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Resumo

Sistemas de loalização desempenham um papel importante em muitas apliações para

Redes Ad Ho Veiulares (VANets). Embora ténias de fusão de dados podem prover

informações de loalização on�áveis para atender a maioria dos requisitos de apliações

em VANets, aperfeiçoamentos nos sistemas de loalização são neessários e desejáveis.

Caraterístias únias de VANets tais omo restrições de mobilidade, o omportamento

do ondutor e a natureza de alta veloidade de desloamento dos veíulos podem ausar

rápidas e onstantes mudanças na topologia da rede, levando à disseminação de infor-

mações de loalização desatualizadas.

Nesta tese, nós identi�amos que para soluionar o problema de disseminação

de informações de loalização desatualizadas em VANets, uma alternativa é o uso de

previsão de loalização futura de veíulos. A prinipal ideia desta abordagem é utilizar

a previsão de loalização omo uma extensão para o sistema de Fusão de Dados de

loalização. Em tal abordagem, uma posição futura de um automóvel é predita para um

determinado fragmento de tempo futuro e utilizada para tomar vantagem de uma janela

de espaço-tempo de uma trajetória vetorial em vez de um ponto de loalização estátio.

Portanto, nesta tese disutimos em detalhes esse assunto, estudando e analisando o uso

da previsão de loalização omo uma forma natural para aprimorar apliações e serviços

em VANets.

Utilizando loalização predita omo uma métria para omuniação de dados em

VANets, nós propomos uma solução para o problema de divulgação de informações

loalização desatualizado hamada LPRV (Loalization Predition-based Routing for

VANets). Em nosso algoritmo proposto, o enaminhamento de paotes é realizado por

nós om loalizações preditas mais próximas do destino de entrega, sem a neessidade

de troa de mensagens de ontrole adiional. O algoritmo proposto também explora

o onheimento de um mapa digital para limitar o esopo de troas de mensagens no

aminho mais urto para veíulos entre a origem e destino.

Palavras-have: Redes Ad Ho Veiulares, Previsão de Loalização; Previsão

de Séries Temporais, Rastreamento de Alvos; Roteamento Geográ�o; Geoast;
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Abstrat

Loalization systems play a major role in many appliations for Vehiular Ad Ho

Networks (VANets). Although Data Fusion tehniques an provide reliable loalization

information for most of the appliation requirements in VANets, enhanements on the

loalization systems are required and desirable. Unique harateristis of VANets suh

as mobility onstraints, driver behavior, and high speed displaement nature of vehiles

ause rapid and onstant hanges in network topology, leading to dissemination of

outdated loalization information.

In this thesis, we identify that to irumvent the problem of dissemination of

outdated loalization information in VANets, an alternative is the use of predited

future loations of vehiles. The main idea of this approah is to use the loalization

predition as an extension of a Data Fusion loalization system. In suh an approah,

a future position of a vehile is predited for a given future time step and used in

order to take advantage of a future time-spae window of a vetorial trajetory rather

than a stati loalization point. Thus, in this thesis we further disuss this subjet by

studying and analyzing the use of loalization predition as natural way to improve

VANets appliations.

Using vehiles predited loations as a metri for data ommuniation in VANets,

we propose a solution for the problem of dissemination of outdated loalization informa-

tion alled LPRV (Loalization Predition-based Routing for VANets). In our proposed

algorithm, paket forwarding is performed by nodes with predited future loalization

loser to the delivery destination, without the need for exhanging additional ontrol

message. The proposed algorithm also explores the knowledge of a digital map to limit

the sope of message exhanges in the shortest path for vehiles between soure and

destination.

Keywords: Vehiular Ad Ho Networks, Loalization Predition, Time Series

Predition, Target Traking, Position-based Routing, Geoast;
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Chapter 1

Introdution

1.1 Motivation

Reent advanes in mobile omputing, wireless ommuniation and sensing have en-

abled the development of a number of interesting and desirable appliations in In-

telligent Transportation Systems (ITS). In this ontext, Vehiular Ad Ho Networks

(VANets) (Boukerhe et al., 2008; Papadimitratos et al., 2009; Youse� et al., 2006;

Hartenstein and Laberteaux, 2008) emerge as new tehnology to integrate wireless

networks apabilities to vehiles, providing ubiquitous onnetivity as well as allow-

ing vehile-to-vehile (V2V) and vehile-to-infrastruture (V2I) ommuniation. Thus,

interonneted vehiles an ollet and share information about themselves and sur-

rounding environments in real time. Therefore, there is an extensive list of potential

appliations for VANets, where we an highlight ategories related to safety, transport

e�ieny and information/entertainment appliations (Hartenstein and Laberteaux,

2008). Among these appliations, safety plays a speial hole in VANets. The growing

number of tra� ongestions, fatalities and injuries, due to the inreasing number of

vehiles in operation worldwide, has been reognized as a soial ost and a problem to

be solved by modern soiety (Papadimitratos et al., 2009; Al-Sultan et al., 2014).

Regarding the operation of loalization systems in vehiular networks, the esti-

mation of a vehile's dynami state is one of the most fundamental Data Fusion tasks

for ITS appliations (Shubert et al., 2008). Although Data Fusion tehniques an

provide reliable loalization information for most of the appliation requirements in

VANets (Nakamura et al., 2007), enhanements on the loalization systems are still

required and desirable. Unique harateristis of VANets like mobility onstraints,

driver behavior, and high speed displaement nature of vehiles ause rapid hanges

in network topology (Youse� et al., 2006). Thus, leading to the dissemination of out-

dated loalization information, spei�ally when the network paket delay is high. In

this ontext, some protools that require aurate position information inrease the fre-

1



1. Introdution 2

queny of periodi messages (beaons) as a naive solution for this problem. However,

this approah leads to unneessary overhead in the number of transmitted pakets,

whih auses a high hannel oupany with an inreased number of medium aess

ollisions, atually inreasing delay (Boukerhe et al., 2009; H. Nguyen, 2012). There-

fore, one problem to be solved in VANets' loalization systems is how to avoid the

dissemination of outdated loalization information.

To irumvent the problem of the outdated loalization information dissemina-

tion in wireless ommuniations, some pioneer studies (Kaanihe and Kamoun, 2010;

Lee and Krumm, 2011; Boukerhe et al., 2009; Rezende et al., 2009; Huang et al.,

2008; Agarwal and Das, 2003) takle this problem by prediting the future loalization

of a mobile node in a small time window. In these studies, well known methods ap-

plied in loalization, target traking, and time series predition suh as dead rekoning,

Bayesian Filtering, and Mahine Learning are proposed as a metri to ahieve improve-

ments on a single partiular appliation. However, spei�ally from the viewpoint of

VANets, urrent proposals do not disuss how the loalization predition thehniques

an be used to improve internal tasks and appliations, suh as an enhanement of the

loalization system as a whole.

1.2 Objetives

This work aims to provide a general disussion for loalization predition in VANets as

enhanement of the Data Fusion loalization system, allowing us to identify open is-

sues, understand the requirements and the impliations of using loalization predition

in vehiular networks. Regarding the problem of the outdated loalization informa-

tion dissemination in VANets, the main goals of this work is to demonstrate, design,

and evaluate the performane of loalization predition theniques as natural way to

improve appliations and servies for vehiular networks.

To ahieve these goals, several seondary objetives need to be aomplished. In

order to demonstrate, design, and evaluate the performane of loalization predition

theniques in VANets, the following goals need to be ahieved:

1. Demonstrate and evaluate proposed approahes for loalization, target traking

and time series predition tehniques that an be used to estimate the future po-

sition of a vehile to realisti VANet senarios;

2. propose a routing algorithm using vehiles predited loations as a metri for data

ommuniation in VANets; and
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3. analyze the performane and demonstrate the e�ieny of the proposed routing

solutions in VANet senarios.

1.3 Main Contributions

The main ontributions of this work in the order they appear in this doument are:

1. A survey on loalization predition in vehiular ad ho networks. Al-

though this is not the thesis entral ontribution, this omprehensive survey

about loalization predition in VANets is worth to be mentioned. We surveyed

proposed approahes for loalization, target traking and time series predition

tehniques that an be used to estimate the future position of a vehile. It disuss

how the loalization preditions methods an improve most VANet appliations,

espeially ritial ones. In this survey we argue that loalization predition for

VANets as an extension of a Data Fusion loalization system is a feasible approah

to irumvent the problem of the dissemination of outdated loalization informa-

tion in vehiular networks. We then show how loalization predition tehniques

an be used to ompute an aurate predited positions based on a number of

relatively inaurate sample position estimations. This survey is presented in

Chapter 2.

2. A predition-based routing algorithm for vehiular ad ho networks.

The main thesis ontribution onsists in a new VANet routing algorithm that

uses the knowledge of the vehiles predited loations to improve the routing

performane in several aspets. Our proposed algorithm, alled LPRV (Loal-

ization Predition-based Routing for VANets), exploits the knowledge of vehiles

predited future loations and a digital map as metris to forward data pakets,

without the need for exhanging any ontrol message. Simulation results demon-

strated the e�ieny of the proposed solution for di�erent VANet senarios and

the bene�ts of using vehiles predited loations as a metri for data ommu-

niation, espeially in terms of delivery rate, number of hops and delay, with a

redued number transmitted pakets. This solution is presented in Chapter 3.

1.4 Doument Outline

This thesis is divided into 4 Chapters. The �rst part of this work, omposed of Chap-

ter 2 presents an overview and de�nition of the loalization predition methods in

VANets. We highlight potential advantages of using a loalization predition system
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in several VANet appliations senarios. We desribe the loalization, target traking

and time series predition methods and disuss the appliability, advantages, and lim-

itations of the analyzed solutions. We show our performane evaluation when both

solutions are used in a realisti VANet senario.

In Chapter 3, we onsider that VANets apply loalization predition tehniques.

Hene, we propose the LPRV routing algorithm to use the knowledge of the vehiles

predited loations to improve the routing performane. The performane of the pro-

posed solution is evaluated through simulations. Finaly, Chapter 4 summarizes the

thesis results by presenting the urrent ontributions and future researh diretions.



Chapter 2

Loalization Predition in Vehiular

Ad Ho Networks

2.1 Introdution

Many appliations for VANets an take advantage of loalization tehniques. One

of the most interesting problems to be solved in vehiular networks is how to pro-

vide an anywhere and anytime highly aurate and reliable loalization informa-

tion (Boukerhe et al., 2008). Nowadays, most of produed vehiles are delivered

with a Global Positioning System (GPS) and third-party in-ar navigation systems

an be installed on used vehiles at a reasonable ost (Papadimitratos et al., 2009;

Skog and Handel, 2009). Also, reent tehnologial developments, notably in mobile

omputing, wireless ommuniation, and remote sensing allow vehiles to turn into so-

phistiated omputing systems. With several oupled proessors and integrated sensors

dediated to the vehile operation, the development of more sophistiated appliations

and servies for these networks is a reality today.

However, for VANets' ritial appliations that are dependent on high aurate

and available loalization systems, GPS shows some undesired problems suh as being

unavailable or not being aurate enough (Alam and Dempster, 2013). For this rea-

son, a number of other loalization tehniques suh as Map Mathing, Dead Rekoning,

Cellular Loalization, Image/Video Proessing, Loalization Servies, and Relative Dis-

tributed Ad Ho Loalization are used ombined in VANets to overome suh GPS lim-

itations (Boukerhe et al., 2008; Skog and Handel, 2009) (As depited in Figure 2.1).

In this approah, Data Fusion tehniques are applied to improve the loalization system

by ombining several loalization tehniques into a single solution that is more robust

and preise than using any individual approah (Nakamura et al., 2007; Alam et al.,

2013; Golestan et al., 2012).

Regarding the problem of outdated loalization information dissemination in wire-

5
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Image/Video Proc.

GPS

x

Cellular Localization

Ad Hoc Localization

Motion Sensors

Dead Reckinong

x
x
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x

Localization Services

Current  Position

Map Matching

Figure 2.1. Loalization tehniques to ompute vehiles' urrent loalization

used ombined in VANets to overome GPS limitations (Boukerhe et al., 2008).

less ommuniations, in this work we onsider loalization predition as natural way to

improve VANets' appliations. We study well known methods applied in loalization,

target traking and time series predition, suh as Dead Rekoning, Bayesian Filter-

ing and Mahine Learning as an enhanement of the VANets' loalization system. As

depited in Figure 2.2, the main idea of this approah is to use the loalization predi-

tion as an extension of a Data Fusion loalization system. In suh a method, a future

position of a vehile is predited for a given future time step and used to improve an

appliation servie. The main idea is to take advantage of a future time-spae window

of a vetorial trajetory rather than an atual stati loalization point. Thus, as a

solution for the dissemination of outdated loalization information in VANets, in this

Chapter we disuss the use of loalization predition as al way of improving VANets'

appliations. We then survey proposed loalization, target traking and time series

predition tehniques that an be used to estimate the future position of a vehile.

We highlight their advantages and disadvantages through an analytial analysis dis-

ussion based on the literature review highlighting its potential appliation senarios

for VANets. Then, we present a set of experiments that show the results of suh teh-

niques when applied to a realisti VANet senario indiating learly the appliability,

pros, and ons of eah one.
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Figure 2.2. Loalization tehniques, Data Fusion and loalization predition in

VANets.

The remainder of this Chapter is organized as follows. In the next Setion,

we highlight potential advantages of using a loalization predition system in several

VANet appliations senarios. In Setion 2.3, we state the problem of prediting a

vehile future loation whereas in Setion 2.4, we desribe the loalization, target

traking and time series predition methods in this ontext. In Setion 2.5, we disuss

the appliability, advantages, and limitations of the analyzed solutions. Setion 3.4

shows our performane evaluation when both solutions are used in a realisti VANet

senario. Finally, Setion 4.1 presents our onlusions.

2.2 Appliations that an take advantage of Loalization Predition

A key goal of any appliation for VANets is to provide a time horizon of new

information soures relevant to driving safety, omfort and transportation e�-

ieny (Papadimitratos et al., 2009). V2V and V2I ommuniations allow the develop-

ment of a large number of appliations. Eah kind of suh appliations requires or an

take advantage of a ertain degree of reliability and auray in the omputed loations

of vehiles and/or infrastruture units. Basially, the appliations for vehiular net-

works an be summarized as safety, transport e�ieny, and information/entertainment

appliations (Al-Sultan et al., 2014; Youse� et al., 2006; Hartenstein and Laberteaux,

2008; Papadimitratos et al., 2009). In all of these ategories, expanding the time and

spae of a loalization system by using future predited loations an improve the
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Cooperative Adaptive
Cruise Control

Highway
Entries
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V2V
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Prediction

Communication

E

Figure 2.3. Several VANet appliations that an take advantage of loalization

predition in highways and urban senarios. (A) Internet aess. (B) Vehile Col-

lision Warning Systems. (C) Cooperative Adaptive Cruise Control. (D) Vehile

Following or Platooning. (E) Cooperative Intersetion Safety. (F) Blind Crossing.

(G) Seurity Distane Warning.

performane of the appliations. In the following, we will further disuss how these

servies an be improved by using loalization predition theniques in highways and

urban senarios.

As depited in Figure 2.3A, a �rst example of appliation for VANet that an

take advantage of loalization predition is Internet aess. The paket forwarding

an use the vehile's predited position to guide pakets to the more suitable Internet

gateways, roadside unity or vehile in a greedy forwarding fashion, aording to the

predited position and the time for the vehiles to reah suh loations. Besides the

advantage of omputing a real shortest path in relation to the vehile displaement

in time and spae, this approah an also onsiderably redue the paket delay sine

the shortest path an be omputed in terms of time (Balio et al., 2015). The same

idea an be applied to the V2V and V2I ommuniation loally, by hoosing the next

best hop aording to its neighbors future predited loation. As these appliations

also provide servies about road and surrounding environmental onditions, besides

the bene�ts to the driver's safety, the use of loalization predition an also improve

the driver's experiene.

One of the most interesting appliations of VANets that an be enhaned using

loalization predition is Vehile Collision Warning Systems (as shown in Figure 2.3B).

This type of appliation is one of the most important for driver's safety sine it pro-
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vides assistane for drivers to avoid hazards. One part of these systems is the Seurity

Distane Warning (Figure 2.3G), in whih the driver is noti�ed when a threshold dis-

tane to another vehile is reahed. Instead of using the urrent loation of a vehile,

these appliations an use the predited future loation of a vehile to hek when the

distane between two vehiles, or between a vehile and an obstale, reahed an unsafe

threshold. In this ase, the system an hek in a few milliseonds or even seonds

in advane the potential risk to take further measures by heking if the trajetories

desribed by preditions will ollide (Figure 2.3B). Its importane to notie that, suh

informations provided in advane to detet potential hazards an be ruial to avoid

and prevent suh dangerous situations. In this ase, the use of predited future loa-

tions an improve the speed omputation proess and also the paket exhange proess,

while also providing relevant data for guiding the drivers for further reations.

Furthermore, Cooperative Ative Safety appliations for VANets (Hrizi et al.,

2012) (Figures 2.3B, 2.3E, 2.3F, 2.3G, 2.3H) require an up-to-date knowledge of a

vehile's surrounding entities whih is obtained when all vehiles broadast their status

information (position, speed) in a ollaborative fashion. The pakets ontaining this

information need to be periodially transmitted, leading to wireless ongestion and

impating the auray and reliability of the safety appliation. In this ase, the use of

predited loations an avoid the need of exhanging periodially loalization messages,

sine the preditions are valid for a time window interval. Thus, the use of a predition

loalization system has a potential to inrease the reliability of the safety appliation

whih is quite a desirable feature.

Another interesting appliation of VANets is Cooperative Intersetion Safety (as

depited in Figure 2.3E). In this appliation, vehiles arriving at a road/street interse-

tion exhange messages in order to make a safe rossing. Highway Entrane, as show

in Figure 2.3H, is also a similar appliation that an take advantage of loalization

predition. Besides ensuring a safe rossing and highway entrane, it is also possible to

make a Blind Crossing (as shown in Figure 2.3F), where there is no light ontrol and

the vehiles ooperate among themselves to make a rossing, even when the driver's

�eld of view is obstruted by buildings. In these appliations, besides avoiding unnees-

sary paket transmissions overhead, the loalization predition an provide information

to detet and prevent potential hazards by heking in advane the potential risk of

ollisions in the omputed trajetories desribed by preditions.

In Cooperative Adaptive Cruise Control (Figure 2.3C), the vehile speed is ad-

justed to maintain the same speed of the vehiles ahead and those behind in a group

without requiring driver intervention. Usually in this type of appliation, the speed is

set by the driver and the system exhanges messages between the vehiles using V2V
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ommuniation to oordinate the vehiles' speed adaptively. In this ase, the use of

predited future loations an be used to ompute the speed of the vehiles in order to

keep safe distanes among themselves. Vehile Following or Platooning, as shown in

Figure 2.3D, is an appliation used to make one or more vehiles follow a leader vehile

forming a train-like unit. The use of predited loations in this kind of appliation

an help to improve the traking of the leader and members' position based on the

omputed trajetories desribed by preditions as well as to help guide its following.

Also, it an help keeping a minimum distane between vehiles in advane preventing

aidental ollision.

As show in this setion, several types of appliations in VANets that an take

advantage of a loalization system and also an ahieve improvements when using

loalization predition. In the next Setions, we formally present the loalization pre-

dition problem in the ontext of VANet some proposed approahes to takle the target

traking and time series predition problems.

2.3 Problem Statement

In this setion, we formally present the onepts used in this work.

De�nition 2.3.1 (Vehiular Ad Ho Network). We de�ne a VANet as a Eulidean

graph G = (V,E, r), where |V | = N is the number of nodes and r is the ommuniation

range; V = {v0, v1, v2, . . . , vN−1}, where {v0, v1, . . . , vN} is the set of vehiles; 〈i, j〉 ∈ E

i� vi reahes vj, in other words, vi is inside the ommuniation range r of a node vj ;

and ∀vi ∈ V , Pit = (Xit, Yit, Zit) ∈ R
3
is the omputed position of nodes vi (i.e., using

a loalization system), Lit = (Xit, Yit, Zit) is the real position of nodes at a disrete

time t and Si its displaement speed.

P01

P02

P03

P04

v0

v1

P =(X ,Y Z )00 00 00, 00

M =P P1 1t 1(t+1)

P1tP1(t+1)

P =(X ,Y ,Z )05 05 05 05

v3

v2r

r

Figure 2.4. VANet: network nodes de�nition, loation and loation predition.
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De�nition 2.3.2 (Vehile Future Loation Predition - Pi(t+1)). The predition of

vehile i future position for a disrete time step t+1. It an be de�ned as a time series

regression foreasting problem and also an be formulated as a target traking problem.

Traking is usually stated as an estimation problem based on a series of measurements.

The primary objetive of target traking is to detet and ontinuously estimate the

evolution of the target state with respet to time and update the estimation with

measurements (Ramos et al., 2012; Li and Jilkov, 2003). Sine almost all maneuvering

target traking methods are model based, we an de�ne the trajetory predition by

the disrete-time state-spae model as follows:

Pi(t+1) = ft(Pit, ut) + wt, (2.1)

ot = ht(Pt) + bt (2.2)

where P , u, o are the target state, input ontrol and observation, respetively, w and b

are the proess and measurement noise, respetively, f and h are funtion vetors, and

t ≥ 1 is the measurement epoh (Ramos et al., 2012). Thus, based on the knowledge

of the urrent position of a vehile (Pit) at a step time t and the knowledge of the

t− 1 steps, the predition of vehile's future position is given by target state estimate

Pi(t+1) whih will estimate the future position (Xi(t+1), Yi(t+1), Zi(t+1)) for the next time

step t+1. It is important to notie that our approah di�ers from onventional target

traking methods sine eah node performs the target traking only on its own set

of loalization samples, without any observations from other network nodes. In other

words, eah network node performs self-target traking.

De�nition 2.3.3 (Vehile Motion Vetor -Mi)). This vetor represents the movement

of a vehile i from its urrent position to a future omputed position. For the sake

of simpli�ation, we onsider that a vehile will maintain the trajetory of a straight

line during the time required to it reahes the omputed future loation. This line is

de�ned as Mi =
−−−−−−→
PitPi(t+1) (as depited in Figure 2.4), where Pit is the urrent vehile's

position, Pi(t+1) is its predited future position and Si its displaement speed.

2.4 Loation Predition Methods

Loalization-Based and in-ar navigation systems have been identi�ed as a key

tehnology to the development and operation of VANets (Papadimitratos et al.,

2009; Skog and Handel, 2009; Obradovi et al., 2006). Aording to Boukerhe et

al. (Boukerhe et al., 2008), an interesting aspet of VANets is that most loaliza-
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tion tehniques an be applied easily to these network and they an be ategorized

as Map Mathing, Dead Rekoning, Cellular Loalization, Image/Video Proessing,

Loalization Servies, and Relative Distributed Ad Ho Loalization. Sine vehiular

networks have no signi�ant power onstraints unlike sensor and other types of mo-

bile networks and, also an be equipped with a wide variety of sensors and proessor

units (Ramos et al., 2012), Data-fusion tehniques are a natural solution to improve

VANets loalization system providing a preision of entimeters (Skog and Handel,

2009) to ompute the vehile's position. However, a ommon problem in this approah

is the dissemination of outdated loalization information and also unneessary overhead

of transmitted pakets.

To overome these problems, methods for prediting future loations of vehiles

like target traking and time series regression foreasting are an alternative solution

as an extension of the Data Fusion loalization system for vehiular networks. The

main reason for that relies on the fat that, aording with Li et al. (Li et al., 2014),

there is a strong regularity in the daily vehiular mobility in both temporal and spatial

dimensions, whih an allow a high degree in the preditions' auray. Also, this study

showed that for Shanghai and Beijing vehiular traes, the loation preditability an

reah levels of 80% to 99% of auray.

An interesting aspet of target detetion, traking, and reognition is that they

are losely interrelated areas, with signi�ant overlaps (Li and Jilkov, 2003). Although

the Bayesian Filtering state estimation is the main approah to solve the traking prob-

lem (Ramos et al., 2012; Lee and Krumm, 2011), the problem of prediting a future

loation of a vehile an also be seem as a time series predition. Time series is a

set of observations from past until the present. In this ase, it is possible to apply

Mahine Learning tehniques to build the models from training data and even to ad-

just those models dynamially. Learning represents a trade-o� between auray and

generality and for the ase of VANets, it represents a ompromise in keep the model

aurately enough and, at the same time, apable of deal with di�erent trajetories

desribed with a wide variety of mathematial entities. Another method to approah

the problem of prediting a future position of a vehile is the Dead Rekoning. In this

approah, the future position of a vehile an be omputed based on its last known

position and movement information as diretion, speed, aeleration, distane and

time (Parker and Valaee, 2006). In the following, these tehniques will be disussed

further.
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2.4.1 Dead Rekoning

Dead Rekoning (DR) is an anient navigation tehnique where a urrent position an

be omputed using a previous last known loation (Krakiwsky et al., 1988; King et al.,

2006) or a future position an be omputed using a urrent known loation. This

tehnique uses the last known position, also known as a �x, the displaement and the

diretion information from vehile's sensors to update the loation information. Dead

Rekoning as a stand-alone loalization tehnique an be used only for short periods

of GPS unavailability in VANets sine it an aumulate errors easily. For high speed

vehiles, suh as vehiles moving at speeds about 100 km/h, dead rekoning an reah

loalization errors up to 20m (Boukerhe et al., 2008; Parker and Valaee, 2006) when

used as a stand-alone loalization solution. For this reason, this loalization tehnique

in VANets is used to overome the limitations of GPS/GNSS and it is onsidered only

as a bakup system for periods of GPS/GNSS outage.

However, if it is possible to assume that eah node in the network is aware of its

loation, DR an be applied to predit future loation of nodes as shown in Argawal

et al. (Agarwal and Das, 2003). In the DR model presented, eah node onstruts a

movement model for itself by periodially sampling its loation estimates. In the next

step, the DR model omputes the veloity omponents SXi, SY i and SZi along the X ,

Y and Z axes from two suessive loation measurements (Xi(t−1), Yi(t−1), Zi(t−1)) and

(Xit, Yit, Zit) taken at times t− 1 and t as follows:

SXi = Xit −Xi(t−1)

t− (t− 1)
, (2.3)

SY i = Yit − Yi(t−1)

t− (t− 1)
(2.4)

and

SZi = Zit − Zi(t−1)

t− (t− 1)
. (2.5)

To predit the future loation Pi(t+1) = (Xi(t+1), Yi(t+1), Zi(t+1)) of the node i at the

urrent time as per the following formula:

Xi(t+1) = Xit + (SXi × (t+ 1)− t), (2.6)

Yi(t+1) = Yit + (SY i × (t+ 1)− t) (2.7)
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and

Zi(t+1) = Zit + (SZi × (t+ 1)− t) (2.8)

where, t+ 1 is the next time step in whih the future loation will be omputed.

This DR approah was used as a basis for a predition method in a loal-

ization system alled Dead Rekoning Method (DRM) for Mobile Ad ho Network

(MANet) (Agarwal and Das, 2003). The DRM main idea is that eah node is able to

trak the loation of every other node in the network and then able to predit the move-

ment of every other node. Thus, every node is apable of onstruting a topology of the

network using the knowledge of the preditions. The authors of DRM demonstrated

that the DRM-Based tehnique applied in a geographi routing approah delivered

superior routing performane when ompared to popular protools suh as DSR and

AODV in MANets. In King et al. (King et al., 2006), DR was utilized to improve

beaon auray in the Position-Based Forwarding (PBF) protool, a greedy position-

based paket forwarding for vehiular highway senarios. The DR approah takles the

problem of always-outdated pereption of neighbor positions for low beaoning rates.

In this tehnique when the GPS signal is temporarily unavailable, a mobile node es-

timates its urrent position based on its last measured GPS loation and its motion

parameters (speed, orientation, and time). In Wahab et al.(Wahab et al., 2013), was

proposed a GPS-free loalization framework aiming at providing aurate vehile loal-

ization for road safety appliations in VANets. The proposed loalization framework

uses two-way time of arrival with partial use of dead rekoning to loate the vehiles

based on ommuniation with a single roadside unity.

2.4.2 Mahine Learning

Mahine Learning tehniques in time series foreasting have been applied in many

areas suh as �nanial market predition, eletri utility load foreasting, weather

and environmental state predition, reliability foreasting and wireless ommunia-

tions (Sapankevyh and Sankar, 2009). Time series is a set of data samples from past

until present and the goal of time series predition is to estimate some future value

based on urrent and past data samples (Kaanihe and Kamoun, 2010). In this on-

text, the loalization predition problem an be also takled as a partiular ase of

time series predition. Mathematially, a time series in VANets an be stated as:

Pi(t+1) = f(Pit, Pi(t−1), Pi(t−2), ...) (2.9)
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where, for the VANets' ontext, Pi(t+1) is the predited value of a future position of a

vehile at the disrete time t+1 and Pit, Pi(t−1), Pi(t−2), ... is a set of omputed loations

from past until present of a vehile i and, Lit are the respetively target values (real

vehile position). The objetive of time series predition is to �nd a funtion f(P ) suh

that, given a set of input/target pairs (Pt, Lt), the predited value of the time series

Pi(t+1), at a future point in time t + 1 is unbiased and onsistent. In other words, the

predited point Pi(t+1) must be as losest as possible to the real vehile position Li(t+1).

Training Data

Learning
Algorithm

Trained
Machine

Input Prediction

Pit
Pi(t+1)

Pi -1 i -2(t ) (t ),P ,...

Figure 2.5. Mahine Learning phases.

2.4.2.1 Neural Networks

Neural Networks (NNs) were originated in the early 1960s and are parallel distributed

information proessing systems that implement supervised learning mehanisms that,

starting from input/output pairs of examples, are able to generalize and learn in a

supervised fashion (Bonissone, 1997; Nakamura et al., 2007). NN s are a well-known

option to deal with time series predition, and for the ase of VANets, are suitable by

being able to give solutions to omplex problems due to their non-linear proessing,

parallel distributed arhiteture, self-organization, apaity of learning and generaliza-

tion, and e�ient hardware implementation (Ibnkahla, 2000).

The Multilayer Feed Forward Neural Network (MLNN), also alled Multilayer

Pereptron (MLP) (often simply alled Neural Network), is one of the most popular

neural network arhitetures in use for both lassi�ation and regression (Bishop, 1995).

The fundamental proessing element of a neural network is a neuron ( as depited in

Figure 2.7). A neuron an be mathematially desribed as:

P = φ(ξ) (2.10)
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ξ =

n
∑

j=1

wjpj + b. (2.11)

A neuron is omposed of a linear ombiner ξ, an ativation funtion φ(ξ) and the

output signal of the neuron P as depited in Figure 2.6. The linear ombiner output

is the weighted sum of the inputs plus a bias term. The ativation funtion gives

then the neuron output in terms of the ativity level at is inputs: where pj is the jth

input signal, wj the orresponding synapti weight, and b the bias term. The ativation

funtion may be a linear or non-linear funtion and there are many ativation funtions

like, e.g. the identity funtion, the sigmoidal funtion, the threshold funtion, et. The

hoie of the ativation funtion depends on the nature of the NN appliation (Haykin,

1998).

øΣ

Output

P

w0

w1

wq

p0

p1

pq

Neuron

Figure 2.6. Arti�ial neuron.

A NN is omposed of multiple neurons layers onneted to eah other in a direted

graph as shown in Figure 2.6. The input information is proessed from the �rst layer

(input layer) to the output layer. Eah node in one layer onnets with a weight wij

to every node in the following layer. The layer index is denoted by i and Pik is the

output of neuron k of layer i given by:

Pik = φ(ξik), (2.12)

ξik =

n(i−1)
∑

j=1

wijkpi−1j + bik (2.13)

were wijk is the weight that links the output Pi−1k to neuron k of layer i. The value

n(i) is the number of neurons in layer i.

Appliations of NNs do not have a priori knowledge of the orret network weights

and a training proedure is required to ompute the weights. A method for omputing
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Figure 2.7. A three layer Neural Network.

the gradient of the empirial risk for the ativation funtion of NNs, alled the Bak

Propagation algorithm (BP), was proposed in Rumelhart et al. (Rumelhart et al., 1986)

and Leun (Leun, 1986). The BP algorithm (Lippmann, 1987) uses a set of input

output pairs (Pt(n), L(n)) to train the network to ahieve the desired mapping. It

adjusts the MLP weights aiming at minimizing any di�erentiable ost funtion suh

as the Minimum Squared Error (MSE). The MSE funtion is the error power between

the network output and the desired output, MSE(n) = ||L(n)− Pt(n)||
2
, where Pt(n)

is the NN output vetor at time n and L(n) is the desired output (e.g., real vehile

position). The BP algorithm performs a gradient desent on the ost funtion in order

to reah a minimum as follows:

wijk(n+ 1) = wijk(n)− α
∂MSE(n)

∂wijk(n)
, (2.14)

were the parameter α is the desired error. This equation an be expressed as:

wijk(n + 1) = wijk(n)− αδikP(i−1j). (2.15)

The error term δtk of the output layer is given by:

δtk = φ′(ξtk)− (Lk − Ptk), (2.16)

where φ′
denotes the derivative of the ativation funtion φ′(ξ) = ∂φ(ξ)

∂ξ
. The error term

δik of the hidden unit (i, k) an be expressed as a funtion of the next layer error terms

as:

δik = φ′(ξik)

n(i+1)
∑

j=1

wi+1kjδ
i+1
j . (2.17)

Thus, the weight update is performed by propagating errors bakwards from the output
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nodes to the input nodes.

Neural Networks have been applied for node mobility predition for ellu-

lar networks (Liou and Huang, 2005; Capka and Boutaba, 2004). In Kaanihe and

Kamoun (Kaanihe and Kamoun, 2010), a Neural Network has been applied to es-

timate the duration of a ommuniation link based on the time series predition in

MANets. In this approah, a MLP predit the future loation of the mobile user based

on the time series loation observations as the inputs of the NN. The authors also

disuss that a variation of the number of neurons of the hidden layer an a�et the

predition auray. Neural networks also have been applied in VANets for predition

of future lane hange trajetory based in Tomar et al. (Tomar et al., 2010), where a

NN was proposed to learn and inorporate the human behavior to predit the lane

hanging trajetory in the near future. The authors disuss that the NN is able to give

aurate the predition for some parts of the path, however, the deviation is signi�ant

for ertain setions regarding the vehiles' speed.

2.4.2.2 Support Vetor Regression

Support Vetor Mahines (SVM) are supervised learning models based on statisti-

al learning theory, or Vapnik-Chervonenkis theory (VC theory), developed during

1960-1990 by Vladimir Vapnik and Alexey Chervonenkis (Sapankevyh and Sankar,

2009; Vapnik, 1995, 1999). The statistial learning theory attempts to explain the

learning proess through a statistial point of view. Although SVMs were intro-

dued �rst for binary lassi�ation (Vapnik, 1995), they are urrently a hot topi

in the Mahine Learning ommunity and used for many learning �elds suh as pat-

tern reognition, lassi�ation and, in the ase of time series predition, regression

analysis (Sapankevyh and Sankar, 2009).
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Figure 2.8. SVR predition funtion for linear and non-linear regressions.

The SVM onept of a maximum margin hyperplane is mainly applied to lassi-
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�ation problems. However, SVM algorithms have been applied for numeri predition

and share many of the lassi�ation ase properties: they produe a model that an

usually be expressed in terms of a few support vetors and an be applied to non-linear

problems using kernel funtions. Support Vetor Regression (SVR) (Müller et al., 1997;

Sapankevyh and Sankar, 2009; Smola and Shölkopf, 2004) is a method extended from

SVMs to solve regression problems. The main idea of SVR is, given a set of input time

series data Pk, where k disrete time step of n samples: k = {0, 1, 2, ..., n − 1}, and

Lk are the respetively target values (real vehile position), the goal of SVR (Vapnik,

1995) is to �nd a funtion f(P ) that approximates the training points aiming at min-

imizing the predition error. In other words, the deviant distane between the output

predited values from the training target labels only will be aepted if it is less than

ǫ for the same time horizon.

For linear and non-linear regressions the SVR predition funtion f(P ), given a

set of input/target pairs (Pk, Lk), approximates the predition funtion by:

p = f(P ) = (w · P ) + b (2.18)

p = f(P ) = (w · φ(P )) + b. (2.19)

As show in Figure 2.8, to deal with the non-linear regression using SVR, it is neessary

to map the input spae P into a high dimensional feature spae (φ(P )). Note that

the dot produt in Equation 2.19 (w · φ(P )) would have to be omputed in this high

dimensional spae (whih is usually intratable) (Smola and Shölkopf, 2004). To over-

ome this problem, the SVR adopts a strategy in whih this dot produt is impliitly

expressed in a lower dimensional input spae (referred to as a kernel funtion).

The goal of the algorithm is to �nd the weight vetor w and the bias b minimizing

the error, as well as, simultaneously maximizing the �atness of the regression funtion

by:

C

n
∑

i=1

E(L(i), p(i)) +
1

2
‖w‖2, (2.20)

where

E(L, p) =







L(i)− p| − ǫ, if|L(i)− p| ≥ ǫ

0 otherwise

(2.21)

In the Equation 2.20, the �rst term C
n
∑

i=1

E(L(i), p(i)) is the empirial error (risk).

The parameters w and b are measured by the ǫ-insensitive loss funtion (E, de�ned in
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Equation 2.21). This loss funtion provides the preision by whih the funtion f(P )

is to be approximated, enabling the use of sparse data points to represent the solution.

The �atness of the weights in Equation 2.20 means that we seek a small w, whih

an be ahieved by minimizing the Eulidean norm ‖w‖2. The regularized onstant C

determines the trade-o� between the empirial risk and the regularization term, whih

means the trade-o� between the �atness of the funtion f and the amount up to whih

the deviations larger than ǫ are tolerated. In other words, the errors are ignored by

the SVR algorithm as long as they are less than ǫ, but any deviation larger than this

is not aepted. It is important to notie that both ǫ and C are both user de�ned

onstants and are typially omputed empirially. It is impliitly assumed in Equation

2.21 that a funtion f(P ) atually exists and approximates all pairs (Pk, Lk) with ǫ

preision (tube size), whih means that the optimization problem is feasible. However,

to make the optimization problem feasible errors may have to be aepted. Therefore,

slak variables ξi and ξ∗i are typially introdued to measure the deviation of training

samples outside ǫ-insensitive zone to aount for errors. To obtain the estimations of w

and b, Equation 2.20 is transformed into a primal funtion stated in Vapnik (Vapnik,

1995) as follows:

Minimize

C

n
∑

i=1

(ξi + ξ∗i ) +
1

2
‖w‖2, (2.22)

subjeted to



















L(i)− wφ(Pi)− bi ≤ ǫ+ ξi,

wφ(Pi) + bi − L(i) ≤ ǫ+ ξ∗i ,

ξi, ξ
∗
i ≥ 0

(2.23)

By introduing Lagrange multipliers and forming the dual optimization problem,

the deision funtion given by Equation 2.20 has the following expliit form (Vapnik,

1995):

f(P, ai, a
∗
i ) =

n
∑

i=1

(ai − a∗i ) +K(P, Pi) + b. (2.24)

The data points on or outside the e ǫ-tube with non-zero Lagrange multipliers are

de�ned as support vetors. The optimal weights w having non-zero Lagrange multi-

pliers are typially less than the entire data set, thus, the entire data set is not need

to de�ne f(P ). The sparseness of this solution is one of several advantages of using

this methodology. K(P, Pi) is de�ned as the kernel funtion and it omputes the inner
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produt of two vetors P and Pi in the feature spae φ(P ) and φ(Pi) by:

K(P, Pi) = φ(x) · φ(Pi) (2.25)

The kernel funtion provides a solution to map the input spae P into a high di-

mensional feature spae (φ(P )) to perform the non-linear regression using SVR. There

are several kernel funtions that satisfy Merer's onditions (Vapnik, 1995) suh as

Gaussian, polynomial, and hyperboli tangent. In SVM/SVR appliations, the hoie

of the kernels is a key fator. Although the Gaussian kernels appears to be the most

prevalent hoie, typially empirial analyses is neessary in the seletion of the ap-

propriate kernel funtion aording with the nature of the appliation. Finally, the

resulting SVR arhiteture is given below in Figure 2.9.

OutputΣ a K(P,P )+bj i

Weights

Mapped vectors ø(P),ø(P )i

Support vectors P ... P1 i

Test vector P

Σ

a0 a1 aj

( ) Dot product

ø(P )1 ø(P )2 ø(P)

7

Σ

( )・ ( )・・ K(P,P )=(ø(P) ø(P ))i i・

4

1

ø(P )j

1

Figure 2.9. Arhiteture of a regression mahine resulting by the SVR algorithm

(Sapankevyh and Sankar, 2009; Smola and Shölkopf, 2004).

Learning tehniques have been applied for target traking in diverse WSNs

senarios using kernel-based learning (Simi, 2003) and support vetor ma-

hines (Tran and Nguyen, 2008; Viani et al., 2010). A distributed SVM training was

proposed in (Kim et al., 2012) to solve a multi-target traking problem in WSNs. After

training the loal SVM at eah node, this approah omputes the posterior probability

of the existene of the targets using Platt's optimization algorithm. By maximum a

posterior (MAP), the target trajetories are estimated. In order to overome hal-

lenges suh as limited ommuniation and the urse of dimensionality when applying

Mahine Learning algorithms suh as SVR on large-sale WSNs, the authors in Kim

et al.(Kim et al., 2013) proposed an ensemble implementation of SVR for the prob-

lem of target loalization. Experimental results ahieved in this work indiate that

the performane SVR proposed method provides good predition auray. Also, the

performane omparison has shown that the SVR proposed method outperforms the
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lassi SVR preditor in terms of auray and robustness for large sale WSNs.

2.4.3 Filtering

The main goal of target traking systems is to ontinuously detet and estimate the

state of a target or a set of targets. Besides the loation information, target trak-

ing an be used to detet and predit future loations of single or multiple targets

suh as other vehiles, objets and obstales surrounding a given vehile (Ramos et al.,

2012; Li and Jilkov, 2003; Shubert et al., 2008). It is important to notie that these

algorithms are exposed to di�erent soures of noise, introdued by the measurement

proess and also errors in nodes' loation that are used to estimate the target oor-

dinates. Therefore, information fusion (Nakamura et al., 2007) is ommonly used for

�ltering suh noise soures.

The targets' state an inlude, among other information, position, veloity, a-

eleration, and jerk (derivative of aeleration) and this set of state variables an also

vary aording to the appliation requirements and onstraints. Aording to Ramos

et al.(Ramos et al., 2012), target traking systems typially rely on a Bayesian mo-

tion estimation framework that require: a motion model that desribes the target's

dynami; samples of the target's state; a data assoiation algorithm that takes into

aount the samples to the orret target; and an initial probability distribution, also

known as prior knowledge of the target's state. Aording to the motion model, the

main task performed by the traking systems is to estimate the parameters of the

model, onsidering the measurements olleted about the target.

The �ltering omponent of target a traking system is responsible for de�ning how

the probability density funtion (pdf) of the target's state at time step t is omputed.

Based on these omponents, the target traking system has two phases (as depited

in Figure 2.10): predition, whih uses the motion model to propagate the probability

funtion of the target state over the time; orretion, whih uses the latest olleted

samples to update the pdf of the target at the urrent time step. This task is usually

performed by a Bayesian �lter, suh as the Kalman �lter and the Partile �lter.

2.4.3.1 Kalman Filter

The Kalman Filter (KF) was originally proposed in 1960 by Kalman (Kalman, 1960)

and it is a popular Data Fusion method used to fuse low-level redundant data

(Nakamura et al., 2007; S. et al., 2009). The KF presents some interesting proper-

ties sine it an reursively retrieve statistially optimal estimates when the noise is

Gaussian and, is the linear optimal estimator even when the noises are not Gaussian
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Figure 2.10. Filtering phases.

(Simon, 2006). In other words, the KF is the optimal �lter in terms of unbiased min-

imum variane state estimation when the system an be desribed as a linear model

with Gaussian noise.

The KF applies a linear operator in the urrent state to generate a new state

at eah disrete time inrement. Besides the measurement noise, the �lter an also

optionally onsider some information about the ontrols on the system. Then, another

linear operator, also subjet to noise, generates the observed outputs from the true

state (Hossain et al., 2009). The KF estimates the state p of a disrete-time t ontrolled

proess that is ruled by the state-spae model

pt+1 = Ftpt +Btut + wt (2.26)

with measurements (observation) o at time t of a state pt made aording to:

ot = Htpt + bt, (2.27)

in whih Ft is the state transition matrix applied to the previous state pt, Bt is the

input ontrol matrix model that is applied to ontrol vetor u; Ht is the measurement

matrix (the observation model), whih maps the true state spae into the observed

spae; w is the proess noise; and b the measurement noise, where these noise soures

are assumed to be drawn by random zero-mean Gaussian variables with ovariane

matries Qt and Rt, respetively.

Based on the measurement ot and the knowledge of the system parameters, the

estimate of pt, represented by p̂t, and the predition of the next state pt+1, represented

by p̂t+1|t are given by:

p̂t = p̂t|t−1 +Kt(ot −Htp̂t|t−1), (2.28)
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Figure 2.11. Blok diagram of the Kalman Filter

p̂t+1|t = Ftp̂t +Btut, (2.29)

in whih Kt is the Kalman gain determined by

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t +Rt)

−1
, (2.30)

where Pt is the predition ovariane matrix that an be determined by

Pt+1|t = FtPtF
T
t +Qt, (2.31)

with

Pt = (I −KtHt)Pt|t−1, (2.32)

where I is the identity matrix.

The Kalman Filter has two phases: time-update (predit) and measurement-

update (orret). The time-update phase is responsible for projeting the urrent state

and error ovariane estimates forward, obtaining the a priori estimates for the next

time step and onsists of the Equations (2.26) and (2.27). The measurement-update

phase is responsible for the feedbak, that is, a new measurement at urrent time step

is inorporated into the a priori estimate to obtain an improved a posteriori estimate.

This phase onsists of the Equations (2.29), (2.30), and (2.31) (Nakamura et al., 2007).

These predit and orret phases form a loop that is performed while the �lter is fed

by measurements.

The Kalman �lter theory applies to linear-Gaussian problems, but many real

world problems annot be represented by linear models, algorithms have emerged based

on the original Kalman Filter theory to deal with nonlinear dynamis and non-linear

measurement models (Daum, 2005). Variations of the Kalman Filter have also been
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proposed for relaxing the non-linearity assumption of samples. The Extended Kalman

Filter (EKF) (Welh and Bishop, 2001) is a popular tehnique to deal with non-linear

models. The main idea of the EKF is that the state distribution is approximated by

a Gaussian law, and this method uses a linearized model of the proess using Taylor

series, beause this is a sub-optimal estimator. Another reent variation of the Kalman

�lter is the Unsented Kalman Filter (UKF) and represents a great improvement over

EKF (Julier and Uhlmann, 1997). The UKF performs estimations on non-linear sys-

tems without the need to linearize them, beause it uses the priniple that a set of

disrete sampling points an be used to parameterize the mean and ovariane. UKF

is known to greatly improve the performane for linear systems when ompared to

EKF, beause it does not have to deal with linearization errors. However, the quality

of UKF estimates are lose to standard KF for linear systems.

Several traking solutions are based on Kalman Filters (KF) (Li et al., 2006;

Welh and Bishop, 2001; Julier and Uhlmann, 1997; Olfati-Saber, 2005). In VANets,

Armaghan et al. (Armaghan et al., 2009) proposed an estimation method based on

Kalman �lter to derease the number of transmitted messages. In this method, eah

vehile estimates its loation for several intervals and sends them out along with atual

urrent position. The estimation is done based on the previous history and reord of

the vehile's loation. During the time that estimated information is available, there

are no transmissions unless some estimation error is deteted. In Mo et al. (Mo et al.,

2008), the authors presented a loation management protool alled Mobility-Assisted

Loation Management (MALM), to provide loation servie to vehiles in VANets .

In MALM, a vehile alulates the urrent loation of other vehiles by using Kalman

�ltering based on the historial loation information of other nodes. In Lytrivis et

al. (Lytrivis et al., 2011), was proposed the ooperative path predition algorithm for

safety appliations in VANets . It onsiders position, veloity, aeleration, heading

and yaw rate measures to reate beaons ontaining dynami status of a transmitting

vehile. The algorithm uses UKF for prediting both short-distane and short-term for

targets within the sensing range of the ego vehile.

Aiming at improving seurity on the roads, Ammoun et al. (Ammoun et al., 2007)

uses a Kalman �lter for trajetory predition and the estimation of a vehile's loation

to evaluate and antiipate the risk of ollision at a rossroad. The authors show that

despite unavoidable latenies and positioning errors, the appliation performane is

still aeptable when a Kalman �lter is used for trajetory predition and estimation.

In Najjar and Bonnifait (E. Najjar and Bonnifait, 2005), Belief Theory and Kalman

�lters are used to provide aurate position estimations for a vehile relative to a

digital road map. In this method, the Kalman Filter is used to ombine the Antilok
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Braking Systems (ABS) measurements with a GPS position, whih is then used to

selet the most redible roads. The seletion strategy fuses distane, diretion, and

veloity measurements using Belief Theory. A new observation is then built and the

vehile's approximate loation is adjusted by a seond Kalman �lter

2.4.3.2 Partile Filter

Partile Filter (PF) is a �ltering tehnique that relies on a brute-fore approah to esti-

mates the target's state through a reursive implementation of Sequential Monte Carlo

method (SMC) (Douet et al., 2001). The Bootstrap Filter was the �rst PF method

proposed in 1993 by Gordon et al. (Gordon et al., 1993). PF an deal with non-

linearity and with non-Gaussian noise when Kalman �lter approahes do not perform

well. Unlike of the linear/Gaussian problems, the omputation of the posterior dis-

tribution of non-linear/non-Gaussian problems are extremely omplex (Ramos et al.,

2012). To overome this di�ulty, the Partile Filter adopts an approah alled sam-

pling importane. The key idea is to represent the posterior pdf based on a large

number of random samples, alled partiles, whih are sequentially propagated over

time (Arulampalam et al., 2002). At eah time step, some partiles that present low

posterior probability are disarded by a proess alled resampling. To eah partile

is assoiated a weight indiating its quality, thus, the estimate is the result of the

weighted sum of all partiles (Nakamura et al., 2007).

As the Kalman Filter, the Partile Filter algorithm has two phases: predition

and orretion. In the predition phase, eah partile is modi�ed aording to the

existing model, inluding the addition of random noise in order to simulate the e�et

of noise. Then, in the orretion phase, the weight of eah partile is reevaluated based

on the latest sensory information available, so that partiles with small weights are

eliminated (resampling proess). The resampling step is the solution adopted to avoid

the degeneration problem, where the partiles have negligible weights after several

iterations. The partiles of greater weight are seleted and serve as the basis for the

reation of the new partiles set. Furthermore, the minor partiles disappear and do not

originate desendants. For illustration purposes, the Partile Filter algorithm presented

in Algorithm 1 (Souza et al., 2013) onsiders only one dimension, in whih P is the

position, S is the veloity and w is the weight of eah n partiles in a disrete-time t; the

o variable is the input measurement value (observation). However, this algorithm an

easily be applied to oordinate systems in R
3
. First, the algorithm randomly distributes

the partiles (line 2). The partile propagation and the alulus of their importane

onsider the distane from eah partile to the measurement position (lines 5-11). The
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Algorithm 1 The Partile Filter Algorithm

⊲ Input:

1: The measured ot
Ation:

2: for i = 1 : N do {FOR: Initialize the partiles}

3: P i
0 ← random();

4: end for

5: totalWeight← 0;
6: for i = 1 : n do {FOR: Sample partiles and ompute weights}

7: P i
t ← P i

t−1 + Si
t−1 + gaussian();

8: Si
t ← Si

t−1 + gaussian() ∗ 0.05;
9: wi

t ← 1/distance(ot, P
i
t );

10: totalWeight← totalWeight+ wi
t;

11: end for

12: for i = 1 : n do {FOR: Normalize weights}

13: wi
t ← wi

t/totalWeight;
14: end for

15: slice0t ← w0
t ;

16: for i = 2 : n do

17: sliceit ← slicei−1
t + wi

t

18: end for

19: for i = 1 : n do {FOR: Ressampling}

20: c← random();
21: j ← 0;
22: while j < n− 1andslicejt < c do
23: j ← j + 1;
24: end while

25: resamplingit ← particlejt ;
26: end for

27: for i = 1 : N do {FOR: Compute the predition xk+1}

28: Pt+1 ← Pt+1 + P i
t ∗ w

i
t;

29: end for

30: return Pt+1;

normalization proess (line 12) prepares the partiles weights for the resampling proess

(lines 15-26). Finally, the predition of the position is omputed (lines 27-29).

Partile Filters are popular for modeling non-linear systems subjet to non-

Gaussian noise in wireless ommuniation. There are several traking solutions based

on Partile Filters for sensor networks (Verauteren et al., 2005; Arulampalam et al.,

2002; Rosenrantz et al., 2003; Jiang and Ravindran, 2011). In VANets, an interesting

study on the suitability of mobility predition to redue exessive beaoning to sensitive

ooperative safety appliations is presented in (Hrizi et al., 2012). The authors disuss

the hallenges regarding the trade-o� in periodially transmitted pakets leading to

wireless ongestion. While adapting the rate of the transmission to some predited

motions impats the auray of this knowledge and the reliability of the ooperative

safety appliation. They extend a Partile Filter to take into onsideration VANets

peuliarities. The authors showed that the proposed solution an ensure a suitable
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adaptation of the hannel load with a high preision of awareness predition to tra�

safety appliations.

In Peker et al. (Peker et al., 2011), was presented an algorithm for vehile lo-

alization and map-mathing using PF. The probability of being on a ertain area

of the digital map aording to vehile speed is used in onjuntion with routing in-

formation to augment the likelihood funtion in the weight omputation step of the

partile �lter. The authors performed real life tests and the results ahieved show a

onsiderable inrease in orretness of Map-Mathing and loalization auray. The

proposed algorithm also guides Dead Rekoning when GPS data is unavailable. In

Fernandez-Madrigal et al. (Fernandez-Madrigal et al., 2007), the authors use Partile

Filters to ope with vehile loalization in ombined indoor and outdoor senarios. In

suh senarios, the authors assess the performane of ultra-wide band sensor tehnology

for indoor positioning and GPS for outdoor areas. They also evaluated the use of PF

to fuse observations olleted from these two types of sensors for vehile loalization.

Partile Filters are also used in Chausse et al.(Chausse et al., 2005) to ombine GPS

loalization with data extrated from vision systems to determine a vehile's loation

on the road. The ombined information is transformed into a global referene using a

Map-Mathing thehnique.

2.5 Tehniques Disussion

It is well known that the moving of vehile in a ity is a dynami proess, inluding

stati proess (tra� light), whih is strong nonlinear. These non-linear harateristis

of VANets an severely a�et the performane of the preditor algorithm. Table 2.1

brie�y ompares these tehniques in terms of advantages and hallenges whereas Table

2.2 brie�y ompares them in terms of training and auray.

The main advantage of DR rely on its good auray for preditions when the

vehiles have a linear mobility pattern with a fast initial onvergene. DR is able to

ahieve aurate preditions when omputing a future position only based on the last

know vehile position. However, its performane is dereased with the randomness

of non-linear mobility and it is also subjet for umulative errors, espeially when

the urrent position of a vehile is not provided by a Data Fusion approah. One of

the most appealing advantages of DR relies on its simpliity: the algorithm has a low

omputational ost, it is easy to implement, requires low proessing power and memory

usage, whih su�iently math the apabilities of vehiles omputational devies.

Regarding the time series predition aspet of loalization predition in VANets,

the main advantage of onsidering NNs and SVRs as approahes is the non-linear
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Method Advantages Challenges

DR

Computationally e�ient by design

Easy to implement

No free parameters

Subjeted to umulative errors

NN

Not model dependent

Not dependent on linear, stationary

proesses

Can be omputationally e�ient (feed

forward proess)

Number of free parameters large

Seletion of free parameters usually alulated

empirially

Not guaranteed to onverge to optimal solution

Can be omputationally expensive (training pro-

ess)

SVR

Not model dependent

Not dependent on linear, stationary

proesses

Guaranteed to onverge to optimal so-

lution

Small number of free parameters

Can be omputationally e�ient

Seletion of free parameters usually alulated

empirially

Can be omputationally expensive (training pro-

ess)

Trade-o� between auray and omputational

e�ort

KF

Computationally e�ient by design

Convergene guaranteed

Minimizes mean square error by design

Small number of free parameters

Assumes linear, stationary proesses

Assumes proess model is known

PF

Not model dependent

Not dependent on linear, stationary

proesses

Small number of free parameters

Can deal with non-Gaussian noise

Curse of dimensionality

Requires a large number of partiles to present

aurate results

Table 2.1. Trajetory predition tehniques: pratial aspets

(Sapankevyh and Sankar, 2009; Skog and Handel, 2009; Daum, 2005).

aspet of the predition problem. In this ase, neural network models have the advan-

tage of allowing the approximation of ompliated non-linearities whih ould not be

well modeled by other lassial models (Ibnkahla, 2000). NNs are self-adaptive, data-

driven that do not require any a priori assumptions about the problem spae, not even

information about the statistial distribution. In fat, NNs are universal funtion ap-

proximators and it has been demonstrated that they an approximate any ontinuous

funtion to any desired auray (Irie and Miyake, 1988; Hornik et al., 1989). Consid-

ering the VANets' mobility harateristis, NNs are well suited sine they an represent

knowledge that is di�ult to speify but, in whih, there are enough data or observa-

tion about the problem. In terms of loalization systems, NNs are also attrative sine

they an generalize and an often orretly infer the unseen part of data even if the

data sample ontains noise.

The non-linear aspet of loalization predition in VANets is shared

with many real-world appliations. Aording to Sapankevyh and Sankar

(Sapankevyh and Sankar, 2009), traditional (and more sophistiated) model-based

tehniques generally do not perform as well as the SVR in prediting time series gen-
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Method Training Predition Auray

DR

Not required

Fast initial onvergene

Good for short time sample horizon

Aurate for linear mobility pattern

NN Required

Good short time horizon

Can detet driver patterns in long time horizon

Aurated for non-linear mobility pattern

SVR

Required

Can be omputationally expen-

sive

Good short time samples' horizon

Can detet driver patterns in long time samples' hori-

zon

KF

Not required

Fast initial onvergene

Good for short time sample horizon

Provides the linear MSE solution to the �ltering prob-

lem

PF

Required

Convergene of initial distribu-

tions

Good short time horizon

Aurated for non-linear mobility pattern

Table 2.2. Trajetory predition tehniques: the omputational aspet

(Sapankevyh and Sankar, 2009; Skog and Handel, 2009; Daum, 2005).

erated from non-linear systems. This is based on the fat that the Mahine Learning

tehniques like SVR and NNs lets the data speak for itself whereas the model-based

tehniques typially annot model the non-linear proesses well. Consequently, these

tehniques are less suseptible to the problem of model misspei�ation as ompared

to most of the parametri models. The main advantage of the SVRs when ompared to

the traditional model-based tehniques rely on the fat that, by design, the SVR guar-

antees a global minimum solution and is typially superior in the ability to generalize.

For the loalization predition problem in VANets, in theory it means that SVRs by

design an be superior in terms of the auray in the loalization predition. However,

there is a tradeo� in terms of the omputational e�ort required to ahieve suh au-

rate results. This tradeo� an also a�et the NNs, but it a�ets more the SVRs due

to the omputational e�ort to solve the global minimum solution problem. In theory,

these mahine learning tehniques an lead to very aurate loalization predition.

However, due to the real-time harateristi of VANets appliations, this auray an

be redued by the omputational time required to ompute the preditions in a feasible

time for its use.

Another important issue in the appliation of the NNs and SVRs in VANets is

the free parameter seletion and the required training, whih an be omputationally

expensive. This is not a spei� VANet issue, but an issue observed in many real

world appliation of suh tehniques. Regarding the parameter seletion, whih is

more hallenging in the ase of NNs due to its large number, there are several pro-

posed approahes, however, most of them are usually quite omplex and di�ult to

implement. Also, due to fat that streets in VANets an vary from a large number of
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geometri shapes, suh parameters guidelines an be simply guided by heuristis, sim-

ulations or also by experiments on the target area. In this ase, the main ompromise

is to balane between omputational omplexity, robustness against modeling errors,

and auray of the algorithm (Skog and Handel, 2009). Regarding the training of the

Mahine Learning methods, large window size (number of olleted loation samples)

an inrease the omplexity of the onvergene proedure and resulting in long training

time, whih is not suitable for real-time implementations. In this ase, smaller training

window sizes are quite preferable. However, sine the main advantages of suh ap-

proahes rely on the ability to generalize, a long term training approah is also feasible

when assoiated with an optimization proess. For instane, suh algorithm an be

trained on data olleted over a large time horizon (daily, weekly, or monthly) and the

driver's ommon routes, based on its routine (e.g. routes to work and home), an be

easily identi�ed improving the auray of the long-term preditions.

A reurrent issue for Mahine Learning and Bayesian Filtering approahes is

the urse of dimensionality. That is, the omputational omplexity of the preditor

method usually grows exponentially with the dimension of the state vetor being esti-

mated (Skog and Handel, 2009; Daum, 2005). Therefore, even vehiles equipped with

high omputational apaity, non-linear �lters and Mahine Learning algorithms an

be unfeasible for navigation systems with high-dimensional state vetors. In this ase,

the introdution of sensor's that an provide information about a vehile's state mea-

surements like wheel odometers, magnetometers, aelerometers, et., an improve the

preditor's method auray. However, its omputational omplexity will also grow

exponentially. An e�ient approah in this ase would be to onsider only position

information in the state vetor of the preditor. Sine it is quite ommon the use of om-

puted position of vehiles in R
3
, the problem of the urse of dimensionality an be easily

avoided in VANets. Besides, suh sensor's data an be more e�iently proessed in

the vehile's urrent position estimation using Data Fusion methods (Nakamura et al.,

2007; Boukerhe et al., 2008).

In the Bayesian Filtering approah, the model must be omplete enough to give an

adequate desription of the system and, at the same time, be su�iently simple for the

�ltering algorithm to beome omputationally feasible (Gri�n and Sage, 1969). Suh

assumptions are satis�ed in VANets sine Data Fusion methods an provide a omplete

mobility model and vehiles an be oupled with reasonable omputational units. The

Minimum Mean Square Error (MSE) solution to the linear problem is then provided

by the Kalman �lter, assuming Gaussian distributed noise soures (Skog and Handel,

2009; Kailath, 1998). In terms of VANets, the Kalman �lter is the optimal hoie when

the system is linear with Gaussian noise (Ramos et al., 2012). In this ase, the Kalman
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�lter is an attrative approah for VANets senarios sine the linear harateristi of

streets, espeially in grid models, an be desribed as a linear vehile movement model

and also the loalization error usually is omposed by Gaussian noise in the average.

KFs are relatively easy to design and ode, and they often provide good predition

auray. One advantage of KF when ompared to Mahine Learning methods is the

fast initial onvergene of the preditions without requiring training. On the other

hand, KF auray an be surprisingly bad for some pratial appliations when the

physial system is desribed by non-linear equations or the model is inaurate or

inomplete (Daum, 2005).

Partile Filter an outperform the KF espeially for the non-linear ase, with

the ost of additional omputational e�ort, beause it typially requires a large num-

ber of partiles to provide aurate results (Ramos et al., 2012). Therefore, in sys-

tems with a highly non-linear nature and non-Gaussian noise soures PF an keep

the non-linear struture of the problem, signi�antly improving the system perfor-

mane (van der Merwe et al., 2004; Daum, 2005). However, sine the navigation equa-

tions in VANets are only partial non-linear, the loalization predition problem an be

divided into a linear part and a nonlinear part (Skog and Handel, 2009). In this ase,

under the assumption of Gaussian-distributed noise soures, the linear ase may be

solved using a KF, hene, reduing the omputational omplexity (Shön et al., 2005;

Karlsson et al., 2005) and also inreasing the auray of the loalization system. PF

are also relatively easy to design and ode and works well for a high range of loal-

ization problems. The auray of PF's approximation is determined by the size of

the partile set. In this ase, inreasing the number of partiles also inreases the

auray of the preditor. However, it also inreases the omputational ost of the

loalization system. In other words, the number of partiles is a trade-o� between the

auray and available omputational resoures (Golestan et al., 2012). Also, regard-

ing the omputational ost, the initial distribution of the partiles requires additional

time to onverge in aurate preditions when ompared to the Kalman Filter.

Although there are several promising approahes to takle the problem of loaliza-

tion predition in wireless networks, based on a theoretial analysis, Dead Rekoning,

Mahine Learning, and Bayesian Filtering are e�ient and feasible approahes to be

applied to the ontext of vehiular network. In short, all of these tehniques present

advantage to be onsidered in the di�erent VANets senarios. Dead Rekoning has

the advantage of providing good auray with a lower omputational ost for short

time preditions subjeted to low levels of loalization noise soures. Mahine Learning

an provide aurately predition estimations for the non-linear ase but su�er from

the omputational omplexity required. However, NNs and SVR are able to general-
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ize patterns in the data, thus, they are able to disover the driver's ommon habits,

suh as daily routes for long-term preditions. Therefore, suh in advane information

an be used to improve both loalization systems and many other VANets servies

that an take advantage of long-term loalization information. For non-Gaussian noise

soures and the linear ase, the Kalman Filter provides the linear MSE solution to

the �ltering problem. For highly non-linear nature mobility models and non-Gaussian

noise soures, Partile Filters keep the non-linear struture of the problem signi�antly

improving the loalization predition auray.

Finally, even though these analyzed approahes takles di�erent proesses and

measurement models, an interesting alternative to improve VANets servies through

loalization predition an be the ombination, in a single solution, of two or more of

these solutions to deal with Gaussian/non-Gaussian noise and linear/non-linear mod-

els. In the next setion, we evaluate the performane of the loalization predition

tehniques disussed in this work.

2.6 Performane Evaluation

2.6.1 Proposed Approah

In our approah, during the loalization proess, we assume that eah vehile i periodi-

ally observes its urrent position (Pit) at a step time t. Based on the knowledge of the

t−1 steps, the predition of a vehile's future position is given by target state estimate

Pi(t+1), whih will estimate the future position (Xi(t+1), Yi(t+1), Zi(t+1)) for the next time

step t+ 1. Regarding the Dead Rekoning approah, the future position predition of

eah vehile is made by omputing the oordinates Xi(t+1), Yi(t+1) and Zi(t+1) by using

equations 2.6 and 2.7.

The parameters of the mahine Learning algorithms have been adjusted through

plenty of simulation experiments. We aimed to obtain the best auray (less error

rate and suitable omputational e�ort). For the NN and SVR, the input vetor is

omposed of (Xit, Yit, Zit, st), where Xit, Yit and Zit are the oordinates of the vehile's

urrent loation and St its urrent displaement speed. Thus, at eah time step t

an input vetor (Xit, Yit, Zit, St) is added to the set of training data along with the

t − 1 inputs. For eah vehile, the training is performed on the last t − 1 training

inputs. Sine during the initial experiments we observed that the SVR required a huge

additional time on training, we limited the training of this method to a window of

t− 13 inputs. This dereasing on the training size of the SVR was justi�ed to ahieve

a good auray in a suitable response time. Also, we notied the trade-o� in the
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free parameter seletion and the omputational e�ort for the NN and SVR. During

the initial experiments, when applying these methods, the hanges in the parameters

values dereased the loalization error of the preditions to onsiderable small values.

However, when dereasing the error, the omputational time required for omputing

the preditions inreased in the inverse proportion. Thus, the heuristi adopted in

the parameters' seletion and size of training data was the ompromise of keeping the

error rate in lower levels and, at the same time, keep the time required to ompute

eah predition feasible to the use of the predition in a real appliation.

The NN used in this work is omposed of three layers. The input layer is om-

posed of four neurons to map the input vetor of oordinates and speed of the ve-

hile. By the initial experiments, we notied that, to ahieve the lower error rate

and suitable training time, the most suitable number of neurons for the hidden layer

was 1100. We also notied the same behavior of NNs disussed in Kaanihe and

Kamoun (Kaanihe and Kamoun, 2010): variation in the number of neurons of the

hidden layer an a�et the predition auray. The output layer has three neurons,

orresponding to the oordinates of the predited future position in ∈ R
3
. We use the

tangent hyperboli ativation funtion for all neurons, sine it provide a faster onverge

to the learning algorithm (Bishop, 1995). The tangent hyperboli ativation funtion

is given by:

φ(ξ) = tanh(ξ) =
exp(ξ)− exp(−ξ)

exp(ξ) + exp(−ξ)
. (2.33)

Sine this funtion outputs values that range between [−1, 1], to perform the

regression over the time series loalization values, it is neessary to sale the values

of the oordinates also between [−1, 1] using a sale fator. The training of the MLP

algorithm is performed in 400 epohs before eah predition. We also utilized a mo-

mentum value 0.89, and an adaptive learning rate with initial value 0.5 divided by

the ativation funtion sale fator. The momentum parameter is used to prevent the

system from onverging to a loal minimum and the learning rate spei�es how fast

the model adjusts itself to new ase.

For the SVR approah, the key parameters that ontrol the omplexity of the

model are ǫ, C, and the kernel funtion. The ǫ parameter was set to 0.15 and we

notied in our initial experiments that, dereasing this parameter leads to more aurate

results, however, the omputational time inreases in the inverse proportion. Sine the

training of the SVR was made with a window of the last 13 past observations, the

parameter C was set to 1300 enouraging exat �tting of the preditions. Regarding
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the kernel funtion, we used the radial basis kernel de�ned as:

K(Pi, Pj) = expr(
−||Pi − Pj||

2

2σ2
), (2.34)

sine the similarity of two examples is simply judged by their Eulidean distane. The

parameter σ of the radial basis kernel determines the area of in�uene in whih the

omputed support vetors have over the data spae and it is de�ned as 1.0 divided by

mean squared distane between the sample points training data.

The �ltering approah is performed with Kalman or Partile �lters. The Kalman

Filter has its linear system equations represented by:
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in whih P represents the state of a disrete-time t, omposed by the position (Xi, Yi)

and veloity (SiX , SiY ); o is a measurement value; w and b represent the proess and

measurement noise, respetively. For illustration purposes, the KF linear equations

are desribed R
2
. However, they an easily be applied to oordinate systems in R

3
. It

is important to notie that the KF used in this work does not have parameters to be

adjusted and, sine this approah an fast onverge to a good initial auray, there was

no need of prior simulation experiments and also training to obtain the best estimation

results for this method.

The Partile Filter used in the experiments is represented by the Algorithm 1.

The Partile Filter uses 1000 partiles. This value was set based on some previous em-

pirial tests that showed that more than 1000 partiles do not improve the preditions

signi�antly. It is important to notie that the PF does not require training. However,

during the initial experiments we observed that the PF required a huge initial time for

onvergene of initial distributions to start omputing aurate preditions.
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Parameter Value

Simulation area 21600m×23728m
Number of vehiles 33

Measurements Interval 1.5 s

Number of Training Samples 300

Number of Test Samples 300

Loalization error 0.5m

Table 2.3. Loalization predition simulation parameters.

2.6.2 Methodology

The performane evaluation is performed through simulations using the NS-2 and the

default values are shown in Table 2.3. In all of the results, urves represent average

values, while error bars represent on�dene intervals for 95% of on�dene from 33

independent instanes (33 di�erent vehiles moving during the simulation). The per-

formane of the loalization predition methods presented in this work is performed in

a senario where the vehiles' mobility is simulated through a set of realisti vehiular

tra� data (Uppoor and Fiore, 2011). This data set (depited in Figure 2.12) is based

on information provided by the TAPASCologne projet (TAPASCologne, 2014), an

initiative by the Institute of Transportation Systems at the German Aerospae Center

(ITS-DLR). This projet aims at reproduing, with the highest level of realism possible,

vehiular tra� in the greater urban area of the ity of Köln, in Germany.

Figure 2.12. Snapshot of the TAPASCologne dataset tra� status at 7:00 am,

in a 400 km2
region of the ity Köln (Uppoor and Fiore, 2011).

The evaluation methodology is divided into two phases. In the �rst phase, a-

ording to the values of the data set of vehiular tra�, the simulation is started in time

21600 s. After that time, aording to the measurements' interval value (step time t to
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perform the predition), eah vehile uses a number of 300 loation samples to alibrate

the �lter algorithms and train the mahine learning methods. In the seond phase, eah

algorithm perform the preditions of the future positions during an interval of 300 on-

seutive loalization samples, also aording to the measurements time interval. To

simulate position omputation inauraies, we introdued errors on the omputed po-

sition of the vehiles by using a Gaussian distribution with mean equal to the atual

position of the vehile and a standard deviation of 0.5m (Langendoen and Reijers,

2003).

2.6.3 Simulation Results

Regarding the bene�ts of loalization predition in several appliations for VANets,

we evaluate in this work two senarios that an severely in�uene the hoie of the

predition algorithm. The �rst senario refers to the granularity of the loation infor-

mation in terms of time. In this ontext, there are several types of VANet appliation

that require loalization information in di�erent periodiity. For instane, real-time

and non-real-time appliation. Thus, the hoie of the predition algorithm an also

be in�uened aording with its behavior regarding the level of periodiity, in terms of

required time granularity of loation information. In the seond senario, we evaluate

the impat of loalization errors in the vehile's omputed position, sine minimizing

these errors is the main goal of a loalization system. Therefore, we evaluate how these

errors an a�et the auray of the predition algorithms. Sine several appliations

of VANets di�er on the loalization auray required in order to be able to funtion

properly (Boukerhe et al., 2008), the same priniple an be extended to loalization

predition in terms of the hoie of the predition algorithm.

2.6.4 The Impat of the Measurements Interval

To evaluate the impat of the measurements' interval, we inrease this parameter from

0.5 s to 2 s. Thus, when inreasing the step time t of the samples, we also inrease

the total distane traveled by the vehiles from 2465m to 11174m. As depited in

Figure 2.13(a), the DR and the KF lead to a small error in the distane between

the predited loation and the real future loation. While inreasing the step time

of the loalization samples, we an notie that the PF, NN, and the SVR leads to

a lower auray on the preditions. In this result, the small error on the predited

distane ahieved by the DR and the PF is explained by the Gaussian nature of the

introdued loalization errors and also by the fat that, in the average, the loalization

samples in our studied senario has a strong linear harateristi. In Figure 2.13(b), we
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evaluate the MSE average of the predition algorithms. The MSE is arguably the most

important riterion used to evaluate the performane of a preditor. The MSE assesses

the quality of an estimator in terms of its variation and degree of bias. In this result,

we an notie that the DR and the PF also lead to a small MSE, thus resulting in more

aurate preditions. Also in Figure 2.13(b), we an notie the disadvantage of PF,

NN and the SVR with a high inrease in the MSE while inreasing the measurements'

interval. In this ase, these algorithms present a high error in the predition due to

the Gaussian nature of the noise and the linear average of the samples, whih a�ets

more the auray of these algorithms sine their best performane is related to the

non-linear ase.
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Figure 2.13. Impat of the measurements' interval in terms of distane.
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Figure 2.14. Impat of the measurements' interval in terms of time.

We also evaluated the predited time average, the time average required for the
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vehiles to reah the predited loations. In terms of pratial appliations, the ideal

ondition is that the predited time must be as near as possible to the value of the

step time t. As shown in Figure 2.14(a), we an notie that the DR, KF and PF give

results loser to the ideal expeted time value, with a disadvantage for the PF when

the measurements' interval are lower than 0.75 s. In terms of the predited distane

errors and the MSE, this result indiates that the distane of the preditions performed

by these algorithms are loser to the real loation. However, as the PF has high errors,

it means that the predited results point are more often in the wrong diretion, while

the DR and PF, for this senario, give more aurate results for both diretion and

distane. Also in Figure 2.14(a), we an notie that the SVR presents results lower

than the expeted values, meaning that the preditions in the average are lower than

the expeted distane to the real loation. The NN presents average results of the

predited time greater than the expeted values, whih in this ase represents that the

preditions in the average are more often in the wrong diretion of the real loation.

Another important fator to be onsidered for the appliation of loalization

predition in VANets is the omputational time required to ompute the preditions

at eah time step. Also in terms of VANet appliations and regarding the predited

time, the omputation of the predited loations must be performed in a small amount

of time suh that its use an be feasible. Regarding the omputational time required

to perform the preditions, we an notie on Figure 2.14(b) that the DR, KF and PF

are more e�ient. Thus, these algorithms an be applied also for lower apabilities

omputational devies. Also, these algorithms do not require training and the DR

and KF have a fast initial onvergene to aurate preditions. However, the PF

�lter require an initial number of samples to the initial distribution of the partiles

onverge to aurate preditions. Regarding the Mahine Learning algorithms, the

omputational time required for the preditions is higher sine these methods need to

perform training on the samples set to ahieve aurate preditions. However, we an

notie that the omputational time required for these algorithms while inreasing the

measurements' interval is almost onstant and only orrespond to a small fration of

the time step t. This result indiates that the Mahine Learning algorithms are also a

suitable approah.

2.6.5 Loalization Predition Behavior for the Measurements Interval

To illustrate the behavior of the loalization predition algorithms, we show some

snapshots of the resulting Vehile Motion Vetors (Mi). In these snapshots, the X and

Y axis orrespond to the vehile trajetory during the simulation and the preditions
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performed while the Z axis show the error of eah predition. To illustrate the behavior

of the preditions, in �gure 2.15(a) we show a snapshot of 10 preditions performed

by all the algorithms illustrated side by side to ompare them. In this result, we an

notie that booth DR and KF have a better auray in the predition in terms of

the diretion and the distane to the target loation. The NN and the SVR also have

a good auray on the preditions, however, despite prediting the orret diretion,

these algorithms have higher errors in the distane between the predited and the target

loation of the vehile. The PF �lter also has good auray on the preditions but is

more a�eted by errors in the distane and the diretion of the preditions due to the

linear harateristi of this senario.

With a snapshot of 300 preditions, in Figures 2.15(b) and 2.15() we an notie

the best auray ahieved by the DR and the KF for linear and non-linear trajetories.

In terms of linear samples, this algorithm have the best estimations in terms of distane

and diretion of the preditions. The auray of these algorithms is only a�eted

by hanges in the vehiles speed and when the vehile trajetory hanges to non-

linear very fast. However, due to the nature of the Gaussian loalization errors, these

algorithms have the best auray also in terms of non-linear trajetories and they have

the advantage of a fast reovery when the trajetory turns bak to linear.

In Figure 2.15(d), we an notie that the NN has a good auray for linear

trajetories and the errors orrespond in more ases to distane to the orret loa-

tion. However, the NN is more a�eted by sudden and abrupt hanges in the vehile's

trajetories whih leads to high errors in the diretion of the preditions. Also, we

notied that in all of the simulations, these hanges onstantly a�et the performane

of the NN sine this algorithm require more samples to onverge again to aurate

preditions. The SVR also ahieved good auray as shown in Figure 2.15(e). Also,

we notied in the simulations that the SVR is more aurate when the trajetories are

more non-linear and this algorithm is more e�ient for abrupt hanges in the vehile's

trajetories, ahieving the best results in this ase. However, in the average, the errors

in the distane to the orret loation a�ets strongly the performane of the SVR.

As depited in Figure 2.15(f), the PF has a good auray for linear and non-linear

trajetories. Most of the errors in the preditions done by this algorithm are related to

errors on the diretions of the preditions. The reason is that the non-Gaussian nature

of the Partile Filter results in reduing a small fration of the introdued Gaussian

errors. Also, regarding the NN, SVR and the PF, the non-linearity nature of these

algorithms results in a lower auray when ompared to the DR and KF sine, in

the average, the trajetories in the analyzed VANets senarios are mostly linear in the

average.
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Figure 2.15. Impat of the measurements' interval on the omputed preditions.
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2.6.6 The Impat of the Loalization Errors

To evaluate the impat of the loalization error, we inrease this parameter from

1m to 5m. Thus, when inreasing the errors in the omputed positions, we analy-

ses how this introdued errors interfere on the preditions' auray. Sine we keep

the same time step for the preditions, the trajetories of the vehiles in this se-

nario will be the same, thus the total distane traveled by the vehiles keeps onstant

with an average of 10275m. In this ontext, an interesting result an be seen in Fig-

ures 2.16(a) and 2.16(b): the predition auray of the PF and NN is almost onstant

while inreasing the errors in the urrent omputed positions of the vehiles. In this

result, these algorithms are not highly a�eted by the Gaussian noise introdued on the

loation of the vehiles while the KF, DR and speially the SVR are highly a�eted by

the introdued loalization errors. Also, we an notie that, in terms of the predited

distane error and the MSE the KF �lter leads to more aurate results followed by the

DR. However, when the loalization errors are greater than 4m the DR algorithm has

an auray loser to the PF and NN. Also, we an notie that, for loalization errors

greater than 5m, the KF tends to be less aurate than the PF and NN. Regarding

these results, for high loalization errors, the non-linear nature algorithm like PF and

NN seem to be more suitable for high levels of loalization errors. The main reason

for that relies on the fat that, despite the Gaussian nature of the loalization errors,

for high values of errors, the linear trajetories start beoming non-linear due to the

interferene of the noise on the omputed positions.
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Figure 2.16. Impat of the loalization errors in terms of distane.

As shown in Figure 2.17(a), we an notie that the DR, KF and PF give results

loser to the ideal expet time values. Also, we an notie a disadvantage for the DR

when the loalization errors are greater than 3m. In terms of the predited distane
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Figure 2.17. Impat of the loalization errors in terms of time.

errors and the MSE, this result indiates that the size of the preditions regarding

distane are loser to the real distane. Also, in Figure 2.17(a), we an notie that

the SVR presents results lower than the expeted values. In this ase, the loalization

errors make the SVR algorithm perform preditions in the average lower than the

expeted distane to the real loation and, onsequently resulting in a predition time

shorter than the expeted values. On the other hand, the NN present average results

of the predited time greater than the expeted values in the average.

Regarding the omputational time required to perform the preditions, we an

notie on Figure 2.17(b) that the DR, KF and PF are more e�ient as well when

inreasing the loalization errors. Also, this result was expeted sine these algorithms

do not require training and the DR and KF have a fast initial onvergene to aurate

preditions. Regarding the Mahine Learning algorithms, the omputational time re-

quired for the preditions is also higher when inreasing the loalization errors, due to

the time required to perform training on the samples set. Another interesting result an

be seen in Figure 2.15(d): the omputational time dereases in the SVR while in the

NN it remains almost the same. For the NN, the main reason for this behavior is the

fat that the training of the MLP algorithm is performed in onstant 400 epohs before

eah predition. The derease in the SVR omputational time required is explained by

the �xed ǫ parameter introdued to measure the deviation of training samples outside

ǫ-insensitive zone. In this ase, the introdued loalization error makes the loalization

samples beome more sparse and the SVR algorithm is able to �nd faster the support

vetors. However, the auray of the seleted support vetors is highly ompromised

by suh loalization errors.
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2.6.7 Loalization Predition Behavior for the Loalization Errors

We also show some snapshots to illustrate the behavior of the loalization predition

algorithms for the introdued loalization errors. In �gure 3.8() we show a snapshot

of 10 preditions performed by all the algorithm side by side to ompare them. In

this result, we an notie that besides a�eting the omputed position of vehiles, suh

errors also a�et the auray of all the predition algorithms. Therefore, we an notie

that the introdued loalization errors a�et the nature of vehile's trajetories sine it

start beoming more non-linear. In this result, we an notie that the NN, KF, and the

PF are able to give better auray preditions in terms of diretion and distane to

the target loation. We also an notie that booth DR and SVR are more a�eted by

suh loalization errors when ompared to lower levels of errors. In this senario, the

KF is a�eted by the loalization errors with more preditions in the wrong diretion.

However, the KF is still able to give the best results.

With a snapshot of 300 preditions, in Figure 2.18(), we an notie that the

best auray is ahieved by the KF for linear and non-linear trajetories. We an also

notie that the KF has the best estimations in terms of distane and diretion of the

preditions for the loalization errors introdued. As an we see in Figure 3.8(d), the

auray of DR is highly a�eted by suh loalization errors, sine it only uses the last

known position to ompute the preditions. In these algorithms, we an notie that

the loalization errors a�et the auray in all aspets sine the linear trajetories

start beoming non-linear, even with a Gaussian nature loalization errors. However,

in this senario these algorithms still present the best auray in terms of non-linear

trajetories and they have the advantage of a fast reovery when the trajetory turns

bak to a linear trajetory for small loalization errors.

In Figures 2.18(d) and 2.18(e), we an notie that the NN and PF have a good

auray for linear and non-linear ases being able to overome the loalization errors

in almost the same level of DR and KF. For higher loalization errors the NN and the

PF will overome the DR and KF with the best auray in the loalization predi-

tion. However, the NN is still a�eted by sudden and abrupt hanges in the vehile's

trajetories whih leads to high errors in the diretion of the preditions. Finally, as

shown in Figure 2.18(f), the SVR is more a�eted by the loalization errors, espeially

when the trajetories are linear. In this ase, the loalization errors introdued turn

the loalization samples more sparse and the SVR algorithm is able to �nd faster the

support vetors, due to the �xed ǫ parameter to measure the deviation of training

samples outside ǫ-insensitive zone. However, these support vetors are not the best

options, thus resulting in a low auray. For the Mahine Learning algorithm, the



2. Loalization Predition in Vehiular Ad Ho Networks 45

0
10
20
30
40
50

Actual
NN
KF
PF

SVR
DR

100m

E
rr

or
 (

m
)

(a)

20

0

40

60

1kmE
rr

or
 (

m
)

X(m)

Y(m)

Actual
DR

(b)

20

0

40

60

1kmE
rr

or
 (

m
)

X(m)

Y(m)

Actual
KF

()

20

0

40

60

1kmE
rr

or
 (

m
)

X(m)

Y(m)

Actual
NN

(d)

20

0

40

60

1kmE
rr

or
 (

m
)

X(m)

Y(m)

Actual
SVR

(e)

20

0

40

60

1kmE
rr

or
 (

m
)

X(m)

Y(m)

Actual
PF

(f)

Figure 2.18. Impat of the loalization errors on the omputed preditions.

interferene of loalization errors indiates that, regarding the behavior of the results,
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the best alternative to overome suh limitations is the introdution of methods for

dynami parameter seletion.

2.7 Sumary

In this Chapter, loalization predition were studied from the viewpoint of VANets.

We disussed how these loalization preditions methods an improve most VANet

appliations, espeially ritial ones. We surveyed proposed approahes for loalization,

target traking and time series predition tehniques that an be used to estimate

the future position of a vehile. A number of loalization predition methods are

available to be used by vehiles to estimate future positions: Dead Rekoning, Neural

Networks, Support Vetor Regression, Kalman Filter and Partile Filter. All of these

tehniques have their pros and ons. In this work we argue that loalization predition

for VANets as an extension of a Data Fusion loalization system is a feasible approah to

irumvent the problem of disseminating outdated loalization information in vehiular

networks. We then show how loalization predition tehniques an be used to ompute

aurate predited positions based on a number of relatively inaurate sample position

estimations.



Chapter 3

A Predition-based Routing

Algorithm for Vehiular

Ad Ho Networks

3.1 Introdution

A major hallenge in VANets is to provide reliable information exhange between ve-

hiles with strit delay onstraints. For emergeny appliations in VANets, people's

safety is a key fator and must be onsidered. In ertain senarios, in ases of ollisions

and aidents, alert messages must be delivered in time to prevent further hazards.

The high speed of vehiles is another spei� hallenge in VANets, whih motivates

the researh for new data ommuniation algorithms, sine traditional protools for

Ad Ho and MANet do not have satisfatory performane when applied to vehiular

networks, due to their highly dynami topology (Li and Wang, 2007).

In this Chapter, we onsider a vehile predited loation as its diretion and speed

at a given future time step (vetorial trajetory). We them propose a new Routing al-

gorithm for data ommuniation in VANets: the LPRV (Loalization Predition-based

Routing for VANets) algorithm. The main idea of the proposed LPRV algorithm is

to exploit the knowledge of vehiles predited loations and a digital map as metris

to forward data pakets, without the need for exhanging additional ontrol message.

We evaluate the performane of the proposed algorithm using the NS-2 simulator in

omparison to both lassi Flooding and SIFT (Labiod et al., 2010) (Simple Forward-

ing over Trajetory) algorithms. We also present an extensive set of experiments that

learly demonstrate the e�ieny of our proposed solution in di�erent senarios, espe-

ially in terms of delivery rate, number of hops and delay, while maintaining a redued

number message transmissions.

47
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The remaining of this Chapter is organized as follows. Setion 3.2 desribes the

related work regarding position-based and geoast routing. Setion 3.3 presents our

LPRV algorithm, whereas Setion 3.4 desribes its performane evaluation. Finally,

Setion 3.5 presents our onlusions.

3.2 Related Work

Position-based routing has been identi�ed as one of the most promising routing

paradigms for VANets (Li and Wang, 2007). In this approah, pakets are for-

warded using the vehiles geographi loation, whih an be obtained through the

use of on-board navigation systems (GPS), maps, mobility and tra� models. The

GPSR (Karp and Kung, 2000) (Greedy Perimeter Stateless Routing) is one of the most

well-known position-based routing protools. It ombines greedy forwarding with fae

routing to reah destinations where greedy forwarding fails. One main drawbak of the

GPSR protool is the interferene aused by buildings and other obstales in urban se-

narios, generating failures in greedy forwarding proess, sine diret ommuniations

between nodes may not exist. The A-STAR (Liu et al., 2004) (Anhor-based Street and

Tra� Aware Routing) position-based routing protool was proposed to overome suh

interferenes in ity environments. A-STAR uses digital maps to ompute a sequene

of rossing points (anhors), through whih a paket must visit to reah its destination.

This algorithm also explores tra� awareness to ensure a higher probability of delivery

suess. Results indiate that A-STAR has the best performane when ompared to

GPSR, sine it an selet paths with higher onnetivity for paket delivery. However,

the A-STAR algorithm needs to keep streets' tra� information updated to ompute

the anhors. This means an additional overhead sine ities an hange the buses �eet

aording to its demands. The TBF (Niulesu and Nath, 2003) (Trajetory-Based

Forwarding) is a position-based routing protool that �rst introdued the idea of us-

ing a prede�ned map trajetory (path) to guide routing deisions and forward pakets

along a prede�ned path. The soure spei�es the trajetory in a paket and based on

the neighborhood loation information, a forwarding node makes a greedy deision to

determine the next hop that is the losest to the trajetory.

An approah based on the position-based routing, the Geoast (Maihofer, 2004),

has attrated interest in several VANet appliations, mainly related to safety (aident

alerts and prevention). In geoast, messages are also forwarded via loation infor-

mation, however, pakets are delivered to all nodes in a given geographial region.

Classi Flooding is a well-known routing protool that an also be used to deliver

pakets to a geoast region. In this approah, all network nodes propagate a parti-
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ular paket until it is reeived at its �nal destination. The lassi Flooding was not

originally proposed as a geoast routing protool, however, it is useful for omparison

with other geoast protools and it is a building blok for many of them (Maihofer,

2004). The SIFT (Labiod et al., 2010) (Simple Forwarding over Trajetory) protool

uses trajetory-based routing in order to ahieve salability. SIFT omputes the short-

est path between soure and destination (geographial region) through a digital map

to forward pakets and limit broadasting at the omputed path, without exhanging

any ontrol messages among network nodes. This protool uses the nodes' distane

to the shortest path to guide data forwarding and, also as a ontention mehanism to

avoid unneessary transmissions.

As in our proposed solution, position-based and geoast routing protools in the

literature are mainly based on the knowledge of vehiles loation and digital maps to

forward data pakets. However, these studies do not onsider vehiles predited future

loations as metri for data ommuniation in VANets, whih is the main motivation

of this work.

3.3 Loalization Predition-based Routing for VANets � LPRV

In this setion, we propose a new routing algorithm for data ommuniation in VANets:

the LPRV (Loalization Predition-based Routing for VANets) algorithm. The main

idea of the proposed LPRV algorithm is to exploit the knowledge of vehiles predited

future loations as a metri to forward data pakets, without the need for exhanging

any extra ontrol message, sine trajetories are sent along with the pakets. To avoid

the broadast storm problem, the LPRV algorithm also takes advantage of a digital map

to limit the sope of message exhanges in the shortest path for vehiles between soure

and destination, thus avoiding unneessary transmissions. Sine predited loations

are enoded in the pakets, only nodes with future omputed positions loser to the

destination are hosen as next hop of a forwarding a paket. To ensure the eletion

of the best trajetories in the paket forwarding, the proposed algorithm omputes a

ontention time in whih the farthest nodes in a given path segment wait more time

than the loser nodes, thus ensuring better greedy forwarding deisions. This will be

further disussed and de�ned below.

3.3.1 Preliminary De�nitions

In this setion, we formally present the onepts used in this work.

De�nition 1 (Vehiular Ad Ho Network): we de�ne a VANet as an Eulidean

graph G = (V,E, r), where |V | = n is the number of nodes and r is the ommuniation
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range; V = {v0, v1, v2, . . . , vn−1}, where {v0, v1, . . . , vn−1} is the set of vehiles; 〈i, j〉 ∈

E i� vi reahes vj, in other words, vi is inside the ommuniation range r of a node vj ;

and ∀vi ∈ V , (Xci, Y ci, Zci) ∈ R
3
is the omputed position of nodes vi (i.e., using a

loalization system).

(Xc ,Yc Zc )0 0, 0

(Xd ,Yd Zd )0 0, 0

P0

v0

v1

P1

v3

v2r

r

Figure 3.1. LPRV Forwarding: network nodes de�nition, loation and traje-

tory.

De�nition 2 (Vehile Future Loation Predition - Pi): Is the predition of a ve-

hile i future position. It an be de�ned as a time series regression foreasting problem

and also an be formulated as a target traking problem. In this work we onsider

a vetor that represents the movement of a vehile i from its urrent position to a

future omputed position. This trajetory an be a line, a urve or any other traje-

tory that an be mathematially expressed. For the sake of simpli�ation, we onsider

that a vehile will maintain the trajetory of a straight line. This line is de�ned as

Pi = ((Xci, Y ci, Zci), (Xdi, Y di, Zdi)) (as depited in Figure 1), where (Xci, Y ci, Zci)

is the urrent vehile's position, (Xdi, Y di, Zdi) is the next estimated position dire-

tion and si its displaement speed. We also de�ne a funtion Pi.distance(Dk) whih

omputes the shortest distane from the line Pi (trajetory) to the paket destination

point Dk, based on the Eulidean geometry distane omputation from a line to a

point. As we showed in Chapter 2, the predition of a vehile future position an be

aurately omputed using target traking and time series approahes. In addition,

aording to Barrios and Motai (2011) a future loation of an automobile an also be

aurately predited using a ombination of Global Positioning System (GPS), Geo-

graphi Information System (GIS) and Kalman Filters (KFs). Also related, as shown

in (Gning and Bonnifait, 2004), suh trajetory information an be obtained by the

ombination of dead rekoning and in-vehile sensors.

De�nition 3 (Digital Map): digital road map is de�ned as a direted graph M =
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(A, S), where A = {a0, a1, a2, . . . , am} is the set of verties (e.g. rossings in a urban

area) and ∀ai ∈ A, (Xai, Y ai, Zai) ∈ R
3
is a vertex loation, 〈i, j〉 ∈ S i� exists a

path from ai to aj , in other words, exists a street on the map where a vehile vi ∈ V ,

starting passing by ai an reah aj . We de�ne the funtion M.shortestPath(as, ad)

whih returns a set of verties A′ ∪ A orresponding to the shortest path between the

starting vertex as and the destination vertex ad (as shown in Figure 2). We also

de�ne the funtion M.lastV ertex(Pi), whih returns the last visited vertex and the

next vertex to be visited by the trajetory Pi.

a0

a1

a2

a3

a4

a5

(Xa ,Ya Za )3 3, 3

(Xa ,Ya Za )2 2, 2

Figure 3.2. Digital map and the shortest path funtion example:

M.shortestPath(a3, a2).

3.3.2 The LPRV Algorithm

Our proposed LPRV algorithm, shown and explained in Algorithm 2, is divided into

three operating phases: send, reeption, and forward. The �rst phase starts when the

appliation generates a data paket to be forwarded to a destination region (Lines 1�6).

The destination Di is hosen by the appliation and it refers to a monitoring station

or an area to report an event, suh as when a vehile ollision ours. This paket

ontains, among other information, the node future position and displaement speed

(Pi and si, Line 4), the initial vertex on map where the paket was generated, and it

is sent by broadast to all nodes in the one-hop neighborhood (Line 6).

The next two phases start when a node reeives a paket (Lines 7�8). First, it

is veri�ed if the position of the urrent node is within the paket's destination area

(Lines 9�12). If so, the paket is reeived (reeption phase). Otherwise, the for-

ward phase is started by heking if the urrent node has never forwarded this paket

(Line 13). If this ondition holds, the node updates its forward table, trajetory and

speed information, the last visited vertex, and the next vertex to be visited in the
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Algorithm 2 The LPRV Algorithm

⊲ Input:

1: Node vi sends a paket with id pktidi to Di.

Ation:

2: pktidi ← nextPktID(); {Paket id}

3: sri ← vi;Di ← (Xd, Yd, Zd, Range); {soure node and destination}

4: Pi ← prediLoation(); si ← speed();{Node future position and speed}

5: startMi ←Map.lastV ertex(Pi); {Course starting vertex}

6: Broadast paket(pktidi, sri,Di, Pi, si, startMi, data);
⊲ Input:

7: Node vj reeives a paket with id pktidf addressed to Dk area.

8: msgk ← paket(pktidk, srk,Dk, Pk, sk, startMk, data);
Ation:

9: Lpj ← (Xj ,Yj ,Zj); {Position of the urrent node}

10: if Lpj .distance(Dk) ≤ Dk.Range then {Node within dest area}

11: reeive(msgk); {Current node reeives the paket}

12: end if

13: if (srk, pktidk) /∈ Fwdj then {IF: the node never forwarded the paket}

14: Fwdj ← Fwdj ∪ (srk, pktidk); {Update the forward table}

15: Pj ← prediLoation(); sj ← speed(); {Node trajetory and speed}

16: lastMj ←Map.lastV ertex(Pj); {Last visited vertex}

17: nextMj ←Map.nextV ertex(Pj); {Next vertex to visit}

18: if (lastMj ∈Map.shortestPath(startMk,Dk)) ∨(nextMj ∈Map.shortestPath(startMk,Dk))
then {IF: node trajetory is in the shortest path}

19: if Pj .distance(Dk) < Pk.distance(Dk) then {IF: node trajetory is more loser to

destination}

20: timej ←
distance(Lpj ,nextM)

(sj×α) ; {Time to next vertex}

21: Broadast paket(pktidk, srk,Dk, Pj , sj, startMk, data) in timej ; {Forwards the paket}

22: end if

23: end if

24: end if

digital map based on its trajetory (Lines 14�17). These two verties are used to verify

if the urrent vehile's trajetory is in the omputed shortest path on the digital map

(Line 18). The urrent node's trajetory is also ompared with the trajetory of the

last node that forwarded the paket in order to verify if the urrent node's trajetory

is loser to destination area (Line 19). This omparison basially onsists of omput-

ing the shortest distane from eah line to a point based on the Eulidean geometry

(De�nition 2). If the urrent node has a better trajetory, a time for this node to the

next vertex in the digital map is omputed (Line 20). This time is used as a broadast

storm ontention mehanism. This strategy fores the nodes loser to the destination

area to forward their pakets �rst, preventing nodes with farther trajetories from for-

warding unneessary pakets (as depited in Figure 3.3.2). The parameter α is an

environment adaptation parameter to adjust the ontention time value in the same

sale of the network paket delay. It an be dynamially omputed using the di�erene

of base 10 logarithms of both values (e.g. timej ← 10log timei−log pktDelay

i
). Finally, when
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the ontention time expires, the paket is forwarded via broadast to all nodes in the

one-hop neighborhood (Line 21). This proess is repeated until the paket reahes its

destination.

a0

a1

a2

a3

a4

Dk

Sk

Pi

timei

P .distance(D )i k

Figure 3.3. LPRV Forwarding: hoie of the trajetory loser to destination and

ontention time omputing.

It is important to note that this work fouses mainly on simple paket forwarding.

We onsider this approah more suitable for VANets senarios sine the LPRV algo-

rithm does not use any ontrol messages to �nd destination nodes, maintain routing

paths, and report errors. Traditional end-to-end routing shemes that try to main-

tain routes between soure and destination nodes are not very e�ient in VANets due

to the high mobility of nodes. Finally, the LPRV algorithm an be easily adapted

to reply to data queries (Boukerhe and Nikoletseas, 2004), likewise in Wireless Sen-

sor Networks where the sink node sends a query (whih is disseminated by �ood-

ing) to the sensor network, as if it was a distributed database system (i.e., sensor

databases (Hong and Madden, 2004)).

3.4 Performane Evaluation

3.4.1 Methodology

The performane evaluation is performed through simulations using the NS-2. We eval-

uate the performane results of our proposed algorithm, in omparison to both lassi

Flooding and SIFT algorithms, in terms of network sale, delivery ratio, delay, number

of hops, and paket traveled distane. The default values for our simulation parameters

are shown in Table 1. In all the results, urves represent average values, while error

bars represent on�dene intervals for 95% of on�dene from 33 independent instanes

(seeds).



3. A Predition-based Routing Algorithm for Vehiular

Ad Ho Networks 54

Parameter Value

Simulation area 1000m×1000m
Number of nodes 700

Communiation range 100m

One hop delay 0.1 s

Non-determ. errors 30µs

Vehiles' speed 7-40 km/h

Table 3.1. LPRV simulation parameters.

As in Labiod et al. (2010), the simulation �eld map represents a simple grid-

shaped urban senario. Network nodes are distributed on a 1000m×1000m retangular

simulation area. The road map is a 10×10 one-way streets grid, where two parallel

streets always have opposite diretion of tra� between eah other. We assume that

eah vehile travels these streets with speeds from 7km/h to 40 km/h. Thus, vehiles

are allowed to overtake eah other. We also de�ned four soure/destination targets

where pakets need to be forwarded from: S1 = (0, 0, 0) to D1 = (800, 800, 0), from

S2 = (900, 100, 0) to D2 = (100, 800, 0), from S3 = (900, 900, 0) to D3 = (100, 100, 0)

and from S4 = (100, 900, 0) to D4 = (800, 100, 0) aording to the Cartesian oordinate

system of the simulation area (as shown in Figure 4). It is important to notie that,

although the hoie of random soure/destination targets an improve the average

results, we hoose to analyze the worst ase for data delivery points in terms of distane.

In addition, we onsider that the appliation generates a data paket when reporting

information to a monitoring station, suh as when a vehile ollision ours. Also, these

points are not stationary and they may vary depending on the algorithm's appliation.
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Figure 3.4. Simulation senario: vehiles nodes, pakets' soure and destination
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Regarding the network topology, we assume that node loation initially obeys a

disturbed grid, in whih the loation of eah node in the streets node is disturbed by

a random zero-mean Gaussian error. Therefore, nodes will tend to uniformly oupy

eah street without forming a regular line. Finally, to simulate delay measurement in-

auraies we disturbed the mean delay by a standard deviation of 30µs (Maróti et al.,

2004).

3.4.2 The Impat of Network Sale

Salability is evaluated by inreasing the network size from 350 to 1000 vehiles. As

shown in Figure 3.5(a), we an notie that the Flooding algorithm is able to deliver

almost all pakets after 450 nodes. This result is explained by the harateristi of

this algorithm of always delivering pakets if there is onnetivity between soure and

destination. Our LPRV algorithm has a higher data delivery rate, being higher than

the SIFT algorithm. In this ase, with small-sale network, these two Algorithms

are a�eted by the existene of intermittent onnetivity at omputed delivery paths,

while the Flooding algorithm an deliver pakets by bypassing these areas through

detour paths. However, a disadvantage of Flooding is highlighted in the number of

transmitted pakets when inreasing the network sale (as shown in Figure 3.5(b)). In

this result, we an see the redued number of transmitted pakets ahieved by both

LPRV and SIFT algorithms where the SIFT algorithm has a small advantage. This

result is mainly due to the limited paket broadast proposed in these solutions without

the need for exhanging additional ontrol message.

Figure 3.5() shows that our LPRV algorithm outperforms the other algorithms by

using fewer hops to deliver pakets. Sine predited trajetories loser to the destination

are seleted to forward pakets, LPRV an deliver pakets via the shortest paths, as well

as by greedy forwarding algorithms. Additionally, the lower average number of hops in

the delivered pakets ahieved by LPRV is also due to its harateristi of hoosing only

predited future positions loated on the shortest path for vehiles between soure and

destination. As we an see in Figure 3.5(d), the hoie of best trajetories performed

by the LPRV algorithm also leads to a smaller distane traveled by the pakets. These

results show the bene�ts of using vehiles predited future loations as a metri for

data ommuniation, demonstrating that our LPRV algorithm is salable.

3.4.3 The Impat of Vehile Speed

To evaluate the impat of vehile speed, we inrease this parameter from 20 km/h to

80 km/h. As shown in Figure 3.6(a), we an see that the Flooding algorithm is not
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Figure 3.5. Impat of the network sale.

a�eted by the vehiles speed. However, the SIFT algorithm is highly a�eted by

this inrease while the LPRV algorithm an ahieve a higher delivery rate, being less

a�eted by the inrease in the vehiles speed, sine it atually uses the knowledge of the

vehiles speed to forward pakets. The delivery rate derease in these two algorithms

is explained by the inrease in the vehiles speed, whih generates a higher number of

regions with intermittent onnetion. In Figure 3.6(b), we an highlight again the high

number of pakets transmitted by the Flooding algorithm, while the SIFT algorithm

and LPRV perform less paket transmissions due to their limited broadasts.

Figure 3.6() shows that inreasing the vehile's speed does not a�et the num-

ber of hops traversed by pakets in all analyzed algorithms. LPRV presents better

performane in terms of the number of hops required to deliver pakets, sine it uses

predited trajetories loser to the destination to forward pakets onsidering the speed

of the nodes, and also by hoosing only predited future positions loated on the short-

est path for vehiles between soure and destination. As shown in Figure 3.6(d), the

LPRV algorithm also has a lower delay in delivered pakets due to the inrease of the

nodes speed, whih redues the waiting time for the ontention of the pakets, thus

resulting in a shorter data delivery delay. The SIFT algorithm has a higher paket
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Figure 3.6. Impat of the vehiles speed.

delay sine its ontention mehanism does not onsider the vehile's speed.

3.4.4 The Impat of the Communiation Range

To evaluate the impat of the ommuniation range, we inrease this parameter from

90m to 160m. After a ommuniation range of 120m, almost 100% of the pakets

are delivered in all algorithms (as shown in Figure 3.7(a)). This is due to the fat

that a greater overage area is ahieved when inreasing the ommuniation range,

whih results in fewer areas with intermittent onnetivity. For a ommuniation range

bellow 120m, we an notie that the SIFT algorithm is the most a�eted while the

LPRV algorithm an deliver more pakets. As the LPRV algorithm uses predited

loations to verify if a vehile is in the shortest path area, a larger overage area is

ahieved when ompared to the use of node's loation, making the LPRV algorithm

more robust to areas with intermittent onnetivity. As shown in Figure 3.7(b), the

Flooding algorithm has a higher derease in the paket delay with the inrease in the

ommuniation range. The SIFT and LPRV algorithms have a onstant paket delivery

delay when inreasing the ommuniation range due to the ontention time introdued.
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However, the LPRV algorithm is able to deliver pakets with lower delay.
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Figure 3.7. Impat of the ommuniation range.

Figure 3.7() shows that the number of hops used to deliver pakets dereases in

all analyzed algorithms, with a slight advantage to LPRV. This derease was expeted

sine with the inrease of the ommuniation range, a greater overage area is ahieved,

thus resulting in fewer hops required to deliver pakets. As we an see in Figure 3.7(d),

the inrease in the ommuniation range also dereases the distane traveled by the

pakets in all algorithms with an advantage to the LPRV algorithm. In these results,

the better results obtained by the LPRV algorithm show the use of vehiles predited

future loalization an e�ient strategy in terms of ommuniation range, sine the

bene�ts of the inreased overage area are ombined with the advantages of forwarding

pakets through predited trajetories loser to the destination.

3.4.5 The Impat of Hop Delay

Hop delay refers to the proessing time of the node before forwarding a paket (i.e.,

to ompute its loation and predit the trajetory, and to aess the digital map).

To evaluate the impat of this delay, we vary this parameter from 0.1 s to 0.8 s. As
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depited in Figure 3.8(a), this delay a�ets the number of transmitted pakets in the

LPRV algorithm and espeially in the SIFT algorithm, sine the inrease in paket

delay leads to more frequent network topology hanges. The LPRV algorithm has

better results ompared to the SIFT algorithm due to the use of the vehiles predited

loations, resulting in less impat on network topology hanges. As an be seen in

Figure 3.8(b), the inrease of the paket delay does not a�et the algorithms analyzed

in this work in terms of transmitted pakets. In this result, we an see the redued

number of transmitted pakets ahieved by the LPRV and SIFT algorithms, in whih

the SIFT algorithm has a small advantage. Also, this result shows that the LPRV

algorithm and the SIFT algorithm have a redued number of transmitted pakets for

the di�erent VANet senarios analyzed.
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Figure 3.8. Impat of the hop delay.

Figure 3.8() depits that the number of hops to deliver pakets has a small

derease in all analyzed algorithms, with an advantage to LPRV. For all analyzed se-

narios in this work, the use of vehiles predited future loations and by hoosing only

trajetories loated on the shortest path for vehiles between soure and destination

leads to a few hops used in pakets delivery. Finally, as we an see in Figure 3.8(d),
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the LPRV algorithm has a small delay in the delivered paket when inreasing the one

hop delay. This result shows that the LPRV algorithm introdues a lower paket delay

in the di�erent VANet senarios analyzed.

3.5 Sumary

In this Chapter, we proposed a new VANet routing algorithm that uses the knowledge of

the vehiles predited loations to improve the routing performane in several aspets.

In our algorithm, alled LPRV (Trajetory-based Routing for VANets), we exploit the

knowledge of vehiles predited future loations and a digital map as metris to forward

data pakets, without the need for exhanging any ontrol message. We presented an

extensive set of simulation experiments omparing our proposed solution to both lassi

Flooding and SIFT algorithms. The obtained results demonstrated the e�ieny of

the proposed solution for di�erent VANet senarios and the bene�ts of using vehiles

predited loations as a metri for data ommuniation, espeially in terms of delivery

rate, number of hops and delay, with a redued number transmitted pakets.



Chapter 4

Conlusions

This Chapter summarizes the thesis proposal onlusions and future researh diretions.

We �rst present the thesis onlusions in Setion 4.1. Then, in Setion 4.2, we present

the future diretions of this work, and we �nish the doument by presenting, in Setion

4.3, the list of produed works and publiations we ahieved during the oneption of

this thesis.

4.1 Final Remarks and Summary of Contributions

In this work, loalization predition were studied from the viewpoint of Vehiular Ad

Ho Networks (VANets). We disussed how these loalization preditions methods

an improve most VANet appliations, espeially ritial ones. We surveyed proposed

approahes for loalization, target traking and time series predition tehniques that

an be used to estimate the future position of a vehile. A number of loalization

predition methods are available to be used by vehiles to estimate future positions:

Dead Rekoning, Neural Networks, Support Vetor Regression, Kalman Filter and Par-

tile Filter. All of these tehniques have their pros and ons. In this work we argue

that loalization predition for VANets as an extension of a Data Fusion loalization

system is a feasible approah to irumvent the problem of disseminating outdated lo-

alization information in vehiular networks. We then show how loalization predition

tehniques an be used to ompute aurate predited positions based on a number of

relatively inaurate sample position estimations.

As a general onlusion, the Dead Rekoning, Kalman Filter, and Partile Filter

have shown best omputational performane in terms of response time. The Mahine

Learning methods also showed a viable omputational e�ort for omputing the pre-

ditions. For lower loalization errors, the Dead Rekoning and the Kalman Filter

ahieved the best auray in the preditions due to the fat that the trajetories in

the realisti VANet senario analyzed are strongly linear. However, when introdu-

61
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ing high levels of loalization noise, Partile Filters and Neural Networks suessfully

�ltered the errors assoiated to the target predition estimation. Consequently, the

Partile Filter and Neural Networks tends to outperform the Kalman Filter as the lo-

alization error inreases sine suh Gaussian errors an a�et the linear aspet of the

vehiles' trajetories.

We also proposed a new VANet routing algorithm that uses the knowledge of the

vehiles predited loations to improve the routing performane in several aspets. In

our proposed LPRV algorithm, we exploit the knowledge of vehiles predited future

loations and a digital map as metris to forward data pakets, without the need for

exhanging any ontrol message. We presented an extensive set of simulation experi-

ments omparing our proposed solution to both lassi Flooding and SIFT algorithms.

The obtained results demonstrated the e�ieny of the proposed solution for di�erent

VANet senarios and the bene�ts of using vehiles predited loations as a metri for

data ommuniation, espeially in terms of delivery rate, number of hops and delay,

with a redued number transmitted pakets.

4.2 Diretions for Future Researh

This work leads to some partiularly interesting diretions. The �rst is to properly

haraterize the trajetories nature in terms of linear/non-linear samples, so that we

an understand the expeted magnitude, diretion, and orientation of the error result-

ing from loalization predition algorithms. Suh knowledge allows us to improve the

loalization predition methods that use suh information to ompensate and redue

the impat of predition errors. The seond is related to the loalization errors on the

omputed position of the vehiles, whih extremely a�ets the performane of a predi-

tor algorithm. Therefore, even though these approahes takles di�erent proesses and

measurement models, an interesting alternative to improve VANets servies through

loalization predition an be ombining, in a single solution, two or more solutions to

deal with Gaussian/non-Gaussian noise soures and linear/non-linear trajetory mod-

els.

Regarding our LPRV algorithm, the results are very promising, but some limi-

tations still need to be further exploited as future work. First, we will evaluate our

solution using real world vehiular mobility data and the interferene of buildings on

the wireless link. Then, we will evaluate the performane and the omputational ost

of the proposed solution using several methods for prediting vehile future loation

and evaluate the impat of errors introdued by suh algorithms for linear/non-linear

models subjeted to Gaussian/non-Gaussian noise soures.
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Appendix A

Glossary of Terms

A-STARAnhor-based Street and Tra� Aware Routing .

BP Bak Propagation algorithm.

DR Dead Rekoning .

EKF Extended Kalman Filter .

GNSS Global Navigation Satellite System.

GPS Global Positioning System.

GPSR Greedy Perimeter Stateless Routing .

ITS Intelligent Transportation Systems.

KF Kalman Filter .

LPRV Loalization Predition-based Routing for VANets.

MANet Mobile Ad ho Network .

MLNN Multilayer Feed Forward Neural Network .

MLP Multilayer Pereptron.

MSE Minimum Squared Error .

NN Neural Network .

NS-2 The Network Simulator - ns-2 v2.34 .

PF Partile Filter .

SIFT Simple Forwarding over Trajetory .

SVM Support Vetor Mahines.

SVR Support Vetor Regression.
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TBF Trajetory-Based Forwarding .

UKF Unsented Kalman Filter .

V2I vehile-to-vehile.

V2V vehile-to-vehile.

VANet Vehiular Ad Ho Network .

VC Vapnik-Chervonenkis theory .

WSN Wireless Sensor Network .
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