
Universidade Federal do Amazonas
Instituto de Computação

Programa de Pós-Graduação em Informática

Generation and Ranking of Candidate Networks of Relations for Keyword
Search over Relational Databases

by

Péricles Silva de Oliveira

Manaus – Amazonas

March 2017

Universidade Federal do Amazonas
Instituto de Computação

Programa de Pós-Graduação em Informática

Péricles Silva de Oliveira

Generation and Ranking of Candidate Networks of Relations for Keyword
Search over Relational Databases

Tese apresentada ao Programa de Pós Graduação em

Informática da Universidade Federal do Amazonas,

como requisito parcial para a obtenção do tı́tulo

de Doutor em Informática, área de concentração em

Banco de Dados e Recuperação da Informação.

orientador: Prof. Dr.Altigran Soares da Silva

Manaus – Amazonas

March 2017

Folha de Aprovação

Dedicated to my family: Edilza Oliveira (my wife), Luise Oliveira (my daughter) and Cristhian

Oliveira (my son).

In Memory of my mother Maria de Jesus, and my second mother Edith Cordeiro.

Abstract

Several systems proposed for processing keyword queries over relational databases rely on the

generation and evaluation of Candidate Networks (CNs), i.e., networks of joined database re-

lations that, when processed as SQL queries, provide a relevant answer to the input keyword

query. Although the evaluation of CNs has been extensively addressed in the literature, prob-

lems related to efficiently generating meaningful CNs have received much less attention. To

generate useful CNs is necessary to automatically locating, given a handful of keywords, rela-

tions in the database that may contain relevant pieces of information, and determining suitable

ways of joining these relations to satisfy the implicit information need expressed by a user when

formulating her query. In this thesis, we present two main contributions related to the processing

of Candidate Networks. As our first contribution, we present a novel approach for generating

CNs, in which possible matchings of the query in database are efficiently enumerated at first.

These query matches are then used to guide the CN generation process, avoiding the exhaustive

search procedure used by current state-of-art approaches. We show that our approach allows

the generation of a compact set of CNs that leads to superior quality answers, and that demands

less resources in terms of processing time and memory. As our second contribution, we initially

argue that the number of possible Candidate Networks that can be generated by any algorithm

is usually very high, but that, in fact, only very few of them produce answers relevant to the

user and are indeed worth processing. Thus, there is no point in wasting resources processing

useless CNs. Then, based on such an argument, we present an algorithm for ranking CNs, based

on their probability of producing relevant answers to the user. This relevance is estimated based

on the current state of the underlying database using a probabilistic Bayesian model we have

developed. By doing so we are able do discard a large number of CNs, ultimately leading to

better results in terms of quality and performance. Our claims and proposals are supported by a

comprehensive set of experiments we carried out using several query sets and datasets used in

previous related work and whose results we report and analyse here.

v

Contents

Abstract v

Contents 1

List of Figures 3

List of Tables 5

1 Introduction 6
1.1 Match-Based Candidate Network Generation 7
1.2 Ranking Candidate Networks . 8
1.3 Thesis Organization . 10

2 Background and Related Work 11
2.0.1 Schema Graph R-KwS Systems . 11

2.1 Basic Concepts and Terminology . 13

3 Overview of Our Contributions 16
3.1 Tuple-sets Finding . 17
3.2 Query Matches Generation . 18
3.3 Candidate Network Building . 19
3.4 Ranking of Candidate Network . 20

4 Inducing Schema Subgraphs 21
4.1 Query Matches . 21
4.2 Obtaining Query Matches . 23
4.3 Induced Schema Subgraphs . 25

5 Generation of Candidate Networks 27
5.1 General Procedure . 27
5.2 The SingleCN Algorithm . 28
5.3 The SteinerCN Algorithm . 30

5.3.1 Concepts . 30
5.3.2 Minimum Steiner Trees . 30
5.3.3 Algorithm . 31

5.4 Comparison between MatchCN and CNGen 32

6 Efficient Finding of Tuple-sets 34
6.1 Motivation . 34

1

2

6.2 TSFind Algorithm . 35
6.3 Using an In-Memory Index . 38

7 Ranking Candidate Networks 40
7.1 Algebraic Representation of CNs . 40
7.2 Probabilistic Ranking Model . 42
7.3 Final Ranking Equation . 46
7.4 Term Index . 47
7.5 Ranking Algorithm . 47

8 Experimental Setup 49
8.1 Hardware . 49
8.2 Baselines . 49
8.3 Datasets . 50
8.4 Query Sets . 50
8.5 Golden Standards . 52
8.6 Number of Relevant CNs . 52

9 Experiments with CN Generation 54
9.1 General Results . 54
9.2 Quality Results . 55

9.2.1 Quality Metrics . 56
9.2.2 Results – Coffman-Weaver Query Set 57
9.2.3 Results – Spark and INEX Query Sets 57
9.2.4 Analysis . 58

9.3 Performance and Scalability Results . 60
9.3.1 Overall Results . 60
9.3.2 Scalability with the Number of Keywords 61
9.3.3 Discussion . 62

10 Experiments with CN Ranking 64
10.1 General Results . 64
10.2 Impact on CN Evaluation . 65
10.3 Impact on Performance . 69

11 Conclusions and Future Work 71
11.1 Conclusions . 71
11.2 Future Work . 72

Bibliography 74

List of Figures

2.1 Overview of a typical RKwS system . 12

3.1 Overview of the steps for generating and ranking Candidate Networks. 16

4.1 Schema Graph for the IMDb database. 22
4.2 Query Matches Generation . 24
4.3 The tuple-set graph from the query of Example 4.1. 26
4.4 Two match graphs from the tuple-set graph of Figure 4.3. 26

5.1 MatchCN Algorithm . 27
5.2 SingleCN Algorithm . 28
5.3 Match Subgraph with weighted edges. 31
5.4 SteinerCN Algorithm . 32

6.1 Examples of tuple-sets (b) from a database instance (a). 34
6.2 TSFind Algorithm . 36
6.3 TSInter Algorithm . 37
6.4 Finding non-free, non-empty tuple-sets. 37
6.5 TSFind Algorithm – Memory Version . 38

7.1 Bayesian network Model for ranking CNs. 42
7.2 Example of a Bayesian network for ranking CNs. 43
7.3 A sample relation for illustrating the TF-IAF model. 46
7.4 The CNRank algorithm . 48

9.1 Average number of CNs generated for all query sets and datasets. 56
9.2 MAP measured across the various systems and datasets for queries from Coffman-

Weaver. 58
9.3 MRR results for each system for queries from Coffman-Weaver where exactly

one JNT is relevant. 59
9.4 MRR and MAP measured across the various systems and datasets for queries

from SPARK and INEX. 60
9.5 Average time to generate CNs using CNGen, MatCNGen-Disk (MCG-D) and

MatCNGen-Mem (MCG-M). 61
9.6 Average time spent to generate Candidate Networks when varying the number

of keywords. 63

10.1 MRR values achieved by CNRank. 65
10.2 P@k values achieved by CNRanking on Coffman-Weaver (a) SPARK (b) and

INEX (c). 66

3

4

10.3 Effect of CNRank on CN evaluation in terms of MRR. 67
10.4 Impact of CNRank. SMRR on Coffman-Weaver query set. 68
10.5 Impact of CNRank on CN evaluation in terms of MAP – SPARK and INEX

(left), Coffman-Weaver (right). 69
10.6 Impact of CNRank on CN evaluation – Performance. 70

List of Tables

5.1 Example of an execution of he SingleCN algorithm over the match graphGTS [M2]
of Figure 4.4. 29

8.1 Characteristics of the databases used. 50
8.2 Overview of our experimental query sets. 51
8.3 Max and Avg number of keywords in the queries. 51
8.4 Number of relevant CNs per query. 52
8.5 Generated CNs vs. Relevant CNs. 53

9.1 Number of query matches generated. 55

5

Chapter 1

Introduction

In the last decade, many researchers have proposed methods to enable keyword searches over

relational databases. Their goal is to allow naive users to retrieve information without any

knowledge about schema details or query languages. Empowering users to search relational

databases using keyword queries is a challenging task. In particular, the information sought of-

ten spans multiple tuples and tables, according to the schema design of the underlying database.

Thus, systems that process keyword-based queries over relational databases, commonly called

Relational Keywords Search Systems or R-KwS systems, face the challenging task of automat-

ically determining, from a handful of keywords, that pieces of information to retrieve and how

these pieces can be combined to provide a relevant answer to the user.

Current R-KwS systems fall in one of two distinct categories: systems based on Schema Graphs

and systems based on Data Graphs. Systems in the first category are based on the concept of

Candidate Networks (CNs), that are networks of joined database relations that are used to gener-

ate SQL queries whose results provide an answer to the input keyword query. This approach was

proposed in DBXplorer [Agrawal et al., 2002] and DISCOVER [Hristidis and Papakonstantinou,

2002], and was later adopted by a number of other systems, such as Efficient [Hristidis et al.,

2003], SPARK [Luo et al., 2007a], CD [Coffman and Weaver, 2010c], Min-cost [Ding et al.,

2007], S-KwS [Markowetz et al., 2007], KwS-F [Baid et al., 2010], PandaSearch [Huang et al.,

2015]. Systems in this category take advantage of the basic functionality of the underlying

RDBMS by producing appropriate SQL joint queries to retrieve answers relevant to keyword

queries posed by users.

Systems in the second category are based on structures called Data Graph, whose nodes repre-

sent tuples associated with the keywords they contain and edges connect these tuples based on

referential integrity constraints. In this approach, adopted by a number of systems, including

BANKS [Aditya et al., 2002], Bi-directional [Kacholia et al., 2005], BLINKS [He et al., 2007],

6

7

ClearMap [Bao et al., 2015] and Effective [Liu et al., 2006], results of keyword queries are com-

puted by finding subtrees in a data graph that minimize the distance between nodes matching

the given keywords. Data graphs use schema information and, thus, are not tied to the relational

model.

Besides the relational model, there are several works in the literature that address the process-

ing of keyword queries over XML data. Initially, most of the research efforts was focused on

keyword queries targeted to stored collections of XML documents [Le and Ling, 2016; Liu and

Chen, 2011; Liu and Cher, 2008; Sun et al., 2007; Tian et al., 2011; Vagena et al., 2007; Xu and

Papakonstantinou, 2008; Zhou et al., 2010]. Later on, a few methods were proposed to handle

streams of XML documents [Barros et al., 2016, 2010; da C. Hummel et al., 2011; Vagena and

Moro, 2008].

In this thesis we present contributions and results related to the processing of keyword queries

over relational databases. More specifically, we aim at improving systems based on Schema

Graphs. In this context, we propose novel approaches for the problems of generating and ranking

Candidate Networks, as described below.

1.1 Match-Based Candidate Network Generation

As our first main contribution, we present a novel approach for generating Candidate Networks.

In a nutshell, our approach aims at pruning the exponential number of combinations of relations

subsets that arise during the CN generation process. Our motivation is making CN-based R-KwS

systems efficient and scalable for using in on-line settings.

Indeed, it is known that, for certain queries, current systems can take too long to produce an-

swers, and for others they may even fail to return results (e.g., by exhausting memory) [Baid

et al., 2010; Markowetz et al., 2007].

Interestingly, since its definition in Hristidis and Papakonstantinou [2002], the CN generation

problem has been ill studied in the literature. In fact, most of the existing work [Agrawal et al.,

2002; Coffman and Weaver, 2010c; Ding et al., 2007; Hristidis et al., 2003; Luo et al., 2007a],

has focused on the problem of CN evaluation instead, adopting the CN generation algorithm

proposed in Hristidis and Papakonstantinou [2002], called CNGen, as default. One of the few

exceptions is R-KwS-F [Baid et al., 2010], that proposes important practical pruning strategies

to deal with a potentially explosive number of CNs, but that does not address the generation

process itself.

We claim that a major issue with the current approach to generate CNs is that it requires ex-

haustively exploring the full, and sometimes explosive, combination of the multiple keywords

8

occurrences in the database and the multiple ways these occurrences can be joined. The orig-

inal algorithm for generating CNs, CNGen, that is used as default by most CN-based R-KwS

systems, works by first locating subsets of relations in that keywords of the query occur. Then,

the algorithm executes an exhaustive search procedure over the graph of the database schema to

generate combinations of these subsets in the form of join trees that may fulfill the input query.

The approach we propose here, called Match-Based Candidate Network Generation, or MatC-

NGen consists of first enumerating the possible ways that query keywords can be matched in

the database to generate query answers. Then, each of these query matches is used to induce

subgraphs in the database schema graph. Finally, a CN generation algorithm runs over each

induced subgraph individually. We argue that this strategy drastically reduces time required to

generate CNs and we present several experimental results to support this claim.

For properly implementing MatCNGen, we proposed algorithms to efficiently execute each of its

main steps. The QMGen algorithm was developed for efficiently combining tuple-sets, forming

query matches. This algorithm leverages string combination properties to prune the space of

possible combinations. For carrying out the searching for joins among tuple-sets in the database

schema graph to ultimately obtain Candidate Networks, we propose two alternative algorithms.

The first, we call SingleCN, is based on the well-known breadth-first traversal algorithm. The

second, we call SteinerCN, is based on the concept of Steiner Trees [Dreyfus and Wagner,

1971], that generalize graph connectivity concepts such as shortest-paths and minimal spanning

trees. We developed the TSFind algorithm to find subsets of relations that contain the keywords

of the query, called here tuple-sets. This algorithm was develop to reduce database operations

required for this task to a few sequential disk accesses.

All of these algorithms comprise original contributions of this work. They will be detailed in

the text and results of experiments we carried out with them will be reported in the experiments

chapters.

1.2 Ranking Candidate Networks

During our work with the development of MatCNGen, we notice that, depending on the query

and the target database, there can be a large number of Candidate Networks generated. For

instance, the experimental query workload we use in our experiments includes queries from

the original CN generation algorithm, CNGen [Hristidis and Papakonstantinou, 2002], obtains

hundreds of CNs. Processing a large number of CNs, is of course, time-demanding and resource-

consuming. Moreover, the quality of the answers produced by CN evaluation may be compro-

mised when a large number of CNs is processed.

9

We claim that, although the number of possible Candidate Networks can be very high, only very

few of them produce answers relevant to the user and are indeed worth processing. This claim

is in line with observations made by other researchers who found that the number of relevant

answers to keyword queries is often very small and that, in many cases, there is only one relevant

answer to return [Baid et al., 2010; Coffman and Weaver, 2010a; Luo et al., 2007a; Nandi and

Jagadish, 2009]. It follows that, if only a few answers are relevant, then only a few CNs need to

be evaluated to produce them. We also observed this trend in queries of different workloads we

used in experiments we carried out and report here. This is significant, since these workloads

have been proposed and used in previous studies on R-KwS in the literature. In fact, we verified

that, in all queries in these workloads, no more than two Candidate Networks are needed to

produce relevant answers. This is a drastic reduction, if we consider that the number of CNs

generated often ranges from tens to many hundreds.

Making this claim explicit and showing experimental data to support it is also a contribution we

made in this thesis. An implication of this claim is the need for methods to assess the relevance

of Candidate Networks, so that only those deemed relevant might be evaluated.

With this goal in mind, we present in this thesis an approach for ranking Candidate Networks,

called CNRank,based on their probability of producing relevant answers to the user. Specifically,

we present a probabilistic ranking model that uses a Bayesian belief network to estimate the

relevance of a Candidate Network given the current state of the underlying database. A score is

assigned to each generated Candidate Network so that only a few CNs with the highest scores

are evaluated. In addition, we also show how this ranking process can be carried out efficiently

using a simple inverted index. This approach, the model and the ranking algorithm also comprise

contributions we offer in our work.

Using the proposed approach, we performed a comprehensive set of experiments using query

workloads also used in R-KwS experiments previously presented in the literature. By comparing

our results with those obtained with other representative methods on the same tasks, we could

observe that our approach had a considerable positive impact, not only on the performance of

processing keyword queries, but also on the quality of the answers produced by CN evaluation

and JNT ranking algorithms. For instance, when we coupled our CN ranking algorithm with

two well-known CN evaluation algorithms, namely, Hybrid [Hristidis et al., 2003] and Skyline

Sweeping [Luo et al., 2007a], the results they deliver were twice as precise, according to widely-

accepted metrics, in compared with the results they provide without our algorithm. As these

evaluation algorithms received less CNs to process, they also run much faster. In addition,

we have experimentally shown that our ranking model is very precise: for all the queries we

tested, it was able to place the relevant CNs among the top-4 in the ranking produced. Showing

experimental evidences of the impact of our approach in the performance and the quality of the

answers produced by R-KwS systems is also a contribution we make in this work.

10

Our method for ranking Candidate Networks was first published in a full paper accepted for the

IEEE 2015 International Conference on Data Engineering (ICDE) [de Oliveira et al., 2015].

1.3 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 reviews the related literature,

notation and terminology used in the field of Relational Keywords Search Systems based on

Schema Graphs. Chapter 3 overviews our two main contributions and the components of a

new architecture we propose for R-KwS systems. Chapters 4 formalizes our strategy for the

problem of generating CNs and presents our algorithm for efficiently combining tuple-sets. Our

two alternative CN generation algorithms are described in Chapter 5. Chapters 6 presents our

algorithm to find subsets of relations that contain the keywords of the query (tuple-sets). In

Chapter 7, we present the details of our model and algorithm for ranking Candidate Networks.

Chapters 8, 9 and 10 report the results of experiments we have conducted with implementations

of our algorithms, comparing these results with those obtained with representative baselines.

Finally, Chapter 11 presents conclusions we have reached and outlines some directions for future

work.

Chapter 2

Background and Related Work

In our research we focus on systems based on Schema Graphs, since we assume that the data

we want to query are stored in a relational database and we want to use a RDBMS capable of

processing SQL queries. This section reviews the general approach adopted by these systems

and discuss previous related work in the literature. We begin by providing an overview of

Schema Graph R-KwS Systems. Next, we review a number of important concepts and the

terminology introduced in Hristidis and Papakonstantinou [2002], which we follow in this thesis.

Only for convenience, some definitions are re-stated with slight modifications with respect to

their original versions. For a more broad coverage of the literature in the topic, the interested

reader may want to read a comprehensive survey by Yu et al. [2010].

2.0.1 Schema Graph R-KwS Systems

Figure 2.1 presents the main architecture and functioning of a typical R-KwS System based on

schema graphs, which we describe below. Initially, an keyword query is submitted by an user,

for instance, using a single text box (1). A keyword query searches for interconnected tuples that

contain the given keywords. A tuple contains a keyword if a text attribute of the tuple contains

the keyword. With the keywords in hand, the system looks for subsets of relations that contain

the keywords from the queries. These subsets, called Tuple-Sets, are then retrieved from the

database (2); Next, these tuple-sets are used to generate Candidate Networks [Agrawal et al.,

2002; Hristidis and Papakonstantinou, 2002] (CNs) (3). CNs are relational algebra expressions

that join relations whose tuples contain the keywords being sought. In other words, each CN

describes how to produce potential answers to the keyword query entered. Besides the tuple-sets

generated in the previous step, generating CNs also requires information on referential integrity

constraints (RIC) taken from the database schema. In general, since there are many different

ways of joining relations that store the tuples containing the keywords, many different CNs can

potentially be generated. In practice, however, only a few of them are useful for producing

11

12

FIGURE 2.1: Overview of a typical RKwS system

plausible answers. The most well-know algorithm for generating CNs, called CNGen, was

proposed in Hristidis and Papakonstantinou [2002]. In the next step (4), the CNs generated are

evaluated in order to get answers from the database to fulfill the input query. In this context,

answers are Joining Networks of Tuples (JNTs) [Hristidis and Papakonstantinou, 2002], that is,

trees composed by joined tuples that either contain the keywords or associate tuples that contain

the keywords. Many different algorithms have been proposed to evaluate CNs [Agrawal et al.,

2002; Hristidis and Papakonstantinou, 2002; Markowetz et al., 2007]. In particular, in state-

of-the-art systems [Coffman and Weaver, 2010c; Hristidis et al., 2003; Luo et al., 2007a], only

top-K JNTs are retrieved, which requires them to be ranked using IR style score functions. The

top-K answers are then presented to the user (5).

The main motivation for ranking JNTs in systems like Efficient [Hristidis et al., 2003], SPARK [Luo

et al., 2007a] and CD [Coffman and Weaver, 2010c], is to avoid the multi-query optimization

problem that arises when all CNs are to be evaluated, as occurs in DISCOVER [Hristidis and Pa-

pakonstantinou, 2002]. The efficiency and scalability problems in CN evaluation are addressed

in a different way in KwS-F [Baid et al., 2010]. Their approach consists of two steps. First, a

limit is imposed on the time the system spends evaluating CNs. After this limit is reached, the

system must return a (possibly partial) top-K JNTs result. Second, if there are CNs yet to be

evaluated, these CNs are presented to the user by means of query forms, so the user can select

one of the forms and the system evaluates the corresponding CN. In Baid et al. [2010], the au-

thors report a number of experimental results on the effectiveness and feasibility of the proposed

approach. Unfortunately, no results on the quality of the results obtained are reported. Although

our experiments have shown that our proposed method generates, without quality loss, fewer

CNs than CNGen, it could be naturally combined with KwS-F if necessary.

13

In Markowetz et al. [2007], the authors present a strategy for ordering the internal nodes of the

CNs generated by CNGen aiming to detect possible duplicated CNs. This can reduce the number

of CNs handled by the systems, but still requires that all CNs, duplicate or not, be generated. As

we will discuss, the approach we propose here avoids duplicated CNs by construction, using the

concept of query match which we will properly introduce later.

In Coffman and Weaver [2010a] proposed a framework for evaluating R-KwS systems and re-

ported the results of applying this framework over three representative standardized datasets

they built, namely Mondial, IMDb and Wikipedia, along with respective query workloads. The

authors compare nine state-of-the-art R-KwS systems, evaluating them in many aspects related

to their effectiveness and performance. An important conclusion they report is that, in terms of

effectiveness, no single system tested performed best across all datasets/query sets. So far, this

is the only study in the literature to address the qualitative evaluation of R-KwS systems. In our

experiments we use datasets, query sets and results from this paper.

2.1 Basic Concepts and Terminology

In the following, we review several basic concepts related to R-KwS systems. We rely on the

same terminology and concepts introduced in Hristidis and Papakonstantinou [2002]. In par-

ticular, we use the definitions for Joining Network of Tuples, Minimal Total Joining Network

of Tuples, Tuple-Sets, Joining Network of Tuple-Sets and Candidate Networks. Only for con-

venience, some definitions are re-stated with slight modifications with respect to Hristidis and

Papakonstantinou [2002] work.

As in Hristidis and Papakonstantinou [2002], consider a schema graph G representing a re-

lational schema, where vertices correspond to relations and edges correspond to referential in-

tegrity constraints between relations. For the discussion that follows, the directions of referential

constraints are not important, so we consider an undirected version Gu of G1.

Definition 2.1. A Joining Network of Tuples (JNT) j is a tree of tuples where for each pair of

adjacent tuples ti, tj ∈ j, where ti and tj are tuples of relations Ri and Rj , respectively, there is

an edge 〈Ri, Rj〉 in Gu and (ti ./ tj) ∈ (Ri ./ Rj).

Definition 2.2. Given a setQ = {k1, . . . , kn} of keywords, a JNT j is a Minimal Total Joining
Network of Tuples (MTJNT) for Q if it is both total, that is every keyword ki is contained in

at least one tuple of j, and minimal, that its, any JNT j′ that results from removing any tuple

from j is not total.
1Without loss of generality, we also assume the same simplifications as Hristidis and Papakonstantinou [2002],

that is, the attributes involved in referential integrity constraints have the same name, there are no self loops or
parallel edges in the schema graph, and no set of attributes of any relation is both a primary key and a foreign key for
two other relations

14

Definition 2.3. A Keyword Query is a set Q of keywords whose result is the set M of all

possible MTJNT for the keywords in Q over some set of relations {R1, . . . , Rm}.

Definition 2.4. Let Q be a keyword query and let K a subsets of Q. Also, let Ri be a relation.

A Tuple-Set from Ri over K is given by

RKi = {t|t ∈ Ri ∧ ∀k ∈ K, k ∈ W(t) ∧ ∀` ∈ Q−K, ` 6∈ W(t)},

where W(t) gives the set of terms (words) in t. If K = ∅, the tuple-set is said to be a free

tuple-set and it is denoted by R{}i .

According to Definition 2.4, the tuple-set RKi contains the tuples of Ri that contain all terms of

K and no other keywords from Q.

Definition 2.5. A Joining Network of Tuple-Sets J is a tree of tuple-sets where for each pair

of adjacent tuple-sets RKi , RMj in J there is an edge 〈Ri, Rj〉 in Gu.

Definition 2.6. Given a keyword queryQ = {k1, . . . , kn}, a Candidate NetworkC is a joining

network of tuple-sets, such that there is an instance I of the database that has a MTJNT M ∈ C
and no tuple t ∈M that maps to a free tuple-set F ∈ C contains any of the keywords from Q.

Notice that, by Definition 2.6, the answer produced by a CN must be a MTJNT, that is, a set

of total and complete joined networks of tuples. Totality is enforced by generating CNs that

cover all query keywords. For ensuring completeness, Theorem 1 proposed by Hristidis and Pa-

pakonstantinou [2002] presents a criterion that determines when the joining networks of tuples

produced by a joining network of tuple-sets J has more than one occurrence of a tuple. Thus,

to be considered as a candidate network, any joining network of tuple-sets J must avoid this

criterion to be fulfilled. In here, we caracterize this property by defining which joining network

of tuple-sets are considered as sound.

Definition 2.7. We say that a joint network of tuple-sets J is sound, if it does not contain a

subtree of the form RK – SL – RM , where R and S are relations and the schema graph has an

edge R→ S.

Intuitively, a CN is a relational join expression that connects subsets of relations from the

database whose tuples contain one or more keywords of the query. The “connections” are de-

rived from referential integrity, i.e., PK/FK, constraints, which may involve additional relations.

By having a DBMS to evaluate CNs, we obtain semantically meaningful answers as joined

tuples which contain the query keywords.

Example 2.1. As an example, consider the query “denzel washington gangster” and suppose

we want to execute it over a relational database containing data on movies from the well-known

15

Internet Movie Databases (IMDb). A possible CN for this query is given by the relational

algebra expression:

σ MOV
title⊇{gangster}./ CAST

id=cid
./

cid=pid
σ PER

name⊇{denzel,washington}.
(2.1)

where MOV stores information on movies, PER stores data on persons (i.e., actors, actresses,

directors, etc.) and CAST associates persons to movies they they work on. The join conditions

in this expression are derived from PK/FK constraints.

Following the terminology introduced above, the operands of the join operations in a CN are

called tuple-sets. Operands whose tuples contain the keywords specified in the query, such as

those defined by selection operations over relations MOV and PER in Expression 2.1, are called

non-free tuple-sets. The remaining operands, such as CAST in Expression 2.1, are called free

tuple-sets, since they not contain any of the keywords.

The complexity of the CN generation is mainly due to two factors: (1) There can be multiple

tuple-sets for each subset of terms of the query. As a consequence, there may be a large number

of ways of combining these tuple-sets, so that all terms of the query are covered; (2) Given a set

of tuple-sets that cover the terms of the query, there can be many distinct ways of connecting

them through PK/FK constraints and free tuple-sets.

Chapter 3

Overview of Our Contributions

In this chapter we present an overview of our approaches MatCNGen and CNRank for generating

and ranking Candidate Networks, respectively. For this, we illustrate in Figure 3.1 the steps of a

process that begins with a keyword query supplied by an user and ends with the output of some

top few Candidate Networks corresponding to the query. In this chapter, each of these steps are

introduced and then full descriptions of them are presented in subsequent chapters. Notice that

the problem of evaluating Candidate Networks is a out of the scope of this thesis, and we do not

discuss methods for dealing with it.

FIGURE 3.1: Overview of the steps for generating and ranking Candidate Networks.

16

17

3.1 Tuple-sets Finding

In Figure 3.1, when a keyword query is received for processing, the first step is to identify tuple-

sets that can potentially be used in Candidate Networks. This corresponds to Step 1. More

precisely, let K be any non-empty subset of the query Q, that is, K ⊆ Q, K 6= ∅. We call

K a termset of Q. For all termsets of Q and for all relations R from the database, we need to

determine if there is some subset of R whose tuples contain all terms from the termset and no

other term from the query.

Thus, the finding of tuple-sets starts by determining which relations and tuples contain the key-

words from the query. In our work, we consider two alternative strategies for this task. In the

first strategy, we lookup on database relations for tuples that contain each of the keywords. We

then obtain, for each keyword, a list of the tuples containing it. Thus, we perform an access

disk for each keyword query entered. This strategy is illustrated in Figure 3.1, in the shaded

box labelled with A. The version of MatCNGen that uses this strategy is called the disk-based

version.

In our second strategy, the lists of tuples that contain each keyword are obtained directly from

a data structure we call the Term Index.The Term Index associates each term k from the query

to a list, that is, an inverted list, whose elements are triples of the form 〈Ai, fk,i, Tk,i〉, where Ai
identifies an attribute within a relation in whose values k occurs with frequency fk,i, and Tk,i is

the set of IDs of the tuples from this relation in which k occurs as values of Ai. The term index

is built in a preprocessing step that scans once all the relations over which queries will be issued.

This step precedes the processing of queries and we assume that it does not need to be repeated

often. Under this assumption, CNs are generated for each query without further interaction with

the DBMS. This second strategy is illustrated in Figure 3.1, in the shaded box labelled with B.

The version of MatCNGen that uses this strategy is called the memory-based, since the term

index is stored in memory.

Once the lists of tuples for each keyword is obtained, by one of the strategies, our algorithm

for finding tuple-sets computes non-empty intersections of these lists to find all subsets of the

relations from the database in which all tuples, if any, contain the terms of some termset. For

instance, in Example 2.1 (Section 2), a tuple-set for the termset {denzel,washington} over rela-

tion PER is found, since there are tuples from this relation that contains these two terms, and

no other terms from the query. In the case of the tuple-set over relation MOV, it is generated

using gangster only, since this relation has tuples that do not contain any other keyword from

the query but gangster.

In our approach, the intersections are computed in memory using an algorithm we developed

based on the ECLAT algorithm [Zaki, 2000]. This algorithm, called TSFind, mines termsets

of increasing size, starting from one, and it is high scalable. The way MatCNGen addresses

18

the task of finding tuple-sets is a major difference from what is done in all systems based on

DISCOVER’s CNGen algorithm [Hristidis and Papakonstantinou, 2002]. In DISCOVER, a

module called the Tuple-Set Post-Processor materializes tuple-sets as relations in the database by

executing several INTERSECT commands involving the original relations The first component

is the Tuple-sets Finding when a keyword query is received for processing, the first step is

to identify tuple-sets that can potentially be used in candidate networks. This corresponds to

Step 1 in Figure 3.1. More precisely, let K be any non-empty subset of the query Q, that is,

K ⊆ Q, K 6= ∅. We call K a termset of Q. For all termsets of Q and for all relation R from the

database, we need to determine if there is some subset of R whose tuples contain all terms from

the termset and no other term from the query.

The details on the TSFind algorithm and the two strategies are discussed in Chapter 5.

3.2 Query Matches Generation

Given a CN such as the one defined by Expression 2.1, we call the set of its non-free tuple-sets as

query match. As we detail latter, in MatCNGen we adopt match subgraph approach for obtaining

CNs, which first generates query matches and then uses them to build CNs. The generation of

query matches corresponds to Step 2 in Figure 3.1.

Intuitively, each query match represents a different way of combining tuple-sets. Assuming that

answers must contain all the query terms, it follows that every keyword must appear in at least

one tuple-set in a candidate network. Thus, the union of all terms used in the predicates of a

query much form a set cover of the query.

In our CN example, the query match is given by the following expression:

{σ MOV
title⊇{gangster}

,σ PER
name⊇{denzel,washington}

} (3.1)

In this case, the cover of the input query is {{gangster},{denzel,washington}}.

In general, many more combinations of tuple-sets that generate covers of the query may exist

in the database. Thus, many matches may exist and many CNs can be built by connecting the

tuple-sets from a match. In MatCNGen, we use these ideas to separate the generation of CNs

in two distinct steps. First, our method combines the mined tuple-sets to form query matches.

Then, it processes the database schema, modeled as graph, looking for ways of connecting the

tuple-sets in each query match and build CNs. In Chapter 4 we present an algorithm to generate

query matches.

19

Notice that if the same keywords are spread among many tuples and relations, there can be a

large number of query matches. For instance, in the CIA Facts database, which we use in our

experiments, terms such as “Africa” and “Economy” are very frequent and spread throughout the

database. The set of query matches for such a query must cover all these occurrences. However,

only combinations of keywords that correspond to set covers are considered. We also notice that

by imposing that query matches must contain set covers of the input query, we in fact impose

that matches are minimal and complete. Thus, the CNs assembled using them are also minimal

and complete, as required in Definition 2.6.

3.3 Candidate Network Building

In Step 3 of Figure 3.1, each query match generated in Step 2 is used to build CNs. The problem

here is to “connect” the tuple-sets that form the query matches through one or more free tuple-

sets, i.e., relations in the query graph that create paths between the tuple-sets. In MatCNGen,

this step consists of building, for each query match Mi, a graph called a match graph. This

graph contains all relations from the original schema graph, plus nodes corresponding to tuples-

sets from Mi. These nodes are linked to the original relations according the PK/FK that exist

between their base relations and the original relations.

We notice that, according to Hristidis and Papakonstantinou [2002], the CNGen algorithm works

by trying to extract CNs as trees from a graph GTS which includes all possible tuples-sets con-

nected to the original relations. In our case, CNs are build from smaller graphs, the match

graphs, as trees that connect only the tuple-set forming this graph. Thus, while CNGen requires

exhaustively exploring the full, and sometimes explosive, combination of the all keywords oc-

currences in the database and the multiple ways these occurrences can be joined, MatCNGen

requires exploring several smaller graphs with only a few number of keywords occurrences.

This is done for each query match at a time, drastically reducing the cost of exploring the full

graph GTS . Interestingly, our match graphs can be regarded as subgraph of the graph GTS
induced [Diestel, 2012] by query matches.

In Figure 3.1 this step is represented by an algorithm we call MatchCN, which builds the match

graphs. For carrying out the searching for joins among tuple-sets in each match graph to ul-

timately obtain Candidate Networks, we propose two alternative algorithms. The first, called

SingleCN, is based on the well-known breadth-first traversal algorithm. The second, called

SteinerCN, is based on the concept of Steiner Trees [Dreyfus and Wagner, 1971], which gen-

eralize graph connectivity concepts such as shortest-paths and minimal spanning trees. These

algorithms are detailed in Chapter 5.

20

Besides reducing the time for generation CNs, MatCNGen has also a positive impact on the

evaluation of CNs. Specifically, as the generation process prunes likely spurious query matches,

a smaller but better set of CNs is obtained. As a result, state-of-the-art CN evaluation algo-

rithms [Hristidis et al., 2003; Luo et al., 2007a] run faster and produce higher quality results.

These trends were observed across many distinct queries and datasets in the experiments we

performed and report in Chapter 9.

3.4 Ranking of Candidate Network

In the next step (4), the CNs generated are ranked using the CNRank algorithm , which is pre-

sented in Chapter 7. While in current systems all CNs generated must be evaluated, we propose

that only a few top CNs in the ranking must be evaluated. The experiments we performed and

report in Chapter 10 show that our CNRank algorithm is highly effective in the task of placing

the best CNs, that is, those that fulfill the user’s intention, in top positions of the ranking. These

experiments also show that the results achieved when evaluating just a few top CNs are at least

as good as those obtained with traditional systems that evaluate all CNs. On the other hand,

the overall system performance is considerably improved by introducing CNRank between the

generation and evaluation of CNs. For our experimental evaluation we instantiated this archi-

tecture with implementations of well-known algorithms for generating and evaluating CNs. In

practice, the evaluation process can be carried out by any of the many algorithms proposed for

this purpose in the literature; for instance, DISCOVER [Hristidis and Papakonstantinou, 2002],

DBXplorer [Agrawal et al., 2002], Efficient [Hristidis et al., 2003], SPARK [Luo et al., 2007a],

CD [Coffman and Weaver, 2010c] and Min-cost [Ding et al., 2007].

Given a set of Candidate Networks generated for a keyword query, we want to assign to each

CN a score value that estimates the likelihood of this CN representing the user intention when

formulating the query. In our work, the score a CN is computed as the joint probability of the

keywords to compose of values of attributes of its tuple-sets considering the current state of

the database. The computed CN scores are then used to rank the CNs based on the belief that

they correctly represent the keyword query posed by the user. This process is called Candidate

Network Ranking.

To estimate this joint probability, the individual probabilities involving the keywords and tuples-

sets are combined using a Bayesian network model [Ribeiro and Muntz, 1996]. The processes

of ranking CNs is supported by the same Term Index used in the tuple-sets finding process.

In Chapter 7 we presented details on our CN ranking algorithm.

Chapter 4

Inducing Schema Subgraphs

In this chapter we formalize our strategy to divide a tuple-set graph into subgraphs for the prob-

lem of generating CNs, introduce the concepts of query matches and induced schema subgraphs,

which are central in our approach, and present our algorithm for efficiently combining tuple-sets

to form query matches.

4.1 Query Matches

Definition 4.1. Let Q be a query. A set of tuple-sets M = {RK1
1 , . . . , RKm

m }, where every Ki

is a distinct termset of Q, is a match for Q. M is called a total and minimal match for Q if

K1,. . .,Km form a minimal set cover for the set of keywords in Q, that is, K1 ∪ . . .∪Km = Q

and (K1 ∪ . . . ∪Km)\Ki 6= Q, for any termset Ki.

Intuitively, a query match is a set of tuple-sets that, if properly joined, can produce networks of

tuples that fulfill the query. They can be thought as the leaves of a Candidate Network. In total

and minimal matches, to ensure totality, all keywords from the query must occur in at least one

tuple-set of the match. Furthermore, to ensure minimality, there can be no superfluous tuple-set,

that is, if we remove any tuple-set from the match, it turns to be non-total.

In this thesis we closely follow the semantics proposed by Hristidis and Papakonstantinou [2002]

and only address total and minimal matches. Dealing with other types of match is left for future

work. From now on, we use the term match to refer to total and minimal matches.

Example 4.1. The following example is based on the sample of the IMDb database made avail-

able by Coffman and Weaver [2010b], whose schema graph is presented in Figure 4.11.

1Names of relation and attributes were changed for convenience

21

22

CAST%

PER%MOV%

ROLE%CHAR%

person_id%movie_id%

char_id% role_id%

FIGURE 4.1: Schema Graph for the IMDb database.

Consider a query Q={denzel,washington,gangster }. For simplicity, we will use Q={d,w,g}.
This query has eight minimal covers, among them:

C1={{d},{w},{g}}

C2={{d,w},{g}}

C3={{d,g},{d,w}} and so on.

Consider only cover C2, whose termsets are {d,w} and {g}. If the keyword “gangster” oc-

curs with no other keywords from Q in tuples of relations CHAR, MOV and CAST, the non-

empty tuple-sets for this single-keyword termset are CHAR{g},MOV{g} and CAST{g}. Also,

if keywords “denzel” and “washington” occur together, but with no other keywords from Q,

in tuples of relations PER and CAST, the following tuple-sets are also non-empty: PER{d,w},

CAST{d,w}. Thus, considering only termsets in C2, some of the possible matches for Q are:

M1={CHAR{g}, PER{d,w}} M2={CHAR{g}, CAST{d,w}}
M3={MOV{g}, PER{d,w}} M4={MOV{g}, CAST{d,w}}
M5={CAST{g}, PER{d,w}} M6={CAST{g}, CAST{d,w}}

Considering all minimal covers from Q, there are 19 distinct matches for this query in our

sample of the IMDb database. These matches are combinations of 10 distinct non-empty non-

free tuple-sets found in this database for Q.

The role of query matches in CNs is formalized below.

Lemma 4.2. Let C be a joining network of tuple-sets and let M = {RK1
1 , . . . , RKm

m } be the set

of all its non-free tuple-sets. If C is a candidate network for a query Q, then M must be a match

for Q.

Proof. According to Definition 2.6, a CN must generate minimal and total joining networks of

tuple-sets that satisfy the query Q. Thus, to ensure totality, every keyword from Q must apear

in at least one non-free tuple-set RKi
i , that is, K1 ∪ . . . ∪ Km = Q. In addition, to ensure

minimality, (K1 ∪ . . . ∪ Km)\Ki 6= Q, for any Ki, that is, removing any tuple-set RKi
i from

23

M makes the set of non-free tuple-sets non-total. Thus, {K1,K2, . . . ,Km} must be a minimal

cover for Q. Furthermore, if any RKi
i = ∅, no MTJNT for Q can be generated, and C cannot be

a candidate network.

4.2 Obtaining Query Matches

Let Q be a query. The set of all possible termsets of Q is given by P+(Q)2. We use the

notation R(K) to refer to the set of all non-empty non-free tuple-sets of the form RK , where

K 6=∅, that can be obtained from any relation R from the database for termset K. Also, we use

the notation RQ to refer to the set of all tuple-sets, for all termsets from Q, that is: RQ= ∪
{R(K)|K∈P+(Q)}

By Definition 4.1, every match for a query Q is a set of tuple-sets of the form {RK1
1 , . . ., RKm

m },
where {K1, . . .,Km} is a minimal cover for Q. Then, the set of all possible query matches for

Q is given by the combinations of all its tuple-sets on the database whose termsets form minimal

covers of Q.
MQ={{RK1

1 ,. . .,RKm
m }∈P+(RQ) |{K1, . . .,Km}∈MC(Q)} (4.1)

where MC(Q) is the set of minimal covers for Q.

At a first glance, the way we state Equation 4.1 may suggest that we need to generate the whole

power set ofRQ to obtain the complete set of query matches. However, it can be shown that any

minimal cover of a set of n elements has at most n subsets [Hearne and Wagner, 1973]. This

means that no match of a query with n keywords can be formed by more than n tuple-sets.

This property is exploited in the procedure we use to generate query matches. In Figure 4.2,

we sketch a high-level description of this procedure. The QMGen algorithm takes as input the

keyword query Q and the set RQ of non-empty non-free tuple-sets obtained from the database

Q. Our strategy for obtainingRQ is detailed in Chapter 6.

The algorithm generates all subsets ofRQ[i] with sizes i = 1, 2, . . . , |Q| (Line 7) ofRQ. Then,

in Line 9, the algorithm selects as query matches those subsets of tuple-sets whose keywords

form minimal covers of Q.

It is easy to see that the QMGen algorithm has a time complexity of

|Q|∑
i=1

(|RQ|
i

)
(4.2)

2The notation P+(X) is used here to refer to the power set of set X , minus the empty set.

24

1: QMGen(Q,RQ)
2: Input: A keyword query Q
3: Input: The set of non-empty non-free tuple-setsRQ
4: Output: The setMQ of query matches for Q
5: MQ ← ∅
6: for i = 1, . . . , |Q| do
7: letRQ[i] be set of subsets of size i ofRQ
8: for each {RK1

1 ,. . .,RKi
i } ∈ RQ[i] do

9: if {K1, . . .,Ki}∈MC(Q) then
10: MQ ←MQ ∪ {{RK1

1 ,. . .,RKi
i }}

11: end if
12: end for
13: end for
14: returnMQ

FIGURE 4.2: Query Matches Generation

That is, its running time depends on the size of the query and on the size of the sets of tuple-

sets RQ. More important, this equation also gives us an upper bound on the number of query

matches that must be generated for a query.

Regarding these two factors, the first one, the size of a keyword query is usually small, e.g., less

than two on average, and queries with more than four keywords are rare. In such cases, this

summation turns to be a low-degree polynomial. The second factor, |RQ|, is also dependent

on the query size, but the main issue to observe is how query termsets are distributed among

database relations. This factor is harder to predict, but usually very few subsets of query terms

are frequent in many relations. In fact, larger subsets are increasingly less frequent. Thus, in

practice, just a few query matches need to be generated.

Example 4.2. To illustrate how large the set of query matches can be in practice, consider

the query Q′ = {denzel,washington}. In the IMDb database made available by Coffman and

Weaver [2010b] the setRQ′ has six non-empty tuple-sets. Thus, 21 subsets ofRQ′ are generated

by the QMGen algorithm, and out of which only five turn to be query matches.

Now, by adding a single term to the query, we have Q = {denzel, washington,gangster} and

RQ has ten non-empty tuple-sets. This leads to 175 subsets of size up to three, out of which only

19 turn to be query matches.

Further insights on the number of query matches that are typically generated and on the running

times of the QMGen algorithm in practice will be provided when we report our experimental

results in Chapter 9.

25

4.3 Induced Schema Subgraphs

Up to this point, we characterize the set of non-free tuple-sets that a CN must contain by means

of the concept of a query match. According to Definition 2.6, the remaining tuple-sets in a CN

are free tuple-sets that connect its non-free tuple-sets to form a tree, that is, a JNT (Joint Network

of Tuple-sets).

According to Hristidis and Papakonstantinou [2002], the generation of candidate networks is a

procedure that extracts JNTs from a graph the represents the possible ways of connecting the

tuple-sets of the query. This graph is called a tuple-set graph.

Definition 4.3. A tuple-set graph GTS for a query Q is a graph whose nodes are all the

non-empty tuple-sets RKi
i , where Ki ⊆ Q, including the free tuple-sets, and there is an edge

〈RKi
i ,R

Kj

j 〉 in GTS if the schema graph Gu has an edge 〈Ri,Rj〉.

In our case, query matches supply in advance the non-free tuple-sets that must compose the

candidate networks. Thus, for deriving the CNs that include a given query match, we may

consider only the non-free tuple-sets that form this match and disregard all others. For this,

we rely on the concept of induced subgraphs to fragment the tuple-set graph GTS into smaller

graphs from which we can generate CNs.

Definition 4.4. Let GTS be a tuple-set graph for a query Q and let M be a query match of Q.

We define a match subgraph of GTS for M as the subgraph GTS [M ∪ F] of GTS induced by

M ∪ F . As all match subgraphs of GTS in fact include the set F , we use the shorter notation

GTS [M] to refer to GTS [M ∪ F].

Definition 4.4 relies on the fundamental concept of subgraphs induced by subsets of vertices [Di-

estel, 2012] to characterize a match subgraph GTS [M]. GTS [M] is, thus, a subgraph of GTS
whose nodes are those in M , that is, the non-free tuple-sets composing match M , and in F , the

set of free tuple-sets fromGTS . Also, its edges are the edges fromGTS that have both endpoints

in M ∪ F .

Example 4.3. Considering the same database and query from Example 4.1, Figure 4.3 shows

the full tuple-set graph and Figure 4.4 shows two of its match graphs. These match graphs

were induced by matches M2 and M3, respectively, which highlighted with shaded nodes. In all

these graphs, notice that the free tuple sets correspond to the relations in the schema graph of

Figure 4.1.

Recall from Section 4.2 that, as our example query has three keywords, any query match will

have at most three tuple-sets and, thus, any match graph GTS [Mi] will include at most eight

nodes, that its, three non-empty non-free tuple-sets plus five free tuple-sets.

26

FIGURE 4.3: The tuple-set graph from the query of Example 4.1.

GTS [M2] GTS [M3]

FIGURE 4.4: Two match graphs from the tuple-set graph of Figure 4.3.

Chapter 5

Generation of Candidate Networks

In this chapter we present our algorithms for generating Candidate Networks. We begin by de-

scribing the general procedure for generating CNs from match graphs, which we call MatchCN.

Next, we detail our two alternatives CN generation algorithms, SingleCN and SteinerCN.

5.1 General Procedure

Figure 5.1 describes the MatchCN algorithm, the general procedure we propose to generate

CNs from match graphs.

1: MatchCN(M,GTS)
2: Input: A set of query matchesM
3: Input: A tuple-set graph GTS
4: Output: A set of CNs C
5: C ← ∅
6: for each query match M ∈M do
7: let GTS [M] be the match graph induced by M from GTS
8: C ← CNFind(M ,GTS [M])
9: Add C to C

10: end for
11: return C;

FIGURE 5.1: MatchCN Algorithm

The algorithm takes as input a set of query matches M, generated according to the QMGen
algorithm (Figure 4.2), and a tuple-set graph GTS as in Definition 4.3. In the Loop 6–10, the

algorithm process each query match fromM to generate candidate networks corresponding to

it. Given a query set M , in Line 7, the algorithm first generates a match graph it induces from

the tuple-set graph. Then, Line 8 calls an algorithm to find CNs in this match graph. Finally, the

generated CN C is added to set of CNs for the query (Line 9).

27

28

Our two alternative algorithms for this task, SingleCN and SteinerCN, will be detailed in Sec-

tions 5.2 and 5.3. Notice that other algorithms for extracting meaningful trees from graphs can

be used [Diestel, 2012]. Exploring other algorithms is left for future work.

5.2 The SingleCN Algorithm

The SingleCN algorithm is described in Figure 5.2. Given a query match M and a match graph

GTS [M], it generates a Candidate Network as the shortest sound JNT that contains the match,

if at least one Candidate Networks of size up to Tmax exists. Thus, notice that at most one CN

is generated for each query match. Like the original CNGen algorithm [Hristidis and Papakon-

stantinou, 2002], SingleCN is also based on the well-known breadth-first traversal algorithm.

1: SingleCN(M ,GTS [M])
2: Input: A query match M , A match graph GTS [M]
3: Output: A single CN C
4: F ← ∅ {Initialize a queue}
5: J ← {RK1

1 } from M
6: Enqueue(F ,J)
7: while F not empty do
8: J ← Dequeue(F)
9: for each RKv

v in GTS [M] adjacent to some RKu
u in J do

10: if RKv
v is a free tuple-set or RKv

v 6∈ J then
11: J ′ ← J
12: Expand J ′ with tuple-set RKv

v joined to RKu
u

13: if J ′ 6∈F and |J ′|≤Tmax and J ′ is sound then
14: if J ′ contains the match M then
15: return J ′ {Return the current JNT as a valid CN}
16: else
17: Enqueue(F ,J ′)
18: end if
19: end if
20: end if
21: end for
22: end while
23: return {}

FIGURE 5.2: SingleCN Algorithm

The procedure performs a breath-first traversal over the match graph, starting from the node

representing the first tuple-set in the match (Line 4). The Loop 7–22 generates several partial

trees, that is, joint networks of tuple-sets (JNT), composed by the tuple-sets in the match and

free tuple-sets from the match graph, which are added during the traversal (Line 12).

To be considered to form a valid CN, a JNT J ′ generated in the loop must satisfy three conditions

(Line 13): (1) it must not have been generated previously (J ′ 6∈F) ; (2) its size, i.e., the number

29

of tuple-sets in it, must not exceed a global threshold Tmax; and (3) it must be sound. Condition

(1) ensures that no duplicate CNs will be generated. This was a problem in the original CNGen

algorithm, that was latter corrected by Markowetz et al. [2007]. We also avoid this problem

here. Condition (2) is considered in the original CNGen algorithm, and prevents the algorithm

from generating arbitrarily long CNs. In our experiments we used Tmax=10. However, as we

generate a single shortest CN for each query match, in our experiments we did not found any case

in which this condition appeared. The third condition ensures that the joining networks of tuples

produced by J ′ do not have more than one occurrences of a tuple, according to Definition 2.7.

If the current JNT satisfies these conditions, the algorithm verifies if it contains all tuple-sets

from the input query match (Line 14). In this case, this JNT is returned as a valid CN (Line 19)

and the generation process terminates. Otherwise, the current JNT is enqueued (Line 17) to be

further expanded in Line 12.

If during the process none of the JNT generated satisfies the conditions above, the queue will

eventually became empty, and the process terminates with no CN being generated (Line 23).

Example 5.1. Table 5.1 illustrates an execution of the SingleCN algorithm when taking as input

the match graph GTS [M3] of Figure 4.4. Each group of lines in the table refers to an iteration

of Loop 7–22, numbered in Column I#, except for first line, which corresponds to the initial

steps before the loop begins. In this initial step, we consider that RK1
1 = MOV{g}, and then an

initial JNT with this single tuple-set is generated (Line 5) and enqueued (Line 6). In the first

iteration, the current JNT, MOV{g}, is expanded with the adjacent tuple-set CAST{}, forming a

new JNT MOV{g} ./ CAST{}. As this JNT does not contain the match, it is enqueued. In the

next iteration, this JNT is expanded, forming several several new JNTs. Out of these, a single

one, MOV{g} ./ CAST{} ./ PER{d,w}, satisfies the conditions of Lines 13 and 14, and is thus

returned as valid CN.

I# Queue Operations
0 MOV{g} generate (L.5), enqueue (L.6)
1 MOV{g} ./ CAST{} expand (L.12), enqueue (L.17)
2 MOV{g} ./ CAST{} ./ CHAR{} expand (L.12), enqueue (L.17)

MOV{g} ./ CAST{} ./ ROLE{} expand (L.12), enqueue (L.17)
MOV{g} ./ CAST{} ./ MOV{} expand (L.12), enqueue (L.17)
MOV{g} ./ CAST{} ./ PER{} expand (L.12), enqueue (L.17)
MOV{g} ./ CAST{} ./ PER{d,w} expand (L.12), return CN (L.19)

TABLE 5.1: Example of an execution of he SingleCN algorithm over the match graph
GTS [M2] of Figure 4.4.

30

5.3 The SteinerCN Algorithm

In this section we present the SteinerCN algorithm, which relies on the concept of Steiner

Trees [Dreyfus and Wagner, 1971]. Steiner Trees generalize well-known concepts of graph

connectivity such as shortest-paths and spanning trees. Although they have been extensively

used with R-KwS systems based on data graphs [Aditya et al., 2002; He et al., 2007; Kacholia

et al., 2005; Liu et al., 2006], our algorithm is the first one that applies this concept to the context

of Candidate Networks. This is only possible due to the use of query matches, a new concept

we introduce in our work.

In the following we review the general concept of Steiner Trees, describe our strategy based on

Steiner trees to the problem of generating CNs, and present our algorithm based on this strategy.

5.3.1 Concepts

Given an undirected graph G = 〈V,E〉 and a subset T ⊂ V , a Steiner Tree is any tree S that

is a subgraph of G and contains all vertices from T , which is called the set of Terminal Nodes.

If the edges in E have non-negative weights, a Minimal Steiner Tree is a Steiner tree with the

minimal weight sum among all Steiner trees.

In the following, formalize the problem of finding Candidate Networks as an instance of the

Steiner tree problem.

Theorem 5.1. Let GTS [M] be a match subgraph. Let S be the set of Steiner trees in GTS [M]

whose set of terminals is M . It follows that: (1) every tree in S is a joint network of tuple-sets;

(2) every sound joint network of tuple-sets in S is a Candidate Network.

Proof. According to Definition 4.4, GTS [M] is composed of tuple-sets of a query Q, where the

only non-free tuple-sets are those in M . Thus, any tree extracted from GTS [M] that containsM

is a joint network of tuple-sets forQ. SinceM is a match forQ, these joint network of tuple-sets

are total and complete. If they are sound, then they are Candidate Networks.

5.3.2 Minimum Steiner Trees

Based on Theorem 5.1, by finding the Steiner trees of a match subgraph and verifying their

soundness, we could derive Candidate Networks from it. However, instead of generating all

Steiner trees, we chose to generate just the subset of minimum Steiner trees. The rationale is

that the minimum Steiner tress are shorter and represent Candidate Networks in which tuple-sets

are more tightly connected. Thus, they are more likely to represent the original keyword query.

31

Notice that GTS [M] is originally an un-weighted graph. Thus, to characterize minimality we

need to add weights to it.

Definition 5.2. Let GTS [M] be a match subgraph. Let 〈RKi
i ,R

Kj

j 〉 be an edge in GTS [M].

We define an weight function c as follows. If both RKi
i and R

Kj

j are free tuple-sets, then

c(〈RKi
i ,R

Kj

j 〉) = 2; if anyRKi
i orRKj

j , but not both, are non-free tuple-sets, then c(〈RKi
i ,R

Kj

j 〉) =

1; if both RKi
i an RKj

j are non-free tuple-sets, then c(〈RKi
i ,R

Kj

j 〉) = 0;

In Figure 5.3, we presents an example of a match subgraph with weights.

FIGURE 5.3: Match Subgraph with weighted edges.

The problem of minimal Steiner tree problem is known to be NP-Hard in the general case [Drey-

fus and Wagner, 1971]. However, two special cases are solvable by efficient algorithms. If all

nodes are terminals, then we have the minimum spanning tree problem, and an optimal solution

can be found using well known algorithms Kruskal or Prim. If there are exactly two terminal

nodes, then we have the shortest-path problem, and an optimal solution can be found using

Dijkstra’s algorithm. The algorithm we use for the general case is based on an approximate

algorithm proposed by Takahashi and Matsuyama [1980].

5.3.3 Algorithm

We describe the SteinerCN algorithm Figure 5.4. It takes as input a query match M and a

match subgraph GTS [M]. The algorithm starts from a tree T1 = 〈V1, E1〉 (Line: 6), consisting

of a single vertex RK1
1 , which is a non-free tuple set from M . In the Loop 7, the algorithm

iterates over M to find a vertex RKj

j that is not included in the current tree, that is, belongs to

M − Vi−1, and that is reached with the minimal possible cost from the current tree. That cost

is given by ĉ(Vi−1, R
Kj

j), which corresponds to the Dijkstra’s algorithm for computing shortest

32

paths. The path from the current tree to this node is added to for the next tree. The algorithm

finishes when all nodes corresponding to the query match are processed. If the resulting tree is

sound, according to Definition 2.7, the final tree is returned as a Candidate Network.

1: SteinerCN(M ,GTS [M])
2: Input: A query match M , A match subgraph GTS [M]
3: Output: Tn
4: n← |M |
5: let M = {RK1

1 , . . . , RKn
n }

6: V1 ← {RK1
1 }; E1 ← ∅ ; T1 ← 〈V1, E1〉

7: for each i = 2, 3, . . . , n do
8: let cmin = min { ĉ(Vi−1, R

Kj

j) | RKj

j ∈M − Vi−1 }
9: let RKj

j ∈M − Vi−1, where ĉ(Vi−1, R
Kj

j) = cmin

10: Vi ← Vi−1∪ vertices in minPATH(Vi−1, R
Kj

j)

11: Ei ← Ei−1∪ edges in minPATH(Vi−1, R
Kj

j)
12: Ti ← 〈Vi, Ei〉
13: end for
14: if Tn is sound then
15: return Tn
16: else
17: return ∅
18: end if

FIGURE 5.4: SteinerCN Algorithm

Example 5.2. Considering the weigthed match graph GTS [M2] of Figure 4.4, the SteinerCN

algorithm starts with T1 = 〈MOV{g}, ∅〉. In the next iteration, the algorithm selects the other

non-free tuple-set from M PER{d,w}}. The tree {MOV{g} ./ CAST{} ./ PER{d,w}} is returned

as a CN.

5.4 Comparison between MatchCN and CNGen

As we have already noted, MatchCN and the original CN generation algorithm, CNGen, are

both based on graph traversal procedures. However, the algorithms have important differences

to be highlighted.

First, CNGen handles a single graph, the tuple-set graph GTS , that contains all possible non-

empty non-free tuples from the query at once, while MatchCN handles several smaller graphs,

the match graphs. By doing so, MatchCN avoids exploring non-relevant paths in the tuple-set

graph. For instance, considering our running exemple, in the tuple-set graph for the query Q,

illustrated in Figure 4.3, the node corresponding to CAST{} is adjacent to every tuple-set from

the other tables in the graph, that is, it has 11 adjacent nodes. The same is true for all other

tuple-sets based on relation CAST. Thus there are several redundant and unproductive paths in

33

the graph that are likely to be explored by CNGen. In MatchCN, although there are several

small graphs to be processed, these graphs are much simpler, and are free from several non-

relevant paths.

Second, in order to generate several alternative CNs, CNGen must be exhaustive and cannot

stop until all possible paths have grown up to a threshold (Tmax). This is the main cause of the

excessive resources consumption reported in the literature. In MatchCN, using SingleCN each

graph traversal finishes as soon as a valid CN is found or using SteinerCN generates minimal

Steiner tree with constraints to produces a set of valid CNs. As this is done for every query

match, there will be one CN representing each possible way of distributing the keywords among

the relations of the database. Thus, MatchCN is scalable, as show the results of experiments we

report in this thesis.

Chapter 6

Efficient Finding of Tuple-sets

6.1 Motivation

As shown in Figure 4.2, a necessary step for generating query matches is to find the non-free,

non-empty tuple-sets corresponding to the input query, that is, the tuple-sets that effectively

contain some termset of the query. In this chapter, we present our approach to accomplish this

task. We begin by presenting a simple example of what must be done.

Example 6.1. Figure 6.4(b) shows the tuple-sets that would be generated for the query Q =

{denzel, washington, gangster}, again represented here asQ = {d,w,g}, from a simple database

instance presented in Figure 6.4(a). In this example, tuple IDs are composed of a single letter

representing a table name followed by single digit representing the tuple number. For instance,

the singleton termset {w} occurs in tuples 4 of table CAST and 2 of table PERSON.

Table Tuple Contains
CAST C1 g
CAST C2 g
CAST C3 d,w,g
CAST C4 w
PERSON P1 d
PERSON P2 w
PERSON P3 d,w

Tuple-sets Tuples
CAST{g} C1, C2

CAST{w} C4

CAST{d,w,g} C3

PERSON{d} P1

PERSON{w} P2

PERSON{d,w} P3

(a) (b)

FIGURE 6.1: Examples of tuple-sets (b) from a database instance (a).

Notice that from table PERSON we derive the non-empty, non-free tuple-sets PERSON{d},

PERSON{w}, as well as PERSON{d,w}, since there are tuples where terms “d” and “w” occur

alone (i.e., P1 and P2, respectively) and tuples were they occur together (i.e., P3). On the other

hand, the non-free tuple-set CAST{d} is empty, since no tuple of CAST includes “d” without

“g” and “w”. Thus, this tuple-set is not considered and not listed in the example.

34

35

A straightforward approach to obtain tuple-sets is to scan every table from the database and

look for the occurrence of every termset from the input query. This would require looking for all

possible termsets of the query in each tuple in the database. To avoid this, DISCOVER [Hristidis

and Papakonstantinou, 2002] first scans each table in the database to obtain initial tuple-sets for

each individual keyword in them (i.e., singleton termsets), and stores the result in temporary

tables in the database. Then, the system issues several SQL queries over these tables to find

tuple-sets for termsets composed of two or more keywords. This is done for every input query.

In our work we adopt a different strategy and propose an algorithm that only accesses the

database to obtain the initial tuple-sets for singleton termset. These initial tuple-sets are stored

in memory and from this point on, our algorithm makes no further disk accesses for the current

query. Instead, it progressively computes set intersections in memory to obtain tuple-sets for

termsets of the query that have more than one keyword.

To compute intersections efficiently, we frame the problem of finding non-empty, non-free tuple-

sets as a problem of finding frequent item sets, where items are keywords, item sets are termsets

(i.e., subsets of the input query), “baskets” or transactions are tuple-sets and the support (min-

imum frequency) needed is 1. Thus, it reduces to the problem of finding tuples where distinct

termsets appear at least once. Our algorithm is described next.

6.2 TSFind Algorithm

We propose the TSFind algorithm (Figure 6.2), which is based on the ECLAT [Zaki, 2000]

algorithm for finding frequent itemsets. Following the notation introduced in Chapter 2, our

algorithm aims at building the set RQ of existing tuple-sets for a given keyword query Q in a

database instance.

The algorithm uses a data structure P to keep track of pairs of the form 〈K,TK〉, where K

is a termset and TK is a set of tuples from database containing K. TK is used to compute

intersections that will form the lists of tuples that contain termsets.

This algorithm has three partes. In the first part, the algorithm finds sets of tuples that contain

each keyword of the query. For this, in the Loop 7–14 the algorithm iterates over each keyword

ki in the query and issues a SQL query over each relation R (Loop 9–13) looking for tuples that

contain ki. In our implementation using PostgresSQL, this query uses the operator ILIKE over

each text attributes of R. This loop builds, for each keyword ki, the set of tuples which contain

ki (Line 12). When the loop finishes (Line 14), all pairs in P refer only to singleton termsets. In

the second part, the algorithm invokes in Line 16 a recursive procedure called TSInter to find

sets of tuples containing larger termsets. This procedure will be detailed next. Finally, in the

third part, the algorithm adds to the set of non-empty and non-free tuple-sets RQ all tuple-sets

36

1: TSFind (Q)
2: Input: A keyword query Q={k1, k2, . . . , km}
3: Output: Set of non-free and non-empty tuple-setsRQ
4: {Part 1: Find sets of tuples containing each keyword}
5: let D the current instance of the target DB
6: P ← ∅
7: for each keyword ki ∈ Q do
8: add 〈{ki}, ∅〉 to P
9: for each relation R ∈ D do

10: {Issue queries over R looking for tuples containing ki}
11: T ← set of tuples in R containing ki
12: update 〈{ki}, Tki ∪ T 〉 in P
13: end for
14: end for
15: {Part 2: Find sets of tuples containing larger termsets}
16: P ← TSInter(P);
17: {Part 3: Build tuple-sets}
18: RQ ← ∅
19: for each 〈K,TK〉 ∈ P do
20: RQ ← RQ ∪ {R{K} | there is some tuple of R in TK}
21: end for
22: returnRQ

FIGURE 6.2: TSFind Algorithm

of the form R{K} such that there is at least one tuple from relation R in the set TK of the tuples

that contain the term-set K and no other keyword from the query.

The recursive algorithm TSInter is presented in Figure 6.3. It takes as parameters a set P of

pairs 〈K,TK〉 and uses two auxiliary structures Pcur and Pprev, which are similar to P . We

describe the algorithm with the help of an example presented in Figure 6.4, which is based on

Example 6.1. In this figure, each box represents a pair 〈K,TK〉, with K in the top of the box

and TK in the bottom. The figure illustrates P , Pcur and Pprev for two calls of TSInter.

In the algorithm, the Loop 5–14 combines pairs of termsets in P . The termsets are numbered

and processed in the numbered order, only to avoid processing the same pair of tuplesets twice.

In Line 7, a new termset X is constructed as the union of termsets Ki and Kj and the set of

tuples TX that contain X is given by the intersection of the tuples in TKi and TKj . The new

pair 〈X,TX〉 is stored in Pcur (Line 10). Tuples from TX must be removed from TKi and

TKj , since tuple-sets that contain TKi or TKj cannot contain other keywords from the query.

The algorithm makes the necessary updates in the structure Pprev (Lines 11 and 12), whose

role is to keep track of the new state of the input P . In our example of Figure 6.4, the first

call of TSInter proceeds the intersection of termsets with one keyword to find sets of tuples

containing termsets with two keywords. For instance, when processing 〈{d}, {C3, P1, P3}〉
and 〈{w}, {C3, C4, P2, P3}〉 from P , this call adds 〈{d,w}, {C3, P3}〉 to Pcur and updates

37

1: TSInter(P)
2: Input: A set P of pairs {〈K1, TK1〉, . . . , 〈Kn, TKn〉}
3: Pprev ← P;
4: Pcurr ← {};
5: for i = 1 to n−1 do
6: for j = i+ 1 to n do
7: X ← Ki ∪Kj

8: TX ← TKi ∩ TKj

9: if TX 6= ∅ then
10: add 〈X,TX〉 to Pcurr
11: update 〈Ki, TKi−TX〉 in Pprev
12: update 〈Kj , TKj−TX〉 in Pprev
13: end if
14: end for
15: end for
16: if Pcur 6= ∅ then
17: Pcurr ← TSInter(Pcurr)
18: end if
19: return Pprev ∪ Pcurr

FIGURE 6.3: TSInter Algorithm

d

d,g
-

d,w

d,w,g
-

g,w
-

P1,P2,C1
g

C2,C3
w

P1,P3,C1,C4

P1,C1

FIGURE 6.4: Finding non-free, non-empty tuple-sets.

Pprev to reflect 〈{d}, {P1}〉 and 〈{w}, {C4, P2}〉. Similarly, the second call finds sets of tuples

containing termsets with three keywords. The algorithm makes a recursive call in Line17 to look

for sets of tuples that may include larger termsets. Each call of TSInter returns the new state of

P , which represented by Pprev, expanded with sets of tuples containing larger termsets, which

are stored in Pcur(Line 19).

38

6.3 Using an In-Memory Index

As we have discussed, the TSFind algorithm is likely to save access operations to the database

in comparison with CNGen. However, this algorithm has an initial step (i.e., Part 1) that still

requires issuing SQL queries to determine the presence of sought keywords in the tuples of the

relations of the database. This is required for each input query.

If the number of expected queries is large enough, a more effective strategy would be scanning

all the tables once, building an index based on the terms found in all tuples scanned. Once this

index is built, it is possible to generate tuple-sets without further accessing the database for each

input query. This index, called Term Index, associates each distinct term k with a list of unique

tuple IDs where k occurs for an attribute. Effectively, this is an inverted index that gives, for

each term, the set of tuples in which this term occurs. It is kept in memory while processing the

queries.

The TSFind Mem algorithm, which finds tuple-sets using this index, is described in Figure 6.5.

It is very similar to TSFind. In fact, the only diference from TSFind is on the first part, where

the lists of tuples containing the keywords of the query are directly obtaining from the Term

Index I , which was previously generated in a pre-processing phase.

1: TSFind Mem(Q)
2: Input: A keyword query Q={k1, k2, . . . , km}
3: Output: Set of non-empty and non-free tuple-setsRQ
4: {Part 1: Find sets of tuples containing each keyword}
5: P ← ∅
6: let I be a term index for the target DB
7: for each keyword ki ∈ Q do
8: retrive from I the list I[ki] of the tuples containing ki
9: add 〈{ki}, I[ki]〉 to P

10: end for
11: {Part 2: Find sets of tuples containing larger termsets}
12: P ← TSInter(P);
13: {Part 3: Build tuple-sets}
14: RQ ← ∅
15: for each 〈K,TK〉 ∈ P do
16: RQ ← RQ ∪ {R{K} | there is some tuple of R in TK}
17: end for
18: returnRQ

FIGURE 6.5: TSFind Algorithm – Memory Version

It is easy to conclude that this index-based version of the TSFind algorithm improves the time

required to handle each individual input query. This was verified in the experiments we carried

out and the results are reported in this thesis. However, some questions arise when adopting

this alternative. Regarding the time spent for building the index, it is worth noticing that this

39

task consists of full scanning operations over the tables in the database, which are likely to

be performed sequentially on the disk. Thus, this time is expected to be fairly reasonable,

considering that these operations are performed once for all queries. For instance, for the largest

dataset we experimented with, building the term index took less than 40 seconds.

Also, as the term index is kept in the memory, there could be some concern with exhausting

the memory capacity with the index. However, this potential problem is mitigated by the fact

that only tuple IDs are stored in the memory, instead of actual tuple contents. Furthermore,

in practice, it is possible to avoid indexing unimportant terms such as stop words, therefore

contributing to reductions in space requirements. Nevertheless, there are many alternatives to

deal with this problem, such as index compression or mechanisms to partially store the term

index in secondary memory. Exploring these alternatives is suggested for future work.

Another possible drawback of using the in-memory term index is that updates to the tables would

not be reflected in the index, unless it is rebuilt or updated from time to time. Alternatives to

this would be running triggers to catch updates to the database and reflecting them in the index

in a timely fashion. Again, this problem can be addressed in future work.

Chapter 7

Ranking Candidate Networks

Given a set C = {C1, C2, . . . , Cm} of Candidate Networks generated for a keyword query U ,

we want to assign to each CN a score value that estimates the likelihood of this CN representing

the user intention when formulating U .

Consider a CN C = 〈R, E〉, where R={RK1
1 ,. . .,RKn

n } (n>0) is the set of its tuple-sets and

E={〈RKa
a , RKb

b 〉| there is a join between RKa
a and RKb

b in C} (1 ≤ a, b ≤ n and a 6= b).

In our work, the score of C is computed as the joint probability of the keywords in each Kj that

composse the values of some attribute of Rj , considering the current state of the database. The

computed CN scores are then used to rank the CNs based on the belief that they correctly repre-

sent the keyword query posed by the user. This process is called Candidate Network Ranking.

To estimate this joint probability, the individual probabilities involving the keywordsKj and the

relation Rj are combined using a Bayesian network model [Ribeiro and Muntz, 1996] we will

present later. We first need to introduce an alternative algebraic representation for Candidate

Networks.

Our method for ranking Candidate Networks was first published in a full paper accepted for the

IEEE 2015 International Conference on Data Engineering (ICDE) [de Oliveira et al., 2015].

7.1 Algebraic Representation of CNs

According to Hristidis and Papakonstantinou [2002], there are two types of tuple-sets. Let RKj

j

be a tuple-set. If Kj 6= {}, it is called a non-free tuple-set, and is composed of a subset of the

tuples from Rj that contain a subset Kj of the keywords in the input query. On the other hand,

if Kj = {}, then we have a free tuple-set, and it contains all tuples from relation Rj . Intuitively,

the role of free tuple-sets in a CN is to “connect” non-free tuple-sets.

40

41

Now, consider a CN Ci defined as above. In such a CN, any tuple-set RKj

j can be represented

by a relational algebra expression of the form σαj (Rj), where αj is a predicate. The form of

αj depends on the type of the tuple-set. If Kj 6= {}, that is, if RKj

j is a non-free tuple-set, then

αj is a predicate of the form Aj ⊇ Kj , where Aj is an attribute of Rj . This predicate is true

for tuples of Rj in which the value of Aj contains all terms of Kj . Otherwise, if Kj = {}, that

is, if RKj

j is a free tuple-set, then αj is a tautology. This means that all tuples from Rj will be

included in the tuple-set.

Likewise, we can use an algebraic representation of Candidate Networks using a relational al-

gebra expression of the form:

σα1(R1) ./
Θ1,2
σα2(R2) ./

Θ1,3
. . . ./

Θn−1,n
σαn(Rn)

where each Θi,i+1 (1≤i≤n−1) is a join condition that implements the edge 〈RKi
i , R

Ki+1

i+1 〉 from

the CN.

For convenience, we apply a simple algebraic transformation over the expression above as fol-

lows:

σ
α1 ∧ α2 ∧ . . . ∧ αn

(R1 ./
Θ1,2

R2 ./
Θ2,3

. . . ./
Θn−1,n

Rn)

Thus, we can represent a CN C as a pair C = 〈T, P 〉, where

T = R1 ./
Θ1,2

R2 ./
Θ2,3

. . . ./
Θn−1,n

Rn and P = α1 ∧ α2 ∧ . . . ∧ αn

where T is called the base relation of the CN and P is its set of predicates. Alternatively, this

CN can also be represented by C = 〈T, P ′〉, where in P ′, the tautologies from P are removed.

Example 7.1. The following example is based on the IMDb database described by Coffman and

Weaver [2010b], whose schema graph is presented in Figure 4.11. Relations are represented by

rectangles labelled with their respective schema definitions. Referential integrity constraints are

represented by arcs with keys/foreign keys as labels in arc ends. Consider a keyword query U =

{denzel,washington, gangster}. For a given database instance, a possible Candidate Network

for this query is given by:

σ
CHAR.name⊇{gangster} ∧ PER.name⊇{denzel,washington}

[(CHAR ./
id=cid

CAST) ./
pid=id

PER]

where the base relation is CHAR ./
id=cid

CAST ./
pid=id

PER and there are two predicates:

CHAR.name⊇{gangster} and

1Names of relations and attributes were changed for convenience

42

PER.name⊇{denzel,washington}

7.2 Probabilistic Ranking Model

Given the alternative representation of CNs introduced above, we can describe the Bayesian

network model [Ribeiro and Muntz, 1996] we use to compute the score of a Candidate Network.

Such a model is illustrated in Figure 7.1. Notice that although the figure represents a single CN,

it can be easily expanded to many queries.

C

... bm1 bm2 bm3 ... b21 b22 b23 ... b11 b12 b13 ...

b1! bk! bm!

AND

B1 Bk Bm

 T

...

...
... ...

...

α1

Database''
Side'

Query''
Side'

αk αm

...
...

FIGURE 7.1: Bayesian network Model for ranking CNs.

In a Bayesian network, each node represents a piece of information. At the top of Figure 7.1,

node C is a Candidate Network and α1,. . . ,αm are its predicates. At the bottom, labeled

“Database Side”, nodes represent the current state of the relations, i.e., the tuple-sets, involved

in the CN. Specifically, nodes B1,. . .,Bm represent the attributes of these relations and T repre-

sents the base relation of C that joins these relations. Each node bij represents a term found in

the values of Bi in the current database state and
−→
bi is a vector containing all terms found in the

values of Bi. For simplicity, only attributes that use the predicates are illustrated in this figure.

Example 7.2. To illustrate these nodes and their roles, in Figure 7.2, we show an instance of the

Bayesian network for the CN of Example 7.1. In this case, the Candidate Network side would

have only two nodes to represent the two predicates of this CN. The first predicate refers to the

term “gangster” found in the values of CHAR.name and the second predicate refers to the pair

of terms “denzel” and “washington” found in the values of PER.name.

On the database side, we have the attributes name from relation CHAR and name from relation

PER joined by the base relation of the CN. Then, vector
−→
bx will have a node corresponding to

43

C

... gangster

...

bx! by!

AND
CHAR% PER%

...

tuples from relation Rj. Their role in candidate networks is to “connect” non-free
tuple sets.

Now, consider a CN Ci defined as above. In such a CN, any tuple set R
Kj

j can
be represented by a relational algebra expression of the form �↵j

(Rj), where ↵j is a
predicate. The form of ↵j depends on the type of the tuple set. If Kj 6= {}, that is,

if R
Kj

j is non-free tuple set, then ↵j is a predicate of the form Aj ◆ Kj, where Aj is
an attribute of Rj. This predicate is true for tuples of Rj in which at the value Aj

contains all terms of Kj. Otherwise, if Kj = {}, that is, if R
Kj

j is a free-tuple set,
then ↵j is a tautology >. This means that all tuples from Rj will be included in the
tuple set.

Likewise, we can also using a algebraic representation of candidate networks using
a relational algebra expression of the form:

�↵1(R1) ./
⇥1,2
�↵2(R2) ./

⇥1,3
. . . ./

⇥n�1,n
�↵n(Rn) (1)

where each ⇥i,i+1 (1in�1) is a join condition that implements the edge hRKi
i , R

Ki+1

i+1 i
from the CN.

For convenience, we apply a simple algebraic transformation over the expression
above as follows:

�
↵1 ^ ↵2 ^ . . . ^ ↵n

(R1 ./
⇥1,2

R2 ./
⇥2,3

. . . ./
⇥n�1,n

Rn) (2)

From Eq. 2, we represent a CN C as a pair C = hJ, P i, where

J = R1 ./
⇥1,2

R2 ./
⇥2,3

. . . ./
⇥n�1,n

Rn and P = ↵1 ^ ↵2 ^ . . . ^ ↵n (3)

where J is called the base relation of the CNs and P is the set of predicates. Notice
that this same CN can also be represented by C = hJ, P 0i, where in P 0 all the
tautologies from P are removed.

Example 1 The following example is based on the IMDb database available in [?],
whose schema graph is presented in Figure 11. Consider a keyword query U =
{denzel,washington, gangster}. For a given database instance, a possible candidate
network for this query is given by:

�
CHAR.name◆{gangster} ^ PER.name◆{denzel,washington}

[(CHAR ./
id=cid

CAST) ./
pid=id

PER] (4)

where the base relation is CHAR ./
id=cid

CAST ./
pid=id

PER and there are two predicates:

CHAR.name◆{gangster} and PER.name◆{denzel,washington}
1Names of relation and attributes were changed for convenience

2

...
...

denzel washington ...

tuples from relation Rj. Their role in candidate networks is to “connect” non-free
tuple sets.

Now, consider a CN Ci defined as above. In such a CN, any tuple set R
Kj

j can
be represented by a relational algebra expression of the form �↵j

(Rj), where ↵j is a
predicate. The form of ↵j depends on the type of the tuple set. If Kj 6= {}, that is,

if R
Kj

j is non-free tuple set, then ↵j is a predicate of the form Aj ◆ Kj, where Aj is
an attribute of Rj. This predicate is true for tuples of Rj in which at the value Aj

contains all terms of Kj. Otherwise, if Kj = {}, that is, if R
Kj

j is a free-tuple set,
then ↵j is a tautology >. This means that all tuples from Rj will be included in the
tuple set.

Likewise, we can also using a algebraic representation of candidate networks using
a relational algebra expression of the form:

�↵1(R1) ./
⇥1,2
�↵2(R2) ./

⇥1,3
. . . ./

⇥n�1,n
�↵n(Rn) (1)

where each ⇥i,i+1 (1in�1) is a join condition that implements the edge hRKi
i , R

Ki+1

i+1 i
from the CN.

For convenience, we apply a simple algebraic transformation over the expression
above as follows:

�
↵1 ^ ↵2 ^ . . . ^ ↵n

(R1 ./
⇥1,2

R2 ./
⇥2,3

. . . ./
⇥n�1,n

Rn) (2)

From Eq. 2, we represent a CN C as a pair C = hJ, P i, where

J = R1 ./
⇥1,2

R2 ./
⇥2,3

. . . ./
⇥n�1,n

Rn and P = ↵1 ^ ↵2 ^ . . . ^ ↵n (3)

where J is called the base relation of the CNs and P is the set of predicates. Notice
that this same CN can also be represented by C = hJ, P 0i, where in P 0 all the
tautologies from P are removed.

Example 1 The following example is based on the IMDb database available in [?],
whose schema graph is presented in Figure 11. Consider a keyword query U =
{denzel,washington, gangster}. For a given database instance, a possible candidate
network for this query is given by:

�
CHAR.name◆{gangster} ^ PER.name◆{denzel,washington}

[(CHAR ./
id=cid

CAST) ./
pid=id

PER] (4)

where the base relation is CHAR ./
id=cid

CAST ./
pid=id

PER and there are two predicates:

CHAR.name◆{gangster} and PER.name◆{denzel,washington}
1Names of relation and attributes were changed for convenience

2

tuples from relation Rj. Their role in candidate networks is to “connect” non-free
tuple sets.

Now, consider a CN Ci defined as above. In such a CN, any tuple set R
Kj

j can
be represented by a relational algebra expression of the form �↵j

(Rj), where ↵j is a
predicate. The form of ↵j depends on the type of the tuple set. If Kj 6= {}, that is,

if R
Kj

j is non-free tuple set, then ↵j is a predicate of the form Aj ◆ Kj, where Aj is
an attribute of Rj. This predicate is true for tuples of Rj in which at the value Aj

contains all terms of Kj. Otherwise, if Kj = {}, that is, if R
Kj

j is a free-tuple set,
then ↵j is a tautology >. This means that all tuples from Rj will be included in the
tuple set.

Likewise, we can also using a algebraic representation of candidate networks using
a relational algebra expression of the form:

�↵1(R1) ./
⇥1,2
�↵2(R2) ./

⇥1,3
. . . ./

⇥n�1,n
�↵n(Rn) (1)

where each ⇥i,i+1 (1in�1) is a join condition that implements the edge hRKi
i , R

Ki+1

i+1 i
from the CN.

For convenience, we apply a simple algebraic transformation over the expression
above as follows:

�
↵1 ^ ↵2 ^ . . . ^ ↵n

(R1 ./
⇥1,2

R2 ./
⇥2,3

. . . ./
⇥n�1,n

Rn) (2)

From Eq. 2, we represent a CN C as a pair C = hJ, P i, where

J = R1 ./
⇥1,2

R2 ./
⇥2,3

. . . ./
⇥n�1,n

Rn and P = ↵1 ^ ↵2 ^ . . . ^ ↵n (3)

where J is called the base relation of the CNs and P is the set of predicates. Notice
that this same CN can also be represented by C = hJ, P 0i, where in P 0 all the
tautologies from P are removed.

Example 1 The following example is based on the IMDb database available in [?],
whose schema graph is presented in Figure 11. Consider a keyword query U =
{denzel,washington, gangster}. For a given database instance, a possible candidate
network for this query is given by:

�
CHAR.name◆{gangster} ^ PER.name◆{denzel,washington}

[(CHAR ./
id=cid

CAST) ./
pid=id

PER] (4)

where the base relation is CHAR ./
id=cid

CAST ./
pid=id

PER and there are two predicates:

CHAR.name◆{gangster} and PER.name◆{denzel,washington}
1Names of relation and attributes were changed for convenience

2

Database%%
Side%

Query%%
Side%

FIGURE 7.2: Example of a Bayesian network for ranking CNs.

term “gangster” and vector
−→
by will have a node corresponding to each term “denzel” and

“washington”. We would also have arcs from this term-related nodes to the nodes representing

the appropriate predicates.

Each node of the network is associated to a binary variable, which takes the value 1 to indicate

that the corresponding information will be considered for the ranking computation. In this case,

we say that the information was observed. The likelihood of a Candidate Network C, given the

current state of the base relation T , can be seen as the probability of observing C, given that

relation T was observed. This is represented by conditional probability P (C|T).

Analyzing the Bayesian network in Figure 7.1, we can derive the following general equation:

P (C|T) =µ×
∑
−→
b1 ,...,

−→
bm

(
P (C|−→b1 , . . . ,

−→
bm) ×

P (T |−→b1 , . . . ,
−→
bm)× P (

−→
b1 , . . . ,

−→
bm)
) (7.1)

where µ is a normalizing constant.

44

The probability P (C|−→b1 , . . . ,
−→
bm) of observing the CN C given the state of all attributes it uses,

can be expanded as:

P (C|−→b1 , . . . ,
−→
bm) =

∑
α1,...,αm

P (C|α1, . . . , αm)×

P (α1|
−→
b1)× . . .× P (αm|

−→
bm)

(7.2)

In Equation 7.2, the term P (C|α1, . . . , αm) corresponds to the probability of observing C given

the predicate nodes α1 to αm. As we consider that the CN C should be active only when all its

predicate nodes are also active, this translates to the following equation:

P (C|α1, . . . , αm) =

{
1 if α1 = 1 ∧ . . . ∧ αm = 1

0 otherwise

Still in Equation 7.2, the terms P (α1|
−→
b1) to P (αm|

−→
bm), which correspond to the probability of

observing the nodes α1 and αm given the state of the attributes B1 to Bm, respectively, ensure

that the active terms in
−→
bj exactly match the terms in the predicate nodes αj . This translates to

the following equation:

P (αj |
−→
bj) =

{
1 if ∀k, gk(

−→
bj) = 1 iff tjk occurs in Kj

0 otherwise

where gk(
−→
bi) gives the value of the k-th component

−→
bi and tjk is the kth term inBj , considering

αj = Bj ⊇ Kj .

The sum in Equation 7.1 takes into account all sets of possible active terms in vectors
−→
b1 to

−→
bm .

However, the definition of the probability P (C|−→b1 , . . . ,
−→
bn) annuls the probability of any set of

active terms, except the set in which the active terms exactly match the query terms referring to

attributes B1 to Bn, respectively. Thus, we can simplify Equation 7.1 to:

P (C|T) = µ× P (T |−→b1 , . . . ,
−→
bm)× P (

−→
b1 , . . . ,

−→
bm) (7.3)

where the active terms in vectors
−→
b1 to

−→
bm are exactly those present in the predicates of C.

In a similar way, we can expand the probability of observing the base relation T given the

state of all its attributes P (T |−→b1 ,. . .,−→, bm) using the probabilities P (T |B1,. . .,Bm), P (B1|
−→
b1),

P (B2|
−→
b2), etc. Given this and the fact that vectors

−→
bj are independent, Equation 7.1 can be

rewritten as:

P (C|T) =α× P (B1|
−→
b1)× . . .× P (Bm|

−→
bm)×

P (T |B1, . . . , Bm)×P (
−→
b1)× . . .× P (

−→
bm)

(7.4)

45

where
−→
bj is the state where only the query terms in C referring to attributes Bj are active.

We can now use the properties of the Candidate Networks to solve the conditional probabilities

appearing in Equation 7.4, namely P (Bj |
−→
bj), P (

−→
bj) and P (T |B1, . . . , Bm). Since there is no

preference for any particular set of terms, the probability of vector
−→
bj is defined as a constant:

P (
−→
bj) =

1

2Nj

where Nj is the total number of distinct terms that occur for values of the attribute Bj . Notice

that Nj is taken from the original table where Bj belongs instead of the base relation.

The remaining probabilities are computed using a model we refer to as TF-IAF, which adapts the

traditional vector space model [Baeza-Yates and Ribeiro-Neto, 2011] to the context of relational

databases, similarly as done by Mesquita et al. [2007]. In TF-IAF, the cosine measure is used to

estimate the probability of observing the attribute Bj in the database, given the terms indicated

by
−→
bj . The probability of observing Bj is defined as the cosine of the angle between a vector

−→
Bj which represents the values of the attribute Bj stored in the database (also considering its

original relation), and vector
−→
bj which represents the values for attribute Bj in the query, i.e.,

P (Bj |
−→
bj) = cos(

−→
Bj ,
−→
bj) =

∑
tk∈
−→
bj

wjk · gk(
−→
bj)

√ ∑
tk∈
−→
Bj

w2
jk ×

√ ∑
tk∈
−→
bj

gk(
−→
bj)2

(7.5)

where wjk is the weight of the term tk in attribute Bj . To compute the weights, we use the

concepts of term frequency (TF) and inverse attribute frequency (IAF) [Mesquita et al., 2007].

TF measures the frequency of a given term into the values of an attribute considering all tuples

of the relation where it occurs. This is computed by the following formula:

tf =
log(1 + fkj)

log(1 +Nj)
(7.6)

where fkj is the number of occurrences of term k in the attribute Bj and Nj is the total number

of distinct terms that occurs in the values of attribute Bj .

IAF is an adaptation of the concept of inverse document frequency (IDF) found in the context of

information retrieval [Baeza-Yates and Ribeiro-Neto, 2011]. Here, it measures how infrequent

the term is among the values of the attributes according to the following formula:

iaf = log

(
1 +

Na

Ck

)
(7.7)

46

where Na is the total number of attributes in the database and Ck is the number of attributes in

whose values the term k occurs. We use IAF as an estimation of the degree of ambiguity of the

term with respect to the attributes in the database.

For instance, consider the relation instance shown in Figure 7.3. In this table, the term Wash-

ington is considered ambiguous, since it occurs for both attributes Person and Movie. On the

other hand, the term Godzilla is typical to the Title attribute, and thus it is unambiguous.

Person Movie
Albert Finney Washington Square

Kerry Washington Against the Ropes
Juliette Binoche Godzilla

Denzel Washington Hurricane

FIGURE 7.3: A sample relation for illustrating the TF-IAF model.

The weights according to the TF-IAF model are computed by the following formula:

wjk = tf × iaf =
log(1 + fkj)

log(1 +Nj)
× log

(
1 +

Na

Ck

)
(7.8)

where fkj is the number of occurrences of the term k in the attribute Bj , Nj is the total number

of distinct terms that occur in the values of the attribute Bj , Na is the total number of attributes

in the database and Ck is the number of attributes in whose values the term k occurs.

7.3 Final Ranking Equation

Continuing the expansion of the components in Equation 7.4, since T may be be the result of

joining several different relations, we define the probability P (T |B1, . . . , Bm) as depending on

the number of relations involved in the CN. We would like to prioritize queries in which terms

are placed “near” each other, by penalizing queries whose terms are distributed among several

relations. We also ensure that the base relations of the CN is observed if all the attributes are

observed. Thus, we define this probability as follows:

P (T |B1, . . . , Bm) =

1

|T | iff B1 = 1 ∧ . . . ∧Bm = 1

0 otherwise
(7.9)

where |T | is the number of relations involved in the CN.

Once all conditional probabilities are defined, we can derive the final equation that represents

the probability of observing C given the current state of base relation T . As we use TF-IAF

to compute the conditional probability P (Bj |
−→
bj), we derive the following equation from Equa-

tion 7.4.

47

P (C|T) = η × cos(−→B1,
−→
b1)× . . .× cos(−→Bm,

−→
bm)× 1

|T | (7.10)

where each
−→
bj is the state where only the query terms referring to attribute Bj are active, |T | is

the number of tuple-sets in the CN and η accounts for the constants µ, and P (
−→
b1) to P (

−→
bn).

Equation 7.10 is applied to each Candidate Network and returns a probabilistic score for each

one.

7.4 Term Index

As mentioned in Section 7.2, to compute Equation 7.10 we use an inverted index that associates

each term k found in the relations of the database to a list whose elements are pairs of the

form 〈Bj , fkj〉, where Bj is an attribute in a relation, in whose values the term k occurs with

frequency fkj . The term index is constructed in a preprocessing step that scans once all the

tables over which queries will be issued. This step precedes the processing of queries, and we

assume that it does not need to be repeated often. Under this assumption, CNs are ranked for all

queries without further interaction with the DBMS. In experiments we performed with databases

used in previous R-KwS papers in the literature, it was possible to store the term index entirely

in main memory. Notice that the query index is important to our method since the information

it keeps is not usually available in existing database statistics.

7.5 Ranking Algorithm

The CNRank algorithm is described in Figure 7.4. It is a direct application of the model we

derived in the previous section. The algorithm iterates over a set of CNs given as input (Loop

1–17) and computes a score to each CN according to Equation 7.10. For each CN, the algorithm

process each predicate αj to compute the cosine componentes of this equation (Loop 3–15). In

Line 7, the algorithm takes the frequency fkj of term tk in values of attribute Bj by looking

up the entry corresponding to this term in the term index described in Section 7.2 Equation 7.8

in Line 9. Each cosine from Equation 7.10 is computed in Line 13 according to Equation 7.5.

Variable wsum is the summation of weights appearing in numerator of Equation 7.5 and the

function anorm(Bj) computes the term
√∑

tk∈
−→
Bj
w2
jk. The other term,

√∑
tk∈
−→
bj
gk(
−→
bj)2 is

the same for all CNs of a same query, thus, it does not need to be computed for ranking purposes

and can be, thus, omitted. After the scores corresponding to all CNs are calculated, the ranking

R is built (Line 18).

48

Algorithm CNRank
Input: A set of CNs C = {C1, . . . , Cn}
Output: A rank of CNsR = 〈Cp(1), . . . , Cp(n)〉

1: for each Ci ∈ C do
2: cosprod← 1
3: for each αj ∈ Ci do
4: Let αj = Bj ⊇ Kj

5: wsum← 0
6: for each tk ∈ Kj do
7: fkj ← TermIndexLookUp(tk, Bj)
8: if fkj 6= 0 then
9: w ← tfiaf(fkj , tk, Bj)

10: wsum← wsum+ w
11: end if
12: end for
13: cos← wsum/anorm(Bj)
14: cosprod← cosprod× cos
15: end for
16: scorei ← η × cosprod× |T |
17: end for
18: BuildR such that Cp(a) � Cp(b), iff scorea ≥ scoreb

FIGURE 7.4: The CNRank algorithm

Chapter 8

Experimental Setup

In this chapter we present the configuration we used to performed a number of experiments we

carried out to evaluate the algorithms we proposed in this thesis. The results of the experiments

will be presented in the subsequent chapters.

8.1 Hardware

We ran the experiments on an AWS Virtual Machine (medium, 64-bit, 16 GiB RAM, 1ECU,

1vCPU, 160GB of Instance Storage, low Network performance) running on Ubuntu Linux. We

used PostgreSQL as the underlying RDBMS with a default configuration. All implementations

were made in Java.

8.2 Baselines

Our experiments used representative state-of-art systems described in the literature for process-

ing keyword queries over relational databases. This includes systems based on the Candidate

Network approach, like DISCOVER [Hristidis and Papakonstantinou, 2002], Efficient [Hristidis

et al., 2003], Bi-directional [Kacholia et al., 2005], Effective [Liu et al., 2006], SPARK [Luo

et al., 2007a] and CD [Coffman and Weaver, 2010c], as well as systems based on the Data Graph

approach, such as BANKS [Aditya et al., 2002], Min-cost [Ding et al., 2007] and BLINKS [He

et al., 2007].

49

50

8.3 Datasets

We used five datasets: IMDb, Mondial, Wikipedia, DBLP and TPC-H, which were previously

used for the experiments reported by Coffman and Weaver [2010a], Luo et al. [2007a] and others

previous work. In Table 8.1 we present some details on these datasets, including their size (in

MB), the number of relations, the total number of tuples and the number of Referential Integrity

Constrains (RIC) in their schemas. Further details on IMDb, Mondial and Wikipedia datasets are

provided by Coffman and Weaver [2010b], whereas more details on the DBLP dataset aregiven

by Cyganiak [2007]. We use the TPC-H database with size of 876MB instead of 100MB as

done by [Hristidis and Papakonstantinou, 2002].

Dataset Size (MB) Relations Tuples RIC
Mondial 9 28 17,115 104
IMDb 516 5 1,673,074 4

Wikipedia 550 6 206,318 5
DBLP 40 6 878,065 6
TPC-H 876 8 2,389,071 11

TABLE 8.1: Characteristics of the databases used.

8.4 Query Sets

In an effort to provide a fair comparison with previous work, we used three query sets from

different sources as summarized below.

Coffman-Weaver

Queries used in the experiments reported by Coffman and Weaver [2010b]. There were 42 to 45

queries targeted to the IMDb, Mondial and Wikipedia.

SPARK

Queries used in the experiments reported by Luo et al. [2007b]. For the IMDb dataset, seven

out of the 22 queries originally proposed were replaced. This decision was made because these

queries refer to a table on film genres, and this table was not available in the sample of IMDb

obtained from Coffman and Weaver [2010b]. We then replaced these queries with equivalent

queries that mention person names instead. The remaining 15 queries were used without mod-

ification. For the DBLP dataset, two out of 18 queries were replaced because they do not have

results in the database. For the Mondial dataset, all 35 original queries were used.

51

INEX

Fourteen queries originally specified for the INEX 2011 challenge [INEX, 2011] that could be

applied for searching in relational databases. The other 29 queries from the challenge were

disregarded in our experiments, because they mentioned structural XML elements.

In total, we experimented with a total of 218 queries. An overview of our experimental query

sets ins presented in Table 8.2.

Dataset Number of Queries
Coffman-Weaver SPARK INEX Total

IMDb 42 22 14 78
Mondial 42 35 - 77

Wikipedia 45 - - 45
DBLP - 18 - 18

TOTAL 129 75 14 218

TABLE 8.2: Overview of our experimental query sets.

An important parameter that impacts CN generation is the number of keywords used in the

queries. In Table 8.3 we present the maximum and the average number of keywords used in the

queries of the query sets we experiment with. Considering all query sets, the average number

of keywords per query is 2.1 and the maximum is four. These number are indeed typical of

keyword queries posed by users in general.

Number of Keywords
Dataset Coffman-Weaver SPARK INEX

Max Avg Max Avg Max Avg
IMDb 4.00 2.00 3.00 2.31 4.00 2.42
Mondial 3.00 1.40 3.00 2.25 - -
Wikipedia 3.00 1.91 - - -
DBLP - - 4.00 2.68 - -

TABLE 8.3: Max and Avg number of keywords in the queries.

Notice that no specific query set was used for the TPC-H dataset. In fact, this dataset was used

only in performance and scalability experiments, in which several synthetic query sets were

used, allowing us to experiment with queries with much more keywords than those in the query

sets reported in Table 8.3.

52

8.5 Golden Standards

To verify the effectiveness of our CNRank algorithm and its impact on the evaluation of CNs, it

was necessary to use a set of relevant CNs and relevant JNTs for each of the tested queries. In

the case of the Coffman-Weaver query set, the set of relevant JNTs is provided for each query

in Coffman and Weaver [2010b]. To obtain the set of relevant CNs we simply took the CN that

generates each relevant JNTs.

In the case of the SPARK and INEX query sets, we obtained the golden sets using the following

procedure. For each query, we first, generated all CNs using the CNGen algorithm [Hristidis

and Papakonstantinou, 2002]. Then, we manually evaluated all CNs to determine the relevant

ones, which is how we obtained the CN golden sets. Next, we ran an SQL query based on each

CN and obtained the resulting JNTs. The JNT golden set of a query is, then, the set of all JNTs

generated by the CNs in its CN golden set.

8.6 Number of Relevant CNs

Our work is based on the hypothesis that the number of relevant CNs per query is typically

much lower than the number of all possible CNs. Using the golden sets we generated, we could

corroborate this hypothesis. In Table 8.4 we present the number of relevant CNs found per

query, considering all queries and each query set individually.

Query set 1 Relevant CN 2 Relevant CNs
Coffman-Weaver 129 100% - -

SPARK 45 60% 30 40%
INEX 14 100% - -
Total 188 86% 30 14%

TABLE 8.4: Number of relevant CNs per query.

Note that the maximum number of relevant CNs for any query is only two. In fact, all queries

that have two relevant CNs are from the SPARK query set. The vast majority of queries (86%

overall) have one single relevant CN. In the case of the Coffman-Weaver and INEX datasets,

all queries had a single relevant CN. In fact, many queries had one single JNT as an answer. In

Table 8.5, for each query set used, we compare the number of CNs generated with the number

of relevant CNs. In each case, we show the maximum (MAX) number and the average (AVG)

number of CNs.

Notice that number of relevant CNs is indeed much lower than the number of all CNs. There

are cases in which the number of relevant CNs is less than 0.1% of all CNs.

53

Datasets
Generated CNs / Relevant CNs

Coffman-Weaver SPARK INEX
MAX AVG MAX AVG MAX AVG

IMDb 62/1 18.0/1 42/2 25.9/1.5 163/1 33.4/1
Mondial 62/1 16.6/1 820/2 107.7/1.2

Wikipedia 102/1 23.0/1
DBLP 1531/2 255.8/1.6

TABLE 8.5: Generated CNs vs. Relevant CNs.

Chapter 9

Experiments with CN Generation

In this chapter, we report a comprehensive set of experiments performed using several databases

and query sets previously used in similar experiments reported in the literature. Our goal is to

analyze two aspects related to the process of CN generation we propose: first, the quality of the

set of CNs it produces, and, second, its performance and scalability. In addition, we also present

results on how the CNs generated by MatCNGen impact the results obtained by well-know CN

evaluation algorithms.

9.1 General Results

In this section we present numbers related to the volume of data handled while generating CNs.

As scalability has been mentioned as an important issue in processing keyword queries [Baid

et al., 2010], our goal here is to provide a perspective on how scalable is our method. These

numbers are useful for validating the assumptions we made when designing our method and to

explain the performance results we achieved.

Table 9.1 presents the maximum and the average number of query matches generated for each

pair of query sets/datasets. The number of query matches is potentially larger for databases with

many relations, as is the case in the Mondial dataset, and with many tuples as is the case in the

IMDb dataset (see Table 8.1). Still, the average number of matches for the 218 queries we used

is lower than 17.

As it can be observed, the number of query matches generated is small in most cases, with a few

exceptions. For instance, the query “South East” from the SPARK query set over the Mondial

dataset, yielded 208 query matches. Although this dataset is much smaller than the others, it

has the highest number of relations, 28, and it has an intricate Schema Graph, since its schema

54

55

Query Matches
Dataset Coffman-Weaver SPARK INEX

Max Avg Max Avg Max Avg
IMDb 69 9.10 45 17.57 123 22.28
Mondial 16 4.20 208 23.20 - -
Wikipedia 36 4.94 - - -
DBLP - - 6 2.00 - -

TABLE 9.1: Number of query matches generated.

includes more than 100 Referential Integrity Constraints (see Table 8.1). This raises the number

of ways tuple-sets can be combined to generate query matches.

In Figure 9.1, we compare the average number of CNs generated by our algorithms, SingleCN
and SteinerCN , and by the baseline CNGen. The implementation of CNGen [Hristidis and

Papakonstantinou, 2002] we used is available as part of the Efficient system [Hristidis et al.,

2003], which was kindly made available by its authors.

Notice that our algorithms generated, on average, 69% less CNs than CNGen in all configura-

tions of Query Sets and Datasets. This difference is very large in the case of DBLP, where they

generated less than 10% of the CNs generated by CNGen. The fact that our algorithms generate

less CNs than CNGen for all query sets with all databases was expected, since CNs are gener-

ated for each query match. Thus, the number of CNs is proportional to the number of query

matches for a given query. Obviously, this has a positive impact on the overall performance and

scalability, as discussed in Section 9.3. Interestingly, as we will discuss in detail in Section 9.2,

this smaller set of CNs is of high quality, yielding results at least as good as those obtained with

the larger number of CNs generated by CNGen.

9.2 Quality Results

In this section we study how our method impacts the quality of the results of processing key-

word queries. Our evaluation consists of measuring the quality of the output produced by the

Hybrid [Hristidis et al., 2003] and the Skyline Sweeping [Luo et al., 2007a] algorithms, when

taking as input the set of CNs generated by our algorithms. Both are a well-known algorithms

used for evaluating a set of CNs over a database, providing as results a set of joining networks

of tuples (JNT). The implementations we use here were kindly provided by their respective au-

thors. We report results obtained with four configurations: MatCNGen+SingleCN with Hybrid

(MCG+H), MatCNGen+SingleCN with Skyline Sweeping (MCG+SS),MatCNGen+SteinerCN

with Hybrid (SCG+H) and MatCNGen+SteinerCN with Skyline Sweeping (SCG+SS).

56

IMDb Wikipedia Mondial

Coffman−Weaver

Datasets

A
vg

 N
um

be
r

of
 C

N
s

0
5

10
15

20
25

30

CNGen
SteinerCN
SingleCN

IMDb Mondial DBLP

SPARK

Datasets

A
vg

 N
um

be
r

of
 C

N
s

0
50

10
0

15
0

20
0

25
0

CNGen
SteinerCN
SingleCN

IMDb

INEX

Datasets

A
vg

 N
um

be
r

of
 C

N
s

0
10

20
30

40
50

CNGen
SteinerCN
SingleCN

FIGURE 9.1: Average number of CNs generated for all query sets and datasets.

9.2.1 Quality Metrics

To evaluate the results produced by each system/configuration for each query set, we used the

well-know Mean Average Precision (MAP) metric [Baeza-Yates and Ribeiro-Neto, 1999]. Let

A be a ranking of the answers generated for a given keyword query Q. The Average Precision

(APQ) of this ranking is the average of the precision values calculated at each position k in

which there is a relevant JNT in A. That is, APQ =
∑n

k=1 P (k) × rel(k)/|R|, where n is the

number of JNTs considered from the ranking A (in our case, n = 1000), P (k) is the precision

at position k, rel(k) is 1 if the answer at position k is relevant or 0 otherwise, and R is the set

of know relevant JNTs for Q. Then, MAP value is the average of APQ, for all queries Q in a

given query set.

On the other hand, in all query sets there are some queries that have only one relevant JNT as

answer. For evaluating how each system handles these queries specifically, we used the MRR

57

(Mean Reciprocal Rank) metric [Baeza-Yates and Ribeiro-Neto, 1999], which is more adequate

for these cases. Given a keyword query Q, the value of RRQ, called Reciprocal Ranking, is

given by 1
K , where K is the rank position of the first relevant JNT. Then, the MRR value is

obtained for all queries in a query set is the average of RRQ, for all Q in the query set. In our

case, the MRR value indicates how close the correct JNT is from the first position of the ranking

generated by each system.

9.2.2 Results – Coffman-Weaver Query Set

In Coffman and Weaver [2010a] report results of quality experiments carried out with queries

from the query set they generated using several R-KwS systems previously presented in the

literature: BANKS [Aditya et al., 2002], DISCOVER [Hristidis and Papakonstantinou, 2002],

Efficient [Hristidis et al., 2003], Bi-directional [Kacholia et al., 2005], Effective [Liu et al.,

2006], DPBF [Ding et al., 2007], BLINKS [He et al., 2007], SPARK [Luo et al., 2007a] and

CD [Coffman and Weaver, 2010c]. These two authors gently provided us their results, along

with the set of relevant tuples that should be returned by each query, which were used as the

gold standard to measure the quality of the results obtained by each system. These resources

allowed us to compare our four configurations: MCG+H, MCG+SS, SCG+H and SCG+SS with

these systems.

The overall results for all queries of the Coffman-Weaver query set are presented in Figure 9.2

in terms of MAP. For this query set, 111 out of 129 keyword queries, have only one relevant

JNT as answer. The MRR values achieved by each system when processing these queries are

presented in Figure 9.3.

9.2.3 Results – Spark and INEX Query Sets

In the case of queries from the Spark and INEX query sets, we did not had access to the same

resources as for the Coffman-Weaver query set. Thus, we first generated the golden standards

for all queries of both datasets by ourselves, based on the query descriptions available. Then,

we run quality experiments using configurations obtained by coupling CNGen with Hybrid and

with Skyline Sweeping as baselines. Simply for the sake of symmetry, we named these config-

urations CNGen+H and CNGen+SS, respectively. Notice, however, that they in fact correspond

to systems DISCOVER [Hristidis and Papakonstantinou, 2002] and Efficient [Hristidis et al.,

2003], respectively.

The results are presented in Figure 9.4. The graph on the left presents the results in terms of

MAP achieved for all queries in each query set. The graph on the right presents the MRR results

58

IMDb

M
A

P

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BA
N

KS
D

IS
C

O
VE

R
Ef

fic
ie

nt
Bi

di
re

ct
io

na
l

Ef
fe

ct
iv

e
D

PB
F

BL
IN

KS
SP

AR
KS

C
D

M
C

G
+H

M
C

G
+S

S
SC

G
+H

SC
G

+S
S

Mondial

M
A

P

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BA
N

KS
D

IS
C

O
VE

R
Ef

fic
ie

nt
Bi

di
re

ct
io

na
l

Ef
fe

ct
iv

e
D

PB
F

BL
IN

KS
SP

AR
KS

C
D

M
C

G
+H

M
C

G
+S

S
SC

G
+H

SC
G

+S
S

Wikipedia

M
A

P

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BA
N

KS
D

IS
C

O
VE

R
Ef

fic
ie

nt
Bi

di
re

ct
io

na
l

Ef
fe

ct
iv

e
D

PB
F

BL
IN

KS
SP

AR
KS

C
D

M
C

G
+H

M
C

G
+S

S
SC

G
+H

SC
G

+S
S

FIGURE 9.2: MAP measured across the various systems and datasets for queries from
Coffman-Weaver.

achieved only for queries that return a single JNT as result. There were 63 of such queries for

the SPARK query set and 11 for the INEX query set.

9.2.4 Analysis

In the experiments with the Coffman-Weaver query set, the configurations based on MatCNGen

achieved the best results compared with the other methods in all datasets, with slight advantage

for the configuration that uses SkylineSweeping. For Mondial and Wikipedia, the MAP values

obtained by these configurations were much higher than the other systems. Only for the IMDB

dataset we observed a small gain in comparison to the third best result, obtained by DPBF.

59

IMDb

M
R

R

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BA
N

KS
D

IS
C

O
VE

R
Ef

fic
ie

nt
Bi

di
re

ct
io

na
l

Ef
fe

ct
iv

e
D

PB
F

BL
IN

KS
SP

AR
K

C
D

M
C

G
+H

M
C

G
+S

S
SC

G
+H

SC
G

+S
S

Mondial

M
R

R

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BA
N

KS
D

IS
C

O
VE

R
Ef

fic
ie

nt
Bi

di
re

ct
io

na
l

Ef
fe

ct
iv

e
D

PB
F

BL
IN

KS
SP

AR
K

C
D

M
C

G
+H

M
C

G
+S

S
SC

G
+H

SC
G

+S
S

Wikipedia

M
R

R

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BA
N

KS
D

IS
C

O
VE

R
Ef

fic
ie

nt
Bi

di
re

ct
io

na
l

Ef
fe

ct
iv

e
D

PB
F

BL
IN

KS
SP

AR
K

C
D

M
C

G
+H

M
C

G
+S

S
SC

G
+H

SC
G

+S
S

FIGURE 9.3: MRR results for each system for queries from Coffman-Weaver where exactly
one JNT is relevant.

In the case of the experiments with the SPARK and INEX query sets, again the configurations

based on MatCNGen presented better results, with slight advantage for MCG+SS, in compar-

ison with those achieved by configurations based on CNGen. In a single case, IMDb/SPARK,

MCG+SS outperformed MCG+H,SCG+H and SCG+SS in terms of MAP.

An important observation regarding the results obtained with all three query sets, across all

datasets, is that MatCNGen, in spite of generating less CNs than CNGen, led to the best quality

of results in all tests we performed. This corroborates our claims regarding the quality of the

CNs generated and their potential of positively impact in results produced by RwK-S systems.

60

IMDb/SPARK Mondial/SPARK DBLP/SPARK IMDb/INEX

M
A

P

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MCG+H
MCG+SS
SCG+H
SCG+SS
CNGen+H
CNGen+SS

IMDb/SPARK Mondial/SPARK DBLP/SPARK IMDb/INEX

M
R

R

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MCG+H
MCG+SS
SCG+H
SCG+SS
CNGen+H
CNGen+SS

FIGURE 9.4: MRR and MAP measured across the various systems and datasets for queries
from SPARK and INEX.

9.3 Performance and Scalability Results

In the experiments presented in this section, our goal was to verify the performance and the

scalability of our method for generating Candidate Networks as it is used in several other

works [Coffman and Weaver, 2010b]. We use as a baseline the implementation CNGen [Hris-

tidis and Papakonstantinou, 2002] available on the Efficient system [Hristidis et al., 2003]. To

the best of our knowledge, CNGen is still the state-of-the-art for Candidate Network generation,

as it is used in a number of papers [Coffman and Weaver, 2010c; Hristidis et al., 2003; Hristidis

and Papakonstantinou, 2002; Liu et al., 2006; Luo et al., 2007a]. As this implementation was

originally target to the ORACLE DBMS, we had to adapt it to work with PostgresSQL, which

we used in our implementations. Thus, all implementations tested run under exactly the same

operational conditions.

For these experiments, we used two different versions of MatCNGen: MatCNGen-Disk, called

MCG-D, in which the generation of tuples is carried out using the disk-based version of the TS-

Find algorithm (Figure 6.2); and MatCNGen-Mem, called MCG-M, which uses the counterpart

memory-based version (Figure 6.5).

9.3.1 Overall Results

Figure 9.5 compares, for all queries in each query set, the average time spent for generating the

corresponding Candidate Networks, using each implementation tested. Each bar in this graph

represents the average time spent by a given system for generating CNs for the queries of a

query set targeted to a dataset, as identified in the top of the graph. In each bar, we separate the

61

time it takes to generate the tuple-sets (e.g., CNGen/TS) from the time spent with the process of

constructing the CNs itself (e.g., CNGen/CN). This allowed us to separately assess the impact

in processing time due to each version of the TSFind algorithms, from the impact due to the

MatchCN algorithm, used for the task of obtaining CNs from match graphs. Notice that in the

case of MatchCN, the time also includes the generation of query matches. We report only the

results obtained with the SingleCN algorithm, but the results using SteinerCN follows a similar

trend.

Cof
fm

an
−W

ea
ve

r/I
M

Db

Cof
fm

an
−W

ea
ve

r/M
on

dia
l

Cof
fm

an
−W

ea
ve

r/W
iki

pe
dia

IN
EX/IM

Db

SPA
RK/D

BLP

SPA
RK/IM

Db

SPA
RK/M

on
dia

l

CNGen

M
CG−D

M
CG−M

CNGen

M
CG−D

M
CG−M

CNGen

M
CG−D

M
CG−M

CNGen

M
CG−D

M
CG−M

CNGen

M
CG−D

M
CG−M

CNGen

M
CG−D

M
CG−M

CNGen

M
CG−D

M
CG−M

0

5

10

15

0

5

10

15

20

0

10

20

30

40

50

0

5

10

15

20

0

1

2

3

4

0.0

2.5

5.0

7.5

0

5

10

15

A
ve

ra
ge

 T
im

e
 (

s) CNGen/CN

CNGen/TS

MCG−D/CN

MCG−D/TS

MCG−M/CN

MCG−M/TS

FIGURE 9.5: Average time to generate CNs using CNGen, MatCNGen-Disk (MCG-D) and
MatCNGen-Mem (MCG-M).

As it can be noticed, both MatCNGen implementations outperformed CNGen in all cases.

Specifically for the task of generating tuple-sets, MatCNGen-Disk is faster than CNGen, but,

of course, MatCNMen-Mem is by far faster than both. As expected, this advantage is greater

when dealing with datasets that have many relations, i.e., IMDb, Wikipedia and DBPL, since

potentially more tuple sets must be generated for each query.

Regarding the time to assemble CNs, as expected, the fact that the MatchCN algorithm builds

a singe CN for each query match resulted in a time improvement in all cases. This impact is

higher in the cases such as SPARK/DBLP, which has a few query matches (see Table 9.1), than

in cases in which many query matches exist, as in SPARK/Mondial.

9.3.2 Scalability with the Number of Keywords

A well-known drawback in current R-KwS systems is their scalability with the number of key-

words in queries. This issue has been studied in the literature [Baid et al., 2010; Markowetz

62

et al., 2007], since queries with a high number keywords usually cause an excessive memory

consumption.

In the experiments we reported so far, we have not faced this issue, since, as shown in Table 9.1,

the maximum number of keywords found in the query sets we used is four. Thus, to study

the behavior of our method when the number of keywords grows beyond this value, we had

to generate new query sets, as follows. For each dataset we randomly generated a load of 100

queries withK keywords, varyingK from one to ten. Each query was then submitted to CNGen

and MatCNGen and we measure time spent by each method to generate CNs. In the case of

MatCNGen, we have used only the MatCNGen-Mem, since this implementation demands much

more memory than MatCNGen-Disk. The results are shown in Figure 9.6. In Figure 9.6 (a)

and (b), each curve corresponds to queries issued over datasets IMDB, Mondial, Wikipedia and

TPCH, and each point corresponds to the average time spent with 100 queries for each value of

K.

The results for the DBLP dataset are shown separately in Figure 9.6 (c), where the Y axe (time)

is in log scale to accommodate the disparate scales of time values obtained with CNGen in

comparison to MatCNGen. In the case of CNGen, we observe a poor scalability. As show in

Figures 9.6 (b) and (c), the system could not process any query with more than seven keywords

with the computational setup used in the experiments, since the implementation we used crashed

after this. This same behavior was observed by the authors in Baid et al. [2010]. In fact, we

observed the same failures with many other queries from four keywords on. For instance, with

five keywords, about half of the queries caused the system to crash. In such case, we simply

removed this query from the time average. It is worth noticing that we observed no failures with

MatCNGen, whose actual times for all the queries are presented in Figure 9.6 (a) and (c). It must

be highlighted that although this experiment indicates that MatCNGen is able to handle queries

with a larger number of keywords, there is a consensus in the literature that queries with more

than four keywords are very unlikely and that very often queries have two or just one keyword.

9.3.3 Discussion

Previous work in the literature have reported that processing Keyword Queries over relational

databases has unpredictable running times, with certain queries taking too long to run or even

failing due to memory exhaustion [Baid et al., 2010] [Coffman and Weaver, 2010a]. Indeed, the

generation of Candidate Networks can be a costly operation regardless of the method used. For

instance, on average, the SPARK query set issued over the Mondial dataset took 1.51 seconds to

generate CNs using MatCNGen-Mem. Nevertheless, the memory-based version of our method

makes it viable to generate keyword queries on-line. For instance, CNGen took more than fifty

seconds, on the average, to generate the CNs for the queries over the DBLP dataset, which

63

1 2 3 4 5 6 7 8 9 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

● ● ● ●

●

●

●

●

●

●

Keywords

T
im

e(
s)

●

IMDb
Mondial
Wikipedia
Tpch

1 2 3 4 5 6 7 8 9 10

0
50

0
10

00
15

00
20

00
25

00
30

00

● ● ● ● ●

●

●

Keywords

T
im

e(
s)

●

IMDb
Mondial
Wikipedia
Tpch

(a) MatCNGen-Mem (b) CNGen

1 2 3 4 5 6 7 8 9 10

0.
01

1.
00

10
0.

00
10

00
0.

00
10

00
00

0.
00

●

●

● ●
●

●

●

Keywords

T
im

e(
s)

MatCNGen
CNGen

(c) DBLP

FIGURE 9.6: Average time spent to generate Candidate Networks when varying the number of
keywords.

can be too much for on-line applications. On the other hand, our memory version took about

0.5 seconds in this case. It is important to note that the significant performance gains we have

achieved do not compromise the quality of the results obtained, as discussed in Section 9.2.

Chapter 10

Experiments with CN Ranking

In this chapter we present experimental results on the effectiveness of our algorithms in the task

of ranking Candidate Networks given a keyword query. All the experiments in this chapter use

sets of Candidate Networks generated by the CNGen algorithm [Hristidis and Papakonstantinou,

2002] instead of the ones generated by our own algorithms. We decided to do so for two main

reasons. First of all, as we had already shown, CNGen generates much more CNs then our

algorithms. Thus, the task of ranking these CNs is considerably more difficult. Second, we

wanted to remark that CNRank is independent of our CN generation process, as it is from any

other CN generation method.

10.1 General Results

In Figure 10.1, we present an evaluation of the ranking produced by CNRank using the MRR

(Mean Reciprocal Rank) metric. Given a keyword query Q, the value of RRU is given by 1
Q ,

where Q is the rank position of the first relevant CN in the ranking. Then, the MRR obtained

for queries in a query set is the average of RRQ, for all Q in the query set. Intuitively, the MRR

metric measures how close relevant CNs are from the first position in the ranking generated by

CNRank.

In summary, the results in Figure 10.1 show that CNRank is able to place the relevant CNs in the

top positions of the rank, provided that CNGen generates this target CN. For five of the seven

combinations of query set/datasets, MRR values were above 0.9. In the two remaining cases,

MRR was also high: 0.81 for SPARK/IMDb and 0.82 for Coffman-Weaver/Wikipedia.

Next, we present in Figure 10.2 the precision levels achieved by CNRank using the P@K (pre-

cision at position K) metric. Given an keyword query U , the value of PU@K is one if the target

query for U appears in a position up to K in the ranking, and zero otherwise. P@K is the

64

65

FIGURE 10.1: MRR values achieved by CNRank.

average of PU@K, for all U in a query set. Figure 10.2 presents P@1 to P@4 results for all

query sets.

First of all, we observed that in all query sets, the correct answers was always among the top-4

positions in the ranking, since P@4 is one in all cases. Considering all queries, on average, P@1

is 0.83, which means that the CNRank very often assigns a relevant CN to the top-1 position.

Importantly, in all cases, P@1 was no lower than 0.63. Also, notice that P@2 is one in all

queries from the SPARK query set.

We noticed that in many cases the inherent ambiguity of certain queries was harmful to the

evaluation we adopted. For instance, for the query “fast food”, the information need statement

provided by INEX requires a movie in the answer. For this query, the CNRank algorithm placed

the CN that provides the required answer in the second position. However, we found out that

the CN assigned by CNRank to the first position, which retrieves a character instead, is also

plausible and provides a suitable answer.

10.2 Impact on CN Evaluation

As we have already shown, by using CNRank, we can drastically reduce the number of CNs

that are evaluated. That is, instead of evaluating tens or hundreds of CNs as in current R-KwS

66

1 2 3 4
Top CNs

P
re

ci
si

on
 a

t P
os

iti
on

 x

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

IMDb
Mondial
Wikipedia

1 2 3 4
Top CNs

P
re

ci
si

on
 a

t P
os

iti
on

 x

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 IMDb

Mondial
DBLP

(a) (b))

1 2 3 4
Top CNs

P
re

ci
si

on
 a

t P
os

iti
on

 x

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 IMDb

(c)

FIGURE 10.2: P@k values achieved by CNRanking on Coffman-Weaver (a) SPARK (b) and
INEX (c).

systems, only a few top CNs selected using CNRank need to be evaluated. In this section we

show experiments we performed to verify the impact of using only a few top CNs in evaluating

CNs to produce the JNTs that comprise the answer for an unstructured query.

For this experiment, two distinct evaluation algorithms were used, namely, Hybrid [Hristidis

et al., 2003] and Skyline-Sweeping [Luo et al., 2007a]. These evaluation algorithms were the

best among those proposed in their respective papers and are highly representative of the state of

the art in CN evaluation. We compared the results obtained by each algorithm in three different

configurations considering the input they receive: (1) all generated CNs, identified respectively

as “Hybrid” and “Skyline”; (2) only the top-4 CNs selected with CNRank, identified respectively

67

as “HybRank4” and “SSRank4”; and (3) only the top-1 CN selected with CNRank, identified re-

spectively as “HybRank1” and “SSRank1”. The decision of using the top-4 CNs was suggested

by the results from Figure 10.2, where we have shown that the relevant CNs were among the

top-4 CNs ranked by CNRank. In Figure 10.3, we present a comparison of the results obtained

with each of these configurations using the MRR metric.The MRR values were calculated in a

way similar to that described above for evaluating CNs, but this time we applied it to evaluating

the ranking of JNTs.

FIGURE 10.3: Effect of CNRank on CN evaluation in terms of MRR.

The graph in Figure 10.3 shows that using CNRank yields high MRR values in all query sets.

Indeed, these values are much higher than the values obtained without CNRank. This corrob-

orates our claims regarding the positive impact of using CNRank in CN evaluation. This was

observed for both Hybrid and Skyline-Sweeping, which suggests that CNRank can improve the

results of any CN evaluation algorithm. Indeed, this occurs due to the fact that now the CN

evaluation algorithm receive only those CNs that are likely to produce relevant JNTs.

Notice that the configurations that use top-4 CNs achieved better results than the top-1 configu-

rations. This is expected, since top-1 configurations may miss relevant CNs. Nevertheless, the

top-1 configurations performed better than the baselines. Incidentally, notice that the Skyline-

Sweeping performed better than the Hybrid algorithm. However, their counterparts that use

CNRank provided very similar results.

Coffman and Weaver [2010a] performed similar experiments also using the MRR metric. In

this case, however, the authors only used queries that returned a single JNT as results. The goal

was to evaluate how well this single-answer JNT is placed in the ranking. We also ran this same

experiment with the configurations we implemented. To distinguish this metric, which applies to

a single answer, from the one used in Figure 10.3, which applies to multiple answers as well, we

called this metric SMRR. The result of this experiment is presented in Figure 10.4. Performing

this experiment allowed us to compare our results with those obtained by a number of other

R-KwS systems evaluated by Coffman and Weaver [2010a],and whose detailed numbers were

generously provided by its authors. This includes not only systems based on the Schema Graph

68

approach, i.e., DISCOVER [Hristidis and Papakonstantinou, 2002], Efficient [Hristidis et al.,

2003], Bidirectional [Kacholia et al., 2005], Effective [Liu et al., 2006], and CD [Coffman and

Weaver, 2010c], but also in systems based on the Data Graph approach, i.e., BANKS [Aditya

et al., 2002], DPBF [Ding et al., 2007] and BLINKS [He et al., 2007]. In this case, all results are

from the Coffman-Weaver query set, which was the only one used in the experiments reported

by Coffman and Weaver [2010a].

IMDb Mondial Wikipedia

M
ea

n
R

ec
ip

ro
ca

l R
an

k
−

S
in

gl
e

A
ns

w
er

 (
S

M
R

R
)

0.0

0.2

0.4

0.6

0.8

1.0

HybRank4
HybRank1
SSRank4
SSRank1
Hybrid
Skyline
BANKS
DISCOVER
Bidirectional
Effective
DPBF
BLINKS
CD

FIGURE 10.4: Impact of CNRank. SMRR on Coffman-Weaver query set.

Again, the configurations based on CNRank provided superior values of SMRR, with a slight

advantage to configurations that receive top-4 CNs. These configurations had results equal to

the best system in each dataset, that is, BANKS in IMDb, Bidirectional in Mondial and CD in

Wikipedia. It should be noted that none of the tested system performed consistently well across

all datasets. However, such a trend was observed in all CNRank-based configurations.

To evaluate the impact of CNRank in the overall quality of the ranking, we used the MAP (Mean

Average Precision). Let A be a ranking of JNTs generated for a given keyword query U . The

Average Precision (APU) of this ranking is the average of the precision values calculated at each

position k in which there is a relevant JNT in A. That is, APU =
∑n

k=1 P (k) × rel(k)/|R|,
where n is the number of JNT considered from the ranking A (in our case, n = 1000), P (k) is

the precision at position k, rel(k) is one if the answer at position k is relevant or zero otherwise,

and R is the set of known relevant answers for U . Then, the Mean Average Precision (MAP) is

the average of APU , for all U in a query set.

In Figure 10.5, we present the MAP values obtained with the configurations we implemented.

Again, for the case of the Coffman-Weaver query set, it was possible to compare our results with

those reported by Coffman and Weaver [2010a], as shown in Figure 10.5 (right).

The MAP results in Figure 10.5 reveal that CNRank also affects the global ranking quality

in all tested scenarios. Again, the CNRank-based configurations consistently achieved better

69

SPARK
IMDb

SPARK
Mondial

SPARK
DBLP

INEX
IMDb

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

 (
M

A
P

)

0.0

0.2

0.4

0.6

0.8

1.0

HybRank4
HybRank1
SSRank4
SSRank1
Hybrid
Skyline

IMDb Mondial Wikipedia

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

 (
M

A
P

)

0.0

0.2

0.4

0.6

0.8

1.0

HybRank4
HybRank1
SSRank4
SSRank1
BANKS
DISCOVER
Efficient
Bidirectional
Effective
DPBF
BLINKS
SPARK
CD

FIGURE 10.5: Impact of CNRank on CN evaluation in terms of MAP – SPARK and INEX
(left), Coffman-Weaver (right).

results across different query sets and datasets, compared to all previously proposed methods

considered.

10.3 Impact on Performance

An important question regarding introducing CNRank in the processing of keyword queries in

R-KwS systems is how it affects their performance. In Figure 10.6 we present, for each query

set/dataset pair, the average time spent processing a keyword query. In the case of ”Hybrid” and

”Skyline” configurations, this time includes the generation and evaluation of CNs. In the case

of ”HybRank4”, ”SSRank4”, ”HybRank1” and ”SSRank1” this time also includes the ranking

of CNs performed by CNRank. The graph in Figure 10.6(left) includes all query set/dataset

pairs, except for SPARK/DBLP, whose values required a different scale. We decided to show

this result in a separate graph in Figure 10.6(right).

Figure 10.6 shows that, as expected, CNRank also positively affects performance. Obviously, it

is due to the fact that CN evaluation algorithms now have much less CNs to handle. Also, these

graphs show that the process of ranking CNs introduced between the generation and evaluation

of CNs does not imply any significant overhead to the whole process.

We wish to point out that the Skyline-Sweeping algorithm performed better than Hybrid, which

is consistent with the results presented by Luo et al. [2007a]. This trend was also observed, on

a smaller scale, in the CNRank-based configurations that use each algorithm.

70

Coffman
IMDb

Coffman
Mondial

Coffman
Wikipedia

SPARK
IMDb

SPARK
Mondial

INEX
IMDb

A
vg

 Q
ue

ry
 P

ro
ce

ss
in

g
(s

)

0

50

100

150

200
SSRank1
SSRank4
HybRank1
HybRank4
SkylineSweep
Hybrid

SPARK/DBLP

A
vg

 Q
ue

ry
 P

ro
ce

ss
in

g
(s

)

0

500

1000

1500

2000

2500
SSRank1
SSRank4
HybRank1
HybRank4
SkylineSweep
Hybrid

FIGURE 10.6: Impact of CNRank on CN evaluation – Performance.

Interestingly, we did not observe a significant advantage, in terms of performance, of the con-

figurations that use only the top-1 CN over those that use top-4 CNs. This suggests that top-4

CN configurations, which in the previous experiments resulted in a better ranking in terms of

quality, are preferable.

Chapter 11

Conclusions and Future Work

11.1 Conclusions

In this thesis we presented two contributions for the general problem of processing keyword

queries over relational databases by means of Candidate Networks (CNs). First, we presented a

novel approach we have developed for generating CNs. Our approach, called Matching Graph

Induced-based of Candidate Network Generation, or MatCNGen, enabled the development of

efficient and effective algorithms that are able to generate a compact, but optimized set of CNs

that lead to superior quality answers, while demanding less resources in terms of processing

time and memory used.

As our second main contribution we proposed an approach for ranking CNs. Our motivation

for this approach comes from evidences we collected, and also reported here, that, although the

number of possible CNs can be very high, only very few of them in fact produce answers relevant

to the user and are indeed worth processing. In comparison to traditional R-KwS systems that

process all possible CNs, processing only top-ranked CNs yields to improve not only the time it

takes to return answers and but also the quality of the answers retrieved.

Our claims are supported by a comprehensive set of experiments we carried out using several

query sets and datasets previously used by other works. In particular, we have shown that our

approach makes it viable for R-KwS system processing of keyword queries in a on-line setting.

So far, previous work in the literature have reported this task had unpredictable running times,

with certain queries taking too long to run or even failing due to memory exhaustion.

71

72

11.2 Future Work

Although the results we reached corroborate our initial claims and are very promising towards

the implementation of scalable R-KwS systems, there are several research directions yet to be

explored and that are probably out of the scope of this thesis. We list below some of the topics

we could identify so far, in no particular order.

• Supporting structural references in keyword queries. Currently, we only consider

keywords which refer to database instances (i.e., contents). It would be interesting to

consider cases in which the user may have some knowledge of the schema, while she is

specifying the keywords. Specifically, the names of some attributes may be known or are

easy to guess. In this case, queries might include such structural hints as done by Cohen

et al. [2003] and this could be used to further improve our results, both in CNs generation

and CN ranking.

• Addressing CN evaluation. The bayesian framework we used to rank CNs can be also

used to rank the tuple networks that result from evaluating the CNs against a database in-

stance. This has been already experimented for a similar task in LABRADOR [Mesquita

et al., 2007]. Thus, a possible future work is to adapt our bayesian network to deal with

generic tuples of network, and to compare this approach to previous methods in the liter-

ature for CN evaluation.

• Considering alternative query semantics. Currently, both methods we presented as-

sume that queries use an “AND” semantics. However, our approach for generating CNs

make it plausible to also handle alternative semantics. A natural candidate would be, of

course, the “OR” semantics, but a more interesting semantics for our context might be the

so-called “zero-recall” semantics [Singh et al., 2011]. In this semantics, a query is initially

assumed to have an “AND” semantics, but if it returns no result, the query is rewritten by

removing some of its terms, so that some meaningfull can be obtained.

• Considering alternative weighting schemes. Currently, our weighting scheme used for

calculating CN scores for ranking is based only on features related to the lexical proper-

ties of the atributes, i.e., on measuring which terms are more representative for a given

attribute. Although we have achieved good results with this scheme, it would be interest-

ing to investigate other weighting schemes based on other features. We list some of them

below:

– The relative and absolute position of keywords in the query. This feature has been

extensively used in the context of information extraction [Cortez et al., 2010, 2011]

and query structuring [Li et al., 2009; Sarkas et al., 2010], and could be also con-

sidered in the context of our target problems.

73

– Statistics on key/foreign key instances. These statistics may indicate that certain arcs

in the schema graph are more likely to be observed in actual data than others, and

this information can be used for enhancing the ranking of CNs.

– User preferences towards certain attributes. In certain settings, users may prefer

some attributes over the others. These preferences may explicitly declared or in-

ferred from query logs and can also be used in the ranking model.

• Using alternative approaches to the Bayesian Framework. Another possible future

line of investigation is exploring alternatives to the Bayesian framework for combining the

individual probabilities estimated for the attributes. This line is particularly interesting if

the number of features to consider increases, as suggested above. In this case, we believe

that approaches based on machine learning are worth being considered.

• Alternative approximated algorithms for Steiner trees. We have used a specific ap-

proximation algorithm to compute Minimal Steiner Tress. However, there are other alter-

natives in the literature that could be explored and compared with the one we currently

use.

• Enabling keyword queries in a DBMS. Our algorithms can be used to allowing the

processing of keyword queries directly into a DBMS. A number of benefits may arise from

such an implementation. Among them we cite: inherent availability of DBMS resources

(e.g., ACID properties, optimization for query processing, etc.), potential improvement

in performance due to the tighter coupling between our methods and the DBMS; natural

portability of our methods to the same platforms as the DBMS; use of statistics already

collect by DBMS components and the possibility of using triggers to maintaining the

indexes used by our methods.

Bibliography

Aditya, B., Bhalotia, G., Chakrabarti, S., Hulgeri, A., Nakhe, C., Parag, P., and Sudarshan, S.

(2002). Banks: Browsing and keyword searching in relational databases. In Proceedings

of the 28th International Conference on Very Large Data Bases, pages 1083–1086. VLDB

Endowment.

Agrawal, S., Chaudhuri, S., and Das, G. (2002). DBXplorer: A system for keyword-based

search over relational databases. In Proceedings of the 18th International Conference on

Data Engineering, pages 5–, Washington, DC, USA. IEEE Computer Society.

Baeza-Yates, R. A. and Ribeiro-Neto, B. (1999). Modern Information Retrieval. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Baeza-Yates, R. A. and Ribeiro-Neto, B. A. (2011). Modern Information Retrieval - the concepts

and technology behind search. Pearson Education Ltd., Harlow, England, 2nd edition.

Baid, A., Rae, I., Li, J., Doan, A., and Naughton, J. (2010). Toward scalable keyword search

over relational data. Proceedings of the VLDB Endowment, 3(1-2):140–149.

Bao, Z., Zeng, Y., Jagadish, H., and Ling, T. W. (2015). Exploratory keyword search with

interactive input. In Proceedings of the 2015 ACM SIGMOD International Conference on

Management of Data, pages 871–876, New York, NY, USA. ACM.

Barros, E. G., Laender, A. H. F., Moro, M. M., and da Silva, A. S. (2016). Lca-based algorithms

for efficiently processing multiple keyword queries over XML streams. Data and Knowledge

Engineering, 103:1–18.

Barros, E. G., Moro, M. M., and Laender, A. H. F. (2010). An Evaluation Study of Search

Algorithms for XML Streams. Journal of Information and Data Management, 1(3):487–502.

Coffman, J. and Weaver, A. C. (2010a). A framework for evaluating database keyword search

strategies. In Proceedings of the 19th ACM International Conference on Information and

Knowledge Management, pages 729–738, New York, NY, USA. ACM.

Coffman, J. and Weaver, A. C. (2010b). Relational keyword search benchmark.

http://www.cs.virginia.edu/ jmc7tp/resources.php.

74

75

Coffman, J. and Weaver, A. C. (2010c). Structured data retrieval using cover density ranking.

In Proceedings of the 2Nd International Workshop on Keyword Search on Structured Data,

pages 1:1–1:6, New York, NY, USA. ACM.

Cohen, S., Mamou, J., Kanza, Y., and Sagiv, Y. (2003). Xsearch: A semantic search engine for

xml. In Proceedings of the 29th International Conference on Very Large Data Bases - Volume

29, pages 45–56. VLDB Endowment.

Cortez, E., da Silva, A. S., Gonçalves, M. A., and de Moura, E. S. (2010). Ondux: on-demand

unsupervised learning for information extraction. In SIGMOD Conference, pages 807–818.

Cortez, E., Oliveira, D., da Silva, A. S., de Moura, E. S., and Laender, A. H. (2011). Joint

unsupervised structure discovery and information extraction. In Proceedings of the 2011 ACM

SIGMOD International Conference on Management of Data, pages 541–552, New York, NY,

USA. ACM.

Cyganiak, R. (2007). Benchmarking D2RQ v0.1.

da C. Hummel, F., da Silva, A. S., Moro, M. M., and Laender, A. H. F. (2011). Multiple

keyword-based queries over xml streams. In Conference on Information and Knowledge

Management, pages 1577–1582.

de Oliveira, P., da Silva, A., and de Moura, E. (2015). Ranking candidate networks of rela-

tions to improve keyword search over relational databases. In 2015 IEEE 31st International

Conference on Data Engineering, pages 399–410.

Diestel, R. (2012). Graph Theory. Springer, 4th edition.

Ding, B., Yu, J. X., Wang, S., Qin, L., Zhang, X., and Lin, X. (2007). Finding top-k min-

cost connected trees in databases. In 2007 IEEE 23rd International Conference on Data

Engineering, pages 836–845.

Dreyfus, S. E. and Wagner, R. A. (1971). The steiner problem in graphs. Networks, 1(3):195–

207.

He, H., Wang, H., Yang, J., and Yu, P. S. (2007). Blinks: Ranked keyword searches on graphs. In

Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data,

pages 305–316, New York, NY, USA. ACM.

Hearne, T. and Wagner, C. (1973). Minimal covers of finite sets. Discrete Mathematics, 5:247–

251.

Hristidis, V., Gravano, L., and Papakonstantinou, Y. (2003). Efficient ir-style keyword search

over relational databases. In Proceedings of the 29th International Conference on Very Large

Data Bases - Volume 29, pages 850–861. VLDB Endowment.

76

Hristidis, V. and Papakonstantinou, Y. (2002). Discover: Keyword search in relational databases.

In Proceedings of the 28th International Conference on Very Large Data Bases, pages 670–

681. VLDB Endowment.

Huang, F., Li, J., Lu, J., Ling, T. W., and Dong, Z. (2015). Pandasearch: A fine-grained academic

search engine for research documents. In 2015 IEEE 31st International Conference on Data

Engineering, pages 1408–1411.

INEX (2011). INitiative for the Evaluation of XML Retrieval (INEX).

Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R., and Karambelkar, H. (2005).

Bidirectional expansion for keyword search on graph databases. In Proceedings of the 31st

International Conference on Very Large Data Bases, pages 505–516. VLDB Endowment.

Le, T. N. and Ling, T. W. (2016). Survey on keyword search over xml documents. SIGMOD

Record, 45(3):17–28.

Li, X., Wang, Y.-Y., and Acero, A. (2009). Extracting structured information from user queries

with semi-supervised conditional random fields. In Proceedings of the 32nd International

ACM SIGIR Conference on Research and Development in Information Retrieval, pages 572–

579, New York, NY, USA. ACM.

Liu, F., Yu, C., Meng, W., and Chowdhury, A. (2006). Effective keyword search in relational

databases. In Proceedings of the 2006 ACM SIGMOD International Conference on Manage-

ment of Data, pages 563–574, New York, NY, USA. ACM.

Liu, Z. and Chen, Y. (2011). Processing keyword search on xml: a survey. World Wide Web,

14(5):671–707.

Liu, Z. and Cher, Y. (2008). Reasoning and identifying relevant matches for xml keyword search.

Proceedings of the VLDB Endowment, 1(1):921–932.

Luo, Y., Lin, X., Wang, W., and Zhou, X. (2007a). Spark: Top-k keyword query in relational

databases. In Proceedings of the 2007 ACM SIGMOD International Conference on Manage-

ment of Data, pages 115–126, New York, NY, USA. ACM.

Luo, Y., Lin, X., Wang, W., and Zhou, X. (2007b). SPARK: top-k keyword query in relational

databases.technical report unsw-cse-tr-0708. In Proceedings of the 2007 ACM SIGMOD In-

ternational Conference on Management of data, pages 1–18.

Markowetz, A., Yang, Y., and Papadias, D. (2007). Keyword search on relational data streams.

In Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data,

pages 605–616, New York, NY, USA. ACM.

77

Mesquita, F., da Silva, A. S., de Moura, E. S., Calado, P., and Laender, A. H. F. (2007). Labrador:

Efficiently publishing relational databases on the web by using keyword-based query inter-

faces. Information Processing and Management: an International Journal, 43(4):983–1004.

Nandi, A. and Jagadish, H. V. (2009). Qunits: queried units in database search. Computing

Research Repository, abs/0909.1765:20.

Ribeiro, B. A. N. and Muntz, R. (1996). A belief network model for ir. In Proceedings of the 19th

Annual International ACM SIGIR Conference on Research and Development in Information

Retrieval, pages 253–260, New York, NY, USA. ACM.

Sarkas, N., Paparizos, S., and Tsaparas, P. (2010). Structured annotations of web queries. In

Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data,

pages 771–782, New York, NY, USA. ACM.

Singh, G., Parikh, N., and Sundaresn, N. (2011). User behavior in zero-recall ecommerce

queries. In Proceedings of the 34th International ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 75–84, New York, NY, USA. ACM.

Sun, C., Chan, C.-Y., and Goenka, A. K. (2007). Multiway slca-based keyword search in xml

data. In Proceedings of the 16th International Conference on World Wide Web, pages 1043–

1052, New York, NY, USA. ACM.

Takahashi, H. and Matsuyama, A. (1980). An approximate solution for the steiner problem in

graphs. Math Japonica, 24:573–577.

Tian, Z., Lu, J., and Li, D. (2011). A Survey on XML Keyword Search, pages 460–471. Springer

Berlin Heidelberg, Berlin, Heidelberg.

Vagena, Z., Colby, L., Özcan, F., Balmin, A., and Li, Q. (2007). On the Effectiveness of Flex-

ible Querying Heuristics for XML Data, pages 77–91. Springer Berlin Heidelberg, Berlin,

Heidelberg.

Vagena, Z. and Moro, M. M. (2008). Semantic Search over XML Document Streams. In

DATAX (International Workshop on Database Technologies for Handling XML Information

on the Web).

Wu, X. and Theodoratos, D. (2013). A survey on xml streaming evaluation techniques. The

VLDB Journal, 22(2):177–202.

Xu, Y. and Papakonstantinou, Y. (2008). Efficient lca based keyword search in xml data. In Pro-

ceedings of the 11th International Conference on Extending Database Technology: Advances

in Database Technology, pages 535–546, New York, NY, USA. ACM.

Yu, J. X., Qin, L., and Chang, L. (2010). Keyword search in databases.

78

Zaki, M. J. (2000). Scalable algorithms for association mining. IEEE Transactions on Knowl-

edge and Data Engineering, 12(3):372–390.

Zhou, R., Liu, C., and Li, J. (2010). Fast elca computation for keyword queries on xml data. In

Proceedings of the 13th International Conference on Extending Database Technology, pages

549–560, New York, NY, USA. ACM.

	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Match-Based Candidate Network Generation
	1.2 Ranking Candidate Networks
	1.3 Thesis Organization

	2 Background and Related Work
	2.0.1 Schema Graph R-KwS Systems
	2.1 Basic Concepts and Terminology

	3 Overview of Our Contributions
	3.1 Tuple-sets Finding
	3.2 Query Matches Generation
	3.3 Candidate Network Building
	3.4 Ranking of Candidate Network

	4 Inducing Schema Subgraphs
	4.1 Query Matches
	4.2 Obtaining Query Matches
	4.3 Induced Schema Subgraphs

	5 Generation of Candidate Networks
	5.1 General Procedure
	5.2 The SingleCN Algorithm
	5.3 The SteinerCN Algorithm
	5.3.1 Concepts
	5.3.2 Minimum Steiner Trees
	5.3.3 Algorithm

	5.4 Comparison between MatchCN and CNGen

	6 Efficient Finding of Tuple-sets
	6.1 Motivation
	6.2 TSFind Algorithm
	6.3 Using an In-Memory Index

	7 Ranking Candidate Networks
	7.1 Algebraic Representation of CNs
	7.2 Probabilistic Ranking Model
	7.3 Final Ranking Equation
	7.4 Term Index
	7.5 Ranking Algorithm

	8 Experimental Setup
	8.1 Hardware
	8.2 Baselines
	8.3 Datasets
	8.4 Query Sets
	8.5 Golden Standards
	8.6 Number of Relevant CNs

	9 Experiments with CN Generation
	9.1 General Results
	9.2 Quality Results
	9.2.1 Quality Metrics
	9.2.2 Results – Coffman-Weaver Query Set
	9.2.3 Results – Spark and INEX Query Sets
	9.2.4 Analysis

	9.3 Performance and Scalability Results
	9.3.1 Overall Results
	9.3.2 Scalability with the Number of Keywords
	9.3.3 Discussion

	10 Experiments with CN Ranking
	10.1 General Results
	10.2 Impact on CN Evaluation
	10.3 Impact on Performance

	11 Conclusions and Future Work
	11.1 Conclusions
	11.2 Future Work

	Bibliography

