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Resumo

Quando se trata de sistemas e serviços de autenticação seguros, há duas aborda-

gens principais: a primeira procura estabelecer defesas para todo e qualquer tipo

de ataque. Na verdade, a maioria dos serviços atuais utilizam esta abordagem, a

qual sabe-se que é infactível e falha. Nossa proposta utiliza a segunda abordagem,

a qual procura se defender de alguns ataques, porém assume que eventualmente

o sistema pode sofrer uma intrusão ou falha e ao invés de tentar evitar, o sistema

simplesmente as tolera através de mecanismos inteligentes que permitem manter

o sistema atuando de maneira confiável e correta. Este trabalho apresenta uma

arquitetura resiliente para serviços de autenticação baseados em OpenID com uso

de protocolos de tolerância a faltas e intrusões, bem como um protótipo funcional

da arquitetura. Por meio dos diversos testes realizados foi possível verificar que

o sistema apresenta um desempenho melhor que um serviço de autenticação do

OpenID padrão, ainda com muito mais resiliência, alta disponibilidade, prote-

ção a dados sensíveis e tolerância a faltas e intrusões. Tudo isso sem perder a

compatibilidade com os clientes OpenID atuais.

Palavras-chave: OpenID, Tolerância a Faltas e Intrusões, Sistemas Resilientes,

Replicação de Máquinas de Estado, Infra-estruturas de Autenticação e Autoriza-

ção.
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Abstract

Secure authentication services and systems typically are based on two main ap-

proaches: the first one seeks to defend itself of all kind of attack. Actually, the

major current services use this approach, which is known for present failures

as well as being completely infeasible. Our proposal uses the second approach,

which seeks to defend itself of some specific attacks, and assumes that eventu-

ally the system may suffer an intrusion or fault. Hence, the system does not try

avoiding the problems, but tolerate them by using intelligent mechanisms which

allow the system keep executing in a trustworthy and safe state. This research

presents a resilient architecture to authentication services based on OpenID by

the use of fault and intrusion tolerance protocols, as well as a functional pro-

totype. Through the several performed tests, it was possible to note that our

system presents a better performance than a standard OpenID service, but with

additional resilience, high availability, protection of the sensitive data, beyond

fault and intrusion tolerance, always keeping the compatibility with the current

OpenID clients.

Keywords: OpenID, Fault and Intrusion Tolerance, Resilient Systems, State

Machine Replication, Authentication and Authorization Infra-structures.
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Chapter 1

Introduction

Nowadays the extensive use of virtualization, the emergence of new concepts
as Software Defined Networks (SDN) and the outsourcing of network features
(e.g. IaaS 1, SaaS 2, PaaS 3) can be pointed out as a new computing trend,
which is to provide infrastructure as a service. However, as any service, these
infrastructures need to control the access to their resources in order to avoid fails
and attacks. To achieve this goal, they make use of identification, authentication,
and authorization services, which, in this context, are responsible for one of the
major challenges of future virtualized networking environments: ensure higher
degrees of security and dependability.

Due this fact, Authentication and Authorization Infrastructures (AAI) are
becoming critical to any infrastructure which needs features as elasticity, multi-
tenacy, availability, escalability and resilience. For instance, at the application
level, users are allowed to transparently access different services (e.g. Google,
Facebook, Twitter, among others) using a single credential set or session. Typi-
cally, these infrastructures rely on Identity Providers (IdP) such as Shibboleth [6],
OpenID [7], Persona [8], MyID [9], and others, to identify and authenticate the
user.

Although these AAIs have been growing in importance, their resilience and
reliability still presents open issues [10], in specially related to the availability
and reliability of these services as described in [4, 10, 11, 12].

In this context, a new model of authentication based on OpenID standard is
proposed. This model is capable to provide an authentication service intrusion
and fault tolerant, resilient and highly available.

1Infrastructure as a Service
2Software as a Service
3Platform as a Service
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1.1 Motivation

This work is a direct result from researches performed to SecFuNet project [13].
The Secure Future Networks project intends to provide solutions to future net-
works accordingly to the computing trends, designing a cloud security frame-
work, besides introducing authorization and authentication features for this kind
of environment. Thus, the project - which encompasses universities from Euro-
pean Union and Brazil - presents to the scientific community several solutions
addressed to security of future networks, among them, the resilient and highly
available OpenID architecture as presented here. Therefore, some text blocks,
images and charts presented on this document are contained on SecFuNet’s tech-
nical reports, specially on deliverables 5.1 [4] and 5.2 [5].

Future networks have been designed and deployed to integrate legacy and
upcoming technologies into a heterogeneous and highly dynamic resource pool.
The convergence between wireless and wired networks to a single and highly per-
formance IP network, the opening up of service providers which allow third-party
and other developers to join and create new services and the emergence of cloud
computing are some examples of the possibilities offered by future networks. To
fulfill these goals future networks are based on virtualization and management
services (e.g. authentication, authorization, monitoring, control) to allow oper-
ation of multiple distinguished networked services, tailored to different needs,
on the same physical infrastructure. However, these services suffer of the same
problem: the lack of resilience.

In general, resilience can be defined as the ability of system/person/organization
to recover/defy/resist from any shock, insult or disturbance [14]. According to
the authors, the term ’resilience’ is used in many different fields. For instance,
[15] used the term ’resilience’ in computer database systems as the ability to
return to a previous state after the ocurrence of some event or action which may
have changed that state. Often the terms related to the concept of resilience are
privacy, security and integrity. [16] and [17] defined resilience as the persistence
of service delivery that can justifiably be trusted, when facing changes4. Several
authors provide a conceptual definition of resilience but they do not quantify the
resilience of computer systems. [14] propose a manner to quantify resilience using
dependability attributes of systems such as availability, performance, and so on.
This document does not evaluate the resilience degree of the proposed intrusion
and fault tolerant Identity Provider. However, as presented in the last section of
this work, the evaluation is pointed as an important future work for the resilient
Identity Provider’s research.

Thus, Resilience for virtual networks is closely tied with important challenges,

4Changes may refer to unexpected failures, intrusion or accidents.
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such as those described in [18]. First, the demanding of sharing physical resources.
Since virtual networks have to share the same substrate of resources (e.g. mem-
ory, processor, forwarding tables, links), failures on the physical infrastructure
can affect the availability of several services. Second, the abstraction of the net-
work is another challenge. The design of resilient mechanisms becomes hard due
to certain limitations on the knowledge about the underlying structure. Third,
network control and management services (e.g. open identification systems, au-
thentication, authorization, and accounting services, monitoring systems, control
plane services) are not ready to support critical failures (e.g. complete virtual
networks disruption) in these new environments.

For instance, resilient authentication and authorization services face the real
need of distributing the authentication and authorization process, aiming to
achieve more customers and provide a more robust platform to the service providers.
Therefore, the employment of resilience for these services depends on require-
ments and questions [19] such as:

� How to distribute the authentication and authorization process?

� How robust and resilient must the solution be? Should it tolerate intru-
sions? How critical is the system availability? The service needs to tolerate
both logical failures (e.g. operating system crash, message corruption, soft-
ware bugs) and physical failures (e.g. connectivity and energy disruptions)?

� For how long, without going down a second, should the system be up and
running? What are the required liveness guarantees (e.g. avoid locks,
absence of starvation, avoid service disruptions)?

Resilience of future networks still is an open issue. In practical terms, the
majority of the authentication services and identity providers do not consider
some properties or security features and dependability, how can be observed in
[20, 21, 22]. In some cases, only SSL connections and simple replication schemes
(primary-master) are used to tolerate stopping failures [10].

Although all the issues, currently the World Wide Web holds several users
accessing numerous online resources and uncountable web services which promise
to solve all kinds of problems. However, these services try to protect the infor-
mation access, requiring specific credentials from its users. This way, the users
are obliged to own and manage a set of credentials everyday to use their services
adequately. Furthermore, [23] and [24] present this characteristic as a security
flaw. Surely in the future, the internet will have even more web services, users,
attacks and vulnerabilities. And [25] asserts that the use of distinctive creden-
tials require an efficient and safe identity management. Thereby, nothing better
that identity providers to offer their identification and authentication services to
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web applications that need user credentials, reducing redundant credentials and
logins through the single sign-on scheme.

Despite of the increasing importance of Identity Providers and single sign-on
solving the problem of use multiple accounts, there are still many vulnerabilities
which include single-point-of-failure [26], phishing [27], development flaws [28]
and open problems regarding the availability and reliability of the authentication
and authorization services as previously cited in [4, 10, 11, 12]. As a consequence,
these services are potential targets of attacks and intrusions, which could indeed
lead to critical data leakage, abnormal behavior or deny access to services and
virtualized infrastructures. Furthermore, recent reports show a growing trend
in digital attacks and data breach incidents [29], as well as advanced persistent
threats [30, 31] are becoming one of the top priorities of security specialists.

Actually, most of IdP services do not completely address security and de-
pendability properties such as confidentiality, integrity and availability. This
can be observed on the services’ online documentation and deployment recom-
mendations [21, 22]. For instance, some OpenID implementations provide basic
mechanisms to improve reliability and robustness, such as SSL communications
and simple replication schemes to avoid eavesdropping and tolerate crash faults,
respectively.

Considering the above-mentioned context, it seems to be clear that there is
still room to develop more resilient and reliable solutions, capable of deal with
more frequent and advanced attacks. Therefore, the work’s main goal is demon-
strating how one can design and implement more reliable and highly available
authentication and authorization infrastructures based on OpenID framework
through building blocks and a robust architecture.

This work is part of SecFuNet [13] project that intends to design solutions to
secure future networks accordingly to the computing trends, acting on designing
a cloud security framework, besides introducing authorization and authentication
features for this kind of environment.

1.2 Objectives

The main objective of this work is to propose and evaluate an authentication
model based on OpenID standard, which provides high availability, resilience, and
furthermore, be capable to tolerate byzantine faults. Three steps were identified
as crucial to achieve this goal:

� Identify mechanisms which can provide resilience, intrusion and fault tol-
erance as well as high availability to the authentication model
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� Identify libraries, components and related which allow execute sensible op-
erations in a securely way and ensure the resilience of the authentication
model

� Develop a functional prototype which allows to evaluate the proposed au-
thentication model

1.3 Organization of this Document

The document has been structured in order to introduce the concepts involved in
OpenID Identity Providers and present a satisfactory solution. The remainder of
this document is organized as follows. Chapter 2 presents some basic concepts as
OpenID, distributed systems, state machine replication, intrusion and fault tol-
erance and related work. Following, Chapter 3 presents the main characteristics
of the resilient systems and their elements like main building blocks and deploy-
ment configurations. Chapter 4 is responsible for presenting the architecture of
our proposal. It presents the functional model applied to this work, the archi-
tectural configurations and the types of faults tolerated. Next, Chapter 5 brings
information and details about the implementation of the functional prototype
such as libraries, tools and assumptions. Then Chapter 6 presents all the per-
formed tests (availability, performance, latency) and respective results, besides
a further discussion. Lastly, Chapter 7 presents the final remarks, difficulties,
contributions of the study and finally, the future works.
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Chapter 2

Basic Concepts

This chapter presents some important basic concepts to base the study presented
in this work. The concepts ensure the good understanding of this dissertation and
its proposal. Here it will be cited some themes like OpenID standard, fault toler-
ance, single sign-on, state machine replication, authorization and authentication
systems.

2.1 Authorization and Authentication Services

With the rising of the number of services on the web, and consequently the
number of attacks to these services, the authorization and authentication systems
have been became essential to ensure more security for users. Many services
handle with sensible information and consequently must avoid exposure of user’s
information. However, keeping safe all user information and transactions is a
very hard task and a big responsibility. For this reason, many service providers
prefer to transfer this role to specialized organizations and services.

These authentication and authorization services aim to use several mecha-
nisms to reach the goal, employing different mechanisms of authentication and
authorization services like the physical control access, identity providers and
many others. Whatever be its type, all service providers must keep the infras-
tructure and data free of attackers. Usually, it is achieved by authentication and
authorization mechanisms.

By definition, authentication is used to establish someone’s identity and au-
thorization is used to grant or deny access to some feature or resource after the au-
thentication. Traditionally, this kind of service is very system-centric. However,
many authentication and authorization services had became more user-centric
and it allows identity providers to issue digital identities instead of username
and password. It gives to the user control over which security token are sent to
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a web service for authentication [32]. Thereby, different types of systems have
been developed to provide this kind of authentication. The OpenID is one of the
most famous efforts in the open source arena.

2.1.1 OpenID

In open and broad environments, providing authorization and authentication ser-
vices is not a simple task. Many variables must be considered, among them, scal-
ability, performance and security. By definition, the respective project intends
to provide infrastructure as a service through virtualization and cloud infrastruc-
tures. Due the big rising of the cloud computing, the capacity of access many
services using just one set of credentials has becoming an emergent authentica-
tion mechanism. Therefore, the OpenID presents itself as a great candidate to
provide a resilient, secure and scalable authentication service in the cloud and
federated environments.

The OpenID uses some roles on its authentication standard in order to make
more clear the understanding of the process [1]:

� The User - is a real user or person who is trying to authenticate against a
Relying Party with his/her digital identity to enjoy some service/feature;

� The Identifier - is the URL that identifies the digital identity of the User;

� The Consumer or Relying Party (RP) - is an entity accepting an
assertion from an OpenID provider. It is the actual website where the
user logins using OpenID. It is called consumer because it consumes the
OpenID credentials provided by the Identity Provider;

� The OpenID Provider (OP) or Identity Provider (IdP) - is respon-
sible for authenticating the User against a Relying Party. The OpenID URI
(Uniform Resource Identifier) points to the IdP. It is the host where the
user’s credentials are stored. Sometimes it is also called as OpenID Server.

� The User Agent - is simply the user’s browser which he/she interacts
with.

Thus, OpenID is an open standard which provides a way to prove that an
end user controls an Identifier for authentication and authorization purposes [33].
This standard permits that a user has only one credentials set and be able to
authenticate yourself in several web services using your identity provider. This
eliminates the need of multiple identification and authentication credentials (e.g.
one per service), making it easier to provide Single Sign-On (SSO) functionality
[34].
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OpenID is decentralized, it means that no central authority must approve or
register Relying Parties or OpenID Providers. Basically, Relying Parties do not
have to trust the provider, because they trust the user. The user can change
his/her identity provider at any time. Nevertheless, trust on OpenID providers
can be achieved using identity provider credentials (e.g. server certificates) to
validate the provider’s identity within federation protocols. OpenID uses only
standard HTTP(S) requests and responses, so it does not require any special
capabilities of the User Agent or other client software. In other words, this
authentication standard is designed to provide a base service to enable portable,
user-centric digital identity in a free and decentralized manner. An end user
can freely choose which Identity provider to use and authenticate and prove
your identity [33]. An identity is represented by a specific URL composed by
the provider domain name plus the user identity parameters (e.g. unique user
name within the specific provider). Hence, this forms a globally distinguishable
identification scheme.

Figure 2.1 presents in details all the necessary steps to perform a standard
authentication in the OpenID. Full arrows represent messages in the client-server
direction and dashed arrows represent the opposite. The process starts when a
user requests a service to the Relying Party (RP). Next, the RP asks to the user’s
identification URL (step 2). In the step 3, the user informs the identifier which
is normalized by the RP as an Extensible Resource Identifier (XRI) following the
syntax version 2 [35] or as an URL accordingly to the [36], depending on the
information inserted by the user.

After normalization, the RP performs the Discovery (step 4) trough the Yadis
protocol [37]. This step can be done in 3 ways: using a XRI identifier or an URL
identifier. Both return an XRDS (eXtensible Resource Descriptor Sequence)
document [38]. If the Yadis protocol fails or the returned document is invalid,
the RP performs an HTML based discovery as third attempt [39].

When the Identity Provider receives a Discovery request, it responds accord-
ingly (step 5). In the majority of the cases, a XRDS document is returned with
information valuable to the Service Provider, e.g. the list of OpenID Server’s end-
point URLs, supported version of the OpenID protocol, whether server supports
attribute exchanging or not, among others.

After receiving the document, the RP extracts some information from the
XRDS and (optionally) requests an Association (step 6). The SP tries an asso-
ciation with each of the endpoints URL until one works successfully. The asso-
ciation aims to establish a shared secret between the Consumer and the Identity
Provider [32] to add some security to the OpenID communication. In the Asso-
ciation request the Service Provider sends the endpoint URL used in the request,
the Diffie-Hellman data (public key, modulus prime number and generator num-
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ber) if used, among others. In the sequence of the process, the server responds
sending its public key and then establishes the association with the Consumer
keeping the association handle (unique association identifier).

Figure 2.1: Necessary steps to a standard OpenID authentication.

In step 8, RP sends an authentication request to the OpenID Server, which
redirects the user’s browser to a form (step 9) in order to get user’s credentials and
performing the real authentication. Then, user informs your credential (step 10)
and the server sends back (step 11) an assertion (positive or negative) to Service
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Provider along with the nonce1, the association handle and other information,
all used in the signature of the authentication response. Lastly, the RP verifies
the authentication response, its signature and its nonce expiration to deliver to
the user the permission to access the desired service or not (step 12).

Table 2.1 presents all the OpenID parameters sent in the flow described in Fig-
ure 2.1. The following parameters are sorted by request type. Some parameters
are more critical than other because they are optional on requisitions allowing
breaches to parameter forging and so on. More details are presented in OpenID
specification document [39].

Table 2.1: OpenID standard requests and respective parameters.

Parameter name Mandatory Stored value

A
ss
o
ci
a
ti
o
n
R
e
q
u
e
st openid.ns No OpenID version number be-

ing used for a particular
message

openid.mode Yes Type of the traveling mes-
sage

openid.assoc_type Yes Algorithm used for signing
the message

openid.session_type Yes Type of encryption of MAC
key

openid.dh_modulus No Prime number of Diffie-
Hellman agreement

openid.dh_gen No Generator number of Diffie-
Hellman agreement

openid.dh_consumer_public No Consumer’s Diffie-Hellman
public key

A
ss
o
ci
a
ti
o
n
R
e
sp
o
n
se openid.ns SAA2 SAA

openid.assoc_handle Yes Unique identifier of the as-
sociation and the key used
for encryption/decryption of
the respective association
and related

openid.session_type SAA SAA
openid.assoc_type SAA SAA

1In information security environments, Nonce is often a random or pseudo-random number
used only once. It is issued in an authentication to ensure that old requests/packages cannot
be reused in replay attacks.

2SAA - same as above
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Table 2.1: OpenID standard requests and respective parameters.

Parameter name Mandatory Stored value
openid.expires_in Yes Lifetime of the respective as-

sociation
openid.mac_key No The non-encrypted but

base-64 encoded MAC
key in the case of
"openid.session_type"
was "no_encryption"

openid.server_public No The Identity Provider’s
Diffie-Hellman public key

openid.enc_mac_key No The Encrypted MAC key

A
u
th
e
n
ti
ca
ti
o
n
R
e
q
u
e
st openid.ns SAA SAA

openid.mode SAA SAA
openid.claimed_id No The user’s claimed identi-

fier, which is not yet verified
openid.identity No OpenID Provider local iden-

tifier of the user. If it is not
specified, it must receive the
claimed_id value

openid.assoc_handle No SAA
openid.return_to Yes URL that OpenID server

will use to send the response
back to the Consumer"

openid.realm No URL which can be used by
OpenID servers to identify
a Consumer in an unique
way and it may contain wild-
cards like "*"

A
u
th
e
n
ti
ca
ti
o
n
R
e
sp
o
n
se openid.ns SAA SAA

openid.mode Yes The type of authentication
response, indicating a suc-
cessful or not authentication

openid.op_endpoint Yes The OpenID server URL
openid.claimed_id SAA SAA
openid.identity SAA SAA
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Table 2.1: OpenID standard requests and respective parameters.

Parameter name Mandatory Stored value
openid.assoc_handle Yes The association handle used

to sign the message. It uses
to be the same of the han-
dle sent in the authentica-
tion request

openid.return_to SAA SAA
openid.response_nonce Yes A timestamp in UTC format

and additional ASCII char-
acters used to avoid replay
attacks and must be unique
for each message

openid.invalidate_handle No Used to show if the handle
attached with the request
was valid or not

openid.signed Yes The list of parameters that
are signed

openid.sig Yes The message signature
which is base-64 encoded

OpenID Issues

Although OpenID standard have been developed to avoid the password fatigue 3

problem [40], like any other service, it has some vulnerabilities. Some of them
are related to the protocol itself, and others are linked to bad implementation of
Relying Parties or OpenID Servers.

In [1], the authors show that the simple misuse of the HTTP and HTTPS can
create vulnerable points in the OpenID authentication process. For example, if
the OpenID Provider or the Relying Party is addressed via HTTP, they simply
redirect the request to HTTPS equivalent and proceed with the protocol flow.
This vulnerability opens breaches which attackers performing parameter injec-
tion and parameter forgery attacks can use. The first one permits an attacker
invalidates an user’s authentication injecting some parameters not solicited by
the RP in the original request and therefore making authentication’s signature
not match in the Relying Party. But, if the attacker replaces a non-required
parameter for any other, the RP will not detect that the packet was violated and

3In information security, password fatigue is a security problem generated by excessive
amount of passwords to remember or handle. It is very common due number of services
available on the web.
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modified (another flaw). The second one is that an attacker can modify any pa-
rameters (with some few exceptions) he/she wants when working in combination
with the parameter injection attack. Other authors also present the OpenID as
vulnerable to parameter forgery attacks like [1] and [28].

This last attack is possible because the "semi-effective" HTTPS redirection
as cited previously. However, these attacks only work in combination with an-
other vulnerability of OpenID protocol: the Man-in-the-Middle (MITM) attack.
Figure 2.2 presents an example of attack combining the cited vulnerabilities. In
the example, Relying Party mounts an authentication request containing some
attributes on the optional field (e.g. nickname, date of birth and other) and
required field (e.g. email). Next, RP sends the request to Identity Provider.
However, an attacker (MITM) intercepts the message and removes optional and
required fields from the request and forward it to IdP. The Identity Provider
receives the authentication request, process it and answers back. Nevertheless
since the adversary removed the required field (e-mail attribute) from the original
request, IdP’s response will no contain any e-mail information on the packet’s
signature. Thus, as presented in the figure, the attacker can easily inject any pa-
rameter in the required field of the IdP’s response and RP will not perceive the
forged parameter. Additionally, the packet will seem intact once the signature
is perfectly certifiable. At this point, the adversary sends back the forged re-
sponse to RP and the attack is accomplished. In other words, the attacker could
easily inject any parameter value in the OpenID conversation as exemplified by
Figure 2.2.

Besides the previous attacks, the OpenID standard is vulnerable to phishing
attacks because an attacker can easily make a website that looks like an original
Service Provider and redirect the user to a malicious Identity Provider. OpenID
also has others vulnerabilities as pointed by [24] as Cross-site Request Forgery at-
tacks (CSRF), impersonation attacks, DoS and replay attacks. For instance, [41]
demonstrated how a fast network attacker could sniff an authentication response
and reset the user’s TCP connection to masquerade as that user (impersonation).
The authors also demonstrated that an MITM attacker between the RP and IdP
could perform two distinct DH key exchanges with each party to sign authen-
tication assertions on behalf of the OpenID Provider. [42] presents the login
CSRF, in which an attacker logs the victim into a site as the attacker by using
the victim’s browser to issue a forged cross-site login request embedded with the
attacker’s user name and password. The authors showed that OpenID protocol is
also vulnerable to Swapping Session attacks. A lot of possible vulnerabilities are
presented in the OpenID specification itself, like the replay attack vulnerability
which can be exploited by the lack of assertion nonce checking by Relying Par-
ties and Denial-of-Service attacks used to exhaust the computational resources of
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Figure 2.2: Man-in-the-middle attack example [1]

RPs and OPs, beyond the previous cited attacks. Finally, all these vulnerabilities
and a little bit more is summarized by [43] in their OpenID review website.

Although all these vulnerabilities, [24] presents some techniques to avoid
CSRF attacks based on [42], [44] and [45] studies. But even using all the cited
techniques, [24] show that all of them have flaws and can be bypassed. This
among other reasons boosts the study of the intrusion and fault tolerance, once
this approach basically does not tries to prevent intrusions and fault, but tolerate
them.

2.2 Intrusion and Fault Tolerance

The classical security-related works and solutions have preached, with few ex-
ceptions, intrusion prevention, attack prevention, or intrusion detection, in most
cases, without systematic forms of processing the intrusion symptoms. In other
words, the classical security is not prepared to handle successful malicious attacks
or successful intrusions [2]. But as well known, there is no system completely safe
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or that can be fully protected to prevent intrusions. There is no silver bullet when
the subject is systems security. It means that does not matter what we do to
protect or keep untouchable a system, it always will have a chance of be invaded
or compromised. The main idea is add as much defense as possible to make the
system too hard or painful to invade that the attacker gives up of overrunning
it. But, even using such defenses, it may not be sufficient.

Thereupon, there is a different approach which has been gaining much at-
tention of the system security researchers. This approach is called Intrusion
Tolerance (IT). That is, the notion of handling (react, counteract, recover, mask)
a wide set of faults encompassing intentional and malicious faults, which may
lead to failure of the system security properties if nothing is done to counter
their effect on the system state [2].

This paradigm assumes and accepts that systems may have vulnerabilities,
intrusions or failures. And because of this, they need special mechanisms to
tolerate them. In this context, it is necessary to know the main types of failures,
as well as its differences:

� Byzantine failures - in the presence of these failures, the component can
exhibit arbitrary and malicious behavior, perhaps involving collusion with
other faulty components [46];

� Fail-stop failures - in this class of failures, the component changes to a state
that permits other components to detect that a failure has occurred and
then stops [47].

So, based on these concepts the intrusion and fault tolerant systems assume
that attacks on components or sub-systems can happen and some will be success-
ful. Thus, instead of trying to prevent every single intrusion or failure, these are
allowed, but tolerated. It means the system triggers mechanisms that prevent
the intrusion from generating a system security failure. Thereby, the mechanisms
ensure that the overall system nevertheless remains secure and operational, with
a quantifiable probability.

Once we want to tolerate intrusions and faults, it is necessary to understand
the two underlying causes of an intrusion: the Vulnerability and the Attack.
The first one is defined as a fault in a computing system that can be exploited
with malicious intention. The second one is a malicious intentional fault at-
tempted, with the intent of exploiting vulnerability in that system. Both lead
to an event of a successful attack on a vulnerability, called Intrusion. The re-
lationship between these three kinds of fault defines the AVI composite fault
model. This model describes the mechanism of intrusion precisely and provides
constructive guidance to build in dependability against malicious faults, through
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the combined introduction of several techniques like attack prevention, vulner-
ability prevention, intrusion prevention and intrusion tolerance followed by its
respective removal techniques. Figure 2.3 presents how the AVI work together to
reach a system failure and how they can be avoided:

Figure 2.3: Attack-Vulnerability-Intrusion (AVI) model [2].

The AVI model is basis to determine the trust and trustworthiness degree
between the elements of an intrusion tolerant architecture. Beyond the model,
the intrusion tolerant architectures commonly use frameworks and mechanisms
to provide fault tolerance. They are important points to be considered when
building intrusion tolerant systems. In accordance with [2] the main frameworks
and concerns about an intrusion tolerant system are:

1. Secure and fault-tolerant communication - it concerns the body of protocols
ensuring intrusion tolerant communication. Basically, it is related to secure
channels and secure envelopes. There are several techniques designed to
assist this framework and the correct choice depends on the class of failures
of the communication network components;

2. Use of software-based intrusion tolerance - it means tolerating software de-
signed faults by design diversity. Thereupon, software-based fault tolerance
by replication may be extremely effective at handling software faults. It is
easier achieving high reliability of a replica set than individual replicas;

3. Use of hardware-based intrusion tolerance - it means to use fail-controlled
components, i.e. components that are prevented from producing certain
classes of errors failures. This framework contributes higher levels of trust-
worthiness and as a consequence achieving more efficient fault-tolerant sys-
tems;

4. Auditing - it means logging the system actions and events. It is a crucial
framework in security because it allows a posteriori diagnosis of problems
and their possible causes.
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5. Intrusion detection - it concerns all kinds of attempts to detect the presence
or the likelihood of an intrusion or error after an intrusion. It can addresses
detection of erroneous states in a system computation e.g., modified files,
OS penetration, among others;

6. Processing of the errors deriving from intrusions - essentially the typical er-
ror processing mechanisms used in fault tolerance are: (i) error detection,
(ii) error recovery and (iii) error masking. Error detection is related to de-
tecting the error after an intrusion is activated and it aims at confining the
error to avoid propagation acting through error recovery and/or fault treat-
ment mechanisms. Error recovery tries to recovering from the error once
it is detected, ensuring the correct service despite the error. Error mask-
ing consists in masking the error through mechanisms like redundancy in
order to provide the correct service without a noticeable glitch like system-
atic voting of operations; byzantine agreement and interactive consistency,
among others.

Another very important aspect to the fault tolerance and the security fields
is the distribution. Indeed, the fault tolerance and the distribution go hand in
hand [2]. One distributes to achieve resilience to common mode faults, and one
embeds fault tolerance in a distributed system to resist the higher fault prob-
abilities coming from distribution. Based on the distribution, this study uses
a technique known as state machine replication which will be further explained
below. Although all the frameworks, strategies and techniques used to building
a fault and intrusion tolerant system, its effectiveness will be determined by the
good balance between the prevention and tolerance mechanisms used to avoid
the failures. Following are introduced important concepts to design intrusion
and fault tolerant systems like fault models, state machine replication, proac-
tive/reactive recovery and diversity. Moreover, BFT-SMaRt will be presented
since it is a fast state machine replication library used in the prototype.

2.2.1 Fault Models

Service failures can be characterized in consistent and inconsistent failures [48].
Consistent failures are perceived in the same way by all system’s users (e.g.
system crash, causing a temporary downtime). Whereas inconsistent failures are
perceived differently by some or all users (e.g. a service with different outputs
values for the same input query). The later is also known as Byzantine failure
[48].

Crash and Byzantine fault models differ in the assumed types of failures. The
former will generate consistent failures, which are easy to detect and perceive
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by users or other processes. Byzantine faults [49] lead to inconsistent system
failures, being much harder to detect, where distinct processes can have different
views of the system. For instance, system intrusions can be treated as Byzantine
failures [2]. An intrusion can maliciously tweak system components or resources
in many ways, leading it to abnormal and unpredictable behaviors. This gives
an idea of the extension of arbitrary faults.

Concepts like crash-only software have been proposed [50]. The idea is that
this kind of programs will crash safely and recover quickly. In some sense, it bor-
rows ideas from fail-stop processors [51], where a processor fails in a well-defined
failure mode. Both crash-only software and fail-stop processors are supposed to
stop to execute (i.e., crash safety) when a failure occurs. Further, the recovery
process should be fast, using recovery protocols and restore operations from a
well-defined state.

Byzantine or arbitrary fault model [49] implies in stronger and more complex
mechanisms for fault detection, masking or correction. One of the approaches
commonly used to mask Byzantine faults is state machine replication [52, 53]. As
all replicas start on the same point (same initial state) and execute all instructions
in the same order, one single faulty replica can easily be masked by the remaining
replicas through a majority voting on the output. An user of the service will
not even know (or suspect) when there is an abnormal replica in the system.
However, techniques such as state machine replication come with an extra cost
due to the protocols (e.g. consensus, total ordering, leader change) required
for its operation. Thus, when designing a resilient system architecture, a good
approach is to analyze and identify which services and components of the system
need to tolerate Byzantine failures and which do not, i.e., on some components it
could be sufficient to support crash faults or only some easy to detect arbitrary
faults (e.g. message corruption).

In the context of resilient network services we can assume distinct fault models
for different components of the service model or architecture. Some components
can be designed assuming crash fault model, while others can mask arbitrary
faults. As an example, in a network authentication service infrastructure, using
secure end-to-end authentication, we may need to tolerate Byzantine faults only
on the back-end service, where the authentication process is executed. All in-
termediate or stateless elements and components (e.g. network access servers,
service gateways) can be designed to tolerate crash faults and detect simple ar-
bitrary behaviors such as packet integrity violation. Thus, assuming there are
some faulty elements, a client can try to authenticate many times, using different
intermediate elements each time, until reaching the back-end service where the
authentication will actually happen.
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2.2.2 State Machine Replication

Nowadays, one of the major concerns about services provided over the Internet
is related to their availability. Replication is a well known way to increase the
availability of a service: if a service can be accessed through different independent
paths, then the probability of a client being able to use it increases. The idea is
to replicate a service on multiple servers so that it remains available despite the
failure of one or more servers. Nevertheless, the use of replication has some costs
like to guarantee the correct coordination and consistency between the replicas.
But, when dealing with an unpredictable and insecure environment like Internet
(the most common workplace of OpenID), the coordination correctness should
be assured under the worst possible operation conditions: absence of timing
guarantees and possibility of Byzantine faults triggered by malicious adversaries
[54].

So, the state machine replication is a general method for implementing fault-
tolerant services in distributed systems. Many protocols that involve replication
of data or software - be it for masking failures or simply to facilitate cooperation
without centralized control - can be derived using the state machine approach [46].
This approach achieves strong consistency by regulating how client commands
must be propagated to and executed by the replicas [46, 55]. The command prop-
agation can be decomposed into two requirements: (i) every non faulty replica
must receive every command and (ii) no two replicas can disagree on order of re-
ceived and executed commands [56]. Command execution must be deterministic:
if two replicas execute the same sequence of commands in the same order, they
must reach the same state and produce the same result.

Almost every computer program can be modeled as a state machine [46]. As
everyone knows, state machine are composed by a set of states, each one with its
transitions which determine the accepted inputs and possible outputs. However,
because of these characteristics the state machines must present deterministic
behavior. Thus, whether a system is designed based on the state machine model,
it must have a set of states and its respective transitions, in other words, the
same input generate always the same output. Having a system designed under
this model means that all its decisions and behavior are well known, i.e. if
the system presents an unexpected behavior, it means something goes wrong
deriving from a malicious intrusion or something similar. Therefore it is very
useful apply the state machine approach to service replication. Although state
machine replication improves service availability, from a performance perspective
it has two limitations. First, it introduces some overhead in service response time
with respect to a client-server implementation. Second, service’s throughput is
determined by throughput of a single replica [56]. Thus, if the demand augments
it cannot be absorbed by adding replicas to the group. So, in accordance with the
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said previously, if we have a system based on state machine replication, all the
replicas must receive the same sequence of messages and reaches the same state
and produces the same result generating an important need of synchronization
and ordering.

Furthermore, as previously explained, there is a significant difference between
byzantine failures and fail-stop failures. This is important to fault-tolerant state
machines, once the number of faulty tolerated replicas will be defined according
to the fault model applied to the solution. Remembering that the key for imple-
menting a fault-tolerant state machine is to ensure the replica coordination. And
the more replicas, more categorical must be its control and coordination. In ac-
cordance with [46], the coordination is decomposed into two other requirements:

� Agreement - every non faulty state machine replica receives every request

� Order - every non faulty state machine replica processes the requests it
receives in the same relative order

Both requirements are very important issues to state machine replication
systems because the first governs the behavior of a client in interacting with
state machine replicas, and the second governs the behavior of a state machine
replica with respect to requests from various clients [46].

2.2.3 Proactive and Reactive Recovery

A system cannot be considered resilient if it is not capable of recovering to a
correct state after a component failure. Hence, secure and dependable systems
need self-healing mechanisms.

Proactive and reactive recovery techniques can help to extend the system
liveness [57, 58]. On abnormal or adversary circumstances, a combination of
proactive and reactive recovery can bring the system back to a healthy state,
replacing compromised components. With proactive recovery all replicated com-
ponents are periodically replaced with fresh new instances. On the other side,
reactive recovery acts on components detected as faulty, replacing them in an on
demand fashion.

Notwithstanding, proactive and reactive recovery have their effectiveness in-
creased when combined with diversity of system components. Failures caused by
non-malicious or malicious faults are likely to happen again if the same compo-
nent is deployed again by the recovery mechanisms. Thus, when a component
fails, its replacement should be a different version, improving the overall system
robustness.
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2.2.4 Diversity

Diversity has been proposed and used as one important mechanism to improve
the robustness of systems designed to be secure and dependable [59, 60, 61,
62, 63]. The basic principle is to avoid common faults (e.g. software bugs or
vulnerabilities). As an example, a specific operating system will have the same
vulnerabilities in all instances where it is in use. To avoid this problem, each
instance (a.k.a. replica) could use a different operating system. Indeed, of-
the-shelf operating systems, from different families, have only a few intersecting
vulnerabilities [63, 64]. Similarly, diversity in database management systems
can also be very effective to avoid common faults and bugs [65]. Consequently,
diverse operating systems, database systems, and other tools can difficult an
attack exploring a specific vulnerability on those systems, because it might be
present only in some instances of the system, but not anymore in most of them.

2.2.5 BFT-SMaRt

The BFT-SMaRt library was created by [3] and is an open-source implementation
for state machine replication. The library development started at the beginning
of 2007 as BFT total order multicast protocol for the replication layer of the
DepSpace coordination service [66]. At 2009 was improved it became a complete
BFT replication library with features like checkpoints and state transfer. And
finally during a project (2010-2013) the authors improved even more in terms of
functionality and robustness. Today, the library uses several mechanisms of state
machine replication like fault tolerance, agreement, state transfer and reliable and
authenticated channels for communication

BFT-SmaRt can be used to implement experimental dependable services and
robust codebases for development of new protocols and replication techniques.
This library is a complete base for state machine replication once it has all the
necessary components to a fault and intrusion tolerant system based on SMR.

The library was designed taking into account some basic principles impor-
tant to the authors. At first, they developed the library with a tunable fault
model. For example, by default, BFT-SMaRt tolerates non-malicious Byzantine
faults and also supports the use of cryptographic signatures to tolerate malicious
Byzantine faults, or the use of a simplified protocol, similar to Paxos [67] in order
to tolerate only crashes and message corruptions. Another important principle
is the simplicity. The authors prefer to provide a reliable and correct library
than a promising solution in terms of performance but too complex to ensure the
correctness. Furthermore, BFT-SMaRt is a fast framework which implements
the Mod-SMaRt protocol [68], a modular SMR protocol that uses a well defined
consensus module in its core. The Mod-SMaRt protocol keeps a clear separation
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between the protocols and system elements, unlike some systems like PBFT,
which uses a monolithic protocol where the consensus algorithm is embedded
inside of the SMR. Moreover, BFT-SMaRt makes use of all hardware threads
supported by the replicas, especially when more computing power is needed (sig-
natures, cryptography, etc.). This makes the BFT-SMaRt a very good tool when
working with state machine replication solutions. All these features and singu-
lar properties are united in a simple and extensible API that can be used by
programmers to implement deterministic services.

Figure 2.4: BFT-SMaRt library architecture [3].

Figure 2.4 illustrates how the BFT-SMaRt is divided and all its modularity
that encapsulates the SMR complexity and the protocols used to assure the fault
and intrusion tolerance, the correct communication and coordination between
the replicas, as well as the consistency of the state machine replication.

The first of the protocols used by the library is the responsible for the total or-
der multicast. The feature is achieved using the Mod-SMaRt protocol [68] which
works together with the Byzantine consensus algorithm to provide the correct
cast of messages between replicas. When everything is fine, the system executes
in normal phase presenting a message pattern in accordance with Figure 2.5. Ac-
cordingly to the figure, when a client sends information to the distributed system,
its messages are replicated to all system’s replicas. Following, the leader sends
to the other replicas a set of (not ordered) authenticated requests for processing
(propose step). The other replicas receive the proposal and verify if the sender is
the current leader, and if the proposed value is valid. At this point, all replicas
weakly accept the proposal sending a write message to itself and other replicas
(write step). If any replica receives more than n+f

2
write messages for the same
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value, it strongly accepts this value and sends an accept message to other repli-
cas. Finally, if some replica receives more than n+f

2
accept messages for the same

value, this value is used as decision for consensus. All the cited flow is better
explained in [3].

Figure 2.5: BFT-SMaRt multicast message pattern [3].

State transfer is another core protocol in BFT-SMaRt. This specific one is
very important to make the replicas able to be repaired and reintegrated in the
system without restarting the whole service. The protocol can be activated in
four specific situations described below:

1. A replica crashes but it is later restarted

2. Replica detects that it is slower than the others

3. A synchronization phase is triggered

4. A replica is added to system while it is running

The last core protocol used in BFT-SMaRt is a great differential from the
previous BFT SMR systems. Unfortunately, they assume a static system that
cannot grow or shrink over time. On the other hand, BFT-SMaRt allows replicas
be added or removed without stopping the system and updating the number of
failures tolerated in the system at runtime.

BFT-SMaRt was developed in Java for several reasons advocated by the au-
thors. Among them we have that Java is a type-safe language with large utility
API, no direct memory access, security manager, portability, etc. It makes the
implementation of secure software more feasible, say the authors. However, Java
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is also well known for cripple the performance of the systems implemented on it.
But, despite of using Java, BFT-SMaRt library shows one of the highest perfor-
mances when compared with other SMR systems like PBFT [52], UpRight [69]
and JPaxos [70]. The tests were made using two BFT-SMaRt setups. The first
one used for byzantine fault tolerance and another one for crash fault tolerance
in order to show how the library behaves in both scenarios. Fortunately, BFT-
SMaRt presented the best performance even over C-based systems as presented
in Table 2.2.

Table 2.2: Test results of BFT-SMaRt library [3].

System Throughput Clients Throughput 200

BFT-SMaRt 83801 1000 66665
PBFT 78765 100 65603
UpRight 5160 600 3355

CFT-SMaRt 90909 600 83834
JPaxos 62847 800 45407

2.3 Related Work

Despite the existence of different solutions and components that can be used
to improve the security and dependability of Authentication and Authorization
Infrastructure (AAI) services, such as advanced replication techniques, virtual-
ization, proactive and reactive recovery techniques and secure components, there
are no methodologies, functional architectures or a set of system design artifacts
that are capable of demonstrating how different elements can be orchestrated to
build highly available and reliable systems. Existing approaches and solutions
are designed for specific scenarios or a particular system. One example is to use
TPMs to create trustworthy identity management systems [71]. While the so-
lution allows one to create trustworthy mechanisms for issuing tickets, it is not
designed for high availability or fault and intrusion tolerance.

On the other hand, many authors have researched more user-centric and ad-
equate approaches to work well on high demand scenarios. SSO is one of the
existent approaches to provide high availability services. Although this approach
being a pretty old solution to the necessity of log in several accounts over the
Internet, it was not very used some years ago. As we can see, big enterprises
as Google and Facebook have adopted and make available their SSO capabili-
ties. Now, many websites allow users log into their domains by Google’s and
Facebook’s identity capabilities.
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Among the several SSO solutions, the OpenID still presents a relevant investi-
gation about security schemes for authentications. For example, [72] proposed an
authentication scheme which uses two kinds of password, a fixed one and another
temporary one, respectively. [73] proposes a strong authentication for OpenID,
based on SSL smart cards with no passwords. [74] analyses the OpenID protocol
and propose some improvements on the authentication scheme.

Although all these papers propose some improvements on the OpenID au-
thentication schemes, they suggest difficult changes to adopt. Furthermore, the
majority of these incremented authentication schemes solves security problems
on the client side and forgets the server side, which keeps it always vulnerable to
intrusion attacks and byzantine faults. Furthermore, inside the OpenId authenti-
cation context, the client side probably will be the last participant to obey these
security adjustments, simply because they are users. However, some studies on
the literature aim to make the OpenID server more fault tolerant, but in a little
proportion.

[75] proposed a fault tolerant OpenID infrastructure and authentication using
P2P networks, where each node of the infrastructure executes its own OpenID
server. Although the authors propose a fault tolerant solution with high avail-
ability, clearly, it has a serious reliability flaw, once the attacker can use any
of the OpenID vulnerabilities and compromise the authentication system as a
whole. Of course availability is a very important issue on this field of study, but
it is not the ultimate solution.

Another known solution uses TPM (Trusted Platform Module) to improve
the OpenID identity security [71]. The authors use the TPM to replace the
login/password pair and verify the integrity of the signed credentials and avoid
phishing attacks. But, even the TPM offering some intrusion tolerance level,
singly TPMs are vulnerable to TOCTOU4 attacks [76], Cuckoo [77] and DDoS.
Moreover they are not scalable to environments that have high demand of service
request as OpenID [78].

Despite many OpenID researches have been done, the majority of them are
focused in resolve vulnerabilities addressed to the protocol, to implementations
flaws, or punctual security adjustments to make the OpenID transactions safer.
However, to our knowledge, fault- and intrusion-tolerant Identity Providers have
not being deeply investigated yet. Moreover, trustworthiness assessments of dif-
ferent elements of an OpenID infrastructure (e.g., clients and servers) have also
not yet been addressed by existing solutions.

Unlike the many researches related to the standard OpenID vulnerabilities,
when talking about intrusion and fault tolerance, to our knowledge, there are
only two related work that address this kind of problem, a RADIUS-related and

4Time-of-check Time-of-use
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another OpenID study. Despite of the fact that the latter proposes an intrusion-
tolerant IdP as well, our approach provides further properties such as higher
availability and arbitrary fault tolerance on the entire OpenID service.

The first, a resilient RADIUS [79] uses traditional state machine replication
techniques for tolerating arbitrary faults. Additionally, the solution proposes
software-based (isolated) trusted components to store all session keys and tokens
of the services. These components are used to ensure the confidentiality of the
system in case of intrusions.

The second is an intrusion-tolerant OpenID IdP [80] called OpenID-VR. How-
ever, it only tolerates intrusions regarding the OpenID protocol. The solution
uses a state machine replication approach based on a shared memory provided by
the hypervisor. In other words, virtual machines share this memory for communi-
cation purposes. Additionally, the agreement service, required for state machine
replication protocols, is simply considered as a secure component because it is
implemented at the hypervisor level. In other words, the hypervisor is assumed
to be a trusted computing base. The main assumption of OpenID-VR is that
the shared memory can significantly reduce the overhead imposed by message
passing protocols, as it is the case of the resilient RADIUS and our proposal
of a resilient OpenID service. Besides, OpenID-VR uses a single authentication
service, based on secure processors (e.g., smart cards), for authenticating users.
Therefore, the hypervisor, the agreement service and the authentication server
are single points of failure of the system architecture.

Differently from OpenID-VR (Virtual Replication), our solution OpenID-PR
(Physical Replication) supports from 1 up to 3fR + 1 secure elements, where fR
represents the threshold of simultaneous faults tolerated by the service without
compromising its correctness and operation. Therefore, our solution provides
higher availability when compared to OpenID-VR, resisting to different types of
logical and physical faults, and supporting any type of attacks on the identity
provider. Lastly, OpenID-PR supports multi-data center environments, being
capable of taking advantage of the respective defense mechanisms of the infras-
tructures itself, such as solution for mitigating high proportion denial of service
attacks [81].

For example, CloudFlare is a cloud provider which has already shown how the
resources available on a multi-data center infrastructure can be used to mitigate
the impact of large scale DDoS attacks [81]. By using techniques such as IP
anycast [82], CloudFlare was able to support a DDoS attack of 20Gbps, with a
peak of 120Gbps, for more than one week.
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Chapter 3

Resilient Systems and Identity

Management

This Chapter presents the main characteristics of resilient systems in general. It
will be presented a generic resilient systems architecture which was used to base
the resilient OpenID Provider. It describes the main resilient systems’ requisites
as building blocks, possible deployment configurations, among other characteris-
tics. Moreover, it provides an overview and introduces how an OpenID service
can be designed to provide more resilience.

3.1 Resilient Systems

Resilient network services can be designed by employing the concepts of hy-
brid distributed systems. They combine homogeneous distributed systems with
smaller and proof-tampered components. These tiny and specialized components
allow building systems with assured timely and security properties. Nevertheless,
techniques like state machine replication are required for assuring correctness of
stateful and critical parts of the system.

3.1.1 Generic Functional Model

First, the essential functional components for building resilient service infras-
tructures are introduced. Figure 3.1 shows a simplified and flat representation
of the generic functional model. The four main elements are: (a) client; (b)
target service; (c) service gateway; and (d) back-end service. In addition, the
fifth component is a secure element, which can be used in conjunction with any
of the other elements. Its purpose is to provide additional support for ensuring
properties like confidentiality, integrity, and timing, when ever required.
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Figure 3.1: Generic functional model overview [4].

A client can be seen as user trying to get access to the network or as an
OpenFlow switch willing to decide what to do with a new network flow, for
instance. It represents a generic element, capable of representing different things
depending on the target service infrastructure.

Target services are generic elements as well. In a typical network infrastruc-
ture it can represent components like wireless routers or Ethernet access switches.
Taking as example a software-defined network control plane, a target service could
be an OpenFlow switch. Yet in an OpenID use case it could be almost anything,
ranging from a management application used to migrate virtual networks to an
access control subsystem of an online shopping site.

Service gateway is a special purpose component. Its primary functionality is
to provide connection between the target service and the back-end service. As
a consequence it might need to understand different protocols, from both sides,
acting similarly to a network gateway. A second attribution of this component
is to mask the replication protocols and mechanisms used to deploy resilient and
trustworthy back-end services.

Last, but not least, the back-end service represents a critical service of the
infrastructure, with higher properties of security and dependability. These ser-
vices might need to resist to arbitrary faults. Furthermore, assure correct and
safe operation of components despite the presence of intrusions. AAA services,
OpenID providers, monitoring systems and OpenFlow controllers are examples of
highly critical systems for network infrastructures. Any failure on those services
can have a huge impact on the network operation, with potential negative impact
on users and business.

Finally, the secure component can add extra properties, such as data confiden-
tiality, integrity checks, and timing assurances to specific parts of the other ele-
ments. As an example, the user keys can be stored inside a smart card. Similarly,
the CA and server keys can also be securely stored inside secure elements. Fur-
ther, all crypto operations can be safely executed by these trusted components,
without compromising critical material even in the presence of an intrusion.

Figure 3.2 presents a more detailed overview of the functional components
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in resilient services architecture. It can be observed that one of the ideas is to
provide different fault thresholds (i.e. independent fault limits between different
types of components) and security and dependability levels on different parts of
the functional model. For each element, the definition of the fault model depends
on the service properties or specific requirements.

Figure 3.2: Generic architectural components overview [4].

Starting, the first element is a client. It can use a list of target service repli-
cas to ensure dependability properties and a secure component to assure sensitive
data confidentiality, for instance. Both target service and service gateway ele-
ments are assumed to tolerate crash faults and some simple to detect arbitrary
faults (e.g. message integrity or authenticity), tolerating up to fT and fG faults,
respectively. In principle, these components do not have state and can be easily
replicated as needed.

Clients can connect to any target service, while a target service can connect
to any of the available service gateways. The access to one of the replicas can be
based on simple service lists, like it happens in AAA protocols, or round-robin for
load balancing. However, in the functional model there is no strict need of load
balancing, since the main goal is to provide fault tolerance. Thus, it is enough
assume that components are configured with at least a simple list of replicas.
Furthermore, each individual component can have a different list, varying in order
or size. Nevertheless, once a replica, with which the component is connecting to,
is failing to attend the requests, the next one of the list will be tried. This process
goes on until end of the list. Then, it starts over again, depending on the specific
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protocol timeouts and other parameters of the respective service.

In normal situations for target services and service gateways, there are at least
two ways to detect a problematic replica. First, through the lack of response,
using a timeout. Second, by analyzing the received responses. Once an element
receives corrupted responses from a certain replica, it will try the next one.
However, in some cases only timeout can be used for back compatibility reasons.
On other cases it can be possible to have both approaches to detect faulty replicas.

Figure 3.3 illustrates the detection mechanisms between components of the
functional model. Among clients and target services and service gateways there
are detection alternatives based on timeouts or corrupted messages. Between
service gateways and back-end services stronger mechanisms for arbitrary error
masking are used, such as state machine replication. This means that any abnor-
mal behavior (e.g. delays, malformed responses, correct but malicious messages)
of a replica Bz will not affect or delay the system operation. For instance, mal-
formed or divergent responses from a corrupted replica will be simply discharged.
It is assumed that the majority of replicas (i.e. all replicas except f) are correct
and working as expected.

Figure 3.3: Generic fault model [4].

It is assumed that Byzantine fault tolerant protocols are used on the back-
end or critical services. A gateway service will receive the responses from all
back-end replicas and decide which one is the correct response that should be
forwarded to the target service. To achieve this goal he back-end service requires
mf + 1 replicas, where m refers to the specific BFT algorithm in use (e.g. 2,
3). The normal case is m = 3, leading to 3f + 1 replicas to tolerate fB faults.
However, improved algorithms using trusted timely computing base components
can make m = 2, requiring only 2f + 1 replicas. Furthermore, other solutions
such as proposed in [83] can be used to reduce the number of active replicas to
only 1f + 1.
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3.1.2 Main Building Blocks

The main building blocks represent technologies and components that make it
possible to conceive resilient and trustworthy network services based on the pro-
posed architecture and functional model. Next, the five elementary units are
briefly introduced.

1. Virtual Machines. Virtual machines represent the first building block.
Nowadays, they are widely used because of their inherently simplicity and
flexibility. Virtual machines easy to create, deploy, maintain, and migrate.
Furthermore, the technology currently available is capable of assuring prop-
erties like administrative domain isolation, allowing multiple virtual ma-
chines, from different domains, to share the same physical infrastructure
without major problems. Lastly, the virtual networks envisioned in the
project are supported by extensive use of virtualization. All networks el-
ements are virtualized by leveraging technologies such as Xen and Open-
VSwitch [84].

2. Trusted computing base. By adopting virtualization to deploy services,
the hypervisor becomes an obligatory part of the environment. It is nec-
essary to interface between virtual machines and the underlying hardware,
providing control mechanisms to ensure properties such as isolation and
fairness in the resource consumption race. The hypervisor is assumed to
be a trusted computing base (TCB) in the context of the functional model
proposed for network services. Nevertheless, it is not requisite to trust the
whole virtual machine monitor. Secure microkernel approaches [85], self-
protection capabilities [86], and trusted local operations, such as start and
stop virtual machines, can be assumed and ensured in a reasonable and
safe way. Additionally, technologies such as secure elements can be used
to implement extra verification procedures (e.g. attested hypervisor and
virtual machine boot).

3. Secure elements. These components are small and reliable pieces of soft-
ware or hardware (or a combination of both) capable of assuring critical
properties or functionalities such as integrity control and data confidential-
ity. They can be used in different parts of the architecture. For instance,
in an OpenID-based authentication solution both end user and OpenID
server can trust their sensible security material (e.g. certificate, keys) and
functions (e.g. all operations that need access critical data) to a trusted
component. Thus, on the server-side, a compromised server will not com-
promise the confidentiality of the server certificate or crypto keys.
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4. Replication blocks. Replication protocols represent one of the major
building blocks of most resilient services. State machine replication and
quorum systems are common approaches to mask arbitrary faults. Repli-
cas can allow the system tolerate up to f simultaneous failures without
compromising the service operation. These protocols, when combined with
other building blocks and techniques like diversity and proactive-reactive
recovery, represent a strong solution in the design and deployment of secure
and dependable network services.

5. Secure end-to-end communication. Secure end-to-end communication
is necessary to achieve confidentiality and privacy of user data. Protocols
such as TLS and TTLS can be used to provide reliable channels, mutual
authentication and server authenticity verification. These functionalities
can be helpful to avoid attacks like man-in-the-middle and eavesdropping.

3.1.3 Hybrid Distributed Systems

Neither only heterogeneous nor only homogeneous distributed systems are, in a
standalone way, the answer to all problems. Taking as an example an homoge-
neous asynchronous distributed system, there is no way to assure that consensus
protocol will finish if single process is allowed to crash [87]. On the other hand, a
synchronous system has too strong assumptions for a hostile environment, where
arbitrary faults can happen or be exploited by malicious users. An attacker could
try to compromise the timing assumptions (e.g. timeouts) of the system.

Besides the time facet, there is also the security facet. Generic trusted com-
puting base models are not realistic on the design and development of secure
systems. Secure elements (e.g. smart cards, TPMs), or trusted computing base
(e.g. tiny and secure kernel systems), in practical terms, can only be verified and
certified for small size components and small sets of well designed and proved
functionalities. The interface and operation of such components need to be proved
as tamper-proof.

The hybrid distributed systems model [88], named wormhole, proposes a dif-
ferent approach. Instead of having a homogeneous system, the system is designed
as a composition of domains. In a hybrid model, at least two domains are needed,
one with weak assumptions (e.g. asynchronous) and another one with stronger
assumptions (e.g. partially synchronous). While the asynchronous domain repre-
sents the majority of components and functionalities of the system, the partially
synchronous domain keeps only tiny and trusted local or distributed components
(crash fault-tolerant). In other words, the wormhole concept proposes a subsys-
tem with privileged properties that can be used to ensure critical operations in
a secure and predictable way [89]. Nevertheless, the system’s weaker assump-
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tions and abstractions are not affected or disrupted by the smaller and trusted
subsystem.

The wormhole model is of special interest in fault- and intrusion- tolerant
architectures. An intrusion-tolerant system has to remain secure and operational
despite some (under a measurable and predefined threshold) of its components
or sub-systems are compromised [2]. To achieve these goals solutions such as
a trusted timely computing base, through a distributed security kernels [90],
can be conceived and used to provide trusted low-level operations. Thus, even
under attack or with a compromised sub-set of processes (a malicious user inside
a sub-part of the system), the system will still maintain its properties such as
predictability and confidentiality.

A wormhole can itself be conceived as an intrusion-tolerant distributed system
[91]. Techniques such as replication, diversity, obfuscation and proactive-reactive
recovery can be used to build resilient and trustworthy wormholes.

In the proposed architecture of components for resilient network services,
secure components and trusted computing base are two elements directly related
with the wormhole model. Thus, the functional model and building blocks fit in
the concept of hybrid distributed system model, where small parts of the system
act in a predictable and secure way.

3.1.4 Deployment Configurations

The deployment configurations of resilient network services can be classified in
three: (1) one single physical machine, (2) multiple physical machines in a single
domain, and (3) multiple physical machines spread across multiple domains. One
of the differences reside on the feasible resilience mechanisms, such as replication
protocols. Whereas solutions based on shared memory (e.g. IT-VM) can be
used within a single machine, message passing protocols (e.g. BFT-SMaRt) are
required when multiple machines are used.

A second issue related with deployment configurations is the system availabil-
ity. A service on a single physical machine, or single domain, will be inevitable
affected by incidents in that domain. Events such as Internet connection disrup-
tion and power failures will affect the system availability. In some cases the local
incidents can affect the system integrity as well. Corrupted disks due to repetitive
power failures can compromise even the system recovery procedures. In scenarios
where this kind of events can eventually happen, deploy the system over multiple
physical machines spread across multiple domains can avoid such negative effects
on the system operations (availability, recovery, integrity, etc.). An example of
how to achieve high availability, while assuring recovery and integrity properties,
is to run each replica of the service in virtual machines deployed across different
cloud provider platforms.
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1. One physical machine. Virtual machines can be used with a single
hypervisor. This configuration can help to mask the effect of arbitrary
behavior of some replicas. Good replicas are able to provide the service
functionality, despite the presence of failed replicas. Needless to say that
stronger attacks on the virtual machines, such as those trying to explore
cross-channel vulnerabilities or resource exhaustion, can compromise QoS
levels of the service operation. Further, physical (e.g. power failures, net-
work failures) and logical problems (e.g. network misconfigurations) can
also compromise the service availability.

2. Multiple physical machines and a single domain. Virtual machines
of the service can be deployed on different physical machines when using
replication protocols that use communication instead of shared memory.
This is one step further towards more available and resilient services, when
compared to the previous solution. Multiple servers allow the system to
support arbitrary failures of the physical machines and infrastructure en-
vironment as well. However, it is yet a single domain. Attacks or failures
(e.g. Internet link or local network disruption, energy failures) can still
compromise the service availability and integrity.

3. Multiple physical machines and multiple domains. With these con-
figurations it is possible to have independence of local domain failures. Us-
ing virtual machines deployed over multiple domains makes the system more
robust, since it will be capable of tolerating a more broadly variety of fail-
ures. Service replicas could be deployed in different clouds infrastructures,
for instance. However, the replicas do not need to be evenly distributed
across a predefined number of physical machines [92]. Consequently, both
in physical (e.g. network connection, power failures) and logical (e.g. mis-
configurations, DoS attacks, resource exhaustion attacks) means the system
will be more robust and reliable. Furthermore, it will be supported by the
diversity of solutions (e.g. hardware, hypervisor, operating systems) and
infrastructure protection mechanisms (e.g. intrusion prevention, intrusion
detection, mitigation of DDoS attacks) of the cloud providers. In practical
terms, it has already been shown how cloud providers can be capable of
tolerating big threats such as huge DDoS attacks, without disrupting the
customer’s services [81, 93].

Figure 3.4 illustrates the performance and availability trade-offs of the deploy-
ment configurations. Additionally, it introduces a third trade-off, the suscepti-
bility of depletion attacks. More physical machines and more domains represent
potentially higher service availability, since it is much harder to attack or com-
promise multiple domains at once. On the other hand, less physical machines
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naturally reduces the networking communication requirements, potentially im-
proving the system performance.

Figure 3.4: Deployment configurations. (a) One physical machine. (b) Multiple
physical machines and a single administrative domain. (c) Multiple physical
machines and multiple domains [4].

.

Most of the computational effort of replication and state machine replication
algorithms is spent on communication, i.e., messages exchange among replicas.
While virtual machines running on the same physical machine can increase the
system performance through shared memory, the solution is also more susceptible
to depletion attacks. In this case, both availability and performance can have a
significant impact (degradation) with resource exhaustion attacks. A deployment
using multiple physical machines, distributed across multiple domains, makes
it much harder to degrade the service quality through depletion attacks. An
attacker would have to get access to all domains and find the physical machines
where the respective virtual machines are deployed. This is a tricky task and can
become almost infeasible if proactive recovery and rejuvenation techniques are
used to recover replicas in different locations. Diversity of location is one of the
features that solutions such as those envisioned by DiverseAgent [94] and FITCH
can provide [95].

Lastly, the best deployment configuration will depend on the service require-
ments. If performance is the main concern, one physical machine with several
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virtual machines could be enough. However, in an environment with stronger re-
quirements (e.g. availability, integrity) multiple physical machines and multiple
domains could be the most suitable configuration.

3.2 Relisient Identity Management

The proposed identity management makes use of OpenID protocol [7] for estab-
lishing trust relationships among users, Identity Providers (IdPs) and Service
Providers (SPs). On one hand, the OpenID protocol coupled with the use of
password authentication is vulnerable to phishing attacks, in which the user is
taken to a malicious SP to enter his password on a fake form that mimics the
IdP [96, 97]. To eliminate vulnerabilities such as phishing attacks, this iden-
tity provider could be heavily dependent on secure hardware and/or software
components and secure end-to-end mutual authentication, such as provided by
EAP-TLS. In such cases, the user authentication can be done directly between
the user smart card and a grid of secure processors of the IdP, using end-to-end
EAP-TLS communications, for instance. Figure 3.5 gives an overview of the
proposed identity provider solution. As indicated, clients and IdPs have secure
elements that are used to safely carry out strong mutual authentications.

Figure 3.5: Trustworthy Identity Provider overview [5].

Additionally, the proposed work suggests new mechanisms to allow users to
have more control over their attributes. The user attributes are no longer stored
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on IdPs’ databases, but in the user’s personal smart cards. Therefore, a user can
decide which of his identities or profiles (i.e., sets of attributes) will be given to the
IdP and/or SP. The profile chosen will be available to the service provider during
the current authentication session. In this way users can have greater control
over the distribution of their attributes (user-centric attributes control). Both
the authentication assertion and user’s attributes are sent to service providers
with attribute-based access control [7]. Further discussion and technical details
can be found in previous deliverables of the project [98, 99].

The proposed identity provider model defines abstractions for integrating pro-
tocols and mechanisms of intrusion tolerance and also to keep backward com-
patibility with OpenID-based IdPs. Figure 3.6 extends the model presented in
Figure 3.5 by introducing the resilient and trustworthy IdP. Through the two
images we can have an overview of the resilient OpenID and how it works. The
main elements of the extended model are: (a) a client with his web browser and
user certificate in a secure component; (b) the relying party (a service provider in
OpenID terms); (c) an OpenID server which does not handle user accounts (del-
egated to the backend); (d) authentication backend service, which is responsible
of keeping the users’ IDs and sensitive information in trusted components; and
(e) the IdP formed by the OpenID server and the authentication service. As can
be observed, it is assumed that there are secure elements both in the client-side
(e.g. smart card, TPM) and in server-side (e.g. grid of smart cards, secure and
isolated software component on a trusted computing base).

Figure 3.6: Extended trustworthy Identity Provider overview [5].

The resilience of the identity provider can be ensured through state machine
replication protocols, recovery mechanisms and techniques to improve the diver-
sity of system components. Despite using different mechanisms to tolerate faults
and intrusions in the IdP, the user authentication follows the standard OpenID
protocol.
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Therefore, after studying several papers related to resilience and identity man-
agement, we were capable to summarize the generic aspects of a resilient identity
management service. And at last, we could map this generic resilient service
to an OpenID -based service. Basically, the resilient system must apply all the
important concepts described in the beginning of this Chapter by using protocols
designed to tolerate faults and intrusions. The literature showed that assuring
the secure manipulation of sensitive data is very critical as well. However, it can
be easily reached through the use of trusted components (software/hardware) as
presented by the section.



Chapter 4

Proposed Resilient OpenID

Architecture

There are essentially two different approaches when creating secure and resilient
systems. First, we assume that we can build robust and secure enough systems
for our purpose. However, it is well known that a system is as secure as its
weakest link. Moreover, a system can be considered as a secured "island" until it
gets compromised. Therefore, the second approach is to assume that eventually
the system will fail or be intruded. With this approach in mind, we can design
and deploy highly available and reliable systems by leveraging mechanisms and
techniques that allow it to operate under adversary circumstances, such as non-
intentional failures and attacks.

Our resilient OpenID solution is based on the second approach. In other
words, we do not aim to fix all security vulnerabilities of existing identifica-
tion and authentication services. Actually, we want to provide advanced tech-
niques and resources from security and dependability properties to build fault,
and intrusion-tolerant systems capable of ensuring critical properties such as in-
tegrity, confidentiality and availability.

This chapter presents all the details of the proposed OpenID Provider like its
architecture, configurations and protocols, functional model, fault model, among
other information. Lastly, the chapter presents the designing of trusted compo-
nents for resilient OpenID servers.

4.1 Functional Model

Our proposal is based on all the system artifacts and generic functional architec-
ture previously cited. Its functional model, along with the different technologies
and protocols, allows us to design and deploy fault and intrusion-tolerant identi-
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fication and authentication services, in this case an OpenID provider.
Figure 4.1 illustrates a simplified representation of the four main functional

elements: (a) user browser and smartcard; (b) service and relying party; (c)
IdP gateway; and (d) IdP and authentication service, i.e., the replicated OpenID
service with trusted components to ensure the integrity, availability and confiden-
tiality of sensitive data, such as cryptographic keys. This is the typical functional
architecture of computing environments where identification and authentication
solutions are deployed as separated services. Furthermore, the secure component
can also be used in conjunction with any of the other elements, such as the relying
party and the gateway. In such cases, its purpose could be to provide additional
support for ensuring properties like confidentiality, integrity, and timing, when
ever required.

Figure 4.1: Main functional elements [5].

As already explained in this document, a client is a user trying to access an
online service. This service is supported by a relying party that redirects the user
for his own identification to an authentication provider. It is any service OpenID-
complaint, i.e., the service can range from typical Web systems to specialized
access control systems in network infrastructures.

An IdP gateway provides seamless connection between the service and/or
client and the identity provider’s service, i.e., the OpenID server and the au-
thentication service inside the secure elements. Therefore, the gateway is a very
simple system with two essential functions. First, it handles multiple protocols
from both sides, acting similarly to a network gateway. The second attribution
is to mask the replication protocols and mechanisms used to deploy resilient
back-end services, providing transparent backward compatibility with existing
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infrastructures which rely on OpenID providers. Maybe this is the most impor-
tant role of the IdP gateway, because it makes our solution more flexible and
easy to adopt.

Lastly, but not least, the IdP service (OpenID Server) is considered the in-
frastructure’s most critical element, requiring higher levels of security and de-
pendability properties. Such services can be part of the local domain or provided
by third parties as an on-demand services, for instance. It is assumed that these
back-end services must tolerate different types of faults, such as those caused by
unexpected behavior or attacks, and correctly work in case of intrusions.

4.2 Architectural Configurations and Protocols

Figures 4.2 and 4.3 represent our first two envisioned configurations of the re-
silient OpenID architecture. As can be observed, the essential elements fS + 1
relying parties, fG + 1 gateways, mfR + 1 replicas and secure elements. A client
can use any of the available relying parties. Similarly, relying parties can use
any of the available gateways. Yet, a gateway relies on at least mfR + 1 − fR
OpenID replicas. Furthermore, replicas can rely on a single, centralized, secure
element, or multiple secure elements. In the second case each replica has only
access to "its own" secure element, which can be running locally on the same
infrastructure or remotely, on a separated system.

Regarding the main differences between these two architectural configura-
tions, while the first can offer an improved performance if all OpenID replicas
and the trust component are running on the same physical hardware, as vir-
tual machines, the second configuration allows the IdP owner to place replicas
and respective trusted components on different physical machines and/or distinct
domains.

The configuration shown in Figure 4.3 is capable of providing higher levels
of assurance for characteristics such as availability and integrity of the service.
Furthermore, it is less susceptible to depletion attacks, as those that we describe
in [4].

On the second configuration (Figure 4.3) we have one secure element per
replica. This means that OpenID replicas and secure element can be distributed
across different physical machine or event administrative domains. This naturally
increases the availability and robustness of the system because it will be able to
tolerate a wider range of benign and malign faults such as energy and connectivity
disruptions, disk failures and even attacks such as DDoS. For instance, if each
replica is running on a different cloud infrastructure, the system will be able to
take advantage of a diverse range of protection mechanisms. As an example,
some cloud providers have already shown their capabilities of dealing with DDoS
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attacks of great proportions [81, 93]. Furthermore, each OpenID replica has to
communicate only with its local (or nearest) secure element. It is also worth
mentioning that an increased number of replicas and replicated secure elements
can be used to augment the system throughout, i.e., increase the number of
authentications per unit of time.

Figure 4.2: First OpenID configuration with a single centralized TC [5].

Figure 4.3: Second OpenID configuration with multiple TCs [5].

Our idea is to design and implement both architectural configurations and
evaluate their benefits and/or drawbacks. More specifically, we intend to analyze
the impact of having a single and/or replicated trusted component.
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Lastly, Figure 4.4 shows the protocol layout of a typical OpenID deployment
and our resilient OpenID. The protocol stack does not change, as can be ob-
served. Essentially, we still have the traditional protocol layers, i.e., HTTP and
SSL (or TLS for mutual authentication). The difference between them is the
gateway element, which will simply encapsulate the HTTP/SSL packets in a
Byzantine fault-tolerant (BFT) protocol. Consequently, a resilient OpenID iden-
tity provider can easily replace an existing, traditional, OpenID-based identity
provider. A client, or relying party, will not notice any functional or operational
difference between a non-resilient OpenID service and a resilient one. However,
the latter improves the security and dependability of the IdP infrastructure, i.e.,
it is potentially more interesting for both, providers and users. It is important to
make clear that Figure 4.4 simply illustrates the protocol stack, i.e. the appearing
order of the protocols does not mean anything.

Figure 4.4: Proposed OpenID protocol stack [5].
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4.3 Types of Faults and Threshold Values

The section presents the fault model of the proposed OpenID architecture and
compare with the genereic fault model. Figure 4.5 illustrates the detection mech-
anisms between components of the resilient OpenID architecture. To mitigate
failures, there are alternative detection mechanisms based on timeouts, corrupted
messages, and malformed packets among clients and services (or relying parties),
and OpenID gateways. Between OpenID gateways and OpenID Server repli-
cas there are stronger mechanisms for tolerating arbitrary faults. In practical
terms, arbitrary faults can be masked by state machine replication protocols.
This means that any abnormal behavior (e.g. delay, malformed responses, and
correct but malicious messages) of a replica Rx will not affect or delay the sys-
tem operation. For instance, malformed or divergent responses from a corrupted
replica will be simply deleted. It is assumed that the majority of replicas (i.e. all
replicas except fR) are correct and working as expected.

Figure 4.5: Proposed OpenID fault model [5].

As can be seen, the Figure 4.5 presents a timeout C between the client and
gateway elements and the generic fault model on Figure 3.3 does not present the
respective timeout. It happens because OpenID, in especial, presents moments
that the gateway communicates directly with the client browser. Therefore, it is
necessary the presence of a fault mechanism detection between the two elements
to avoid blind points on the resilient system.

Table 4.1 summarizes the fault models and thresholds of the architecture’s
main elements. A relying party, OpenID gateway, and OpenID service can tol-
erate up to fS, fG and fR simultaneous faults, respectively. Yet, the number of
faults tolerated by the secure element depends on the specific architectural con-
figuration. In the worst case, based on Figure 4.2, no faults are tolerated because
there is only one single secure element. On the other hand, on the best case that
we are considering, when the number of secure elements is equal to the number
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of OpenID replicas, the number of faults tolerated is up to fR, i.e., it is equal to
the number of supported faulty replicas.

Table 4.1: Summary of fault models and respective thresholds

Component name Fault model Number of replicas Fault threshold
Client - - -

Relying party Crash/Arbitrary(*) fS + 1 fS
OpenID gateway Crash/Arbitrary(*) fG + 1 fG
OpenID service Byzantine 3fR + 1 fR
Secure element Crash Up to 3fR + 1 Up to fR

(*) These elements are capable of detecting some ("arbitrary") faults, such as malformed or corrupted packets.

4.4 System Model

In this section we introduce the system model and respective assumptions con-
sidered in our system design. We briefly describe the network/communication
model, synchrony model, and fault model of the different elements of our archi-
tecture. This expresses the assumption and requirements of the system in order
to be deployable and operational.

Network model. We assume that all service elements are visible to the
clients and are able to connect to at least one gateway using standard TCP/IP.
Furthermore, gateways are able to communicate with all replicas of the resilient
OpenID service through state machine replication protocols. As a consequence,
packets from the gateway to the replicas are encapsulated in these protocols.
Moreover, it is also assumed that each replica is capable of communicating with
at least one trusted component through a specific and/or standard interface, such
as a shared memory channel, a secured IPSec connection, or a tightly controlled
and isolated SSL/TCP/IP channel.

Synchrony model. We assume partial synchrony [100] to provide the mini-
mum timing guarantees to ensure the complete execution of consensus protocols,
which are required by Byzantine fault-tolerant protocols such as state machine
replication.

Fault model. We assume arbitrary faults on the OpenID service. Therefore,
we work with the standard case of 3fR +1 replicas for tolerating up to fR simul-
taneous faults without compromising the system’s correct operation. Arbitrary
fault tolerance is achieved through the BFT proxy module inside the gateway el-
ement, which expects at least 2fR+1 equal answers from replicas before replying
to the relying party or client. When the minimum quorum is not achieved for a
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particular request, the gateway simply delete the replicas’ replies and does not
answer to the requester. In such cases, a protocol timeout will trigger a packet
re-transmission on the client or service. Gateway and relying party are stateless
and assumed to have a fail-stop behavior. Additionally, they are capable of de-
tecting some protocol deviations as well, such as detect malformed or corrupted
packets.

Furthermore, we assume an architecture comprised of fS + 1 service relying
party, fG + 1 gateways and 3fR + 1 OpenID replicas, where fS, fG and fR rep-
resent the maximum number of simultaneous faults tolerated by each element,
respectively. Therefore, both clients and relying party elements can choose dif-
ferent elements (relying party and/or gateway) if the authentication fails or if
the protocols’ timeouts have expired and/or the maximum number of retries is
exceeded, for instance.

User and server identification model. It is assumed that each user has
a public key generated by a certificate authority (CA). Furthermore, all trusted
components know the CA’s public key (PuCA). This certificate is required to
verify the user identity, based on the trusted third party CA.



Chapter 5

Functional Prototype

Implementation

This Chapter presents the functional prototype and all its details. Firstly, it
introduces the system design and main components. Furthermore, the chapter
also presents the main interactions among the different elements and discuss the
main deployment configurations used in our implementation.

5.1 System Implementation Overview

Figure 5.1 gives a high level overview of the implementation and building blocks
of the main elements of the resilient OpenID service. We used the openid4java
library [101] (version 0.9.8), which supports OpenID versions 1.0 and 2.0, to
implement the replicated OpenID server. In our implementation we assume the
OpenID version 2.0 as the default authentication scheme.

The active state machine replication of the system is achieved through the
BFT-SMaRt library [3], which is freely and publicly available at Google Code [102].
This library provides a set of modules and communications protocols such as
Mod-SMaRt, VP-Consensus and Reliable Channels for communicating among
replicas (for more details, please refer Subsection 2.2.5). Both Mod-SMaRt and
VP-Consensus use the reliable channels for communication purposes.

The secure element is an independent component of the system, required to
safe guard confidentiality of sensitive information and used by the OpenID server
for requesting the verification and generation of cryptographic material. These
components, when deployed in a distributed fashion, i.e., one element per replica,
can also leverage the functionalities offered by the Mod-SMaRt for exchanging
verification data among the secure elements residing in different replicas. Fur-
thermore, secure elements can be on the same physical machines of the OpenID
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replicas, running in a different virtual machine, or in different physical machines.
In other words, there is a minimal interface and communication subsystem be-
tween an OpenID replica and the secure element.

Figure 5.1: Overview of the replica internals [5].

5.1.1 Components

As we keep backward compatibility, components such as the client/browser and
relying party can be used as they are, i.e., a normal browser and relying party can
be used with our resilient OpenID. This is possible because of the new component
introduced in the system’s design, the OpenID gateway.

Client/Browser

In functional model concept, as we describe in more details in [4], a client is a
generic element that can represents different things, such an applet running on
the client’s browser, an authentication component running on a virtual machine,
and so forth. The only requirement is that is follows the standard definitions of
the OpenID protocol version 2.0.

Relying Party

A relying party can be considered as a Web application that wants a proof that
the end user owns a specific identifier [7]. Therefore, any application acting as a
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relying party based on standard OpenID definition can use within our resilient
OpenID system.

OpenID Gateway

The OpenID gateway is a new component introduced in the system design to
keep backward compatibility. To this end, it needs to accept TCP/IP connec-
tions (with HTTP and/or HTTP over SSL) from OpenID clients and encapsu-
late the received packets in the BFT state machine replication protocol. This
is necessary to forward the packets to all OpenID replicas. Similarly, packets
coming from replicas are sent to the clients through the previously established
TCP/IP connections. Therefore, the gateway is seen by the clients as a nor-
mal OpenID service. In other words, clients do not know that they are using
a resilient OpenID service. In our model, the gateway tolerates up to fG crash
faults. Moreover, as the gateway only forwards (bi-directional) messages between
clients/relying parties and replicas, it is a very simple element, which can be eas-
ily replicated and secured, making it unlikely to get compromised. Consequently,
it is reasonable to assume that the security and trustworthiness of this element
can be ensured to a certain level by leveraging security enhanced operating sys-
tems (e.g. SELinux [103] and REMUS [104]) and a well-defined, very tiny and
verifiable packet forwarding/translating module.

Furthermore, we assume that the gateway is capable of providing network
defense mechanisms, such as packet filtering. For instance, the well known
and widely used GNU/Linux iptables can be employed limit the number of
HTTP/HTTPS requests per unit of time (e.g. second) of the system, reduc-
ing the effect of potential denial of service attacks from relying parties and/or
malicious users.

OpenID Replicas

The system replicas implement the standard OpenID version 2.0 using openid4java
library [101] (version 0.9.8). The BFT-SMaRt library [3] is used to provide the
required crash and Byzantine fault tolerant protocols.

Our current implementation supports only OpenID 2.0 over HTTP. Provide
support for HTTPS and EAP-TLS (for strong mutual authentication) is planned
as future work. Nevertheless, it is worth mentioning that we can leverage the
EAP-TLS implementation of the resilient RADIUS (our resilient AAA service
prototype), with the respective adaptations to the OpenID framework. Further-
more, EAP-TLS can be used in OpenID based system to provide strong mutual
authentication using trusted components for the client (e.g. USB dongles) and
the OpenID service (grid of smart cards) [105].



Chapter 5. Functional Prototype Implementation 52

Trusted Component

In our first prototype, we assume that the trusted component can be executed
on an isolated and secured special-crafted virtual machine, with the help of the
isolation properties provided by modern hypervisors. Alternatively, in future
versions, we can extend our prototype to use hardware-based secure elements
such as grids of smart cards [106], as proposed in the context of the SecFuNet
project [99, 107].

We implemented the trusted component using Java and the BouncyCas-
tle [108] API. One of the challenges of the replicated trusted component was
to overcome the determinism of the OpenID replicas. In other words, we need
a trusted component that behaves deterministically among all replicas, if we are
using one secure element per replica. To solve this problem we used a solution
similar to our resilient AAA service, i.e., pseudo-random function (PRF), adapted
from the TLS protocol, which outputs the same values in all replicas/trusted com-
ponents. Further details of the solution can be found in the chapter describing
the resilient RADIUS service.

5.1.2 Interactions between the System’s Elements

Figure 5.2 shows the communication steps among the elements in the resilient
OpenID system. As in the standard OpenID communication (Figure 2.1), full
arrows represent messages in the client-server direction and dashed arrows rep-
resent the opposite. The communication start with the user requesting access
to the service through the relying party (step 1). In step 2, the relying party
presents with the end user a form that has a field for entering the user-specific
identifier (identification URL in step 3). Following, in step 4 the relying party
performs a discovery (YADIS [37]) to look up the necessary information for con-
tinuing the authentication process. The discovery request is forwarded by the
gateway to the replicated OpenID service.

The OpenID service replies the relying party’s request (step 5) with a XRDS
document. This document contains, among other things, a list of endpoint URLs,
with their respective priorities, which can be used by the relying party on the
next steps.

Next, the relying party must choose one server (URL) and establish a pro-
tected association with it. Typically, the relying party attempts to connect to
each server in the list according to the pre-defined priority. The first successful
connection is used to carry out an association request (step 6). This kind of re-
quest contains data such as the respective endpoint URL and the relying party’s
Diffie-Hellman [109] data (public key, modulus prime number, generator number)
to secure the association.
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When the OpenID server receives the association request, it makes a request
to the trusted component asking for the association handler and MAC key (step
7). Following, the OpenID server requests DH key-pair by sending the incoming
data (modulus prime number and generator number) to the trusted component.
After that, the trusted component generates and returns (step 8) all the informa-
tion requested (association handler, MAC key and OpenID DH key-pair). The
association response, containing the OpenID DH public key (among other infor-
mation), it sent to the relying party (step 9), thus completing the association.

Figure 5.2: Overview of the proposed OpenID authentication flow [5].

As soon as the association between the relying party and OpenID server is
established, the authentication takes place. In step 10, the relying party sends an
authentication request to the OpenID server, which is forwarded to the client’s
browser in order to request the client’s credentials (step 11). The client sends
its credentials to the OpenID server (step 12). Following, the OpenID server
requests the credentials’ verification to the trusted component. Additionally, it
also requests a nonce random number (step 13). The trusted component replies
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with the authentication assertion and the generated nonce (step 14). After that,
the authentication response is sent to the relying party (step 15), which performs
the necessary actions. Lastly, the relying party sends an authentication response
to the client, completing the authentication process (step 16).

5.1.3 Deployment Configurations

Figures 5.3 and 5.4 illustrate the two configurations possible with our proto-
type implementation. Similarly to the architectural configurations shown in
Section 4.2, in the first deployment configuration there is only a single secure
element, which is responsible of keeping the safety of sensitive data and crit-
ical crypto operations for all OpenID replicas. These replicas can be running
on virtual machines controlled by the same hypervisor, for performance reasons,
or in different physical machines for higher availability guarantees. However,
when distributing the OpenID replicas over different physical machines, the sys-
tem will naturally experience an increased overhead due to the communications
among replicas and the single trusted component. Moreover, as the secure ele-
ment represents a single point of failure, depending on the target environment
requirements, there might be no reason for deploying the OpenID replicas in
a different hypervisor since all replicas rely on a single trusted component for
authenticating users. Once it fails, all replicas will be unable to proceed user
authentications. Nonetheless, if the most critical point of the infrastructure is to
ensure the OpenID framework operations, then it would make sense to distribute
the OpenID replicas across different platforms or domains, even having a single
trusted component to process the authentications. As discussed in Section 5.1.2,
there are only two communications between the replicas and the trusted element.
On the other hand, there are at least two requests which can be processed by the
replicas without interacting with the trusted component.

Figure 5.3: System design with one single secure element [5].
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The second deployment configuration offers a more robust platform, as shown
in Figure 5.4. In this case, each replica is deployed on a different physical ma-
chine, on a single or multiple domains. Each replica has access to its own trusted
component, respectively. Therefore, up to fR trusted components and replicas
can fail (e.g. crash, be down for maintenance, out or reach due to communication
problems, and so forth) without compromising the system operation. Further-
more, as both the gateway and the replicated OpenID have been implemented
in Java, they can be easily deployed on diverse operating systems, where diver-
sity increases the system robustness by avoiding common vulnerabilities [63]. In
fact, we have tested our prototype in different systems, such as different Linux
distributions (e.g. Debian, Ubuntu Server 12.04 LTS, Ubuntu Server 13.10 and
Amazon Linux AMI), Windows and Mac OS X. Another interesting character-
istic regarding diversity is the hypervisor independence. As the system relies on
the message communication paradigm, it does not use shared memory resources
of the hypervisor (e.g. shared memory provided by the hypervisor as a means of
communication subsystem among virtual machines). Therefore, we can deploy
our resilient OpenID service using different operating systems as well as diverse
hypervisors, which increases even more the system diversity and, consequently, its
robustness against common vulnerabilities both in operating systems and hyper-
visors. We have deployed out prototype on virtual machines running on different
hypervisors, such as VirtualBox, Xen and Amazon’s EC2 hypervisor.

Figure 5.4: System design with multiple (3f + 1) secure elements [5].

The Chapter presented the functional prototype and all technical details like
architectural structure, components and how they communicate between them-
selves. It presented the deployment configurations of the proposed system as
well as the advantages and disadvantages of the different configurations of the
prototype.
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Chapter 6

Discussion and Experimental

Evaluation

This Chapter presents general discussion about some OpenID vulnerabilities and
attacks. The goal here is to evaluate the proposed solution and our prototype
implementation regarding different attacks and types of faults, verifying how the
system behaves on the attacks’ presence. Moreover, it is provided performance
evaluations on three different scenarios, measuring the throughput and latency
of the system’s essential operations.

6.1 OpenID Attacks Analysis

As said previously on Subsection 2.1.1, OpenID standard presents several security
issues, both in terms of specification and implementation [24, 74, 110, 111].
Therefore, we analyze on the following sections some of the current OpenID
attacks and how they are mitigated (or what kind of problems they may cause)
in our resilient OpenID system.

It is worth mentioning that phishing and CSRF attacks [24] in OpenID archi-
tectures are not covered by our solution. These attacks focus on the user/client
and relying party, i.e., elements outside of our intended protection scope. More
details about the real scope is presented in next sections like some known OpenID
issues (MITM, DoS, replay), resilience, and intrusion and fault tolerance as well.

6.1.1 Man-in-the-middle Attacks

Problem: Man-in-the-middle attacks are characterized by the attacker inter-
ception communications in both directions. As an example, the relying party
connects with the attacker’s system. However, for it the attacker is an OpenID
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provider because the attacker forwards the relying party requests to the OpenID
provider, which will reply to the attacker. Subsequently, the attacker is going to
send a reply to the caller, the relying party. Obviously, the attacker is intercepting
all communications between the relying party and the OpenID provider.

In order to avoid man-in-the-middle attacks, the OpenID framework (version
2.0) specifies that associations between relying party and the identity provider
must use a shared secret for preventing an attacker of tampering the signed fields.
However, the problem is that the associations are negotiated over Diffie-Hellman,
which can not by itself avoid interception attacks.
Solution: To effectively prepare the system against man-in-the-middle attacks,
the use of protocols such as TLS, with certificates and mutual authentication, is
imperative. A user and the OpenID server need to have certificates signed by a
trusted authority that can be verified by each element (e.g. client and server)
of the communication. As discussed in Chapter 4, our system design assumes
protocols such as SSL and TLS to protect the system’s communications. We
highlight the move as a solution because even being a standard precaution, many
’security’ systems do not take care of this simple detail.

6.1.2 DoS Attacks

Problem: Denial of Service (DoS) attacks have the goal to exhaust the system’s
resources, making it unavailable to the end users. In the OpenID framework, all
elements can eventually be affected by DoS attacks. The relying party can be a
target of DoS attacks if it allows the user choose the URL to identify himself. For
instance, a user could maliciously insert an URL pointing to a movie file. Con-
sequently, during the discovery process, the relying party would download the
movie file of the input URL [43]. Furthermore, an OpenID server can also be
the target of a DoS attack. For instance, an attacker can use a compromised re-
lying party to generate a huge number of association, authentication or signature
verification requests.
Solution: To prevent DoS attacks from the relying party to the OpenID provider,
packet filters, such as iptables, can be used on the gateway to impose a limit
on the number of requests per second coming from the relying parties. Further-
more, the OpenID service can ban requests based on the values openid.realm and
openid.return_to in the protocol messages exchanged with the relying party [43].
Our resilient OpenID provides mechanisms based on timeouts, corrupted mes-
sages and malformed packets to detect attacks between clients, relying parties and
OpenID gateways. Nevertheless, it is not sufficient to defend the system against
DoS attacks, such as huge proportion DDoS attacks. Despite providing defense
mechanisms in the gateway and replicated OpenID server, our system can also
leverages the power of advanced detection and mitigation mechanisms provided
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by use of cloud infrastructures, such as CloudFare [81, 93], a cloud provider that
was able to tolerate a DDoS of 20Gbps (with a peak of 120Gpbs) for more than
one week without compromising the clients’ services. As we show and discuss
in the evaluation section, our solution can be deployed in a multi-cloud and/or
multi-data center environment.

6.1.3 Replay Attacks

Problem: Replay attacks try to eavesdrop information without authorization
and use it to trick the receiver (e.g. by retransmitting the same packet) to execute
unauthorized operations such as authentication of an unauthorized client/user.
According to OpenID specifications, the number used once, also known as nonce,
required in the authentication process does not have to be signed and verified.
Therefore, it is up to the developer to decide whether the nonce is going to be
signed and verified or not. If the nonce is not part of the signed information, an
eavesdropper can intercept a successful authentication assertion (sent from the
OpenID service to the relying party) and re-use it.
Solution: Our replicated OpenID server inserts the nonce in the signed infor-
mation list, which is sent within the authentication response. Additionally, the
openid4java client performs a check of the signature and keeps track of the non-
expired nonce values, which were already used in positive assertions, and never
accepts the same value more than once for the same OpenID endpoint URL. If
the received nonce value is expired, it is rejected.

6.2 Tolerating Crash and Byzantine Faults

In this section, we discuss the behavior of the replicated OpenID in the pres-
ence of a faulty replica due crash or Byzantine fault. Additionally, we analyze
the replicated OpenID with one faulty gateway. Furthermore, we analytically
compare our solution with a single application OpenID server, the JOIDS [112],
which represents the common case of available OpenID implementations.

� Fail-stop. Forcing a replica to crash is as simple as killing its respective
process. While our system tolerates up to fG gateway faults and fR replica
faults, the JOIDS does not tolerate faults. If the application crashes, the
OpenID provider will be compromised. The resilient OpenID service keeps
working correctly, without system delays, despite up to fR simultaneously
compromised replicas.

� Byzantine. Considering arbitrary faults, things get even worse. The
JOIDS OpenID application does not tolerate arbitrary faults (e.g. bugs,
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misconfigurations, message delays caused by an attacker, and so forth).
Therefore, arbitrary faults can have different kinds of impacts in the sys-
tem’s operation, such as denying user authentication, granting of associa-
tion assertions to un-authorized users, and so forth. On the other hand,
our solution tolerates up to fR arbitrary faults on the OpenID replicas.
Furthermore, if we consider a scenario with arbitrary faults in up to fG
gateways, only relying parties and users relying on those fG gateway will
be affected. Relying parties and clients using the remaining gateways will
not experience any abnormal behavior of the system.

6.3 Performance Analysis

In the following section we discuss some experimental results. Our main goal is
to measure the system performance and behavior in different computing envi-
ronments. Therefore, we use three distinct execution environments in order to
observe and compare the system performance and potential limitations. Addi-
tionally, the section presents a brief comparision between the replicated OpenID
and the standard one.

6.3.1 Execution Environments

We used three different environments to run our experiments. Two of them with
virtual machines (VMs) running on the same physical infrastructure, one on the
same server and one in the same data center. A third one is composed by multiple
data centers spread from the east to the west coast of the US.

The first test environment (UFAM-VMs) has five virtual machines with
2GB of RAM, 2 vCPUs (vCPU - virtual CPU), one hard disk of 20GB (allocated
on a disk image file) and a swap disk image with 1GB of space. All virtual ma-
chines run the GNU/Linux distribution Debian Wheezy 7.0. Furthermore, these
VMs are supported by a physical machine with one Intel Xeon E5-2420 proces-
sor with 6 cores with hyper threading supporting up to 12 threads in parallel,
24GB (6x4GB) of RAM, one Intel I350 Gigabit Network card and a software-
based RAID 1 disk with 500GB (2x500GB). This physical machine is allocated
at UFAM. Virtualization is supported by the Xen 4.1 kernel module.

The second test environment (Amazon-EC2) uses elastic computing
nodes (EC2) from Amazon AWS to run our system. We used five m3.xlarge

instances [113], with 4 vCPUs, 13 ECUs, 15GB of RAM and 2 x 40GB SSD
disks. All instances were allocated in Amazon’s data center in N. Virginia (US
East Zone). These nodes are interconnected through high speed gigabit network.
The nodes were running Ubuntu Server version 13.10.
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The third test environment (Amazon-DCs) uses a multi-cloud/multi-
datacenter configuration. Again, we used five VMs. Two of them allocated in
N. Virginia, two in N. California and one in Oregon. These five VMs have the
same configuration of those used in Amazon-EC2 environment. However, what
changes is the operating system. N. Virginia’s VMs run Ubuntu Server version
13.10, while the VMs allocated in N. California run Amazon Linux AMI. Lastly,
the Oregon’s VM was running Ubuntu Server version 12.04 LTS.

Figure 6.1 illustrates the Amazon-DCs environment. Clearly, it is a cutting
map and three different locations can be seen in the Figure. Specifically, it
illustrates the places where our test machines from Amazon are located. As can
be observed, one machine is in Oregon and other two are in Northern California,
all of them on the west coast of United States. The fourth and fifth machine are
in Northern Virginia, on the east coast of US. The Figure is capable to present
some latency information about the whole test environment. Furthermore, as one
would expect, the latency between east and west coasts (87.34ms and 78.36ms)
is much higher than the latency between N. California and Oregon (32.10ms).
The network latency measurements were taken using the ping tool to generate
one hundred packets of 512 bytes. Therefore, the number represent the average
of 100 ICMP messages. Moreover, we used the size of 512 bytes due to the fact
that most of the OpenID’s authentication messages, in our experimental setup,
were of around this size, as further described in the following sections.

Figure 6.1: Multi-cloud environment overview [5].

All VMs from the three environments were running openjdk-1.7. The re-
silient OpenID prototype was developed using openid4java version 0.9.8 [101]
and BFT-SMaRt version 0.8 [3].

6.3.2 System Authentication Throughput and Latency

One of our goals was to measure how many OpenID authentications our resilient
service can support in different execution environments. Furthermore, we mea-
sured also the network and system latency to identify the impact of the network
and the potential system bottlenecks or points of improvement.
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Table 6.1 summarizes the main results of our executions in the three envi-
ronments. We used a variable number of clients (20, 40, 80, 100) running with
the gateway element. Each client executes 2.000 authentication requests. An au-
thentication is composed by 5 different messages, in accordance to the OpenID
2.0 specification. Two of them are needed for discovery process, one for the
association and the last two for authentication process. Therefore, each client
sends 10.000 messages to the gateway and OpenID replicas. Due to time and
resource allocation constraints, we executed each configuration (e.g. 20 clients)
on each environment only five times. Thus, the system throughput number (au-
thentications/s) shown in this sections represent an average of five executions.
Consequently, some of the differences, in particular on the standard deviation
results, could change with more executions. However, based on our tests and
observations, the main throughput results would not significantly change.

The discovery process is a formal request sent by the client aiming to establish
a connection with the OpenID service. This request is essentially an HTTP HEAD

request. If the OpenID service returns an error, the client sends a subsequent
HTTP GET request. Since our implementation is based on the openid4java, and
the original implementation of the library only handles GET requests, we send but
ignore the HEAD request in order to keep backward compatibility. In the second
message, the client performs a GET request with the respective Accept header.
As both discovery requests do not have content, we set their payload to 0 (zero)
bytes in our experiments.

The next step is to send (by the client) an association request using HTTP
POST containing a set of OpenID parameters as content, resulting in payload
size of 343 bytes. The request includes the OpenID Authentication request’s
version (openid.ns); a value to identify the message type of the OpenID request
(openid.mode); and the shared secret key, resulting from the Diffie-Hellman Key
Exchange, to be used to sign subsequent messages between client and the OpenID
service.

The forth message starts the authentication phase. It is another HTTP POST

message with a payload of 506 bytes. The request’s parameters include the identi-
fication provided by the user (openid.claimed_id), the return URL that will be
used by the OpenID service to send the authentication result (openid.return_to
and the handler of the previously established association (openid.assoc_handle).

During our experiments, we assumed that client has not yet been authenti-
cated in the OpenID service. Consequently, the client needs to feed a web form
using his credentials. In our prototype, this form has 537 bytes. Nevertheless,
this size can vary accordingly to the respective relying party.

As can be observed in Table 6.1, the number of authentications per second
varies from nearly 860 (with 20 clients) to 995 (with 80 clients) in the UFAM-VMs.
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Table 6.1: Experimental results [5].

Environment # of clients # of auths Exec time # of auths/s

UFAM-VMs

20 40000 46.39s 867.73
40 80000 87.94s 984.59
80 160000 162.67s 995.12
100 200000 209.41s 960.11

Amazon-EC2

20 40000 20.37s 1969.17
40 80000 36.93s 2166.58
80 160000 71.41s 2244.30
100 200000 89.33s 2244.04

Amazon-DCs

20 40000 150.00s 26.66
40 80000 157.71s 50.72
80 160000 173.12s 92.42
100 200000 175.39s 114.05

There is a drop in throughput with 100 clients. This is due to the execution en-
vironment limits. Too many simultaneous clients leads the system to a thrashing
situation, i.e., the scheduling, concurrent I/O requests and memory consumption
exceed the reasonable values of the system, leading to a lower performance. A
similar behavior can be observed in the second environment, Amazon-EC2. In
order to execute more clients (lets say 80 or more) simultaneously, more virtual
machines are required. Whatever misunderstanding or suspicion related to the
number of authentications per second or the total authentications on the table,
please refer to Table 6.2 which presents the standard deviation of the values.

Another interesting performance result is the difference between the UFAM-
VMs and Amazon-EC2. They are similar computing environments, except that
the VMs of Amazon-EC2 have more computing power, which makes a huge dif-
ference on the overall system performance. Taking as an example 80 clients, the
Amazon-EC2 supports 2.25x more authentications per second.

Table 6.2: Standard deviation from authentication per second [5].

Environment 20 40 80 100
UFAM-VMs 79.7382 261.6494 111.1233 118.7884
Amazon-EC2 120.8838 44.5214 106.01878 121.5597
Amazon-DCs 0.3752 0.6322 1.0592 1.9577

Lastly, as one would expect, the Amazon-DCs environment presents the low-
est performance. One of the main reasons for this significant drop in performance



Chapter 6. Discussion and Experimental Evaluation 64

in the network latency, as can be observed in Table 6.3. The average network la-
tency between data centers (e.g. nvirginia-ncalifornia) is 94.40x higher than
the worst network latency case (ec2h1-ec2h2) of the Amazon-EC2 environment.
However, it is worth mentioning that we have a growing trend in the number of
authentications per second. As the network latency is high, more simultaneous
clients can potentially explore better the network I/O and bandwidth. Differ-
ently from the other two environments, the major limitation of the Amazon-DCs
environment is the proportionally huge network latency. Nevertheless, we consid-
ered the results achieved in the inter-data center setup reasonably good. For 20
clients we achieve a throughput of 26 authentications per second, while around
114 authentication/s for 100 clients. An authentication service with such number
of authentications per second can be considered of medium scale. You need at
least thousands of users in the system to reach more than one hundred authen-
tications/s.

Figure 6.2: Total number of authentications per second [5].

The system throughput on the UFAM-VMs and Amazon-EC2 environments
provides evidence that the virtual machine’s and environment’s configurations
(number of vCPU, memory, disks, network efficiency) has a significant impact on
the number of authentication per second. Furthermore, despite having a higher
throughput in the UFAM-VMs’ environment when compared to the Amazon-
DCs environment, as show in Table 6.2, the standard deviation from the latter is
more stable and lower than the former. This indicates that the OpenID replicas
running on the Amazon-DCs’ environment can handle a more constant (and
potentially growing) number of authentications per second with an increased (e.g.
200) number of clients. On the other hand, despite having a variable and high
standard deviation, by running the replicas in the Amazon-EC2 environment the
system is capable of handling much more authentications per seconds, as can be
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observed in the graph of Figure 6.2.

Table 6.3: Latency: min, max, average and standard deviation [5].

Environment Hosts min avg max std dev

UFAM-VMs

host0-host1 0.089 0.092 0.258 0.021
host0-host2 0.056 0.059 0.204 0.014
host0-host3 0.090 0.092 0.257 0.020
host0-host4 0.056 0.059 0.217 0.015
host1-host2 0.090 0.105 0.319 0.028

Amazon-EC2

ec2h0-ec2h1 0.143 0.176 0.283 0.027
ec2h0-ec2h2 0.160 0.191 0.298 0.029
ec2h0-ec2h3 0.157 0.188 0.299 0.038
ec2h0-ec2h4 0.180 0.213 0.354 0.031
ec2h1-ec2h2 0.148 0.173 0.830 0.068

Amazon-DCs
oregon-nvirginia 86.325 86.707 87.343 0.312
oregon-ncalifornia 31.391 31.703 32.103 0.244
nvirginia-ncalifornia 77.728 78.027 78.360 0.225

Table 6.3 shows the latency results for all three environments. The measure-
ments were carried out using the ping program generating 100 ICMP requests
of 512 bytes between each pair of hosts. The Table contains the standard output
(results) of the GNU/Linux ping command. Host0, ec2h0 and oregon repre-
sent the hosts running the simulated clients and gateway elements of the system.
Therefore, the measures are done from the gateway host to the four OpenID repli-
cas. Moreover, another measurement between replicas’ hosts (e.g. host1-host2
for UFAM-VMs) has been done. This last measurement gives an idea of the
network latency between the OpenID replicas.

As expected, the UFAM-VMs’ virtual machines have a low latency and the
lowest standard deviation. This happens because all virtual machines are running
in the same physical machine. Nevertheless, the network latency varies signifi-
cantly between different virtual machines. If observing the average values, it goes
from 0.059ms up to 0.090ms, which represents a variation of nearly 1.52x.

On the other hand, the average latency between hosts varies less in the
Amazon-EC2 environment. Nevertheless, the latency is higher than in the UFAM-
VMs environment. Furthermore, the standard deviation is also higher in the
Amazon-EC2 setup.

Lastly, the network latency variation is much higher in the WAN connections,
as can be seen in Amazon-DCs’ latency results. It goes from 32.103ms between
Oregon and N. California up to 87.343ms between Oregon and N. Virginia, which
represents a difference of 2.72x. This latency variation is almost unpredictable
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and can significantly vary from data center to data center connection. Therefore,
one should also take care before choosing the clouds and/or data centers to deploy
the nodes of a distributed system.

Table 6.4 presents a brief comparison between the replicated OpenID and
an original one. The original OpenId was subjected to the same set of tests
performed to the replicated one. As expected, the original OpenID provides
a higher throughput of authentications. It happens due the overhead of mes-
sages exchanged by the state machine replication protocol existent in the pro-
posed OpenID. Many messages are exchanged in order to ensure the coordination
and synchronization between replicas, keep the determinism, perform consensus,
leader election and other controls performed by the replication library BFT-
SMaRt. Moreover, it is worth to remember that the replicated solution adds a
new element in the flow, the gateway, increasing even more the number of ex-
changed messages, and consequently reducing the system performance. In other
words, we present an OpenID solution with less performance, but in return we
provide resilience, high availability and fault and intrusion tolerance.

Table 6.4: OpenID Type Comparison

OpenID Type # of clients # of auths Exec time # of auths/s

Replicated OpenID

20 40000 46.39s 867.73
40 80000 87.94s 984.59
80 160000 162.67s 995.12
100 200000 209.41s 960.11

Standard OpenID

20 40000 28.82s 1388.19
40 80000 54.29s 1474.01
80 160000 108.93s 1468.97
100 200000 135.25s 1478.94

6.3.3 Latency Measurements between System Elements

We have also done some latency measurements between system elements. The
main idea was to identify potential bottlenecks and/or places where the system
can be further improved. For instance, one of the goals is to observe the latency
overhead of centralized and distributed secure components.

Between the gateway and the OpenID replicas we have the following latency
(average of 9000 authentications) 7.16ms (UFAM-VMs), 6.22ms (Amazon-EC2)
and 857.93ms (Amazon-DCs). As expected, the latency follows the throughput
trend. Furthermore, 7.16ms and 6.22 are relatively low values considering that
we have five OpenID messages per authentication plus the delay of the state
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machine replication protocol among the system replicas. However, on the inter-
data center environment the value is significantly high. One way to reduce the
latency overhead could be to place the replicas in the data centers with the
lowest latency (e.g. two replicas in N. California and two in Oregon). This
would certainly significantly reduce the latency of the Byzantine fault tolerant
protocols.

Lastly, the latency between the replicas and the trusted components is of
10.51ms (UFAM-VMs) and 10.50ms (Amazon-EC2) for the system configuration
with a single trusted component. When using replicated secure elements, consid-
ering one agreement round among them per replica request, the latency goes up
to 20.58ms (UFAM-VMs) and 20.23ms (Amazon-EC2). Consequently, one could
think that the system is limited to nearly 100 authentications per second with
a centralized trusted component and around 50 authentications/s when using a
replicated secure element (one per replica). This would be true if the trusted
component is a single-threaded application or hardware-device that sequential-
izes all incoming requests. Therefore, one of the main potential bottlenecks of
the system is, of course, the trusted component. While a hardware-based trusted
component could impose a significant limit to the system, a secure element on a
trusted computing base (e.g. secure hypervisor), running within the hypervisor
or in an isolated virtual machine, can significantly boost the system’s perfor-
mance by exploring mechanisms for processing requests concurrently and/or in
parallel.867,73-984,59

6.3.4 Attacks on replicas and gateways

One of our goals was to evaluate the system behavior under constant crashes
and/or attacks.
Constantly crashing up to fR replicas. To evaluate the system performance
under harsh circumstances, such as continuous crashes, we used the UFAM-VMs
environment with 20 and 40 clients. We implemented a script that kills and
restarts one of the replica every 10s during the system execution. With peri-
odically less replicas (up to fR replicas, which in our test represents 1 replica)
in the system, we experienced a slightly higher throughput, going from 867.73
to 1009.86 with 20 clients and from 984.59 to 1145.98 with 40 clients. This is
explained by the fact that less replicas on the system (3fR + 1− fR) generates a
lower overhead in communications for state machine replication protocols (con-
sensus, ordering, and so forth). Consequently, our system did not experience any
kind of problems, or performance degradations, with constant crashes of up to
fR replicas.
DoS attack on up to fR replicas. Similarly, with a DoS attack on up to fR
replicas, we experienced a slightly increase in the system throughput. We used
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the hping3 command to generate a constant DoS attack, using TCP SYN and
ACK flags, on the TCP port of one replica. This replica started to slow down
and/or not receive all messages from the gateway due to the attack. Therefore,
the remaining replicas considered it as compromised and kept the system in
operation relying on the 3fR+1−fR correct replicas, in our case 3 replicas. Again,
the system experienced a slightly higher increase in performance, going from
867.73 to 956.46 authentications/s with 20 clients, and from 984.59 to 1005.54
authentications per second with 40 clients. The increase in throughput is lower
than with crash faults because the replica is still up and working throughout
the execution of the experiment, eventually sending replies to the remaining
3fR + 1 − fR replicas, despite the DoS attack. Nevertheless, the overall system
performance keeps still over the normal case, without any faults.
Constantly crashing up to fG gateways. We ran also an experiment to
observe the behavior of the system with faulty gateways. To this purpose, we
used 10 clients sending (each of them) 100 authentication requests per second,
two gateways and four OpenID replicas. We created a script to kill and restart
one of the gateways every 5 seconds. In the end, we observed that a faulty
gateway, crashing every 5 seconds, causes an overall drop of approximately 27%
on the system throughput (number of authentications/s). This is due the fact
that clients and relying parties have to re-send the requests not answered by the
faulty gateway and/or try to connect to the second gateway, which causes an
additional overhead on the authentication process. However, we believe that the
results can be improved by applying some optimizations (on the communications
behavior) on the relying party and clients, for instance.
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Conclusion

This Chapter finalizes this master thesis and presents the final remarks of the
work. Moreover, it presents the main difficulties found, main contributions to
the scientific community as well as the future work.

7.1 Contributions

The section presents the main contributions of this work:

1. The design and implementation of a resilient OpenID-compliant server for
services that rely on OpenID-based identity providers

2. Implementation of a fault- and intrusion-tolerant OpenID service with back-
ward compatibility with existing systems, i.e., its deployment should not
require any modification in a typical OpenID-based architecture

3. Design, implementation and evaluation of a resilient and trustworthy OpenID-
based identity provider based on virtual replication and end-to-end TLS
authentication

4. Experimental evaluation of the system performance and behavior in dif-
ferent environments, such as multiple virtual machines in a single physical
machine and multiple virtual machines running in different clouds and/or
data centers

Beyond the enumerated contributions, we can highlight the conference publica-
tions achieved as well:

1. Kreutz, D., Feitosa, E., Malichevskyy, O., Barbosa, K., Cunha, H. "A
Functional Model for Identification and Authentication Services Tolerant
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to Faults and Intrusions", in XIII Symposium on Information Security and
Computer Systems.

2. ??

7.2 Research difficulties

Despite we have used some libraries to facilitate the job like BFT-SMaRt [3],
OpenID4Java [101] and Bouncy Castle [108], implementing an OpenID fault-
and intrusion tolerant service is not an easy job. This section presents to the
reader the main difficulties found while developing and designing the resilient
OpenID service.

Java provides a large set of methods and classes capable of encapsulate all
the HTTP conversation through the web containers called Servlets. However,
these facilities could not be used because BFT-SMaRt library handles all the
communication by vector of bytes, forcing us to perform treatment of HTTP
requests and responses some layers below application layer. In other words, it
was necessary mount and read manually the HTTP packages in all the three
points of the prototype (relying party, gateway and server replicas). This task
is not too hard by itself, but it took us some days re-doing something which is
already done by Java methods and classes.

Moreover, the task of keeping the solution’s determinism was a hard job.
OpenID standard was not designed to tolerate arbitrary faults and work with
state machine replication. It means that as soon as we configured the OpenID
standard implementation to use BFT-SMaRt we faced different behaviors on each
OpenID service replica when performing some tasks. As explained on Subsec-
tion 2.2.2 of this work, state machine replication services must operate coor-
dinated and in a deterministic way, processing the requests on the same order
and responding equally. However, OpenID authentication flow needs to performs
some random number generation and Diffie-Hellman key generation. The system
should be capable of generate the same random numbers and keys on all the
OpenID replicas in order to keep the determinism on the system. The difficulties
related to this problem are:

(a) Association handle

(b) Mackey seed (32 bytes length)

(c) Diffie-Hellman keypair

(d) Nonce
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The first two items above were solved passing the responsability to the Trusted
Component. In the first system configuration (see Section 4.2), the TC could
generate the information in a random way and return to all replicas the same
generated value. Otherwise, if system is accordingly to the second deployment
configuration, TC uses a pseudo-random number generator which receives two
fixed seeds in order to generate securely the bytes to all replicas. Diffie-Hellman
keypair (on the replicated Trusted Component form) is not generated by the
pseudo-random number generator because even providing the same seed, Bouncy
Castle library does not repeat DH keys. To this specific situation, we created a
large vector of DH keypairs and access them through a pseudo-randomized index.
Additionally, nonce is not generated using the pseudo-random generator solely,
it uses a timestamp information which is provided by the BFT-SMaRt library
and sent by the replica leader to all other replicas for synchronizing purposes.
To do that, we use a modified version of the BFT-SMaRt library, because in the
original build, the replica leader does not keep the timestamp information for
itself.

Beyond the difficulties described, we had to insert all the solutions keeping the
OpenID4Java [101] architecture (object types, dependencies and the classes’ way
of functioning) to avoid compatibility problems with the remaining OpenID4Java
code.

7.3 Final Remarks

In this work we proposed a system architecture for developing and deploying
resilient identity providers based on OpenID standard keeping the compatibility
with the existent OpenID-based identification and authorization infrastructures.
It was presented all the basic concepts necessary to understand the proposal
and its characteristics. Beyond the concepts, we described the necessary ele-
ments to design resilient systems and provide fault- and intrusion-tolerance on
network services. Moreover, we described and analyzed our results on developing
this OpenID-based infrastructure using state machine replication protocols and
trusted elements, among other techniques.

A prototype of the system design was implemented as a proof of concept.
The implementation is based on Java and it uses the OpenID4Java [101], BFT-
SMaRt [3] and Bouncy Castle [108] libraries. Using this prototype we showed
that is possible add some security to OpenID authentications as well as provide
more resilience and availability.

As presented in Section 4.2, the resilient OpenID system follows a pshysi-
cal state machine replication and therefore, it allows replicas being distributed
across multiple physical machines and/or administrative domains. Using the de-
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veloped prototype, we have demonstrated how the system is capable of masking
up to fR arbitrary faults on the OpenID service replicas. Furthermore, we have
introduced a new component, the OpenID gateway, which performs the commu-
nication between the Relying Party and the service replicas keeping the backward
compatibility.

Furthermore, we evaluate and discussed how our system design is capable of
avoiding or mitigating different attacks such as reply and DoS. The experimental
results demonstrate also the system performance on threee different environ-
ments, multiple virtual machines on a single physical machine, multiple virtual
machines on a single data center and multiple virtual machines spread across
multiple data centers. Through the respective results we could achieve a high-
value throughput, in specially in the Amazon-EC2 environment of more than two
thousand OpenID authentication per second. This is a significant achievement
considering that we are relying on heavy protocols such as those required for
state machine replication and for tolerating faults and intrusions.

We also discussed how the network latency and the latency between differ-
ent elements can affect the overall system performance. As indicated by our
results the two most significant impacts are caused by the network and system
latency. For instance, WAN latency, significantly reduces the system throughput.
Similarly, trusted components can have also a significant impact on the system
performance.

Lastly, we present the throughput comparison between our proposal and a real
pure OpenID server. Despite our proposal is slower than an OpenID pure server,
it is easily minimized by the other benefits brought by the resilient OpenID
proposal. The capacity of provide a higher available, resilient and fault- and
intrusion tolerant service worths less authentications per second.

7.4 Future Work

Despite the promising results, there is still room for improvements and further
investigation. The main ones are:

1. Use of the most recent version of BFT-SMaRt which has several perfor-
mance and durability optimizations;

2. Use optimized pools of thread on the gateway;

3. Use multiple gateways on performance tests, since the replicas are capable
of processing more than 70k raw messages per second [3];
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4. Use more powerful computing nodes such as m3.2xlarge [113], which nearly
double the computing power of the nodes used in Amazon-EC2 environ-
ment;

5. Send requests in batches between the gateway and replicas;

6. Implement a more powerful version of the Secure Element to process re-
quests faster using multiple threads. And also transfer all the sensitive
data responsability to the Secure Element such as handle the association
information and user data (passwords, among others);

7. Analyse the scalability of OpenID as a service;

8. Adapt the new version of OpenID Connect [114] to the resilient architecture
presented here;

9. Evaluate the resilience degree of the proposed Identity Provider using met-
rics and techniques present in the literature like [14].

After all, "The research can not stop." (Ruiter Caldas and Kaio Barbosa).
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