 

URI Uniform Resource Identifier 

USB Universal Serial Bus 

WLAN  Wireless Local Area Network 

WPAN Wireless Personal Area Network 

WSD Web Service Description 

WSDL Web Service Description Language 

XML Extended Markup Language 

XML Infoset Extended Markup Language Information Set 

 



 

Lista de Termos 

 

 

CAN It is a vehicle bus standard developed by Bosch. It is a physical 

layer protocol that is widely used on the automation world. 

CANOpen It is a communication protocol based on the CAN Application 

Layer. It defines communication profiles and mechanisms for 

exchanging data between CANOpen devices. 

Embedded Systems They are less powerful computers designed to specific solutions, 

which involve mainly controlling techniques. These systems are 

found in innumerous devices. 

Institute for Electrical and 

Electronics Engineering 

It is an association dedicated to promoting technology 

advancement through publications, standardization, and 

education in the fields of Electrical and Electronics Engineering 

and Computer Science.  

Industrial Automation 

System 

A system that automates a technical process. For example, a 

plastic injection machine or an automatic insertion machine. 

Microcontroller It is a small IC that has a CPU, RAM memory, Programming 

memory and GPIOs, but has very limited processing when 

compared to a normal PC. 

OEM It is designated to a company that manufactures and sells products 

or components that are retailed under the purchasing company’s 

brand. This is common in the automotive industry. 

Operating Systems They are a set of software tools that run on a computer, manage 

hardware resources and provide services for programs to run on 

the PC. 



 

Real-time It is said of hardware and software systems that are defined to 

operate using time constraints. These systems define that a 

response from an execution of a task will always be available at 

after the same time. 

RESTlet It is an open-source REST framework for the Java programming 

language. 

Time-critical  Said of systems that have operations that must be controlled using 

real-time practices. For example an ABS brakes or nuclear power 

plants systems. 

Wi-Fi Alliance It is a trade association responsible for promoting the Wi-Fi 

technology and for certifying Wi-Fi products. 

World Wide Web It is a system of interconnected hypertext documents that 

accessed via Internet and visualized on a Web Browser. 

World Wide Web 

Consortium 

It is an international organization responsible for providing 

standards for the World Wide Web. 

ZigBee It is a specification for communication protocols to create WPAN 

of small, low-power radios. It is based on the IEEE 802.15 

standard to provide mesh networking. 



 

Sumário 

 

 

Resumo estendido .............................................................................................................. 15 

Chapter 1 Introduction .................................................................................................. 35 

1.1 Motivation .................................................................................................................... 37 

1.2 Objectives ..................................................................................................................... 38 

1.3 Organization ................................................................................................................. 39 

Chapter 2 Background ................................................................................................... 41 

2.1 Web services ................................................................................................................. 41 
2.1.1 SOAP ......................................................................................................................... 42 
2.1.2 REST .......................................................................................................................... 44 
2.2 Embedded systems in automation and its applications ................................................ 45 
2.2.1 Programmable logic controllers ................................................................................. 46 
2.2.2 Industrial networks and communications protocols ................................................... 49 
2.2.3 SCADA systems ........................................................................................................ 50 
2.3 Summary ...................................................................................................................... 51 

Chapter 3 Related work ................................................................................................. 52 

3.1 Analysis of similar architectures .................................................................................. 52 
3.2 Summary ...................................................................................................................... 55 

Chapter 4 Conception of the architecture .................................................................... 57 

4.1 Problem analysis and overview .................................................................................... 57 

4.2 Remote terminal ........................................................................................................... 59 

4.3 Remote access .............................................................................................................. 62 

4.4 Embedded platform ...................................................................................................... 63 

4.5 Communication bus ...................................................................................................... 65 

4.6 Summary ...................................................................................................................... 66 

Chapter 5 Proposed solution ......................................................................................... 67 

5.1 Model of the solution ................................................................................................... 67 
5.1.1 Design decisions ........................................................................................................ 70 
5.2 Software solution .......................................................................................................... 71 
5.2.1 Software architecture ................................................................................................. 71 
5.2.2 Software realization ................................................................................................... 74 
5.2.2.1 User Interface ...................................................................................................... 74 
5.2.2.2 Knowledge Base ................................................................................................. 75 
5.2.2.3 Web Service Client ............................................................................................. 77 
5.2.2.4 Web Service Server ............................................................................................. 81 



 

5.2.2.5 Driver Management ............................................................................................ 84 
5.2.2.6 Protocol Stack ..................................................................................................... 86 
5.3 Hardware solution ........................................................................................................ 88 
5.3.1 Hardware architecture ................................................................................................ 88 
5.3.2 Hardware realization .................................................................................................. 92 
5.4 Summary ...................................................................................................................... 92 

Chapter 6 Case studies ................................................................................................... 94 

6.1 Voice activated coffee machine.................................................................................... 94 

6.2 Wireless sensors and actuators network gateway ......................................................... 96 

6.3 Deploying for different applications ............................................................................ 98 

6.4 Overall analysis of the cases......................................................................................... 99 

6.5 Summary .................................................................................................................... 101 

Chapter 7 Conclusions ................................................................................................. 103 

7.1 Future work ................................................................................................................ 104 

References  ...................................................................................................................... 106 

Appendix A - Hardware prototype ................................................................................ 110 

CPU board ......................................................................................................................... 110 

Motherboard ...................................................................................................................... 112 

Transceiver board .............................................................................................................. 117 

Remote connections ........................................................................................................... 118 

Appendix B - Motherboard schematics ......................................................................... 120 



15 
 

 

Resumo estendido 

Este capítulo tem como objetivo apresentar os aspectos importantes deste trabalho de 

forma resumida e em língua portuguesa, visto que este trabalho foi originalmente escrito em 

língua inglesa para ser apresentado no Instituto de Automação Industrial e Engenharia de 

Software (IAS), localizado na cidade de Stuttgart, Alemanha. No seu formato original, este 

trabalho possui sete capítulos, os quais descrevem o problema, a motivação, os fundamentos 

teóricos necessários, os trabalhos relacionados, o conceito proposto, a realização do protótipo 

e a avaliação de resultados obtidos. Este conteúdo será explicado nesta seção de forma 

sintetizada, logo, o capítulo equivalente no texto original deverá ser consultado para maiores 

detalhes. Esta seção é dividida em sete seções, as quais são as seguintes: introdução, 

fundamentos teóricos, trabalhos relacionados, conceito da arquitetura, solução proposta, casos 

de aplicação e conclusão. 

Introdução 

Controle e Automação é um campo da engenharia responsável por pesquisar métodos e 

mecanismos capazes de tornar automáticos e eficientes os processos técnicos industriais por 

meio da redução da interferência humana, ou capazes de aumentar a precisão de ferramentas 

usadas nesses processos. Os sistemas que automatizam processos técnicos, chamados sistemas 

de automação, são compostos basicamente de dispositivos eletrônicos e mecânicos, os quais 

são capazes de realizar tarefas de forma mais precisa e mais rápida que humanos (IAS, 2010a). 

Em resposta às demandas de mercado, as plantas industriais e processos técnicos 

tornaram-se maiores e mais complexos, o que consolidou a presença dos sistemas de automação 

na indústria moderna. Entretanto, esse crescimento criou demanda de gerenciamento de 

informação em diferentes níveis das fábricas com o objetivo de melhorar a eficiência 

operacional da planta industrial. O conceito de Computer Integrated Manufacturing (CIM) dos 

anos 70 foi a primeira tentativa de alcançar o objetivo de padronização do gerenciamento de 

todos os departamentos das fábricas, desde a camada administrativa até as linhas de produção 

(SAUTER, 2011, p. 36). Posteriormente surgiram novos modelos, tais como Supply-Chain 

Operations Reference (SCOR) desenvolvido pelo Supply-Chain Council, o Manufacturing 

Execution Systems desenvolvido por Manufacturing Enterprise Solutions Assostiation 



Resumo estendido   16 

International (MESA International) e o Ready, Execute, Process, Analyze and Coordinate 

(REPAC) da AMR Research, para definir aplicações de manufatura a partir de uma perspectiva 

funcional (UNGER, 2001, p. 46). 

Esses modelos são usados pelo padrão ANSI/ISA-95 para definir uma arquitetura para 

automação fabril de cinco níveis, mostrada no exemplo da Figura 0.1. Cada nível representa 

parte do chão de fábrica: no nível 1, encontra-se o processo técnico; no nível 2, encontram-se 

os equipamentos de controle de processo; no nível 3, a supervisão de processo fornece 

mecanismos para monitorar parâmetros do processo; no nível 4, encontra-se a supervisão de 

produto, a qual monitora a produção a partir da perspectiva do produto final; e no nível 5 

encontra-se o gerenciamento da planta como um todo. 

A estrutura piramidal apresentada na Figura 0.1 foi empregada em várias plantas 

industriais, o que implicou aumento da complexidade do ambiente fabril. Consequentemente, 

sistemas de automação mais complexos começaram a surgir, requisitando mais supervisão da 

operação das máquinas e causando aumento no número de dispositivos para controle. Isso 

causou também aumento no número de falhas e requisitos de manutenção para estes sistemas. 

Assim, engenheiros e técnicos devem estar preparados constantemente para reagir a situações 

planejadas e não-planejadas, de forma a manter esses sistemas em funcionamento. Entretanto, 

tais reações requerem mecanismos que garantam acesso rápido à informação confiável sobre o 

sistema de automação, assim como disponibilizar intervenção rápida no processo técnico caso 

necessário. 

A construção desses sistemas de automação complexos, e também de suas ferramentas 

de supervisão, geralmente envolve o uso de soluções proprietárias pré-definidas de fabricantes 

de dispositivos industriais. Essas soluções operam apenas com dispositivos pré-determinados 

de Interface Homem-Máquina (HMI), sensores, atuadores, Controladores Lógicos 

Programáveis (PLC) e protocolos de comunicação. Mesmo que essa abordagem garanta 

controle robusto e confiável de processos técnicos, não é possível transferir o sistema de 

automação e mecanismos de supervisão para outras aplicações industriais. Esse procedimento 

requer nova especificação completa do projeto para habilitar a supervisão em outros casos de 

aplicação, visto que pouca, ou nenhuma, padronização é aplicada no desenvolvimento de 

sistemas de automação industrial. Tais características definem os sistemas de automação e 

ferramentas de supervisão como soluções industriais altamente especializadas e dependentes 

do fabricante, o que implica na redução da flexibilidade, da modularidade e da compatibilidade 

entre dispositivos de automação e níveis da planta fabril. 



Resumo estendido   17 

 

Figura 0.1: Os níveis de automação fabril do padrão ANSI/ISA-95, usando a tecnologia ArchestrA 

(WONDERWARE). 

Atualmente, as redes industriais compatíveis com ANSI/ISA-95 possuem a 

infraestrutura apresentada na Figura 0.1, porém as melhorias citadas anteriormente não são 

alcançadas com essa organização estrutural atual. Por isso, uma abordagem para aumentar 

flexibilidade, modularidade e compatibilidade deve adicionar a combinação de hardware e 

software à rede industrial, como mostra a Figura 0.2, com o intuito de isolar das redes de 

supervisão os dispositivos de controle de processo atuais. Esse isolamento traria benefícios para 

a supervisão e controle, tais como o uso de dispositivos computacionais comuns em vez de 

dispositivos industriais especializados, além de permitir a inclusão de novas funcionalidades 

aos sistemas de automação industrial. 



Resumo estendido   18 

 

Figura 0.2: Infraestrutura atual (esquerda) e proposta (direita) para redes industriais (BR&L CONSULTING). 

Motivação 

Usar sistemas de automação flexíveis, modulares e compatíveis na indústria, assim 

como suas ferramentas de supervisão, permite que fábricas sejam fáceis de operar, projetar, 

montar e adaptar a novos produtos, usando linhas de produção variáveis (LASTRA, 2008). Sem 

flexibilidade em fábricas, o modelo hierárquico apresentado na Figura 0.1 torna-se estático e 

possui problemas para adaptação às mudanças de pedidos de clientes, para a fixação de novos 

dispositivos de campo e para a reação a casos de exceção nos níveis 0 e 1 (BRATUKHIN, 2010; 

STARKE, 2013). Também há consenso entre diversos especialistas da indústria sobre o fato de 

que componentes de campo, tais como sensores, atuadores, dispositivos eletrônicos, células e 

mesmo linhas de produção inteiras, deveriam ser Plug & Play, ou seja, fáceis de configurar 

(CUCINOTTA et al, 2009). 

Em um esforço para fornecer acesso remoto aos sistemas de automação mencionados 

acima, uma arquitetura deve fornecer a base para integrar os níveis 1 e 2, como mostra a Figura 

0.2, aumentando a modularidade, a flexibilidade e a compatibilidade das ferramentas de 

supervisão. Como um resultado, essa integração pode ser usada para elaborar funcionalidades 

de alto nível, como reconfiguração de software em tempo de execução, diagnóstico remoto, 

monitoramento remoto e interfaces homem-máquina avançadas. 

As estruturas de hardware e software usadas para fornecer a integração reduzem os 

esforços de desenvolvimento para conectar ferramentas de supervisão aos sistemas de 

automação, além de permitir que a conexão de monitoramento e controle seja remota. A 

estrutura de hardware permite acesso aos barramentos de comunicação de vários protocolos de 

comunicação industrial, o que permite aos técnicos e engenheiros flexibilidade de usar a mesma 



Resumo estendido   19 

plataforma de hardware como gateway para os dados de sistemas de automação. Em quanto 

isso, a estrutura de software reduz o processo de integração de pilhas de protocolo que não 

fazem parte dela, mesmo as pilhas de protocolo que sejam proprietárias. Essa mesma estrutura 

também permite que múltiplos dispositivos conectem-se como terminais de acesso remoto. 

Juntas as duas abordagens garantem acesso remoto transparente às informações de 

processo, ou ao controle de sistemas de automação, por meio do uso de tecnologias 

padronizadas que sejam independentes de plataforma. Isso oferece flexibilidade a técnicos e 

engenheiros de usarem quaisquer linguagens de programação e plataformas de 

desenvolvimento no terminal de acesso remoto. Desta forma, a arquitetura reduz-se a uma 

plataforma de hardware que pode ser conectada a qualquer barramento de comunicação 

suportado, em conjunto com uma estrutura de software modular que permite qualquer 

dispositivo com capacidade computacional realizar a tarefa de terminal de acesso remoto, como 

mostra a Figura 0.2. 

Um benefício desta arquitetura é o uso de qualquer dispositivo capaz de conectar-se a 

redes WLAN ou LAN como terminal de acesso remoto, sejam estes PC Industriais (IPC), 

Smartphones, Tablets ou Single Board Computers (SBC). Além disso, o software de supervisão 

pode usar qualquer tipo de API ou biblioteca para gerar e processar informações relacionadas 

a sistemas de automação industrial. Neste caso podem ser utilizados lógica fuzzy, algoritmos 

de redes neurais, processamento de voz ou simples lógica de programação. 

Objetivos 

Como objetivo primário, este trabalho propõe uma arquitetura para supervisão e 

controle de sistemas de automação industrial, a qual utiliza tecnologias padronizadas de 

hardware e software para aumentar a flexibilidade, a modularidade e a compatibilidade com o 

intuito de reduzir esforços de integração com diferentes aplicações industriais. 

O objetivo acima é alcançado ao completar-se os cinco objetivos específicos 

determinados por uma análise de solução: 

§ Analisar diferentes arquiteturas para determinar o melhor arranjo de hardware e 

software para supervisão e controle. 

§ Elaborar uma interface universal para permitir a supervisão e o controle remotos de 

sistemas de automação industrial. Essa interface deverá permitir acesso transparente 

para múltiplos sistemas sem priorizar um em detrimento de outro. 

§ Elaborar módulos de comunicação como interfaces com sistemas de automação 

industrial, baseados no arranjo escolhido. Esta interface deverá usar uma conexão 



Resumo estendido   20 

comum a todos os módulos para permitir permutabilidade entre eles, e assim, permitir 

acesso a diferentes protocolos de automação de processo. 

§ Desenvolver uma plataforma de hardware para comunicar com sistemas de 

automação industrial, que possua a interface universal e os módulos de comunicação. 

Esta plataforma deverá reduzir os esforços para permitir supervisão e controle 

remotos de múltiplos sistemas de automação industrial. 

§ Experimentar múltiplos casos de uso de controle e monitoramento de sistemas de 

automação industrial. 

Organização 

Esta dissertação é organizada em oito capítulos, um em língua portuguesa e os demais 

em língua inglesa, os quais são apresentados como segue: no capítulo 1 é apresentado um 

resumo do trabalho em língua portuguesa, contendo apenas os aspectos mais importantes de 

cada um dos capítulos subsequentes; encontra-se no capítulo 2 a introdução  em língua inglesa, 

onde descreve-se o problema, a motivação e os objetivos; o capítulo 3 apresenta os conceitos 

de web services que são usados em comunicações máquina-a-máquina (machine-to-machine ou 

M2M), mais especificamente SOAP e REST. Também são apresentados neste capítulo os 

conceitos de alguns dispositivos e tecnologias usados em automação industrial, tais como PLC 

e Supervisory Control and Data Acquisition (SCADA); no capítulo 4, realiza-se a análise dos 

trabalhos relacionados, utilizando como parâmetros de comparação a flexibilidade, a 

modularidade e a compatibilidade dos métodos propostos para supervisão e controle de sistemas 

de automação. Estas informações são, então, comparadas com a solução proposta por este 

trabalho; o conceito da arquitetura é explicado no capítulo 5 em relação às características que 

cada componente e interface deverá possuir, o que poderá envolver métodos de comunicação, 

formatos de dados, estrutura de software, todos padronizados, a fim de solucionar o problema. 

A realização do conceito de arquitetura é então explicada no capítulo 6 por meio da 

descrição das tecnologias e dos princípios de funcionamento tanto de hardware, quanto de 

software, integrados no protótipo desenvolvido para solucionar o problema; descreve-se no 

capítulo os experimentos realizados com o protótipo em casos reais. Em cada caso discute-se 

as estruturas de software específicas para a aplicação em questão, assim como os módulos de 

comunicação utilizados para permitir a comunicação com o sistema de automação industrial. 

Também é descrito o processo de integração do protótipo a novas aplicações industriais. No 

fim do capítulo os resultados são discutidos através de uma comparação entre os casos de uso 

em respeito às modificações necessárias para cada um; por fim, no capítulo 8, este trabalho é 



Resumo estendido   21 

concluído com a apresentação de aspectos importantes e obstáculos encontrados durante o 

desenvolvimento. Os trabalhos futuros também são apresentados, os quais não descrevem 

apenas melhorias técnicas para o uso comercial do protótipo, mas também a evolução da 

arquitetura, como a integração dos níveis 1 e 2 do padrão ISA-95 com serviço de computação 

em nuvem para gerenciamento flexível de fábricas. 

Fundamentação teórica 

A fim de compreender os conceitos e as soluções discutidas neste trabalho, é necessário 

entender como funcionam algumas tecnologias, bem como compreender alguns componentes 

usados em sistemas de automação industrial. A primeira tecnologia a ser descrita é o web 

service, o qual é um método de comunicação que permite dois dispositivos distintos trocarem 

informações através de uma rede. Em seguida, descreve-se um ramo dos dispositivos 

computacionais, chamados de sistemas embarcados, e seu uso como componentes de sistemas 

de automação industrial. Este tópico aborda principalmente dispositivos utilizados para 

automatizar os processos técnicos e os métodos de comunicação entre eles. 

Web service 

A padronização da Web, agregados no chamado Padrão da Internet, permitiu definir 

interfaces de comunicação por meio de protocolos com sintaxe, semântica e restrições 

específicas, a fim de coordenar o sequenciamento na troca de mensagens. Isto permitiu esta 

forma de comunicação ser independente de plataformas e linguagens de programação, 

garantindo-lhe a classificação como framework (WORLD WIDE WEB CONSORTIUM, 

2004a; WORLD WIDE WEB CONSORTIUM, 2004b). 

Qualquer software que implemente essas interfaces possui funções de web service, logo, 

permite a comunicação entre dispositivos por meio de uma rede, mais especificamente, uma 

rede IP. As mensagens trocadas através desta interface devem ser processáveis pelos 

dispositivos computacionais e transportadas por meio do protocolo de aplicação HTTP, 

podendo usar serialização XML, ou outro padrão de formatação. A comunicação opera com 

uma estrutura cliente-servidor, onde o cliente é responsável por enviar e receber mensagens 

através dos métodos fornecidos pelas funções de web service, enquanto que o servidor fornece 

os métodos de acesso, além de ser responsável por processar e retornar as informações baseadas 

na requisição do software cliente. Deve-se salientar que a comunicação entre servidor e cliente 

é possível apenas quando ambos utilizam o mesmo protocolo, como por exemplo o HTTP 

(WORLD WIDE WEB CONSORTIUM, 2004b). 



Resumo estendido   22 

Há duas principais abordagens para a elaboração de um web service, baseados em SOAP 

ou baseados em REST. O primeiro é a abreviação de Simple Object Access Protocol, ou 

Protocolo Simples de Acesso a Objetos. A comunicação utilizando este protocolo utiliza um 

formato de encapsulamento orientado à mensagem, ou seja, às informações transmitidas. Por 

outro lado, REST é a abreviação de Representational State Transfer, ou Transferência 

Representacional de Estado, em que a comunicação é determinada pelo recurso o qual se está 

compartilhando. As duas abordagens utilizam o protocolo HTTP para transmitir os dados, 

entretanto, web services baseados em SOAP utilizam apenas o XML como tipo de formado de 

dados, enquanto que aqueles baseados em REST podem utilizar outros formatos, como JSON, 

arquivos de texto, imagens, dentre outros. 

Sistemas embarcados na automação e suas aplicações 

A principal definição para o termo “sistema embarcado” diz que são dispositivos que 

combinam soluções de hardware e software projetadas para uma finalidade específica. Existem 

inúmeras aplicações para sistemas embarcados, dentre as quais estão diversos aparelhos 

eletrônicos (televisores, tocadores de Blu-Ray e MP3, GPS e Smartphones) e também sistemas 

complexos que exigem respostas em tempo real (freios ABS, sistemas de injeção de 

combustível, sistemas de controle de voo em aviões).  

Grande parte dos dispositivos implantados em sistemas de automação industrial são uma 

especialização dos sistemas embarcados, concebidos para proporcionar entradas e saídas 

digitais e/ou analógicas, assim como métodos de comunicação para automatizar processos 

técnicos, os quais são chamados de Controladores Lógicos Programáveis (PLC). Estes 

dispositivos eletrônicos executam um firmware desenvolvido por seus respectivos fabricantes 

com apenas três tarefas em repetição: lê-se as entradas (digitais e/ou analógicas), depois 

executa-se o programa armazenado na memória interna com base na informação lida e, 

finalmente, atualiza-se as saídas com base na execução do programa (ROSARIO, 2005).  

Por conta do uso destes equipamentos em indústrias, os mesmos são construídos para 

operar continuamente e suportar condições severas de funcionamento, tais como temperaturas 

elevadas, vibrações e partículas suspensas no ar. Entretanto, antes de serem aplicados na 

indústria, os CLP precisam ser programados e configurados para realizarem o controle de um 

sistema de automação industrial. Faz-se os programas com as linguagens padronizadas pela 

Norma IEC 61131-3: Ladder (LD), Diagrama de Blocos Funcional (Functional Block Diagram 

– FBD), Texto Estruturado (Structured Text – ST), Lista de Instruções (Instruction List – IL) e 

Gráfico de Funções Sequenciais (Sequential Function Charts – SFC), em ambientes de 



Resumo estendido   23 

programação específicos para cada fabricante. Por fim, gravação do programa desenvolvido é 

feita através de barramentos como RS-232, RS-485 ou Ethernet, os quais também podem ser 

usados para comunicação entre diferentes CLP. 

Aplicar CLP no controle de processos técnicos grandes e complexos requer a utilização 

de redes industriais e protocolos de comunicação. A definição destes dois componentes 

beneficia a comunicação entre os diferentes dispositivos presentes no sistema de automação 

industrial, pois determinam a resistência a interferência eletromagnética na comunicação gerada 

por máquinas pesadas e pela rede elétrica, a velocidade com que dados são trocados entre os 

dispositivos, o gerenciamento da topologia de rede em que são ligados os dispositivos para 

evitar perda de pacotes e otimizar a comunicação. 

Aproveitando-se das redes industriais, os sistemas SCADA são programas de 

computador projetados para agregar informações sobre o sistema de automação e exibi-las para 

o usuário através da Interface Homem-Máquina (HMI). Por meio destes programas de software, 

o operador avalia e controla os sistemas de automação (ROSARIO, 2005), o que permite aos 

departamentos de manutenção avaliarem problemas e tomarem, rapidamente, medidas 

preventivas, ou corretivas, além de também permitir gerencia da eficiência produtiva da fábrica. 

Trabalhos relacionados 

A seleção dos trabalhos relacionados ateve-se a modelos e arquiteturas capazes de 

realizar monitoramento e controle de sistemas de automação industrial remotamente. A solução 

proposta de cada obra deve permitir a ligação com aplicações SCADA, ou propor a sua própria 

interface de supervisão e controle. A análise de cada trabalho foi feita considerando melhorias 

de flexibilidade, modularidade e compatibilidade. Em geral, uma solução é considerada flexível 

caso possa ser facilmente adaptada a diferentes aplicações industriais, ou seja, com baixos 

esforços de desenvolvimento. Além disso, a análise também considera as seguintes 

características: 

§ Flexibilidade define a tolerância da solução ao uso de diferentes dispositivos para 

monitoramento e controle do sistema de automação industrial.  

§ Modularidade define a condição dos componentes de serem independentes uns dos 

outros, o que permite o uso de diferentes módulos, dispositivos ou adaptadores sem 

exigir nova construção do sistema.  

§ Compatibilidade define o foco da comunicação sobre os dados, ao invés do método 

de acesso, o que possibilita o uso de software diferentes para o mesmo fim. 



Resumo estendido   24 

Tabela 0.1: Tabela de comparação baseada na análise dos parâmetros de flexibilidade, modularidade e 

compatibilidade. 

 

A análise mostra a dependência das soluções de supervisão dos processos técnicos aos 

quais estão conectadas, assim como de comunicações e equipamentos específicos do fabricante. 

Soluções que são independentes de software cliente e permitem a integração com vários 

programas são mais propensas a serem implantadas em diferentes aplicações, como o caso do 

OPC UA. No entanto, não há foco em reutilização de hardware, ou seja, nos dispositivos que 

se conectam a sistemas de automação para coletar dados e alimentar programas de gestão de 

fábrica, além de permitirem o controle remoto dos mesmos. Na Tabela 0.1 é apresentada o 

resumo da análise de cada trabalho relacionado e a comparação com a solução proposta deste 

trabalho. 

Os resultados de comparação na Tabela 0.1 foram baseados na melhoria das 

propriedades flexibilidade, modularidade e compatibilidade. Para as melhorias de flexibilidade, 

foi avaliado se o sistema de supervisão pode desempenhar as suas funções por meio de vários 

barramentos diferentes, e se o mesmo sistema poderia ser implantado em vários processos 

técnicos sem a necessidade de reconstruir todos os seus componentes de software e hardware. 

Em relação à melhoria modularidade, foi avaliado se o sistema poderia desempenhar suas 

tarefas independentemente do terminal remoto e do barramento de comunicação conectados ao 



Resumo estendido   25 

sistema. A melhora compatibilidade avaliou a possibilidade de realização de supervisão e 

controle de diferentes programas de software. 

Este trabalho propõe então uma solução que se aproxima do OPC UA, mas com 

mudanças fundamentais para melhorar a reutilização de hardware e, consequentemente, reduzir 

os esforços de implantação em diferentes aplicações na indústria. Herdam-se os modelos para 

acesso remoto via HTTP e web services empregados pela maioria dos trabalhos relacionados, 

mas concentra-se nas realizações de desempenho de (PRÜTER, 2009) para fornecer supervisão 

e controle do sistema de automação industrial remoto. 

Conceito da arquitetura 

Sabe-se que os elementos básicos que compõem os sistemas de automação industrial 

são o sistema de controle, o sistema de supervisão (seja SCADA, seja proprietário) e a rede 

industrial. No entanto, muitos sistemas de automação não possuem supervisão remota, o que 

demanda a adição de outro dispositivo de hardware para extrair os dados do PLC, IPC ou 

qualquer dispositivo responsável pelo controle do processo técnico. Assim, é possível 

simplificar a arquitetura no diagrama mostrado na Figura 0.3, o qual é composto por quatro 

componentes e duas interfaces. Dentre os componentes estão o usuário, o terminal remoto, a 

plataforma embarcada e o sistema de automatização industrial, enquanto que as interfaces são 

o acesso remoto e o barramento de comunicação. O usuário e o sistema de automação industrial 

não são considerados neste conceito, pois o primeiro é responsável por inserir solicitações no 

sistema, já o segundo é onde essas solicitações serão executadas. 

 

Figura 0.3: Diagrama de componentes e interfaces. 

A arquitetura de hardware e software, então, deve melhorar a flexibilidade, 

modularidade e compatibilidade, visto que um sistema que a emprega deverá ser reutilizado em 

diversas aplicações, com qualquer terminal remoto e por meio de qualquer protocolo de 

comunicação industrial. Isso significa que as funções das interfaces e dos componentes são as 

mesmas, independente dos equipamentos utilizados terminal remoto, sistema embarcado ou 

sistema de automação industrial. Desta forma, uma solicitação de pedido de controle, ou 

monitoramento (diagnóstico), do sistema de automação industrial terá a seguinte sequência: o 



Resumo estendido   26 

usuário interage com a interface do terminal remoto e seleciona uma opção. Os dados que 

representam o pedido do usuário são enviados para a plataforma embarcada através da interface 

de acesso remoto. Esses dados são então recebidos pela plataforma embarcada e encaminhados 

para o sistema de automação industrial utilizando o barramento de comunicação. Por fim, todos 

os dados recebidos do sistema de automatização industrial são armazenados na plataforma 

embarcada para uso posterior. 

Terminal remoto 

O primeiro componente da arquitetura é o terminal remoto. Este componente busca 

melhorar a modularidade e a flexibilidade do conceito da arquitetura no processo de controle e 

monitoramento o sistema de automação industrial. Como função básica, os terminais remotos 

permitem a interação com o usuário. No entanto, a complexidade deste componente é 

dependente da disposição de centralizada ou descentralizada dos métodos relativos ao sistema 

de automação industrial. Se a disposição descentralizada é utilizada, os métodos de controle e 

diagnóstico do sistema de automação ficam presentes neste componente, enquanto que os 

métodos para gerenciamento do protocolo de comunicação estão presentes em outro 

componente.  

Os métodos de controle e diagnóstico referem-se aos procedimentos necessários para 

controlar e monitorar o respectivo sistema de automação, ou seja, a sequência de dados que 

devem ser trocados, e ao barramento de comunicação pelo qual informação deverá ser enviada. 

Estes dados são, na verdade, parâmetros relacionados ao protocolo de comunicação do 

respectivo sistema de automação, necessários para executar corretamente o procedimento 

desejado, como por exemplo: endereços de memória, endereço no barramento de comunicação, 

valores para escrever ou ler, assim como as suas dimensões, protocolo usado para se comunicar, 

tipos de mensagens, dentre outros. 

A principal diferença na organização de métodos centralizada está no fato do terminal 

remoto não possuir somente os métodos de controle de diagnóstico, mas também uma grande 

parte dos métodos do barramento de comunicação – ainda mais detalhado na seção Plataforma 

embarcada. Apesar dessa concentração de informação, nem todos os métodos podem ser 

transferidos para o terminal remoto, visto que parte dele é responsável por controlar os 

barramentos de comunicação de baixo nível, os quais fazem conversão bidirecional da 

informação digital para os níveis de elétricos usados pelos protocolos de automação de 

processo. 



Resumo estendido   27 

 O terminal remoto, então, não tem conhecimento acerca da operação do barramento de 

comunicação. Para permitir que diversos terminais remotos utilizem apenas um meio de 

comunicação para de enviar dados a outro componente, sem que haja interferência entre eles, 

necessita-se de uma interface que seja comum a todos dispositivos e que permita o 

encapsulamento de dados. 

Acesso remoto 

A interface acesso remoto é uma de duas interfaces que estão presentes neste conceito. 

Projetou-se esta forma de comunicação entre componentes para melhorar a flexibilidade e 

compatibilidade do conceito da arquitetura, em que se utiliza protocolos e formatos de dados 

padronizados para permitir a comunicação entre o terminal remoto e plataforma embarcada. 

Para que diferentes terminais remotos possam conectar-se a esta interface, definiu-se 

que a troca de informações seja feita através de uma estrutura que encapsule os dados dentro de 

um formato comum, tal que as informações contidas naquela mensagem sejam interpretadas 

apenas pelas estruturas responsáveis pelo processamento do protocolo de comunicação 

desejado. Desta forma, os protocolos padronizados garantem o meio de comunicação comum 

entre terminais remotos e plataforma embarcada, enquanto que a formatação de mensagens 

padronizada garante que a mensagem seja encaminhada para a respectiva estrutura de 

processamento do protocolo de comunicação.  

Portanto, essa interface permite que as mensagens sejam geradas em qualquer 

dispositivo, independentemente de arquitetura do processador, sistema operacional e 

linguagens de programação, mas seu processamento correto está condicionado a algumas 

restrições impostas pela plataforma embarcada. 

Plataforma embarcada 

O segundo componente presente neste conceito é a plataforma embarcada. Suas 

funcionalidades estão diretamente ligadas ao terminal remoto, como definido anteriormente. 

Dentro da organização descentralizada de métodos, este componente proporciona melhorias na 

modularidade e na flexibilidade, pois fornece as regras para o formato obrigatório de 

mensagem, assim como também as regras para o gerenciamento de qualquer recurso fornecido 

pela pilha de protocolo. Isto significa que a plataforma embarcada é responsável pela execução 

de qualquer método intrínseco ao protocolo, ou seja, que permaneça inalterado quando o mesmo 

protocolo de comunicação é usado em diferentes aplicações industriais, como por exemplo: a 



Resumo estendido   28 

composição de pacotes do protocolo, os cálculos de erro (CRC, paridade, etc.) para pacotes 

recebidas e enviadas, recursos de prevenção de colisões de pacotes, se disponível, dentre outros.  

Quando a arquitetura é disposta na organização centralizada, estas melhorias são 

fornecidas pelo terminal remoto, visto que possui a maior parte das características acima 

listadas. Apenas os métodos relacionados ao controle dos drivers do da interface barramento de 

comunicação estão presentes na plataforma embarcada, juntamente com o conceito de troca de 

mensagens formatadas.  

Os drivers, aos quais se faz referência acima, são responsáveis por controlar o acesso 

físico ao protocolo de comunicação do sistema de automação industrial, e estão presentes 

independente da organização centralizada e descentralizada. 

Barramento de comunicação 

A segunda interface é chamada de barramento de comunicação. O propósito desta 

interface é melhorar as características de modularidade e flexibilidade da arquitetura, 

independentemente da organização de métodos. Esta interface requer um mecanismo para 

traduzir informação digital para os níveis de tensão definidos pela especificação do protocolo 

de comunicação.  

Sabe-se que existem diversas maneiras de realizar a comunicação através do protocolo 

de comunicação, mas melhora-se a modularidade e a flexibilidade ao utilizar barramentos de 

dados padronizados para acessar o dispositivo responsável pela tradução de dados. 

Complementa-se os benefícios de modularidade e flexibilidade com o uso de placas de circuito 

impresso (PCI) permutáveis, as quais possuem um circuito integrado (CI) transceptor 

responsável pela tradução dos dados digitais. Na perspectiva de software, estes CI são acessados 

pelos drivers em execução na plataforma embarcada, e usam barramentos de baixo nível 

padronizados, tais como RS-232, USB, RS-485, dentre outros. As melhorias de flexibilidade e 

modularidade desta interface encontram-se no fato de qualquer transceptor poder ser utilizado, 

desde que o driver conecte-se ao CI por meio de um dos barramentos de baixo nível, além de 

também permitir o intercâmbio de diferentes placas com transceptor, de acordo com a 

necessidade da aplicação industrial. 

Solução proposta 

Antes de apresentar a solução para a arquitetura proposta neste trabalho, deve-se 

ressaltar que as soluções de hardware e software empregadas na arquitetura utilizam a 

organização descentralizada, visto que os métodos concentrados no terminal remoto exigiriam 



Resumo estendido   29 

mais de desenvolvimento de software para cada nova aplicação do sistema. A centralização 

também requer elevado tráfego de dados entre os dois componentes para gestão remota de 

pilhas de protocolo, além de realizar a tarefa através de redes com poucas, ou nenhuma, 

restrições de tempo real. 

A solução para a arquitetura de hardware e software é definida por sete casos de uso 

que, em conjunto, são responsáveis por permitir o usuário realizar solicitações de controle e 

monitoramento, e executar as respectivas solicitações no sistema de automação industrial. Cada 

solicitação representa uma ação a ser executada pelo sistema de automação industrial, como a 

leitura de sensores, ou a ativação de uma sequência de atuadores. O usuário também é 

responsável pelo consumo de informações lidas do sistema de automação industrial, tais como 

valores de sensores, entradas digitais, etc.  

Solução de software 

A arquitetura de software é composta por seis elementos, que juntos contribuem para o 

aumento da modularidade, flexibilidade e compatibilidade do sistema de supervisão e controle. 

Estes elementos, e suas respectivas funções, são os seguintes: 

§ Interface de usuário: identifica a ID e faz a aquisição dos parâmetros específicos da 

solicitação. É no decorrer da aquisição que se pode encontrar API e frameworks 

externos que processem voz, processem vídeo, ou utilizem outros mecanismos para 

fornecer os parâmetros da solicitação do usuário. 

§ Base de conhecimento: gera os procedimentos que determinam a sequência 

mensagens a serem ser executadas para o cumprimento da respectiva solicitação, 

construídas com base nos parâmetros fornecidos pelo usuário. Os procedimentos, 

entretanto, podem ser de envio de dados para o sistema de automação industrial, 

como também de leituras de dados presentes na plataforma embarcada. 

§ Cliente web service: para envio ao sistema de automação industrial, formata os 

dados em XML ou JSON – dependendo do servidor – e encapsula essa informação 

no método POST do protocolo HTTP. Porém, quando se trata de leitura de dados 

presentes na plataforma embarcada, a informação é encapsulada no método GET 

do protocolo HTTP. 

§ Servidor web service: utiliza a estrutura REST (Representational State Transfer) 

para oferecer os serviços de acesso aos protocolos de comunicação industrial. Para 

cada protocolo em funcionamento na plataforma embarcada, cria-se um recurso de 

acordo com a estrutura REST, ou seja, para conectar um barramento de dados para 



Resumo estendido   30 

o protocolo CANOpen, por exemplo, tem-se um recurso /request/canopen 

associado ao endereço do servidor (http://ip:porta). Enquanto isso, também existem 

outros recursos para gerenciar o funcionamento da plataforma embarcada, com o 

objetivo de verificar processos em execução, disponibilidade de serviços, dentre 

outros. Dados recebidos por este elemento de software são armazenados em 

memória compartilhada e acessados pela respectiva pilha de protocolo de 

comunicação. 

§ Gerenciamento de drivers: este elemento de software sempre está associado a um 

protocolo de comunicação instalado na plataforma, pois tem a tarefa de gerenciar o 

funcionamento do protocolo de comunicação. O gerenciamento realizado neste 

elemento consiste do tratamento de erros de comunicação, do acesso às mensagens 

da memória compartilhada e, também, do armazenamento das respostas do sistema 

de automação para análise posterior. Portanto, sua implementação está intimamente 

ligada à pilha de protocolo a qual controla. 

§ Pilha de protocolo: implementa as funções do protocolo de comunicação, tal como 

determinam suas especificações, ou seja, funções que permitam construir um pacote 

de mensagens dentro do padrão determinado, gerenciar topologias de rede, calcular 

os erros no recebimento de mensagens, dentre outras. Neste elemento de software 

também é realizado o acesso à camada física do protocolo de comunicação 

utilizando uma das interfaces padronizadas e disponíveis na plataforma embarcada. 

Solução de hardware 

A arquitetura de hardware é elaborada com a intenção de cumprir as especificações que 

não foram cobertas pela solução de software. Um protótipo é apresentado para demonstrar a 

aplicação da arquitetura proposta e realizar a integração do sistema supervisório a um sistema 

de automação industrial. É importante notar que o protótipo não é a única implementação 

possível da arquitetura de hardware, pois também é possível executar as mesmas tarefas de 

controle e monitoramento de sistemas de automação em computadores, desde que sejam 

atendidas as diferenças de linguagem de programação, acesso a drivers e/ou portas de 

comunicação, características específicas do sistema operacional, dentre outras particularidades. 

Existem dois componentes de hardware, assim como determina o conceito da 

arquitetura. O primeiro, cujo papel é ser o terminal remoto, pode ser qualquer dispositivo 

computacional capaz de conectar-se à mesma rede Ethernet ou Wi-Fi em que a plataforma 

embarcada estiver também conectada. O segundo componente é a plataforma embarcada, cujo 



Resumo estendido   31 

papel é fornecer os serviços descritos na solução de software. Divide-se este último em quatro 

partes responsáveis por algumas funções importantes para a plataforma de hardware:  

§ Conexões remotas: possibilitam o acesso à Ethernet via PHY presente no System-

on-Chip (SoC), ou às redes Wi-Fi via adaptador conectado a uma porta USB. 

§ Placas de comunicação: são os módulos de comunicação que conectam o núcleo do 

processador ao barramento de comunicação do sistema de automação industrial, 

permitindo que a plataforma embarcada troque pacotes de dados através do 

protocolo de automação de processos, ou seja, é responsável por fornecer acesso à 

interface de barramento de comunicação descrita no conceito da arquitetura. Este 

elemento de hardware é a concretização do conceito de placas com transceptor 

mencionadas no conceito de arquitetura. 

§ Unidade de processamento: consiste de uma PCI que contém o processador, a 

memória RAM, a memória não-volátil, Ethernet PHY, cristais osciladores e outros 

periféricos.  

§ Placa-mãe: é a PCI responsável pelo fornecimento dos circuitos eletrônicos 

complementares à unidade de processamento, além das conexões para os 

adaptadores de comunicação e conexões remotas. Nesta placa é onde encontram-se 

a fonte de alimentação, conector Ethernet, conector USB, conectores para os 

adaptadores de comunicação (SPI, I²C e Serial), interface de depuração, entradas e 

saídas de propósitos gerais (GPIO), cartões de memória e conector para a unidade 

de processamento. 

Casos de uso e resultados 

O propósito da arquitetura é o máximo reaproveitamento de componentes hardware e 

software possível. Se novas aplicações industriais usam o mesmo protocolo de automação, 

então apenas os subcomponentes interface do usuário e base de conhecimento serão necessários 

implementar. Caso contrário, os subcomponentes pilha de protocolo e placa com transceptor 

deverão também ser implementadas, assim como mostra a Tabela 0.2 para os dois casos de uso 

em que a solução foi testada. 

Por exemplo, considera-se uma nova aplicação industrial que use CANOpen, ou 

ZigBee. Não seria necessário implementar os subcomponentes pilha de protocolo e placa com 

transceptor novamente, pois estes já estariam presentes na arquitetura do sistema. Apenas a 

interface de usuário e a base de conhecimento seriam necessários para controlar e monitorar 



Resumo estendido   32 

remotamente a nova aplicação industrial. Esta funcionalidade está disponível para qualquer 

protocolo de automação industrial que por ventura fosse adicionado ao sistema usando a 

arquitetura proposta. Consequentemente, a camada de comunicação é preservada de uma 

aplicação para a outra, enquanto que apenas o mecanismo de controle, e a interface, são 

alterados em cada caso. 

Tabela 0.2: Tabela de comparação de implementações dos casos de uso. 

 

Terminal Remoto Plataforma Embarcada 

Interface de usuário 
Base de 

conhecimento 

Pilha de 

protocolo 

Placa com 

transceptor 

Coffee 

machine 

Dragon Naturally 

Speaking + jFuzzy 

Procedimentos da 

máquina de café 
CanFestival PCAN-USB 

ZigBee 

network 

Sem funcionalidade 

especial 

Procedimentos de 

Liga/desliga + 

leitura de sensores 

xbee-api XBEE Pro S1 

 

Usando o exemplo acima, é possível avaliar as métricas de estabelecidas nos objetivos 

(subseção Objetivos) para que fossem alcançadas pelo sistema desenvolvido. A primeira 

métrica de avaliação está relacionada à interface universal que permite acesso transparente para 

múltiplos sistemas sem priorizar um em detrimento do outro. Começando pelos exemplos 

descritos na Tabela 0.2, pode-se visualizar que mudanças em ambos os casos estão restritas 

apenas a algumas partes da arquitetura de software, deixando os componentes relacionados ao 

web service - a interface de acesso remota - inalterados, como mostra a Figura 0.4. Além disso, 

partindo das características descritas nos capítulos 5 e 6, as características padronizadas desta 

interface permitem a transmissão de múltiplos dados de protocolo de qualquer sistema 

operacional, desde que esteja encapsulado dentro de uma requisição HTTP e que utilize a 

estrutura definida. A referida interface atende então às métricas propostas, pois foi construída 

utilizando as características acima. 

A segunda métrica de avaliação está relacionada ao uso de módulos de comunicação 

através de um conector comum para permitir a permutabilidade entre eles, assim garantindo 

acesso físico aos múltiplos protocolos de automação de processos. A descrição dessas estruturas 

de hardware – módulos de comunicação e conector comum – são encontrados no apêndice A. 

Visto que estes módulos de comunicação dependem diretamente do protocolo de automação de 



Resumo estendido   33 

processos ao qual conecta-se, não há necessidade de explicar sua construção. Entretanto, estes 

módulos devem usar a forma de conexão comum apresentada na Tabela 0.3. Estes conectores 

possuem os barramentos padronizados I²C, SPI e Serial para fornecer o máximo de opções 

possíveis para enviar e receber dados dos circuitos integrados transceptores. Ademais, a porta 

USB também pode ser utilizada para conectar módulos de comunicação caso esteja disponível. 

Portanto, os conectores e os módulos podem fornecer acesso físico para virtualmente qualquer 

protocolo de automação de processos, porque é através dos barramentos mencionados acima 

que os componentes de software podem alcançar a camada física dos protocolos de 

comunicação. 

 

Figura 0.4: Componentes de software com a interface universal destacada. 

Tabela 0.3: Configuração de pinos da interface para transceptores. 

UART_TX 1 2 UART RX 

I²C_SDA 3 4 I²C_SCL 

SPI_MOSI 5 6 SPI_MISO 

SPI_CLK 7 8 SPI_SSEL 

+5V 9 10 GPIO 

+3V3 11 12 GND 

 

A última métrica relaciona-se com o desenvolvimento de uma plataforma que una os 

resultados da primeira e segunda métricas. Isso significa que esta plataforma deve reduzir os 

esforços de desenvolvimento para permitir o mecanismo proposto para supervisão e controle 

remotos de múltiplos sistemas de automação industrial. Como descrito no apêndice A e no 

capítulo 4 a plataforma de hardware possui o sistema operacional Linux e conecta-se via 



Resumo estendido   34 

Ethernet ou Wi-Fi às redes -- acesso ao protocolo HTTP -- e também possui conectores em pino 

-- acesso aos barramentos I²C, SPI, Serial e USB -- assim como mostra a Figura 0.5. 

 

 

Figura 0.5: Plataforma de hardware com as conexões para módulos de comuniação destacados. 

 



35 

 

 

Chapter 1  Introduction 

Control and Automation is the engineering field responsible for researching methods 

and mechanisms that make technical processes automatic and efficient by reducing human 

interference, or that increase precision of tools used in those processes. The systems that 

automatize technical processes are called automation systems, and are composed solely of 

mechanical and electronic devices, being able to perform tasks more accurately and quickly 

than a human (IAS, 2010a). 

In response to increasing market demands, industrial plants and technical processes 

became larger and more complex, which assured the presence of automation systems in modern 

industry. Therefore it created the demand for managing information from the various levels of 

the factory in order to improve the operational efficiency of the industrial plant. The Computer 

Integrated Manufacturing (CIM) concept in 1970’s was the first attempt to achieve the goal of 

standardizing the management of all factories’ departments, from administration to production 

lines (SAUTER, 2011, p. 36). Later came other models, such as Supply-Chain Operations 

Reference (SCOR) from the Supply-Chain Council, Manufacturing Execution Systems (MES) 

from the Manufacturing Enterprise Solutions Associations (MESA) International, and Ready, 

Execute, Process, Analyze, and Coordinate (REPAC) from AMR Research, to define 

manufacturing applications from a functional point of view (UNGER, 2001, p. 46). 

These models are used by ANSI/ISA-95 standard to define the five-level architecture 

for factory automation shown in the example of Figure 1.1. Each level represents part of the 

factory floor: in level 1 is found the process itself; in level 2, the process control equipment is 

found and is used to ensure proper work of the technical process; in level 3, the process 

supervision provides mechanisms to monitor parameters of the process; in level 4 is found the 

production supervision, which monitors production from the perspective of the end product; 

and, in level 5, the management of the factory plant is found. 

The pyramid structure from Figure 1.1 was deployed in many industrial plants, resulting 

in an overall environment complexity increase. Consequently, more complex automation 

systems began to appear, requiring more supervision of machine operation and increasing 

number devices for control. This implied the increase on number of failures and maintenance 

requirements. Thus, engineers and technicians must be constantly prepared to react fast to both 



Chapter 1 Introduction   36 

planned and unplanned situations in order to keep these systems running. However, such 

reactions require mechanisms that both assure quick access to reliable information about the 

automation system, as well as to provide fast intervention in the technical process, if needed. 

 

Figure 1.1: The ANSI/ISA-95 standard's levels of factory automation using the ArchestrA technology 

(WONDERWARE). 

The construction of these complex automation systems, and of the supervision tools, 

often use pre-defined proprietary solutions from the manufacturers of industrial devices. This 

means the solutions work only with pre-determined Human-Machine Interface (HMI) devices, 

sensors, actuators, Programmable Logic Controller (PLC) and communication protocols. Even 

though this approach provides reliable and robust control of technical processes, it does not 

allow the automation system and its supervision mechanism to be transferred for other industrial 

applications. This requires a whole new project design to enable supervision in different 



Chapter 1 Introduction   37 

application cases, as little to none standardization is applied in the development of industrial 

automation systems.  

These characteristics define automation systems and supervision tools as highly 

specialized industrial solutions and highly dependent of the manufacturer. The dependability 

decreases flexibility, modularity and compatibility between automation devices and factory 

plant levels (WANG, 2002).  

 

Figure 1.2: Current (left) and proposed (right) IT infrastructure of industrial networks (BR&L CONSULTING). 

Currently, industrial networks in compliance with ANSI/ISA-95 have the infrastructure 

as shown in Figure 1.2. However, the desired improvements are not achieved using the current 

infrastructure. Therefore, an approach to increase flexibility, modularity and compatibility shall 

add a combination of hardware and software to the industrial network, as show in Figure 1.2, 

in order to isolate current process control devices from supervision networks. The isolation 

would naturally bring benefits such as the use of common computing devices instead of 

specialized industrial ones, and enable the inclusion of new features to industrial automation 

systems. 

1.1  Motivation 

Using flexible, modular and compatible automation system in the industry, and its 

supervision tools, allow factories to be easier to operate, design, assemble and adapt to variable 

production lines or to new products (LASTRA, 2008). Without flexibility in the factory plant, 

the hierarchical model shown in Figure 1 1 becomes static and has issues to adapt to changes 

of costumer orders, to the placement of newer field devices or to react to exceptions in levels 

zero and one (BRATUKHIN, 2010; STARKE, 2013). This is also an agreement between many 



Chapter 1 Introduction   38 

experts of the industry, which state that field level components, such as sensors, actuators, 

devices and cells, as well as whole production lines should be Plug & Play or easy to setup 

(CUCINOTTA et al, 2009). 

In an effort to provide remote access to automation systems as mentioned above, an 

architecture shall provide the basis for integrating levels 1 and 2, as shown in Figure 1 2, by 

improving modularity, flexibility and compatibility of supervision. As a result, this integration 

may be used to build higher level features such as software reconfiguration during runtime, 

remote diagnostics, remote monitoring, and advanced human-machine interfaces. 

The hardware and software structures used to provide the integration reduces developing 

effort to connect supervisory tools to automation systems, and enable it to be remotely 

monitored and controlled. The hardware structure enables access to communication buses of 

several industrial communications protocols, which grants technicians and engineers the 

flexibility to use the same hardware platform as a gateway to automation system data. In the 

meantime, the software structure reduces the integration process of protocol stacks that are not 

present inside it, even the proprietary ones. It also enables multiple devices to be connected as 

remote access terminals. 

Together, both approaches ensure seamless remote access to reach out process 

information or to remotely control automation systems by employing standardized and 

platform-independent technologies, which give technicians and engineers the flexibility to use 

any desired programming language and development platform in the remote terminal. Thus, the 

architecture boils down to a single hardware platform that may be attached to any supported 

communication bus, and a modular software structure that enables virtually any device with 

computing capability to perform the task of being a remote terminal, as shown in Figure 1 2. 

A benefit of the architecture is the use of any device capable of connecting to WLAN 

or LAN as remote access terminal, namely Industrial PC (IPC), smartphones, tablets or single 

board computers. Moreover, the supervision software can use any type of API or library to 

generate, or process information related to the industrial automation system. In this case, it may 

be used Fuzzy Logic, Neural Network algorithms, voice processing APIs, or solely plain 

programming logic. 

1.2  Objectives 

As a general objective, this work proposes an architecture for supervision and control 

of industrial automation systems, which uses both standardized hardware and software 



Chapter 1 Introduction   39 

technologies to improve modularity, flexibility, and compatibility, reducing integration efforts 

with in different industrial applications. 

§ The primary objective is achieved by successfully accomplishing the five specific 

ones determined by an analysis of the solution: 

§ Analyze different architectures for better arrangement of software and hardware for 

supervision and control. 

§ Elaborate a universal interface to enable remote supervision and control of 

industrial automation systems. This interface shall enable seamless access for 

multiple systems, without prioritizing one over another. 

§ Elaborate communication modules as interfaces to the industrial automation system 

based on the chosen architecture arrangement. This interface shall use a common 

connection to all modules in order to allow exchangeability, and thus enabling 

access to multiple process automation protocols. 

§ Develop a hardware platform to communicate with industrial automation systems, 

which possesses the universal interface and the communication modules. This 

platform shall reduce efforts to enable remote supervision and control for multiple 

industrial automation systems. 

§ Experiment with multiple use cases to control and monitor industrial automation 

systems. 

1.3  Organization 

This thesis is organized in seven chapters and are presented as follows: in Chapter 2 

presents the concepts of web services used in machine to machine communications, more 

specifically SOAP and REST, as well as the concepts of devices and technologies, such as PLC 

and SCADA, used in industrial automation; in Chapter 3 is carried out the analysis of the related 

work based on the flexibility, modularity and compatibility of the proposed methods to 

supervise and control automation systems, which is then compared to the proposed solution of 

this work; in Chapter 4 the architecture concept is explained in terms of the characteristics each 

component and interface shall have, which may involve standardized communication methods, 

data formats as well as software structures to solve the problem. 

The realization of the architecture concept is then explained in Chapter 5 by describing 

technologies and the working principles of both hardware and software integrated in the 

prototype developed to solve the problem; in Chapter 6 is described the applications of the 



Chapter 1 Introduction   40 

prototype in real life cases. The explanation addresses the application-specific software 

structures and the hardware modules used to enable communication with the automation 

system. It also describes the process of integrating the prototype to new industrial applications. 

At the end of the chapter, the results are discussed through a comparison of each application 

case in relation to the modifications required for each one; and finally, in Chapter 7, this work 

is summarized by addressing important aspects and obstacles encountered during the 

development. Future work is also presented, describing not only technical improvements to 

enable commercial use of the prototype, but also the evolution of the architecture, which may 

integrate layers 1 and 2 of the ISA-95 standard with cloud computing services for flexible 

factory management. 



41 
 

Chapter 2  Background 

In order to understand the concepts and solutions discussed in this work, it is necessary 

to understand how some technologies work, as well as to comprehend some components used 

in industrial automation systems. The first technology to be described is the web service, which 

is a communication method that allows two distinct devices to exchange information over a 

network. Next, a branch of computing devices are going to described, called embedded systems, 

and their usage as components of industrial automation systems. This topic approaches mainly 

devices used to automate technical processes and communication methods between them. 

2.1  Web services 

With the popularization of the Internet, it became common in distributed computing 

applications to use of services with technical specifications provided by the Web standard 

(WANG, 2002; SAUTER, 2011; HASHIMUKAI, 2002). These standards, also called Internet 

Standards, are based on the specifications of the Internet Protocol. Together they define 

communication interfaces in the form of protocols by specifying syntax, semantics, and 

constraints for message exchange sequencing. These protocol-based characteristics make these 

communication interfaces not only platform independent, but also programming language 

independent, qualifying them as frameworks (WORLD WIDE WEB CONSORTIUM, 2004a; 

WORLD WIDE WEB CONSORTIUM, 2004b).  

Thus, any software that implements these interfaces has the web service function, which 

enables communications between electronic devices over a network, i.e., over an IP network. 

Messages exchanged through these interface must be in a machine-processable format, which 

are usually conveyed using HTTP application layer protocol with XML serialization or other 

standards (WORLD WIDE WEB CONSORTIUM, 2004b). 

These communications work in server-client architecture, in which the client is 

responsible for sending and receiving messages through the access methods provided by the 

web service function, whereas the server provides the access methods and is responsible for 

processing and returning data based on the request made by the client agent. As a requirement 

to run the access successfully, both client and server must have the same protocol for the 



Chapter 2 Background   42 

communication, for example, the HTTP application protocol (WORLD WIDE WEB 

CONSORTIUM, 2004b) 

The XML is an extensible, flexible, and standardized data format, and is one of the most 

used in web services, because of the XML Infoset, XML Schema and XML Namespace 

specifications. The XML Infoset, above the others, has greater importance because it defines, 

for each part of an XML document, a set of information items and associated properties, which 

ensures accurate mechanisms to reference any data inside the document. The XML Namespaces 

provide means to uniquely name elements and attributes in a XML document. Finally, there is 

the XML Schema which is a description of a XML document in terms of data types, ensuring 

that data is read correctly when the XML document is deserialized. 

The specification of communication between server and client is described in the WSD 

(Web Service Description), done by defining message format, data types, transport protocols, 

and transport serialization formats that should be used to exchange data (WORLD WIDE WEB 

CONSORTIUM, 2004b). The WSDL is the language responsible for describing the public 

interface of the web service in terms of messages that are exchanged between server and client, 

which are described independently of a specific wire format using a type system, typically XML 

Schema. Each description associates a message exchange pattern to the messages, which 

identifies the sequence, cardinality, and consumer of messages sent and/or received. This 

description is made so both client and server must agree in order to exchange messages, i.e., 

independently of programming language the agents were developed, as long as they agree on 

the service description. 

Currently, there are two major approaches for creating a web service, using SOAP-based 

web services or REST-based web services. SOAP stands for Simple Object Access Protocol 

and it is a message-oriented envelope format. On the contrary, REST stands for 

Representational State Transfer and it is developed to be resource-oriented. 

2.1.1  SOAP  

As mentioned before, SOAP is an envelope format that uses the HTTP application 

protocol to exchange messages between server and client. It employs a standard, extensible, 

and composable framework to successfully exchange these messages, and it is divided in three 

parts:  

§ The SOAP envelope is responsible for defining the data that goes inside a 

message, the agent who will consume that data and if that data is optional or not. 



Chapter 2 Background   43 

§ The SOAP encoding rules define the serialization mechanisms to exchange 

application-defined data types, i.e., the objects that are transferred on each call. 

§ The SOAP RPC representation is the convention that represents remote 

procedure calls and responses, i.e., the methods that are provided by the server. 

 

Figure 2.1: Stack Architecture for Web Services (WORLD WIDE WEB CONSORTIUM, 2004b). 

 

Figure 2.2: SOAP Message Request and Response (WORLD WIDE WEB CONSORTIUM, 2000). 



Chapter 2 Background   44 

This Web Technology uses WSDL and XML, shown in Figure 2.1. It defines a 

standardized framework for packaging and exchanging XML-based messages over different 

network protocols, like HTTP, SMTP and FTP, and the service is described in WSDL.  

An example of a SOAP request and response can be seen in Figure 2.2. It is clearly 

visible that the message is embedded in a HTTP request, and that most of exchanged data is 

protocol-related information (protocol overhead) rather than actual data itself. 

2.1.2  REST 

It is important to say that REST is neither a framework, nor an API, but a set of 

constraints that creates a software architectural style when used (FIELDING, 2000). Some 

examples of these constraints are: 

§ Must be a client-server system. 

§ Has to be stateless, which means the server does not keep users sessions. 

§ Has to be uniformly accessible. 

REST alone does not dictate which technology should be used to implement server and 

clients, instead it defines how data is exchanged, which means that it could be deployed on top 

of any network architecture available and use already established technologies and protocols. 

Hence, RESTful architecture is maintainable, extendable and distributable. Its first and most 

well-known example is the static World Wide Web, because it follows all constraints: web 

infrastructure supports caching, uses stateless connections, has unique hyperlink to resources, 

operates in client-server system, available documents are the resources, and the representations 

are defined by the web browser in the moment of access when HTML files are read. However, 

the Dynamic World Wide Web is not normally built using REST architecture, because these 

type of websites are not stateless for it is required to track users (SANDOVAL, 2009). As a 

result, it is possible to enumerate the abstractions needed by servers to be categorized as 

RESTful: resources, representations, URI (Universal Resource Identifier), and HTTP 

application protocol. 

Resources are anything that can be addressable through the Web and transferrable 

between client and server (FIELDING, 2000). This abstraction is a logical representation of the 

problem around which the solution is being implemented. Each resource is developed to 

respond to the HTTP methods PUT, GET, DELETE, and POST. Representation is the data 

exchanged between the software agents, i.e., servers and clients. It represents the state of data 

that is stored in a device at the time of request and it is capable of being transferred in 

innumerous data format types, such as XML stream, JSON stream, text file, images, and so on. 



Chapter 2 Background   45 

URI is the identifier used by REST Web Services to reach for resources and exchange 

representations. If the server runs through the Web, then these identifiers can be hyperlinks, 

otherwise they would be different, but would have to maintain the same characteristic of 

addressing one single resource on the server. 

Differently from SOAP, the HTTP application layer protocol is the mechanism used to 

transfer the data representation of resources in REST web services. By using the request 

methods GET, POST, UPDATE, and DELETE, the client points an action to be performed by 

the server for the accessed URI. A special feature of REST is that requests can be easily 

understood simply looking at them, as shown in Figure 2.3. It is showed that REST web services 

are deeply integrated with the HTTP. 

 

Figure 2.3: HTTP request and response using REST constraints. 

2.2  Embedded systems in automation and its applications 

The main definition for the term embedded system says they are devices that combine 

hardware and software solutions designed for a specific purpose. It is known that PCs are 

general-purpose computing devices with powerful processors, large storing capabilities and 

many peripherals, designed to be used for many common tasks. Such tasks include checking 

email, editing text, watching movies, and browsing the Internet, but PCs may also be used for 



Chapter 2 Background   46 

highly-demanding tasks, such as Computer-Aided Design, Computer-Aided Manufacturing, 

Computer-Aided Engineering, film post-production, and playing games, etc. In contrast, 

embedded systems use limited hardware solutions in terms of processing capabilities, storage 

and interfaces, and its resources are dedicated to a single task, to which the system was 

developed for. Also it does not mean that these systems cannot use powerful processors nor 

have a few peripherals, it is up to the system designer to choose the features for the desired 

purpose. 

Applications for embedded systems are numerous and it is possible to find them in many 

consumer devices, like Televisions, Blue Ray Disk and MP3 players, GPS, and Smartphones, 

as well as part of large complex systems that demand real-time responses, like car’s ABS brakes 

and fuel injection systems, and airplanes’ FCS. Some examples are shown in Figure 2.4. 

Designing embedded systems require good analysis of the application, because every 

implementation has special features, such as size, cost, performance and power, which specify 

which microcontroller to use, how much power it will consume, how fast data will be processed, 

how big the final printed circuit board will be and how much it will cost. Most of the devices 

deployed in industrial automation systems are a specialization of the embedded systems, 

designed to provide inputs, outputs and communication methods to automate technical 

processes, namely the Programmable Logic Controllers (PLC). However, these devices alone 

are not capable of automating large and complex processes, requiring more than one to achieve 

the goal. 

 

Figure 2.4: Examples of embedded systems. On the left there is an ECU from a car, and on the right, an iPhone 

4. 

2.2.1  Programmable logic controllers 

The Programmable Logic Controllers (PLC) are electronic devices that run indefinitely 

a firmware that controls the execution of three tasks: reads the digital or analog inputs, than 



Chapter 2 Background   47 

executes the user-developed program stored in the internal memory using the readings 

information, and finally, updates the outputs based on the program’s execution (ROSARIO, 

2005). An example of this device can be seen in Figure 2.5. 

 

Figure 2.5: Example of an industrial PLC from GE Fanuc. 

In order to be deployed in the industry, PLCs are built to sustain harsh conditions, such 

as resist dust, vibration, high temperatures, found in the industrial environment, which is 

ensured by the casing used. Since these devices, when deployed, must operate for long time 

periods non-stop, the manufacturers design the components and the software to fulfill this heavy 

demand. The major components of a PLC are the following: 

§ CPU, which involves the processor, the RAM memory and the programmable 

memory. 

§ Power supply, which solely provides power to the internal components and outputs. 

§ Inputs and Outputs, which read electrical signals from sensors and write signals to 

actuators. The signals may be digital or analog ones. 

Another important aspect of PLC is the connection to the computer for programming 

the device, which happens, in most cases, through a communication port of the serial protocol 

RS-232. However, there some PLC models that use RS-422 as the connection interface to the 

computer. As a result, a RS-232 to RS-422 converter is required to communicate with the 

device. Moreover, some manufacturers may use proprietary protocols to communicate with the 

device, which demands the installation of specific hardware equipment on the computer to 

successfully connect to the PLC. 



Chapter 2 Background   48 

Connecting the PLC to the computer is a fundamental part in the process of utilizing 

this type of device in industrial applications. The software provided by the manufacturer, which 

usually has its own communication protocol, uses the communication port to manage all 

features of the PLC:  

§ Write and read programs to the programmable memory. 

§ Configure device’s properties. 

§ Debug the execution of the program stored in the programmable memory. 

§ Exchange data during execution to expand communication possibilities. 

In order to program these devices, the conventional programming languages, such as 

C/C++ or Java, are not used, but there are yet other languages that are employed for this 

purpose. Described in the IEC 61131-3 standardization, the languages are the following: Ladder 

(LD), Functional Block Diagram (FBD), Structured Text (ST), Instruction List (IL) and 

Sequential Function Charts (SFC, also known as Grafcet). The programming environment for 

these languages is provided by the manufacturer, as the programmable memory of the PLC 

must be written to execute the program. In Figure 2.6 is shown examples of these programming 

languages. 

 

Figure 2.6: Examples of programming languages used to program PLC. 

When deployed to complex and large technical processes, more than one PLC may be 

used, creating a communication network between them. The communications protocols may 

vary, but they shall always be protected against the electromagnetic interference caused by 

industrial electrical installations and motors. For this purpose, there are several communication 

protocols available, which are going to be explained in the next section. 



Chapter 2 Background   49 

2.2.2  Industrial networks and communications protocols 

As technical processes became larger and more complex, more control devices (PLC 

and Industrial PC) were required to automate them. However, controls of automation systems 

controls were centralized, demanding cables to be spread through great distances around the 

factory floor, leading towards the introduction of distributed control systems. These systems 

were composed of several individual, less powerful and intelligent devices, capable of 

performing control tasks directly on the technical process, without the need of a centralized 

system. Still, these devices required mechanisms to exchange information between each other 

and perform the automation process. Thus, communications protocols began to be applied in 

industrial automation systems, forming the industrial networks (ROSARIO, 2005).  

Industrial communications protocols are designed based on the OSI model’s abstraction 

layers. The physical layer is usually developed to sustain heavy electromagnetic interference 

from high-voltage electrical installations used to power the large variety of machines on the 

factory plant’s floor, as well as from the noise generated by the operation of the same machines. 

Whereas the upper layers provide other features, such as package CRC, time-critical response 

mechanisms, network topology management, and many others.  

When deploying distributed control systems, the network topology is an important 

characteristic to be evaluated, as it defines the best communications protocol that suites the 

connection requirements. Also, the access method of the communications protocol is to be taken 

account, for instance master-slave, token-passing, time slicing, and carrier sensing (collision 

avoidance and collision detection), because it determines how high is the availability of the 

devices to respond to an event of the technical process (IAS, 2010b). In Figure 2.7 is shown 

some examples of network topologies that can be applied to industrial automation systems. 

 

Figure 2.7: Examples of network topologies. 



Chapter 2 Background   50 

As a benefit of deploying distributed control systems and industrial networks to 

automation systems, remote access to the information regarding all processes at the factory 

plant became possible by using supervision systems. These mechanisms not only gave more 

control over the automation system, but also optimized process management, and are going to 

be described in the next section. 

2.2.3  SCADA systems 

SCADA systems are computer programs designed to aggregate information about the 

automation system and display it in user interfaces, also known as Human-Machine Interface 

(HMI), for the operator to evaluate, and also to provide methods to control the automation 

system (ROSARIO, 2005). The computers where SCADA systems run are always connected 

to a PLC or industrial network, and are developed to display a graphical representation of the 

technical process, as shown in Figure 2.8. 

 

Figure 2.8: Example of a SCADA system interface. 

The use of supervisory systems became important in the industrial field, mainly because 

maintenance departments can assess potential problems on the automation systems and take 

preventive action faster. It also allows the engineering department of the factory plant to ensure 

that production rates meet the demands. Since every data collected from the automation system 

is stored in data bases, reports can be generate on-demand to show production efficiency, 



Chapter 2 Background   51 

process cycle times, machine failures and many others relevant knowledge about the 

automation system. 

2.3  Summary 

In this chapter, at first were described the concepts and technologies involving the web 

services, which are frequently applied in machine-to-machine communications over a network. 

This type of communication demands the implementation of at least two software programs: 

the server who provides the services and the client who consumes the remote services. These 

agents use XML as a data format to exchange messages and WSDL to describe the service, but 

the proper web service implementation is defined by either SOAP or REST approaches. 

Later, the application of embedded systems in automation was described by first giving 

a general overview of the composition and applications of these devices. Next, some features 

of PLC were described, such as the hardware composition and the standardization of the 

programming languages by the IEC 61131-3, followed by a brief explanation of industrial 

networks, which are used in decentralized control of technical process in the industry. Finally, 

the general concept of SCADA system is defined as tools for supervision and control of 

automation systems, which help technicians and engineers to keep track of operation and 

efficiency of the shop floor by using both PLC and industrial networks as mechanisms to 

interact with the automation systems.   

Comprehension of these two subjects are required for both the analysis – performed in 

the next chapter – and the main objective of this work, since the proposed architecture is 

compared to other works in Chapter 3, comparing how remote supervision and control is 

performed by using web services, PLC and/or dedicated embedded systems. 

 



52 
 

Chapter 3  Related work 

The selection of related work sought models and architectures that performed remote 

monitoring and control of industrial automation systems. The proposed solution of each work 

should either connect to SCADA applications, or propose its own supervision and control 

interface. The analysis is made by evaluating each related work in terms of flexibility, 

modularity and compatibility improvements. In general, a solution is considered flexible if it is 

easily adaptable to different applications, i.e., without too much development effort. Moreover, 

the analysis also considers the following: 

§ Flexibility defines the solution’s tolerance to use different devices for monitoring 

and controlling the industrial automation system.  

§ Modularity defines the components’ condition of being independent of each other, 

which allows the use of different modules, devices or adapters without demanding 

a new system build. 

§ Compatibility defines the communication’s focus on the data instead of the access 

method, which enables the use of different software for the same purpose. 

3.1  Analysis of similar architectures 

Hashimukai presents (2002) a supervision method based on Web technologies that use 

Java2EE language for programming web services to perform the M2M (Machine-to-Machine) 

communication via SOAP-RPC. These services exchange maintenance data between 

information systems using the XML meta-language, which increases flexibility and 

compatibility of solutions focused on remote supervision and control. However, there is no 

mention on which hardware devices run the proposed solution. 

The supervision system presented by Figueiredo and Da Costa (2007) defines a two-

layer structure to manage production lines using PLCs interconnected through Profibus-DP 

network, which are coordinated by a Siemens PLC that acts as a factory plant manager. This 

proposition, as described, uses one PC server that provides data to remote terminals through the 

Web and communicates to the manager PLC through RS232-MPI. It is possible to analyze that 

this solution has little flexibility and modularity increase, because it is reusable for different 

applications, but demands developing effort to change PLC programming. On the contrary, the 



Chapter 3 Related work  53 

analysis of the arrangement of remote terminals – namely SCADA – shows improvement in 

compatibility and flexibility, as it uses Internet-compatible technologies to remotely display 

data on several devices. 

Albrecht and Grosse-Plankermann define (2004) a model of Web browser-driven 

application to perform control and supervision of industrial automation systems. Information is 

displayed using a Web browser as a client, which receives data from an ACPLT/KS server. 

Flexibility and compatibility are increased in this proposal given the features of the ACPLT/KS, 

although it is limited to browsers. Since the server remains attached to the automation system, 

it is assumed that modularity is not increased since the industrial automation system must be 

integrated to the supervision software. 

The proposed solution of Ozdemir and Karacor (2006) provides features of SCADA 

systems via remote and mobile terminal units. The application case is developed around a crane 

model that is controlled by a Siemens S7 300-312 IFM PLC, which is then accessed by a 

CP5611 MPI bus card connected to a PC. The solution uses a Java-enabled mobile phone to 

access supervisory data through the Internet, as well as Java-enabled web browsers to visualize 

data through the LAN. This solution grants flexibility increase for remote supervision systems, 

since it uses Internet/Intranet infrastructure to provide information about the industrial 

automation system. In counterpart, the SCADA server accesses the control PLC through the 

MPI-enabled PC card, which limits the level of compatibility and flexibility with other 

automation systems, as only devices with this type of communications protocol can be 

monitored and controlled. 

Albrich (2011) presents an application case of remote monitoring deployed in the 

packing industry, in which an Industrial PC manages connection hubs via Ethernet network. 

These hubs enable communication to RS485-capable equipment and expand the connection to 

other machinery that uses Ethernet as well. The solution uses web services to provide access to 

remote clients, using SOAP to exchange information encoded in XML format. It can be seen 

that this system improves flexibility and compatibility in the communication to remote 

terminals, because of the web services' use as content servers. However, since no mention was 

made about different industrial communications protocols aside the Modbus/TCP, this solution 

is limited to the application case described. 

The work proposed by Antony et al (2011) features an approach to monitor and control 

industrial automation systems that uses a Web PLC with an embedded web server inside, 

turning it accessible from several programming languages. This solution shows a flexible and 

compatible interface via methods of the HTTP that mimics the World Wide Web structure, in 



Chapter 3 Related work  54 

which each device either provides data representations directly to client applications, along with 

the secondary function of automatically storing data in remote databases. The HTTP protocol 

enables client applications to be programmed in any programming language that has access to 

this application-layer protocol. However, the Web PLC lacks communication to industrial 

communication networks. Instead, it has direct accesses to sensory input from the technical 

process through digital I/O or analog inputs, which would require the substitution of current 

PLC in order to enable the use of this supervision and control mechanism. 

Truong and Vu (2012) describe a system for remote control and monitoring of an 

industrial automation system via wireless networks. The application case uses an Android 

application to remotely manage a CNC (Computer Numeric Control) machine connected to a 

Windows-based computer, all through SOAP-based web services and network sockets. 

Although the proposed solution does not focus on flexibility, modularity, and compatibility 

improvements, it does propose an infrastructure solution to remotely access industrial 

automation systems, which enables low-latency data exchange. 

Stopper and Katalinic (2009) describe the design aspects of the OPC Unified 

Architecture (UA) in process control applications. This specification uses TCP/IP, HTTP, 

SOAP and XML to provide the same features as older specifications of OPC did, but enabling 

the use of more programming languages and operating systems other than Microsoft’s, which 

expands the possibilities for its application to embedded devices as well. Thus, the OPC UA is 

a specification that enables devices to remotely monitor and control industrial automation 

systems that support this technology, aggregating improvements in flexibility, compatibility 

and modularity. However, access to industrial communications protocols is possible only 

through gateways that map protocol’s parameters to OPC UA tags, which are usually charged 

for each protocol. 

Differently from previous works, Prüter, Golatowski and Timmermann (2009) present 

the Resource-Oriented Device Architecture (RODA) to remotely manage robotic systems, and 

expand the application to industrial automation systems. The proposal is based on the REST 

style with some additions, which shows good results regarding performance issues over the 

SOAP-based Devices Profile for Web Services (DPWS). 

The analysis shows how tightly dependent the supervision solutions are to the technical 

processes where they are deployed, and to manufacturer-specific communication and 

equipment. Solutions that are independent of client software and allow integration with multiple 

programs are more likely to be reused for different applications, such as the OPC UA. However, 

there is no focus on reusable hardware that attaches to automation systems to also feed factory 



Chapter 3 Related work  55 

management programs with supervision data, and to enable remote control of these systems. In 

Table 3.1 is shown the analysis’ summary for each related work and a comparison with the 

proposed solution of this work. 

Table 3.1: Comparison chart based on the analysis of flexibility, modularity, and compatibility parameters. 

 

The comparison results in Table 3.1 were based in properties of the flexibility, 

modularity, and compatibility improvements. For the flexibility improvements, it was evaluated 

whether the supervision system could perform its tasks over multiple buses, and whether the 

same system could be deployed to multiple technical processes without having to rebuild all its 

software and hardware components. Regarding the modularity improvement, it was evaluated 

whether the system could perform its tasks independently of the remote terminal and the 

communication bus. The compatibility improvement had the possibility of performing 

supervision and control from different software programs evaluated. 

3.2  Summary 

In this chapter, the parameters for comparison of related work were established and an 

analysis has been made. At first, it was explained the meaning behind flexibility, modularity, 



Chapter 3 Related work  56 

and compatibility improvements for automation systems: flexibility defines the tolerance to 

perform supervision and control in different devices; modularity defines the components’ 

condition of being independent of each other; and compatibility defines the focus of the 

communication on the data instead of the access method. Later, the related work were exposed 

and led to the conclusion that most supervision tools are highly dependent on the automation 

system where they are deployed, and also upon manufacturer-specific communication and 

equipment. A summary is shown in Table 3.1 comparing the related work to the proposed 

solution of this work. 

This thesis then proposes a solution that approximates to the OPC UA, but with 

fundamental changes to enhance hardware reusability and, consequently, the cost of 

deployment to the industry. It inherits models for remote access via HTTP and web services 

detailed in most cases, but focuses on the performance achievements from (PRÜTER, 2009) to 

provide remote supervision and control of the industrial automation system. The architecture 

concept behind it is detailed in the next chapter, where its interfaces and components are defined 

in order to achieve the flexibility, modularity, and compatibility improvements.  

 



57 
 

Chapter 4  Conception of the architecture  

This chapter will start by analyzing the problem mentioned of low flexibility, low 

modularity, and low compatibility in automation systems and supervision tools. The focus is 

on the ability to reuse them for different industrial applications and devices from multiple 

manufacturers. Later each element will be described individually to define how flexibility, 

modularity, and compatibility can be improved. The chapter ends with an overview of all 

concepts that were explained and shows their contribution to facilitate the process of finding 

technologies that fulfill the requirements for increasing the parameters mentioned above. 

4.1  Problem analysis and overview 

In Chapter 2, the basic elements that compose industrial automation systems and their 

supervision systems were described: the automation systems itself, the SCADA system and the 

industrial network. However, to perform supervision of already deployed automation systems, 

another hardware device must be added in order to extract the data from the PLC, IPC or any 

particular device, which controls the technical process. Thus, it is possible to simplify the 

architecture in an element diagram, as shown in Figure 4.1, in which there are four components 

and two interfaces. The components are the user, the remote terminal, the embedded platform, 

and the industrial automation system; and the interfaces are the remote access and the 

communication bus. An example of how the architecture could be assembled in the industry is 

shown in Figure 4.2. 

 

Figure 4.1: Diagram of the components and interfaces. 

It must be noted though that both the user and the industrial automation system 

components are not defined in the architecture. The reason is that the latter is the target of the 

supervision system and the first is who places requests for controlling and monitoring the target. 

Moreover, the working principles of the industrial automation system components must be 

known, along with its characteristics, since it is going to be supervised. With the consideration 



Chapter 4 Conception of the architecture   58 

above, it is possible to affirm that the architecture is mainly composed of the remote terminal, 

the embedded platform, the remote access, and the communication bus, which are going to be 

explained individually further in this chapter. 

 

Figure 4.2: Overview of the system architecture based on the requirements. 

An evaluation of the proposed elements for the architecture indicates the following: the 

embedded platform is a hardware platform that operates as a device-independent gateway 

between the remote terminal and the industrial automation system; the remote access is a 

universal communication method between the embedded platform and the remote terminal; the 

communication bus is an interface between the embedded platform and the industrial 

automation system that converts the industrial protocol to a processable data standard; and the 

remote terminal is where the user places requests of diagnosis, maintenance, and operation of 

an industrial automation system. 

The hardware and software arrangement must improve flexibility, modularity, and 

compatibility, because it has to be reused in several different applications, with any remote 

terminal, and through any industrial communication protocol. This means that interfaces and 

components work the same way even when the remote terminal, embedded system or industrial 

automation system are switched to different ones. In Figure 4.3 is shown an overall scenario 

composed of two remote terminals, two industrial automation systems, and one embedded 

platform. This scenario is going to be used to explain two different arrangements of the software 

architecture for the proposed elements – components and interfaces – in order to achieve the 

desired improvements for controlling and monitoring industrial automation systems. The 



Chapter 4 Conception of the architecture   59 

arrangements being described in the following topics are named distributed and centralized 

arrangements. 

 

Figure 4.3: Use case scenario. 

Regardless the arrangement, a request to control or monitor the industrial automation 

system shall have the following sequence: the user interacts with the interface in the remote 

terminal and selects an option to either control or monitor; the data representing the user’s 

request is sent to the embedded platform over the remote access interface; this data is then 

received by the embedded platform and forwarded to the industrial automation system using 

the communication bus; finally, any data received from the industrial automation system is 

stored in the embedded platform for later use by the remote terminal. 

In the first arrangement, called distributed arrangement, the software required to 

properly control and monitor the industrial automation system is divided between the remote 

terminal and the embedded platform. This arrangement focuses on reducing data traffic between 

remote terminal and embedded platform. It also reduces the amount of software add-ons to be 

implemented when the architecture is deployed for new applications. 

4.2  Remote terminal 

 The first component of the architecture is the remote terminal. This component 

improves the modularity and flexibility of the architecture concept to control and monitor the 

industrial automation system. With the decentralized arrangement, it separates knowledge on 

the system from the knowledge on the communication protocol, as shown in Figure 4.4. Each 

remote terminal has the knowledge for controlling and monitoring an automation system. As 

can be seen by the color code, the remote terminal 1 (RT1) has information about the automation 



Chapter 4 Conception of the architecture   60 

system 1 (AS1) and the remote terminal 2 (RT2) has information about the automation system 

2 (AS2). 

The knowledge consists of the procedures required to control and monitor the respective 

automation system, i.e., the sequence of data that must be exchanged and processed with the 

intention to execute the desired requests of the user. These exchanged data is, in fact, a few 

parameters associated with the respective automation system’s communication protocol, which 

are required to correctly execute the desired procedure. As for the parameters, a few can be 

enumerated:  

§ Memory addresses and, if available, sub-indexes.   

§ Address in the communication bus. 

§ Values to write or read, as well as their sizes. 

§ Protocol used to communicate and its message types. 

 

Figure 4.4: Organization of knowledge for the distributed arrangement. 

Regarding the protocol information that is stored inside the remote terminal, it is used 

only to know through which communication protocol the automation system is accessed. This 

information is also sent to the embedded platform to specify that the respective request must be 

executed using that communication bus. However, the remote terminal has no knowledge on 

how the communication bus operates and how the process of exchanging messages through it 

is. Thus, in Figure 4.4, every time messages are sent to the embedded platform, both RT1 and 

RT2 specify inside the message package that the request must be executed through, 

respectively, orange and green buses.  

By using this arrangement, RT1 cannot control or monitor AS2, as well as RT2 cannot 

control or monitor AS1, unless the knowledge base on the other automation system is present. 

This arrangement also allows different devices to work as an interface for the same automation 



Chapter 4 Conception of the architecture   61 

system just by presenting the same knowledge on the automation system, enabling more 

elaborate or simpler interfaces. As can be seen in Figure 4.5, both RT1 and RT3 have the 

knowledge on how to control and monitor the AS1. Supposing RT1 and RT3 are different 

devices, for instance one Smartphone and one PC respectively, it could grant mobility for the 

user operating the RT1, but more features for the user operating the RT3. 

 

Figure 4.5: Example of multiple devices to control and monitor automation systems. 

The major difference between the arrangement above and the centralized one is that 

with the latter, the remote terminal packs not only the knowledge on the automation system, 

but also a great portion the knowledge on the communication bus – further detailed in section 

4.4  – as shown in Figure 4.6. However, not all of the knowledge can be moved to the remote 

terminal as some of it is responsible for controlling low-level communications buses, which 

convert digital information to the voltage levels required by the process automation protocols, 

and vice-versa. As for other aspects, such as the restriction of access and addition of multiple 

devices, the arrangements have no difference at all. 

 

Figure 4.6: Organization of knowledge for the centralized arrangement. 



Chapter 4 Conception of the architecture   62 

Nevertheless, the remote terminal alone is not capable of providing the desired 

improvements on flexibility, modularity, and compatibility, even if the centralized arrangement 

is selected. This component requires a communication method to the embedded platform – the 

remote access interface – that operates independently of programming languages, operating 

systems, and hardware. The interface is going to be explained in the following topic. 

4.3  Remote access 

The remote access is one of two interfaces that are compose this concept. It is designed 

to improve flexibility and compatibility of the architecture concept by using standardized 

protocols and data formats. This design would allow seamless communication between the 

remote terminal and embedded platform. This interface does not depend of any arrangement. 

The proposed concept for the remote access is illustrated in Figure 4.7. Both remote 

terminals carry knowledge about different AS, but whenever data is transmitted, it is done 

through one protocol that is common to the RT1, the RT2, and the embedded platform. Using 

standardized protocols ensures that communication is always the same independently of 

processor architecture, operating system, and programming languages. 

 

Figure 4.7: Remote access’s compatibility and flexibility illustration with the distributed arrangement. 

On top of the protocol, the data must be transmitted using standardized formats that can 

be processed by the embedded platform independently of its programming language of origin. 

This means that the focus of the communication is actually on data being transmitted, instead 

of how or where it is generated. 

This approach keeps the remote access interface compatible with any remote terminal 

by using formats common to any programmable device, as well as keeps it flexible by allowing 



Chapter 4 Conception of the architecture   63 

any programming language to be used to generate, and process data for controlling and 

monitoring AS.  

Thus, as mentioned in section 4.2, information about communication bus used by the 

AS is sent in every request through the remote access interface. However, this information must 

follow some constraints in order to be correctly processed by the embedded platform, which is 

going to be explained in the next topic. 

4.4  Embedded platform 

The second component of this concept is the embedded platform. As mentioned in 

section 4.1, its concept is tightly connected to the remote terminal. It was also mentioned in the 

referred section the improvements brought by the separation of the knowledge on the system 

and the knowledge on the communication protocol. Improvements in modularity and flexibility, 

as shown in Figure 4.4, are present when the architecture is organized in the decentralized 

arrangement, which has the system’s knowledge stored in the remote terminal, and has the 

protocol’s knowledge stored in the embedded platform.  

The knowledge on the communication protocol consists of the rules for exchanging the 

mandatory frame format for that protocol, and for managing any feature provided by the 

protocol stack. This means that the embedded platform is responsible for running any 

computation that is specific to the protocol, i.e., which remains unchanged in case the 

communication protocol is used to access a different AS. A few of these characteristics can be 

exemplified: 

§ Protocol frame composition for each frame type. 

§ CRC calculation for received and sent protocol frames. 

§ Package collision avoidance features, if available. 

In Figure 4.8 is exemplified the concept for the embedded platform when receiving three 

request messages from remote terminals, as depicted by the use case in Figure 4.4. As part of 

the formatted request message comes an indication of which communication protocol must be 

used to access the desired AS. In messages 1 and 2 there is an indication that both messages 

should be sent through the communication protocol represented by the orange color, whereas 

the message 3 has an indication that it should be sent through the communication protocol 

represented by the blue color. Consequently, one knowledge base is required for each protocol 

the embedded platform has access to. 



Chapter 4 Conception of the architecture   64 

Improvements in flexibility of the embedded platform are seen when it is reused in 

different applications involving the same communication protocol, as shown in Figure 4.9 by 

the orange-colored communication protocol. Since the embedded platform has no knowledge 

on how the AS3 works, it isn’t relevant the information that is received from the remote 

terminals, as long as it can be correctly exchanged through the communication bus. 

 

Figure 4.8: Overview of the architectural concept for the embedded platform. 

Modularity improvement can also be seen in Figure 4.9. For accessing the AS4 a 

different communication protocol is required, but employing software techniques in the 

embedded platform it possible to attach new protocols stacks and enable the communication 

with new AS. This approach allows as many communication protocols as possible to be 

managed by this component. 

 

Figure 4.9: Overview of the concept for different AS applications. 

When the architecture is arranged around the remote terminal, most of the improvements 

are provided by that component, as it holds most of the features shown above. As shown in 

Figure 4.6, the knowledge present inside the embedded platform is about how to manage drivers 



Chapter 4 Conception of the architecture   65 

for the communication bus interface. Yet, the concept of formatted messages remains the same 

when exchanging data with the remote terminal.  

Although the embedded platform has features that enable several communication 

protocols to be attached, it still needs a physical interface to exchange information in a voltage 

level comprehensible by the AS – especially if the architecture is organized in the centralized 

arrangement. Thus, the low-level communication bus interface was employed to follow the 

proposition defined by previous elements, and it is going to be explained in the next section. 

4.5  Communication bus 

The second interface is called communication bus. It is designed to improve modularity 

and flexibility characteristics of the architecture, regardless the arrangement. This interface 

assumes that industrial communication protocols use physical layers to exchange data between 

devices, thus requires a mechanism to translate digital information into the voltage levels 

defined by the specification of the communication protocol.  

There are several ways to accomplish this, but modularity and flexibility are achieved 

by using standardized low-level data buses and transceiver boards to exchange data with the 

AS. Transceiver boards are attachable small PCB that use an Integrated Circuit (IC) called 

transceiver, and its auxiliary circuitry, to write data to or read data from the bus connecting the 

embedded platform and the AS. On the software side, these IC are accessed by drivers running 

in the embedded platform that use one of four low-level standardized buses. 

 

Figure 4.10: Concept illustration for flexibility and modularity increase of the communication bus. 



Chapter 4 Conception of the architecture   66 

The representation of the concept proposed for this interface is shown in Figure 4.10, 

such that the orange rectangle represents the protocol stack managed by the embedded platform, 

explained in section 4.4 , and the blue rectangles represent the transceiver boards connected to 

one of the low-level buses.  

Flexibility is increased because access to the physical layer is conditioned to four 

different data buses that, along with the respective transceiver boards, enable communication 

with the AS. This means that any IC can be used, as long as the embedded platform is able to 

actuate on it. Meanwhile, modularity is increased because transceiver boards are built to be 

easily replaceable and reused for different applications, following the same principle of the 

protocol stack managed by the embedded platform. 

4.6  Summary 

In order to improve flexibility, modularity, and compatibility of supervision systems, 

this architecture concept proposes different solutions that, together, accomplish the desired 

goal, which comes from the use of standardized technologies and segregation of information 

storage. The architecture is presented with two different arrangements, decentralized and 

centralized, which share software and hardware components, but arrange them differently, as 

states the name. 

The components of the architecture concept, the embedded platform and remote 

terminal, are defined to cope with the remote access interface between them. This interface then 

uses standardized technologies that must follow the rules defined by the organizations that 

created and maintain them, e.g., IEEE, Wi-Fi Alliance, and World Wide Web Consortium. 

Moreover, the embedded platform must also manage the interface with the industrial 

automation system through the communication bus interface, which also uses standardized 

technologies to interact with process automation protocols.  

The next step is to define how the architecture concept may be implemented by 

analyzing the different solutions that can fulfill the specifications performed in this chapter, 

many of which are provided freely by the open-source community. Even though most solutions 

have predefined packages for several operating systems and hardware architectures, selecting 

the one that fulfills best the specification is also a non-trivial task, therefore the decisions of 

which hardware tool and software models were used are detailed in Chapter 5.  

 



67 

Chapter 5  Proposed solution 

In order to show the implementation of the concept exposed in Chapter 4, this chapter 

is divided in three parts: model of the solution, software solution, and hardware solution. At 

first is the modeling, which explains how the proposed concept evolved to a structure that is 

more likely to be implemented. Next, the architecture and development are shown for the 

software, explaining guidelines for coding and some actual implemented source-code. Later the 

hardware is detailed with design decisions and electronic circuits employed in the developed 

prototype. 

This solution uses the decentralized arrangement explained in the previous chapter. The 

choice was made because concentrating all knowledge on the remote terminal would require 

more software development for every new application when compared to distributing it. The 

centralized arrangement also requires larger amounts of data traffic between the two 

components, since the management of protocol stacks is done remotely, over networks with 

lose or none real-time constraints. 

5.1  Model of the solution 

Based on the architecture concept, in which data is exchanged depending on the user’s 

requests, it is possible to identify two actors and seven use cases, which together build the use 

case diagram shown in Figure 5.1. 

 

Figure 5.1: Use case diagram. 



Chapter 5 Proposed Solution   68 

The first actor is the user, which is responsible for inputting data in the system in the 

form of requests. Each request represents an action to be executed by the industrial automation 

system, such as reading sensors or activating a sequence of actuators to produce a product. The 

user is also responsible for consuming information read from the industrial automation system, 

such as sensors values, digital inputs, etc. The second actor is the industrial automation system, 

which is a passive actor as it does not start any use cases. In fact, it is this actor that provides 

the environment to execute the procedures that describe the user’s requests. 

Considering the concept from Chapter 4, this use case diagram is then more accurate if 

shown as in Figure 5.2. The remote access interface discussed previous chapter is found in this 

diagram as part of use cases transmit procedures and manage remote access. The other interface 

discussed, communication bus, is found as part of the use case exchange messages and of the 

actor industrial automation system. 

 

Figure 5.2: Use case diagram with the components' boundaries 

The place request use case represents the interaction with the user for placing a request 

to control or monitor the industrial automation system. The solution is then composed of six 

use cases, which abstract the functions required to accomplish the requested task, and are 

distributed between the remote terminal and embedded platform components.  

An evaluation of this use case diagram shows the workflow of this architecture, as in 

Figure 5.3. After a user requests an action, the remote terminal identifies which procedures need 



Chapter 5 Proposed Solution   69 

to be executed for the particular requisition, loads the information, and transmits them to the 

embedded platform. When the procedures arrive at the latter, the parameters feed the processing 

mechanism, which builds protocol messages and manages protocol-related software that 

exchanges data with the industrial automation system.  

 

Figure 5.3: Proposed workflow based on the use case diagram. 

 

Figure 5.4: Hardware components diagram. 

The use case diagram and its proposed workflow provide an overview of the proposed 

solution, from which more specific requirements can be established to help define the software 

and hardware elements of the components. However, these two diagrams are not enough to 

determine all requirements and for that a hardware diagram is drawn, as shown in Figure 5.4, 

to provide a more tangible view of the proposed solution. The hardware solution is basically 

composed of three functional components – previously defined in Chapter 4 – of which the 

most critical (embedded platform) is divided in three: the processing core and two boundary 

components.  



Chapter 5 Proposed Solution   70 

Based on the diagrams shown in Figure 5.2, Figure 5.3, and Figure 5.4, a few important 

attributes must be pointed out in order to form the foundation for the software and hardware 

solutions. These features either affect the way software and/or hardware architectures are 

designed, or just fill blanks for execution environment in order to make the solution feasible. 

5.1.1  Design decisions 

The first characteristic to be discussed is about the protocol used in the remote access 

interface. As defined by the concept in Chapter 4, this interface has to exchange data in 

standardized formats over a standardized protocol. Technologies such as Wi-Fi and Ethernet 

meet these constraints: both can be used with the Internet Protocol suite (also known as 

TCP/IP), which provides several protocols capable of carrying standardized data formats; every 

device that supports these technologies must comply with the respective standards, IEEE 

802.11 for Wi-Fi and IEEE 802.3 for Ethernet, ensuring the communication throughout the 

network.  

The use of such technologies raises the next feature, which is the ability to manage wired 

or wireless networks connections. Aiming towards a platform that supports ad-hoc and 

encrypted wireless networks, a full-featured wireless protocol stack and software tools to 

manage network connections are required. This task can be accomplished by using one of the 

following approaches:  

§ Use a reference driver source-code from a selected Wi-Fi and Ethernet chip 

manufacturer, and develop the managing application and other system’s features 

around this single solution. 

§ Use an embedded operating system that has support for several Wi-Fi and Ethernet 

chip manufacturers and provides off-the-shelf network managing tools. 

For the approaches above, the embedded operating system option is the one that 

preserves the proposed improvements of flexibility, compatibility, and modularity. An 

embedded operating system has software tools to manage network connections, such as DHCP 

management and WPA supplicants, while its kernel provides seamless access the respective 

protocol stacks. There are two commonly used operating systems in embedded systems, the 

embedded Linux and the Windows CE. Both have been applied in industrial automation 

systems in recent years, but as Linux is distributed under GLP copyright license, its open-source 

characteristic and multiple programming language support aggregates more flexibility to the 

solution, which is not possible with Windows CE. 



Chapter 5 Proposed Solution   71 

However, to run an embedded operating system the hardware device must have external 

memory controlled through a memory management unit (MMU), persistent storage and, most 

importantly, a supported CPU architecture to run upon. For running embedded Linux OS there 

are some processor architectures that are supported by the Linux kernel, such as Super Hitachi, 

x86, PowerPC, ARM, and many others. These architectures have great performance, but this 

system has to be low-cost. Therefore the only one that fulfills both low-cost and high 

performance constraints is the ARM architecture. It has de advantage to be widely used for 

prototyping purposes and to have a big support from Linux open-source community and silicon 

manufacturers. The possibility of finding ARM processors in OEM boards is also an advantage 

of this design decision, because these boards save hardware developing time, are easy to 

purchase, and are not expensive in comparison to boards with different processors. 

The last aspect relates to the use of wireless networks as the remote access interface. As 

previously mentioned in this section, the Wi-Fi technology meets the requirements of the 

architecture concept. However, adding the circuitry to the embedded platform would increase 

the manufacturing cost. Then, an USB connector is used to provide full wireless connection 

over Wi-Fi and save hardware design, since Linux kernel already has all drivers and the 

management capabilities.  

5.2  Software solution 

Explanation of the software solution is based on the model described in section 5.1  and 

starts with the software structure that fulfills the proposed concept. The software realization 

follows with an in-depth description of the software components that grant system’s 

functionality. 

5.2.1  Software architecture 

Based on previous definitions and diagrams, the software architecture is specified as 

shown in Figure 5.5. The remote terminal and the embedded platform together have six software 

components that are designed to perform the task proposed by the concept and to represent the 

use cases in Figure 5.2.  

Inside the remote terminal, the software subcomponents user interface, knowledge base, 

and web service client are responsible for translating the user’s desires into the standardized 

format for the protocol. The first, as states the name, is responsible for displaying an interface 

to the user, through which it’s possible to request a service or evaluate a request result. This 

subcomponent depends on the application where the system is used together, as it can use inputs 



Chapter 5 Proposed Solution   72 

from voice processing, mechanical interfaces, and touch interfaces, and output results to 

displays and LEDs. 

 

Figure 5.5: Software architecture. 

The data of the desired request is forwarded to the next software subcomponent, the 

knowledge base, which generates a list of objects based on the received data. Each of these 

objects is an abstract version of the protocol message required to execute the respective request 

and it contains the descriptors of the protocol, e.g., slave address, memory references or 

memory registers, sub-references (if available for the protocol), description of data type to be 

read or written, data to be read or written, and many other possible descriptors. When a request 

result is queried, the resulting data is also formatted in a list of abstract objects that represent 

the protocol’s response message, and it may contain message identification code, response 

values, execution status, error code if applied, and many other descriptors. 

This software subcomponent is also dependent on the application to which the remote 

terminal desires to control and monitor. Every industrial automation system requires different 

procedures to execute tasks and uses different industrial communication protocols to exchange 



Chapter 5 Proposed Solution   73 

these procedures. However, if applications share one protocol, i.e., provide the same protocol 

stack to exchange data with external devices, the knowledge base subcomponent is going to 

generate similar list of objects with different values and parameters. 

Inside the last software subcomponent of the remote terminal, it is where the list of 

abstract protocol messages will be formatted to the standard data format defined for the 

respective protocol, and then sent to the embedded platform. This subcomponent uses a web 

service client to perform communication between the remote terminal and the embedded 

platform. By using this approach, the remote terminal’s software can be implemented in 

different operating systems and programming languages. 

In the embedded platform there are three software subcomponents, the web service 

server, the driver management, and the protocol stack. As shown in Figure 5.5, they run on top 

of the embedded Linux operating system, and together their main purpose is to work as a 

gateway between the remote terminal and industrial automation system. 

Whenever a request is made in the remote terminal, the web service server receives the 

information. This subcomponent is responsible for managing the remote access interface, and 

also for offering support for access from multiple remote terminals due to its web service-like 

design. Every received request is stored in the execution queue, inside shared memory 

addresses.  

The driver management subcomponent, as states the name, has the task of managing the 

drivers that build the protocol messages from the data stored in the shared memory. Therefore, 

each protocol requires one wrapper layer to translate the abstract data that represents the 

procedures into protocol-specific messages and feed them the protocol stack. 

Actual communication to the industrial automation system occurs only in the protocol 

stack by accessing the device drivers installed in the Linux’s kernel as modules, through which 

the protocol’s physical bus is accessed. Consequently, the implementation of this 

subcomponent is unique for each industrial communication protocol because it depends on 

libraries or APIs to access the respective kernel module. All protocol features, like frame 

assembly, collision detection, parity validation, CRC calculation, and many others, are present 

only in this block.  

Some Protocol Stacks are available as open-source libraries, e.g., CANFestival for 

CANOpen, XBEE-API for ZigBee, and Jamod for Modbus, that need to be compiled to run on 

the microcontroller used in the embedded platform, but some are commercial ones that require 

one-time license or annual fee to be used. 



Chapter 5 Proposed Solution   74 

Thus this software architecture is composed of two programs that together work to 

provide the desired control and monitoring capabilities to the user. The remote terminal does 

not have fixed architecture, meaning that for each application it is possible to have a different 

interface and knowledge base, but the communication method to the embedded platform is 

fixed. On the contrary, the latter remains unaltered in order to provide seamless communication 

between the industrial automation system and the remote terminal, acting as a gateway. 

5.2.2  Software realization 

Before explaining the implementation of the software architecture, some observations 

must be done in advance. First, the remote terminal’s software subcomponents, detailed in the 

previous section, may have its own implementation in compliance with the flexibility concept 

detailed in Chapter 4, but must preserve the communication method with the embedded 

platform in compliance with the compatibility concept. Another observation is regarding the 

embedded platform’s software subcomponents, which, for the purpose of this thesis, were 

implemented in Java programming language because of strong community support, greater 

availability of web service libraries, and easy support for multitask applications. 

The software realization is going to be done by describing each software component 

individually, starting with the ones in the remote terminal, followed by the ones in the 

embedded platform. The descriptions in this section show the several methods used to achieve 

the improvements of the proposed concept, but usability of the system is going to be shown in 

Chapter 6, where the application cases are going to be described. 

5.2.2.1  User Interface 

This software subcomponent is one of which that actual implementation may differ from 

one application to another, since its main purpose is to provide means for the user to input his 

requests to the system and this can be done in many different ways, e.g., speech processing, 

text input, option selection, etc. These requests may be an execution of diagnostic procedures, 

an operation or a configuration of the system, depending only of what the remote terminal 

application is defined to control and monitor on the industrial automation system. 

Whenever an option is selected, this subcomponent inquires the user for any information 

required to define the desired request, which may be done through many methods, as mentioned 

earlier. This information is needed by the knowledge base subcomponent to generate the request 

procedures. The working principle is shown in Figure 5.6. 



Chapter 5 Proposed Solution   75 

 

Figure 5.6: User interface's realization diagram. 

For every available option in the user interface, a sequence of inquiries may or may not 

be triggered, as some options may not require additional parameters, and the user inputs 

information. The output of this software subcomponent is a set of data, containing the request’s 

ID and parameters, which feed the knowledge base subcomponent. 

Since displaying information back for the user depends exclusively on the selected 

request, the results of diagnostics are not triggered by the user interface, instead, this action is 

triggered by the knowledge base, which is the software subcomponent where information can 

be processed correctly. 

5.2.2.2  Knowledge Base 

All requests are processed and managed inside the knowledge base subcomponent, 

following the concept proposed in Chapter 4, in which the information regarding the working 

principle of the industrial automation system is stored in the remote terminal. As mentioned 

earlier, every request fed to the knowledge base has an ID and optional parameters that define 

how the respective procedures should be generated. These two elements are used to trigger the 

respective procedure sequence and feed it with specific values. 

In Figure 5.7 is illustrated an example of organization for the knowledge base 

subcomponent. As it is shown, each request is composed by a set of procedures which boils 

down to a sequence of reading and writing messages, along with any logic required to execute 

the designated request. These messages are abstract representations of the actual protocol 

message, and they are required to correctly execute the request, as shown in Figure 5.8. A 



Chapter 5 Proposed Solution   76 

CANOpen data frame is used to compare the abstract data frame with the actual one. It 

exemplifies the separation of knowledge about the working principles of the industrial AS and 

the industrial communication protocol.  

 

Figure 5.7: Knowledge Base's realization diagram. 

As shown in Figure 5.8 (a), the abstract data frame contains information regarding 

addresses and values, but no information regarding other protocol-specific parameters, such as 

Identifier (Function code + Node ID), RTR, CRC and others. Meanwhile, the actual data frame, 

as shown in Figure 5.8 (b), needs those parameters to ensure the message exchange happens 

correctly and to provide its real-time features. The information present in the abstract data frame 

may be parameters generated by the user interaction, or it may be constants values, depending 

exclusively on the procedure in question. 

Moreover, each set of procedures in the knowledge base is actually a control loop that 

generates several abstract messages with the intention to execute the desired request. These 

loops may require readings from and/or writings to the embedded system, which are resolved 

by the next subcomponent, the web service client. 



Chapter 5 Proposed Solution   77 

 

Figure 5.8: Abstract data frame (a) and actual data frame (b) comparison. 

5.2.2.3  Web Service Client 

The web service client is an important software subcomponent which its sole purpose is 

to exchange data with the embedded platform; it provides the link between the remote 

terminal’s component and the remote access interface. As stated in the concept from Chapter 

4, this subcomponent should provide access to the standardized protocol using standardized 

data formats, which must be independent of programming languages and operating systems. 

In order to solve both requirements, a solution based on web Service communication 

method is proposed, as it benefits of the following characteristics: 

§ This solution uses the Ethernet or Wi-Fi, along with the Internet Protocol suite (also 

known as TCP/IP), to provide machine-to-machine interoperability, as mentioned 

in section 5.1.1 . 

§ Some of the TCP/IP application protocols enable the use of standardized data 

formats, such as XML and JSON. This adds programming language independency 

and compatibility as devices uses the text-based formats to exchange data.  

This solution can be conceived by using one of two architectural styles: the REST style, 

based on the Resource-Oriented Architecture (ROA), and the SOAP, based on the Service-

Oriented Architecture (SOA) style. A brief comparison between the two is displayed in Table 

5.1. The data package parameter evaluates whether data is exchanged between devices in 

simple, comprehensible packages; the data type parameter evaluates the number of different 



Chapter 5 Proposed Solution   78 

types of data can be used as message conveyor; the selection tendency parameter evaluates the 

preference of developers to choose one technology over the other; and the security parameter 

evaluates whether communication is safe from undesired access. 

After analyzing Table 5.1, it can be seen that the REST-based web services offer more 

advantages than the SOAP-based ones. However, REST is an architectural style of software for 

communication, therefore, it requires the implementation of a software agent to perform the 

task. Thus, the web service client is implemented using frameworks to fulfill the constraints 

defined by the REST architectural style. 

Table 5.1: Comparison between SOAP and REST approaches for Web Services. 

 SOAP REST 

Data package complex  simple 

Data types one multiple 

Selection Tendency closed network services scalable Internet services 

Security 
X.509, Kerberos, SAML, 

etc. (WS-Security) 
OAuth1.0a, OAuth2 

 

Every time the web service client is called by the knowledge base, it either triggers a 

POST method or a GET method of the HTTP application protocol, as demands the REST style, 

to exchange data with the web service server. Sending write and read messages to the industrial 

automation system uses the POST method, whereas the GET method is used to retrieve data 

already stored in the embedded platform. 

Because of the POST method’s purpose, abstract messages must be converted to the 

compatible XML format before being sent. In Figure 5.9 is shown how the messages generated 

in the knowledge base subcomponent are converted to the XML format, which is processable 

by the embedded platform. The XML is composed of five tags:  

§ The tag service represents a complete request and contains as many messages as 

needed to execute the procedure correctly. 

§ The tag protocol_name specifies which protocol must be used to execute the 

procedure. 

§ Each tag message represents a single message that is part of the procedure, 

therefore, it varies with the procedure in execution.  



Chapter 5 Proposed Solution   79 

§ The tag frame_type specifies an important feature of the respective messages, 

which may be the difference between message types, e.g., read/write or 

synchronous/asynchronous. 

§ The tag body contains the protocol frame’s data itself, thus it varies with each 

protocol used.  

In Figure 5.10 is shown how the XML conversion is performed for different industrial 

communication protocols. As a result, the protocol_name and body tags are different from the 

ones in Figure 5.9, as each protocol needs a unique representation of its parameters. 

 

 

Figure 5.9: Example of CANOpen abstract message's conversion to XML format: (a) writing message and (b) 

reading message. 

 

Figure 5.10: Example of ZigBee abstract message's conversion to XML format. 



Chapter 5 Proposed Solution   80 

The XML format is also used when retrieving data from the embedded platform. Whilst 

the GET method’s request does not exchange any XML data, the HTTP response contains XML 

data. The reply represents each protocol messages received from the industrial automation 

system as a response to the ones sent using a POST method. In the example in Figure 5.11, it 

can be seen that the response XML data uses the same tags as the ones generated after the 

conversion of abstract messages. This also keeps compatibility between remote terminals 

bearing different operating systems and programming languages. 

 

Figure 5.11: Examples of XML data returned in HTTP GET method responses. 

 

Figure 5.12: Examples of POST (a) and GET (b) HTTP requests. 



Chapter 5 Proposed Solution   81 

Finally, the requests for both POST and GET methods can be seen in Figure 5.12. As 

mentioned earlier, the POST method, in Figure 5.12 (a), carries the XML data derived from the 

conversion, and the GET method, in Figure 5.12 (b), carries no XML data. The respective 

responses are shown in Figure 5.13. Whenever a POST method is used to send data, the 

response contains the confirmation about which protocol has to be used and the number of 

messages that have to be sent, as shown in Figure 5.13 (a).  The GET method, as mentioned 

earlier, retrieves data from the server, thus, the response contains the representation of the 

protocol message exchanged with the industrial automation system, as shown in Figure 5.13 

(b). The URIs used by each request in the same figure are going to be detailed in section 5.2.2.4 

, as the organization of resources is related to the web service server subcomponent.  

 

 

Figure 5.13: Examples of POST (a) and GET (b) HTTP responses. 

5.2.2.4  Web Service Server 

The web service server is the embedded platform’s software subcomponent that supplies 

the resources consumed by the web service clients, and thus closing the final endpoint of the 

concept’s remote access interface. This implies the server must present the same network 

features regarding the TCP/IP protocol suite as the client, which were detailed in the previous 

section. 

This subcomponent has its tasks divided between two elements, the RESTlet framework 

and the REST resources and business. The purpose of the first is to manage incoming HTTP 

requests at the designated IP and port of the embedded platform’s network interface, e.g., 

http://192.168.0.123:8080/. Whenever a HTTP request is received, this element performs three 



Chapter 5 Proposed Solution   82 

tasks: it assembles the parameters of the request as a representation variable; it processes the 

URI to identify which resource shall process the data; and it calls the respective resource 

function from the REST resource and business element, as shown in Figure 5.14. Resources are 

identified by the URI string, but they can be distinguished by the sequence of characters 

immediately after the IP and port: 

§ In http://10.224.10.62:8182/iaswebboard, the resource is /iaswebboard. 

§ In http://10.224.10.62:8182/iaswebboard/requests/zigbee, the resource is 

/iaswebboard/requests/zigbee. 

 

Figure 5.14: Web Service server’s URI organization. 

The second element is the element REST resource and business, which is responsible 

for two tasks: process the HTTP representation and manage the shared memory. Every resource 

has a function that is able to process the GET, POST, DELETE, and PUT methods of the HTTP 

application protocol. Thus, when a resource is called by the REST framework, one of these 

functions is called. If a POST, DELETE or PUT method is called, the representation is passed 

to it as an argument; otherwise, an empty representation is used. The resource part is responsible 

for calling the business function capable of handling the received request. 

The four resources shown in Figure 5.14 are used provide the remote terminal with 

remote access to the industrial automation system: 

§ iaswebboard resource is the root resource of the server, and it is used to organize 

the resources under relevant URIs. When a GET method is used, this resource 

returns relevant information about the software running on the embedded platform, 

such as versioning and inner structure.   

§ requests resource provides the methods to exchange data with the industrial 

automation system. The POST method of this resource allows the remote terminal 



Chapter 5 Proposed Solution   83 

to send the XML data to the embedded platform. The GET method returns all 

messages that are stored in the shared memory regardless the communication 

protocol. The other methods are disabled. 

§ requests/{protocol} resource replies to every GET method the response of a 

communication protocol to a previous request. The URI of this resource defines 

from which communication protocol the response must be returned, e.g., 

/requests/canopen returns the response of a previous CANOpen protocol data 

exchange. The data returned by this resource is formatted as mentioned in section 

5.2.2.3 . 

§ progress resource is accessed only by GET methods, and it returns whether the data 

exchange process is busy. 

Actual processing happens at the business part of the element, where the communication 

rules are applied, and the software extracts the XML data, for the POST method, or retrieves 

data from a previous request, for the GET method. The extraction of data, at this point, is limited 

only to common information, such as the tags protocol name, number of message tags, and type 

of frame, leaving the content of the tag body to be processed by the protocol-specific elements.  

The result of the extraction is formatted into an object, the ServiceVO, which contains 

one variable for each of the XML mentioned tags: a string for the protocol name, a Boolean for 

the service status, and a list of message objects called MessageVO. For the response to a request, 

the same format is obeyed as the tag body contains the data regarding the parameters received 

from the industrial automation system. 

In order to share data between the web service and the driver management threads, a 

shared memory is build using the data structure provided by the ConcurrentHashMap, which 

supports concurrency of access to prevent the resource to be deadlocked. This structure maps 

one ServiceVO object to each driver available for use by using the protocol name parameter. 

As a result, this data structure is used to store both the responses and the requests for each 

communication protocols being monitored by the embedded platform, as shown in Figure 5.15 

in numbers 1 and 2. 

Thus, the GetResult() function searches the data structure after the ServiceVO object 

related to the specified protocol name. It then returns the gathered data in the XML format, as 

shown in the example from Figure 5.11. Meanwhile, the CreateNew() function checks whether 

the protocol name is being monitored by the embedded platform. Granted, it puts the ServiceVO 

object in the data structure. Then, after the object is stored, a flag is set to the driver management 

software subcomponent to signal that data is available to be exchanged. 



Chapter 5 Proposed Solution   84 

As shown in Figure 5.15, the web services are managed by the web service thread, but 

proper communication with the industrial automation system happens inside the driver 

management thread, which is going to be detailed in the next section. 

 

Figure 5.15: Thread diagram and shared memory. 

5.2.2.5  Driver Management 

The driver management subcomponent is the software responsible for managing the 

available communication protocols that grant access to the industrial automation system. It is 

divided in two elements: the driver business and the driver access. They manage together the 

protocol stack used to exchange data with the communication bus interface.  

The driver business element is the foundation of this software subcomponent. It 

implements the driver management thread, and controls which communication protocol shall 

be managed by the thread. The creation of the threads starts when the embedded platform’s 

software starts, as it reads a configuration file that defines which communication protocols that 

shall be managed, as shown in Figure 5.16. The software recognizes each tag driver, and calls 

upon an instance of the driver business element to manage the respective communication 

protocol. The tag name represents the string that is associated with the driver managed by the 

thread, and it is also equal to the string received from the remote terminal as the protocol_name 

parameter. As for the tag type, it is used log which drivers are being started by the embedded 

platform’s software. 

Since every communication protocol requires specific parameters to properly work, 

such as the baudrates, device names inside the kernel, and own bus address, this information 

must be configured in order to the protocol stack initialize communications. As shown in Figure 

5.16, the tag node meets this requirement, for it presents the required parameters of each driver 

shown in the example. Thus, when the driver management thread is created, this element uses 



Chapter 5 Proposed Solution   85 

the tag name to create the respective driver access element, which handles all protocol-specific 

functions.  

 

Figure 5.16: Example of the preferences XML file. 

Naturally, given the thread implementation in this element, it has the task of accessing 

the shared memory to retrieve the ServiceVO associated with the configured tag name, as 

shown in Figure 5.15, and pass this object to the driver access element for processing and 

execution.   

The driver access element implements the unique features of each communication 

protocol. It is responsible for calls to protocol-specific features: starting or stopping the protocol 

stack; sending or receiving data; decoding from or encoding in protocol’s data standard; 

managing the rules to identify errors or retry communication; and any other function demanded 

to accomplish the data exchange. 

Whilst the starting, stopping, sending, receiving, and managing features are self-

explanatory, the decoding and encoding features of this element translate data into the standard 

data frame of the communication protocol, and vice versa. The first processes the string from 

each MessageVO that represents the tag body, and generates a representation object of a 



Chapter 5 Proposed Solution   86 

protocol data frame. The other transforms each received response in a string, and creates the 

MessageVO equivalent to the respective protocol data frame. The protocol stack’s functions 

can only be used after the protocol’s representation object is created, because it is at this point 

that all information about the protocol data frame can be processed by the software. 

 

Figure 5.17: Relation between the Driver Management and the Protocol Stack subcomponents. 

 

Figure 5.18: Structure of an initialized Driver Management thread. 

The threshold between the driver management and the protocol stack is shown in Figure 

5.17. As can be seen in driver access 1 and driver access 2, there are a few possibilities for this 

threshold to be developed, which depends on the library or API used by the protocol stack 

(detailed in the next section). Then, whenever the driver management thread is initiated, it will 

possess the structure shown in Figure 5.18. The driver business takes care of the shared memory 

access and thread execution; the driver access acts as the bridge that gives access to the 

communication protocol; and the protocol stack implements all the communication protocol’s 

layers, down to the proper device driver, required to access the physical communication bus. 

5.2.2.6  Protocol Stack 

Although the driver management subcomponent manages communication rules, proper 

communication with the industrial automation system happens through the protocol stack. This 

software subcomponent is the last one required to comply with the concept from Chapter 4, as 

it works as the link between the embedded platform and the communication bus interface. It 



Chapter 5 Proposed Solution   87 

uses the embedded Linux’s device drivers to access the physical bus of the protocol to send or 

receive data. Consequently, this subcomponent demands a unique implementation for each 

communication protocol, because of two reasons: Linux’s device drivers require a specific 

libraries or API; and it manages the specific features that render the communication protocol 

appropriate for industrial use.  

The specific libraries or API used in this subcomponent must use the USB, SPI, I²C or 

Serial device drivers, as shown in Figure 5.19, to comply with the concept for the 

communication bus interface, as these low-level data buses provide access to the transceiver 

device (detailed in section 5.3 ) that connects to the industrial automation system’s bus. Many 

implementations of communication protocols follow this definition to allow the use of several 

hardware devices to be connected as the physical layer.   

Due to the fact that Linux’s kernel is programmed in C, the device drivers require the 

Java Native Interface (JNI) to be accessed. This characteristic was previously mentioned in 

section 5.2.2.5  and shown in Figure 5.17. However, it does not mean that the entire protocol 

stack’s source code must be written in C/C++. Instead, it may take advantage of Java’s features 

to implement part of the communication protocol’s abstraction layers, and call the Linux’s 

kernel modules when needed. There is no standardization for this approach, consequently each 

API or library realizes the abstraction layers of a communication protocol in its own way, e.g., 

the CANFestival for CANOpen protocol is developed completely in C, whereas the XBEE-API 

for ZigBee protocol has part of the source code written part in Java and part in C. 

 

Figure 5.19: Composition of the Protocol Stack for different communication protocols. 

The protocol stack, as the last subcomponent of the software architecture, receives the 

representation object from the driver management, and passes the data through its multiple 



Chapter 5 Proposed Solution   88 

abstraction layers to communicate with the industrial automation system, while the reverse path 

happens every time data is received from the industrial automation system. The abstraction 

layers present in this subcomponent perform the tasks defined by the communication protocol’s 

specification, such as collision avoidance, frame assembly, collision detection, parity check, 

CRC calculation, and so on, and build the respective data frame, as shown for the CANOpen 

protocol in Figure 5.8 (b). 

5.3  Hardware solution 

Explanation of the hardware solution starts with diagrams to explain where hardware 

solutions are deployed, in accordance to the architecture concept proposed in Chapter 4. Next, 

the hardware architecture is elaborated with the intention to fulfill the specifications that were 

not fully covered by the software solution. And last, it is presented the prototype hardware that 

allows the system to be integrated in any industrial automation system. It important to note that 

the prototype is not the only possible implementation to the hardware architecture, as it possible 

to perform the same tasks of controlling and monitoring automation systems on computers, 

taking into account the differences related to programming languages access methods to drivers 

and/or ports, as well as to features specific of operating system, namely, library management.  

5.3.1  Hardware architecture 

By using the hardware diagram in Figure 5.4 and the design features detailed in section 

5.1.1 , the hardware architecture may be drawn as shown in Figure 5.20. As states the 

architecture concept, the solution has two functional components that are yet to be defined, the 

remote terminal and the embedded platform. The third one, the industrial automation system, 

is a real industrial process or a simulation model of one, which was stated that it was not part 

of the hardware components, since it is the target of supervision and control. Even though it 

can be controlled by PLCs, Microcontrollers or Industrial PCs, the hardware capabilities of this 

component have no influence in the rest of the solution. However, it is required only an interface 

through which the embedded platform can exchange data packages with the industrial 

automation system. 



Chapter 5 Proposed Solution   89 

 

Figure 5.20: The hardware components expanded. 

Shown as (1) in Figure 5.20, the remote terminal functional component is described by 

the architecture concept as a device that provides an interface to the user perform requests, 

generates a sequence of procedures based on user input, and transmits the produced information 

in standardized format over standardized protocols, which led, in sections 5.2.2.1 , 5.2.2.2  and 

5.2.2.3 , to the description of the remote terminal’s software subcomponents. Moreover, in 

section 5.1.1 , the Wi-Fi and Ethernet technologies were selected, because they support the 

requirements established by the architecture concept for the remote access interface. As a result, 

virtually any device can prosecute the tasks charged to the remote terminal, as long as it is able 

to use HTTP protocol, and has minimal computing capabilities to offer a user interface and 

manage de procedures of each request. Thus, it leads to the conclusion that Smartphones, 

Tablets and Computers can be used as remote terminals. 

The embedded platform is the most complex functional component of this solution. As 

shown in Figure 5.20, this device is divided into four parts: the remote connections (2), the 

processing core (3) and (4), and the transceiver boards (5). Parts (2) and (5) are the simpler 

ones, since they are used as adapters that give the processing core ability to access the physical 

layer of their respective communication protocols.  

The remote connections (2), as defined in section 5.1.1 , has the sole purpose of granting 

access to Ethernet and/or to Wi-Fi networks, via on-chip PHY or via dongle connected to a 

USB port. Meanwhile, the transceiver boards (5) are the communication modules that connect 



Chapter 5 Proposed Solution   90 

the processor core and the industrial automation system’s communication bus together. They 

allow the embedded platform to exchange data packages through the process automation 

protocol, and therefore, provide access to the communication bus interface. 

 

Figure 5.21: Example of transceiver board for CAN protocol. 

However, there is no transceiver IC capable of providing communications 

simultaneously to CAN, RS-485, LIN, RS-232 or any other industrial protocol. There are ICs 

available for each protocol individually, though, which implies that each protocol requires a 

PCB that connects to the processing core via a common interface, and is capable of translating 

incoming and outgoing data to the desired industrial interface. An example of these PCB is 

shown in Figure 5.21, which uses the CAN-SPI board from MikroElektronica. 

The common interface is designed to comply with the concept’s requirements of 

modularity and flexibility improvement for the communication bus interface: use transceiver 

boards as communication modules that can be plugged in to enable access to the industrial 

communication protocol provided by that PCB; and support the commonly used low-level 

buses provided by the processing core. As a result, the USB, SPI, I²C, and Serial (via UART) 

are chosen to integrate the common interface, for these buses are largely used in data exchange 

between ICs. In conclusion, this hardware architecture provides modularity to the proposed 

solution for both the remote access and the communication bus interfaces, not only because it 

defines an interface, but also allows the use of different transceivers and adapters. Therefore, 

the hardware architecture makes it possible to connect to several industrial communications 

protocols and local area networks. 



Chapter 5 Proposed Solution   91 

The processing core, shown in Figure 5.4, is divided in two parts, (3) and (4), to improve 

modularity of the prototype. Part (3) is the CPU board, which consists of a PCB that contains 

the processor, RAM memory, non-volatile memory, Ethernet PHY, crystals, and other 

peripheral ICs, as shown in the examples present in Figure A.1. Despite the lack other circuits, 

namely, power supply, RJ45, and USB connectors, this option not only adds modularity to the 

solution, but also minimizes the developing effort of the hardware design.  

Part (4), called motherboard, is a PCB responsible for supplying the CPU board with 

the complementary electronic circuits, mainly for integrating it with the transceiver boards and 

the remote connections. In this board is where the power supply, Ethernet, USB, debugging 

interfaces, general purposes IOs, memory cards, common interface, and connector of the CPU 

board are found. Since these circuits constitute several electronic components, each one is 

considered to be subparts of the motherboard: 

§ The power supply circuit supplies the hardware with the required voltage and 

amperage to keep it running. 

§ The Ethernet circuit possesses the electronic components needed to connect the 

embedded platform to local area networks. 

§ The USB enables the embedded platform to use this bus, which widens the range 

of devices that can be used (Wi-Fi dongles, USB-to-protocol adapters). 

§ The common interface concentrates the low-level buses mentioned earlier (USB, 

SPI, I²C, and Serial) and provides them in edge connectors, enabling the transceiver 

boards to be connected. 

§ The connector of the CPU board, as states de name, simply serves to plug the PCB 

in to the motherboard. 

§ The debugging interfaces are extra connections required to program the embedded 

platform’s operating system. 

§ Another extra connection is the general purpose inputs and outputs (GPIO), which 

adds the possibility to control certain devices that do not use the previously 

mentioned low-level data buses. 

§ The last extra circuit relates to the memory card interface, which expands the 

already available persistent storage of the CPU board. 

Based on the parts described above, a diagram that describes the motherboard can be 

drawn as in Figure 5.22. As mentioned before, the architecture is not only limited to be used 

with the proposed prototype, but also with computer or any other device that fulfills the 



Chapter 5 Proposed Solution   92 

specification, as long as it has a processing unit, Ethernet and/or Wi-Fi, and access to the 

communication modules.  

 

Figure 5.22: Diagram of electronic circuits present in the motherboard. 

5.3.2  Hardware realization 

A possible realization of the hardware architecture is achieved with the proposed 

prototype of this work, which is designed to have a small form factor, be cheaper than an IPC, 

and provide simultaneous connections to different communication buses. It was developed 

following guidelines and examples from other commercially-available boards that provide their 

schematics and layouts free-of-charge. The prototype is composed of the parts shown in Figure 

5.20, with exception of the part representing the remote terminal, because it is a complete 

different device in the architecture. The details are available in Appendix A. 

5.4  Summary 

In this chapter, it was described the processes taken to define a feasible architecture that 

improves flexibility, modularity, and compatibility. Starting from the use case diagram, the 

workflow diagram and hardware components diagram are defined. They are used together as 

the foundation for specifying the software and hardware architectures. 

The software architecture focuses in two main aspects to achieve the desired 

improvements: the separation of system knowledge and protocol knowledge, and the use of 

standardized data formats and protocols to exchange data. In summary, the three-layer software 



Chapter 5 Proposed Solution   93 

architecture of the remote terminal stores all information about the automation systems, such 

as memory addresses, bus addresses, values, types of values, and type of message. It also 

performs remote requests over HTTP with XML-formatted data when needed. Meanwhile, the 

three-layer architecture of the embedded platform stores all information about managing the 

process automation protocol, e.g., topology management, CRC calculation and validation, and 

frame sequencing. It also provides the HTTP resources for remote access through an 

implementation of the REST architectural style. 

The hardware architecture provides the last feature defined in the architecture concept, 

which is proper communication through the process automation protocol bus. Since the 

architecture proposes that remote access has to be done by virtually any device, the constraints 

are much looser for the remote terminal. Differently, the embedded platform has strict 

constraints that define the use of low level data buses to access the communication bus of a 

given automation system, mainly USB, SPI, I²C, and Serial. This part of the architecture also 

has a prototype that is detailed in Appendix A. 

This complete solution was designed to be reusable and portable, as it can be used in 

different hardware devices, such as computers and even other development boards with enough 

computing power to handle the protocol stack and web server. The Java programming employed 

in the embedded platform’s software can run on other compatible industrial equipment, as long 

as drivers for the transceiver boards are ported.  

Finally, this architecture does not represent the actual integration with an automation 

system, since some software and hardware components are still required, such as the user 

interface, knowledge base, and transceiver boards. Thus, the procedures performed to realize 

these components and enable the supervision and control solution to be used are detailed in the 

next chapter. 

 



94 
 

Chapter 6  Case studies 

In Chapter 4, it was discussed the improvements that can be applied to industrial 

supervision systems in order to provide more flexibility, compatibility, and modularity, and, as 

a result, an architecture concept was created. Then, in Chapter 5, a solution has been proposed 

to comply with the definitions of the architecture concept in a way it was cheaper, compact, and 

reusable. However, as mentioned in the respective chapter, some components are application 

dependent, more specifically the user interface, the knowledge base, the protocol stack, and the 

transceiver board. 

This chapter shows how the software and hardware components mentioned above were 

developed, or shall be, in two application cases. The first case, a voice activated coffee machine, 

has been completely developed and tested with this control and monitoring systems. The other, 

a wireless sensors and actuators network gateway, is yet to be completed, lasting only the 

knowledge of the automation system to be implemented. At last, there is a third case which is 

an overview on how to develop all system components. 

 

Figure 6.1: The CombiNation S from WMF. 

6.1  Voice activated coffee machine 

The industrial coffee machine CombiNation S from WMF, shown in Figure 6.1, allows 

external devices to perform diagnostics and controls of its internal process via a communication 

port for the CANOpen protocol (PFEIFFER, 2008). This machine is part of the process models 

present at the Institute for Industrial Automation and Software Engineering (IAS) in Stuttgart, 

Germany.  



Chapter 6 Case studies   95 

In summary, the user orders a coffee through the voice interface in which he/she speaks 

normally without any specific command word. This vague input is first converted to a 

comprehensible format, such as text, then it is processed, and the resulting parameters are sent 

to the coffee machine.  

It must be noted that a mobile approach for the remote terminal was mandatory, 

therefore, an Android smartphone was used as the remote terminal. Naturally, the REST-based 

web service client was implemented for the respective OS. In Figure 6.2 is shown how the 

components and interfaces are represented in this application case. 

 

Figure 6.2: Connection diagram of the Voice activated coffee machine. 

To control the coffee machine through voice using this device, an API was required to 

process the speech input and generate its equivalent in a comprehensible way to the software. 

Throughout the market, there are a few off-the-shelf speech-processing API available for the 

Android OS, but the most accurate to process audio, and also to generate text-based audio, is 

the Mobile Dragon Naturally Speaking API from Nuance (DRAGON). The next element 

required for this application case is one that generates parameters based on vague inputs. Fuzzy 

Logic enables this feature for the user interface component, thus it was developed using JFuzzy 

API. 

These two API make the user interface subcomponent. They allow the user to place an 

order in which he/she speaks to the Android Smartphone using natural sentences, e.g., “I would 

like a big cup of coffee, but not too hot” or “Please make me a warm and strong espresso”. The 

speech input generated by the Dragon API is converted to text, and then processed by the Fuzzy 

Logic to generate parameters for making the desired cup of coffee, which are temperature, 



Chapter 6 Case studies   96 

coffee strength (powder amount), and coffee cup size (water amount), as developed by 

Parvaresh (2012). 

The parameters are passed on to the application-specific knowledge base, which retains 

all information on how to monitor and control the Coffee Machine. In other words, this software 

component contains all frame sequences and parameters (node addresses, indexes, subindexes, 

values, value size) that need to be modified in the coffee machine’s Object Dictionary, as well 

as how to process data read from the Coffee Machine. The set of abstract messages containing 

the indexes, at a total of 12 abstract messages, is then sent in XML format to the embedded 

platform, as explained in Chapter 5. 

At the embedded platform, after the information extraction, the driver management 

thread in charge of the CANOpen protocol builds the data frames. It is inside this hardware 

component that the protocol stack subcomponent is implemented. The CANOpen protocol 

stack is implemented by the open-source framework CANFestival (CANFESTIVAL). As the 

transceiver board there is the Peak System’s PCAN-USB (PEAK SYSTEM), which is an 

adapter that connects to CAN buses via DB9 connector, and to USB hosts via USB. The frames 

are assembled by the PCAN-USB’s driver according to the CANOpen specification, and sent 

through the communication bus interface to start the process of making the cup of coffee.  

Other procedure performed in this application case is the execution of diagnostics in the 

coffee machine. Differently from the procedure above, multiple diagnostics can be selected 

from the user’s touch interface of the Android device, each generating the parameters to execute 

the desired reading, as shown by Eberdard (2004). 

6.2  Wireless sensors and actuators network gateway 

Another application case of this supervision and control system is to use the embedded 

platform as a gateway to ZigBee wireless networks. This provides a bridge for reading sensor 

data and activating actuators. Given the features of the communication protocol, this application 

could be used in both industry and home automation to provide user interfaces to manage those 

scenarios. Each node of the network is connected to a Rogercom’s RCOM-HOMEBEE 

automation board (ROGERCOM), shown in Figure 6.3, which provides digital inputs and 

outputs, as well as relay outputs. 

This application scenario uses a tablet or a computer to manage all nodes, along with 

their respective sensors and/or actuators. The remote terminal reads sensory input in time 

intervals and, according to the input, executes the respective procedure, driving actuators on or 

off. Similarly to the application described in section 6.1 , this application also focuses on the 



Chapter 6 Case studies   97 

Android OS for the tablet, which means that most of the Java application can run on the 

computer with slight modification of parameters. An illustration of this network is displayed in 

Figure 6.4.  

 

Figure 6.3: RCOM-HomeBee automation board from Rogercom (ROGERCOM). 

Each board has its outputs and inputs mapped to a certain driver or sensor inside the 

user interface subcomponent. The knowledge base subcomponent for the application is 

generated after the mapping is completed. When the user selects one of them, the corresponding 

16-bit address for that ZigBee device is retrieved. The software was designed to provide the 

user with evaluation and intervention methods over the manufacturing line, meaning that he/she 

is capable of reading the current state of line’s components, and deactivate them if necessary. 

The application is also ready to generate automated tasks for the nodes by creating new entries 

on the knowledge base. When executed this way, the tasks make the activation and deactivation 

process independent of user inputs. 

For validation purposes, two automation boards were used, each one containing two 

relays, two digital outputs, and two digital inputs. These inputs and outputs were connected to 

sensors and motor drivers along an experimental manufacturing cell. Regardless of on-demand 

or of automatic readings, the knowledge base builds the abstract message with the respective 

16-bit address and the “return I/O current digital level” command as the payload. The abstract 

message list is sent to the embedded platform, where it is translated to the format used by the 

XBee-API (XBEE) working as the protocol stack subcomponent. The transceiver board for this 

application case is an XBee PRO RF module from Digi International (DIGI 

INTERNATIONAL). 

Information to the user interface is updated whenever a ZigBee package returns from 

the requested board. Only after this update the automated tasks can be executed, or the user can 



Chapter 6 Case studies   98 

evaluate and change the state. This is performed by sending a different payload content to the 

same 16-bit address carrying the “change output” command along with the desired output. 

 

Figure 6.4: Connection diagram of the Voice activated coffee machine. 

6.3   Deploying for different applications 

If there is the need to perform supervision and control of a different industrial 

application using the proposed architecture, then there are some aspects that must be considered 

in order to integrate the prototype with the automation system, which determines the number 

of components that require modifications. 

The first step that must be taken is to verify which process automation protocol is used 

to communicate with the automation system, because this influences whether or not it will be 

required changes to the transceiver board (communication module) and the protocol stack 

component. If the process automation protocol is not part of the software package available for 

the embedded platform, then it is required to add this software component to the source-tree of 

the software. This means that the driver access subcomponent (section 5.2.2.5) and the protocol 

stack component (section 5.2.2.6) must be developed to enable message exchange through the 

communication bus. It is also required a transceiver board (section 5.3.1 and Appendix A) to 

send data to and receive data from the process automation protocol.  

There are two ways to define this communication aspect of the architecture, whether by 

selecting first a protocol API and then a communication module that is compatible to it, or the 

other way around. Either way the driver access subcomponent is always developed based on 

the interfaces provided by the protocol API. However, if these elements are already part of the 

system, this step can be skipped. 



Chapter 6 Case studies   99 

The other step relates to which procedures shall be generated to perform the supervision 

and control tasks. This involves directly the user interface and knowledge base subcomponents. 

At first it must be defined the procedures that the remote terminal will request execution of, 

such as the ones from the previous application cases (execute diagnostics, read sensors, move 

actuators or make a coffee). Next it must be defined which parameters are required by each 

chosen operation, as well as their input methods, e.g., touch input, voice input, and gesture 

input. With these three definitions, it is possible to specify the sequence of procedures for each 

operation in the knowledge base (section 5.2.2.2), as well as which API or framework to use in 

the user interface (section 5.2.2.1) to receive user inputs. 

6.4  Overall analysis of the cases 

The purpose of the architecture focuses on reusing as much software and hardware 

components as possible. If newer industrial applications use the same process automation 

protocol, then only the user interface and knowledge base subcomponents are required to be 

implemented. Otherwise the protocol stack and the transceiver board should also be 

implemented, as shown in Table 6.1 for the two previous application cases.  

Table 6.1: Comparison chart of the implementations for both application cases 

 

Remote Terminal Embedded Platform 

User interface Knowledge base 
Protocol 

stack 

Transceiver 

board 

Coffee 

machine 

Dragon Naturally 

Speaking + jFuzzy 

Coffee machine 

procedures 
CanFestival PCAN-USB 

ZigBee 

network 
No special feature 

On/off + sensor 

reading procedures 
xbee-api XBEE Pro S1 

 

As an example, consider a new industrial application that uses either CANOpen or 

ZigBee. It would not require the implementation of the protocol stack and transceiver board 

again, because these subcomponents were already added to the system’s architecture. Only the 

user interface and knowledge base would be required in order to remotely control and monitor 

the new industrial application, and this feature is available for every process automation 

protocol that would eventually be added to the system using the proposed architecture. 



Chapter 6 Case studies   100 

Consequently, the communication layer is preserved from one application to another, while 

only the control mechanism and interface to the user are modified in each case. 

Using the examples above, it is possible to evaluate the achievements of the developed 

system in comparison to what was defined for the proposed architecture in section 1.2  as 

objectives. The first achievement is the universal interface that enables seamless access for 

multiple systems without prioritizing one over another. Starting at the examples depicted in 

Table 6.1, it can be seen that changes in both application cases are restricted to the some parts 

of the software architecture. This leaves the software components related to the web services – 

the remote access interface – unaltered, as shown in Figure 6.5. Moreover, from the 

characteristics described in previous chapters, the standardized feature of this interface allows 

the transmission of multiple protocol data from any operating system, as long as it is transmitted 

over HTTP and uses the predefined structure. The referred interface fulfills then the proposed 

achievement, as it is constructed using the features described above. 

 

Figure 6.5: Software components with the universal interface highlighted.  

The second achievement is the use of communication modules via common connection 

to allow exchangeability of modules, thus enabling physical access to multiple process 

automation protocols. The description of these hardware structures – communication modules 

and common connection – are found in Appendix A. Because the communication modules 

depend directly of the process automation protocol to which it connects, there is no need to 

explain their construction. However, the modules must use the common connection shown in 

Table A.1. These connectors have the standardized I²C, SPI, and Serial buses as possible 

options to send to and receive data from the transceiver ICs. Furthermore, the USB port can 



Chapter 6 Case studies   101 

also be used to connect communication modules, if available. Therefore, the connectors and 

modules can provide physical access to virtually any process automation protocol, because it is 

through the buses mentioned above that the software components can reach the physical layer 

of the communication protocols. 

 

Figure 6.6: Hardware platform with highlighted connections for communication modules. 

The final achievement is the development of a platform unites the results of the first and 

second achievements. This means that it must reduce efforts to enable the proposed methods of 

remote supervision and control of multiple industrial automation systems. As described in 

Appendix A and in Chapter 5 , the hardware platform runs Linux operating system and connects 

to Ethernet and Wi-Fi networks – granting access to HTTP protocol – and also has the 

connectors shown in Figure 6.6 – granting access to the I²C, SPI, Serial, and USB buses. 

6.5  Summary 

The application cases, altogether, demonstrate the effort to deploy the solution to 

different industrial automation systems. In the first two application cases, the changes were 

made to the remote terminal (user interface and knowledge base) and to the embedded platform 

(protocol stack and transceiver board). Meanwhile, in the general application, it was explained 

the process to integrate the prototype with a new automation system, i.e., the evaluations of 

components and impacts on development. 

Next it was shown that the focus of this architecture is the possibility to reuse it in 

different industrial applications. Thus, if an automation system used either CANOpen or 

ZigBee protocols, then there would be no need to redo the development process inside the 

embedded platform, i.e., the communication part of software package would not need to be 



Chapter 6 Case studies   102 

developed again, and it would leave only the user interface and knowledge base to be 

developed. Consequently, the integration process of the system would be reduced. 

Finally, it was evaluated the fulfillment of the achievements defined by the objectives 

of this thesis: the implementation of a universal interface that enables protocol data to transit 

over HTTP protocol; the implementation of a common interface for multiple communication 

modules; and the development of a hardware platform that supports both previous 

achievements. 

 



103 
 

Chapter 7  Conclusions 

In the early chapters of this thesis, some definitions of industrial automation systems 

were presented and explained to describe the state of these systems in their application 

environments. It could be seen that many related work are proposing the use of service-oriented 

architecture, i.e., SOAP-based web services, in supervision systems as the remote access 

method for gathering data. However, the proposals do not focus on reusing the hardware 

different application, as shown by the summarized analysis in Table 3.1. 

The architecture concept’s definition begins at the problem analysis of supervision and 

control systems. Flexibility, compatibility, and modularity improvements come after following 

some guidelines about the use of standardized technologies in the communication interfaces, 

and about the way hardware and software are built. The assertions are summarized in the 

following characteristics: 

§ Separation of protocol knowledge and automation system knowledge. 

§ Standardized communications protocol and data format. 

§ Standardized low-level data buses. 

Based on these assumptions, the proposed solution is formed using a remote terminal 

and an embedded platform, which interconnect via the remote access interface. Moreover, the 

automation system is accessed by the embedded platform via the communication bus interface. 

These devices use a few software and hardware components to successfully meet the demands 

established by the architecture concept, as described in Chapter 5 .  

By standardizing the remote access interface, the solution enables any device to perform 

the task of remote terminal. The only requirement is to be able to exchange the procedure 

information over HTTP using the defined XML format. As for the communication bus 

interface, the use of data buses as SPI, USB, I²C, and Serial limits the number of transceiver 

boards that can be attached to the embedded platform, but ensures that drivers are always 

available. Meanwhile, the embedded platform is designed to operate as a gateway between both 

interfaces, whereas the remote terminal enables the user to monitor and to control the 

automation system. 

Finally, real life applications of the conceived prototype are briefly described in Chapter 

6, where two cases were used to demonstrate the proposed improvements and reusability of the 



Chapter 7 Conclusions   104 

solution. In one application case, the solution was deployed to remotely control a coffee 

machine using voice inputs, while in the other, to monitor and control a wireless network of 

sensors and actuators. In both cases it was possible to remotely perform diagnostics and control 

requests from a smartphone, a tablet, and a computer, using the same Java program configured 

to the operating systems of each device. Moreover, as a hardware platform, a computer 

substituted the embedded platform in both cases also running the same Java program calibrated 

to use files and kernel structures of the respective operating systems. 

The main contribution of this thesis is the definition of a hardware and software 

architecture to perform remote access on automation systems. It enables support for different 

process automation protocols, thus, proposing a flexible and reusable system to monitor and 

control industrial automation systems. Despite the cost of 200 euros of electrical components 

and PCB production, the board, as provided in this thesis, may be used in demonstrators of 

industrial process models, for it allows software development in different programming 

languages on its Linux environment. However, usage of this hardware platform in industrial 

applications requires further EMC testing and software optimization to shorten booting times 

and to ensure operating system’s continuous operation.  

During the progression of this thesis, many challenges were encountered. At first the 

embedded system platforms were evaluated in terms of architecture and interfaces availability. 

Furthermore, the software mechanisms were also being evaluated in terms of framework 

availability and implementation-independent flexibility. 

The hardware development presented many obstacles to surpass, such as design of high-

frequency signal trails and design of PCB with multiple signals layers. It was then followed by 

some software availability problems, since some drivers were only available to the x86 

architecture and had to be compiled to the ARMv5 architecture.  

At the end of development, the first application case which the solution was deployed, 

integrating the embedded platform and remote terminal, was the coffee machine one. This 

process model is part of the Institute of Industrial Automation and Software Engineering from 

the University of Stuttgart.  

7.1  Future work 

There are two types of proposals for future works proposals for this work. At first, there 

are those ones that suggest integration of more technologies with the prototype, instead of the 

architecture, in order to improve its performance and functionalities, and thus, intention of 



Chapter 7 Conclusions   105 

increasing the possibilities of application cases in which it can be integrated with. These 

proposals are the following:  

§ The addition of real-time features to the Linux’s kernel to enable communication 

with time-critical industrial automation systems. 

§ The increase of processing capabilities and hardware IO to convert the embedded 

platform into a Web-enabled PLC. 

§ Rewrite the embedded platform’s software related to remote access to use the OPC 

UA specification and enable integration with current MES, ERP software. 

§ Embedded as many process automation protocols as possible to ensure connectivity 

for every industrial application. 

The other type of proposals suggests the application of the architecture as one element 

of a larger architecture for flexible automation systems and flexible manufacturing systems. As 

mentioned during the beginning of this work, this architecture is the basis for working with the 

evolution of the ISA-95 standard, sometimes called Industry 4.0, which seeks to modify the 

pyramid structure that is widely spread in the industry. Researches focus on pushing the levels 

two, three and four of the ISA-95 standard (as seen in Figure 1.1) to cloud computing services, 

as described in (GIVEHCHI, 2013; LANGMANN, 2013; NEUGSCHWANDTNER, 2013), 

and the architecture would fit between control devices (level one) and the cloud computing 

services (other levels), acting as a flexible mechanism to access data from lower levels.  

 



106 

References 

ALBRECHT, H.; GROSSE-PLANKERMANN, H. An infrastructure for browser-located 

applications in industrial automation. In: IEEE International Workshop on Factory 
Communication Systems, p. 373- 376, September 22-24, 2004. 

ALBRICH, L.M. M. GirControl Plus: Manufacturing process control & remote maintenance 

via Internet. In: 50th FITCE Congress (FITCE), p. 1-7, Aug. 31-Sept. 3, 2011. 

AN186. SMSC Ethernet Physical Layer Layout Guidelines. 2008. Available at: 
<http://www.smsc.com/Downloads/SMSC/Downloads_Public/Application_Notes/an186.pdf>
. Accessed at September 21st 2012. 

ANTONY, J.; MAHATO, B.; SHARMA, S.; CHITRANSHI, G. A Web PLC Using Distributed 

Web Servers for Data Acquisition and Control: Wed Based PLC. In: International Conference 
on Information Science and Applications (ICISA), p. 1-4, April 26-29, 2011. 

ARDUINO. Arduino Ethernet: reference design and schematics. Available at: < 
http://arduino.cc/en/Main/ArduinoEthernetShield>. Accessed at August 21th, 2012. 

KENNEDY, B.; MILLER, D. PHYTER® Design & Layout Guide. April 29, 2008. Available 
at: <www.ti.com/lit/an/snla079d/snla079d.pdf>. Accessed at October 8th 2012. 

BEAGLEBOARD. Beagleboard-xM reference documents: schematics, layout, bill of materials, 
and user manual. 2011. 

BR&L CONSULTING. A Tutorial on the ANSI/ISA95 Enterprise/Control. Available at: 
<www.brlconsulting.com/Files/2003-09%20IEE%20Cambridge-V03.ppt>. Accessed at 
September 19th 2013. 

BRATUKHIN, A.; SAUTER, T. Distribution of MES functionalities for flexible automation. 
In: 8th IEEE International Workshop on Factory Communication Systems (WFCS), p. 157-
160, 18-21 May 2010. 

CANFESTIVAL. CANFestivel framework for CANOpen protocol. Available at: 
<http://www.canfestival.org/>. Accesses at December 21st 2012. 

CUCINOTTA, T.; MANCINA, A.; ANASTASI, G. F.; LIPARI, G.; MANGERUCA, L.; 
CHECCOZZO, R.; RUSINÀ, F. A Real-Time Service-Oriented Architecture for Industrial 

Automation. In: IEEE Transactions on Industrial Informatics, v.5, n.3, p. 267-277, Aug. 2009. 

DIGI INTERNATIONAL. Product manual: XBee™/XBee-PRO™ OEM RF Modules. 
Minnetonka, 2009. 

DOBJANSCHI, V. Developing Android REST Client Applications. In: Google I/O 2010. 3, 
2010, San Francisco, Proceedings. San Francisco: 2010. Available at: 
<http://www.google.com/events/io/2010/>. Accessed at November 18th, 2012. 



107 
 

DRAGON MOBILE. Dragon Mobile Software Development Kit. Available at: 
<http://dragonmobile.nuancemobiledeveloper.com/public/index.php?task=home>. Accessed 
at September 2012. 

EAGLE. Manual for the Easily Applicable Graphical Layout Editor, version 6. Pembroke 
Pines, 2011.  

EBERHARD, J. Remote Diagnostic System for an Industrial Coffee Machine. 2004. 125 p. 
Dissertation (Master), Institute for Automation and Software Engineering, University of 
Stuttgart, Stuttgart, 2004. 

EMBEDDED ARTISTS. Getting started with Linux on the LPC3250 OEM board. Malmö, 
2012a. 

EMBEDDED ARTISTS. LPC3250 Development kit v2 reference documents: schematics and 
user manual. Malmö, 2012b.  

EMBEDDED ARTISTS. LPC32X0 OEM Board schematics: revision 1.5. Malmö, 2011.  

FIELDING, R. T. Architectural Styles and the Design of Network-based Software 

Architectures. 2000. 162 p. Thesis (Doctorate), Institute of Software Research, University of 
California, Irvine, 2000. 

FIGUEIREDO, J. M. G.; DA COSTA, J. M. G. A Concept for an Operational Management 

System for Industrial Purposes. In: IEEE International Symposium on Intelligent Signal 
Processing WISP 2007, p. 1-6, October 3-5, 2007. 

FURASTÉ, P. A. Normas técnicas do trabalho científico: Explicação das normas da ABNT. 
15 Ed, Porto Alegre: s.n., 2009. 

HASHIMUKAI, H. Web based de-facto standard for manufacturing. In: Proceedings of the 
41st SICE Annual Conference, v. 2, p. 905-908, August 5-7, 2002. 

IAS. Industrial Automation Lectures: Chapter 1 - What is Industrial Automation?. Institute for 
Industrial Automation and Software Engineering, Universität Stuttgart, Stuttgart, 2010a. 

IAS. Industrial Automation Lectures: Chapter 2 - Automation Device Systems and Structures. 
Institute for Industrial Automation and Software Engineering, Universität Stuttgart, 2010b. 

GAMMA, E.; HELM, R.; JOHNSON, R.; VLISSIDES, J. Design Patterns: Elements of 

Reusable Object-Oriented Software. Pearson Education, 1994. 

GARGENTA, M. Learning Android. Sebastopol: O’Reilly Media, 2011. 

GIVEHCHI, O.; TRSEK, H.; JASPERNEITE, J. Cloud Computing for Industrial Automation 

Systems - A Comprehensive Overview. In: 18th Conference on Emerging Technologies and 
Factory Automation. 10-14 Septemper 2013. 

LANGMANN, R.; MEYER, L. Architecture of a Web-oriented Automation System. In: 18th 
Conference on Emerging Technologies and Factory Automation. 10-14 Septemper 2013. 



108 
 

LASTRA, J.L.M.; DELAMER, I.M. Automation 2.0: Current trends in factory automation. In: 
6th IEEE International Conference on Industrial Informatics, INDIN 2008, p. 1321-1323, 13-
16 July 2008. 

LOUVEL, J.; TEMPLIER, T.; BOILEAU T. Restlet in Action: Developing RESTful web APIs 

in Java. Shelter Island: Manning Publications, 2012. 

NEUGSCHWANDTNER, G.; REEKMANS, M.; LINDEN, D. van der. An open automation 

architecture for flexible manufacturing. In: 18th Conference on Emerging Technologies and 
Factory Automation. 10-14 Septemper 2013. 

OZDEMIR, E.; KARACOR, M. Mobile phone based SCADA for industrial automation, ISA 
Transactions, v. 45, n. 1, p. 67-75, January 2006. 

PANDABOARD. Pandaboard ES reference documents: schematics, layout, bill of material, 
and user manual. Available at < http://pandaboard.org/content/resources/references>. Access 
at: August 8th, 2012. 

PARVARESH, P. Konzeption und Implementierung einer Software zur Sprachsteuerung eines 

industriellen Kaffeeautomaten unter Berücksichtigung vager Aussagen. 2012. 76 p. 
Dissertation (Master), Institute for Automation and Software Engineering, University of 
Stuttgart, Stuttgart, 2012. 

PEAK-SYSTEM. User manual v2.1.4: PCAN-USB USB-to-CAN interface. Darnstadt, 2012. 

PFEIFFER, O.; AYRE, A.; KEYDEL, C. Embedded Networking with CAN and CANOpen. 
Greenfield: Copperhill Media, 2008. 

PRÜTER, S.; GOLATOWSKI, F.; TIMMERMANN, D. Adaptation of resource-oriented 

service technologies for industrial informatics. In: IECON Annual Conference of Industrial 
Electronics, p. 2399-2404, November 3-5, 2009. 

RICHARDSON, L.; RUBY, S. RESTful Web Services. Sebastopol: O’Reilly Media, 2007. 

ROGERCOM. Instruction manual: RCOM-HOMEBEE. March 15th 2013.   

SANDOVAL, J. RESTful Java Web Services: Master core REST concepts and create RESTful 

web services in Java. Birmingham: Packt Publishing, 2009.  

SAUTER, T.; SOUCEK, S.; KASTNER, W.; DIETRICH, D. The Evolution of Factory and 

Building Automation. IEEE Industrial Electronics Magazine, v. 5, n. 3, p. 35-48, September 
23rd, 2011. 

STARKE, G.; KUNKEL, T.; HAHN, D. Flexible collaboration and control of heterogeneous 

mechatronic devices and systems by means of an event-driven, SOA-based automation concept. 
In: IEEE International Conference on Industrial Technology (ICIT), p. 1982-1987, 25-28 
February. 2013. 

STOPPER, M.; KATALINIC, B. Service-oriented Architecture Design Aspects of OPC UA for 

Industrial Applications. In: Proceedings of the International MultiConference of Engineers and 
Computer Scientists, Hong Kong, v. 2, March 18 - 20, 2009. 



109 
 

ROSÁRIO, J. M. Princípios de Mecatrônica. São Paulo: Prentice Hall, 2005. 

TRUONG, N.-V.; VU, D.-L. Remote monitoring and control of industrial process via wireless 

network and Android platform. In: International Conference on Control, Automation and 
Information Sciences (ICCAIS), p. 340-343, November 26-29, 2012. 

UNGER, K. Manufacturers ‘Needs Not Changing–But Acronyms Are. In: Industrial 
Computing, p. 46-48, October 3rd, 2001. 

WORLD WIDE WEB CONSORTIUM. Simple Object Access Protocol (SOAP) 1.1. 2000. 
Available at: <http://www.w3.org/TR/2000/NOTE-SOAP-20000508/>. Accessed at March 
23rd, 2012. 

WORLD WIDE WEB CONSORTIUM. Architecture of the World Wide Web, Volume One. 
2004a. Available at: <http://www.w3.org/TR/2004/REC-webarch-20041215/>. Accessed at 
March 23rd, 2012. 

WORLD WIDE WEB CONSORTIUM. Web Services Architecture. 2004b. Available at: 
<http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/>. Accessed at March 23rd, 2012. 

WANG, L. Factory Automation Systems: Evolution and Trends. In: IEEE AUTOTESTCON 
Proceedings, p. 880-886. October 16-17, 2002. 

WONDERWARE. Wonderware’s ArchestrA™ technology and the ISA-95 standard are 

helping SA companies ease successfully into MES. Available at: 
<http://www.wonderware.co.za/live/content.php?Item_ID=475>. Accessed at September 
2012. 

XBEE. XBEE Application Programming Interface for XBee/Xbee-PRO ZigBee OEM RF 

modules. Available at: <https://code.google.com/p/xbee-api/>. Accessed at November 7th, 
2012. 



110 
 

Appendix A - Hardware prototype 

The hardware prototype described in this segment provides an implementation of the 

software and hardware architectures described in Chapter 5, more precisely the implementation 

of the embedded platform component, and its hardware layout and schematics were done using 

EAGLE 6.2 from CADSoft (EAGLE). It follows the guidelines from datasheets provided by 

IC manufacturers and references from other hardware platforms, which are distributed under 

Creative Commons Share Alike licenses. The four parts of the prototype, the CPU board, the 

motherboard, the transceiver boards, and the remote connections, are going to be described 

individually regarding the electronic components that compose their schematics, as well as the 

technologies involved in its realization. 

CPU board 

The CPU board is where the processor, working memory, storage memory, and 

peripherals are found. In the prototype, this hardware part uses OEM products with the SO-

DIMM form factor, as shown in Figure A.1, since these type of equipment are more common 

amongst the ones available in the market. The LPC3250 OEM Board v1.5 from the company 

Embedded Artists, shown in Figure A.2, was selected because of the amount of peripherals 

available in a small 200-pin SO-DIMM form factor. This board fulfills the requirements 

established in section 5.3.1 stating that this part shall have an ARM processor, RAM memory, 

persistent storage, Ethernet, and USB PHY. The SO-DIMM connector allows the 

interchangeability of this PCB in case of malfunction or, if required, in case of upgrades. Its 

features are as follows: 

§ NXP's ARM926EJ-S LPC3250 microcontroller. 

§ 64MByte external DDR SDRAM. 

§ 128MByte NAND FLASH. 

§ 4MByte SPI-NOR FLASH. 

§ 100/10Mbps Ethernet interface based on DP83848 ETH-PHY. 

§ On-board ISP1301 USB OTG transceiver. 

§ 13.000 MHz and 32.768 kHz crystals, but internal PLL creates frequencies from 

208MHz to 266MHz. 

§ SO-DIMM with 1.8V keying. 

§ Linear voltage supply of 3,3V. 



Appendix A - Hardware prototype  111 

 

Figure A.1: OEM Boards examples: (a) Embedded Artists' EA3250, (b) FriendlyArm's Tiny6410 and (c) 

Critical Link's MityARM-1808. 

 

Figure A.2: Embedded Artists' LPC3250 OEM board. 

 

Figure A.3: OEM board's components diagram. 



Appendix A - Hardware prototype  112 

The layout of this board is not shown in this section, because of its complexity derived 

from the RAM memory and NAND Flash memory ICs, as well as the 7-page electric 

schematics. However a simpler diagram of its components is shown by the diagram in Figure 

A.3.  

Motherboard 

In order to design the motherboard PCB, the most important requirements are the 

dimensions of the CPU board. According to the datasheet provided by the manufacturer, the 

CPU board has 67.6 mm of width, 49.5 mm of height, and 4.8 mm of depth, as shown in detail 

in Figure A.4 and Figure A.5. These dimensions are needed to define the clearance between the 

OEM board and the motherboard. 

The hardware design of the motherboard was based on other hardware platforms with 

open schematics, namely, the Beagleboard (BEAGLEBOARD), the Pandaboard 

(PANDABOARD), the Arduino Ethernet (ARDUINO), and the LPC3250 Development Kit v2 

(EMBEDDED ARTISTS, 2012b). These references were used to find part numbers for the 

electronics circuit commonly deployed in marketable hardware platforms, as well as to identify 

methods employed to draw the layout of components and signal traces. 

Then, the specification of each subpart of the motherboard is realized around the signals 

available at CPU board’s SO-DIMM connector, aiming to attend to all specifications from 

section 5.3.1 . Note that small components such as capacitors and resistors are not described for 

each subpart as they used in large numbers. 

The power supply is responsible for powering the motherboard. The manufacturer’s 

specification states that the CPU board requires 3.3V, 500mA, but to power USB Wi-Fi 

adapters it is required more current and voltage, as these devices are specified to work with 5V, 

500mA. Consequently, a 5V, 2A power adapter is shall be used to power not only the CPU 

board and the Wi-Fi adapter, but also transceiver board and any auxiliary circuit connected to 

the GPIO. The selected components to this subpart are: 

§ One low-dropout voltage regulator in TO-263 packing, such as MIC29150 or 

SPX2950. 

§ One jack connector with center pin positive. 

§ One LED for power indication. 



Appendix A - Hardware prototype  113 

 

Figure A.4: OEM board's width and height measurements (frontal view). 

 

Figure A.5: OEM board's depth measurements (side view). 

Since the power adapter provides 5V to any circuit that requires it, such as the USB, the 

voltage regulator provides 3,3V to the OEM board and other circuits to a maximum of 1,5A of 

drainage. 

The Ethernet subpart of the motherboard consists only of connector, because the CPU 

board already has the Ethernet PHY in the Reduced Media Independent Interface (RMII) mode 

onboard. Thus, the motherboard shall have the following components:  

§ One RJ45 connector in 90°. 

§ Two LEDs for link and activity indicators. 

§ One magnetic transformer. 

Next, there is the USB subpart of the motherboard. Similarly to the Ethernet, the CPU 

board also has the USB PHY onboard, demanding only circuitry for USB bus’ power supply, 

ESD protection, and connector, which implies that the motherboard has the following 

components: 

§ One USB type A horizontal connector with 4 contacts and through-hole fixation. 



Appendix A - Hardware prototype  114 

§ One electrostatic discharge (ESD) protection IC, such as TPD4S012 or 

PRTR5V0U2X. 

§ One power driver to control USB’s power consumption, such as LM3529-L. 

The power driver LM3529-L is the type of IC used to manage the voltage and current 

drainages, keeping the consumption to a maximum of 500mA, as states the USB specification.  

Table A.1: Transceiver interface's pin configuration 

UART_TX 1 2 UART RX 

I²C_SDA 3 4 I²C_SCL 

SPI_MOSI 5 6 SPI_MISO 

SPI_CLK 7 8 SPI_SSEL 

+5V 9 10 GPIO 

+3V3 11 12 GND 

 

As mentioned in section 5.3.1 , the common interface uses USB, SPI, I²C, and Serial to 

connect different transceiver boards to the CPU Board. The USB, though, uses a different 

connector and, if a Wi-Fi adapter is used, the transceiver board shares the USB connection via 

a hub. Thus, a 12-pin connector is proposed to enable access to the remaining buses 

simultaneously, and the pinout is shown in Table A.1. Despite availability of four connectors 

in the motherboard, it won’t be possible to connect, at the same time, multiple SPI transceivers 

because only one SSEL (CS) pin is available. The presence of a GPIO in this connector is due 

to the fact that some transceivers chips may have a pin for controlling the connection with the 

communication bus, thus giving more control to the application. 

The LPC3250 board connects to the motherboard through a standard 200-pin SO-DIMM 

connector that fits the form factor of the PCB. Embedded Artists, the manufacturer, specifies 

that the connector must have, aside the 200 pins, 1.8V keying and the minimal distance 

clearance from the motherboard’s signal layer to avoid unwanted contacts. This connector is 

available from manufacturers such as Tyco and Foxconn, though Embedded Artists 

recommends the 0-1473005-4 connector from Tyco Electronics, show in Figure A.6.  



Appendix A - Hardware prototype  115 

 

Figure A.6: SO-DIMM connector from Tyco Electronics. 

Even though the main subparts of the motherboard have been specified, the software 

cannot be uploaded to the embedded platform without the debugging interface. It consists of a 

USB-to-Serial connection used to upload binaries to the embedded platform, as well as for 

accessing the Linux operating system’s terminal. The components required for this circuit are 

the following: 

§ One FT232RL USB to Serial IC. 

§ One ESD protection IC, such as TPD4S012 or PRTR5V0U2X.  

§ Three LED for power indication, RX and TX data lines. 

§ One USB type mini-B horizontal connector. 

The GPIO and the memory card interface are extra circuits, as mentioned in section 

5.3.1 , which were added to enhance the capabilities of the embedded platform. The first 

requires no components, just a pin header connector. Meanwhile, the second requires a couple 

of transistors to drive the power and the standard SD/MMC connector, since the OEM board 

also supports these devices. 

Based on the components specification above, the schematics of the motherboard is 

divided in four pages, shown in Appendix B. Thus, the layout of the motherboard is designed 

to have four layers, in a form factor with 116, 06 mm wide, 100 mm high, and 1.536 mm thick. 

The PCB was manufactured by the Fischer-Leiterplatten GmbH Company using the industry 

standard FR4 material. 

The layers of the board were designed according to high-frequency signal traces, which 

require isolation and shielding from other traces because of magnetic induction. This technique 

was used to trace only Ethernet and USB differential traces (AN186; KENNEDY, 2009), for 

they carry electric signals at 100MHz and 480MHz, respectively, whereas remaining signals 

work at much lower frequencies. The traces are distributed among four layers: layer 1, Ethernet 

and USB high-frequency signals traces, ground shielding/distribution plane, low-frequency 



Appendix A - Hardware prototype  116 

signal, and power distribution traces; layer 2, ground shielding/distribution plane; layer 3, 5V 

and 3,3V power distribution planes, and ground shielding/distribution plane; layer 4, low-

frequency signal traces, power distribution traces, and ground shielding/distribution plane. 

The finished embedded platform’s hardware is seen in Figure A.7, where the red PCB 

is the CPU board and the green PCB is the motherboard. The motherboard’s subparts are 

identified in Figure A.8: (1) SO-DIMM connector, (2) RJ-45 connector, (3) USB type A 

connector, (4) debugging interface, (5) GPIO, (6) common interface, (7) Power jack for 5V 

power supply, and (8) memory card interface connector. 

 

Figure A.7: The embedded platform, top view. 

 

Figure A.8: The motherboard, top and bottom views. 



Appendix A - Hardware prototype  117 

Transceiver board 

The use of these small PCB depends strictly on the process automation protocol to which 

it is desired to connect the embedded platform to. Thus, the hardware realization presented in 

this section is not the only possible one, as there are commercially available adapters, such as 

the Peak System’s PCAN-USB and the Digi International’s XBee PRO RF module. In this 

section is proposed the transceiver boards for CAN, RS232 and RS485, where each single board 

has a transceiver IC responsible for converting data from both the SPI’s and the UART’s serial 

buses to the signal level of the respective bus voltage level, and vice versa.  

Besides both power supply voltage provided in the common interface connector, the 

transceiver ICs must have serial input (Rx) and output (Tx) tolerant to 3,3V or 1,8V, because 

that is the voltage which the UART, SPI, and I²C interfaces operate. If a transceiver IC does 

not attend to this requirement, a voltage level translator, such as TXS0104E, must be used as a 

two-way translator to voltage levels of 5V. 

The CAN2.0 protocol specification (PFEIFFER, 2008) defines that the physical layer is 

governed by two IC, the controller and the transceiver. Consequently, the Texas Instruments’ 

SN65HVD234 transceiver, together with Microchip’s MCP2515 CAN Controller, are selected 

to be part of the transceiver board for CAN protocol. Following the respective manufacturers’ 

suggestions of circuit for both IC, the assembled circuit for the CAN transceiver board is drawn 

as in Figure A.9. 

 

Figure A.9: CAN transceiver board using SPI interface. 



Appendix A - Hardware prototype  118 

Even though the RS232 is a standard from 1969, it is still used as a serial communication 

method, acting as the physical layer of some protocols, such as Modbus RTU. Thus, the 

MAXIM’s MAX3221 is selected as the transceiver IC for its 3,3V tolerance. The assembled 

circuit, as suggested by the manufacturer, is shown in Figure A.10. 

 

Figure A.10: RS232 transceiver using UART’s serial interface. 

The RS-485 standard is used in communications as physical layer of some industrial 

communications protocols, such as Modbus RTU and Profibus DP. Thus, for a RS-485 

transceiver board the MAXIM’s MAX13431E IC was selected. And as suggested by the 

manufacturer, the circuit is shown in Figure A.9. 

 

Figure A.11: MAXIM'S MAX134301E RS485 transceiver. 

Remote connections 

The devices used in the remote connections are responsible for providing the physical 

medium of the communications between the remote terminal and the embedded platform, which 



Appendix A - Hardware prototype  119 

may be through either Ethernet or Wi-Fi networks. The motherboard provides, by itself, the 

physical layer for Ethernet communications via the RJ45 connector. Therefore, only a network 

cable is required to enable this type of remote connection. However, the Wi-Fi network requires 

USB adapters to be attached to the embedded platform in order to access enable this type of 

connections. Schematics and layout of these devices are completely unknown, as they are 

commercial products available in the market, but they must follow specifications from the 

regulatory organizations for USB and Wi-Fi devices, respectively USB-IF and Wi-Fi Alliance, 

which are responsible for evaluating the compliance of these devices with the IEEE’s standards. 

More specifically, the USB adapters must be certified to IEEE 802.11b/g/n standards, as are 

most smartphones, tablets, and computers.  



120 

Appendix B - Motherboard schematics 

 

Figure B.1: Motherboard schematics, page 1: SODIMM connector and current measurer.



Appendix B – Motherboard schematics  121 

 

Figure B.2: Motherboard schematics, page 2: power supply and Ethernet connector. 



Appendix B – Motherboard schematics  122 

 

Figure B.3: Motherboard schematics, page 3: USB host and USB debugging port. 



Appendix B – Motherboard schematics  123 

 

Figure B.4: Motherboard schematics, page 4: GPIO, SD/MMC card interface and transceiver interfaces. 


