
Federal University of Amazonas – UFAM

Institute of Computing – ICOMP

Graduate Program in Informatics – PPGI

Scheduling Hard Real-Time Tasks in Heterogeneous Multiprocessor Platforms
subject to Energy and Temperature Constraints

Eduardo Bezerra Valentin

Manaus – AM

September, 2017

i

Eduardo Bezerra Valentin

Scheduling Hard Real-Time Tasks in Heterogeneous Multiprocessor Platforms subject to
Energy and Temperature Constraints

A thesis submitted to the Graduate Program
in Informatics of the Institute of Comput-
ing of the Federal University of Amazonas
in partial fulfillment of requirements for the
degree of Doctor of Sciences. Concentration
area: Embedded Systems and Software Engi-
neering

Supervisor: Raimundo Barreto, D.Sc.
Co-Supervisor: Rosiane de Freitas, D.Sc.

Manaus – AM

September, 2017

Ficha Catalográfica

V156s Scheduling Hard Real-Time Tasks in Heterogeneous
Multiprocessor Platforms subject to Energy and Temperature
Constraints / Eduardo Bezerra Valentin. 2017
 154 f.: il. color; 31 cm.

 Orientador: Raimundo Barreto
 Coorientadora: Rosiane de Freitas
 Tese (Doutorado em Informática) - Universidade Federal do
Amazonas.

 1. scheduling. 2. hard real-time. 3. integer linear programming. 4.
heterogeneous systems. 5. energy constraints. I. Barreto,
Raimundo II. Universidade Federal do Amazonas III. Título

Ficha catalográfica elaborada automaticamente de acordo com os dados fornecidos pelo(a) autor(a).

Valentin, Eduardo Bezerra

iv

To all computer engineers who
might be using a scope to measure voltage wave form.

v

Acknowledgments

“And let steadfastness have its
full effect, that you may be
perfect and complete, lacking in
nothing.”

James 1:4

This has been a difficult, but joyful, journey which I have had God’s help to this
very day. I know that on every obstacle that I thought too hard to cross, He has given
me strength and perseverance. Therefore, I thank God, for blessing me with the patience,
the intelligence, and the ability to complete this work. My life belongs to Him.

I want to say thank you to my wife, Belisa Magalhães, Bela, for the true love.
She was the one to first believe and trigger the motivation in me to start this journey.
Thanks to Bela for the discussions about research challenges and researcher’s life and
role. Thanks for listening about my research, even when the subject was not of interest.
For sure, without her support, patience, and care I would not completed this work. To
my kids, Ed and Estela, thanks for giving up the time with Dad, so he could work. Many
thanks to my family, in special to my mother, Fátima, for her love, care, attention, and
understanding; to my father, Edson (in memorian) and my brothers, Fábio and Milton
(in memorian), for their valuable contribution to my education.

Many thanks to my advisor, professor Raimundo Barreto. One would say I could
have done this work anywhere I pleased, and I chose to follow an example of steadfastness.
Thanks for the understanding, support, guidance, focus, invested time, and believing in
my work. Thanks for sharing with me a little of the challenges of conducting successful
research in the Amazon region of Brazil. Perhaps, one day, I too will be an eagle.

I wish many thanks to my co-advisor, professor Rosiane de Freitas. Thanks for the
patience to walk me through the world of combinatorial optimization. Thanks for always
having insights and showing me different perspectives of the same problem.

Thanks to all colleagues from GISE research group. Thanks to all friends, staff
members, and professors at ICOMP/UFAM. Thanks for the partial financial support
provided by SOBRAPO, FAPEAM, and CAPES.

vii

“Computers may be thought of
as engines for transforming free
energy into waste heat and
mathematical work”

Charles H. Bennett, 1981

ix

Abstract
The power wall is a barrier to improvement in the processor design process due to the
power consumption of components. The production of energy optimum systems demands
knowledge of different disciplines. The usage of heterogeneous multicore platforms is ap-
pealing for recent applications, e.g., hard real-time systems. The motivation is the poten-
tial reduced energy consumption offered by such platforms. Hard real-time systems are
present in life critical environments. Reducing the energy consumption on such systems
is an onerous process. Scheduling becomes particularly challenging to improve system
utilization and minimize system energy consumption and peak temperature on such plat-
forms, specially subject to hard real-time constraints.

Therefore, we propose a study to effectively answer the pertinent research question: “How
to offer users timing correctness and guarantees of hard real-time systems executed on het-
erogeneous multicore systems with energy and temperature constraints?”. Finding optimal
solutions for such question has still several open research questions.

The main aim of this thesis is to propose an energy optimization method for hard real-
time system on heterogeneous multicore platform demonstrating that it is possible to timely
compute timing correctness and guarantees using a sufficient and necessary condition; ac-
counting for energy, temperature, preemption, precedence, shared resources constraints,
and architectural interference. The proposal is a two fold approach. First, we investigate
the process of finding the optimal task to core and frequency to task processes by means
of applying exact schedulability tests for heterogeneous multicore platforms. Second, the
outcome of the optimization analysis shall be used as reference to the on-line scheduler.
We believe that we have achieved the main objective of this research by combining: (a)
schedulability analysis from hard real-time systems, (b) representative mathematical for-
mulations, based on integer linear programming, covering modern processors technological
characteristics and using a classical combinatorial mathematical formulation (Multilevel
Generalized Assignment Problem), and (c) robust exact implicit enumeration algorithmic
strategies from combinatorial optimization, such as branch-and-cut and branch-and-price.

The systematic literature review in the research subject reveals that the field has open
questions to be answered. For instance, to the knowledge of the author only five works
in the state-of-the-art literature deal with the problem by providing optimal solutions.
Typically, the existing approaches focus on either heuristics or approximation algorithms.
Also, only one work has a proposal to evaluate the schedulability in this scenario with
an exact test. The typical formulation in the specialized literature is a 0/1 integer linear
programming model which considers a continuous processor frequency domain and deter-
mines a single operating frequency per processor. One of the hypotheses tested in this
research is: stronger feasibility analysis offers tighter bounds for the problem. We believe

x

that this can be observed, for example, in the results produced by solvers for fixed priority
schedulers, by means of an analysis based on a comparative study. By applying less accu-
rate schedulability tests, such as utilization based, the solvers take longer to converge to
optimal solutions, when compared to solvers that apply exact schedulability tests based
on response time analysis. Another hypothesis tested in this research is: practical instances
of the problem are timely solvable to optimal. We have experimented, by means of a com-
parative study, on finding feasible solutions for workload for fixed priority schedulers with
up to 50 tasks distributed on four processors with seven different available frequencies. On
independent hard real-time tasks scheduled using EDF policy, we found optimal distribu-
tion of up to 90 tasks on four processors with seven different available frequencies. In both
cases, the solutions were found within 30 min of execution time. Similarly, on dependent
tasks workload, we have optimally distributed 22 tasks, from an automotive control hard
real-time application, on four processors with seven different available frequencies, with
two shared resources and 23 precedence constraints within 1.5 h. We consider a few hours
in the design phase a price worth paying in this context.

Key-words: scheduling, hard real-time, integer linear programming, MGAP, energy con-
straints, heterogeneous systems.

xi

List of Figures

Figure 1 – Overall EOSS architecture . 9
Figure 2 – Example of periodic task execution. Each instance comes in a regular

period of 20 ms . 13
Figure 3 – Full Chip platform: In this example, all four processors, 𝐶𝑃𝑈0, 𝐶𝑃𝑈1,

𝐶𝑃𝑈2, and 𝐶𝑃𝑈3, in the same chip share the same power source, 𝑉𝑑𝑑 . 17
Figure 4 – Per Core platform: 𝐶𝑃𝑈0, 𝐶𝑃𝑈1, 𝐶𝑃𝑈2, and 𝐶𝑃𝑈3 have their own

power source, 𝑉 0
𝑑𝑑, 𝑉 1

𝑑𝑑, 𝑉 2
𝑑𝑑, 𝑉 3

𝑑𝑑, and 𝑉 4
𝑑𝑑, respectively 17

Figure 5 – Cluster Based Multi-Core platform: the power lines group the cores in
the chip. The power source 𝑉 0

𝑑𝑑 powers 𝐶𝑃𝑈0 and 𝐶𝑃𝑈1; whereas the
power source 𝑉 1

𝑑𝑑 powers 𝐶𝑃𝑈2 and 𝐶𝑃𝑈3 18
Figure 6 – Example of convex function . 19
Figure 7 – Analysis of the influence of EA parameters on the EA execution time

and on the quality of the objective function (Energy). Parameters: num-
ber of generations (generation), size of population (population), num-
ber of individuals in the tournament (tournament), the use of elitism
(elitism), and percentage of mutation (mutation). 39

Figure 8 – System energy consumption of hard real-time allocations for BAR-
REFORS, VAL1, and VAL2. BARREFORS produces configurations
with higher energy consumption as compared to the MGAP based for-
mulations. The VAL1 and VAL2 have same energy curve. 41

Figure 9 – System total utilization of the solution produced by each solver. VAL1
and VAL2 quickly converges to 100%. BARREFORS converges to the
utilization using maximum processor frequency. 42

Figure 10 – Execution time of each solver. BARREFORS is the fastest in this ex-
periment. The VAL1 and VAL2 have similar times, being VAL2 faster
in most cases. 43

Figure 11 – System energy consumption of hard real-time allocations for BAR-
REFORS and Branch-and-Price (BP) strategies 60

Figure 12 – System final utilization of hard real-time allocations for BARREFORS
and Branch-and-Cut (BC) strategies 61

Figure 13 – Solver execution time for BARREFORS and Branch-and-Price (BP)strategies 62
Figure 14 – System energy consumption of hard real-time allocations for Branch-

and-Price (BP) and Branch-and-Cut (BC) strategies 63
Figure 15 – System final utilization of hard real-time allocations for Branch-and-

Price (BP) and Branch-and-Cut (BC) strategies 64

xii

Figure 16 – Solver execution time for Branch-and-Cut (BC) and Branch-and-Price
(BP) strategies . 65

Figure 17 – Precedence Graph of Cruiser with Collision Detection Control. Ar-
rows represent a precedence constraint, for example, 𝜏1 precedes 𝜏13.
Dark thick edges represent mutual exclusion constraint, for example,
𝜏16 shares a resource with 𝜏18 . 73

Figure 18 – Precedence Graph and Task Distribution of Cruiser with Collision De-
tection Control. White nodes are allocated in one ARM A53. Light
gray nodes are allocated in one ARM A57. Dark gray nodes are allo-
cated in the other ARM A57. The frequency that each task executes
is represented close to each respective node in the graph, for example,
𝜏19 executes at 400 MHz . 75

Figure 19 – Example of deadline miss in cluster based platforms 82
Figure 20 – Group A: Percentage of false positive errors of schedulability tests that

neglect DVFS switching latency. On the top of the figure, we present
the results for the first platform (single cluster). On the bottom of the
figure, we present the results for the second platform (two clusters).
The number of processors is per each cluster 87

Figure 21 – Group A: Execution time of schedulability tests disregarding DVFS
switching latency. On the top of the figure, we present the results for
the first platform (single cluster). On the bottom of the figure are the
results for the second platform (two clusters). The number of processors
is per each cluster . 88

Figure 22 – Group B: Percentage of false negative errors of schedulability tests that
account for DVFS switching latency. On the top of the figure, we present
the results for the first platform (single cluster). On the bottom of the
figure, we present the results for the second platform (two clusters).
The number of processors is per each cluster 90

Figure 23 – Group B: Execution time of schedulability tests considering DVFS
switching latency. The results for the first platform (single cluster) are
on the top of the figure. On the bottom of the figure are the results
for the second platform (two clusters). The number of processors is per
each cluster . 91

Figure 24 – Distribution of Exclusion Criteria of Step 02 129
Figure 25 – Publication count per year . 130
Figure 26 – Distribution of schedulability tests found in this study 143
Figure 27 – Distribution of problem formulations found in this study: Integer Linear

Programming (ILP), Non-Linear Programming (NLP), Schedulability
Analysis (SA), Queue Theory (QT), and No Formal Model (NFM) . . 144

xiii

Figure 28 – Distribution of solution methods found in this study: (BPSO) Metha-
heuristic, Dynamic Programming (DP), Evolutionary Methods (GA),
Branch-And-Bound (B-and-B), Exact + Heuristic (E+H), Heuristics(H),
Linear Relaxation (LR), Protocol (P), Schedulability Analysis (ScA),
Simulated Annealing (SA), Thermal Controller (TC) 145

Figure 29 – Distribution of power control techniques found in this study: DVFS,
DPM, and Load Balance (LB) . 146

Figure 30 – Distribution of works with respect to solution precision, allocation mo-
ment, workload type, energy constraint, power minimized, and power
model. The pie graphs present the number of works (0 - 29) on each
category . 147

xv

List of Tables

Table 1 – Summary of technique usage per paper 7
Table 2 – Schedulability Analyses for one core . 14
Table 3 – Analysis of mathematical formulations for this problem 33
Table 4 – Comparative results of each solver: VAL1, VAL4, and VAL3. 46
Table 5 – Results of using EA’s solution structure and upper bound to boost the

VAL4 solver. 47
Table 6 – Results of using EA’s solution structure and upper bound to boost the

VAL3 solver. 48
Table 7 – Results of using EA’s solution structure and upper bound to boost the

VAL1 solver. 49
Table 8 – An example of automotive hard real-time task model 77
Table 9 – Architecture characteristics of a typical Automotive platform 78
Table 10 – Optimal workload distribution result of the optimization process 79
Table 11 – Processor power model . 85
Table 12 – Summary of experiment on group A . 86
Table 13 – Summary of experiment on group B . 89
Table 14 – Objective of the study, structured as GQM 124
Table 15 – Quality Assessment Questionnaire . 127
Table 16 – Final database of primary works . 130
Table 16 – Final database of primary works . 131
Table 16 – Final database of primary works . 132
Table 16 – Final database of primary works . 133
Table 17 – Classification based on overall model . 134
Table 17 – Classification based on overall model . 135
Table 18 – Classification based on solution type . 136
Table 19 – Classification based on the size of the instance 137
Table 20 – Classification based on the type of workloads 138
Table 21 – Classification based on task model considerations 139
Table 22 – Classification based on energy model considerations 140
Table 22 – Classification based on energy model considerations 141
Table 23 – Compendious classification of primary works 142
Table 24 – Summary of technique usage per paper 148
Table 25 – List of all solutions found . 149
Table 25 – List of all solutions found . 150
Table 25 – List of all solutions found . 151

xvii

List of abbreviations and acronyms

CNC Computer Numerical Control.

DCT Discrete Co-sine Transform.

DC-DC Direct Current to Direct Current converter.

DVFS Dynamic Voltage and Frequency Scaling.

DVS Dynamic Voltage Scaling.

DPM Dynamic Power Management.

EDF Earliest Deadline First.

EOSS Exact and Optimal Scheduling Strategy.

FFT Fast Fourier Transform.

FPGA Field-Programmable Gate Array.

HMP Heterogeneous Multiple Processors.

ILP Integer Linear Programming.

LCM Least Common Multiple.

LMC Linear Motor Control.

MILP Mixed Integer Linear Programming.

MPSoC Multiprocessor System-On-Chip.

PU Processing Unit.

RT Real-Time.

SoC System-On-Chip.

VLSI Very-Large-Scale Integration.

WCEC Worst Case Execution Cycles.

WCET Worst Case Execution Time.

xix

List of symbols

𝐷𝑖 Deadline of 𝜏𝑖.

𝐿𝑝 DVFS Switching Latency.

𝑝𝑖 Fixed Priority of 𝜏𝑖.

𝐴𝑖 Interference due to Architectural Latency Suffered by 𝜏𝑖.

𝐵𝑖 Interference due to Shared Resources Suffered by 𝜏𝑖.

ℐ𝑖 Interference Suffered by 𝜏𝑖.

𝑇𝑖 Period of Execution of 𝜏𝑖.

𝜏𝑖 Real-Time Task 𝑖.

𝐽𝑖 Release Jitter Indicating the Worst Release Time of 𝜏𝑖.

𝑅𝑖 Response Time of 𝜏𝑖.

ℎ𝑝(𝑖) Set of High Priority Tasks of 𝜏𝑖.

ℳ Task Model.

𝑈 𝑗
𝑡𝑜𝑡𝑎𝑙 Total Utilization of Processor 𝑗.

𝑢𝑖 Utilization of 𝜏𝑖, Defined as 𝐶𝑖(𝑓)
𝑇𝑖

.

𝑊𝐶𝐸𝐶𝑖 Worst-Case Execution Cycle

𝐶𝑖(𝑓) Worst Execution Time, as Function of Frequency 𝑓 of 𝜏𝑖.

xxi

List of Algorithms

1 Evolutionary Algorithm (EA) for Independent Tasks 36
2 Branch-and-Cut (B&C) for Independent Tasks 36
3 Branch-and-Price (B&P) for Independent Tasks 56
4 Pricing Dynamic Programming (PDP) . 58
5 Branch-and-Cut (B&C) for Dependent Tasks 72

xxiii

Contents

1 INTRODUCTION . 1
1.1 Context . 2
1.2 Motivation . 3
1.3 Problem statement . 3
1.4 Objectives . 4
1.5 Existing Research . 4
1.6 Hypotheses . 8
1.7 Proposed Approach . 8
1.7.1 Overall Architecture . 8
1.7.2 Exact Schedulability Analysis based on Architectural Interference 10
1.7.3 Mathematical Formulations . 10
1.7.4 Computational Technique of Resolution 10
1.7.5 Resource Manager and Online Scheduler 11
1.8 Outline . 11

2 THEORETICAL PRELIMINARIES 13
2.1 Real-Time Systems . 13
2.2 Schedulability Analysis . 14
2.2.1 Utilization based . 15
2.2.2 Response time analysis . 15
2.3 Multicore systems . 16
2.3.1 Full Chip platforms . 17
2.3.2 Per Core platforms . 17
2.3.3 Cluster-Based Multi-Core platforms . 17
2.3.4 Considerations on Response Time Analysis for Multicore Systems 18
2.4 Power and energy concepts . 18
2.4.1 Dynamic Power Consumption . 19
2.4.2 Static Power Consumption . 20
2.4.3 Energy Aware Real-Time Scheduling and Task Allocation 20
2.5 Integer Linear Programming . 21
2.5.1 Canonical Form for ILPs . 21
2.5.2 Variations of ILPs . 22
2.5.3 Exact Algorithms . 22
2.5.4 Heuristic Methods . 23
2.6 Chapter Summary . 23

xxiv

3 DISTRIBUTION OF INDEPENDENT HARD REAL-TIME TASKS
AMONG HETEROGENEOUS CORES 25

3.1 System Models . 26
3.1.1 Processor Model . 26
3.1.2 Task Model . 27
3.2 Mathematical Formulations for Different Scheduling Policies 27
3.2.1 Theoretical Basis and Reference: The MGAP Model 27
3.2.2 Estimating System Energy in the Objective Function 28
3.2.3 Models for EDF . 29
3.2.3.1 MGAP Formulation with Utilization Bound for EDF 30

3.2.3.2 Barrefor’s Formulation with Utilization and Frequency Bound for EDF 30

3.2.3.3 MGAP Formulation with Utilization and Frequency Bound for EDF 31

3.2.4 MGAP Formulation with Utilization Bound for RM 32
3.2.5 MGAP Formulation with Response Time Bound 32
3.2.6 Analysis on Formulations . 33
3.3 Computational Techniques of Resolution 34
3.3.1 Approximation by means of Evolutionary Algorithm (EA) 34
3.3.2 Finding Optimal Solutions . 35
3.4 Computational Experience . 35
3.4.1 Experiment Environment . 35
3.4.2 Workload and target platform considerations 37
3.4.3 Analysis on EA Parameters . 37
3.4.4 Experiment with Different Scheduling Policies 38
3.4.5 Experiment on Formulations for EDF . 40
3.5 Discussion of Results . 41
3.6 Chapter Summary . 44

4 A BRANCH-AND-PRICE ALGORITHM TO DISTRIBUTE INDE-
PENDENT HARD REAL-TIME TASKS 51

4.1 System Models . 51
4.1.1 Processor Model . 52
4.1.2 Task Model . 52
4.2 Columns Generation Algorithm . 52
4.2.1 Original Mathematical Formulation . 53
4.2.2 Reformulation for the Master Problem . 53
4.2.3 The Pricing Problem . 54
4.2.4 Dynamic Programming for the Pricing Problem 55
4.2.5 Computational Technique of Resolution 55
4.2.5.1 Branch-And-Price Algorithm . 55

4.2.5.2 Dynamic Programming Pricing Algorithm . 57

xxv

4.3 Barrefor’s Formulation with Utilization and Frequency Bound for EDF 57
4.4 Computational Experience . 59
4.4.1 Experiment Environment . 59
4.4.2 Experiments against BARREFORS . 59
4.4.3 Experiments against B&C MGAP . 61
4.5 Discussion of Results . 62
4.6 Chapter Summary . 66

5 DISTRIBUTION OF DEPENDENT HARD REAL-TIME TASKS . . 67
5.1 Processor Model . 67
5.2 Task Model . 68
5.3 Mathematical Formulations for Dependent Tasks 69
5.4 Computational Technique of Resolution 71
5.5 Case Study: a Cruiser and Collision Detector 72
5.6 Chapter Summary . 76

6 RESPONSE TIME SCHEDULABILITY TEST FOR MULTICORE
PLATFORMS . 81

6.1 Motivational Example . 81
6.2 Architecture latency for response time schedulability analysis 82
6.3 Argumentation . 83
6.4 Empirical Experiments . 83
6.4.1 Experiment design . 84
6.4.2 Results . 86
6.4.3 Discussion . 89
6.5 Chapter Summary . 92

7 RELATED WORK . 93
7.1 Single Processor Schedulability Analysis combined with Task Allo-

cation . 93
7.1.1 Techniques and Methods applying Single Processor Solutions combined with

Task Allocation . 93
7.1.2 Discussion . 99
7.2 Temperature Control . 99
7.2.1 Temperature Control Techniques on Heterogeneous Systems 99
7.2.2 Discussion . 101
7.3 Schedulability Analysis For Multicore Systems 101
7.3.1 Schedulability Analysis Techniques . 101
7.3.2 Discussion . 102
7.4 Notes about related literature reviews 103

xxvi

7.5 Chapter Summary . 104

8 FINAL REMARKS . 105
8.1 Revisiting Objectives and Hypotheses 106
8.2 Future Work . 107
8.3 List of Publications . 108
8.3.1 Published Papers . 108
8.3.2 Book Chapters . 109

References . 111

ANNEX 121

ANNEX A – SYSTEMATIC LITERATURE REVIEW 123
A.1 Introduction . 123
A.1.1 Objective and Scope . 123
A.1.2 Outline . 124
A.2 Research Method: Systematic Literature Review Protocol 124
A.2.1 Research Questions . 125
A.2.2 Search Process . 125
A.2.2.1 Process for selecting and classifying primary studies (search strategy) 125

A.2.2.2 Inclusion/Exclusion Criteria . 126

A.2.2.3 List of (digital) libraries . 126

A.2.2.4 Study quality assessment checklists and procedures 126

A.2.2.5 Data Collection . 127

A.2.2.6 Data Analysis . 127

A.3 Results of the Systematic Literature Review 128
A.3.1 Classifications and Metrics of the Existing Literature 134
A.3.1.1 Overall Model . 134

A.3.1.2 Solution Type . 135

A.3.1.3 Instance size . 136

A.3.1.4 Workload considerations . 138

A.3.1.5 Task model considerations . 139

A.3.1.6 Energy constraints . 140

A.3.1.7 Compendious classification . 141

A.3.2 Statistics on the primary works . 143
A.4 Answers to the research questions . 149
A.5 Open research questions . 153
A.6 Chapter Summary . 154

1

1 Introduction

The pursuit of outstanding performance of computers is a major concern for com-
puter scientists. The evolution in academia and industry towards high performance com-
puting has led us to the creation of processors that are faster than their predecessors.
Nevertheless, the well known “power wall” phenomena limits such performance incre-
ments (Venkatachalam and Franz, 2005).

The power wall is a barrier to improvement in the processor design process due
to the power consumption of components. Power consumption has become the primary
influence in overall microprocessor design complexity due to ideal geometric scaling and
non-ideal electrical scaling. It is no longer viable to simply increase clock speeds of existing
designs (Cochran, 2013). Power consumption is a major aspect that limits the performance
of computers in different sides of the computing spectrum. The pursuit of energy efficiency
is useful for mobile devices to improve operating duration and also helpful for server
systems to reduce power bills (Chen and Kuo, 2007; Chen et al., 2009; Chen and Thiele,
2008, 2009, 2011).

In large data centers, power consumption is a major concern due to the increasing
expense in room cooling systems and mainly due to the expensive power bills. For instance,
according to Eric Schmidt, CEO of Google, “What matters most to the computer designers
at Google is not speed but, power, low power, because data centers can consume as much
electricity as a city” (Markoff and Lohr, 2002). Also, as per report present in Google’s
web site “The Big Picture - Google Greener” (Google, 2013), Google’s power bill in 2012
was 3,324,818 MW h. Google continuously used in 2011 electricity in the scale of hundred
of thousands of MW, which can power 200,000 houses.

On the other side of the computing spectrum, the battery life duration is a concern,
thus equipping mobile devices with powerful processors decreases their autonomy even
further (Venkatachalam and Franz, 2005). The usage of powerful processors may lead
to disastrous situations; unless designers apply careful constructions across all phases of
product conception – i.e., mechanical, electric, and system software development process.
For instance, silicon devices may reach temperatures as high as 125 ∘C, which heat may
spread towards the device enclosure / cover, causing hazards to users.

Nowadays, multicore platforms have become the de-facto solution to cope with the
rapid increase of system complexity, reliability, and energy consumption (He and Mueller,
2012a). Modern computing systems often adopt multiple processing elements to enhance
computing capability or to reduce the power consumption, especially for embedded sys-
tems (Chen and Thiele, 2008). Moore’s law is no longer sustained by increasing clock

2 Chapter 1. Introduction

frequencies, but instead by adding extra cores in multiprocessors. The performance per
watt ratio is a key metric, as higher clock ratios also demand higher supply voltages.
Added to symmetric multicore processors, platforms with co-processing units, pipelined
computing, and heterogeneous multicores gain popularity in architecture designs (Awan
and Petters, 2013; Chen and Thiele, 2008).

Modern multicore processors for the embedded market are often heterogeneous
in nature (Awan and Petters, 2013). For instance, on system-on-a-chip (SoC) platforms,
a field-programmable gate array (FPGA) might appear to provide flexibility to execute
tasks/jobs in hardware for acceleration. Some helper devices aim to reduce the workload on
the processor for the enhancement of special functions. Discrete co-sine transform (DCT),
or Fast Fourier transform (FFT) (Chen and Thiele, 2008), are examples of offloading
processors’ workload. Multimedia platforms often contain one processor and one or more
co-processors; such as those for video codec functionality (Chen et al., 2008).

Some applications require real-time requirements. Heterogeneous processors are of
great interest for system designers due to the expected energy consumption reduction.
Consequently, practitioners consider multiple heterogeneous processors for different ap-
plications with hard deadline constraints. Nevertheless, developing software with timing
constraints for multiple heterogeneous processors is a complex task. Scheduling becomes
especially hard to deal with particularly under low power or temperature constraints.

Therefore, it is beneficial to build knowledge on efficient methods and techniques
to produce software with timing guarantees for architectures with multiple heterogeneous
processors, under energy and temperature constraints. Such methods and techniques are
essential for practitioners and researchers. Such effective methods and techniques support
reducing power bills, improve system reliability, and increase the efficient usage of energy,
assisting to reduce environmental impacts.

1.1 Context

The context of the present research is the software development for hard real-time
heterogeneous multicore systems subject to severe energy and temperature constraints.
The objective is to reduce energy consumption and to control the temperature of such
systems by means of conscious application of energy and temperature management. The
processing model of interest is multiple and parallel heterogeneous processors.

This research aims to aid architects, designers, developers and researchers of em-
bedded systems across the process of specification and deployment of products. The em-
bedded system considered has severe constraints, such as timing, temperature, and energy
restrictions.

1.2. Motivation 3

We conducted a systematic literature review (Valentin and Barreto, 2016) and
found the following examples of such embedded systems:

∙ Unmanned Aerial Vehicles;

∙ Linear motor control (LMC) systems;

∙ Computer Numerical Control (CNC) machines;

∙ X-ray control system;

∙ Control system in the automotive area (airbag control unit, anti-lock braking system,
and electronic stability control system);

∙ Distributed computing under severe constraints, e.g., target monitoring and track-
ing, military, environmental remote monitoring.

1.2 Motivation
Design and development processes of embedded systems are peculiarly complex

due to its unusual characteristics. The system designer must balance severe constraints,
such as size, weight, cost, energy consumption, time-to-marketing, reliability, and oth-
ers even more specific to the target environment. Excessive heating, vibration, lightning,
corrosion, water, fire, power source variation are some examples (Barreto, 2005). Energy
management and temperature control, nevertheless, are crucial characteristics on embed-
ded systems, specially those designed to be mobile.

Achieving successful energy-aware application development requires specialized la-
bor force. In general, system designers lack this skill. Thus, aiding the design and modeling
process of hard real-time applications subject to energy constraints on multiple heteroge-
neous platforms is the motivation of this research.

1.3 Problem statement
Users expect timing correctness and guarantees of hard real-time systems (Burns

and Wellings, 1997). In the specialized literature, there are schedulability tests to aid
system designers in the task of providing such guarantees (Lehoczky et al., 1989; Liu and
Layland, 1973; Sha et al., 1990). However, the existing methods (Lehoczky et al., 1989; Liu
and Layland, 1973; Sha et al., 1990) lack accounting for the peculiarities of heterogeneous
multicore systems with energy and temperature constraints. Additionally, the existing
tests discard the overhead imposed by the main power management techniques. He and
Mueller (2012a) introduce a sufficient schedulability test for heterogeneous system, but

4 Chapter 1. Introduction

it is only a sufficient condition. Valentin and Barreto (2010) propose a schedulability
analysis using DVFS, but their solution applies only to uni-processed systems.

The addressed problem is: “How to offer users timing correctness and guarantees
of hard real-time systems executed on heterogeneous multicore systems with energy and
temperature constraints?”

1.4 Objectives

The main aim of this thesis is to propose an energy optimization method for hard
real-time system on heterogeneous multicore platform demonstrating that it is possible to
timely compute timing correctness and guarantees using a sufficient and necessary con-
dition; accounting for temperature, preemption, precedence, shared resources constraints,
and architectural interference.

The specific objectives are (1) Exact Schedulability Analysis, and (2) Task to Core
Assignment considering Architectural Interference. The following items detail each specific
objective:

1. To define a schedulability analysis for hard real-time scheduling on heterogeneous
multicore systems with sufficient and necessary conditions.

2. To deliver an off-line assignment algorithm to distribute hard real-time tasks among
heterogeneous cores of a multicore system; assigning a CPU frequency to each task
on active scenarios; using a sufficient and necessary schedulability analysis consider-
ing energy, temperature, preemption, precedence, mutual exclusion, and architectural
interference.

1.5 Existing Research

We have performed a systematic literature review (Kitchenham and Charters,
2007) of scheduling hard real-time tasks on multiple heterogeneous processors under en-
ergy constraints, such as low power and temperature control. Using a repeatable, unbiased,
and systematic approach (Basili et al., 1994a,b; Biolchini et al., 2007), we have identi-
fied, presented, classified, and criticized all 29 existing works on the subject. During the
process, we analyzed hundreds of works found in relevant digital libraries (Valentin and
Barreto, 2016). We concluded that, even though there has been an increasing interest in
the subject over the past years, there are still open questions to address.

Some topics have only been slightly explored. For instance, only five works address
the problem of offering optimal solutions, although most works consider small- or medium-

1.5. Existing Research 5

size instances. Most works are also interested in solutions produced off-line. Only five
works consider on-line approaches.

The most challenging aspect is exact schedulability tests. We found only one work
addressing the analysis of task response times, whereas the majority consider utilization-
based analysis, which is a sufficient only condition.

Similarly, only one work explores task migration in this subject. Furthermore, only
one work studies mutual exclusion constraints, and only four works consider precedence
constraints in their task models. The most explored workload type is periodic or aperiodic
tasks. The least explored workload type is the combination of soft and hard real-time tasks.

DVFS is the most used technique for addressing power consumption issues. Only
a minority of the works explore DPM, for instance. Similarly, we emphasize the need for
studying the thermal topic on this subject, as we found only five works addressing tem-
perature control. Most works have interest in full heterogeneous architectures. However,
heterogeneous clusters are becoming increasingly studied.

Most works investigated for the purposes of this review focus on dynamic power
reduction. Additionally, most works consider the dynamic power as a convex power func-
tion. We highlight that the static power consumption is non-negligible in current modern
processors. Moreover, advanced power management techniques, such as Adaptive Voltage
Scaling (AVS), and the thermal behavior of processors change the increasing convex power
consumption function (Alahmad and Gopalakrishnan, 2011). Therefore, we highlight the
need to explore different power models, apart from optimizing the dynamic power using
a convex power function.

We found only three benchmarks in use on the subject: E3S (EEMBC, 2014),
TGFF (Dick et al., 1998), and UUniFast (Bini and Buttazzo, 2004). The lack of standard-
ization in empirical experimentation design complicates the process of comparing existing
solutions. Comparing the results of expected energy consumption reduction is particularly
challenging due to the lack of standardization. Consequently, we highlight the need for
benchmarks and reference instances. Furthermore, it is crucial to have studies reporting
fair comparisons between existing works under controlled environment experimentation.
Thus, we also highlight a need for standardized empirical experimentation to improve the
level of scientific evidence reported in this subject. Reporting research limitations, costs,
and empirical results is a major concern. Only two works highlight the expected costs for
applying their solutions.

Table 1 presents a summary of the usage of techniques which relates each work
with all techniques found in this study to model, solve, analyze, and experiment the
problem of interest. Table 1 is a reference of current modeling assumptions and model-
ing limitations and highlights under which circumstances each primary work can be best

6 Chapter 1. Introduction

applied. Whenever the modeling assumption or technique applies to a primary work, the
column is marked with a “Y” symbol. For example, in the first row, Yu and Prasanna
(2003) use a discrete set of frequencies for their processor clock, in specialized processing
units, to allocate a periodic workload off-line considering low power constraints and de-
riving approximated solutions. However, Yu and Prasanna (2003) overlook the thermal
problem, and their solution is applicable when the power consumption is a convex and
increasing function of frequency, neglecting the static power commonly present in modern
processors.

1.5.
Existing

Research
7

Table 1 – Summary of technique usage per paper
Clock Processor Soluc. Alloc. Workload Schedulability

Test
Energy Man-
agement

Problem
Model

Power
Control

Solution Method

REF C
on

tin
uo

us
D

isc
re

te

H
et

er
o.

C
lu

st
er

s
Sp

ec
.A

rc
hi

te
ct

ur
e

Pe
rf.

Va
ria

tio
n

Ex
ac

t
A

pp
ro

xi
m

at
ed

O
ffl

in
e

O
nl

in
e

Pe
rio

di
c

M
ix

ed
M

ig
ra

tio
n

Pr
ee

m
pt

io
n

Pr
ec

ed
en

ce
M

ut
ua

lE
xc

lu
sio

n
R

es
po

ns
e

T
im

e

U
til

iz
at

io
n

Lo
w

Po
we

r
T

he
rm

al
C

on
ve

x
D

yn
.P

ow
er

D
yn

.P
ow

er

D
yn

.+
St

at
ic

Po
we

r

IL
P

Q
PP

N
LP

D
V

FS
D

PM
Lo

ad
Ba

la
nc

e

H
eu

ris
tic

Br
an

ch
-A

nd
-B

ou
nd

Pr
ot

oc
ol

Sc
he

du
la

bi
lit

y
Te

st

T
he

rm
al

PI
D

Ev
ol

ut
io

na
ry

Ba
se

d

D
yn

.P
ro

g.

Li
ne

ar
R

el
ax

at
io

n

(Zhang et al., 2015) Y Y Y Y Y Y Y Y Y Y Y Y
(Yu and Prasanna, 2003) Y Y Y Y Y Y Y Y Y Y Y Y Y

(Yang et al., 2009) Y Y Y Y Y Y Y Y Y Y Y
(Yang et al., 2012) Y Y Y Y Y Y Y Y Y Y Y

(Terzopoulos and Karatza, 2013) Y Y Y Y Y Y Y Y Y Y
(Saha et al., 2012) Y Y Y Y Y Y Y Y Y Y Y Y Y Y

(Prescilla and Selvakumar, 2013) Y Y Y Y Y Y Y Y Y Y Y Y
(Min-Allah et al., 2012) Y Y Y Y Y Y Y Y Y Y Y Y
(Goossens et al., 2008) Y Y Y Y Y Y Y Y Y Y Y

(Kim et al., 2008) Y Y Y Y Y Y Y Y Y Y
(Kim et al., 2005) Y Y Y Y Y Y Y Y Y Y

(Prasanna and Yu, 2002) Y Y Y Y Y Y Y Y Y Y Y Y Y
(Hung et al., 2006) Y Y Y Y Y Y Y Y Y Y

(Hettiarachchi et al., 2013) Y Y Y Y Y Y Y Y
(He and Mueller, 2012b) Y Y Y Y Y Y Y Y Y Y Y Y Y Y
(He and Mueller, 2012a) Y Y Y Y Y Y Y Y Y Y Y

(Chen et al., 2009) Y Y Y Y Y Y Y Y Y Y Y
(Chen and Thiele, 2011) Y Y Y Y Y Y Y Y Y Y Y Y Y
(Chen and Thiele, 2009) Y Y Y Y Y Y Y Y Y Y Y Y Y

(Chen et al., 2008) Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
(Chen and Thiele, 2008) Y Y Y Y Y Y Y Y Y Y Y Y Y
(Chen and Kuo, 2007) Y Y Y Y Y Y Y
(Chantem et al., 2011) Y Y Y Y Y Y Y Y Y Y Y Y Y Y
(Barrefors et al., 2014) Y Y Y Y Y Y Y Y Y Y Y Y Y Y

(Awan and Petters, 2013) Y Y Y Y Y Y Y Y Y Y
(Alahmad and Gopalakrishnan, 2011) Y Y Y Y Y Y Y Y Y Y Y Y Y

(Valentin et al., 2015b) Y Y Y Y Y Y Y Y Y Y Y Y Y Y
(Chu et al., 2009) Y Y Y Y Y Y Y Y Y Y Y Y
(Chen et al., 2011) Y Y Y Y Y Y Y Y Y Y Y

8 Chapter 1. Introduction

1.6 Hypotheses
The following hypotheses motivate the present research:

1. Stronger feasibility analysis offers tighter bounds for the problem (stated at Section
1.3).

2. Practical instances of the problem are timely solvable to optimal (stated at Section
1.3).

Most works found in specialized literature focus on solving the problem approxi-
mately, avoiding optimal solutions. Besides, the authors use utilization bounds, which is a
non-exact test for hard real-time systems, causing even further sub-optimal solutions. Ac-
curate power and temperature models are crucial items to determine optimal and realistic
solutions. Applying biased models may lead to unrealistic results. Most of the existing
works use simplistic power models, ignoring important relations between temperature and
power, for instance.

1.7 Proposed Approach
This section introduces the methods and materials needed on this research. The

proposed method serves as an artifact to test the hypotheses presented in Section 1.6; i.e.,
applying exact schedulability tests, feasibility of optimal solution searching on practical
instances, usage of accurate power, energy, and temperature processor models.

Section 1.7.1 introduces the overall proposed architecture. Section 1.7.2 presents
the proposed schedulability analysis. Section 1.7.3 presents an overview of the math-
ematical formulations used in this method. Section 1.7.4 describes the computational
techniques of resolution to solve the mathematical formulations and to find the optimal
tasks to processors and frequency to tasks assignment. Section 1.7.5 discusses the online
system execution explaining the real-time scheduling.

1.7.1 Overall Architecture

The problem of power aware real-time scheduling on heterogeneous multicore plat-
forms has solutions in the literature delivering a two steps approach. In the first step, the
off-line procedure assesses the workload partitioning among the processors accounting
for schedulability analysis. In the second step, the operating system schedules the real
workload according to the determined scheduling policy and the calculated assignment.
The proposed method, Exact and Optimal Scheduling Strategy (EOSS), considers also a
combined solution, performing off-line workload analysis benefiting the online scheduling.

1.7. Proposed Approach 9

Figure 1 – Overall EOSS architecture

Figure 1 depicts the proposed architecture. During project design time, the analyst
delimits and models the system using three databases; which are inputs for EOSS. The
first database represents the Task Model and contains items with characteristics of each
tasks known to compose the system workload. The second database contains a Processing
Model which consists of details of each processing unit. The third database contains an
Energy Model that describes the energy consumption relations within the system.

The off-line analysis starts by determining the optimal assignment between tasks
to processors and frequency to tasks. The assignment process adopts an Integer Linear
Programming (ILP) model. The databases, provided by the analyst, feed the ILP model.
The assignment process considers an exact schedulability analysis to produce a workload
split that respects the system schedulability. The optimal assignment is then used in the
online system execution.

The online system execution consists of two main entities: the resource manager
and the real-time scheduler. The resource manager receives all tasks that arrive. Once a
task arrives, the resource manager identifies if the task is part of the known workload.
When the task is within the known workload, the resource manager looks up the optimal

10 Chapter 1. Introduction

solution, finds the task to processor assignment, and adds the task to the processor’s task
queue. At last, the task scheduling passes to local scheduler. The local scheduler is in
charge of the corresponding processor. The scheduler of each processor then determines
the schedule according to the scheduling policy.

1.7.2 Exact Schedulability Analysis based on Architectural Interference

The proposed exact schedulability analysis provides a necessary and sufficient con-
dition when applied. The schedulability analysis establishes each task response time. The
task response time decomposition considers the classical constraints present in the real-
time specialized literature; such as jitter (setup time), precedence constraints, task in-
terference due to preemption of high priority tasks, and task interference due to shared
resources utilization by low priority tasks. The proposed exact schedulability analysis is
innovative because considers interference caused by inherited architectural usage; such as
inter-cluster interference (He and Mueller, 2012a).

1.7.3 Mathematical Formulations

The assignment strategy consists in finding the optimal hard real-time workload
split among the existing heterogeneous cores. Finding the optimal solution for this problem
is NP-Hard (Chen et al., 2009; Chen and Thiele, 2009). Even its decision version is difficult
to solve and it is part of NP-Complete (Garey and Johnson, 1979). We adopt mathematical
formulations based on 0/1 ILP models.

1.7.4 Computational Technique of Resolution

We use a general branch-and-bound based exact implicit enumeration method
combined with schedulability tests to conduct the process of finding optimal solutions.
The algorithm’s input is the processing modelℋ, the desired task modelℳ, and a possible
upper bound 𝑢𝑏. The algorithm outputs the optimal distribution of hard real-time tasks
among the processors that consumes the least power among the possible assignments,
informing as well in which frequency each task may be executed, and the total system
estimated energy.

The algorithm starts by denoting the set 𝐿 of active problem nodes to contain
only the initial Integer Linear Problem. When an upper bound 𝑢𝑏 is known, the objective
function value 𝑣* and the optimal solution 𝑥* are set to match 𝑢𝑏 objective function value
and solution structure, otherwise, they are set to +∞ and to 𝑁𝑈𝐿𝐿, respectively. The
algorithm iteratively evaluates each element of the set 𝐿. Each problem node is initially
tested against the schedulability test that fits for the problem scheduling policy. In cases
where the schedulability test accepts the node, then a regular branch-and-bound method is

1.8. Outline 11

followed. The linear relaxation of the node is then computed and solved. The problem node
is then partitioned and new restricted problem nodes are derived and incorporated into 𝐿.
The iterative process repeats until the set 𝐿 is empty. This branch-and-bound algorithmic
strategy may be specialized into two different classes: branch-and-cut or branch-and-price.

1.7.5 Resource Manager and Online Scheduler

The system execution operates by following a partitioned scheduling strategy.
When hard real-time tasks arrive the partitioned scheduling follows the output produced
by the assignment phase of Section 1.7.4. In this aspect, the system execution can lever-
age the investment in finding an optimal solution, while being flexible to adapt to system
changes that may occur in run time. Thus, a hard real-time task scheduling algorithm
utilizes the optimal solution found as baseline. The differentiation during the system exe-
cution is that the partitioned scheduling takes advantage of the optimal solution generated
by the off-line phase, explained in Section 1.7.4.

1.8 Outline
The rest of this text has the following structure. For readers consideration, Chapter

2 contains a list of terms and common definitions used in this text. Chapters 3 and 4 con-
duct the reader throughout the findings and outcomes encountered on the distribution of
independent hard real-time task using branch-and-cut and branch-and-price algorithmic
strategies, respectively. The details of applying the method while distributing dependent
hard real-time tasks are explained in Chapter 5. Chapter 6 describes details of schedu-
lability analysis for cluster based multicore platforms. Chapter 7 presents a summary of
the main techniques which offer guarantees and timing correctness for hard real-time sys-
tems executed on energy and temperature constrained heterogeneous multicore systems.
Chapter 8 ends this text with the conclusions and future work.

13

2 Theoretical Preliminaries

In this chapter, we include a list of terms used in this text. Section 2.1 covers real-
time systems. Section 2.2 details concepts on schedulability analyses. Section 2.3 presents
concepts used in multicore systems. Section 2.4 discusses power and energy concepts and
Section 2.5 briefly introduces concepts on integer linear programming.

2.1 Real-Time Systems
For embedded real-time (RT) systems, it is imperative to respect timing constraints

posed by the environment (Awan and Petters, 2013). Embedded real-time systems must
complete the tasks before their deadlines to maintain the system stability (Chen and Kuo,
2007).

There are situations in which missing critical data, or delivering late in time, is
catastrophic. When missing deadlines leads to catastrophic situations, the embedded real-
time system is known as hard real-time system, whereas when missing deadlines leads to
performance degradation, the embedded real-time system is known as soft real-time.

A periodic task 𝜏𝑗 (Liu, 2000) is an infinite sequence of task instances, referred to
as jobs, where each job of a task comes in a regular period 𝑇𝑗 (Chen and Kuo, 2007).
Figure 2 exemplifies the execution of a single real-time task whose period is 20 ms. The
hyper-period of the task set ℳ, denoted by 𝐿, is the minimum positive number 𝐿, so
that 𝐿

𝑇𝑗
is an integer for every task 𝜏𝑗 inℳ. For example, 𝐿 is the least common multiple

(LCM) of the periods of tasks inℳ when the periods of tasks are all integers (Chen and
Kuo, 2007; Chen and Thiele, 2011).

time (ms)0 10 20 30 40 50 60 70 80 90

Task Instance

Figure 2 – Example of periodic task execution. Each instance comes in a regular period
of 20 ms

The online scheduling of real-time tasks is usually a two fold process (Burns and
Wellings, 1997). The first phase consists of a schedulability test or schedulability analysis.
A schedulability analysis aims to determine if the set of tasks is schedulable; i.e., the
scheduled tasks respect their deadlines. The schedulability analysis provides conditions

14 Chapter 2. Theoretical Preliminaries

Table 2 – Schedulability Analyses for one core

Test Complexity
Accuracy

Sufficient Exact

Liu and Layland 𝑂(𝑛) Yes No
Bini Hyperbolic 𝑂(𝑛) Yes No

R-bound 𝑂(𝑛) Yes No
Lehoczky1 𝑂(𝑛2𝑟) Yes Yes
Audsley 𝑂(𝑛2𝑟) Yes Yes

1: 𝑟 is the ratio between the largest period and smallest
period: 𝑟 = 𝑚𝑎𝑥(𝑇𝑖)

𝑚𝑖𝑛(𝑇𝑖) .

Source: (AlEnawy and Aydin, 2005)

based on the task model and the criteria defined by the scheduling algorithm. The second
phase is the scheduling itself. The Earliest Deadline First (EDF) policy is an optimal
uni-processor scheduling policy for independent real-time tasks (Chen and Thiele, 2009,
2011). Similarly, Rate Monotonic is an optimal uni-processor scheduling policy for fixed
priority and independent real-time tasks (Farines et al., 2000).

A task model ℳ is a set composed by 𝑛 tasks 𝜏𝑗. A task 𝜏𝑗 ∈ ℳ, with 𝑗 ≤ 𝑛,
has the properties: worst-case execution cycle 𝑊𝐶𝐸𝐶𝑗; worst-case execution time 𝐶𝑗(𝑓),
which is a function of frequency 𝑓 , thus 𝐶𝑗(𝑓) = 𝑊 𝐶𝐸𝐶𝑗

𝑓
; period of execution 𝑇𝑗; and

deadline 𝐷𝑗. A task 𝜏𝑗 also has the following properties, specific to fixed priority policies:
fixed priority 𝑝𝑗; set of high priority tasks ℎ𝑝(𝑗) representing the tasks 𝜏𝑝 with priority
higher than the priority of 𝜏𝑗.

2.2 Schedulability Analysis

In the specialized literature, schedulability test or schedulability analysis is a pro-
cedure to determine if a real-time task model is schedulable, considering the task model
characteristics and the scheduling policy (Lehoczky et al., 1989; Liu and Layland, 1973;
Sha et al., 1990). The schedulability analyses differ in computational complexity and
accuracy. For example, Table 2 summarizes some tests along with their computational
complexity and accuracy for fixed priority real-time tasks on one processor as function of
the number of tasks, as reported by AlEnawy and Aydin (2005). We classify the strategies
into two categories: utilization based and response time analysis.

2.2. Schedulability Analysis 15

2.2.1 Utilization based

Utilization based schedulability analyses are simplistic and fast approximate tests.
These analyses use the information of task set or individual task utilization. The task 𝜏𝑗

utilization is 𝑢𝑗 = 𝐶𝑗(𝑓)
𝑇𝑗

. There are multiple utilization based analyses and bounds. In this
section, we highlight the most cited in the literature.

Liu and Layland (1973) propose the following utilization based schedulability test:

𝑈𝑡𝑜𝑡𝑎𝑙 ≤ 𝑈𝑏𝑜𝑢𝑛𝑑(𝑛), where 𝑈𝑡𝑜𝑡𝑎𝑙 =
𝑛∑︁

𝑗=1
𝑢𝑗 and 𝑈𝑏𝑜𝑢𝑛𝑑(𝑛) depend on the scheduling policy.

For EDF applied on independent real-time tasks on uni-processor systems, Liu
and Layland schedulability test is: 𝑈𝑡𝑜𝑡𝑎𝑙 ≤ 1, which means EDF achieves 100 % of CPU
utilization. For independent real-time tasks, Liu and Layland’s utilization based test is
an exact condition, i.e., sufficient and necessary.

For fixed priority real-time tasks, Liu and Layland test is 𝑈𝑡𝑜𝑡𝑎𝑙 ≤ 𝑛(2 1
𝑛 − 1). The

analyses in this category provide sufficient conditions of schedulability: the task set is
schedulable if it satisfies the test condition, but if the task set fails to satisfy the test
condition, it may still be a schedulable task set.

Bini et al. (2001) provide a hyperbolic based bound stronger than Liu and Layland.
Bini Hyperbolic test is designed for large periodic task sets, when the exact analysis is
prohibitive due to long execution times. The bound is:

𝑛∏︁
𝑗=1

(1 + 𝑢𝑗) ≤ 2, where 𝑢𝑗 is the

utilization of task 𝜏𝑗.

Lauzac et al. (1998) present a utilization bound function of the amount of tasks 𝑛
and a ration 𝑟: 𝑈𝑏𝑜𝑢𝑛𝑑(𝑛, 𝑟) = (𝑛− 1)(𝑟

1
(𝑛−1) − 1) + 2

𝑟
− 1, where 𝑟 is the ratio between the

largest period and smallest period: 𝑟 = 𝑚𝑎𝑥(𝑇𝑗)
𝑚𝑖𝑛(𝑇𝑗) . The R-bound is designed for admission

control as it has low computational complexity. R-bound yields up to 96 % of processor
utilization on large number of tasks.

2.2.2 Response time analysis

Response time analyses are computationally more complex than utilization based
analyses. But they are more accurate and provide exact conditions, i.e., sufficient and nec-
essary. The conditions use the information of each task’s worst-case execution times and
periods. The response time analysis uses the concept of critical instant phasing (Lehoczky
et al., 1989).

Lehoczky et al. (1989) present an exact schedulability analysis based on tasks
periods and priorities. The condition is:

𝑅𝑗(𝑡) ≤ 𝑡 ≤ 𝐷𝑗, ∀1 ≤ 𝑗 ≤ 𝑛 (2.1)

16 Chapter 2. Theoretical Preliminaries

where:

𝑅𝑗(𝑡) = 𝐶𝑗 +
∑︁

𝑝∈ℎ𝑝(𝑗)

⌈︃
𝑡

𝑇𝑝

⌉︃
× 𝐶𝑝, for 0 < 𝑡 < 𝑇𝑗 (2.2)

Audsley et al. (1993) extend the schedulability analysis proposed by Lehoczki and
solve the release jitter problem as well as condense the delay due to semaphore usage.
The schedulability analysis is then:

𝑅𝑗 ≤ 𝐷𝑗, ∀1 ≤ 𝑗 ≤ 𝑛 (2.3)

where:

𝑅𝑗 = 𝐼𝑗 + 𝐽𝑗 (2.4)

𝐼𝑛+1
𝑗 = 𝐶𝑗 +𝐵𝑗 +

∑︁
𝑝∈ℎ𝑝(𝑝)

⌈︃
𝐼𝑛

𝑗 + 𝐽𝑝

𝑇𝑝

⌉︃
× 𝐶𝑝 (2.5)

and the delay 𝐵𝑗 caused by low priority tasks accessing shared resources in the same
processors using Priority Ceiling Protocol can be estimated as 𝐵𝑗 = 𝑚𝑎𝑥𝑗𝑘{𝐷𝑗𝑘|(𝑝𝑗 <

𝑝𝑖) ∧ (𝐶(𝑆𝑘) ≥ 𝑝𝑖)}, and 𝐶(𝑆𝑘) is the ceiling priority of the shared resource 𝑆𝑘.

Precedence constraints can be represented by including the maximum response
time of the predecessors tasks in the 𝐽𝑗 component of the task 𝜏𝑗. The precedence over-
head of a task 𝜏𝑗 may be computed using a topological sorting algorithm applied on a
representation of the set of tasks using a precedence graph.

It is worth to highlight that Lehoczky’s test and Audsley extensions are exact
conditions, i.e., sufficient and necessary. Furthermore, any task model containing tasks
with computation equal to deadline is unschedulable, regardless the processor utilization
(Audsley et al., 1993).

2.3 Multicore systems
Multicore systems contain multiple processors (processing units). They have been

widely adopted. A designer can take advantage of the particular processing units’ proper-
ties to increase the flexibility of the system (Chen and Thiele, 2009, 2011). An example of
such systems is the Multiprocessor System-on-Chip (MPSoC) platforms. The processing
units may be heterogeneous or homogeneous.

The DPM/DVS capable chip multi-core processor platforms fall into three cate-
gories: full-chip platforms, per-core platforms, and cluster-based platforms (He and Mueller,
2012a).

2.3. Multicore systems 17

2.3.1 Full Chip platforms

On the full-chip platforms, the entire processor chip shares the same power sup-
ply net. Therefore all cores can only operate at a common frequency at the same time.
However, they shut down independently (e.g. Intel CoreTM2 Quad). Switching off some
cores is independent of other cores and only requires a minimal amount of transistors.
The DVS applies on the whole chip and the DPM applies on the individual cores (He and
Mueller, 2012a). Figure 3 illustrates a full chip platform with four processors.

𝑉𝑑𝑑

𝐶𝑃𝑈0 𝐶𝑃𝑈1 𝐶𝑃𝑈2 𝐶𝑃𝑈3

Figure 3 – Full Chip platform: In this example, all four processors, 𝐶𝑃𝑈0, 𝐶𝑃𝑈1, 𝐶𝑃𝑈2,
and 𝐶𝑃𝑈3, in the same chip share the same power source, 𝑉𝑑𝑑

2.3.2 Per Core platforms

On the per core platforms, it is possible to control the frequency and voltage
levels on each existing core separately. With the introduction of Frequency/Voltage Island
technique and on-chip voltage regulator, per-core platforms (e.g. AMD PhenomTM Quad-
Core) get more and more attention (He and Mueller, 2012a). Figure 4 has an illustration
of a per core platform.

𝑉 0
𝑑𝑑 𝑉 1

𝑑𝑑 𝑉 2
𝑑𝑑 𝑉 3

𝑑𝑑

𝐶𝑃𝑈0 𝐶𝑃𝑈1 𝐶𝑃𝑈2 𝐶𝑃𝑈3

Figure 4 – Per Core platform: 𝐶𝑃𝑈0, 𝐶𝑃𝑈1, 𝐶𝑃𝑈2, and 𝐶𝑃𝑈3 have their own power
source, 𝑉 0

𝑑𝑑, 𝑉 1
𝑑𝑑, 𝑉 2

𝑑𝑑, 𝑉 3
𝑑𝑑, and 𝑉 4

𝑑𝑑, respectively

2.3.3 Cluster-Based Multi-Core platforms

The cluster-based multi-core platforms are a generalized form of the full-chip and
per-core platforms and provides the best compromise. Designers may group the cores of
a processor chip into clusters. The cores from the same cluster behave like in the full-chip

18 Chapter 2. Theoretical Preliminaries

platforms and the cores from different clusters behave like in the per-core platforms (He
and Mueller, 2012a). Figure 5 illustrates a cluster based platform with four processors
grouped into two clusters.

𝑉 0
𝑑𝑑 𝑉 1

𝑑𝑑

𝐶𝑃𝑈0 𝐶𝑃𝑈1 𝐶𝑃𝑈2 𝐶𝑃𝑈3

Figure 5 – Cluster Based Multi-Core platform: the power lines group the cores in the chip.
The power source 𝑉 0

𝑑𝑑 powers 𝐶𝑃𝑈0 and 𝐶𝑃𝑈1; whereas the power source 𝑉 1
𝑑𝑑

powers 𝐶𝑃𝑈2 and 𝐶𝑃𝑈3

2.3.4 Considerations on Response Time Analysis for Multicore Systems

The task influence 𝐼𝑗 in multiple processors may be calculated as 𝐼𝑛+1
𝑗 = 𝐶𝑗 +𝐵𝑟

𝑗 +
𝐵𝑗 + ∑︀

𝑝∈ℎ𝑝(𝑗)

⌈︁
𝐼𝑛

𝑗 +𝐽𝑝+𝐵𝑟
𝑝

𝑇𝑝

⌉︁
× 𝐶𝑝. Also, when precedence constraints occur across different

processors, this imposes an additional messaging cost that may be incorporated in the
emitting task to perform inter-processor communication. When the Multiprocessor Pri-
ority Ceiling Protocol is in place to avoid priority inversion issues, the remote blocking
delay 𝐵𝑟

𝑗 is an upper bound for the blocking time suffered by task 𝜏𝑗 from other tasks in
a different processor.

2.4 Power and energy concepts
In the literature, power and energy concepts usually appear interchangeable, even

though they are different concepts. Power and energy are commonly defined as the work
that a system performs. Energy is the total amount of work a system performs over a
period of time, while power is the rate at which the system performs that work (Venkat-
achalam and Franz, 2005). Formally:

𝑃 = 𝑊

𝑇
(2.6)

𝐸 = 𝑃 × 𝑇 (2.7)

where P is power, E is energy, T is a specific time interval, and W is the total work
performed in that interval. Joules is the unit to measure Energy. Watts is the unit to
measure power.

It is important to differentiate these two concepts, because they play different roles
in different use cases. For instance, halving the clock speed of a mobile device’s processor

2.4. Power and energy concepts 19

may reduce the dissipated power. However, if this causes executing the workload for
as long as twice the original expected processing time, the total energy consumption is
the same. In systems where temperature is a major issue, reducing instantaneous power
dissipation may be still worthwhile, as it can help reducing temperature.

The power model used in state-of-the-art works assumes two different parts: dy-
namic (active) power and static (leakage) power. Dynamic power consumption varies with
the frequency of the processor. Static power consumption is usually a constant (Awan and
Petters, 2013; Chen et al., 2009; Chen and Thiele, 2008, 2011; Jejurikar et al., 2004).

The Dynamic Power Management (DPM) and the Dynamic Voltage and Frequency
Scaling (DVFS) are two well-established system-level techniques to adjust the trade-off
between the system performance and power consumption during runtime (He and Mueller,
2012a). The following Sections define them.

2.4.1 Dynamic Power Consumption

A modern processor operates at different supply voltages by adopting the dynamic
voltage scaling (DVS) technique (Chen and Kuo, 2007; Qu, 2001). DVS is possible due to
the advanced technology of VLSI circuit designs. The basic idea of DVS is to slow down
the active components by lowering the operating speed and voltage (He and Mueller,
2012a). The P-states define different performance states when the processor core is active
and mainly differ in the operating speed/voltage and power consumption (He and Mueller,
2012a).

The dynamic voltage scaling (DVS) technique balances the dynamic energy con-
sumption and the performance of a system. Different supply voltages lead to different
execution frequencies (Chen and Thiele, 2011; He and Mueller, 2012a). The dynamic
power consumption is usually a convex and increasing function of frequency. Figure 6
illustrates an example of a convex and increasing function. The convex and increasing
relation motivates to execute at as low frequency as possible (Chen and Thiele, 2011; He
and Mueller, 2012a).

𝑦

𝑥

𝑓(𝑥)

Figure 6 – Example of convex function

20 Chapter 2. Theoretical Preliminaries

Moreover, the overhead in frequency switching is significant. Some worst-case over-
head may reach up to hundreds of microseconds in delay because of the changing of the
supply voltage of the DC-DC converter or that of the system clock by the phase-locked
loop (Zhu and Mueller, 2005).

2.4.2 Static Power Consumption

In general, the main idea behind DPM is to switch the components to a sleep or
low power state when they are idle. The switching process from the active state to the
sleep state usually consumes both time and energy. Hereby, the mindless switching cannot
always ensure the energy saving. The careless switching might even jeopardize the task
deadline in a hard real-time system (He and Mueller, 2012a).

One feature often available is multiple sleep states with varying transition cost for
entering and leaving target sleep states (Awan and Petters, 2013). The C-states describe
the different power states including one active state and multiple low power (sleep) states
with different sleep depth (He and Mueller, 2012a). Benini et al. (2000) introduce the
break even time concept to capture the required idle time to at least compensate the
wasted energy and time during the switching.

The static power consumption has become a non-negligible portion of the overall
energy consumption of the system (Awan and Petters, 2013). Unfortunately, in nano-meter
manufacturing, leakage current contributes significantly to the static power consumption
of the system, while the static power consumption is comparable to the dynamic power
dissipation (Chen et al., 2009; Chen and Thiele, 2009, 2011; Jejurikar et al., 2004). For
systems with non-negligible leakage power, i.e., the leakage power plays an important role
for power consumption when the supply voltage is close to the threshold voltage (Chen
and Kuo, 2007).

2.4.3 Energy Aware Real-Time Scheduling and Task Allocation

In what is known as partitioned approach, the actual energy optimization problem
of a real-time system on multi-core platforms has three parts: partitioning the tasks,
assigning the CPU frequency to the tasks, and developing a scheduling algorithm on each
core (He and Mueller, 2012a).

Energy-efficient scheduling for hard real-time tasks on DVS processors aims to
minimize the energy consumption. At the same time, all real-time tasks must finish in
time (Chen and Kuo, 2007). To minimize the energy consumption of a task for a specified
system, we optimize the execution path of the task to reduce the effective switch capac-
itance (Lee et al., 2003), or slow down the execution speed of the task. Designers may
perform the former optimization during the compilation of the task in off-line fashion.

2.5. Integer Linear Programming 21

The task scheduler and dispatcher do the latter optimization.

Traditional task assignment algorithms aim to reduce the dynamic power consump-
tion of the system. Therefore, the process of assigning tasks considers the minimization
of dynamic power as the major contributor to an optimal distribution. The static power
consumption, however, is typically not considered (Awan and Petters, 2013).

For energy-efficient scheduling of periodic real-time tasks, as shown by Aydin et al.
(2001b) and Zhu (2006), an optimal solution is to execute at a constant frequency. The
utilization is either 100 % or at the minimum/critical frequency with utilization less than
100 %. The critical frequency 𝑓 𝑗

𝑐𝑟𝑖𝑡 on the Processing Unit (PU) is the available frequency
with the minimum energy consumption for execution on the PU (Zhu, 2006).

In general, energy efficiency and timing guarantee are conflicting objectives, i.e.,
techniques that reduce the energy consumption of the system will usually pay the price
of longer execution time, and vice-versa (Chen et al., 2013).

An Inter-Core Preemption of a task 𝜏𝑖 is a preemption of its execution due to core
speed change. The arrival or the completion of another task 𝜏𝑗 may cause the core speed
change. The condition is 𝜏𝑖 and 𝜏𝑗 to be in the same cluster but on different cores (He
and Mueller, 2012a).

2.5 Integer Linear Programming
Linear Programming, LP for short, concerns the problem of maximizing or mini-

mizing a linear functional over a polyhedron. Integer Linear Programming (ILP) investi-
gates linear programming problems in which the variables are restricted to integers (𝒵).
One form of the ILP is: given rational matrix 𝐴, and rational vectors 𝑏 and 𝑐, determine
𝑚𝑎𝑥{𝑐𝑥|𝐴𝑥 ≤ 𝑏;𝑥 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑒𝑟} (Schrijver, 1998).

2.5.1 Canonical Form for ILPs

An integer linear program in canonical form is expressed as:

(2.8a)Minimize 𝑐𝑥

(2.8b)subject to (s.t.): 𝐴𝑥 ≤ 𝑏

(2.8c)𝑥 ∈ 𝒵𝑛

where the function 2.8a is the objective function, the set of inequalities 2.8b is known as
constraints, and the variable 𝑥 is known as decision variable.

22 Chapter 2. Theoretical Preliminaries

2.5.2 Variations of ILPs

Zero-one linear programming considers only problems in which the decision vari-
able are restricted to be either 0 or 1 (𝑥 ∈ {0, 1}).

A Linear Relaxation (LR) is a version of an ILP in which the integrality constraint
of the decision variable is removed, or relaxed (1 ≤ 𝑥 ≤ 1).

2.5.3 Exact Algorithms

There are a variety of algorithms that can solve integer linear programs exactly.
One class of algorithms are variants of branch-and-bound method. A branch-and-bound
algorithm is a sophisticated method to solve NP-Hard combinatorial optimization prob-
lems, which are based on a mathematical formulation to enumerate promising solutions,
avoiding, therefore, the complete generation of all possible solutions for the problem, but
still making sure to eventually converge to the optimal solution, or at least the best
possible solution.

In a branch-and-bound algorithm, the set of candidate solutions is thought of as
tree with the full set at the root. The algorithm explores branches of the tree. Before
enumerating the candidate solutions of a branch, the branch is checked against upper and
lower estimated bounds on the optimal solution, and is discarded if it cannot produce a
better solution than the best one found so far by the algorithm.

A branch-and-cut is a branch-and-bound with cut generation strategies applied to
tighten the linear programming relaxations. The use of cutting planes to solve ILPs was
introduced by Ralph E. Gomory, being the Gomory’s cut a common cutting plane strategy.
Gomory’s cut method consists of adding linear constraints to the original ILP based on
the solution of a linear relaxation of the ILP. The linear constraints are constructed based
on the fractional parts of the linear relaxation solution. The new ILP is solved iteratively
until an integer solution is found.

A branch-and-price method is a hybrid of branch-and-bound and column gener-
ation methods. In a branch-and-price, at each node of the search tree, columns may be
added to the linear relaxation. The algorithm starts from a reformulation of the original
ILP known as Master Problem. The reformulation may be found using methods such as
the Dantzig-Wolfe decomposition. A Restricted Master Problem is a subset of the Master
Problem containing a smaller number of columns to be solved. To check for optimality,
a subproblem, known as Pricing Problem, is solved to determine which columns enter
the basis to reduce the objective function. If cutting planes are used to tighten the linear
relaxation, the method is known as branch-price-cut.

2.6. Chapter Summary 23

2.5.4 Heuristic Methods

Given that integer linear programming is applied in many NP-hard problems,
several problem instances are intractable. Therefore, heuristics are an alternative typically
less expensive computationally.

A metaheuristic is a procedure or heuristic designed to find good enough solu-
tions to an optimization problem. Several techniques exist and typically mimic natural
processes, such as swarm algorithms, bee colonies, ant colonies, hill climbing, simulated
annealing, and evolutionary algorithms. Evolutionary algorithm is a generic population
based metaheuristic that is inspired by biological evolution, such as reproduction, muta-
tion, and selection.

An algorithm has an approximation constant 𝛽 if the objective function of its
derived feasible solution is at most 𝛽 times of the optimal objective for any input instance
(Chen and Thiele, 2009, 2011).

A fully polynomial-time approximation scheme (FPTAS) is an (1+𝜖)-approximation
algorithm with polynomial-time complexity by treating 1

𝜖
as input (Chen and Thiele,

2008). FPTAS algorithms always answers an (1 + 𝜖)-approximation in polynomial-time.

2.6 Chapter Summary
In this chapter, we have presented concepts related to real-time systems, schedula-

bility analysis, multi-core systems, power management, and integer linear programming.
We use all these different concepts in the next chapters.

Real-time systems are highly dependent on delivering correct results at the right
time. We are particularly interested in hard real-time systems, because missing a deadline
in hard real-time systems leads to catastrophic situations. We have also reviewed the
most used algorithms to determine if a real-time system is scheduled or not, by means of
utilization based and response time based schedulability analyses.

The modern processing model is typically parallel and heterogeneous in nature. We
have revised how the DVFS power management technique is applied on multicore systems,
classifying them into full chip, per core, and cluster based platforms. We also considered
the major strategies to reduce processor dynamic and static power consumptions.

Lastly, we have covered a brief overview of integer linear programming. We have
reviewed the canonical form of an ILP and we have discussed about computational tech-
niques of ILP resolution, including exact, heuristic based, and approximation algorithms.

25

3 Distribution of Independent Hard Real-
time Tasks Among Heterogeneous Cores

A classical mathematical model that resembles modern heterogeneous multicore
platforms is the Multilevel Generalized Assignment Problem (MGAP), even though it was
originally conceived in the manufacturing context. The MGAP consists of minimizing the
assignment cost of a set of jobs to machines, each having associated therewith a capacity
constraint. Each machine can perform a job with different performance states that entail
different costs and amount of resources required. The MGAP is originally in the context
of large manufacturing systems as a more general variant of the well-known Generalized
Assignment Problem (GAP) (Glover et al., 1979). In this chapter, we correlate MGAP
model with the problem of assigning frequencies and distributing hard real-time tasks on
heterogeneous processors minimizing energy consumption.

Modern processors may be seen as machines with several performance states due
to Dynamic Voltage and Frequency Scaling (DVFS) technique. DVFS is a well estab-
lished power reduction strategy and it has already been a research topic for decades. The
premises are the variation of processors’ workloads and the quadratic relationship be-
tween energy consumption and voltage (Burd and Brodersen, 1996). The energy consump-
tion depends on dynamic and idle energy (Venkatachalam and Franz, 2005): 𝐸𝑠𝑦𝑠𝑡𝑒𝑚 =
𝐸𝑑𝑦𝑛 +𝐸𝑖𝑑𝑙𝑒, where 𝐸𝑖𝑑𝑙𝑒 is the energy consumption while the system is idle and accounts
for leakage, 𝐸𝑑𝑦𝑛 is the energy consumption in active use cases. The dynamic energy
consumption 𝐸𝑑𝑦𝑛 is estimated using: 𝐸𝑑𝑦𝑛 = 𝐶𝑙 × 𝑁𝑐𝑦𝑐𝑙𝑒 × 𝑉 2

𝑑𝑑, where 𝐸 is energy, 𝐶𝑙 is
circuitry capacitance, 𝑁𝑐𝑦𝑐𝑙𝑒 is number of cycles, and 𝑉𝑑𝑑 is the voltage. Although DVFS
yields meaningful energy consumption reduction, its usage requires care, especially when
considering timing constraints.

The implementation of DVFS-capable chips creates three types of platforms: full-
chip, per-core, and cluster-based (He and Mueller, 2012a). The categories differ depending
on the Dynamic Phased Lock Loop (DPLL) network across the circuit and on the voltage
delivery distribution. In full-chip platforms, the design allows changing the clock, and
voltage, of all cores at once. The per-core platform, in contrast, implements a DPLL
network to achieve frequency (and voltage) manipulation granularity on each individual
core. Cluster-based architecture is a generalization of full-chip and per-core platforms. In
cluster-based platforms, clusters group the cores, where each cluster acts as a full-chip
platform. But clusters are independent of each other having their own clock and voltage
network. The cluster-based platforms allow changing clock and voltage of each cluster
independently, but the change affects all cores within the cluster. In this chapter, we are

26 Chapter 3. Distribution of Independent Hard Real-time Tasks Among Heterogeneous Cores

only considering per-core multicore platforms.

Therefore, the problem we are addressing in this chapter is: how to find optimal
hard real-time tasks distribution among heterogeneous processors respecting timing con-
straints and targeting low power consumption? The contributions of this work are: (i)
comprehensive and representative mathematical formulations that (ii) accounts charac-
teristics of different hard real-time scheduling policies and that (iii) delivers optimal hard
real-time task allocation and optimal frequency to task assignment, (iv) with system
energy consumption minimization, but still (v) using the advantage of a classical com-
binatorial optimization model: MGAP. The results we present on this research question
focus on solving the problem optimally on practical instances sizes. Effective methods
support reducing power bills, improve system reliability, and increase the efficient usage
of energy; last but not least, assisting to reduce environmental impacts.

The organization of this chapter is as follows. The processor model and task model
are defined in Section 3.1. Formulations for different scheduling policies and a model
growth analysis are discussed in Section 3.2. We describe the implementation of solvers
and of a evolutionary algorithm in Section 3.3. Computational experiments are detailed
in Section 3.4. We compare our results with existing literature in Section 3.5. Section 3.6
closes this chapter with final comments.

3.1 System Models

In this section we present the system models. Section 3.1.1 describes the processor
model we consider. We describe the real-time task model in Section 3.1.2.

3.1.1 Processor Model

The processor model resembles a Multi-Processor System-On-Chip (MPSoC) ar-
chitecture, such as Exynos 5 Octa (Samsung Electronics Co.Ltd., 2014). The system is
composed by a set, ℋ, of 𝑚 processors, ℋ = {𝐻1, 𝐻2, . . . , 𝐻𝑚}. Each core may operate
on 𝑙 different performance states, 1 ≤ 𝑘 ≤ 𝑙. The set of frequencies of one core is not
necessarily the same of other cores. Also, a task may have different code size and exe-
cution time for different processors, due to instruction set differences. The frequency of
performance state 𝑘 on the processor 𝑖 is 𝐹𝑖𝑘 and the power consumption is 𝑃𝑖𝑘. The idle
power of processor 𝑖 is 𝑃𝑖𝑑𝑙𝑒,𝑖.

Our proposal can be used with no extra effort on other architectures. Even though
we focus on per-core heterogeneous platforms in our experiments, we have exercised on
multiple heterogeneous clusters (Valentin et al., 2015b). The models discussed here may
be applicable to full-chip and cluster-based platforms as long as the intrinsic architec-

3.2. Mathematical Formulations for Different Scheduling Policies 27

tural interference is accounted and we recommend the interested reader to consider more
sophisticated schedulability tests (Valentin et al., 2015b).

3.1.2 Task Model

In the remaining sections of this chapter we adopt the following notation. A task
modelℳ is a set composed by 𝑛 tasks 𝜏𝑗. A task 𝜏𝑗 ∈ℳ, with 𝑗 ≤ 𝑛, has the properties:
worst-case execution cycle 𝑊𝐶𝐸𝐶𝑗; worst-case execution time 𝐶𝑗(𝑓), which is a function
of frequency 𝑓 , thus 𝐶𝑗(𝑓) = 𝑊 𝐶𝐸𝐶𝑗

𝑓
; period of execution 𝑇𝑗; deadline 𝐷𝑗, we consider

scheduling policies in which 𝐷𝑗 = 𝑇𝑗. A task 𝜏𝑗 also has the following properties, specific
to fixed priority policies: fixed priority 𝑝𝑗; set of high priority tasks ℎ𝑝(𝑗) representing the
tasks 𝜏𝑝 with priority higher than the priority of 𝜏𝑗. The response time 𝑅𝑗 is dependent not
only on task set characteristics, but also on the target platform, and on the task allocation
and frequency distribution that have been selected for the workload. Switching frequency
and voltage has an intrinsic required overhead 𝐿𝑝 which, in per-core platforms, may be
accounted as an addition in the execution time 𝐶𝑖 of each task. The DVFS overhead 𝐿𝑝

has to be accounted twice, one for entry another for exit (He et al., 2012; Valentin et al.,
2015b).

3.2 Mathematical Formulations for Different Scheduling Policies
In the following, we present the proposed MGAP based formulations, applicable

and refined for Earliest Deadline First (EDF) (Liu and Layland, 1973) and Rate Mono-
tonic (RM) (Lehoczky et al., 1989; Liu and Layland, 1973) scheduling policies. The MGAP
based formulations are more realistic to this problem because they represent the avail-
able set of frequencies per processor (Valentin et al., 2016b). However, representing the
constraints of scheduling policies requires modifying and extending such formulations.

3.2.1 Theoretical Basis and Reference: The MGAP Model

Considering the problem characteristics and the set of frequencies of each proces-
sor as machine performance states, we propose to use the MGAP integer programming
mathematical formulation. The classical MGAP formulation is in Equation 3.1.

(3.1a)Minimize
⎧⎨⎩

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑙∑︁
𝑘=1

𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘

⎫⎬⎭

(3.1b)s.t.:
𝑚∑︁

𝑖 =1

𝑙∑︁
𝑘 =1

𝑥𝑖𝑗𝑘 = 1, 𝑗 ∈ {1, . . . , 𝑛}

28 Chapter 3. Distribution of Independent Hard Real-time Tasks Among Heterogeneous Cores

(3.1c)𝑛∑︁
𝑗 =1

𝑙∑︁
𝑘 =1

𝑎𝑖𝑗𝑘𝑥𝑖𝑗𝑘 ≤ 𝜃𝑖, 𝑖 ∈ {1, . . . ,𝑚}

(3.1d)𝑥𝑖𝑗𝑘 ∈ {0, 1}, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑘 ≤ 𝑙

where the tri-dimensional decision variable 𝑥𝑖𝑗𝑘 represents the distribution and assign-
ment, i.e. when 𝑥𝑖𝑗𝑘 = 1 the task 𝜏𝑗 executes in the processor 𝑖 at performance state 𝑘,
or frequency 𝐹𝑖𝑘, when 𝑥𝑖𝑗𝑘 = 0, the task 𝜏𝑗 is distributed somewhere else. A distribution
is a partitioned approach in which each processor 𝑖 executes a local scheduler responsible
for a partition of the real-time task workload and migration is not allowed. The objective
function 3.1a minimizes the system energy consumed by processors. The tri-dimensional
matrix 𝑐𝑖𝑗𝑘 represents the energy consumed by task 𝜏𝑗 while executing on processor 𝑖 at
performance state 𝑘. The set of constraints 3.1b models the allocation of task 𝜏𝑗 to a
single processor. The set of limits 3.1c represents each processor utilization constraint.
The tri-dimensional matrix 𝑎𝑖𝑗𝑘 represents utilization used by task 𝜏𝑗 while executing on
processor 𝑖 at performance state 𝑘. The variable 𝜃𝑖

1 represents the maximum possible
total utilization of processor 𝑖, according to the scheduling policy used. We present in the
following sections different bounds for 𝜃𝑖. We note that 𝑎𝑖𝑗𝑘′ < 𝑎𝑖𝑗𝑘′′ ⇐⇒ 𝑐𝑖𝑗𝑘′ > 𝑐𝑖𝑗𝑘′′ .

The above problem can be described using the three field notation for theoretic
scheduling problems 𝛼|𝛽|𝛾 (Brucker, 2010). The machines environment is unrelated par-
allel machines (𝛼 = 𝑅) because the matrix 𝑎𝑖𝑗𝑘 depends on the task and machine relation.
The job characteristics (𝛽) are deadline (𝐷𝑗) and preemption (𝑝𝑚𝑛𝑡). Also, the jobs have
arbitrary execution time (see 𝐶𝑗 in Section 3.1.2). The optimally criteria (𝛾) is unspec-
ified because we minimize the overall energy consumption. Thus, the scheduling theory
notation is 𝑅|𝐷𝑗; 𝑝𝑚𝑛𝑡|∑︀ 𝑓𝑖.

3.2.2 Estimating System Energy in the Objective Function

In the following formulations, unless specified, we are using an objective function
that minimizes energy consumption, accounting dynamic and idle energy, over the time
window represented by the hyperperiod of the real-time tasks, i.e., the Least Common
Multiple (LCM) of tasks periods. We extend the objective functions presented by Valentin
et al. (2016b) by improving the idle energy estimation. Equation 3.2 has the objective
function.

1 In the classical MGAP formulation, 𝜃𝑖 is known as 𝑏𝑖. We decided to rename it to avoid confusion
with real-time task blocking time 𝐵𝑖.

3.2. Mathematical Formulations for Different Scheduling Policies 29

(3.2a)Minimize Ψ(𝑥) =
𝑚∑︁

𝑖=1
(𝐸𝑑𝑦𝑛,𝑖(𝑥) + 𝐸𝑖𝑑𝑙𝑒,𝑖(𝑥))

(3.2b)
𝐸𝑑𝑦𝑛,𝑖(𝑥) =

𝑛∑︁
𝑗=1

𝑙∑︁
𝑘=1

(︃(︃
𝐿𝐶𝑀

𝑇𝑗

)︃
𝐶𝑙𝑊𝐶𝐸𝐶𝑖𝑗𝑉

2
𝑑𝑑,𝑖𝑘𝑥𝑖𝑗𝑘

)︃

(3.2c)
𝐸𝑖𝑑𝑙𝑒,𝑖(𝑥) = 𝑃𝑖𝑑𝑙𝑒,𝑖𝐿𝐶𝑀

⎛⎝1−
𝑛∑︁

𝑗=1

𝑙∑︁
𝑘=1

𝑊𝐶𝐸𝐶𝑖,𝑗

𝐹𝑖𝑘𝑇𝑗

𝑥𝑖𝑗𝑘

⎞⎠

where 𝐸𝑑𝑦𝑛,𝑖 is the energy consumption when processor 𝑖 is active, 𝐸𝑖𝑑𝑙𝑒,𝑖 is the energy
consumption when processor 𝑖 is idle, 𝑊 𝐶𝐸𝐶𝑖𝑗

𝐹𝑖𝑘𝑇𝑗
represents the task 𝜏𝑗 utilization, 𝑢𝑖𝑗𝑘,

while executing in processor 𝑖 at frequency 𝐹𝑖𝑘 of performance state 𝑘, 𝐶𝑙 is the circuit
capacitance constant, and 𝑉𝑑𝑑,𝑖𝑘 is the voltage level to achieve frequency 𝐹𝑖𝑘.

The term
(︁

𝐿𝐶𝑀
𝑇𝑗

)︁
𝐶𝑙𝑊𝐶𝐸𝐶𝑖𝑗𝑉

2
𝑑𝑑,𝑖𝑘𝑥𝑖𝑗𝑘 represents the dynamic energy associated

with the instances of execution of task 𝑗 within the LCM. Each processor idle energy,
within the LCM time window, is computed for its estimated idle time in the term
𝑃𝑖𝑑𝑙𝑒,𝑖𝐿𝐶𝑀

(︁
1−∑︀𝑛

𝑗=1
∑︀𝑙

𝑘=1
𝑊 𝐶𝐸𝐶𝑖,𝑗

𝐹𝑖𝑘𝑇𝑗
𝑥𝑖𝑗𝑘

)︁
.

The objective function represented in Equation 3.2 may still be seen as a MGAP
formulation (Valentin et al., 2017). Note that, without loss of generality, when we take the
term 𝑃𝑖𝑑𝑙𝑒,𝑖𝐿𝐶𝑀 out of the sum, leaving the term 𝑚𝑃𝑖𝑑𝑙𝑒,𝑖𝐿𝐶𝑀 to be added to the final ob-
jective function value, we have 𝑐𝑖𝑗𝑘 =

[︁(︁
𝐿𝐶𝑀

𝑇𝑗

)︁
𝐶𝑙𝑊𝐶𝐸𝐶𝑖𝑗𝑉

2
𝑑𝑑,𝑖𝑘 − 𝑃𝑖𝑑𝑙𝑒,𝑖𝐿𝐶𝑀

(︁
𝑊 𝐶𝐸𝐶𝑖,𝑗

𝐹𝑖𝑘𝑇𝑗

)︁]︁
.

3.2.3 Models for EDF

EDF is a dynamic priority based on-line scheduler in which earliest deadlines are
first scheduled. Liu and Layland (1973) propose a utilization based schedulability test
for uniprocessor systems. The test is: ∑︀𝑛

𝑗=1 𝐶𝑗(𝑓)/𝑇𝑗 ≤ 1. We are considering implicit
deadlines for EDF (𝐷𝑗 = 𝑇𝑗), in the same way as the original Liu and Layland work.

Utilization based schedulability analyses are fast approximate tests that use the in-
formation of the task set total utilization. For EDF, with implicit deadlines and no jitters,
the analyses are sufficient and necessary conditions. The utilization based schedulability
analysis for RM, however, is only a sufficient condition, i.e the task set is schedulable if
it satisfies the test, but if the task set fails to satisfy the test, it may still be schedulable.

The EDF scheduler is known to be an optimal online scheduler that can achieve
100% of CPU utilization for independent real-time tasks. Taking advantage of the EDF’s
utilization bound is common practice on the specialized literature (Alahmad and Gopalakr-
ishnan, 2011; Awan and Petters, 2013; Chen et al., 2011; Chen and Thiele, 2011; Goossens

30 Chapter 3. Distribution of Independent Hard Real-time Tasks Among Heterogeneous Cores

et al., 2008; He and Mueller, 2012a,b; Prescilla and Selvakumar, 2013; Valentin and Bar-
reto, 2010; Yang et al., 2009; Yu and Prasanna, 2003). We present mathematical formu-
lations for real-time task allocation taking into account the utilization bound for EDF as
follows.

3.2.3.1 MGAP Formulation with Utilization Bound for EDF

Valentin et al. (2016b) propose to use the Multi-level Generalized Assignment
Problem (MGAP) as a more suitable formulation for representing the hard real-time task
assignment problem. Equation 3.3 (VAL1), similarly to Valentin et al. (2016b), has a
MGAP formulation for EDF, with extensions in the objective function.

(3.3a)Minimize Ψ(𝑥)

(3.3b)s.t.:
𝑚∑︁

𝑖 =1

𝑙∑︁
𝑘 =1

𝑥𝑖𝑗𝑘 = 1, 𝑗 ∈ {1, . . . , 𝑛}

(3.3c)𝑛∑︁
𝑗 =1

𝑙∑︁
𝑘 =1

𝑊𝐶𝐸𝐶𝑖𝑗

𝐹𝑖𝑘𝑇𝑗

𝑥𝑖𝑗𝑘 ≤ 1, 𝑖 ∈ {1, . . . ,𝑚}

(3.3d)𝑥𝑖𝑗𝑘 ∈ {0, 1}, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑘 ≤ 𝑙

3.2.3.2 Barrefor’s Formulation with Utilization and Frequency Bound for EDF

Barrefors et al. (2014) use the EDF’s utilization bound in an integer programming
mathematical formulation to distribute hard real-time tasks on heterogeneous processors.
Their formulation expects as valid CPU frequencies only those whose power consumption
can be sustained for long period of time without the need to throttle due to temperature
constraints. Equation 3.4 (BARREFORS) lists their formulation.

(3.4a)Minimize
{︃
𝑃

𝑚∑︁
𝑖=1

Φ𝑖(𝑓𝑚𝑎𝑥
𝑖)𝑥𝑖

}︃

(3.4b)s.t.:
𝑚∑︁

𝑖 =1
𝛼𝑖𝑓

𝑚𝑎𝑥
𝑖 𝑥𝑖 ≥ 𝑈𝑡𝑜𝑡

(3.4c)𝑥𝑖 ∈ {0, 1}, 1 ≤ 𝑖 ≤ 𝑚

3.2. Mathematical Formulations for Different Scheduling Policies 31

where the decision variable 𝑥𝑖 determines if processor 𝑖 is turned on and in use (𝑥𝑖 = 1) or
not (𝑥𝑖 = 0), 𝛼𝑖 is the performance coefficient of processor 𝑖, 𝑚 is the number of processors,
𝑓𝑚𝑎𝑥

𝑖 is processor 𝑖’s maximum frequency satisfying the temperature constraint, and Φ𝑖(𝑓)
is the power consumption of processor 𝑖 when executed at a frequency 𝑓 . BARREFORS’
formulation determines only which processors to turn on to process the tasks. In a second
phase, BARREFORS’ approach distributes the tasks and determines which frequency
each processor executes based on a worst-fit decreasing algorithm (Barrefors et al., 2014).

3.2.3.3 MGAP Formulation with Utilization and Frequency Bound for EDF

Although the MGAP formulation for EDF expressed in Equation 3.3 already covers
most problem characteristics, results on specialized literature suggest that on an optimal
allocation, each CPU executes at a fixed frequency during the entire system lifetime
(Aydin et al., 2001b). However, the state-of-the-art results assume ideal CPUs which
can be programmed essentially to any frequency from a continuous frequency domain,
even though practical and modern CPUs still use a discrete and finite set of frequencies.
Therefore, we propose extending Equation 3.3 to still accommodate the single frequency
assumption, but considering a discrete set of frequencies. We accomplish this constraint
by establishing a minimum bound on the average of CPU frequencies assigned to each
task, because on MGAP based formulations, each task may receive a different frequency
(Valentin et al., 2017). Equation 3.5 (VAL2) describes the formulation.

(3.5a)Minimize Ψ(𝑥)

(3.5b)s.t.:
𝑚∑︁

𝑖 =1

𝑙∑︁
𝑘 =1

𝑥𝑖𝑗𝑘 = 1, 𝑗 ∈ {1, . . . , 𝑛}

(3.5c)𝑛∑︁
𝑗 =1

𝑙∑︁
𝑘 =1

𝑊𝐶𝐸𝐶𝑖𝑗

𝐹𝑖𝑘𝑇𝑗

𝑥𝑖𝑗𝑘 ≤ 1, 𝑖 ∈ {1, . . . ,𝑚}

(3.5d)𝑛∑︁
𝑗 =1

𝑙∑︁
𝑘 =1

𝐹𝑖𝑘

𝑛* 𝑥𝑖𝑗𝑘 ≤ 𝑓𝑚𝑎𝑥
𝑖

𝑛∑︁
𝑗=1

𝑙∑︁
𝑘=1

𝑊𝐶𝐸𝐶𝑖𝑗

𝐹𝑖𝑘𝑇𝑗

𝑥𝑖𝑗𝑘, 𝑖 ∈ {1, . . . ,𝑚}

(3.5e)𝑥𝑖𝑗𝑘 ∈ {0, 1}, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑘 ≤ 𝑙

where 𝑓𝑚𝑎𝑥
𝑖 is processor 𝑖’s maximum frequency satisfying the temperature constraint

and 𝑛*
𝑖 is the number of tasks assigned to processor 𝑖 for a given allocation configuration.

According to Aydin et al. (2001b), on a system with normalized continuous frequencies

32 Chapter 3. Distribution of Independent Hard Real-time Tasks Among Heterogeneous Cores

available (from 0 to 1, being 1 the maximum frequency), the optimal CPU frequency
assignment is equal to its maximum allowed frequency multiplied by the total workload
utilization. The Constraint 3.5d maps this finding from the state-of-the-art by computing
the average frequency on the assigned workload and restricting it to the total assigned
workload utilization multiplied by the CPU maximum frequency.

3.2.4 MGAP Formulation with Utilization Bound for RM

RM is a fixed priority based on-line scheduler in which task priorities decrease with
larger periods. We also assume implicit deadlines (𝑇𝑗 = 𝐷𝑗) for RM. Liu and Layland
test for 𝑛 tasks for RM is ∑︀𝑛

𝑗=1 𝐶𝑗(𝑓)/𝑇𝑗 ≤ 𝑛(2 1
𝑛 − 1). Therefore, we propose the MGAP

formulation for RM (VAL3) listed in Equation 3.6 by extending Valentin et al. (2016b).

(3.6a)Minimize Ψ(𝑥)

(3.6b)s.t.:
𝑚∑︁

𝑖 =1

𝑙∑︁
𝑘 =1

𝑥𝑖𝑗𝑘 = 1, 𝑗 ∈ {1, . . . , 𝑛}

(3.6c)𝑛∑︁
𝑗 =1

𝑙∑︁
𝑘 =1

𝑊𝐶𝐸𝐶𝑖𝑗

𝐹𝑖𝑘𝑇𝑗

𝑥𝑖𝑗𝑘 ≤ 𝑛*
𝑖 (2

1
𝑛*

𝑖 − 1), 𝑖 ∈ {1, . . . ,𝑚}

(3.6d)𝑥𝑖𝑗𝑘 ∈ {0, 1}, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑘 ≤ 𝑙

where 𝑛*
𝑖 is the number of tasks assigned to processor 𝑖 for a given allocation.

3.2.5 MGAP Formulation with Response Time Bound

Lehoczky et al. (1989) present an exact schedulability analysis based on tasks
periods and priorities: 𝑅𝑗 ≤ 𝐷𝑗,∀ 1 ≤ 𝑗 ≤ 𝑛, where 𝑅𝑗 is computed using the iterative
equation 𝑅𝑛+1

𝑗 = 𝐶𝑗 +∑︀
𝑝∈ℎ𝑝(𝑗)

⌈︁
𝑅𝑛

𝑗

𝑇𝑝

⌉︁
× 𝐶𝑝. Response time are computationally expensive

but provide exact conditions, i.e., sufficient and necessary. The test uses task’s WCEC,
periods, and the concept of critical instant phasing (Lehoczky et al., 1989).

Considering the schedulability test proposed by Lehoczky, we propose the MGAP
formulation using tasks response times (VAL4) as seen in Equation 3.7, based on the
formulation of Valentin et al. (2016b). This formulation applies each task deadline as a
constraint against their response time in the linear programming. The response time of
each task vary depending on the workload distribution and the frequency assignment of the
configuration because a change on the value of 𝑥𝑖𝑗𝑘 may result on a different computation
time (𝐶𝑖).

3.2. Mathematical Formulations for Different Scheduling Policies 33

(3.7a)Minimize Ψ(𝑥)

(3.7b)s.t.:
𝑚∑︁

𝑖 =1

𝑙∑︁
𝑘 =1

𝑥𝑖𝑗𝑘 = 1, 𝑗 ∈ {1, . . . , 𝑛}

(3.7c)𝑅*
𝑗 ≤ 𝐷𝑗, 𝑗 ∈ {1, . . . , 𝑛}

(3.7d)𝑥𝑖𝑗𝑘 ∈ {0, 1}, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑘 ≤ 𝑙

where 𝑅*
𝑗 is the response time of tasks 𝜏𝑗 for a given allocation configuration. Equation

3.7 is applicable for RM scheduling policy (𝐷𝑗 = 𝑇𝑗).

3.2.6 Analysis on Formulations

The MGAP based mathematical formulations are similar in the sense of growth.
They have a tri-indexed decision variable. Also, the number of variables increases with the
number of processors, number of tasks, and the number of performance states. They share
similar growth of number of constraints, which increases with the number of processors
and tasks, with the exception of VAL4, whose constrains increase quadratically with the
number of tasks. Also, among the MGAP based formulations, the VAL2 has an additional
set of constraints. Table 3 summarizes characteristics of these formulations.

Table 3 – Analysis of mathematical formulations for this problem

Formulation Number of
Constraints

Number of
Variables

Types of
Variables

Type

MGAP 𝑂(𝑚× 𝑛) 𝑂(𝑚× 𝑛× 𝑙) tri MILP
VAL1 𝑂(𝑚× 𝑛) 𝑂(𝑚× 𝑛× 𝑙) tri MILP
VAL2 𝑂(𝑚× 𝑛) 𝑂(𝑚× 𝑛× 𝑙) tri MILP
VAL3 𝑂(𝑚× 𝑛) 𝑂(𝑚× 𝑛× 𝑙) tri NILP
VAL4 𝑂(𝑛2) 𝑂(𝑚× 𝑛× 𝑙) tri NILP

The BARREFORS formulation is simpler when compared to MGAP formulations.
BARREFORS has a uni-dimensional decision variable that grows only with the number
of processors. Similarly, the number of constraints grows with the number of processors.

The constraints of VAL4 and VAL3, however, are harder to implement. Each 𝜃𝑖 in
these formulations is dependent on the decision variable, i.e. on the assignment and task
distribution. Because the exponents of the decision variables are different than one, these
are Non-Linear Programming (NILP) formulations. MGAP, VAL1, BARREFORS, and
VAL2 are Mixed Integer Linear Programming (MILP) formulations.

34 Chapter 3. Distribution of Independent Hard Real-time Tasks Among Heterogeneous Cores

3.3 Computational Techniques of Resolution
In this section, we explain the algorithmic strategy developed for each mathemat-

ical formulation of Section 3.2. In Section 3.3.1, we explain an evolutionary algorithm
which produces an initial solution that can be used by the exact algorithm for finding
optimal solutions, described in Section 3.3.2.

3.3.1 Approximation by means of Evolutionary Algorithm (EA)

We wrote an evolutionary algorithm (EA), based on genetic algorithm, for each
mathematical model (Valentin, 2009). We follow a similar approach as existing in the
literature for other formulations on this problem (Goossens et al., 2008). The algorithm’s
input is the processing model ℋ and the desired task model ℳ (see Section 3.1). In
our EA implementation, a solution is a chromosome that is a sequence of 0’s and 1’s
and each gene represents one of the elements of the tri-dimensional decision variable of
the mathematical model. The algorithm can be simplified into two steps: (i) Initialization
with random-generated individuals and (ii) Generations composed by individuals selected
in tournaments and by the evolutionary operators of elitism and crossover. Algorithm 1.
illustrates the overall process of our EA strategy and we describe the pieces of the EA as
follows.

In the Initialization, we random-generate individuals. Random-generating individ-
uals does not guarantee their feasibility, i.e. the generated individual may be infeasible.
The process of validating or transforming individuals into feasible solution is onerous.
Even then, we maintain all generations composed by feasible individuals only. We random-
generate a large number of individuals, 5000, to start with a high diversity. If none of them
is a feasible solution, we return the empty set ∅. If we find less than 50 feasible individuals,
then we return the one with highest fitness. But when we find 50 feasible individuals, we
repeat the following steps for a maximum of 100 generations, or 10 generations with same
best fitness, and return the individual with best fitness. We perform the Elitism operator
by always including the individual with best fitness in the next generation. We execute Se-
lection by means of a tournament in the current population. Only 5 individuals, randomly
selected, participate in the tournament. The winner of the tournament is the individual
with best fitness among those participating of it. We also insert in the next generation
the result of a Crossover between winners of two tournaments. The crossover operation
between individuals 𝐼1 and 𝐼2 is done by means of selecting a pivot gene 𝑝. The genes
lower than 𝑝 are copied from 𝐼1, the remaining genes are copied from 𝐼2. When resulting
individual is not feasible, we return 𝐼1, if 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐼1) > 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐼2), or 𝐼2 otherwise. We
define the Fitness function to be: 1/𝐸(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙), where the function 𝐸(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙) is
the estimated energy consumption for the individual in consideration. The function 𝐸 is
computed using the same energy estimation as in the objective functions of the integer

3.4. Computational Experience 35

programming mathematical formulations (see Section 3.2.2).

3.3.2 Finding Optimal Solutions

We use a general branch-and-cut method combined with schedulability tests to
conduct the process of finding optimal solutions. A branch-and-cut is a branch-and-bound
with cut generation strategies. The algorithm’s input is the processing model ℋ, the
desired task modelℳ, and a possible upper bound 𝑢𝑏, with objective function value and
the solution structure found by the EA. The algorithm outputs the optimal distribution of
hard real-time tasks among the processors that consumes less power among the possible
assignments, informing as well in which frequency each tasks may be executed, and the
total system estimated energy. The general solving strategy is listed in Algorithm 2.

The algorithm starts by denoting the set 𝐿 of active problem nodes to contain only
the initial Integer Linear Problem. When the EA returns a feasible solution, the upper
bound 𝑣* and the optimal solution 𝑥* are set to match the output of the EA, otherwise
they are set to + inf and to 𝑁𝑈𝐿𝐿, respectively. The algorithm iteratively evaluates each
element of the set 𝐿. Each problem node is initially tested against the schedulability test
that fits for the problem scheduling policy. In the case the schedulability test accepts the
node, then a regular branch-and-cut is followed. The linear relaxation of the node is then
computed and solved. When the linear relaxation is feasible, a procedure of generation of
cutting planes is performed and followed by a fathoming and pruning process. The problem
node is then partitioned and new restricted problem nodes are derived and incorporated
into 𝐿. The iterative process repeats until the set 𝐿 is empty.

3.4 Computational Experience
In this section we detail the computational experiments and analyse the generated

results. The environment description is outlined in Section 3.4.1. Section 3.4.2 describes
the workload used and the target platform considered in these experiments. Section 3.4.3
analyses the parameters of the EA. After that, we present two main scenarios of experi-
ments. We first experiment in Section 3.4.4 the comparison between EDF and RM based
formulations. In Section 3.4.5, we present further computational experiments targeting
only EDF based models because EDF is rather commonly used in the literature.

3.4.1 Experiment Environment

The aim of this computational experiment is to evaluate the model in terms of
performance, objective function, and execution time. The performance of each solver is
determined by the amount of valid solutions it is able to find for a given input. The
evaluation of solver’s objective function aims to understand the ability to reduce energy

36 Chapter 3. Distribution of Independent Hard Real-time Tasks Among Heterogeneous Cores

Algorithm 1 Evolutionary Algorithm (EA)
for Independent Tasks

1: Input: ℋ, ℳ
2: Output: best feasible solution 𝑢𝑏 found
3: /* Random-generate 5000 individuals
4: * (feasible and infeasible),
5: * to start with high diversity.
6: */
7: i ← initialization(5000);
8: /* Select 50 feasible individuals. */
9: p ← feasible(i, 50);

10: if |𝑝|= 0 then
11: return ∅;
12: end if
13: b ← prev ← best_individual(p);
14: if |𝑝|< 50 then
15: return b;
16: end if
17: g ← e ← 1;
18: while (𝑔 + + ≤ 100)and(𝑒 ≤ 10) do
19: /* Evolve population. */
20: tournament(p);
21: selection(p);
22: elitism(p);
23: ub ← best_individual(p);
24: if ub == prev then
25: e++;
26: end if
27: prev ← ub;
28: end while
29: return (𝑢𝑏.𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒, 𝑢𝑏.𝑣𝑎𝑙);

Algorithm 2 Branch-and-Cut (B&C) for
Independent Tasks

1: Input: ℋ, ℳ, 𝑢𝑏
2: Output: optimal solution (𝑥*, 𝑣*)
3: 𝑣* ← 𝑢𝑏.𝑣𝑎𝑙; 𝑥* ← 𝑢𝑏.𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒;
4: 𝐿← 𝐼𝐿𝑃 0;
5: while L != ∅ do
6: 𝑛← 𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑜𝑑𝑒(𝐿);
7: if !schedulability(n) then
8: continue;
9: end if

10: lp ← relaxation(n)
11: (x, v) ← solve(lp);
12: if x = infeasible then
13: continue;
14: end if
15: 𝑝← 𝑐𝑢𝑡_𝑝𝑙𝑎𝑛𝑒𝑠(𝑥, 𝑣);
16: if 𝑝! = ∅ then
17: add(p, lp);
18: goto 7;
19: end if
20: if 𝑣 ≥ 𝑣* then
21: continue;
22: end if
23: if x is integer then
24: 𝑣* ← 𝑣;𝑥* ← 𝑥;
25: continue;
26: end if
27: partition(lp);
28: end while
29: return (𝑥*, 𝑣*);

consumption for a given input. Finally, the execution time is measured to compare the
impact on project design phase.

We estimate the execution time of each solver using system’s Real-Time Clock
(RTC). The machine used to perform the simulation experiments has an AMD FX TM-
9370, 8 cores executed at 1.4 GHz. We use Debian GNU/Linux 8.2 with 32 GB of DDR3
memory executed at 1.33 GHz.

We wrote an implementation of the previous models using C++ (Valentin, 2009).
The generic branch-and-cut method is implemented in CPLEX Concert (IBM, 2016),
version 12.3, and we conduct their branch-and-bound strategy strictly so we have the op-
portunity to perform the schedulability tests. In the implementation, we configure Concert
to sustain reproducibility. We have limited the amount of threads to one (IloCplex ::

3.4. Computational Experience 37

Threads = 1). The workable memory is set to 1 GB (IloCplex :: WorkMem = 1024).
The solver tree is restricted to 2 GB (IloCplex :: TreLim = 2048). We also configured
Concert to be deterministic (IloCplex :: Param :: Parallel = 1).

3.4.2 Workload and target platform considerations

We use random-generated task models. We vary number of tasks in each random-
generated models between 10 and 90. We vary the total system utilization between 10%
and 90%. The total system utilization is estimated using the highest frequency that
does not cause a thermal issue, i.e. using the same strategy adopted by BAR-
REFORS (Barrefors et al., 2014), but final total system utilization is determined
by the solution given by the solver. A task may have different amount of cycles for each
processor, representing their difference in instruction set. We chose to have tasks periods
uniformly distributed between three sets: large period, medium period, and short period.
When a task has a large period, its period is chosen from the set {100, 250, 750} millisec-
onds. Similarly, a medium period is selected from the set {5, 10, 50} milliseconds, and a
short period is selected from the set {100, 250, 750} microseconds.

Our experiment considers a target platform of four processors. The target plat-
form is similar to Exynos platform (Samsung Electronics Co.Ltd., 2014). There are two
high performance processors that can operate at frequencies from 600 MHz to 1.7 GHz.
Also, there are two low power consumption processors that can operate at frequencies
from 200 MHz to 1.3 GHz. The idle power consumption is 260 mW. The DVFS switching
overhead 𝐿𝑝 is 3000 cycles. The energy consumption is estimated for the duration of the
LCM of tasks’ periods, as in the objective function of each model.

The data of all executions on each instance is available for download2 in a reposi-
tory and we present the summary of them in the following sections.

3.4.3 Analysis on EA Parameters

We have tuned the EA algorithm based on an analysis of five of its parameters:
number of generations, size of population, number of individuals in the tournament, the
use of elitism, and percentage of mutation. We considered the CPU time needed to solve
an instance with 30 tasks and 50 % of estimated target CPU utilization. In Figure 7 we
present some graphics in which the left column shows the average CPU time and in the
right column we present the average solution energy consumption, for each analysed EA
parameter. We plot only observations that could be collected within an execution of less
than one minute of CPU time.

2 Available upon request to authors.

38 Chapter 3. Distribution of Independent Hard Real-time Tasks Among Heterogeneous Cores

As we can observe in Figure 7, as expected, the execution time of the EA increases
with the number of generations used, but we have noticed almost no change in the energy
consumption. Similar pattern is seen for the number of individuals participating in the
tournaments. We see an improvement in the energy consumption when the size of the
population is higher than 20, but increasing the size of the population also increases the
EA execution time. We have decided to set the parameters population and generation
to 50 and the parameter tournament to 5, to avoid increasing the EA execution time,
but still finding solutions with lower energy consumption. We have noticed that when
we enable mutation, specially with a rate higher than 7 %, the execution time of the
EA increases considerably, reaching more than 1 min in this analysis, and therefore, we
decided to disable mutation. We have not noticed any major difference in the convergence
time when enabling or disabling elitism for this particular analysis, but we decided to
keep it enabled to avoid loosing promising solutions found across generations.

3.4.4 Experiment with Different Scheduling Policies

In this section we compare the models VAL1, VAL3, and VAL4. We explain our
results of combining the evolutionary algorithm with solvers to reach optimal solutions. In
this section, we vary number of tasks in each random-generated models between 5, 10, 15,
and 20. We vary the total system utilization between 10%, 20%, 30%, 40%, and 50%, of
total system utilization if all processors are kept at the maximum speed, to achieve a fair
comparison between all scheduling policies, avoiding crossing their theoretical limits.

The search for optimal solutions using the solvers of each model found, in some
cases, only feasible, but not optimal, solutions. In several cases, we reached the time limit
of 30 min. We can also confirm this observation by looking at the difference between the
lower and upper bounds at the end of execution of each solver (GAP). Table 4 lists the
average of the executions of each combination of number tasks and total system utilization
(𝑈𝑡𝑜𝑡𝑎𝑙). We call special attention to the VAL3 results in these experiments. For example,
for 20 tasks and 40 % of total system utilization, the average GAP was 40.36 %, and the
VAL3 solver always reached the time limit of 30 min.

We, then, executed the Evolutionary Algorithm (EA) on every instance with fea-
sible solutions. The EA produces a feasible solution, typically non-optimal. However, the
solution provisioned by the EA can be used as an upper bound to solvers in the search for
optimal solutions. Therefore, to boost each solver’s resolution process, we start
them considering not only an upper bound for the objective function but also
the solution structure based on the best feasible solution found by the EAs.

The results of boosting VAL4 are listed in Table 5, which groups the execution of
each instance per number of tasks and total system utilization. Using the EA’s solution
structure and upper bound in the VAL4 solver, reduced, for example, the execution time

3.4. Computational Experience 39

● ● ● ● ●

● ● ● ● ●

generation generation

population population

tournament tournament

elitism elitism

mutation mutation

1

2

3

4

5

28.00

28.02

28.04

28.06

1

2

3

4

5

28.00

28.02

28.04

28.06

1

2

3

4

5

28.00

28.02

28.04

28.06

1

2

3

4

5

28.00

28.02

28.04

28.06

1

2

3

4

5

28.00

28.02

28.04

28.06

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

false true false true

0 1 2 3 4 7 0 1 2 3 4 7

Parameter Value Parameter Value

T
im

e
(s

)

E
n
er

g
y
 (

J
)

●generation population tournament elitism mutationparameter generation population tournament

Figure 7 – Analysis of the influence of EA parameters on the EA execution time and on
the quality of the objective function (Energy). Parameters: number of gener-
ations (generation), size of population (population), number of individuals in
the tournament (tournament), the use of elitism (elitism), and percentage of
mutation (mutation).

40 Chapter 3. Distribution of Independent Hard Real-time Tasks Among Heterogeneous Cores

from 30 min to less than 5 min in the case of 20 tasks and 50 % of total system utilization,
while still reducing the total system energy consumption.

For these instances, we observed a higher improvement while applying the EA’s
solution structure and upper bound to the solver VAL3. Table 6 lists the results for the
boosted VAL3 using the EA’s solution. In Table 6, we also group the execution of each
instance per number of tasks and total system utilization, and present the average on each
column. In all cases in which the GAP for VAL3 was significant, using the EA’s solution
structure and upper bound made the VAL3 solver to reach a GAP of either 0.00 or 0.01.
Also, taking into account both the EA’s solution structure and the upper bound, they
reduced the gap from 40.36 % to 31.07 % considering 20 tasks and 40 % of total system
utilization, in this case, reducing the total system energy.

The improvement for VAL1 is less apparent as this solver already had a small
GAP. However, in some cases we still see an improvement in execution time. The results
of using EA’s solution structure and upper bound in the solver VAL1 are listed in Table
7.

3.4.5 Experiment on Formulations for EDF

As seen in Section 3.4.4, the computation experience for EDF policy has advantages
compared to other policies. Therefore, in this section we compare the models based on
EDF: VAL1, BARREFORS, and VAL2.

Figure 8 illustrates the mean energy consumption of solutions provided by each
solver. The energy consumption rises when the number of tasks increases or when the total
system utilization increases. In this experiment, the solvers VAL1 and VAL2 have same
energy curve as they converge to same optimal configuration. The solutions produced by
BARREFORS algorithm consistently have a higher and increasing energy consumption,
as compared to the MGAP based formulations. The difference is expected due to the
heuristic step to distribute the tasks in the final step of BARREFORS algorithm. We also
highlight that, as seen in the graphics of Figure 8, the algorithm BARREFORS does not
produce feasible solution for all cases, specially on configuration with utilization at 80%
or higher.

Figure 9 illustrates the final utilization of solutions provided by each solver. Simi-
larly to the energy curves, the MGAP based solvers have very similar curves of utilization
of their optimal solution. The optimal solutions of VAL1 and VAL2 quickly converge to
almost the EDF’s theoretical limit: 99.99%. BARREFORS converges to the utilization
estimated using the maximum allowed frequency, because this estimation is used by its
algorithm to determine which processors to power on.

Figure 10 illustrates the results of execution time of each solver. In this experi-

3.5. Discussion of Results 41

● ● ●
●

●

● ●

●

●

● ●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

10 tasks 20 tasks 30 tasks

40 tasks 50 tasks 60 tasks

70 tasks 80 tasks 90 tasks

5

10

15

5

10

15

5

10

15

10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90

Total Utilization (%)

E
n
er

g
y
 (

J
)

Formulation ●VAL1 BARREFORS VAL2

Figure 8 – System energy consumption of hard real-time allocations for BARREFORS,
VAL1, and VAL2. BARREFORS produces configurations with higher energy
consumption as compared to the MGAP based formulations. The VAL1 and
VAL2 have same energy curve.

ment, we limited the execution time of each run to 30 minutes for practical reasons. The
execution time of all solvers increases when the number of tasks increases or when the
total system utilization is high. BARREFORS is the algorithm with the fastest execution
time in this experiment because it has a heuristic step. The VAL1 and VAL2 have similar
times, being VAL2 faster in most cases due to its additional restriction. For the evaluated
instances (2500), VAL2 finds the optimal solution faster than VAL1 in 58.1 % of the cases.

3.5 Discussion of Results

The interaction between different schedulability analyses and integer programming
mathematical formulation have influence on the performance of solvers while searching for

42 Chapter 3. Distribution of Independent Hard Real-time Tasks Among Heterogeneous Cores

●

●

● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ●

10 tasks 20 tasks 30 tasks

40 tasks 50 tasks 60 tasks

70 tasks 80 tasks 90 tasks

25

50

75

100

25

50

75

100

25

50

75

100

10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90

Total Utilization (%)

S
o
lu

ti
o
n
 U

ti
li
za

ti
o
n
 (

%
)

Formulation ●VAL1 BARREFORS VAL2

Figure 9 – System total utilization of the solution produced by each solver. VAL1 and
VAL2 quickly converges to 100%. BARREFORS converges to the utilization
using maximum processor frequency.

the optimal solution. Providing upper bounds and initial feasible solutions may accelerate
the search process. We also observe that, while targeting optimal solutions, using strict
constraints may reduce overall system energy consumption (Valentin et al., 2015b).

In the literature, there are strategies to determine hard real-time task distribution
in heterogeneous platforms. Their approaches typically focus on either heuristics or ap-
proximation algorithms (Chen and Thiele, 2011). There are also models proposed to cover
optimal solutions that minimize the energy consumption of hard real-time systems with
multiple heterogeneous processors. Even though GLPK (Free Software Foundation, 2012)
or CPLEX (IBM, 2016) can be used to deriving optimal solutions from their formula-
tions, to the best of our present knowledge, this is the first work to report computational
experiments on the search for optimal solution for this problem.

The typical formulation in the specialized literature is a 0/1 integer linear program-

3.5. Discussion of Results 43

● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

●
● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ●

● ●

●

●

●

● ● ●
● ●

●

●

●

10 tasks 20 tasks 30 tasks

40 tasks 50 tasks 60 tasks

70 tasks 80 tasks 90 tasks

0

10

20

30

0

10

20

30

0

10

20

30

10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90

Total Utilization (%)

T
im

e
(m

in
)

Formulation ●VAL1 BARREFORS VAL2

Figure 10 – Execution time of each solver. BARREFORS is the fastest in this experiment.
The VAL1 and VAL2 have similar times, being VAL2 faster in most cases.

ming model which considers a continuous processor frequency domain and determines a
single operating frequency per processor (Alahmad and Gopalakrishnan, 2011; Awan and
Petters, 2013; Chen et al., 2011; Chen and Thiele, 2011; He and Mueller, 2012a). However,
using the MGAP model is a more suitable fit to this problem because practical processors
still use a discrete set of frequencies (Valentin et al., 2016b).

The adoption of DVFS is common in optimization procedures, such as task alloca-
tion, and frequency to task assignment. The aim is to find optimal energy-aware scheduling
on heterogeneous platforms while considering individual task deadlines (Chen and Thiele,
2011). Overall system energy reduction is due to workload split and to frequency mini-
mization to meet tasks deadlines. Adoption of the well-known utilization based schedula-
bility analyses is common (Alahmad and Gopalakrishnan, 2011; Awan and Petters, 2013;
Chen et al., 2011; Chen and Thiele, 2011; Goossens et al., 2008; He and Mueller, 2012a,b;
Prescilla and Selvakumar, 2013; Valentin and Barreto, 2010; Yang et al., 2009; Yu and

44 Chapter 3. Distribution of Independent Hard Real-time Tasks Among Heterogeneous Cores

Prasanna, 2003). The simplification on the model and on the solving process as using uti-
lization constraints produces formulations similar to the multiple knapsack problem. We
confirm these efforts with VAL1 solver, one of the fastest in our experiments. However,
our work also propose formulations for different scheduling polices for practical processors
(Valentin et al., 2017).

For the classic MGAP there are extreme fast algorithms. MGAP problem instances
are solvable up to hundreds of machines with tens of speed levels, to map hundreds of
tasks. For example, Osorio and Laguna (2003) proposed a Branch-and-Cut algorithm in
2003 and were able to solve instances up to 60 tasks, 30 machines, and two speed levels.
Ceselli and Righini (2006), in 2006, proposed a Branch-and-Price strategy, solving up to
400 tasks, 80 machines and five levels. Another Branch-and-Cut algorithm proposed by
Avella et al. (2013) can solve 200 tasks, 30 machines and five levels, for specific problem
instances. We contribute with the present work with a new application of the MGAP
model (Valentin et al., 2017).

In this chapter, we compared one algorithm based on continuous processor fre-
quency domain (BARREFORS) with algorithms based on MGAP formulation (VAL1
and VAL2), considering a discrete set of frequencies. We also observe that, while target-
ing optimal solutions for this problem, using strict constraints may reduce overall system
energy consumption. The MGAP based algorithms produces system configurations with
lower power consumption, but with the penalty of solver execution time, when compared
to BARREFORS. Our proposed extended MGAP based formulation (VAL2) has same
energy curve as the state-of-the-art MGAP formulation (VAL1) for this problem, but also
has a faster solver, as seen in most cases of our experiment (Valentin et al., 2017).

3.6 Chapter Summary

In this chapter we assess the problem of how to find optimal hard real-time tasks
distribution among heterogeneous processors respecting timing constraints and minimiz-
ing power consumption. Our study focuses on optimal solutions after reviewing the exist-
ing models.

We proposed the usage of a well-known classical combinatorial optimization prob-
lem, MGAP, to represent the characteristics and constraints of the problem. We first used
MGAP to model systems using EDF (𝐷𝑗 = 𝑇𝑗). We also extended the proposed MGAP to
derive extra models considering utilization bounds for RM (𝐷𝑗 = 𝑇𝑗) and response time
analysis for RM (𝐷𝑗 = 𝑇𝑗). The implementation of such models delivers optimal hard
real-time task allocation and optimal frequency to task assignment minimizing system
energy consumption. Based on our experimental results we recommend for fixed priority
policies the usage of MGAP response time based model. The MGAP response time based

3.6. Chapter Summary 45

model, implemented for RM in our experiments, finds configurations with the same energy
consumption as the literature EDF representation, but with an execution time penalty.

We proposed to extend the state-of-the-art MGAP formulation by adding an ex-
tra constraint based on the problem characteristic. The additional constraint mimics the
optimal configuration which exists only on processors that can operate at any frequency,
in which each CPU executes at a fixed and ideal frequency (Aydin et al., 2001b). We
accomplish this constraint by establishing a minimum bound on the average of each task
assigned CPU frequency, but we still consider a discrete set of CPU frequencies. Experi-
mental results show that the MGAP based algorithms produce system configurations with
lower power consumption, but with the penalty of solver execution time, when compared
to BARREFORS. Our proposed MGAP based formulation (VAL2) has same energy curve
as the state-of-the-art MGAP formulation (VAL1) but executes faster, as seen in most
cases of our experiment.

We recognize that targeting optimal solutions for this problem is not a simple
task, specially considering the fast growth of its formulations. However, the optimal is
still reachable in some instances, as shown in our computational experiment, by applying
well-known combinatorial optimization techniques. For example, we have exercised the
usage of an EA to find upper bounds and initial feasible solution structure, boosting the
search for the optimal while executing solvers.

46
C

hapter
3.

D
istribution

ofIndependent
H

ard
Real-tim

e
Tasks

A
m

ong
H

eterogeneous
C

ores

Table 4 – Comparative results of each solver: VAL1, VAL4, and VAL3.

Tasks 𝑈𝑡𝑜𝑡𝑎𝑙
VAL4 VAL3 VAL1

Best Sol. (J) Time (𝜇s) GAP
(%)

Best Sol (J). Time (𝜇s) GAP
(%)

Best Sol (J). Time (𝜇s) GAP
(%)

5 10 0.633 1.21E+05 0.00 0.664 9.39E+05 0.00 0.627 3.39E+04 0.00
10 10 0.961 2.15E+05 0.00 1.03 1.8E+09 4.49 0.96 1.85E+05 0.00
15 10 1.66 2.56E+06 0.01 1.89 1.8E+09 11.72 1.66 1.7E+06 0.01
20 10 1.73 9.02E+07 0.01 2.12 1.8E+09 18.03 1.73 6.94E+06 0.01
5 20 0.346 3.93E+04 0.00 0.347 4.55E+05 0.00 0.346 3.8E+04 0.00
10 20 0.887 9.09E+05 0.00 0.957 1.8E+09 9.64 0.885 2.58E+05 0.00
15 20 1.72 1.49E+06 0.01 2.26 1.8E+09 23.67 1.72 6.54E+05 0.01
20 20 2.09 5.04E+07 0.01 3.02 1.8E+09 30.15 2.09 7.74E+06 0.01
5 30 0.311 5E+04 0.00 0.318 4.5E+05 0.00 0.31 5.92E+04 0.00
10 30 1.61 2.65E+07 0.01 2.06 1.8E+09 20.82 1.61 3.22E+05 0.00
15 30 1.95 2.1E+08 0.01 3.04 1.8E+09 36.65 1.95 5.28E+06 0.01
20 30 3.05 1.47E+09 0.12 5.45 1.8E+09 44.00 3.04 1.21E+07 0.01
5 40 0.844 8.55E+04 0.00 0.892 2.87E+06 0.00 0.843 5.47E+04 0.00
10 40 1.11 2.21E+06 0.01 1.46 1.8E+09 24.00 1.1 1.27E+06 0.01
15 40 1.92 2.82E+08 0.01 2.99 1.8E+09 36.08 1.92 2.85E+07 0.01
20 40 4.11 1.8E+09 0.63 6.84 1.8E+09 40.36 4.09 4.42E+08 0.01
5 50 0.97 3.52E+04 0.00 1.01 8.7E+05 0.00 0.97 3.95E+04 0.00
10 50 0.712 1.08E+07 0.01 1.08 1.8E+09 33.93 0.706 7.28E+05 0.01
15 50 4.71 2.76E+08 0.01 7.38 1.8E+09 36.62 4.7 7.91E+06 0.01
20 50 4.96 1.5E+09 0.00 9.89 1.8E+09 38.62 4.97 3.23E+08 0.01

3.6.
C

hapter
Sum

m
ary

47

Table 5 – Results of using EA’s solution structure and upper bound to boost the VAL4 solver.

Tasks 𝑈𝑡𝑜𝑡𝑎𝑙
VAL4 EA VAL4 VAL4 + EA VAL4

Best Sol. (J) Time (𝜇s) GAP
(%)

Best Sol (J). Time (𝜇s) Best Sol (J). Time (𝜇s) GAP
(%)

5 10 0.633 1.21E+05 0.00 1.03 3.48E+05 0.633 7.87E+04 0.00
10 10 0.961 2.15E+05 0.00 2.99 7.59E+05 0.961 1.8E+05 0.00
15 10 1.66 2.56E+06 0.01 7.12 1.24E+06 1.66 2.3E+06 0.01
20 10 1.73 9.02E+07 0.01 9.5 1.8E+06 1.73 8.29E+07 0.01
5 20 0.346 3.93E+04 0.00 0.536 3.61E+05 0.346 3.29E+04 0.00
10 20 0.887 9.09E+05 0.00 2.46 8.19E+05 0.887 7.45E+05 0.00
15 20 1.72 1.49E+06 0.01 6.68 1.16E+06 1.72 1.38E+06 0.01
20 20 2.09 5.04E+07 0.01 10.3 1.86E+06 2.09 6.36E+07 0.01
5 30 0.311 5E+04 0.00 0.462 3.99E+05 0.311 4.72E+04 0.00
10 30 1.61 2.65E+07 0.01 3.84 9.4E+05 1.61 2.22E+07 0.00
15 30 1.95 2.1E+08 0.01 6.16 1.48E+06 1.95 1.4E+08 0.01
20 30 3.05 1.47E+09 0.12 12.5 1.87E+06 3.05 1.48E+09 0.12
5 40 0.844 8.55E+04 0.00 1.09 4.91E+05 0.844 5.67E+04 0.00
10 40 1.11 2.21E+06 0.01 2.19 1.23E+06 1.11 2.5E+06 0.01
15 40 1.92 2.82E+08 0.01 5.03 2.31E+06 1.92 2.3E+08 0.01
20 40 4.11 1.8E+09 0.63 13.6 1.5E+06 4.1 1.8E+09 0.44
5 50 0.97 3.52E+04 0.00 1.18 9.12E+05 0.97 3.08E+04 0.00
10 50 0.712 1.08E+07 0.01 1.3 4.24E+06 0.712 3.21E+07 0.01
15 50 4.71 2.76E+08 0.01 10.5 1.85E+07 4.71 2.5E+08 0.01
20 50 4.96 1.8E+09 0.00 4.97 1.29E+07 4.96 2.9E+08 0.00

48
C

hapter
3.

D
istribution

ofIndependent
H

ard
Real-tim

e
Tasks

A
m

ong
H

eterogeneous
C

ores

Table 6 – Results of using EA’s solution structure and upper bound to boost the VAL3 solver.

Tasks 𝑈𝑡𝑜𝑡𝑎𝑙
VAL3 EA VAL3 VAL3 + EA VAL3

Best Sol. (J) Time (𝜇s) GAP
(%)

Best Sol (J). Time (𝜇s) Best Sol (J). Time (𝜇s) GAP
(%)

5 10 0.664 9.39E+05 0.00 1.04 3.76E+05 0.664 6.56E+05 0.00
10 10 1.03 1.8E+09 4.49 3 6.41E+05 1.03 1.8E+09 4.10
15 10 1.89 1.8E+09 11.72 7.21 1.01E+06 1.93 1.8E+09 13.50
20 10 2.12 1.8E+09 18.03 9.57 1.32E+06 2.13 1.8E+09 18.55
5 20 0.347 4.55E+05 0.00 0.552 3.74E+05 0.347 5.62E+04 0.00
10 20 0.957 1.8E+09 9.64 2.48 6.53E+05 0.955 1.8E+09 8.18
15 20 2.26 1.8E+09 23.67 6.72 1.06E+06 2.25 1.8E+09 23.13
20 20 3.02 1.8E+09 30.15 10.4 1.33E+06 2.99 1.8E+09 29.78
5 30 0.318 4.5E+05 0.00 0.481 3.48E+05 0.318 2.35E+05 0.00
10 30 2.06 1.8E+09 20.82 3.98 9.7E+05 1.86 1.8E+09 19.05
15 30 3.04 1.8E+09 36.65 6.37 1.18E+06 2.89 1.8E+09 31.57
20 30 5.45 1.8E+09 44.00 12.7 1.72E+06 4.69 1.8E+09 35.34
5 40 0.892 2.87E+06 0.00 1.14 5.36E+05 0.892 1.62E+06 0.00
10 40 1.46 1.8E+09 24.00 2.29 2.41E+06 1.49 1.8E+09 25.09
15 40 2.99 1.8E+09 36.08 5.27 8.32E+06 2.78 1.8E+09 30.84
20 40 6.84 1.8E+09 40.36 13.9 6.45E+06 5.92 1.8E+09 31.07
5 50 1.01 8.7E+05 0.00 1.27 2.53E+06 1.01 6.15E+05 0.00
10 50 1.08 1.8E+09 33.93 1.39 3.32E+07 1.01 1.8E+09 29.91
15 50 7.38 1.8E+09 36.62 11.9 8.42E+07 7.3 1.8E+09 35.95
20 50 9.89 1.8E+09 38.62 13.5 9.42E+06 8.61 5.8E+09 35.3

3.6.
C

hapter
Sum

m
ary

49

Table 7 – Results of using EA’s solution structure and upper bound to boost the VAL1 solver.

Tasks 𝑈𝑡𝑜𝑡𝑎𝑙
VAL1 EA VAL1 VAL1 + EA VAL1

Best Sol. (J) Time (𝜇s) GAP
(%)

Best Sol (J). Time (𝜇s) Best Sol (J). Time (𝜇s) GAP
(%)

5 10 0.627 3.39E+04 0.00 1.02 3.32E+05 0.627 2.53E+04 0.00
10 10 0.96 1.85E+05 0.00 2.99 5.79E+05 0.96 1.18E+05 0.00
15 10 1.66 1.7E+06 0.01 7.12 9.18E+05 1.66 1.13E+06 0.01
20 10 1.73 6.94E+06 0.01 9.5 1.17E+06 1.73 5.89E+06 0.01
5 20 0.346 3.8E+04 0.00 0.536 3.42E+05 0.346 2.47E+04 0.00
10 20 0.885 2.58E+05 0.00 2.41 5.71E+05 0.885 1.49E+05 0.00
15 20 1.72 6.54E+05 0.01 6.68 9.19E+05 1.72 3.85E+05 0.01
20 20 2.09 7.74E+06 0.01 10.3 1.13E+06 2.09 6.65E+06 0.01
5 30 0.31 5.92E+04 0.00 0.462 3.19E+05 0.31 3.3E+04 0.00
10 30 1.61 3.22E+05 0.00 3.83 8.12E+05 1.61 3.21E+05 0.00
15 30 1.95 5.28E+06 0.01 6.18 9.09E+05 1.95 4.7E+06 0.01
20 30 3.04 1.21E+07 0.01 12.5 1.07E+06 3.04 1.05E+07 0.01
5 40 0.843 5.47E+04 0.00 1.09 3.19E+05 0.843 3.5E+04 0.00
10 40 1.1 1.27E+06 0.01 2.19 8.82E+05 1.1 1.54E+06 0.01
15 40 1.92 2.85E+07 0.01 5.03 9.39E+05 1.92 3.16E+07 0.01
20 40 4.09 4.42E+08 0.01 13.6 1.71E+06 4.09 4.93E+08 0.01
5 50 0.97 3.95E+04 0.00 1.18 5E+05 0.97 2.62E+04 0.00
10 50 0.706 7.28E+05 0.01 1.25 2.18E+06 0.706 5.11E+05 0.01
15 50 4.7 7.91E+06 0.01 10.5 1.61E+07 4.7 8.81E+06 0.01
20 50 4.97 3.23E+08 0.01 12.8 1.91E+07 4.97 3.22E+08 0.01

51

4 A Branch-and-Price Algorithm to Dis-
tribute Independent Hard Real-Time Tasks

Modern processors may be seen as machines with several performance states due
to Dynamic Voltage and Frequency Scaling (DVFS) technique. DVFS is a well estab-
lished power reduction strategy and it has already been a research topic for decades. The
premises are the variation of processors’ workloads and the quadratic relationship be-
tween energy consumption and voltage (Burd and Brodersen, 1996). The energy consump-
tion depends on dynamic and idle energy (Venkatachalam and Franz, 2005): 𝐸𝑠𝑦𝑠𝑡𝑒𝑚 =
𝐸𝑑𝑦𝑛 +𝐸𝑖𝑑𝑙𝑒, where 𝐸𝑖𝑑𝑙𝑒 is the energy consumption while the system is idle and accounts
for leakage, 𝐸𝑑𝑦𝑛 is the energy consumption in active use cases. The dynamic energy con-
sumption 𝐸𝑑𝑦𝑛 is estimated using: 𝐸𝑑𝑦𝑛 = 𝐶𝑙 ×𝑁𝑐𝑦𝑐𝑙𝑒 × 𝑉 2

𝑑𝑑, where 𝐸 is the energy, 𝐶𝑙 is
the circuitry capacitance, 𝑁𝑐𝑦𝑐𝑙𝑒 is the number of cycles, and 𝑉𝑑𝑑 is the voltage. Although
DVFS yields meaningful energy consumption reduction, its usage requires care, especially
when considering timing constraints.

The problem we are addressing in this chapter is: how to find optimal hard real-
time tasks distribution among heterogeneous processors respecting timing constraints and
targeting low power consumption? The contributions of this work are: (i) comprehensive
and representative mathematical formulations that (ii) accounts characteristics of the
Earliest Deadline First (EDF) hard real-time scheduling policy and that (iii) delivers op-
timal hard real-time task allocation and optimal frequency to task assignment, (iv) with
system energy consumption minimization, but still (v) using the advantage of a classical
combinatorial optimization model: MGAP. The results we present on this research ques-
tion focus on solving the problem optimally on practical instances sizes. We use, in this
chapter, a branch-and-price approach as the main computational technique of resolution
for this problem.

The organization of this chapter is as follows. We first review the system models in
Section 4.1. We describe how to model the problem using a column generation approach
in Section 4.2. We also review the state-of-the-art method in Section 4.3. We describe the
results of computational experiments in Section 4.4. We discuss the results in Section 4.5.
At last, we present a summary of this chapter in Section 4.6.

4.1 System Models
In this section we present the system models. Section 4.1.1 describes the processor

model we consider. We show the real-time task model in Section 4.1.2.

52 Chapter 4. A Branch-and-Price Algorithm to Distribute Independent Hard Real-Time Tasks

4.1.1 Processor Model

The processor model resembles a Multi-Processor System-On-Chip (MPSoC) ar-
chitecture, such as Exynos 5 Octa (Samsung Electronics Co.Ltd., 2014). The system is
composed by a set, ℋ, of 𝑚 processors, ℋ = {𝐻1, 𝐻2, . . . , 𝐻𝑚}. Each core may operate
on 𝑙 different performance states, 1 ≤ 𝑘 ≤ 𝑙. The set of frequencies of one core is not
necessarily the same of other cores. Also, a task may have different code size and exe-
cution time for different processors, due to instruction set differences. The frequency of
performance state 𝑘 on the processor 𝑖 is 𝐹𝑖𝑘 and the power consumption is 𝑃𝑖𝑘. The idle
power of processor 𝑖 is 𝑃𝑖𝑑𝑙𝑒,𝑖.

Our proposal can be used with no extra effort on other architectures. Even though
we focus on per-core heterogeneous platforms in our experiments, we have exercised on
multiple heterogeneous clusters (Valentin et al., 2015b). The models discussed here may
be applicable to full-chip and cluster-based platforms as long as the intrinsic architec-
tural interference is accounted, including the DVFS related overhead, and we recommend
the interested reader to consider more sophisticated schedulability tests (Valentin et al.,
2015b).

4.1.2 Task Model

In the remaining sections of this chapter we adopt the following notation. A task
modelℳ is a set composed by 𝑛 tasks 𝜏𝑗. A task 𝜏𝑗 ∈ℳ, with 𝑗 ≤ 𝑛, has the properties:
worst-case execution cycle 𝑊𝐶𝐸𝐶𝑗; worst-case execution time 𝐶𝑗(𝑓), which is a function
of frequency 𝑓 , thus 𝐶𝑗(𝑓) = 𝑊 𝐶𝐸𝐶𝑗

𝑓
; period of execution 𝑇𝑗; deadline 𝐷𝑗, we consider

scheduling policies in which 𝐷𝑗 = 𝑇𝑗. A task 𝜏𝑗 also has the following properties, specific
to fixed priority policies: fixed priority 𝑝𝑗; set of high priority tasks ℎ𝑝(𝑗) representing the
tasks 𝜏𝑝 with priority higher than the priority of 𝜏𝑗. The response time 𝑅𝑗 is dependent
not only on task set characteristics, but also on the target platform, and on the task
allocation and frequency distribution that have been selected for the workload.

4.2 Columns Generation Algorithm

The models for this problem have the characteristic of having more variables than
constraints. The growth of variables makes the problem a good fit for a Branch-Cut-
and-Price (BCP) algorithm, where upper bounds on the optimal value are computed by
column generation and cut planes are generated to accelerated the derivation of integer
solutions.

4.2. Columns Generation Algorithm 53

4.2.1 Original Mathematical Formulation

EDF is a dynamic priority based on-line scheduler in which earliest deadlines are
first scheduled. Liu and Layland (1973) propose a utilization based schedulability test
for uniprocessor systems. The test is: ∑︀𝑛

𝑗=1 𝐶𝑗(𝑓)/𝑇𝑗 ≤ 1. We are considering implicit
deadlines for EDF (𝐷𝑗 = 𝑇𝑗), in the same way as the original Liu and Layland work.

The EDF scheduler is known to be an optimal online scheduler that can achieve
100% of CPU utilization for independent real-time tasks. Taking advantage of the EDF’s
utilization bound is common practice on the specialized literature (Alahmad and Gopalakr-
ishnan, 2011; Awan and Petters, 2013; Chen et al., 2011; Chen and Thiele, 2011; Goossens
et al., 2008; He and Mueller, 2012a,b; Prescilla and Selvakumar, 2013; Valentin and Bar-
reto, 2010; Yang et al., 2009; Yu and Prasanna, 2003). We present mathematical formu-
lations for real-time task allocation taking into account the utilization bound for EDF as
follows.

Valentin et al. (2016b) propose to use the Multi-level Generalized Assignment
Problem (MGAP) as a more suitable formulation for representing the hard real-time task
assignment problem. Equation 4.1 has the original problem formulation.

(4.1a)Minimize
⎧⎨⎩

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑙∑︁
𝑘=1

𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘

⎫⎬⎭

(4.1b)s.t.:
𝑚∑︁

𝑖 =1

𝑙∑︁
𝑘 =1

𝑥𝑖𝑗𝑘 = 1, 𝑗 ∈ {1, . . . , 𝑛}

(4.1c)𝑛∑︁
𝑗 =1

𝑙∑︁
𝑘 =1

𝑎𝑖𝑗𝑘𝑥𝑖𝑗𝑘 ≤ 𝜃𝑖, 𝑖 ∈ {1, . . . ,𝑚}

(4.1d)𝑥𝑖𝑗𝑘 ∈ {0, 1}, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑘 ≤ 𝑙

4.2.2 Reformulation for the Master Problem

We present here an alternative formulation of the MGAP, which is viable for a
branch-and-price approach. Let a duty 𝑑 for processor 𝑖 be an assignment of tasks to
processor 𝑖, that is the vector 𝑦𝑑

𝑖 = (𝑦𝑑
𝑖11, ..., 𝑦

𝑑
𝑖𝑛𝑙), where each component 𝑦𝑑

𝑖𝑗𝑘 is 1 when
task 𝑗 is assigned to processor 𝑖 at level 𝑘, 0 otherwise.

Let D𝑖 be the set of all feasible duties for processor i, i.e. vectors (𝑦𝑑
𝑖11, ..., 𝑦

𝑑
𝑖𝑛𝑙) such

54 Chapter 4. A Branch-and-Price Algorithm to Distribute Independent Hard Real-Time Tasks

that:

(4.2a)
⎛⎝ 𝑛∑︁

𝑗=1

𝑙∑︁
𝑘=1

𝑎𝑖𝑗𝑘𝑦
𝑑
𝑖𝑗𝑘 ≤ 𝜃𝑖

⎞⎠

(4.2b)𝑙∑︁
𝑘 =1

𝑦𝑑
𝑖𝑗𝑘 ≤ 1, 𝑗 ∈ {1, . . . , 𝑛}

(4.2c)𝑦𝑑
𝑖𝑗𝑘 ∈ {0, 1}, 1 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑘 ≤ 𝑙

Let 𝑧𝑑
𝑖 indicate if a duty 𝑑 is selected to processor 𝑖. The exp reformulation of

MGAP is (Ceselli and Righini, 2006):

(4.3a)Minimize
⎧⎨⎩

𝑚∑︁
𝑖=1

∑︁
𝑑∈D𝑖

⎛⎝ 𝑛∑︁
𝑗=1

𝑙∑︁
𝑘=1

𝑐𝑖𝑗𝑘𝑦
𝑑
𝑖𝑗𝑘

⎞⎠ 𝑧𝑑
𝑖

⎫⎬⎭
(4.3b)s.t.:

𝑚∑︁
𝑖 =1

∑︁
𝑑 ∈D𝑖

(︃
𝑙∑︁

𝑘=1
𝑦𝑑

𝑖𝑗𝑘

)︃
𝑧𝑑

𝑖 = 1, 𝑗 ∈ {1, . . . , 𝑛}

(4.3c)∑︁
𝑑 ∈D𝑖

𝑧𝑑
𝑖 = 1, 1 ≤ 𝑖 ≤ 𝑚

(4.3d)𝑧𝑑
𝑖 ∈ {0, 1}, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑘 ≤ 𝑙

This reformulation, as required by the Dantzig-Wolfe decomposition method, relies on
the fact that a non-empty, bounded convex polyhedron can be represented as a convex
combination of its extreme points and a linear combination of extreme rays.

4.2.3 The Pricing Problem

Let 𝜆 ∈ 𝑅𝑚
+ and 𝜇 ∈ 𝑅𝑛

+ be the vectors of non-negative dual variables correspond-
ing to constraints 4.3b and 4.3c, respectively. The reduced cost of duty 𝑑 for processor 𝑖
is:

(4.4a)𝑟−𝑑
𝑖 =

𝑛∑︁
𝑗=1

𝑙∑︁
𝑘=1

𝑐𝑖𝑗𝑘𝑦
𝑑
𝑖𝑗𝑘 −

𝑛∑︁
𝑗=1

𝜆𝑗(
𝑙∑︁

𝑘=1
𝑦𝑑

𝑖𝑗𝑘) + 𝜇𝑖

Therefore, To find columns with negative reduced cost we must solve the following
pricing problem for each processor:

4.2. Columns Generation Algorithm 55

(4.5a)Minimize
⎧⎨⎩𝑟−𝑑

𝑖 =
𝑛∑︁

𝑗=1

𝑙∑︁
𝑘=1

(𝑐𝑖𝑗𝑘 − 𝜆𝑖) 𝑦𝑑
𝑖𝑗𝑘 + 𝜇𝑖

⎫⎬⎭
(4.5b)𝑛∑︁

𝑗 =1

𝑙∑︁
𝑘 =1

𝑎𝑖𝑗𝑘𝑦
𝑑
𝑖𝑗𝑘 ≤ 𝜃𝑖

(4.5c)𝑙∑︁
𝑘 =1

𝑦𝑑
𝑖𝑗𝑘 ≤ 1, 𝑗 ∈ {1, . . . , 𝑛}

(4.5d)𝑦𝑑
𝑖𝑗𝑘 ∈ {0, 1}, 1 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑘 ≤ 𝑙

that is a multiple choice knapsack problem (MCKP).

4.2.4 Dynamic Programming for the Pricing Problem

The pricing problem is solvable with the dynamic programming described in Equa-
tion 4.6a.

(4.6a)
𝐾(𝑤, 𝑛) = Min: {𝐾(𝑤 − 𝑤𝑗𝑘, 𝑗 − 1) + 𝑐𝑗𝑘, 𝐾(𝑤, 𝑗 − 1)} , 1 ≤ 𝑘 ≤ 𝑙

𝐾(0, 𝑗) = 0,∀1 ≤ 𝑗 ≤ 𝑛
𝐾(𝑤, 0) = 0,∀1 ≤ 𝑗 ≤ 𝑊

4.2.5 Computational Technique of Resolution

In this section, we explain the algorithmic strategy developed for solving the prob-
lem using a column generation approach. In Section 4.2.5.1, we explain the branch-and-
price algorithm and in Section 4.2.5.2, we present the dynamic programming algorithm
for the pricing problem.

4.2.5.1 Branch-And-Price Algorithm

We follow a general method for branch-and-price.The overall idea is to attempt
to tighten the linear relaxation of each node of the branch-and-bound algorithm. Also,
because there are many columns to be solved in the Master problem, a set of columns are
left out of the linear relaxation, as many of their associated variables have value of zero
in an optimal solution. To check for optimally, the pricing problem is invoked to identify
columns to enter the basis. Branching occurs when no columns price out to enter the basis
and the linear relaxation solution does not satisfy integrality conditions.

56 Chapter 4. A Branch-and-Price Algorithm to Distribute Independent Hard Real-Time Tasks

Algorithm 3 Branch-and-Price (B&P) for Independent Tasks
1: Input: ℋ, ℳ, 𝑢𝑏
2: Output: optimal solution (𝑥*, 𝑣*)
3: 𝑣* ← 𝑢𝑏.𝑣𝑎𝑙; 𝑥* ← 𝑢𝑏.𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒;
4: 𝐿← 𝐼𝐿𝑃 0;
5: while L != ∅ do
6: 𝑛← 𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑜𝑑𝑒(𝐿);
7: lp ← relaxation(n)
8: (x, v) ← solve(lp);
9: if x = infeasible then

10: continue;
11: end if
12: 𝑝← 𝑑𝑢𝑎𝑙_𝑏𝑜𝑢𝑛𝑑𝑠(𝑥, 𝑣);
13: 𝑠𝑜𝑙𝑣𝑒_𝑝𝑟𝑖𝑐𝑖𝑛𝑔(𝑝, 𝑠𝑢𝑏𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠);
14: 𝑎𝑑𝑑𝑒𝑑← 𝐹𝐴𝐿𝑆𝐸;
15: for all 𝑐𝑜𝑙𝑢𝑚𝑛 ∈ 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 do
16: if 𝑐𝑜𝑙𝑢𝑚𝑛 have positive reduced costs then
17: add(column, lp);
18: 𝑎𝑑𝑑𝑒𝑑← 𝑇𝑅𝑈𝐸;
19: end if
20: end for
21: if 𝑎𝑑𝑑𝑒𝑑 then
22: goto 7;
23: end if
24: if 𝑣 ≥ 𝑣* then
25: continue;
26: end if
27: if x is integer then
28: 𝑣* ← 𝑣;𝑥* ← 𝑥;
29: continue;
30: end if
31: partition(lp);
32: end while
33: return (𝑥*, 𝑣*);

The algorithm starts by defining a Restricted Master Problem (RMP), which is
a version of the Master Problem with a subset of the Master Problem’s columns. The
linear relaxation of the RMP is then solved and the dual bounds are determined. The
pricing sub-problems are solved by passing the dual bounds. When columns with positive
reduced costs are found after solving the pricing problems, such columns are added to the
RMP and the process is repeated. When no columns are found with positive reduced cost,
the solution for the RMP is checked for integrality. When the solution is not integral, a
branching is performed. When the solution is integral, a solution is found and the process
stops. The Algorithm 3 illustrates the process.

4.3. Barrefor’s Formulation with Utilization and Frequency Bound for EDF 57

4.2.5.2 Dynamic Programming Pricing Algorithm

We have developed a dynamic programming algorithmic solving strategy for the
pricing problem. The dynamic programming strategy is similar to a knapsack dynamic
programming algorithms, but specific for the multiple choice knapsack problem version.

The algorithm maintains a (𝑛 × 1000) matrix 𝑓 of reduced costs and indexes to
compose the final solution. The matrix is composed of 𝑛 rows, representing each task, and
1000 columns, representing the utilization multiplied by a factor of 1000.

The matrix first column and first row are initialized to 0 (reduced cost) and
INT_MAX (index). The remaining rows and columns are initialized according to the
Equation 4.6a. A simple walk back algorithm is used to determine the final solution,
when available, starting from the indexes 𝑛 and 1000, deacreasing to indexes 1 and 1. The
Algorithm 4 illustrates the process.

4.3 Barrefor’s Formulation with Utilization and Frequency Bound
for EDF

Barrefors et al. (2014) use the EDF’s utilization bound in an integer programming
mathematical formulation to distribute hard real-time tasks on heterogeneous processors.
For comparison purposes, we use Barrefors et al. (2014) as a reference from the state-
of-the-art. Their formulation expects as valid CPU frequencies only those whose power
consumption can be sustained for long period of time without the need to throttle due to
temperature constraints. Equation 4.7 (BARREFORS) lists their formulation.

(4.7a)Minimize
{︃
𝑃

𝑚∑︁
𝑖=1

Φ𝑖(𝑓𝑚𝑎𝑥
𝑖)𝑥𝑖

}︃

(4.7b)s.t.:
𝑚∑︁

𝑖 =1
𝛼𝑖𝑓

𝑚𝑎𝑥
𝑖 𝑥𝑖 ≥ 𝑈𝑡𝑜𝑡

(4.7c)𝑥𝑖 ∈ {0, 1}, 1 ≤ 𝑖 ≤ 𝑚

where the decision variable 𝑥𝑖 determines if processor 𝑖 is turned on and in use (𝑥𝑖 = 1) or
not (𝑥𝑖 = 0), 𝛼𝑖 is the performance coefficient of processor 𝑖, 𝑚 is the number of processors,
𝑓𝑚𝑎𝑥

𝑖 is processor 𝑖’s maximum frequency satisfying the temperature constraint, and Φ𝑖(𝑓)
is the power consumption of processor 𝑖 when executed at a frequency 𝑓 . BARREFORS’
formulation determines only which processors to turn on to process the tasks. In a second

58 Chapter 4. A Branch-and-Price Algorithm to Distribute Independent Hard Real-Time Tasks

Algorithm 4 Pricing Dynamic Programming (PDP)
1: Input: 𝑝, 𝑤, 𝑛, 𝑙, 𝑟
2: Output: optimal solution 𝑥
3: 𝑐← 1000;
4: for all 0 ≤ 𝑖 ≤ 𝑛 do
5: 𝑓 [𝑖][0].𝑓 = 0;
6: 𝑓 [𝑖][0].𝑖𝑚𝑖𝑛 = 𝐼𝑁𝑇_𝑀𝐴𝑋;
7: end for
8: for all 0 ≤ 𝑗 ≤ 𝑐 do
9: 𝑓 [0][𝑗].𝑓 = 0;

10: 𝑓 [0][𝑗].𝑖𝑚𝑖𝑛 = 𝐼𝑁𝑇_𝑀𝐴𝑋;
11: end for
12: for all 1 ≤ 𝑖 ≤ 𝑛 do
13: for all 1 ≤ 𝑗 ≤ 𝑐 do
14: 𝑓 [𝑖][𝑗].𝑓 = 𝑓 [𝑖− 1][𝑗].𝑓 ;
15: 𝑓 [𝑖][𝑗].𝑖𝑚𝑖𝑛 = 𝑓 [𝑖− 1][𝑗].𝑖𝑚𝑖𝑛;
16: for all 0 ≤ 𝑘 ≤ 𝑙 do
17: 𝑖𝑚𝑖𝑛← (𝑖− 1) * 𝑙 + 𝑘;
18: if 𝑗 ≥ 𝑤[𝑖𝑚𝑖𝑛] then
19: if 𝑝[𝑖𝑚𝑖𝑛] + 𝑓 [𝑖− 1][𝑗 − 𝑤[𝑖𝑚𝑖𝑛]].𝑓 < 𝑓 [𝑖][𝑗].𝑓 then
20: 𝑓 [𝑖][𝑗].𝑓 ← 𝑝[𝑖𝑚𝑖𝑛] + 𝑓 [𝑖− 1][𝑗 − 𝑤[𝑖𝑚𝑖𝑛]].𝑓 ;
21: 𝑓 [𝑖][𝑗].𝑖𝑚𝑖𝑛 = 𝑖𝑚𝑖𝑛;
22: end if
23: end if
24: end for
25: end for
26: end for
27: 𝑖← 𝑛;
28: 𝑗 ← 𝑟;
29: while 𝑖 > 0 and 𝑗 > 0 do
30: if 𝑓 [𝑖][𝑗].𝑖𝑚𝑖𝑛! = 𝐼𝑁𝑇_𝑀𝐴𝑋 and 𝑓 [𝑖][𝑗].𝑖𝑚𝑖𝑛! = 𝑓 [𝑖−1][𝑗].𝑖𝑚𝑖𝑛

then
31: 𝑘 ← 𝑓 [𝑖][𝑗].𝑖𝑚𝑖𝑛;
32: 𝑥[𝑘]← 1;
33: 𝑗 = 𝑗 − 𝑤[𝑘];
34: end if
35: 𝑖← 𝑖− 1;
36: end while
37: return 𝑥;

phase, BARREFORS’ approach distributes the tasks and determines which frequency
each processor executes based on a worst-fit decreasing algorithm (Barrefors et al., 2014).

4.4. Computational Experience 59

4.4 Computational Experience

In this section we detail the computational experiments and analyse the generated
results. The environment description is outlined in Section 4.4.1. After that, we present two
main scenarios of experiments. We first experiment in Section 4.4.2 comparing the B&P
algorithm against state-of-the-art BARREFORS approach. In Section 4.4.3, we present
further computational experiments targeting only EDF based models.

4.4.1 Experiment Environment

We use random-generated task models. We vary number of tasks in each random-
generated models between 10 and 90. We vary the total system utilization between 10%
and 90%. We chose to have tasks periods uniformly distributed between three sets: large
period, medium period, and short period. When a task has a large period, its period is
chosen from the set {100, 250, 750} milliseconds. Similarly, a medium period is normally
selected from the set {5, 10, 50} milliseconds, and a short period is normally selected from
the set {100, 250, 750} microseconds.

Our experiment considers a target platform of four processors. The target platform
is similar to Exynos platform (Samsung Electronics Co.Ltd., 2014). There are two high
performance processors that can operate at frequencies from 600 MHz to 1.7 GHz. Also,
there are two low power consumption processors that can operate at frequencies from
200 MHz to 1.3 GHz. The idle power consumption is 260 mW. The energy consumption is
estimated for the duration of the LCM of tasks’ periods, as in the objective function of
each model.

The Branch-Cut-And-Price and the column management algorithm is derived us-
ing Firula (Pessoa, 2017). Firula (Framework for Intelligible Robust User-defined Linear-
programming Algorithms) is a framework for implementing Branch-Cut-and-Price algo-
rithms where the user needs only to define a mixed integer linear programming model
for the master problem and provide a solver for each subproblem. All variables and con-
straints are identified by a character string in the API. It requires a linear programming
solver to run.

4.4.2 Experiments against BARREFORS

In this section, we present the results for comparing the Branch-and-Price (BP)
strategy and the method proposed by Barrefors et al. (2014) (BARREFORS). We present
the results of the average execution time of each algorithm and the objective function
value.

Figure 11 illustrates the mean energy consumption of solutions provided by each

60 Chapter 4. A Branch-and-Price Algorithm to Distribute Independent Hard Real-Time Tasks

● ●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

● ●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

● ●

●
●

●
●

●
●

● ●

●
●

●
●

●
●

● ●

●
●

●
●

●
●

●

10 tasks 20 tasks 30 tasks

40 tasks 50 tasks 60 tasks

70 tasks 80 tasks 90 tasks

0

5

10

15

0

5

10

15

0

5

10

15

10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90

Total Utilization (%)

E
n
er

g
y
 (

J
)

Formulation ●BP BARREFORS

Figure 11 – System energy consumption of hard real-time allocations for BARREFORS
and Branch-and-Price (BP) strategies

solver. As observed, the BARREFORS strategy, because it has a heuristic step to dis-
tribute the tasks, delivers a solution with higher energy consumption when compared to
solutions found by BP.

Figure 12 illustrates the mean final system utilization provided by the final con-
figuration as result of each solver. Similarly to the energy curves, the optimal solutions
provided by BP quickly converge to almost the EDF’s theoretical limit: 99.99%. BAR-
REFORS converges to the utilization estimated using the maximum allowed frequency,
because this estimation is used by its algorithm to determine which processors to power
on.

Figure 13 illustrates the mean solver execution time. As observed, once again, be-
cause BARREFORS strategy uses a heuristic step to distribute the tasks, BARREFORS
has a much lower solver execution time, when compared to BP.

4.4. Computational Experience 61

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

10 tasks 20 tasks 30 tasks

40 tasks 50 tasks 60 tasks

70 tasks 80 tasks 90 tasks

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90

Total Utilization (%)

S
o
lu

ti
o
n
 U

ti
li
za

ti
o
n
 (

%
)

Formulation ●BP BARREFORS

Figure 12 – System final utilization of hard real-time allocations for BARREFORS and
Branch-and-Cut (BC) strategies

4.4.3 Experiments against B&C MGAP

In this section, we present the results for comparing the solver using the Branch-
and-Price (BP) strategy and the Branch-and-Cut (BC) strategy presented in Chapter 3.
We present the results of the average execution time of each algorithm and the objective
function value.

Figure 14 illustrates the mean energy consumption of solutions provided by each
solver. As observed in the energy curves, both solvers converge to the same optimal
solutions.

Figure 15 illustrates the mean final system utilization provided by the final con-
figuration as result of each solver. As observed, both solvers were able to converge to the
same optimal value of system utilization.

Figure 16 illustrates the mean solver execution time. As observed, for these in-

62 Chapter 4. A Branch-and-Price Algorithm to Distribute Independent Hard Real-Time Tasks

● ●

● ●

● ●

10 tasks 20 tasks 30 tasks

40 tasks 50 tasks 60 tasks

70 tasks 80 tasks 90 tasks

0

10

20

30

0

10

20

30

0

10

20

30

10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90

Total Utilization (%)

T
im

e
(m

in
)

Formulation ●BP BARREFORS

Figure 13 – Solver execution time for BARREFORS and Branch-and-Price (BP)strategies

stances, the BC based implementation still produces a faster solver. However, in some
instances, the BP Firula based solver is faster. We observe that in some of the instances,
when the system utilization is higher, the Firula based solver may be faster than the BC
based solver.

4.5 Discussion of Results
In the literature, there are strategies to determine hard real-time task distribution

in heterogeneous platforms, as noted in Chapter 3. To the best of knowledge, this is the
first work to present a branch-and-price based resolution method for this problem. Their
approaches typically focus on either heuristics or approximation algorithms (Chen and
Thiele, 2011). There are also models proposed to cover optimal solutions that minimize
the energy consumption of hard real-time systems with multiple heterogeneous processors.
Even though GLPK (Free Software Foundation, 2012) or CPLEX (IBM, 2016) can be

4.5. Discussion of Results 63

●
● ●

●
●

● ●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

10 tasks 20 tasks 30 tasks

40 tasks 50 tasks 60 tasks

70 tasks 80 tasks 90 tasks

0

5

10

0

5

10

0

5

10

10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90

Total Utilization (%)

E
n
er

g
y
 (

J
)

Formulation ●EDF_UTIL_DYN EDF_UTIL_FIRULA_DP

Figure 14 – System energy consumption of hard real-time allocations for Branch-and-
Price (BP) and Branch-and-Cut (BC) strategies

used to deriving optimal solutions from their formulations, to the best of our present
knowledge, this is the first work to report computational experiments on the search for
optimal solution for this problem.

The typical formulation in the specialized literature is a 0/1 integer linear program-
ming model which considers a continuous processor frequency domain and determines a
single operating frequency per processor (Alahmad and Gopalakrishnan, 2011; Awan and
Petters, 2013; Chen et al., 2011; Chen and Thiele, 2011; He and Mueller, 2012a). However,
using the MGAP model is a more suitable fit to this problem because practical processors
still use a discrete set of frequencies (Valentin et al., 2016b).

The adoption of DVFS is common in optimization procedures, such as task alloca-
tion, and frequency to task assignment. The aim is to find optimal energy-aware scheduling
on heterogeneous platforms while considering individual task deadlines (Chen and Thiele,

64 Chapter 4. A Branch-and-Price Algorithm to Distribute Independent Hard Real-Time Tasks

●

●

●

● ● ● ● ● ●

●

●

●

● ● ● ● ● ●

●

●

●

● ● ● ● ● ●

●

●

●

● ● ● ● ● ●

●

●

●

● ● ● ● ● ●

●

●

●

● ● ● ● ● ●

●

●

●

● ● ● ● ● ●

●

●

●

● ● ● ● ●

●

●

● ● ● ● ●

10 tasks 20 tasks 30 tasks

40 tasks 50 tasks 60 tasks

70 tasks 80 tasks 90 tasks

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90

Total Utilization (%)

S
o
lu

ti
o
n
 U

ti
li
za

ti
o
n
 (

%
)

Formulation ●EDF_UTIL_DYN EDF_UTIL_FIRULA_DP

Figure 15 – System final utilization of hard real-time allocations for Branch-and-Price
(BP) and Branch-and-Cut (BC) strategies

2011). Overall system energy reduction is due to workload split and to frequency mini-
mization to meet tasks deadlines. Adoption of the well-known utilization based schedula-
bility analyses is common (Alahmad and Gopalakrishnan, 2011; Awan and Petters, 2013;
Chen et al., 2011; Chen and Thiele, 2011; Goossens et al., 2008; He and Mueller, 2012a,b;
Prescilla and Selvakumar, 2013; Valentin and Barreto, 2010; Yang et al., 2009; Yu and
Prasanna, 2003). The simplification on the model and on the solving process as using
utilization constraints produces formulations similar to the multiple knapsack problem.
However, none of the works targeting optimal solution uses a branch-and-price as the
computational technique of resolution, to the best of our knowledge, this is the first work
to apply branch-and-price in this context.

For the classic MGAP there are extreme fast algorithms. MGAP problem instances
are solvable up to hundreds of machines with tens of speed levels, to map hundreds of
tasks. For example, Osorio and Laguna (2003) proposed a Branch-and-Cut algorithm in

4.5. Discussion of Results 65

● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

● ●
●

●
●

●

●
●

●

●
● ● ●

● ●

●

●

●

● ● ● ●

●

●

●

●

●

● ● ● ●
●

●

●

●

●

● ● ● ● ●

● ●

●

● ● ●
● ●

●

10 tasks 20 tasks 30 tasks

40 tasks 50 tasks 60 tasks

70 tasks 80 tasks 90 tasks

0

10

20

30

0

10

20

30

0

10

20

30

10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90

Total Utilization (%)

T
im

e
(m

in
)

Formulation ●EDF_UTIL_DYN EDF_UTIL_FIRULA_DP

Figure 16 – Solver execution time for Branch-and-Cut (BC) and Branch-and-Price (BP)
strategies

2003 and were able to solve instances up to 60 tasks, 30 machines, and two speed levels.
Ceselli and Righini (2006), in 2006, proposed a Branch-and-Price strategy, solving up to
400 tasks, 80 machines and five levels. Another Branch-and-Cut algorithm proposed by
Avella et al. (2013) can solve 200 tasks, 30 machines and five levels, for specific problem
instances. We contribute with the present work with a new application of the MGAP
model.

In this chapter, we compared one algorithm based on continuous processor fre-
quency domain (BARREFORS) with a branch-and-price (BP) strategy, considering a
discrete set of frequencies. The BP based algorithm produces system configurations with
lower power consumption, but with the penalty of solver execution time, when compared
to BARREFORS.

66 Chapter 4. A Branch-and-Price Algorithm to Distribute Independent Hard Real-Time Tasks

4.6 Chapter Summary
In this chapter, we make introduce a novel branch-and-price algorithmic strategy

to solve the problem of how to find optimal hard real-time tasks distribution among het-
erogeneous processors respecting timing constraints and minimizing power consumption.
Our study focuses on optimal solutions after reviewing the existing models. We have
presented how to derive the master problem by reformulating the original formulation
into one which suits the branch-and-price strategy. We also have discussed about the
pricing problem, which is a version of the MCKP, and we have introduced a dynamic
programming approach to solve the pricing problem.

Experimental results show that the BP based algorithm produces system config-
urations with lower power consumption, but with the penalty of solver execution time,
when compared to the state-of-the-art strategy, BARREFORS. Our proposed BP based
solver has same energy and final utilization curves as our branch-and-cut (BC) solver (see
Chapter 3), as seen in most in our experiments.

67

5 Distribution of Dependent Hard Real-Time
Tasks

In 2015, an estimated 1949 lives were saved by electronic stability control among
passenger vehicle occupants (National Highway Traffic Safety Administration, 2017). But
we still need to do better as around 5,615,000 traffic crashes occurred in the same year
in the US only, causing 33,561 deaths (National Highway Traffic Safety Administration,
2016). Missing a single constraint may be catastrophic, as can be observed in the inves-
tigations performed in the unintended acceleration case of a model of a large automobile
company. Investigators obtained and reviewed the source code for the ‘sub-CPU’, and
they uncovered gaps and defects in throttle fail safes: “For one thing, by looking within
the real-time operating system, the experts identified unprotected critical variables”, says
one of the experts (Yoshida, 2013). The existence of such cases calls attention in the
industry and in the academia experts for designing robust solutions.

Robust methods, such as combinatorial mathematical formulations, can be of great
help in the design phase of safety critical systems to cover for all constraints and opti-
mize them, avoiding infeasible states. In this chapter, we demonstrate how to associate
combinatorial optimization mathematical formulations and response time based schedu-
lability analysis to optimally distribute hard real-time workload, considering precedence,
preemption, mutual exclusion, timing, temperature, and capacity constraints, avoiding,
thus, infeasible system configurations, such as in the unintended acceleration case.

The organization of this chapter is as follows. We present how a typical heteroge-
neous multi-core platform and how a hard real-time task model look like in Section 5.1
and Section 5.2, respectively. We show how a mathematical formulation can be written
associating combinatorial optimization with schedulabitility analysis in Section 5.3. We
also explain how such formulation can be solved using a robust branch-and-cut strategy
in Section 5.4. We exemplify how such advanced techniques can be applied in a case
study of an automotive workload in Section 5.5. Section 5.6 closes this chapter with final
comments.

5.1 Processor Model

Semiconductor OEMs already produce specialized system-on-chips for the purpose
of supplying hard real-time applications, such as the automotive market. For example,
R-Car H3 heterogeneous multi-core platform by Renesas is capable of running a wide
range of Advanced Driver Assistance Systems (ADAS) applications including surround

68 Chapter 5. Distribution of Dependent Hard Real-Time Tasks

view, front camera, park assist, and sensor fusion on a single architecture (Renesas, 2017).

Practitioners execute applications with hard deadline restrictions on multiple het-
erogeneous processors due to the expected energy consumption reduction. Nevertheless,
developing software with timing constraints for multiple heterogeneous processors is a
complex task. Scheduling becomes especially hard to deal with, particularly under low
power constraints.

Adopting multiple processing elements to enhance the computing capability and
to reduce the power consumption is a common design strategy, especially for embedded
systems. Besides, modern multicore processors for the embedded market are often het-
erogeneous in nature (Awan and Petters, 2013). Therefore, the heterogeneous multicore
platforms have become the de-facto solution to cope with the rapid increase of system
complexity, reliability, and energy consumption (He and Mueller, 2012a).

For this reason, a simple way to create a processing model is to use as reference
a Multi-Processor System-On-Chip (MPSoC) architecture, such as R-Car H3 (Renesas,
2017), Samsung Exynos 5 (Samsung Electronics Co.Ltd., 2014), or Texas Instrument
TDA3x (Texas Instruments, 2017). We can state then that the system is composed by
a set, ℋ, of 𝑚 processors, ℋ = {𝐻1, 𝐻2, . . . , 𝐻𝑚}. Each core may operate on 𝑙 different
performance states, 1 ≤ 𝑘 ≤ 𝑙. The frequency of performance state 𝑘 on the processor 𝑖 is
𝐹𝑖𝑘 and the power consumption is 𝑃𝑖𝑘. The set of frequencies of one core is not necessarily
the same of other cores. Also, a task may have different code size and execution time
for different processors, due to instruction set and performance state differences. The idle
power of processor 𝑖 is 𝑃𝑖𝑑𝑙𝑒,𝑖.

5.2 Task Model

A typical hard real-time workload can be represented by a task model of periodic
tasks. A task model ℳ is a set composed by 𝑛 tasks 𝜏𝑗. A task 𝜏𝑗 ∈ ℳ, with 1 ≤
𝑗 ≤ 𝑛, has the properties: worst-case execution cycle 𝑊𝐶𝐸𝐶𝑗; worst-case execution time
𝐶𝑗(𝑓), which is a function of frequency 𝑓 , thus 𝐶𝑗(𝑓) = 𝑊 𝐶𝐸𝐶𝑗

𝑓
; period of execution 𝑇𝑗;

deadline 𝐷𝑗. A task 𝜏𝑗 also has the following properties, specific to fixed priority policies:
fixed priority 𝑝𝑗; and set of high priority tasks ℎ𝑝(𝑗) representing the tasks 𝜏𝑝 with a
priority higher than the priority of 𝜏𝑗. The response time 𝑅𝑗 is dependent not only on
task set characteristics, but also on the target platform, on the task allocation, and on
the frequency distribution that have been selected for the workload. A task model can be
locally processed in a single processor using a fixed priority based on-line scheduler, such
as Deadline Monotonic.

Deadline Monotonic (DM) is a fixed priority based on-line scheduler in which task
priorities decrease with larger deadlines. Audsley et al. (1993) extend the schedulability

5.3. Mathematical Formulations for Dependent Tasks 69

test proposed by Lehoczky et al. (1989) for DM, considering the release jitter 𝐽𝑗 and the
local blocking delay 𝐵𝑗 due to semaphore usage. The delay 𝐵𝑗 caused by low priority
tasks accessing shared resources in the same processors using Priority Ceiling Protocol
can be estimated as 𝐵𝑗 = 𝑚𝑎𝑥𝑗𝑘{𝐷𝑗𝑘|(𝑝𝑗 < 𝑝𝑖) ∧ (𝐶(𝑆𝑘) ≥ 𝑝𝑖)}, where 𝐶(𝑆𝑘) is the
ceiling priority of the shared resource 𝑆𝑘. The schedulability test proposed by Audsley is
𝑅𝑗 ≤ 𝐷𝑗,∀1 ≤ 𝑗 ≤ 𝑛, where 𝑅𝑗 = 𝐼𝑗 + 𝐽𝑗.

The task influence 𝐼𝑗 in multiple processors may be calculated as 𝐼𝑛+1
𝑗 = 𝐶𝑗 +𝐵𝑟

𝑗 +
𝐵𝑗 +∑︀𝑝∈ℎ𝑝(𝑗)

⌈︁
𝐼𝑛

𝑗 +𝐽𝑝+𝐵𝑟
𝑝

𝑇𝑝

⌉︁
×𝐶𝑝. Precedence constraints can be represented by including the

maximum response time of the predecessors tasks in the 𝐽𝑗 component of the task 𝜏𝑗. Also,
when precedence constraints occur across different processors, this imposes an additional
messaging cost that may be incorporated in the emitting task to perform inter-processor
communication. When the Multiprocessor Priority Ceiling Protocol is in place to avoid
priority inversion issues, the remote blocking delay 𝐵𝑟

𝑗 is an upper bound for the blocking
time suffered by task 𝜏𝑗 from other tasks in a different processor. Response time tests
are computationally expensive but provide exact conditions, i.e., sufficient and necessary.
The test uses task’s WCEC, periods, and the concept of critical instant phasing (Lehoczky
et al., 1989).

5.3 Mathematical Formulations for Dependent Tasks
A classical mathematical model that resembles modern heterogeneous multicore

platforms is the Multilevel Generalized Assignment Problem (MGAP) (Glover et al.,
1979), though it was originally conceived in the manufacturing context. The MGAP con-
sists of minimizing the assignment cost of a set of jobs to machines, each having associated
therewith a capacity constraint. Each machine can perform a job with different perfor-
mance states that entail different costs and amount of resources required. The MGAP is
originally in the context of large manufacturing systems as a more general variant of the
well-known Generalized Assignment Problem (GAP). In this chapter, we correlate MGAP
model with the problem of assigning frequencies and distributing hard real-time tasks on
heterogeneous processors, minimizing energy consumption.

Considering the schedulability test proposed by Audsley, we propose the MGAP
formulation using tasks response times as seen in Equation 5.1, based on the formulation
of Valentin et al. (2016b).

(5.1a)Minimize Ψ(𝑥)

(5.1b)s.t.:
𝑚∑︁

𝑖 =1

𝑙∑︁
𝑘 =1

𝑥𝑖𝑗𝑘 = 1, 𝑗 ∈ {1, . . . , 𝑛}

70 Chapter 5. Distribution of Dependent Hard Real-Time Tasks

(5.1c)𝑛∑︁
𝑗 =1

𝑙∑︁
𝑘 =1

𝑊𝐶𝐸𝐶𝑖𝑗

𝐹𝑖𝑘𝑇𝑗

𝑥𝑖𝑗𝑘 ≤ 1, 𝑖 ∈ {1, . . . ,𝑚}

(5.1d)
𝜓𝑖 ≤

𝜅𝑚𝑎𝑥
𝑖 − 𝜅𝑎𝑚𝑏

𝜌
, 𝑖 ∈ {1, . . . ,𝑚}

(5.1e)𝑅𝑗 ≤ 𝐷𝑗, 𝑗 ∈ {1, . . . , 𝑛}

(5.1f)𝑥𝑖𝑗𝑘 ∈ {0, 1}, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑘 ≤ 𝑙

where the tri-indexed decision variable 𝑥𝑖𝑗𝑘 represents the distribution and assignment,
i.e. when 𝑥𝑖𝑗𝑘 = 1 the task 𝜏𝑗 executes in the processor 𝑖 at performance state 𝑘, or
frequency 𝐹𝑖𝑘; when 𝑥𝑖𝑗𝑘 = 0, the task 𝜏𝑗 is distributed somewhere else. A distribution is
a partitioned approach in which each processor 𝑖 executes a local scheduler responsible
for a partition of the real-time task workload and migration is not allowed (see the set of
constraints 5.1b). The set of constraints 5.1c represents the maximum system utilization
capacity of each processor 𝑖. The set of constraints 5.1d represents the temperature limits
by creating a linear relation, where 𝜅𝑎𝑚𝑏 is the ambient temperature, 𝜅𝑚𝑎𝑥

𝑖 is the maximum
junction temperature of each processor 𝑖, 𝜌 is thermal resistance constant, and 𝜓𝑖 is
power consumption of each processor 𝑖. This formulation applies each task deadline as a
constraint against their response time in the linear programming (see the set of constraints
5.1e). The matrix 𝑅𝑗 is the response time of tasks 𝜏𝑗 for a given allocation configuration.
The response time of each task varies depending on the workload distribution and the
frequency assignment of the configuration because a change in the value of 𝑥𝑖𝑗𝑘 may result
in a different computation time (𝐶𝑖). Equation 5.1 is applicable for DM scheduling policy
(𝐷𝑗 ≤ 𝑇𝑗).

We are using an objective function Ψ(𝑥) that minimizes energy consumption, ac-
counting dynamic and idle energy, over the time window represented by the hyperperiod
of the real-time tasks, i.e., the Least Common Multiple (LCM) of tasks periods. We ex-
tend the objective functions presented by Valentin et al. (2016b) by improving the idle
energy estimation. Equation 5.2 has the objective function.

(5.2a)Minimize Ψ(𝑥) =
𝑚∑︁

𝑖=1
(𝐸𝑑𝑦𝑛,𝑖(𝑥) + 𝐸𝑖𝑑𝑙𝑒,𝑖(𝑥))

(5.2b)
𝐸𝑑𝑦𝑛,𝑖(𝑥) =

𝑛∑︁
𝑗=1

𝑙∑︁
𝑘=1

(︃(︃
𝐿𝐶𝑀

𝑇𝑗

)︃
𝐶𝑙𝑊𝐶𝐸𝐶𝑖𝑗𝑉

2
𝑑𝑑,𝑖𝑘𝑥𝑖𝑗𝑘

)︃

5.4. Computational Technique of Resolution 71

(5.2c)
𝐸𝑖𝑑𝑙𝑒,𝑖(𝑥) = 𝑃𝑖𝑑𝑙𝑒,𝑖𝐿𝐶𝑀

⎛⎝1−
𝑛∑︁

𝑗=1

𝑙∑︁
𝑘=1

𝑊𝐶𝐸𝐶𝑖,𝑗

𝐹𝑖𝑘𝑇𝑗

𝑥𝑖𝑗𝑘

⎞⎠

where 𝐸𝑑𝑦𝑛,𝑖 is the energy consumption when processor 𝑖 is active, 𝐸𝑖𝑑𝑙𝑒,𝑖 is the energy
consumption when processor 𝑖 is idle, 𝑊 𝐶𝐸𝐶𝑖𝑗

𝐹𝑖𝑘𝑇𝑗
represents the task 𝜏𝑗 utilization, 𝑢𝑖𝑗𝑘,

while executing in processor 𝑖 at frequency 𝐹𝑖𝑘 of performance state 𝑘, 𝐶𝑙 is the circuit
capacitance constant, and 𝑉𝑑𝑑,𝑖𝑘 is the voltage level to achieve frequency 𝐹𝑖𝑘.

The term
(︁

𝐿𝐶𝑀
𝑇𝑗

)︁
𝐶𝑙𝑊𝐶𝐸𝐶𝑖𝑗𝑉

2
𝑑𝑑,𝑖𝑘𝑥𝑖𝑗𝑘 represents the dynamic energy associated

with the instances of execution of task 𝑗 within the LCM. Each processor idle energy,
within the LCM time window, is computed for its estimated idle time in the term
𝑃𝑖𝑑𝑙𝑒,𝑖𝐿𝐶𝑀

(︁
1−∑︀𝑛

𝑗=1
∑︀𝑙

𝑘=1
𝑊 𝐶𝐸𝐶𝑖,𝑗

𝐹𝑖𝑘𝑇𝑗
𝑥𝑖𝑗𝑘

)︁
.

The objective function represented in Equation 5.2 may still be seen as a MGAP
formulation. Note that, without loss of generality, when we take the term 𝑃𝑖𝑑𝑙𝑒,𝑖𝐿𝐶𝑀 out
of the sum, leaving the term 𝑚𝑃𝑖𝑑𝑙𝑒,𝑖𝐿𝐶𝑀 to be added to the final objective function
value, we have 𝑐𝑖𝑗𝑘 =

[︁(︁
𝐿𝐶𝑀

𝑇𝑗

)︁
𝐶𝑙𝑊𝐶𝐸𝐶𝑖𝑗𝑉

2
𝑑𝑑,𝑖𝑘 − 𝑃𝑖𝑑𝑙𝑒,𝑖𝐿𝐶𝑀

(︁
𝑊 𝐶𝐸𝐶𝑖,𝑗

𝐹𝑖𝑘𝑇𝑗

)︁]︁
.

5.4 Computational Technique of Resolution

We use a general branch-and-cut exact implicit enumeration method combined
with schedulability tests to conduct the process of finding optimal solutions. A branch-
and-cut is a branch-and-bound with cut generation strategies. The algorithm’s input is
the processing model ℋ, the desired task modelℳ, and a possible upper bound 𝑢𝑏. The
algorithm outputs the optimal distribution of hard real-time tasks among the processors
that consumes the least power among the possible assignments, informing as well in which
frequency each task may be executed, and the total system estimated energy. The general
solving strategy is listed in Algorithm 5.

The algorithm starts by denoting the set 𝐿 of active problem nodes to contain only
the initial Integer Linear Problem. When an upper bound 𝑢𝑏 is known, 𝑣* and the optimal
solution 𝑥* are set to match 𝑢𝑏 objective function value and solution structure, otherwise,
they are set to +∞ and to 𝑁𝑈𝐿𝐿, respectively. The algorithm iteratively evaluates each
element of the set 𝐿. Each problem node is initially tested against the schedulability
test that fits for the problem scheduling policy. In cases where the schedulability test
accepts the node, then a regular branch-and-cut is followed. The linear relaxation of the
node is then computed and solved. When the linear relaxation is feasible, a procedure
of generation of cutting planes is performed and followed by a fathoming and pruning
process. The problem node is then partitioned and new restricted problem nodes are

72 Chapter 5. Distribution of Dependent Hard Real-Time Tasks

Algorithm 5 Branch-and-Cut (B&C) for
Dependent Tasks

1: Input: ℋ, ℳ, 𝑢𝑏
2: Output: optimal solution (𝑥*, 𝑣*)
3: 𝑣* ← 𝑢𝑏.𝑣𝑎𝑙; 𝑥* ← 𝑢𝑏.𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒;
4: 𝐿← 𝐼𝐿𝑃 0;
5: while L != ∅ do
6: 𝑛← 𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑜𝑑𝑒(𝐿);
7: if !schedulability(n) then
8: continue;
9: end if

10: lp ← relaxation(n)
11: (x, v) ← solve(lp);
12: if x = infeasible then
13: continue;
14: end if
15: 𝑝← 𝑐𝑢𝑡_𝑝𝑙𝑎𝑛𝑒𝑠(𝑥, 𝑣);
16: if 𝑝! = ∅ then
17: add(p, lp);
18: goto 11;
19: end if
20: if 𝑣 ≥ 𝑣* then
21: continue;
22: end if
23: if x is integer then
24: 𝑣* ← 𝑣;𝑥* ← 𝑥;
25: continue;
26: end if
27: partition(lp);
28: end while
29: return (𝑥*, 𝑣*);

derived and incorporated into 𝐿. The iterative process repeats until the set 𝐿 is empty.

5.5 Case Study: a Cruiser and Collision Detector

In this section, we exemplify how to optimally distribute the hard real-time work-
load of an Advanced Driver Assistance Systems (ADAS) in a target platform based on
R-Car H3. Assisting the driver on safety-related operations of a vehicle is vital because
maneuvering a vehicle is a complex and time-critical task. The assistance, highly based on
sensors, mainly vision based, may provide information to the driver from the surrounding
environment and at times may take control of the vehicle to avoiding hazards. The ADAS
application we are considering can be seen as simple control application to perform a
Cruiser mode with Collision Detection. Table 8 summarizes the task model of this exam-

5.5. Case Study: a Cruiser and Collision Detector 73

Main Control

𝜏1

𝜏13

𝜏14

𝜏15

𝜏7

Sensor Hub

𝜏2

𝜏16

𝜏3

𝜏18 𝜏17

𝜏10 𝜏11

Actuator Center

𝜏4

𝜏20

𝜏5

𝜏22 𝜏21

𝜏9 𝜏8

Signal

𝜏6

𝜏19

𝜏12

Figure 17 – Precedence Graph of Cruiser with Collision Detection Control. Arrows rep-
resent a precedence constraint, for example, 𝜏1 precedes 𝜏13. Dark thick edges
represent mutual exclusion constraint, for example, 𝜏16 shares a resource with
𝜏18

ple. We are considering precedence, preemption, mutual exclusion, temperature, capacity,
and timing constraint while distributing the workload. We illustrate the precedence con-
straints (thin arrows) and mutual exclusion constraints (dark thick edges) of this task
model in the precedence graph of Figure 17.

The application example we consider, the Cruiser mode with Collision Detection, is
composed of four logical activities that communicate among themselves: the Main Control
activity, the Sensor Hub activity, the Actuator Center activity, and the Signal activity.
The Main Control activity is responsible for managing the overall control system and
communicating with the other activities. The Sensor Hub activity monitors speed and
detects collisions, the Actuator Center activity is in charge of controlling the speed, and

74 Chapter 5. Distribution of Dependent Hard Real-Time Tasks

the Signal activity reports and records any significant event detected in the system.

The Main Control activity always starts by requesting (𝜏1) data from the Sen-
sor Hub. Current speed is then sent back to the Main Control (𝜏17). The Main Control
computes any needed speed adjustments to achieve the Cruiser targeted speed and com-
municates with Actuator Center (𝜏13) to implement any acceleration (𝜏20) or brakes (𝜏22)
needed. At the same time, similarly, the Sensor Hub sends collision detection data to the
Main Control, which communicates with Actuator Center to perform the necessary break-
ing. Main Control also sends (𝜏14) regular reports of the events that happen in the control
system to the Signal activity, which is responsible for activating alarms and warnings.

As an example platform, we are considering four processors: two ARM A57’s
and two ARM A53’s. The ARM A57’s may operate on seven different frequencies from
500 MHz to 1.9 GHz, and the A53’s may operate on seven different frequencies from
400 MHz to 1.2 GHz. The idle power consumption is 50 mW. The circuit capacitance con-
stant 𝐶𝑙 is 1× 10−9 W V2 Hz−1. The thermal resistance 𝜌 is 0.11 ∘C W−1. In this platform,
we are considering the DVFS switching latency as an operation executed within the con-
text switch of tasks with a cost of 30 ms, included in the release jitter 𝐽𝑗 of each task. More
robust response time analysis considering the switching overhead in clusters and archi-
tecture influence (Valentin et al., 2015b) may be also combined with the branch-and-cut
algorithm when necessary. We list the platform characteristics in Table 9.

Even though temperature is a constraint left for mechanical engineering, it can
play a role while distributing the system workload. The ambient temperature in a vehicle
will typically be higher than the regular room temperature (25 ∘C) because the system
is exposed to heat flowing from the mechanical engines, reaching as high as 85 ∘C. The
common silicon junction temperature is 125 ∘C.

After executing the branch-and-cut optimization algorithm considering the task
model of Table 8 and the R-Car H3 based model of Table 9, we obtain the optimal
distribution listed in Table 10. The precedence graph with the allocation is also illustrated
in Figure 18. For this case study, the optimal energy consumption is 0.1049 J for the
duration of the LCM (200 ms) of tasks periods. We initialized the algorithm with the
solution structure and an upper bound for the objective function extracted from the logical
feasible distribution in which all tasks of each activity are present in the same processor.
Utilizing this initial upper bound, the full optimization process took less than 1.65 h to
finish and the final optimal solution differs from the logical initial distribution. Even
though this case study has a set of 22 tasks, this algorithm has a reasonable performance
on task models with up to 50 tasks, finishing in less than 30 minutes with a feasible
solution for independent tasks (Valentin et al., 2016a).

As seen in Table 10, the schedulability analysis shows that the computed response
time of each task is less than their respective deadline, meeting all timing, precedence, and

5.5. Case Study: a Cruiser and Collision Detector 75

Main Control

𝜏1
1.9 GHz

𝜏13

1.0 GHz

𝜏14 400 MHz

𝜏15
1.9 GHz

𝜏7
1.9 GHz

Sensor Hub

𝜏2
1.9 GHz

𝜏16
1.9 GHz

𝜏3
1.9 GHz

𝜏18

1.9 GHz

𝜏17 1.8 GHz

𝜏10

1.9 GHz

𝜏11

1.9 GHz

Actuator Center

𝜏4
1.9 GHz

𝜏20
1.9 GHz

𝜏5
1.9 GHz

𝜏22
1.9 GHz

𝜏21
1.9 GHz

𝜏9
1.9 GHz

𝜏8
1.9 GHz

Signal

𝜏6
1.9 GHz

𝜏19
400 MHz

𝜏12

1.9 GHz

ARM A57

ARM A53

ARM A57

Figure 18 – Precedence Graph and Task Distribution of Cruiser with Collision Detec-
tion Control. White nodes are allocated in one ARM A53. Light gray nodes
are allocated in one ARM A57. Dark gray nodes are allocated in the other
ARM A57. The frequency that each task executes is represented close to each
respective node in the graph, for example, 𝜏19 executes at 400 MHz

mutual exclusion constraints. It is worth noting that Table 10 includes the inter-processor
communication cost of tasks 𝜏1, 𝜏4, 𝜏5, 𝜏6, 𝜏13, 𝜏14, 𝜏17, 𝜏18, and 𝜏19. The optimization process
converged to an optimal solution in which tasks sharing resources are allocated in the
same processor, avoiding remote blocking delays. The optimal configuration for this case
study uses only three of the four available processors. The total utilization of the active
processors (6.05 %, 16.98 %, and 25.00 %) is well within their respective theoretical values
(100 %), safely respecting the capacity constraint. This configuration with low utilization
is selected by the algorithm because it consumes the least energy, although it is common
practice to design real-time systems with high utilization. Also, the estimated temperature
of each ARM processors is less than 87 ∘C, in the thermal stabilization, giving enough room
in the temperature constraint.

76 Chapter 5. Distribution of Dependent Hard Real-Time Tasks

We highlight, for example, that the logical distribution setting each application
activity to one processor is also feasible. This configuration uses all four processors at
their respective maximum frequency. The timing, preemption, precedence, and mutual
exclusion constraints are met, given that each task response time is less than their re-
spective deadline. The capacity and temperature constraints are also met. However, this
configuration’s estimated total system energy is 0.1127 J for the LCM (200 ms) of tasks
periods, being at least 7.4 % higher than the optimal.

An intuitive approach would be to target a low power configuration, having all
tasks allocated to a single ARM A53 CPU, executing at the lowest frequency of 400 MHz.
That, however, is not a feasible configuration, given that the capacity constraint is not
met because the total CPU utilization would be 117.5 % and several tasks would not meet
their deadlines in this situation.

Another intuitive approach would be to use again the logical distribution of one
activity to one processor, but locking the lowest available frequency, as the utilization of
each processor is not high. In this configuration, each processor utilization is less than
32 %, but the system is not schedulable because the response time analysis indicates that
tasks 𝜏7, 𝜏8, 𝜏10, 𝜏14, 𝜏15, 𝜏18, and 𝜏21 miss their respective deadlines basically due to the
accumulated precedence.

5.6 Chapter Summary
In this chapter, we described how to optimally distribute the hard real-time work-

load into a heterogeneous multicore platform. We used as an example a case study from
an automotive system. We applied robust methods to avoid infeasible system configura-
tions. Even though they can be computationally expensive, their usage in design time is
still justified, given that they help prevent catastrophic scenarios, such as the unintended
acceleration case.

We associated combinatorial optimization mathematical formulations and response
time based schedulability analysis to optimally distribute hard real-time workload. We
solved the combinatorial problem by using a branch-and-cut algorithm that applies re-
sponse time analysis while walking through the problem nodes. We showed that all the
considered constraints of precedence, preemption, mutual exclusion, timing, temperature,
and capacity were met properly in our case study by using the response time analysis
with branch-and-cut combined method.

5.6. Chapter Summary 77

Table 8 – An example of automotive hard real-time task model

𝜏𝑖 𝑝𝑖 𝑇𝑖(ms) 𝐷𝑖(ms) WCEC (×103)
0 1 2 3

1 1 200.0 100.0 3000 3000 3000 3000
13 2 200.0 100.0 15000 15000 15000 15000
14 3 200.0 100.0 10000 10000 10000 10000
15 4 200.0 100.0 1000 1000 1000 1000
7 5 200.0 100.0 2000 2000 2000 2000
3 6 200.0 40.0 3000 3000 3000 3000
16 7 200.0 200.0 5000 5000 5000 5000
17 8 200.0 100.0 7000 7000 7000 7000
2 9 200.0 200.0 3000 3000 3000 3000
11 10 200.0 200.0 2000 2000 2000 2000
18 11 200.0 40.0 6000 6000 6000 6000
10 12 200.0 40.0 2000 2000 2000 2000
4 13 200.0 100.0 3000 3000 3000 3000
5 14 200.0 100.0 3000 3000 3000 3000
20 15 200.0 100.0 2000 2000 2000 2000
22 16 200.0 100.0 7000 7000 7000 7000
21 17 200.0 100.0 1000 1000 1000 1000
9 18 200.0 100.0 2000 2000 2000 2000
8 19 200.0 100.0 2000 2000 2000 2000
6 20 200.0 200.0 3000 3000 3000 3000
19 21 200.0 200.0 10000 10000 10000 10000
12 22 200.0 200.0 2000 2000 2000 2000

78 Chapter 5. Distribution of Dependent Hard Real-Time Tasks

Table 9 – Architecture characteristics of a typical Automotive platform

CPU 𝐶𝑙(WV2/Hz) 𝜅𝑚𝑎𝑥
𝑖 (∘C) 𝜌(∘C/W) Voltages (V) Frequencies (GHz)

0 1e-09 125 0.11

0.94 1.9
0.86 1.8
0.86 1.7
0.78 1.6
0.77 1.5
0.77 1.0
0.77 0.5

1 1e-09 125 0.11

0.94 1.9
0.86 1.8
0.86 1.7
0.78 1.6
0.77 1.5
0.77 1.0
0.77 0.5

2 1e-09 125 0.11

0.82 1.2
0.82 1.1

0.7825 1.0
0.7575 0.9
0.7075 0.8
0.6825 0.7
0.6575 0.4

3 1e-09 125 0.11

0.82 1.2
0.82 1.1

0.7825 1.0
0.7575 0.9
0.7075 0.8
0.6825 0.7
0.6575 0.4

5.6.
C

hapter
Sum

m
ary

79

Table 10 – Optimal workload distribution result of the optimization process

Processor: 0 Utilization: 6.05 % Temperature: 86.85 ∘C
𝜏𝑖 WCEC (×103) Frequency(GHz) Computation(ms) 𝑇𝑖(ms) 𝐷𝑖(ms) 𝑅𝑖(ms)
15 1000 1.9 0.526 200.0 100.0 97.331
20 2000 1.9 1.053 200.0 100.0 48.684
22 7000 1.9 3.684 200.0 100.0 13.219
21 1000 1.9 0.526 200.0 100.0 49.797
7 2000 1.9 1.053 200.0 100.0 98.443
8 2000 1.9 1.053 200.0 100.0 52.458
9 2000 1.9 1.053 200.0 100.0 18.512
10 2000 1.9 1.053 200.0 40.0 28.513
11 2000 1.9 1.053 200.0 200.0 38.019
12 2000 1.9 1.053 200.0 200.0 108.909

Processor: 1 Utilization: 16.98 % Temperature: 86.73 ∘C
𝜏𝑖 WCEC (×103) Frequency(GHz) Computation(ms) 𝑇𝑖(ms) 𝐷𝑖(ms) 𝑅𝑖(ms)
1 3000 1.9 1.579 200.0 100.0 1.609
2 3000 1.9 1.579 200.0 200.0 3.188
3 3000 1.9 1.579 200.0 40.0 4.767
4 3001 1.9 1.579 200.0 100.0 6.346
5 3001 1.9 1.579 200.0 100.0 7.926
6 3001 1.9 1.579 200.0 200.0 9.505
16 5000 1.9 2.632 200.0 200.0 12.198
18 6001 1.9 3.158 200.0 40.0 18.483
17 7001 1.9 3.685 200.0 100.0 26.936
13 15002 1.0 15.002 200.0 100.0 46.707

Processor: 2 Utilization: 25 % Temperature: 85.04 ∘C
𝜏𝑖 WCEC (×103) Frequency(GHz) Computation(ms) 𝑇𝑖(ms) 𝐷𝑖(ms) 𝑅𝑖(ms)
14 10001 0.4 25.003 200.0 100.0 71.739
19 10002 0.4 25.005 200.0 200.0 96.774

Processor: 3 Utilization: 0.0 % Temperature: 85.005 ∘C
𝜏𝑖 WCEC (×103) Frequency(GHz) Computation(ms) 𝑇𝑖(ms) 𝐷𝑖(ms) 𝑅𝑖(ms)

81

6 Response Time Schedulability Test for
Multicore Platforms

This chapter presents a new multicore platform schedulability analysis that ac-
counts for architecture overhead. We take the cluster-based platform as driving architec-
ture and derive the test based on DVFS switching overhead estimations.

6.1 Motivational Example

A simple example of the problem is the situation of a single cluster composed by
two processors executing two tasks. Both processors support 50 MHz and 100 MHz clock
frequencies. Let us suppose that the worst-case latency to switch from one clock frequency
to another is 5 ms. The optimal allocation determines the first task to run at 50 MHz in
the first processor; the second task to run at 100 MHz in the second processor. The task
model states that 𝑇1 = 100 ms, 𝐶1 = 90 ms, 𝑇2 = 20 ms, 𝐶2 = 5 ms.

The utilization analysis on each processor evaluates the system as schedulable.
The utilization of 𝜏1 is 𝑢1 = 90

100 = 0.9. According to Liu and Layland bound, the total
utilization on the first processor 𝑈1

𝑡𝑜𝑡𝑎𝑙 = 𝑢1 = 0.9, and the utilization bound is 𝑈1
𝑏𝑜𝑢𝑛𝑑 =

1(2 1
1 − 1) = 1; i.e., 𝑈1

𝑡𝑜𝑡𝑎𝑙 < 𝑈1
𝑏𝑜𝑢𝑛𝑑. Similarly, 𝑢2 = 5

20 = 0.25, 𝑈2
𝑡𝑜𝑡𝑎𝑙 = 𝑢2 = 0.25, and

𝑈2
𝑏𝑜𝑢𝑛𝑑 = 1(2 1

1 − 1) = 1; i.e., 𝑈2
𝑡𝑜𝑡𝑎𝑙 < 𝑈2

𝑏𝑜𝑢𝑛𝑑. The original Liu and Layland bound states
that this system is schedulable on each core.

Performing the extended test proposed by Audsley, assuming the switching latency
is part of the release jitter, we end with the following response time analysis. For 𝜏1:
𝐼1 = 90+0+0 = 90 ms and 𝑅1 = 90+5𝑚𝑠 = 95 ms ≤ 100 ms. For 𝜏2: 𝐼2 = 5+0+0 = 5 ms
and 𝑅2 = 5 + 5𝑚𝑠 = 10 ms ≤ 20 ms.

The response time analysis on each core evaluates to a schedulable system. How-
ever, due to DVFS switching latency, the system is unschedulable. The execution of each
task is illustrated on Figure 19. Between instant 0 ms and 5 ms, the two tasks have a
speed conflict, and they execute at the 100 MHz to satisfy task 𝜏2 requirement. At instant
5 ms, 𝜏2 finishes and 𝜏1 may return to 50 MHz speed. The change requires 5 ms of switch-
ing latency. At 20 ms, 𝜏2 becomes active again. Activating 𝜏2 requires switching back to
100 MHz and additional 5 ms of overhead. The cumulative switching overhead leads the
system to an unschedulable situation in which 𝜏1 misses its deadline at instant 100 ms.
The problematic present in this example is first observed in the work reported by He and
Mueller (2012a) and is known as Inter-Core Preemption.

82 Chapter 6. Response Time Schedulability Test for Multicore Platforms

time (ms)0 5 10 20 30 40 50 60 70 80 90 100

50MHz
100MHz

Deadline Miss
time (ms)0 5 10 20 30 40 50 60 70 80 90 100

50MHz
100MHz

𝜏1
𝜏2

DVFS

Source: (He and Mueller, 2012a).

Figure 19 – Example of deadline miss in cluster based platforms

6.2 Architecture latency for response time schedulability analysis
We extend the response time schedulability analysis equation by introducing the

concept of architecture latency.

Definition 1 An Inter-Core Preemption of a task 𝜏𝑖 is a preemption of its execution due
to core speed change. The arrival or the completion of another task 𝜏𝑗 may cause the core
speed change. The condition is 𝜏𝑖 and 𝜏𝑗 are in the same cluster but on different cores (He
and Mueller, 2012a).

Definition 2 Architecture Latency 𝐴𝑖 of a task 𝜏𝑖 is any delay suffered due to hardware
latency.

Therefore, we can rewrite Equation 2.3 as follows:

𝑅𝑖 ≤ 𝐷𝑖, ∀1 ≤ 𝑖 ≤ 𝑛, where: (6.1)

𝑅𝑖 = 𝐼𝑖 + 𝐽𝑖 (6.2)

𝐼𝑛+1
𝑖 = 𝐶𝑖 +𝐵𝑖 + 𝐴𝑖 +

∑︁
𝑗∈ℎ𝑝(𝑖)

⌈︃
𝐼𝑛

𝑖 + 𝐽𝑗

𝑃𝑗

⌉︃
× 𝐶𝑗 (6.3)

For cluster-based platforms, He and Mueller (2012a) proposed an estimation of
switching overhead due to Inter-Core preemption. However, the estimation composes an
imprecise schedulability analysis. Thus, for cluster-based platforms, we recommend having
the architecture latency defined as the same estimation as in He and Mueller (2012a) and
composing a response time schedulability analysis. Therefore, we propose reusing the
estimation as in D. He and defining 𝐴𝑖 as 𝐴𝑖 = 2 × 𝐿𝑝 + 𝑛𝑢𝑚𝑖 × 𝐿𝑝, where 𝐿𝑝 is the
maximum frequency and voltage switching overhead and the computation of 𝑛𝑢𝑚𝑖 is
𝑛𝑢𝑚𝑖 = ∑︀

𝜏𝑗

⌈︁
𝑇𝑖

𝑇𝑗

⌉︁
× 2, where 𝜏𝑗 satisfy Definition 1 (He and Mueller, 2012a).

6.3. Argumentation 83

Let us reconsider the motivational example. We compute the response time analysis
for 𝜏1 as follows: 𝐼1 = 90 + 0 + 60 + 0 = 150 ms and 𝑅1 = 150 + 0 = 150 ms > 100 ms.
Therefore, the system is unschedulable.

6.3 Argumentation

Theorem 1 Given periodic tasks 𝜏1, 𝜏2, . . . , 𝜏𝑛, and a distribution of tasks to cores and
frequency assignments on a cluster-based platform, the entire task set is schedulable if and
only if 𝑅𝑖 ≤ 𝐷𝑖,∀𝑖 ≤ 𝑛, where 𝑅𝑖 is as in Equation 6.1.

Proof: We restrict our attention to the critical instant, because it is the worst-
case situation, as proven by Liu and Layland (1973). Lehoczky et al. (1989) proved for
the situation of perfect preemption, no blocking, no overhead, and jobs are ready at their
initiation times. Audsley et al. (1993) demonstrated for situation considering the usage
of semaphores and the existence of release jitter. The proof for the situation in which the
DVFS switching latency 𝐿𝑝 is non-negligible is trivial because 𝐴𝑖 is a constant value for
a given task model and task to processor and frequency assignment.

Theorem 2 The time complexity of an algorithm to compute Equation 6.1 for one pro-
cessor is 𝑂(𝑛2 × 𝑚𝑎𝑥(𝑟, 𝑝)); where 𝑛 is the number of tasks; 𝑟 is the ratio between the
largest period and smallest period: 𝑟 = 𝑚𝑎𝑥(𝑇𝑖)

𝑚𝑖𝑛(𝑇𝑖) ; and 𝑝 is the number of processors per
cluster.

Proof: It follows that the component 𝐴𝑖 has a constant influence in the conver-
gence of the iterative Equation 6.1. For this reason, the component 𝐴𝑖 is a constant value.
Computing 𝐴𝑖 has 𝑂(𝑛2 × 𝑝) time complexity, where 𝑝 is the number of processors per
cluster. We can calculate all 𝐴𝑖’s before the iteration process. Therefore, we can reduce
the time complexity of the iterative Equation 6.1 to the same as Lehoczky and Audsley
of Table 2. According to AlEnawy and Aydin (2005), the time complexity of Lehoczky is
𝑂(𝑛2 × 𝑟). Thus, the time complexity of Equation 6.1 is 𝑂(𝑛2 ×𝑚𝑎𝑥(𝑟, 𝑝)).

6.4 Empirical Experiments

In this section we present the computational experiments. We discuss experiment
design, results, and discussion in Section 6.4.1, Section 6.4.2, and Section 6.4.3, respec-
tively.

84 Chapter 6. Response Time Schedulability Test for Multicore Platforms

6.4.1 Experiment design

The performance evaluation of the proposed schedulability test uses random gen-
erated task models by a simple simulator program, esim1. The simulator also produces
random generated task to processor and frequency assignments. The simulator uses the
API provided by Akaroa2 (Pawlikowski et al., 1994) to implement random variables,
pseudo-random number generators, and statistical analysis and treatment in the course of
our quantitative discrete-event stochastic simulation. The random-generated task models
and task assignments are then processed by the module with the schedulability analyses
and the results are sent to the Akaroa2 back-end for statistical analysis.

The implementation of the schedulability analysis returns one when the test evalu-
ates the random-generated task model and assignment as schedulable; the return value is
equal to zero when unschedulable. We estimate the mean value of the difference between
the result produced by the response time schedulability analysis presented in Section 6.2
and the other evaluated tests (Audsley et al., 1993; He and Mueller, 2012a; Liu and Lay-
land, 1973). In these experiments, we consider our proposal as reference. The tests agree
on the schedulability of the given sample when the difference is equal to zero. The com-
pared test produces a false positive error if the difference is less than zero. The compared
test produces a false negative error when the difference is greater than zero.

We also estimate the execution time of each schedulability test using wall clock.
The machine used to perform the simulation experiments is an Intel Core i5 executed at
1.7 GHz. The machine has 4 GB of DDR3 memory executed at 1.6 GHz. The operating
system is OS X 10.9.2.

In all experiments, we configure Akaroa2 to achieve 99 % of statistical confidence
(1 − 𝛽 = 0.01) and significance of 0.05 (𝛼 = 0.05). We use the Schruben algorithm
(Pawlikowski, 1990) to remove transient samples. We configure Akaroa2 to apply Spectral
statistic analysis (Pawlikowski, 1990) in the steady state simulation phase. The seed is
28.

We experiment on two types of platforms. The first has one single cluster composed
by XScale processors. We extend the first platform with a secondary cluster to compose
the second platform. The secondary cluster contains powerful processors. We adopt the
power model listed in Table 11. The first cluster uses only processors of type 1 and the
second cluster uses processors of type 2. The switching latency is 450 µs. We also vary
each platform to contain 4, 8, and 16 processors per cluster. The energy consumption is
estimated during the LCM of tasks’ periods. We estimate the system energy consumption

1 esim is currently available via request to authors.

6.4. Empirical Experiments 85

Table 11 – Processor power model

Processor Idle Power Frequency Dynamic Power
Type 𝑝𝑖𝑑𝑙𝑒 (mW) (MHz) 𝑝𝑑𝑦𝑛 (mW)

1 260

624 925
520 747
416 570
312 390
208 279

2 600

1500 1700
1200 1100
800 990
750 950
600 900

as: 𝐸𝑠𝑦𝑠𝑡𝑒𝑚 =

𝑀∑︁
𝑘=1

𝐾∑︁
𝑗=1

𝑛𝑘,𝑗∑︁
𝑖=1

𝐹∑︁
𝑓=1

⌊︂
𝐿𝐶𝑀

𝑇𝑖

⌋︂
𝐶𝑙 ×𝑁𝑐𝑦𝑐𝑙𝑒,𝑘 × 𝑉 2

𝑑𝑑,𝑓 × 𝑥𝑘𝑗𝑖𝑓

+𝐿𝐶𝑀 ×
𝑀∑︁

𝑘=1

𝐾∑︁
𝑗=1

(︃
1−

𝑛𝑘,𝑗∑︁
𝑖=1

𝑢𝑖

)︃
× 𝑝𝑖𝑑𝑙𝑒,𝑘,

where 𝑥𝑘𝑗𝑖𝑓 is a decision variable that evaluates to true if tasks 𝑖 executes in
processor 𝑗 of cluster 𝑘 at frequency 𝑓 , 𝑢𝑖 is the task 𝑇𝑖 utilization defined as 𝑢𝑖 = 𝐶𝑖(𝑓)

𝑃𝑖
,

and 𝑛𝑘,𝑗 is the number of tasks to processor 𝑗 of cluster 𝑘.

We use random-generated task models. The task models considered have 30 inde-
pendent tasks. We choose to disregard precedence and shared resources to perform a fair
comparison against utilization based schedulability tests.

We divide the experiments in two groups: A and B. The differences between the
groups are the compared schedulability tests, the system utilization, the usage of switching
latency 𝐿𝑝, and the generated task models.

The first group, group A, evaluates the difference between the response time analy-
sis for cluster-based platforms against schedulability analyses that neglect the switching
latency 𝐿𝑝. We consider Liu and Layland (1973) original utilization bound (LL), the Ear-
liest Deadline First utilization bound (EDF), and Audsley et al. (1993) response time
analysis (AUDS). The tasks WCEC is uniformly distributed between 50,000 and 100,000
cycles. The period is uniformly distributed between 500 µs and 20 ms.

The second group, group B, evaluates the difference between the response time
analysis for cluster-based platforms against schedulability analyses that incorporate the
switching latency 𝐿𝑝. We consider the conservative utilization based test proposed by He
and Mueller (2012a) combined with: (a) Liu and Layland (1973) original utilization bound

86 Chapter 6. Response Time Schedulability Test for Multicore Platforms

(DA_HE_LL), and the EDF bound (DA_HE_EDF). The tasks WCEC is uniformly dis-
tributed between 50,000 and 100,000 cycles. The period is uniformly distributed between
40 ms and 65 ms. We changed the tasks’ period range to affect the system utilization.
Thus we evaluate the behavior of the proposal on different utilization. The tasks deadline
is less than equal the random-generated period.

6.4.2 Results

In group A, each combination of number of clusters and number of processors re-
quires millions of random-generated task models and task to processor assignments. Table
12 summarizes the number of random generated task models and task assignments, the
average system utilization on each experiment combination, and the estimated average
energy consumption during the LCM of tasks’s periods. The increase in the number of
processors reduces their utilization because the amount of tasks is the same on all exper-
iments. The tasks are randomly distributed between the processors and their frequencies.
Due to the uniform distribution of tasks, the effect on energy consumption is minimal.
We observe energy consumption reduction when we add the second cluster, as the impact
on system utilization is higher.

Table 12 – Summary of experiment on group A

Number of Processors Number of Utilization Energy
Clusters per Cluster Samples (%) (J)

1 04 2618483 28.23 4.47E+12
1 08 1231974 14.65 4.47E+12
1 16 899091 7.39 4.47E+12
2 04 1665647 10.40 4.20E+12
2 08 1162773 5.23 4.20E+12
2 16 448869 2.62 4.20E+12

Figure 20 illustrates the results of experiments on group A. The bar graph in Figure
20 contains plots of confidence intervals for the amount of false positive errors produced
by the tests that disregard the DVFS switching latency, 𝐿𝑝. For the experimentation
on group A, all compared tests (LL, EDF, and AUDS) produce false positive errors. For
instance, we notice that the LL test produces false positive errors in 83.6 % of the analyzed
task sets for the first platform, with single cluster containing four processors. The test
AUDS is the closest to our proposed test. The test AUDS is the one with less false positive
errors. AUDS shows a low difference when the number of processors is four. The amount
of false positives using AUDS test increases when the number of processors is higher. We
observe the same behavior while using the other tests, but the increment is lower. The
test EDF has the highest score of false positive errors.

6.4. Empirical Experiments 87

04 08 16

3.24

83.6

97.05

50.66

96.7 99.64

25.44

93.49
99.26

77.98

98.23 99.88

60.45

96.49 99.77

91.04
98.79 99.95

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

1 cluster
2 clusters

A
U

D
S LL

E
D

F

A
U

D
S LL

E
D

F

A
U

D
S LL

E
D

F

Schedulability Test

P
er

ce
nt

ag
e

of
 fa

ls
e

po
si

tiv
es

Processors
per Cluster 04 08 16

Figure 20 – Group A: Percentage of false positive errors of schedulability tests that neglect
DVFS switching latency. On the top of the figure, we present the results for
the first platform (single cluster). On the bottom of the figure, we present
the results for the second platform (two clusters). The number of processors
is per each cluster

Figure 21 illustrates the mean execution time of schedulability tests evaluated in
group A. The bar graph in Figure 21 contains plots of confidence intervals for the mean
value of the execution time of each test. The y-axis is in logarithmic scale to facilitate

88 Chapter 6. Response Time Schedulability Test for Multicore Platforms

the visualization. TIME_RTA represents the mean execution time of the response time
schedulability analysis presented in Section 6.2. The time execution of TIME_RTA is 1000
times slower than the schedulability analyses that disregard the architecture latency. Also,
it grows faster if the number of processors per cluster increases.

04 08 16

26.2327.82

282.03
700.93

49.6451.35

318.22
813.15

47.2649.87

317.02

1590.76

100.45101.35

426.9

1785.19

95.1299.35

420.77

3343.85

199.55197.39

697.62

3893.14

10

1000

10

1000

1 cluster
2 clusters

T
IM

E
_L

L

T
IM

E
_E

D
F

T
IM

E
_A

U
D

S

T
IM

E
_R

TA

T
IM

E
_L

L

T
IM

E
_E

D
F

T
IM

E
_A

U
D

S

T
IM

E
_R

TA

T
IM

E
_L

L

T
IM

E
_E

D
F

T
IM

E
_A

U
D

S

T
IM

E
_R

TA

Schedulability Test

T
im

e
(u

s)

Processors
per Cluster 04 08 16

Figure 21 – Group A: Execution time of schedulability tests disregarding DVFS switching
latency. On the top of the figure, we present the results for the first platform
(single cluster). On the bottom of the figure are the results for the second
platform (two clusters). The number of processors is per each cluster

In group B, each combination of number of clusters and number of processors

6.4. Empirical Experiments 89

required millions of random-generated task models and task to processor assignments.
Table 13 presents for group B the number of random generated task models and task
assignments, the average system utilization on each experiment combination, and the
estimated average energy consumption during the LCM of tasks’ periods. In this group,
we observe a higher energy consumption, compared to group A. The cause is the longer
tasks’ periods which increases significantly the LCM used to estimate the energy. We
observe a lower energy consumption when we add the second cluster.

Table 13 – Summary of experiment on group B

Number of Processors Number of Utilization Energy
Clusters per Cluster Samples (%) (J)

1 04 115971 3.05 1.52E+31
1 08 105567 1.52 1.52E+31
1 16 178449 0.76 1.51E+31
2 04 152106 1.08 1.43E+31
2 08 60600 0.54 1.43E+31
2 16 48480 0.27 1.43E+31

Figure 22 illustrates the results of empirical experiments on group B. The bar
graph in Figure 22 contains plots of confidence intervals for the amount of false negative
errors produced by the tests that account the DVFS switching latency, 𝐿𝑝. For the exper-
imentation on group B, all compared tests (DA_HE_LL and DA_HE_EDF) produce
false negative errors. For instance, we notice that the DA_HE_LL test produces false
negative errors in 11.23 % of the analyzed task sets for the first platform, with single clus-
ter containing eight processors. Although both compared tests consider 𝐿𝑝, they are still
imprecise. They generate false negative errors because they are only sufficient conditions.
The results of both tests are similar. The results differ for the scenario of two clusters
with 16 processors. The test DA_HE_LL is the one with less false negative errors. The
test DA_HE_EDF is the one with the highest score of false negative errors.

Figure 23 represents a comparison of the execution time of the schedulability
analyses considering the architecture latency. The bar graph in Figure 23 contains plots
of confidence intervals for the mean value of the execution time of each test. TIME_RTA
is still the slowest on these experiments. However, the difference is smaller because the
execution time of all schedulability analyses in this group grow with the number of pro-
cessors per cluster.

6.4.3 Discussion

The empirical experiments highlight the need for a response time schedulability
analysis that accounts for architecture latency. Our proposed response time based analysis
is the first to consider such latency.

90 Chapter 6. Response Time Schedulability Test for Multicore Platforms

04 08 16

66.3 66.3

99.99 99.99

11.23 11.23

99.76 99.99

1.78 1.78

83.92

99.98

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

1 cluster
2 clusters

D
A

_H
E

_E
D

F

D
A

_H
E

_L
L

D
A

_H
E

_E
D

F

D
A

_H
E

_L
L

D
A

_H
E

_E
D

F

D
A

_H
E

_L
L

Schedulability Test

P
er

ce
nt

ag
e

of
 fa

ls
e

ne
ga

tiv
es

Processors
per Cluster 04 08 16

Figure 22 – Group B: Percentage of false negative errors of schedulability tests that ac-
count for DVFS switching latency. On the top of the figure, we present the
results for the first platform (single cluster). On the bottom of the figure,
we present the results for the second platform (two clusters). The number of
processors is per each cluster

Results suggest that original utilization based and response time based analyses
(Audsley et al., 1993; Liu and Layland, 1973) lack the information of the DVFS switching
latency. Therefore, they are prone to commit false positive errors. In the literature exist
only utilization based schedulability analysis accounting the DVFS switching latency (He

6.4. Empirical Experiments 91

04 08 16

627.92631.89892.04

652.37 659
1014.86

1467.331463.89
1793.5

1610.531580.56
1883.78

3104.673118.17
3474.29

3482.713563.02

4271.42

0

1000

2000

3000

4000

0

1000

2000

3000

4000

1 cluster
2 clusters

T
IM

E
_D

A
_H

E
_L

L

T
IM

E
_D

A
_H

E
_E

D
F

T
IM

E
_R

TA

T
IM

E
_D

A
_H

E
_L

L

T
IM

E
_D

A
_H

E
_E

D
F

T
IM

E
_R

TA

T
IM

E
_D

A
_H

E
_L

L

T
IM

E
_D

A
_H

E
_E

D
F

T
IM

E
_R

TA

Schedulability Test

T
im

e
(u

s)

Processors
per Cluster 04 08 16

Figure 23 – Group B: Execution time of schedulability tests considering DVFS switching
latency. The results for the first platform (single cluster) are on the top of
the figure. On the bottom of the figure are the results for the second platform
(two clusters). The number of processors is per each cluster

and Mueller, 2012a). Even though it accounts for the 𝐿𝑝 it is still an imprecise test.
Therefore, it commits false negatives errors.

On the other hand, it is important to highlight that the proposed response time
schedulability analysis is more expensive than the existing tests. The time complexity
grows with the number of tasks and the number of processors. However, it is still worth

92 Chapter 6. Response Time Schedulability Test for Multicore Platforms

using it because the execution time difference is small when compared to sufficient tests
considering architecture latency.

Both errors are problematic. False positives can lead systems to unschedulable
situations. False negatives may leave room for extra optimization, when allocating tasks
to processors and assigning frequencies, for instance.

6.5 Chapter Summary
In this chapter, we assess the problem of providing response time schedulability

test for cluster-based platforms. We spot, with examples and experiments, situations in
which the existing tests in the literature might produce false positive and false negative
errors. Combining the observations of existing works (Audsley et al., 1993; He and Mueller,
2012a) we derive a novel response time schedulability analysis for modern cluster-based
platforms.

Empirical experiments suggest that existing tests may lead hard real-time systems
to unschedulable situations. The existing schedulability analyses lack the information of
DVFS switching latency and thus produce false positive errors, as shown by empirical
experiments. A higher number of processors increases the amount of false positive errors.
The existing sufficient test proposed by He and Mueller (2012a) considers the 𝐿𝑝 but also
produces false negative errors.

Therefore, whenever possible, we suggest using a response time schedulability
analysis, such as the proposed response time based test. The proposed schedulability
analysis combines the switching latency estimation in a response time test. Therefore, we
avoid false positive, and false negatives errors.

93

7 Related Work

This chapter discusses each of the 29 works identified by a systematic literature
review (Valentin and Barreto, 2016) as existing research related to the present thesis.
First, Section 7.1 discusses the works that combine existing solutions of uni-processors
applied to multicore environment. Then, Section 7.2 discusses works about temperature
control. Finally, Section 7.3 discusses works regarding innovative schedulability analysis.

7.1 Single Processor Schedulability Analysis combined with Task
Allocation
This section discusses the works that combine existing solutions of uni-processors

applied to multicore environment. Section 7.1.1 describes each work and presents an
analysis of their findings. Section 7.1.2 ends the section with a discussion about how
the present research extends the state of the art.

7.1.1 Techniques and Methods applying Single Processor Solutions combined
with Task Allocation

Chen et al. (2013) make an observation that deadline partitioning may be too con-
servative for the problem of allocation of real-time tasks with minimal energy consumption
on pipelined computing systems. Therefore, authors present an algorithm based on the
Pay Burst Only Once principle. Authors also make a fair comparison with existing solu-
tions based on deadline partitioning. However, this work disregards parallel computing in
the pipeline.

Chen et al. (2011) propose a meta-heuristic strategy based on Ant Colony Opti-
mization (ACO) which solves the problem of determining an assignment of a set of periodic
tasks to a set of heterogeneous processors without deadline violations and reducing energy
consumption. The ACO strategy is innovative because it implements a local search instead
of a heuristic in the artificial ants, with bounded search depth. For this reason, authors
claim their strategy is competitive when compared against a Genetic Algorithm (GA)
and a Fully Polynomial-Time Approximation Scheme (FPTAS) approximation algorithm
by Baruah. Experimental results show that ACO algorithm outperforms GA and Baruah
methods; furthermore, achieves an average of 15.8 % energy saving over its prototype.
However, authors oversight a comparison to state of art strategy, such as the FPTAS
proposed by Chen et al. (2009) or the heuristic proposed by Yu and Prasanna (2003), for
instance. The proposed ACO is also limited to processors which execute one instruction

94 Chapter 7. Related Work

per cycle. Energy minimization is a secondary objective. The work disregards common
energy savings strategies, such as DVS, or DPM, and neglect static power dissipation.

Chen et al. (2009) tackle the problem of minimizing the energy consumption of
periodic real-time tasks on platforms with heterogeneous Processing Units (PU). Authors
propose four FPTAS algorithms. Two consist of a proposed relaxation of integer linear
programming model. The other two extend the original algorithms by using graph theory
to solve a restricted version of the original problem. In the restricted version, a constant
restricts the number of allocated PU. The authors present the problem hardness and prove
that the solutions of these algorithms are an (𝑚+ 1)-approximation of optimal solution.
Authors neglect existing state of art algorithms, because theirs are the first to address
the problem.

Chen and Thiele (2009) propose a FPTAS algorithm with (1+ 𝑙𝑛𝑛)-approximation
for the problem of Energy efficient task partitioning and platform synthesis with hetero-
geneous PU types. The solution reuses the Minimum Average Energy First Heuristic
(MAEF). The target system has multiple PUs of M different types. Each PU schedules a
partition of the periodic real-time task set using EDF based scheduler. The power model
considers load dependent (DVFS) and load independent (non DVFS) energy consumption
and static and dynamic power consumption. Authors model their problem using ILP and
relaxation techniques. The authors use the weak duality theory to derive the approxi-
mation for their algorithm. The authors compare the results of their algorithm against a
synthetic baseline they created. The work neglects state of art algorithms.

Chen and Thiele (2008) consider the problem of allocating hard real-time tasks
on two heterogeneous processing units with the objective to achieve minimal energy con-
sumption. The authors propose three solution for the problem of minimization of energy
consumption of periodic real-time tasks on platforms with Two Heterogeneous PEs. The
first solution is a greedy heuristic based on task architectural characteristics and energy
consumption derivative. The other two solutions employ dynamic programming, in which
one is an exact solution, and the other is a FPTAS approximation. Limitations in this
work include: it is applicable only to dual core systems, the task deadline is equal to
period and processors use only one frequency, once determined the best frequency for the
assigned workload.

Chen and Thiele (2011) propose a FPTAS algorithm with (1+ 𝑙𝑛𝑛)-approximation
for the problem of energy efficient task partitioning and platform synthesis with Het-
erogeneous PU types. The solution reuses the Minimum Average Energy First (MAEF)
heuristic. The target system has multiple PUs of M different types. Each PU schedules a
partition of the periodic real-time task set using EDF based scheduler. The power model
considers load dependent (DVFS) and independent (non DVFS) energy consumption.
Their model accounts for static and dynamic power consumption. Their models use ILP

7.1. Single Processor Schedulability Analysis combined with Task Allocation 95

and relaxation techniques. The authors use the weak duality theory to derive the ap-
proximation for their algorithm. They solve a restrict version of the problem using the
Restricted Minimum Average Energy First (R-MAEF) algorithm. A constant 𝐴𝑗 limits
the number of allocated PUs in the restricted problem version. The authors compare the
results of their algorithm against a synthetic baseline they created. The work neglects
state of art algorithms.

Chen et al. (2008) develop a novel priority ceiling protocol named MFP-PCP.
MFP-PCP aims systems with one processor and multiple co-processors. The protocol locks
frequencies and makes frequency inheritance in co-processors to avoid priority inversion
problem. The protocol is highly based on PCP. The difference resides on task scheduling
and the frequency switching sections. The proposed protocol is unsuitable for multiple
heterogeneous processors. The sub-task to co-processor assignment is a requirement and
expected as input. The authors focus the performance evaluation only against FP-PCP
protocol. The comparison method is hard to follow and difficult to reproduce.

Goossens et al. (2008) address the energy-aware real-time scheduling problem upon
heterogeneous platforms. Two MPSoCs compose their environment. One is a high per-
formance processor. Another is low performance, but consumes low power. The authors
propose applying four well known heuristics: random, FFDD, GA, and SA; to split the
workloads between the two platforms. Authors claim that sophisticated heuristics, such
as GA and SA, are crucial to have. Simplistic heuristics, such as random and FFDD,
perform poorly when the amount of tasks increases. Empirical experiments compare their
solution against to running the full workload in a high performance MPSoC. Average
energy consumption reduction is within 20 % and 40 %.

Alahmad and Gopalakrishnan (2011) propose three possible solutions for the prob-
lem of energy minimization via task allocation of a real-time system executed in a hetero-
geneous multicore architecture. They consider only periodic, implicit-deadline real-time
tasks. The authors propose a dynamic programming approach based on Woeginger for-
mulation. A FPTAS and a greedy heuristics are also proposed for the same problem.
The authors analyze their algorithms’ complexity. The experiments report a performance
evaluation to compare the approximated solutions. The comparison neglects state of art
algorithms, though.

The main focus of the work done by Awan and Petters (2013) is the provisioning
of realist energy model for heterogenous processing elements with respect to static power
consumption. The authors derive two heuristics (LLED and MM) for hard real-time al-
location and dynamic power consumption minimization. The power models account for
multiple sleep states, energy, and latency transitioning overhead during sleep state switch-
ing. The heuristics take into consideration the task energy density functions. The heuristic
for static power consumption minimization applies also race-to-idle scheduling policies.

96 Chapter 7. Related Work

The authors, however, neglect performance state transitioning (DVFS). Also the overhead
of entering sleep states and leaving sleep states is the same. The authors present also a
fair comparison with state of art heuristics applicable to the same scenario via extensive
simulations based on SPARTS. Results suggest that their algorithm outperforms First Fit
on different utilization scenarios.

Hung et al. (2006) propose multiple approximation algorithms for the minimiza-
tion problem of energy consumption and the maximization problem of energy saving in
migrating task executions from the DVS PE to the non-DVS PE. The authors propose
formulations for different NP-Complete problems: MII, SID, MDI, and SDD. MII stands
for Energy-Minimization on an Ideal Processor and a Workload-Independent PE (MII)
problem. SID stands for Energy-Saving on An Ideal Processor and A Workload-Dependent
PE (SID) problem. MDI and SDD are their respective versions on a non-ideal DVS pro-
cessor. The studied system has two processors, one with DVS, another without DVS.
The proposed formulations and solutions utilize the knapsack problem theory. Authors
propose greedy heuristics and dynamic programming solutions. Authors analyze the re-
spective time complexity and approximation constants. The authors perform extensive
simulations to evaluate the proposed heuristics. The baseline for comparison is the execu-
tion of the workload fully in the DVS PE. The non-DVS PE is only an energy reduction
strategy because the system is always capable of feasibly scheduling the workload using
only the DVS PE. The authors perform a poor comparison as they only evaluate their
proposed solutions. The experiments lack comparison to any existing strategy. The usage
of a convex power function is the base for some of the proofs. This assumption limits the
usage of their solutions on real use cases / processors.

Kim et al. (2005) propose seven heuristics for dynamic mapping of tasks onto wire-
less devices participating in an ad hoc grid, or heterogeneous computing environment. The
heuristics are OLB, FG, Switching, Min-Min, Sufferage, Random, and Originator. Heuris-
tics resemble classical scheduling methods, such as Min-Min, Greedy, switching, OLB. The
empirical experiments lack comparison to existing or classical methods. According to the
simulation results, the heuristics of best performance, which are capable of processing the
most amount of tasks within their deadlines, are the batch modes Min-Min and Sufferage,
followed by the immediate mode Switching.

Kim et al. (2008) propose seven heuristics for dynamic mapping of tasks onto
wireless devices participating in an ad hoc grid, or heterogeneous computing environment:
OLB, MEG, ME-ME, CRME, ME-MC, Random, and Originator. Heuristics resemble
classical scheduling methods, such as Min-Min, Greedy, switching, OLB. The empirical
experiments lack comparison to existing or classical methods. According to the simulation
results, the heuristics of best performance, which are capable of processing the most
amount of tasks within their deadlines, are the batch modes ME-ME and CRME, followed

7.1. Single Processor Schedulability Analysis combined with Task Allocation 97

by the immediate mode ME-MC.

Prescilla and Selvakumar (2013) propose two algorithms: Novel BPSO and Mod-
ified BPSO. They use the concept of the meta-heuristic know as Particle Swarm Op-
timization (PSO). The problem is assignment of a set of independent periodic task to
a heterogeneous multiprocessor without exceeding the utilization bound with minimum
energy consumption. The PSO is a population based search algorithm. The algorithm
simulates the social behavior of birds, bees, or a school of fishes. Novel BPSO and Modi-
fied BPSO essentially propose different way of interpreting and implementing the particle
velocity. Using their proposal requires characterization of each task for number of cycles
per processor. A training phase is also mandatory for their algorithms. The work over-
sights static power consumption and tasks’ response time bounds. Energy minimization is
a secondary optimization objective. Authors did not comment all their results; specially
those related to energy consumption. They perform a comparison against a state of art
strategy based on Ant Colony Optimization, proposed by Chen et al. (2011). Results
suggest that modified particle swarm optimization assigns a greater number of tasks for
problem instances with consistent utilization matrix, when compared to ACO. But Mod-
ified BPSO gives slightly lower performance for inconsistent utilization matrix compared
to ACO. This is because BPSO has weak local search ability.

Yang et al. (2009) propose a FPTAS based on Dynamic Programming to partition
real-time tasks on a platform with heterogeneous processing elements (processors). The
target is to minimize energy consumption. Authors assume that the energy consumption
with higher workload is larger than that with lower workload. The proposed scheme is
a FPTAS when the number of processors is a constant. System designers can specify a
parameter for trading the quality, energy consumption reduction, of the derived solution
to the running time of the algorithm. Authors compare the performance against the state
of the art approach (Huang et al., 2007). Empirical experiments show that the derived
solutions improve 10 % - 15 % when static/leakage power consumption is negligible. Also,
their solution improves 30 % - 60 % when static power consumption is non-negligible. The
authors oversight exact schedulability analysis. The presented performance evaluation
considers only ideal processors and frame based real-time tasks.

Prasanna and Yu (2002) study the problem of static allocation of a set of indepen-
dent tasks onto a real-time system consisting of heterogeneous processing elements, each
enabled with discrete Dynamic Voltage Scaling. The allocation problem is first formulated
as an extended Generalized Assignment Problem. A linearization heuristic (LR-heuristic)
is then extended for solving the problem. Experiments show that when the real-time con-
straints are tight, the LR-heuristic achieves 15 % off the optimal energy consumption for
small size problems, while the performance of a classic greedy heuristic is around 90 % off
the optimal. A relative performance improvement of up-to 40 % over the classic greedy

98 Chapter 7. Related Work

heuristic is also observed for large size problems. Authors base their models on a suffi-
cient condition for optimal scheduling for EDF. They report a lack of exact conditions.
The power model used is an increasing convex function. Authors minimize only dynamic
power. Authors neglect static power. Their work also discards the DPM technique due to
its complex applicability on real-time systems.

Yu and Prasanna (2003) study the problem of statically allocating a set of in-
dependent real-time tasks to a system consisting of heterogeneous processing elements,
each enabled with discrete Dynamic Voltage Scaling. The goal is to minimize the overall
energy dissipation of the system without violating the real-time requirements of the tasks.
The problem is first formulated as an extended Generalized Assignment Problem. A lin-
earization heuristic (LR-heuristic) is then extended to solve the problem. Experiments
show that when the average utilization of the system is high, the LR-heuristic achieves
15 % off the optimal energy dissipation for small size problems, while the performance
of a classic greedy heuristic is around 90 % off the optimal. A relative performance im-
provement of up-to 40 % over the classic greedy heuristic is also observed for large size
problems. Authors perform an analytic performance comparison between the LR-heuristic
and the greedy heuristic. Authors base their models on a sufficient condition for optimal
scheduling for EDF. They report a lack of exact conditions. The power model used is an
increasing convex function. Authors minimize only dynamic power. Authors neglect static
power. Their work also discards the DPM technique due to its complex applicability on
real-time systems.

He and Mueller (2012b) propose a heuristic based on simulated annealing (SA) to
find a solution for task partition and frequency assignment so that all tasks are schedu-
lable. The SA minimizes the system energy consumption over one hyper period on a
heterogeneous platform. The SA collaborates with a task penalty based heuristic to im-
prove SA convergence. The algorithm has also an online version. Each step of the offline
strategy is a unit in the online version executed on scheduling points. The online version
computes the required task data on each scheduling point. Upon task arrival time, the
system updates a heap and the system Speed Inheritance Protocol (SIP) data. Based on
the task heap and the SIP data the system determines each task frequency. The system
then executes one iteration of the SA On each LCM of all tasks period. This algorithm
may converge to optimal solution if the system is unchangeable for multiple executions
of the LCM. The SA initial assignment uses a solution based on the (LA+LTF+FF),
but authors neglect the required computation time to resolve the initial assignment. The
power model restricts dynamic power to a convex function. Besides, there are platforms
that have complex C-states, with required sequencing or power domain dependencies.
The authors, in their experimentation, evaluate only a version of their model consider-
ing homogeneous platforms. The empirical experiments neglect other existing state of art
strategies. Experiments evaluate only the (LA+LTF+FF) and the generalized SA.

7.2. Temperature Control 99

7.1.2 Discussion

As discussed in Section 7.1.1, the majority of the existing works in state-of-the-
art combines solutions for single processor with task allocation and frequency assignment
processes. We intend to take into account the latency inherited of the natural behavior of
heterogeneous platforms. Therefore, our research brings innovative results because it uses
findings of single processors combined with characteristics found in multiple heterogeneous
platforms.

Besides, we concentrate our focus on modern platforms in which the dynamic power
consumption is non-convex (Alahmad and Gopalakrishnan, 2011). Most of the existing
works take advantage of increasing convex power consumption in the task allocation and
frequency assignment processes. The fastest algorithms to optimize energy optimization
is polynomial in time for single processors (Aydin et al., 2001a,b; Sha et al., 1990; Shin
et al., 2000) when the power consumption is a convex function. However, the findings are
scarce when considering non-convex power functions in the energy optimization process.

7.2 Temperature Control
This section discusses works about temperature control. Section 7.2.1 describes

each work and presents an analysis of their findings. Section 7.2.2 ends the Chapter with
a discussion about how the present research extends the state-of-the-art.

7.2.1 Temperature Control Techniques on Heterogeneous Systems

Chantem et al. (2011) address the problem of allocating and scheduling hard real-
time tasks on heterogeneous MPSoC while minimizing the peak temperature. Authors
argument that existing solutions that reduce peak power or peak energy are sub-optimal
for addressing peak temperature issues. The reasoning is because these two approaches
neglect thermal temporal and spatial evolution. Therefore, such approaches lead to sub-
optimal solutions. Authors propose then a MILP formulation for the problem. The MILP
covers peak temperature minimization subject to assignment, deadlines, precedence, and
overlap constraints. Because MILP formulations have a limitation of small problem in-
stances, authors also propose two heuristics, SSAB and TAB. The heuristics address the
problem with steady state thermal simulations and transient thermal simulations, respec-
tively. Authors also propose a delay insertion technique to avoid system reaching peak
temperature while using TAB. Experimental results show a peak temperature reduction
of 10.09 ∘C on average and up to 30.75 ∘C for embedded processors when compared to
energy minimization. Their approach reduces peak temperature of 8.98 ∘C on average and
up to 23.25 ∘C for high power density chips when compared to peak power minimization.
The phased steady-state analysis based heuristic finds an optimal solution in multiple

100 Chapter 7. Related Work

contexts with a maximum deviation of 3.40 ∘C from optimality. The heuristic achieves
a temperature reduction of 10.94 ∘C on average when compared to previous work. The
transient analysis based heuristic models and exploits the transient thermal effects of
short tasks to further improve upon the existing solution by 0.67 ∘C in the best case.
Finally, the work shows that incorporating the concept of delay insertion into the pro-
posed heuristic framework results in an additional peak temperature reduction of up to
11.92 ∘C. However, authors oversight DVFS, the most common power reduction technique.
Also they disregard leakage power reduction, using DPM for instance. They also consider
𝑃𝑑𝑦𝑛 a constant, while when using recent processors this assumption falls apart, due to
variability caused by DVFS or AVS.

Hettiarachchi et al. (2013) propose a control-theoretic framework to ensure hard
real-time deadlines on a multiprocessor platform in a dynamic thermal environment. The
method uses real-time performance modes to permit the system to adapt to changing
conditions. Also, authors show how the system designer can use their framework to allo-
cate asymmetric processing resources upon a multicore CPU and still maintain thermal
constraints. Authors develop analysis for determining what modes the system can sup-
port for a given external thermal condition. The system design extends the derivation
of thermal-resiliency (originally proposed for uni-processor systems) to multicore systems
and determines the limitations of external thermal stress that any hard real-time per-
formance mode can withstand. Simulations and physical testbed results show that the
algorithm predicts how a system will gracefully and predictably degrade under external
thermal stress. Experiments suggest that their method is capable of sustaining reference
temperature. However, authors neglect comparison of their strategy against any other
existing similar solutions, claiming theirs is the first proposed solution. The proposed
solution requires fine tuning a duty cycle period (active and inactive periods). The fine
tuning step is a time consuming task for system designers. Their proposed method ne-
glects the power variation per operating point. The solution also restricts the duty cycle
setup to a divisor of the sampling interval.

Saha et al. (2012) propose HyWGA, a GA combined with Min-core Worst-fit (MW)
based heuristic to generate a thermal-constrained energy-aware partitioning of periodic
hard real-time tasks in heterogeneous multi-core multiprocessor systems. The authors for-
mulate the problem using an ILP. The evaluation of HyWGA uses two proposed thermal
models: Heat Independent Thermal (HIT) Model and Head-Dependent Thermal (HDT)
Model. Experimental results show HyWGA approach is most effective in minimizing the
total energy consumption. Empirical experiments compare HyWGA against to the MW
heuristic. The comparison suggests that HyWGA can minimize the total energy consump-
tion by up to 11 % and 21 % when using the HIT and HDT models, respectively. However,
their experiments lack comparison to any existing state of art solution. The experiments
include only the combination of their solutions. Authors disregard exact schedulability

7.3. Schedulability Analysis For Multicore Systems 101

analysis. Also, in their experiments, the ambient temperature is low, 0 ∘C.

Yang et al. (2012) propose a heuristic to map and schedule tasks onto a set of het-
erogeneous processing units. Authors model leakage as function of temperature and supply
voltage. The scenario is MPSoC platforms. The algorithm is Heuristic Temperature-Aware
DVS Scheduling (HTADS). HTADS algorithm takes the task graph and system architec-
ture as the input, and outputs the optimal schedule with the minimal peak temperature.
HTADS maps tasks to the fastest processors with maximum voltage level firstly, and then
uses the Critical Path Scheduling Algorithm (CPSA) to get the schedule and peak tem-
perature under current assignment. The algorithm determines the deadline to scale down
the voltage of the task with the peak temperature repeatedly. The target is to minimize
the peak temperature of MPSoC. Algorithm CPSA takes the tasks assignment as input,
computes the task priority according critical path, and then schedules the tasks under
the priority constrain. The output of CPSA is the optimal scheduling and deadline. The
authors consider a task set which deadline and period are common to all tasks, frame
of task. The authors neglect feasibility analyses, such as processor utilization bounds or
tasks response time, in their proposed solution. The reasoning may be because CPSA
already generates an offline scale. The temperature models neglect the ambient tempera-
ture. Their solution disregards minimization of overall power consumption.

7.2.2 Discussion

The temperature control is a challenging subject, specially considering heteroge-
neous platforms. Modern platforms have higher leakage power consumption. In our re-
search, we plan to explore the relation of temperature and leakage power found in modern
platforms.

Most of the existing works neglect the relation between temperature and leakage
power in the energy optimization process. Therefore, our research brings innovative results
while exploring this relation and modeling modern platforms.

7.3 Schedulability Analysis For Multicore Systems

This section discusses works regarding innovative schedulability analysis. Section
7.3.1 describes each work and presents an analysis of their findings. Section 7.3.2 ends the
section with a discussion about how the present research extends the state-of-the-art.

7.3.1 Schedulability Analysis Techniques

The work done by He and Mueller (2012a) present a novel schedulability analysis
for clustered heterogeneous systems. The authors revisit the utilization based schedu-

102 Chapter 7. Related Work

lability analysis. The tests are aware of delays and overheads imposed by the usage of
DVFS and DPM. Their work takes advantage of Advanced Configuration and Power In-
terface (ACPI) common definitions of P-states (DVFS) and S-states (DPM). The authors
change the existing utilization bounds and also present proofs for the correctness of their
proposed schedulability tests. They limit the amount of available sleep states to a con-
stant, although it may vary per power domain, in practice. Also they simplify the P-state
switching overhead variability considering only the worst case. In practice, the switching
overhead might be strongly bound to the voltage and frequency delta. They also consider
a convex power function.

Min-Allah et al. (2012) propose an exact schedulability analysis for multicore plat-
forms executing hard real-time periodic tasks under RM/DM scheduling policies. Authors
extend the classical schedulability analysis that considers only the first feasible speed
(FFS). Authors compare FFS against their proposal to search for the minimal speed in-
stead (LFS). Results suggest that their approach increases speed much slower than FFS
when the system load increases. Authors also propose a task shifting heuristic to balance
the load across cores, given a partitioned workload. The high load tasks are shift to light
loaded cores. The heuristic determines that the complete system must execute on same
frequency (avg frequency across minimal required frequency of all cores). The simula-
tion results suggest that their heuristic is capable of evenly distribute the workload. The
processor model reported by Min-Allah is applicable to heterogeneous platforms, how-
ever, it is limiting as they fix the amount of discrete frequencies and the step between
each frequency, which may cause severe rounding problems. Running the system at same
frequency may be under-utilization of the DVS technology.

7.3.2 Discussion

Schedulability analyses for platforms with multiple heterogeneous processors are
scarce in the state-of-the-art works. Most works apply the well established single processor
schedulability analyses after performing a task allocation process. Our research intends
to propose innovative schedulability analyses targeting finding better solutions during the
energy optimization process.

The majority of the state-of-the-art works apply utilization based schedulability
tests. The utilization based tests are sufficient only conditions and therefore may discard
system configurations that could improve further the energy consumption. For this reason,
we are proposing in the present research an exact schedulability analysis for multiple
heterogeneous processor platforms, grouped as clusters.

Two works consider the problematic of multiple heterogeneous processors in the
process of providing schedulability conditions. However, He and Mueller (2012a) provide
a sufficient only condition. Min-Allah et al. (2012) propose exact schedulability analysis

7.4. Notes about related literature reviews 103

applicable to heterogeneous platforms, however, it is limiting as they fix the amount of
discrete frequencies and the step between each frequency, which may cause severe rounding
problems.

7.4 Notes about related literature reviews

The systematic literature review (Valentin and Barreto, 2016) returns also multi-
ple works reporting literature reviews. However, it is difficult to determine if the reviewed
works apply to this study. The reasoning is because the review reports summarized re-
search. The current study avoids searching recursively through the reference list and focus
only on results out of the search string. This Chapter, nevertheless, attempts to comment
the literature review reports returned during this study.

Only the work by Chen and Kuo (2007) has enough details to extract relevant
techniques.The authors review the following primary works. Luo and Jha (2002) propose
list-scheduling-based heuristics for the scheduling of real-time tasks with precedence con-
straints in heterogeneous distributed systems. Schmitz et al. (2002) originally propose ge-
netic list-scheduling algorithms. Kirovski and Potkonjaka (1997) explore for the first time
the synthesis problem for energy-efficient task scheduling of periodic hard real-time tasks.
Processors have cost constraints. Also, processors might have different costs. H.-R.Hsu
et al. (2006) show that the problem is NP-hard in a strong sense. Besides, they also prove
that any polynomial-time approximation algorithm exists with a constant approximation
ratio by providing a L-reduction. Chen and Kuo (2006) propose a 1.5-approximation al-
gorithm with constant violations and a 2-approximation algorithm when there is only one
processor type with continuously available speeds and provide extensions to ideal and
non-ideal processor types with multiple processor types.

Sheikh et al. (2012a) review the recent works for energy and performance aware
scheduling on distributed systems. Singh et al. surveys the emerging trends on task map-
ping on multi/many-core systems (Singh et al., 2013). Beloglazov et al. (2011) present a
taxonomy and survey of energy-efficient data centers. The work by Virlet et al. (2011)
characterizes resource allocation heuristics for heterogeneous computing systems.

Venkatachalam and Franz (2005) summarize and review multiple power reduction
and control techniques. Davis and Burns (2011) survey hard real-time scheduling algo-
rithms and schedulability analysis techniques for homogeneous multiprocessor systems.
Kong et al. (2012) review the recent scientific works related to thermal control. J. Kong
also includes basic concepts about control theory and thermal constraints. Sheikh et al.
(2012b) also review thermal related works for multicore platforms.

104 Chapter 7. Related Work

7.5 Chapter Summary
In this chapter, we have reviewed the existing research related to the present thesis.

We performed a systematic literature review (Valentin and Barreto, 2016) and found 29
works. We have discussed them into three major categories: schedulability analysis com-
bined with task allocation, temperature control, and schedulability analysis for multicore
systems.

The majority of the existing works combines solutions for single processor with
task allocation and frequency assignment processes. Our research brings innovative results
compared to the state-of-the-art because it uses findings of single processors combined
with characteristics found in multiple heterogeneous platforms. Besides, we concentrate
our focus on modern platforms in which the dynamic power consumption can also be
non-convex.

The temperature control is a challenging subject, specially considering heteroge-
neous platforms. Modern platforms have higher leakage power consumption. Most of the
existing works neglect the relation between temperature and leakage power in the energy
optimization process.

Schedulability analyses for platforms with multiple heterogeneous processors are
scarce in the state-of-the-art works. Most works apply the well established single proces-
sor schedulability analyses after performing a task allocation process. Two works consider
the problematic of multiple heterogeneous processors in the process of providing schedu-
lability conditions. However, He and Mueller (2012a) provide a sufficient only condition.
Min-Allah et al. (2012) propose exact schedulability analysis applicable to heterogeneous
platforms, however, it is limiting as they fix the amount of discrete frequencies and the
step between each frequency, which may cause severe rounding problems.

105

8 Final Remarks

Achieving successful energy-aware application development requires specialized la-
bor force. In general, system designers, architects, and engineers lack this skill because
it requires specialization in different fields, as typically it needs to be balanced between
severe constraints, such as size, weight, cost, time-to-marketing, reliability, and others
even more specific to the target environment, such as heating, vibration, lightning, cor-
rosion, water, fire, power source variation (Barreto, 2005). The challenge is even harder
when hard real-time constraints are mandatory to be covered. Thus, aiding the design
and modeling process of hard real-time applications subject to energy and temperature
constraints on multiple heterogeneous platforms is the motivation of this research. The
lack of existing exact methods in the subject is also an additional motivation to extend
the knowledge in this subject.

The results of a systematic literature review (Valentin and Barreto, 2016) highlight
that, even though there is an increasing interest in the subject in the last years, there are
still open questions to be addressed. The subject is of interest to different research groups,
across diverse industry contexts. There are topics that have been slightly explored. For
instance, only five works address the problem of offering optimal solutions, although most
works consider small or medium instance sizes. Most works are also interested in solutions
produced on-line; just five works consider off-line approaches. The most challenging aspect
is exact schedulability tests. We found only one work dealing with tasks’ response time
analysis, while the majority consider utilization based analysis, which is known to be a
sufficient only condition in the presence of inter-task dependence, such as precedence and
mutual exclusion. Similarly, we emphasize the need of exploration of the thermal topic on
this subject, as we found only five works dealing with temperature control.

Therefore, based on the outcome of the systematic literature review, the research
question of this thesis was “How to offer users timing correctness and guarantees of hard
real-time systems executed on heterogeneous multicore systems with energy and temper-
ature constraints?” This thesis aims to solve optimally the problem of scheduling hard
real-time tasks in heterogeneous multicore platforms subject to energy and temperature
constraints. Hard real-time systems are present in life critical environments. In such sce-
narios, correctness depends on integrity of results and on the time when they are produced.
Thus, reducing the energy consumption on such systems becomes specially challenging.

106 Chapter 8. Final Remarks

8.1 Revisiting Objectives and Hypotheses

The main aim of this thesis was to propose an energy optimization method for hard
real-time system on heterogeneous multicore platform demonstrating that it is possible to
timely compute timing correctness and guarantees using a sufficient and necessary condi-
tion; accounting for temperature, preemption, precedence, shared resources constraints, and
architectural interference. We achieved the main objective of this research by combining:
(a) schedulability analysis from hard real-time systems, (b) representative mathemati-
cal formulations covering modern processors technological characteristics, and (c) robust
exact implicit enumeration algorithmic strategies from combinatorial optimization.

One of the secondary objectives of this research was to define a schedulability
analysis for hard real-time scheduling on heterogeneous multicore systems with sufficient
and necessary conditions. We achieved this secondary objective by applying the correct
schedulability analysis depending on the workload. On the one hand, existing utilization
based schedulability analysis are effective for workloads composed by independent peri-
odic hard real-time tasks, mainly because the test can be incorporated in different ILP
formulations, allowing to reuse several existing robust computational techniques of reso-
lution. On the other hand, response time based schedulability analyses are effective for
workloads with dependent hard real-time tasks (see Chapter 5), covering for preemption,
precedence, mutual exclusion, and architectural influence (Valentin et al., 2015b) (see
Chapter 6).

In fact, one of the hypotheses tested in this research was: stronger feasibility analy-
sis offers tighter bounds for the problem. This can be observed, for example, in the results
produced by solvers for fixed priority schedulers. By applying less accurate schedulability
tests, such as utilization based, the solvers take longer to converge to optimal solutions,
when compared to solvers that apply exact schedulability tests based on response time
analysis (Valentin et al., 2017, 2016b).

The other secondary objective of this research was to deliver an off-line assign-
ment algorithm to distribute hard real-time tasks among heterogeneous cores of a multi-
core system; assigning a CPU frequency to each task on active scenarios; using a suffi-
cient and necessary schedulability analysis considering energy, temperature, preemption,
precedence, mutual exclusion, and architectural interference. We achieved this secondary
objective, once again, by applying the correct mathematical formulations, representing
modern processors characteristics, for example, using a discrete set of frequencies instead
of a continuous frequency domain (Valentin et al., 2017, 2016b), and by using robust
computational techniques of ILP resolution, such as branch-and-cut (see Chapter 3) and
branch-and-price (see Chapter 4).

Another hypothesis tested in this research was: practical instances of the problem

8.2. Future Work 107

are timely solvable to optimal. We have experimented on finding feasible solutions for
workload for fixed priority schedulers with up to 50 tasks distributed on four processors
with seven different available frequencies. On independent hard real-time tasks scheduled
using EDF policy, we found optimal distribution of up to 90 tasks on four processors
with seven different available frequencies. In both cases, the solutions were found within
30 min of execution time (Valentin et al., 2016a, 2017). Similarly, on dependent tasks
workload, we have optimally distributed 22 tasks, from an automotive control hard real-
time application, on four processors with seven different available frequencies, with two
shared resources and 23 precedence constraints within 1.5 h. We consider a few hours in
the design phase a price worth paying in this context.

8.2 Future Work
Even though we consider that we have achieved the objectives of this research

and tested the supporting hypotheses, we also recognize that further improvement in the
developed methods are necessary. In this section, we discuss possible extensions of the
present research as well as future work.

Branch-Cut-Price. As future work, we will investigate different algorithms for MGAP
applied on the problem of assigning hard real-time tasks among heterogeneous pro-
cessors with different performance state. We believe that combining the response
time analysis with the existing algorithms may produce faster solvers for this prob-
lem. One possibility to explore is the combination of branch-and-cut with branch-
and-price.

Exploring further response time analysis. Another interesting subject is to find re-
laxations of response time schedulability analysis to derive bounds and apply them
in the branch-and-bound algorithms. Might be worth checking if such bounds can
be used in a novel cut generation strategy.

Branch-and-price. In the branch-and-price based algorithmic strategies, as future work,
we will investigate different algorithms for MCKP applied on the pricing problem.
We will also considerer different branching strategies. We will also investigate how
to perform a local search strategy for finding primal bounds.

Dependent workload. We will evaluate combining response time analysis in a Branch-
Cut-Price algorithm as future work.

Migration. We envision considering migration by performing sensibility analysis to de-
termine other feasible and optimal configurations to allow for dynamic configuration
switching.

108 Chapter 8. Final Remarks

DPM and C-States. Modern processors are able to enter different C-states when idle.
It is worth considering if it is possible to model and deliver optimal distributions
considering DPM technological characteristics.

8.3 List of Publications
This section presents a list of works published as outcome of the present thesis.

We also list works published in collaboration with other authors, in related topics of this
research.

8.3.1 Published Papers

We have published the following works as outcome of this thesis:

1. Valentin, E., de Freitas, R., and Barreto, R. (2017). Towards optimal solutions for
the low power hard real-time task allocation on multiple heterogeneous processors.
Science of Computer Programming, pages –

2. (Best Paper Award of the Real-Time Track) Valentin, E., de Freitas, R.,
and Barreto, R. (2016a). Reaching optimum solutions for the low power hard real-
time task allocation on multiple heterogeneous processors problem. In VI Brazilian
Symposium on Computing Systems Engineering (SBESC’2016), pages 128–135

3. Valentin, E. B., de Freitas, R., and Barreto, R. (2016b). Applying MGAP Model-
ing to the Hard Real-time Task Allocation on Multiple Heterogeneous Processors
Problem. Procedia Computer Science, 80:1135 – 1146. International Conference on
Computational Science (ICCS’2016), 6-8 June 2016, San Diego, California, USA

4. Valentin, E. and Barreto, R. (2016). Energy constraints for scheduling tasks on het-
erogeneous hard real-time systems: A systematic literature review. GISE Lab Tech-
nical Report TR-2016-01, Federal University of Amazonas, Manaus, AM - Brazil.
URL: http://gise.icomp.ufam.edu.br/reports/TR-2016-01.pdf

5. Valentin, E., Salvatierra, M., de Freitas, R., and Barreto, R. (2015b). Response
time schedulability analysis for hard real-time systems accounting DVFS latency
on heterogeneous cluster-based platform. In 25th International Workshop on Power
and Timing Modeling, Optimization and Simulation (PATMOS’2015), pages 1–8

6. (Ranked as First Place by SOBRAPO among the Brazilian Works) Valentin,
E. (2014). On the frequency assignment to hard-real time tasks of multicore systems.
In Proceedings of the XVIII Escuela LatinoAmericana de Verano en Investigación
de Operaciones (ELAVIO’2014), Areia – PB, Brazil

http://gise.icomp.ufam.edu.br/reports/TR-2016-01.pdf

8.3. List of Publications 109

Additionally, we have also co-authored the following works in subjects related to
the present research during the course of this project:

1. Gonçalves, R. S., Pinheiro, D. Q., Valentin, E. B., Oliveira, H. A. B. F., and Barreto,
R. S. (2016). Real-time tasks and voltage/frequency controller collaboration on low
power energy operational systems. In 2016 International Conference on Embedded
Computer Systems: Architectures, Modeling and Simulation (SAMOS), pages 47–54

2. Bentes, L., Rocha, H., Valentin, E., and Barreto, R. (2016). Jfortes: Java formal
unit test generation. In 2016 VI Brazilian Symposium on Computing Systems En-
gineering (SBESC), pages 16–23

As outcome of an extension project to mentor and nurture agile process within a
research environment, we have published the following work:

1. Valentin, E., Carvalho, J. R. H., and Barreto, R. (2015a). Rapid improvement of
students’ soft-skills based on an agile-process approach. In 2015 IEEE Frontiers in
Education Conference (FIE), pages 1–9

8.3.2 Book Chapters

We have submitted the following book chapter proposal which got accepted and
it is under a peer-review process.

1. (accepted proposal) Valentin, E., de Freitas, R., and Barreto, R. (2018). Design-
ing distributed real-time systems to process complex control workload in the energy
industry. In Collective and Computational Intelligence Applications in Energy IN-
DUSTRY, pages xxx–yyy. Springer

111

References

Alahmad, B. N. and Gopalakrishnan, S. (2011). Energy efficient task partitioning and
real-time scheduling on heterogeneous multiprocessor platforms with QoS requirements.
Sust. Computing: Inform. and Systems, 1(4):314–328.

AlEnawy, T. and Aydin, H. (2005). Energy-aware task allocation for rate monotonic
scheduling. In Real Time and Embedded Technology and Applications Symposium
(RTAS’2005), pages 213–223.

Audsley, N., Burns, A., Richardson, M., Tindell, K., and Wellings, A. J. (1993). Applying
new scheduling theory to static priority pre-emptive scheduling. Software Eng. Journal,
8(5):284–292.

Avella, P., Boccia, M., and Vasilyev, I. (2013). A branch-and-cut algorithm for the mul-
tilevel generalized assignment problem. Access, IEEE, 1:475–479.

Awan, M. A. and Petters, S. M. (2013). Energy-aware partitioning of tasks onto a hetero-
geneous multi-core platform. In Real-Time Technology and Applications - Proceedings,
pages 205–214, Philadelphia, PA.

Aydin, H., Melhem, R., Mosse, D., and Mejia-Alvarez, P. (2001a). Determining optimal
processor speeds for periodic real-time tasks with different power characteristics. In
Real-Time Systems, 13th Euromicro Conference on, 2001., pages 225–232.

Aydin, H., Melhem, R., Mossé, D., and Mejía-Alvarez, P. (2001b). Dynamic and aggressive
scheduling techniques for power-aware real-time systems. In Proceedings of the 22nd
IEEE Real-Time Systems Symposium., page 95–105.

Barrefors, B., Lu, Y., Saha, S., and Deogun, J. S. (2014). A novel thermal-constrained
energy-aware partitioning algorithm for heterogeneous multiprocessor real-time sys-
tems. In IEEE 33rd International Performance Computing and Communications Con-
ference (IPCCC’2014), pages 1–8.

Barreto, R. (2005). A Time Petri Net-Based Methodology for Embedded Hard Real-Time
Software Synthesis. PhD thesis, Cin/UFPE.

Basili, V., Caldiera, G., and Rombach, H. D. (1994a). Goal Question Metric Paradigm.
Technical report, Encyclopedia of Software Engineering, New York.

Basili, V., Caldiera, G., and Rombach, H. D. (1994b). The Experience Factory. Technical
report, Encyclopedia of Software Engineering, New York.

112 References

Beloglazov, A., Buyya, R., Lee, Y. C., and Zomaya, A. (2011). A taxonomy and survey
of energy-efficient data centers and cloud computing systems. Advances in Computers,
82:47 – 111.

Benini, L., Bogliolo, A., and Micheli, G. D. (2000). A survey of design techniques for
system-level dynamic power management. In IEEE Trans. Very Large Scale Integr.
Syst., volume 8, page 299–316.

Bentes, L., Rocha, H., Valentin, E., and Barreto, R. (2016). Jfortes: Java formal unit
test generation. In 2016 VI Brazilian Symposium on Computing Systems Engineering
(SBESC), pages 16–23.

Bini, E. and Buttazzo, G. (2004). Biasing effects in schedulability measures. In the 16th
Euromicro Conference on Real-Time Systems, page 196–203. IEEE Computer Society.

Bini, E., Buttazzo, G., and Buttazzo, G. (2001). A hyperbolic bound for the rate mono-
tonic algorithm. In Real-Time Systems, 13th Euromicro Conference on, 2001., pages
59–66.

Biolchini, J., Mian, P. G., Natali, A. C. C., Conte, T. U., and Travassos, G. H. (2007).
Scientific research ontology to support systematic review in software engineering. Adv.
Eng. Inform., 21(2):133–151.

Brucker, P. (2010). Scheduling Algorithms. Springer Publishing Company, Incorporated,
5th edition.

Burd, T. D. and Brodersen, R. W. (1996). Processor design for portable systems. Journal
of VLSI signal processing systems for signal, image and video technology, 13(2-3):203–
221.

Burns, A. and Wellings, A. (1997). Real-Time Systems and Programming Languages.
Addison-Wesley, second edition.

Ceselli, A. and Righini, G. (2006). A branch-and-price algorithm for the multilevel gen-
eralized assignment problem. Operations Research, pages 1172–1184.

Chantem, T., Hu, X., and Dick, R. (2011). Temperature-aware scheduling and assignment
for hard real-time applications on MPSoCs. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 19(10):1884–1897.

Chen, G., Huang, K., Buckl, C., and Knoll, A. (2013). Energy optimization with worst-
case deadline guarantee for pipelined multiprocessor systems. In Proceedings -Design,
Automation and Test in Europe, DATE, pages 45–50, Grenoble.

References 113

Chen, H., Cheng, A. M. K., and Kuo, Y.-W. (2011). Assigning real-time tasks to hetero-
geneous processors by applying ant colony optimization. Journal of Parallel and Dist.
Computing, 71(1):132–142.

Chen, J.-J. and Kuo, C.-F. (2007). Energy-Efficient Scheduling for Real-Time Systems on
Dynamic Voltage Scaling (DVS) Platforms. In 13th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA’2007), pages
28–38, Daegu. IEEE.

Chen, J.-J. and Kuo, T.-W. (2006). Allocation cost minimization for periodic hard real-
time tasks in energy-constrained dvs systems. In Proceedings of the IEEE/ACM Inter-
national Conference on Computer-Aided Design, page 255–260.

Chen, J.-J., Schranzhofer, A., and Thiele, L. (2009). Energy minimization for periodic
real-time tasks on heterogeneous processing units. In IEEE International Symposium
on Parallel Distributed Processing (IPDPS’2009), pages 1–12.

Chen, J.-J. and Thiele, L. (2008). Energy-efficient task partition for periodic real-time
tasks on platforms with dual processing elements. In Proceedings of the International
Conference on Parallel and Distributed Systems - ICPADS, pages 161–168, Melbourne,
VIC.

Chen, J.-J. and Thiele, L. (2009). Task Partitioning and Platform Synthesis for Energy
Efficiency. 2009 15th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, pages 393–402.

Chen, J.-J. and Thiele, L. (2011). Platform synthesis and partitioning of real-time tasks
for energy efficiency. Journal of Systems Architecture, 57(6):573–583.

Chen, Y.-S., Chang, L.-P., and Kuo, T.-W. (2008). Multiprocessor frequency locking
for real-time task synchronization. In Proceedings of the ACM Symposium on Applied
Computing, pages 289–293, Fortaleza, Ceara.

Chu, E. T. H., Huang, T. Y., and Tsai, Y. C. (2009). An Optimal Solution for the
Heterogeneous Multiprocessor Single-Level Voltage-Setup Problem. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 28(11):1705–1718.

Cochran, R. (2013). Techniques for Adaptive Power and Thermal Sensing and Manage-
ment of Multi-core Processors. Thesis, Brown University.

Davis, R. I. and Burns, A. (2011). A survey of hard real-time scheduling for multiprocessor
systems. ACM Computing Surveys, 43(4):1–44.

Dick, R. P., Rhodes, D. L., and Wolf, W. (1998). TGFF: Task graphs for free. In Int.
Workshop Hardw./Softw. Co-Des., page 97–101.

114 References

EEMBC (2014). The embedded microprocessor benchmark consortium.

Farines, J. M., Fraga, J. S., and Oliveira, R. S. (2000). Sistemas de Tempo Real. Univer-
sidade Federal de Santa Catarina, Departamento de Automação e Sistemas.

Free Software Foundation (2012). Gnu linear programming kit.

Garey, M. R. and Johnson, D. S. (1979). Computer and Intractability: a Guide to the
Theory of the NP-Completeness. W. H. Freeman and Company.

Glover, F., Hultz, J., and Klingman, D. (1979). Improved computer-based planning tech-
niques. Part II. Interfaces, 9(4):12–20.

Gonçalves, R. S., Pinheiro, D. Q., Valentin, E. B., Oliveira, H. A. B. F., and Barreto, R. S.
(2016). Real-time tasks and voltage/frequency controller collaboration on low power
energy operational systems. In 2016 International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation (SAMOS), pages 47–54.

Google, I. (2013). The big picture - google greener.

Goossens, J., Milojevic, D., and Nélis, V. (2008). Power-aware real-time scheduling upon
dual cpu type multiprocessor platforms. In Proceedings of the 12th International Con-
ference on Principles of Distributed Systems (OPODIS ’08), pages 388–407, Berlin,
Heidelberg. Springer-Verlag.

H.-R.Hsu, Chen, J.-J., and T.-W.Kuo (2006). Multiprocessor synthesis for periodic hard
real-time tasks under a given energy constraint. In ACM/IEEE Conference of Design,
Automation, and Test in Europe (DATE).

He, C., Zhu, X., Guo, H., Qiu, D., and Jiang, J. (2012). Rolling-horizon scheduling for
energy constrained distributed real-time embedded systems. Journal of Systems and
Software, 85(4):780–794.

He, D. and Mueller, W. (2012a). Enhanced schedulability analysis of hard real-time
systems on power manageable multi-core platforms. In Proceedings of the 14th IEEE
International Conference on HPCC - 9th IEEE ICESS, pages 1748–1753, Liverpool.

He, D. and Mueller, W. (2012b). A heuristic energy-aware approach for hard real-time
systems on multi-core platforms. In Proceedings of the 2012 15th Euromicro Conference
on Digital System Design (DSD ’12), pages 288–295, Washington, DC, USA. IEEE
Computer Society.

Hettiarachchi, P. M., Fisher, N., and Wang, L. Y. (2013). Achieving Thermal-Resiliency
for Multicore Hard-Real-Time Systems. In 2013 25th Euromicro Conference on Real-
Time Systems, pages 37–46, Paris. IEEE.

References 115

Huang, T.-Y., Tsai, Y.-C., and Chu, E. T.-H. (2007). A Near-optimal Solution for the
Heterogeneous Multi-processor Single-level Voltage Setup Problem. In 2007 IEEE In-
ternational Parallel and Distributed Processing Symposium, pages 1–10, Long Beach,
CA. IEEE.

Hung, C.-M., Chen, J.-J., and Kuo, T.-W. (2006). Energy-efficient real-time task schedul-
ing for a DVS system with a non-DVS processing element. In Proceedings - Real-Time
Systems Symposium, pages 303–312, Rio de Janeiro.

IBM (2016). Ilog cplex. http://www.ilog.com/products/cplex/.

Jejurikar, R., Pereira, C., and Gupta, R. (2004). Leakage aware dynamic voltage scaling
for real-time embedded systems. In Proceedings of the Design Automation Conference,
pages 275–280.

Kim, J.-K., Siegel, H. c., Maciejewski, A., and Eigenmann, R. (2005). Dynamic mapping
in energy constrained heterogeneous computing systems. In Proceedings - 19th IEEE
International Parallel and Distributed Processing Symposium (IPDPS’2005), volume
2005, page 64a, Denver, CO.

Kim, J.-k., Siegel, H. J., Maciejewski, A. A., Eigenmann, R., and Member, S. (2008).
Dynamic Resource Management in Energy Constrained Heterogeneous Computing Sys-
tems Using Voltage Scaling. IEEE Transactions on Parallel and Distributed Systems,
pages 1445–1457.

Kirovski, D. and Potkonjaka, M. (1997). System-level synthesis of low-power hard real-
time systems. In Proceedings of the 34th ACM/IEEE Conference on Design Automation
Conference, page 697–702.

Kitchenham, B. and Charters, S. (2007). Guidelines for performing systematic litera-
ture reviews in software engineering. Technical report, School of Computer Science
and Mathematics Keele University and Department of Computer Science University of
Durham.

Kong, J., Chung, S. W., and Skadron, K. (2012). Recent thermal management techniques
for microprocessors. ACM Computing Surveys, 44(3):1–42.

Lauzac, S., Melhem, R., and Mosse, D. (1998). An efficient rms admission control and
its application to multiprocessor scheduling. In Parallel Processing Symposium, 1998.
IPPS/SPDP 1998. Proceedings of the First Merged International and Symposium on
Parallel and Distributed Processing 1998, pages 511–518.

Lee, C., Lee, J. K., Hwang, T., and Tsai, S.-C. (2003). Compiler optimization on vliw
instruction scheduling for low power. In ACM Transactions on Design Automation of
Electronic Systems (TODAES)., volume 8, page 252 – 268.

http://www.ilog.com/products/cplex/

116 References

Lehoczky, J., Sha, L., and Ding, Y. (1989). The rate monotonic scheduling algorithm:
exact characterization and average case behavior. Proceedings of the IEEE Real Time
Systems Symposium, pages 166–171.

Liu, C. L. and Layland, J. W. (1973). Scheduling algorithms for multiprogramming in a
hard-real-time environment. J. ACM, 20(1):46–61.

Liu, J. W. (2000). Real-Time Systems. Prentice Hall, Englewood, Cliffs, NJ.

Luo, J. and Jha, N. (2002). Static and dynamic variable voltage scheduling algorithms for
realtime heterogeneous distributed embedded systems. In 15th International Conference
on VLSI Design (VLSID’02), page 719–726.

Markoff, J. and Lohr, S. (2002). Intel’s huge bet turns iffy,.

Min-Allah, N., Hussain, H., Khan, S. U., and Zomaya, A. Y. (2012). Power efficient
rate monotonic scheduling for multi-core systems. Journal of Parallel and Distributed
Computing, 72(1):48–57.

National Highway Traffic Safety Administration (2016). Quick facts 2015. Technical
report, U.S. Department of Transportation.

National Highway Traffic Safety Administration (2017). Estimating lives saved by elec-
tronic stability control, 2011–2015. Technical report, U.S. Department of Transporta-
tion.

Osorio, M. A. and Laguna, M. (2003). Logic cuts for multilevel generalized assignment
problems. European Journal of Operational Research, 151(1):238 – 246.

Pawlikowski, K. (1990). Steady-state simulation of queueing processes: Survey of problems
and solutions. ACM Comput. Surv., 22(2):123–170.

Pawlikowski, K., Yau, V. W. C., and McNickle, D. (1994). Distributed stochastic discrete-
event simulation in parallel time streams. In Winter simulation conference (WSC ’94),
pages 723–730. Society for Computer Simulation International.

Pessoa, A. (2017). Sourceforge - firula. [visited in February-2017].

Prasanna, V. and Yu, Y. (2002). Power-aware resource allocation for independent tasks
in heterogeneous real-time systems. In Ninth International Conference on Parallel and
Distributed Systems, 2002. Proceedings., pages 341–348.

Prescilla, K. and Selvakumar, A. I. (2013). Modified binary particle swarm optimization
algorithm application to real-time task assignment in heterogeneous multiprocessor.
Microprocess. Microsyst., 37(6-7):583–589.

References 117

Qu, G. (2001). What is the limit of energy saving by dynamic voltage scaling? In
IEEE/ACM International Conference on Computer Aided Design, page 560–563.

Renesas (2017). R-Car H3. [visited in May, 2017]. URL: https://www.renesas.com/
en-us/solutions/automotive/products/rcar-h3.html#spec.

Saha, S., Lu, Y., and Deogun, J. S. (2012). Thermal-constrained energy-aware partitioning
for heterogeneous multi-core multiprocessor real-time systems. In Proceedings - 18th
IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications, RTCSA 2012 - 2nd Workshop on Cyber-Physical Systems, Networks, and
Applications, CPSNA, pages 41–50, Seoul.

Samsung Electronics Co.Ltd. (2014). Samsung exynos.

Schmitz, M., Al-Hashimi, B., and Eles, P. (2002). Energy-efficient mapping and schedul-
ing for dvs enabled distributed embedded systems. In DATE ’02: Proceedings of the
conference on Design, automation and test in Europe), page 514.

Schrijver, A. (1998). Theory of Linear and Integer Programming. Wiley.

Sha, L., Rajkumar, R., and Lehoczky, J. P. (1990). Priority inheritance protocols: An
approach to real-time synchronization. IEEE Trans. Comput., 39(9):1175–1185.

Sheikh, H., Tan, H., Ahmad, I., Ranka, S., and Bv, P. (2012a). Energy- and performance-
aware scheduling of tasks on parallel and distributed systems. ACM Journal on Emerg-
ing Technologies in Computing Systems, 8(4).

Sheikh, H. F., Ahmad, I., Wang, Z., and Ranka, S. (2012b). An overview and classification
of thermal-aware scheduling techniques for multi-core processing systems. Sustainable
Computing: Informatics and Systems, 2(3):151–169.

Shin, Y., Choi, K., and Sakurai, T. (2000). Power optimization of real-time embedded
systems on variable speed processors. In Computer Aided Design, 2000. ICCAD-2000.
IEEE/ACM International Conference on, pages 365–368.

Singh, A., Shafique, M., Kumar, A., and Henkel, J. (2013). Mapping on multi/many-core
systems: Survey of current and emerging trends. In Proceedings - Design Automation
Conference, Austin, TX.

Terzopoulos, G. and Karatza, H. D. (2013). Dynamic voltage scaling scheduling on power-
aware clusters under power constraints. In Proceedings - IEEE International Sympo-
sium on Distributed Simulation and Real-Time Applications, pages 72–78, Delft. IEEE
Computer Society.

Texas Instruments (2017). TDA3x SoC Processors for Advanced Driver Assist Systems
(ADAS) Technical Brief.

https://www.renesas.com/en-us/solutions/automotive/products/rcar-h3.html#spec
https://www.renesas.com/en-us/solutions/automotive/products/rcar-h3.html#spec

118 References

Valentin, E. (2009). Github - hydra. [visited in February-2016].

Valentin, E. (2014). On the frequency assignment to hard-real time tasks of multicore sys-
tems. In Proceedings of the XVIII Escuela LatinoAmericana de Verano en Investigación
de Operaciones (ELAVIO’2014), Areia – PB, Brazil.

Valentin, E. and Barreto, R. (2010). smartenum: A branch-and-bound algorithm for op-
timum frequency set establishment in real-time dvfs. Workshop on Real-Time Systems,
pages 27–38.

Valentin, E. and Barreto, R. (2016). Energy constraints for scheduling tasks on hetero-
geneous hard real-time systems: A systematic literature review. GISE Lab Technical
Report TR-2016-01, Federal University of Amazonas, Manaus, AM - Brazil. URL:
http://gise.icomp.ufam.edu.br/reports/TR-2016-01.pdf.

Valentin, E., Carvalho, J. R. H., and Barreto, R. (2015a). Rapid improvement of students’
soft-skills based on an agile-process approach. In 2015 IEEE Frontiers in Education
Conference (FIE), pages 1–9.

Valentin, E., de Freitas, R., and Barreto, R. (2016a). Reaching optimum solutions for the
low power hard real-time task allocation on multiple heterogeneous processors problem.
In VI Brazilian Symposium on Computing Systems Engineering (SBESC’2016), pages
128–135.

Valentin, E., de Freitas, R., and Barreto, R. (2017). Towards optimal solutions for the
low power hard real-time task allocation on multiple heterogeneous processors. Science
of Computer Programming, pages –.

Valentin, E., de Freitas, R., and Barreto, R. (2018). Designing distributed real-time
systems to process complex control workload in the energy industry. In Collective
and Computational Intelligence Applications in Energy INDUSTRY, pages xxx–yyy.
Springer.

Valentin, E., Salvatierra, M., de Freitas, R., and Barreto, R. (2015b). Response time
schedulability analysis for hard real-time systems accounting DVFS latency on hetero-
geneous cluster-based platform. In 25th International Workshop on Power and Timing
Modeling, Optimization and Simulation (PATMOS’2015), pages 1–8.

Valentin, E. B., de Freitas, R., and Barreto, R. (2016b). Applying MGAP Modeling
to the Hard Real-time Task Allocation on Multiple Heterogeneous Processors Problem.
Procedia Computer Science, 80:1135 – 1146. International Conference on Computational
Science (ICCS’2016), 6-8 June 2016, San Diego, California, USA.

Venkatachalam, V. and Franz, M. (2005). Power reduction techniques for microprocessor
systems. ACM Comput. Surv., 37(3):195–237.

http://gise.icomp.ufam.edu.br/reports/TR-2016-01.pdf

References 119

Virlet, B., Zhou, X., Giacalone, J.-P., Kuhn, B., Garzarán, M., and Padua, D. (2011).
Scheduling of stream-based real-time applications for heterogeneous systems. In Pro-
ceedings of the ACM SIGPLAN Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES), pages 1–10, Chicago, IL.

Yang, C. Y., Chen, J. J., Kuo, T. W., and Thiele, L. (2009). An approximation scheme for
energy-efficient scheduling of real-time tasks in heterogeneous multiprocessor systems.
In 2009 Design, Automation Test in Europe Conference Exhibition, pages 694–699.

Yang, Z., Xu, C., Zhou, X., and Liu, Y. (2012). Heuristic temperature-aware DVS schedul-
ing algorithm for MPSoC. International Journal of Advancements in Computing Tech-
nology, 4(1):67–76.

Yoshida, J. (2013). Toyota Case: Single Bit Flip That Killed. [visited in May, 2017]. URL:
http://www.eetimes.com/document.asp?doc_id=1319903&page_number=1.

Yu, Y. and Prasanna, V. K. (2003). Resource allocation for independent real-time tasks
in heterogeneous systems for energy minimization. Journal of Information Science and
Eng., 19(3):433–449.

Zhang, W., Bai, E., He, H., and Cheng, A. (2015). Solving energy-aware real-time tasks
scheduling problem with shuffled frog leaping algorithm on heterogeneous platforms.
Sensors (Switzerland), 15(6):13778–13804.

Zhu, D. (2006). Reliability-aware dynamic energy management in dependable embed-
ded real-time systems. In IEEE Real-time and Embedded Technology and Applications
Symposium, page 397–407.

Zhu, Y. and Mueller, F. (2005). Feedback edf scheduling exploiting hardware-assisted
asynchronous dynamic voltage scaling. In F. LCTES.

http://www.eetimes.com/document.asp?doc_id=1319903&page_number=1

121

Annex

123

ANNEX A – Systematic Literature Review

Producing optimal energy systems requires knowledge of different disciplines. Het-
erogeneous multi-core platforms are gaining increasing interest due to their low-power ap-
plicability. Scheduling becomes particularly challenging for improving system utilization
and minimizing system energy consumption and peak temperature on such platforms, par-
ticularly those subject to hard real-time constraints. We survey the state-of-the-art works
in this field using a systematic literature review approach. This chapter summarizes and
organizes recent research results of 29 papers (of a total of 527 searched in five different
digital libraries). Because this field is multidisciplinary, we emphasize the classification of
the existing literature from the perspective of different areas, e.g. real-time, scheduling,
power management, and optimization. We conclude that finding optimal solutions for this
scenario still has several open research questions. However, it is still too early to determine
which techniques provide the best solutions and coverage for this problem.

A.1 Introduction
A systematic literature review (often referred to as a systematic review) is a

method for identifying, evaluating, and interpreting all available research relevant to a
particular research question, topic area, or phenomenon of interest (Kitchenham and
Charters, 2007). Primary studies or primary works represent regular studies, observa-
tional studies, and experimental studies. Individual works contributing to a systematic
review are primary studies. Secondary studies use the results of primary studies to ob-
tain knowledge and stronger evidence. A systematic review is a form of secondary study.
Therefore, the purpose of this systematic review is (1) to survey the state-of-the-art meth-
ods and techniques for producing software with timing guarantees for architectures with
multiple heterogeneous processors under energy and temperature constraints; and (2) to
categorize the existing literature from the perspective of different areas. Such effective
methods and techniques support reducing power bills, improve system reliability, and
increase the efficient usage of energy, thereby aiding in reducing environmental impacts.

A.1.1 Objective and Scope

The scope of this study is a systematic literature review of the subject of scheduling
tasks with low power, energy consumption, and temperature constraints on heterogeneous
hard real-time systems. We outline the objective of this study based on the GQM (goal,
question, and metric) paradigm (Basili et al., 1994a,b) as follows: analyze primary studies
on scheduling methods, schedulability analysis, and techniques applied to hard real-time

124 ANNEX A. Systematic Literature Review

systems running on multiple heterogeneous processors with temperature and energy con-
straints; for the purpose of characterization of existing research; With respect to their
cost/benefit offered by the existing solutions; from the point of view of researcher and
practitioner; in the context of low-power-aware heterogeneous real-time system design.

Table 14 outlines the objective of this study based on the GQM (goal, question,
and metric) paradigm (Basili et al., 1994a,b).

Table 14 – Objective of the study, structured as GQM

Analyze Primary studies on scheduling methods, schedu-
lability analysis, and techniques applied to hard
real-time systems running on multiple heteroge-
neous processors with temperature and energy
constraints.

For the purpose of Characterization of existing research.
With respect to their Cost/benefit offered by the existing solutions.
From the point of view of Researcher and Practitioner.
In the context of Low-power-aware heterogeneous real-time system

design.

The aim of this systematic review is to find the maximum number of primary stud-
ies using an unbiased search strategy. For transparency to those interested in reproducing
our results, we present the research method in Section A.2.

A.1.2 Outline

The remainder of this text is organized as follows. For consideration of the read-
ers, Section 2 presents a list of terms and common definitions used in this text. Section
A.2 includes a detailed description of the method employed to construct a comprehensive
description of the state-of-the-art solutions for the addressed problem. Section A.3 guides
the reader through the findings and outcomes encountered in the state-of-the-art litera-
ture. The answers to each guiding question of this systematic review are summarized in
Section A.4. In Section A.5, we highlight research trends and open research questions.
Section A.6 concludes this text with final remarks and considerations.

A.2 Research Method: Systematic Literature Review Protocol

A systematic literature review was conducted as part of the present work. The ob-
jective is to identify methods for addressing the problem of controlling energy constraints
on heterogeneous multi-core hard real-time systems. This section presents the guiding
protocol of the systematic literature review process.

A.2. Research Method: Systematic Literature Review Protocol 125

The protocol defined in this text follows the design specified by Kitchenham and
Charters (2007) and Biolchini et al. (2007). We encourage interested readers to consider
the technical report (Valentin and Barreto, 2016) to access the full protocol definition,
including the search string, all the extracted data, and complete description of each in-
clusion and exclusion criteria.

A.2.1 Research Questions

This systematic literature review aims to answer the following questions:

Q1 What are the available solutions (treatments/interventions) to offer guarantees
of temporal correctness for hard real-time systems executed on multiple heterogeneous
processors with low energy and temperature constraints?

Q1.1 What are the costs involved in / imposed by the existing solutions? (non-
functional software metrics: overhead, latency, project delays, etc.)

Q1.2 What is the energy consumption reduction provided by each solution?

Q1.3 Are there any side effects expected while applying each solution (collaterals)
on other software metrics (overhead, system cooling, etc.)?

Q1.4 What are the expected industry contexts that each solution applies to (re-
ported context: real-time system, servers, telecommunication systems, cellphone termi-
nals, Internet routers, etc.)?

Q1.5 Is the solution sufficient (context of schedulability test results)?

Q1.6 Is the solution necessary (context of schedulability test results)?

This study also extracts additional data for supporting the classifying, ranking, and
positioning of each work. We summarize the obtained answers for each research question
and the additional extracted data in Section A.3.

A.2.2 Search Process

A.2.2.1 Process for selecting and classifying primary studies (search strategy)

The steps constituting the process for selecting and classifying primary studies are
as follows: in Selection Step 01, the researchers use the search string in the selected digital
library; in Selection Step 02, the researchers construct a set of valid papers by applying
the inclusion and exclusion criteria; the focus is on paper title, abstract, and keywords
only; in Selection Step 03, the researchers read the papers included in Step 02 fully and
confirms the inclusion and exclusion; in Selection Step 04, the researchers classify the
papers included in Step 03 based on its outcome results.

126 ANNEX A. Systematic Literature Review

A.2.2.2 Inclusion/Exclusion Criteria

In this study, we include only papers addressing hard real-time constraints on mul-
tiple heterogeneous processors; applying schedulability analysis, and (or) task assignment
/ partitioning / allocation / scheduling as interventions; and whose the direct outcome is
guaranteed energy consumption reduction for processor, memories, caches, and system.

The exclusion criteria are designed to avoid including unrelated works. Addition-
ally, we exclude works that are not accessible. Therefore, the exclusion criteria are as
follows: Language – papers not written in the English language; Availability – papers
where the full text is not available on the world wide web or by request from the authors;
Different Subject – papers that clearly cover other topics different from the primary object
of this study; Non-Digital – papers where the full text is not available in digital format;
No Key – papers where the title, abstract, or full text do not contain the keywords or
its synonyms composing the search string; Key in Reference – papers where keywords
appear only in references, acknowledgements, authors’ biographies, bibliography entries,
and appendices; Different Genre – event schedules, editorials, keynotes speeches, tutori-
als, courses, workshops, white-papers, or similar genres are excluded; Non Real-Time –
papers where real-time systems are not the main type of systems considered or where
time constraints are not mentioned; Non HMP – papers where multiple heterogeneous
processors, or similar systems, are not the main focus or are not even mentioned; Non
Scheduling – papers that do not mention or do not consider schedulability analysis, task
allocation/partitioning/assignment, frequency allocation/assignment or resource alloca-
tion; Homogeneous Cores – papers covering only homogeneous processors; Single-Core –
papers covering only systems using a single processor; Soft Real-Time – papers covering
only soft real-time systems; and Non Power Management (PM) nor Thermal Management
(TM), Non PM/TM – papers that do not clearly consider low-power, energy management
or temperature management.

A.2.2.3 List of (digital) libraries

The searched digital libraries are as follows: (i) Scopus: <http://www.scopus.
com>;(ii) IEEE Xplorer: <http://ieeexplore.ieee.org/Xplore/home.jsp>; (iii) Web
of Science: <http://apps.webofknowledge.com>; (iv) Science Direct: <http://www.
sciencedirect.com>; and (v) Springer: <http://www.springer.com>.

A.2.2.4 Study quality assessment checklists and procedures

The main purpose of this quality assessment is to explicitly determine whether
the source of information is reliable. The researchers evaluate whether each study reports
repeatable results. The researchers evaluate each primary study according to the criteria
presented in Table 15.

<http://www.scopus.com>
<http://www.scopus.com>
<http://ieeexplore.ieee.org/Xplore/home.jsp>
<http://apps.webofknowledge.com>
<http://www.sciencedirect.com>
<http://www.sciencedirect.com>
<http://www.springer.com>

A.2. Research Method: Systematic Literature Review Protocol 127

Table 15 – Quality Assessment Questionnaire

Questions Criteria

1 What type of study is presented in this work? {0.0, 0.2, 0.4, 0.6, 0.8,
1.0}a

2 Were the basic data/studies adequately re-
ported?

{No = 0.0, Partially =
0.5, Yes = 1.0}

3 Is the employed evaluation method
valid? Can it be reproduced from the
data/information reported?

{No = 0.0, Partially =
0.5, Yes = 1.0}

4 Is the importance of the results for the knowl-
edge area commented?

{No = 0.0, Partially =
0.5, Yes = 1.0}

5 The result interpretations arise in a logical
way from the data?

{No = 0.0, Partially =
0.5, Yes = 1.0}

6 Are the research design deficiencies clearly
reported?

{No = 0.0, Partially =
0.5, Yes = 1.0}

a – Presentation of a new Product/Tool=0.2, Presentation of something differ-
ent=0.4, Presentation of something presumably new=0.6, Presentation of some-
thing admittedly new=0.8, Presentation of proof=1.0.

A.2.2.5 Data Collection

From Dec 4th, 2013 to Dec 16th, 2013, the researchers performed the first phase of
data selection in the preliminary database of works. The data extraction phase occurred
from Dec 17th, 2013 to Feb 28th, 2014. In this phase, the researchers read the works in their
entirety. The researchers applied the inclusion and exclusion criteria of Step 03 and the
classification criteria of Step 04. After including and classifying the works, the researchers
extracted the following information: (i) answers to the quality assessment questions, (ii)
answers to the research question, (ii) answers to the questions of the researchers’ interest,
and answers to the ranking questions. The researchers performed another data collection
phase on April 03rd, 2016 to update the database with primary works published between
2013 and 2016. The results were processed and merged with the first database during the
period of April 2016 to June 2016.

A.2.2.6 Data Analysis

The researchers merged the works returned by the digital libraries into a table.
Additionally, the researchers removed duplicate works. The researchers used the inclusion
and exclusion criteria present in Step 03 to filter the primary works. A senior researcher

128 ANNEX A. Systematic Literature Review

approved and discussed the decisions for including or excluding works whenever a doubt
appeared. The resulting database is the primary source of extracted data. We classify,
position, and rank each primary work presented in this study using the extracted data. The
extracted data also detail the methods and techniques used to model, solve, experiment,
and analyze information regarding the problem of interest.

A.3 Results of the Systematic Literature Review

After merging the results of all digital libraries and removing the duplicates, 527
works compose the preliminary database of primary works as result of the selection Step
01. Considering the results of all five digital libraries in the first phase of data collec-
tion, there are 468 primary works, including duplicates. Scopus returns 219 works. IEEE
Xplorer returns seven works with the first string and eight works with the second string,
totaling 15 works. Web of Science returns three works. ScienceDirect returns 127 works
using the first string and 104 works using the second string, totaling 231 works. Springer
returns zero works. All of these total 468 works, of which 154 are duplicates. The second
phase of data collection gathered an extra of 228 primary works; one from Web of Science,
46 from IEEE, 61 from Science Direct, and 153 from Scopus.

Step 02 retrieves the full text; reads the title, keywords, and abstract; performs a
scanning read of the full text; and applies the inclusion and exclusion criteria. Step 02
selects 86 works. In addition, Step 02 also includes a phase to read the list of references
present in the primary works. The list of references identifies two relevant works. The
criteria of Step 02 also select the two manually identified works.

Therefore, a total of 88 selected works compose the database of primary works.
The bar graph presented in Figure 24 illustrates the distribution of the applied exclusion
criteria. We present the distribution of exclusion criteria as a matter of transparency
with respect to the systematic review methodology. Readers interested in repeating the
same research methodology, for updating or validating our reported data, may find the
same exclusion results when considering the same search period. The exclusion criteria
are those of Step 02. More than one criterion classifies a single work. Most excluded
works, 169, belong to studies using architectures different from Heterogeneous Multiple
Processors (HMP). Most excluded works are also part of studies that disregard power and
temperature restrictions, 155. Step 03 excludes 59 from the 88 studies. Step 03 considers
the full text of each work. Step 04 only classifies the works selected during Step 03. The
final database contains 29 primary works.

The publication vehicles present in the database of primary works are diverse.
The IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications is the main publication venue. Three (10 %) of the 29 works were published in

A.3. Results of the Systematic Literature Review 129

Non−Digital

No Key

Language

Different Genre

Single−Core

Non Scheduling

Availability

Key in Reference

Different Subject

Soft Real−Time

Non Real−Time

Homogeneous Cores

Non PM/TM

Non HMP

0 50 100 150

Amount of Excluded Works

E
x
cl

u
si

o
n
 C

ri
te

ri
a

Figure 24 – Distribution of Exclusion Criteria of Step 02

it. Two journals compete for the second place of the most used publication vehicle in this
topic: Microprocessors and Microsystems journal and Journal of Parallel and Distributed
Computing. Each of them contains two (6 %) items of the database of primary works.

Figure 25 illustrates the yearly publication evolution of all works during each phase
of the systematic literature review. Figure 25a presents the yearly evolution of all 529
considered works. Figure 25b presents the yearly publication evolution of the 88 resulting
works after Step 02. Figure 25c illustrates the yearly publication evolution of the 29 works
present in the final database.

The inclusion criteria in Step 02 classify the 29 items of the database of primary
works. There are works that use Multiple Heterogeneous Processors (MPH), i.e., applied in
the same device, such as MPSoCs or heterogeneous clusters. But there are also primary
works applied on distributed computing systems. A total of 27 (93 %) works address
multiple heterogeneous processors. There are two (6 %) works on distributed computing
systems.

The authors with multiple publications on this subject are Jian-Jia Chen and
Lothar Thiele. Jian-Jia Chen appears in seven publications (24 % of the database of pri-
mary works). At the time of his publications, Jian-Jia Chen was with the National Tai-
wan University, Taiwan, and with Swiss Federal Institute of Technology, Switzerland.
Lothar Thiele appears in five publications (17 % of the database of primary works).
Da He, Rudolf Eigenmann, Jong-Kook Kim, Tei-Wei Kuo, Anthony Maciejewski, Vik-
tor Prasanna, Howard Jay Siegel, and Wolfgang Mueller are authors that appear in two
publications (6 % of the database of primary works).

Table 16 lists the works that compose the final database of primary works. The
extraction process utilizes all works present in Table 16, as explained in the protocol
described in Section A.2.

130 ANNEX A. Systematic Literature Review

● ● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

0

20

40

60

80

1980 1990 2000 2010
Year

N
u
m

b
er

 o
f
P

u
b
li
ca

ti
o
n
s

Search Results

(a) Preliminary Database.

● ● ● ●

● ●

●

●

●

●

●

●

●

●

●

●

0

5

10

15

2000 2005 2010 2015
Year

N
u
m

b
er

 o
f
P

u
b
li
ca

ti
o
n
s

First Filter

(b) After First Filter.

● ● ● ● ●

● ● ● ●

●

●

●

0

2

4

6

2004 2008 2012
Year

N
u
m

b
er

 o
f
P

u
b
li
ca

ti
o
n
s

Second Filter

(c) Final Database.

Figure 25 – Publication count per year

Table 16 – Final database of primary works

Authors Title Year REF

Yang, Y. et al. Power-aware resource alloca-
tion for independent tasks in
heterogeneous real-time sys-
tems

2002 (Prasanna and Yu,
2002)

Yu, Y. et al. Resource allocation for inde-
pendent real-time tasks in het-
erogeneous systems for energy
minimization

2003 (Yu and Prasanna,
2003)

continued

A.3. Results of the Systematic Literature Review 131

Table 16 – Final database of primary works

Authors Title Year REF

Kim, J.-K. et al. Dynamic mapping in energy
constrained heterogeneous
computing systems

2005 (Kim et al., 2005)

Hung, C.-M. et al. Energy-efficient real-time task
scheduling for a DVS system
with a non-DVS processing el-
ement

2006 (Hung et al., 2006)

Chen, J.-J. et al. Energy-efficient scheduling for
real-time systems on dynamic
voltage scaling (DVS) plat-
forms

2007 (Chen and Kuo, 2007)

Chen, J.-J. et al. Energy-efficient task partition
for periodic real-time tasks on
platforms with dual processing
elements

2008 (Chen and Thiele,
2008)

Chen, Y.-S. et al. Multiprocessor frequency lock-
ing for real-time task synchro-
nization

2008 (Chen et al., 2008)

Goossens, J. et al. Power-aware real-time schedul-
ing upon dual CPU type multi-
processor platforms

2008 (Goossens et al., 2008)

Kim, J.-K. et al. Dynamic resource management
in energy constrained heteroge-
neous computing systems using
voltage scaling

2008 (Kim et al., 2008)

Chen, J.-J. et al. Energy minimization for peri-
odic real-Time tasks on hetero-
geneous processing units

2009 (Chen et al., 2009)

Chen, J.-J. et al. Task partitioning and platform
synthesis for energy efficiency

2009 (Chen and Thiele,
2009)

Yang, C.-Y. et al. An approximation scheme for
energy-efficient scheduling of
real-time tasks in heteroge-
neous multiprocessor systems

2009 (Yang et al., 2009)

continued

132 ANNEX A. Systematic Literature Review

Table 16 – Final database of primary works

Authors Title Year REF

Chu, E. T. H. et al. An Optimal Solution for the
Heterogeneous Multiprocessor
Single-Level Voltage-Setup
Problem

2009 (Chu et al., 2009)

Alahmad, B. N. et al. Energy efficient task partition-
ing and real-time scheduling
on heterogeneous multiproces-
sor platforms with QoS require-
ments

2011 (Alahmad and
Gopalakrishnan,
2011)

Chantem, T. et al. Temperature-aware scheduling
and assignment for hard real-
time applications on MPSoCs

2011 (Chantem et al., 2011)

Chen, H. et al. Assigning real-time tasks to
heterogeneous processors by
applying ant colony optimiza-
tion

2011 (Chen et al., 2011)

Chen, J.-J. et al. Platform synthesis and parti-
tioning of real-time tasks for
energy efficiency

2011 (Chen and Thiele,
2011)

He, D. et al. Enhanced schedulability analy-
sis of hard real-time systems on
power manageable multi-core
platforms

2012 (He and Mueller,
2012a)

Min-Allah, N. et al. Power efficient rate monotonic
scheduling for multi-core sys-
tems

2012 (Min-Allah et al.,
2012)

Saha, S. et al. Thermal-constrained energy-
aware partitioning for hetero-
geneous multi-core multipro-
cessor real-time systems

2012 (Saha et al., 2012)

Yang, Z. et al. Heuristic temperature-aware
DVS scheduling algorithm for
MPSoC

2012 (Yang et al., 2012)

continued

A.3. Results of the Systematic Literature Review 133

Table 16 – Final database of primary works

Authors Title Year REF

Awan, M. A. et al. Energy-aware partitioning of
tasks onto a heterogeneous
multi-core platform

2013 (Awan and Petters,
2013)

Hettiarachchi, P.M. et
al.

Achieving thermal-resiliency
for multicore hard-real-time
systems

2013 (Hettiarachchi et al.,
2013)

Prescilla, K. et al. Modified Binary Particle
Swarm optimization algorithm
application to real-time task
assignment in heterogeneous
multiprocessor

2013 (Prescilla and Sel-
vakumar, 2013)

He, D. et al. A heuristic energy-aware ap-
proach for hard real-time sys-
tems on multi-core platforms

2013 (He and Mueller,
2012b)

Terzopoulos, G. et al. Dynamic voltage scaling
scheduling on power-aware
clusters under power con-
straints

2013 (Terzopoulos and
Karatza, 2013)

Barrefors, B. et al. A novel thermal-constrained
energy-aware partitioning algo-
rithm for heterogeneous multi-
processor real-time systems

2014 (Barrefors et al., 2014)

Valentin, E. et al. Response time schedulability
analysis for hard real-time sys-
tems accounting DVFS latency
on heterogeneous cluster-based
platform

2015 (Valentin et al.,
2015b)

Zhang, W. et al. Solving energy-aware real-time
tasks scheduling problem with
shuffled frog leaping algorithm
on heterogeneous platforms

2015 (Zhang et al., 2015)

134 ANNEX A. Systematic Literature Review

A.3.1 Classifications and Metrics of the Existing Literature

This section classifies the papers in different categories: modeling strategies, solu-
tion type, maximum instance size found on each work, workload complexity, task model,
and complexity of the energy model. Section A.3.1.7 summarizes the coverage of what is
present in each category.

We have assigned crosses (+) to each work for all categories. The number of crosses
scores is given based on the complexity of each item. For example, a study that considers
a discrete set of processor frequencies receives more crosses in this aspect than a study
that considers a continuous domain of frequencies, because (i) nowadays the processors in
semiconductor market have only discrete frequencies available; and (ii) in the process of
finding optimal frequencies assignment, using a discrete set makes the decision problem
a Mixed Integer Programming (usually a 0-1 formulation), which is typically harder to
solve than and problem formulation that uses continuous domain (Real), which can be
solved using Simplex.

A.3.1.1 Overall Model

This section presents a classification based on the complexity of the model pre-
sented in the text of the primary works. Table 17 presents a list of primary works with
their respective model applicability. The column Total represents the number of crosses.

Table 17 – Classification based on overall model

REF Frequency
Domain
Type1

Processor
Heterogeneity2

Total

(Chen and Kuo, 2007) 0 + 1
(Zhang et al., 2015) + + 2
(Goossens et al., 2008) 0 ++ 2
(Awan and Petters, 2013), (Chen et al., 2011;
Hettiarachchi et al., 2013)

0 +++ 3

(Hung et al., 2006; Min-Allah et al., 2012) +++ + 4
(Chen et al., 2009; Chen and Thiele, 2008,
2009, 2011; Chen et al., 2008; Chu et al.,
2009; Prescilla and Selvakumar, 2013; Yang
et al., 2009)

+ +++ 4

(He and Mueller, 2012a,b; Saha et al., 2012;
Terzopoulos and Karatza, 2013; Valentin
et al., 2015b)

+++ ++ 5

continued

A.3. Results of the Systematic Literature Review 135

Table 17 – Classification based on overall model

REF Frequency
Domain
Type1

Processor
Heterogeneity2

Total

(Alahmad and Gopalakrishnan, 2011; Bar-
refors et al., 2014; Chantem et al., 2011; Kim
et al., 2005, 2008; Prasanna and Yu, 2002;
Yang et al., 2012; Yu and Prasanna, 2003)

+++ +++ 6

1 – Continuous = +, Discrete = +++, Not Applicable = 0.
2 – Full-chip or Per-core based = +, Heterogeneous Clusters = ++, Specialized Archi-

tecture = +++.

Most works in this study, 19 out of 29, consider full heterogeneous systems (Spe-
cialized Architecture = +++). The frequency domain is continuous in 9 out of 29 texts.
Most works, 15 out of 29, consider the discrete frequency domain (Discrete = +++).
The works of Alahmad and Gopalakrishnan (2011), Barrefors et al. (2014), Chantem et al.
(2011), Kim et al. (2008), Kim et al. (2005), Prasanna and Yu (2002), Yang et al. (2012),
and Yu and Prasanna (2003) are the most complex according to these criteria.

A.3.1.2 Solution Type

This section classifies the primary works according to solution type. Table 18
presents a list of primary works classified by solution type in terms of appropriateness in
exact or approximated results. The column Total represents the number of crosses.

136 ANNEX A. Systematic Literature Review

Table 18 – Classification based on solution type

REF Exact
Solution1

Approximated
Solution2

Total

(Awan and Petters, 2013; Barrefors et al.,
2014), (Chen et al., 2011; Chen and Kuo,
2007; Chen et al., 2009; Chen and Thiele,
2009, 2011; Goossens et al., 2008; He and
Mueller, 2012b; Hettiarachchi et al., 2013;
Hung et al., 2006; Kim et al., 2005, 2008;
Min-Allah et al., 2012; Prasanna and Yu,
2002; Prescilla and Selvakumar, 2013; Saha
et al., 2012; Terzopoulos and Karatza, 2013;
Yang et al., 2009, 2012; Yu and Prasanna,
2003; Zhang et al., 2015)

0 + 1

(Chen et al., 2008; He and Mueller, 2012a;
Valentin et al., 2015b)

+++ 0 3

(Alahmad and Gopalakrishnan, 2011;
Chantem et al., 2011; Chen and Thiele,
2008; Chu et al., 2009)

+++ + 4

1 – No = 0, Yes = +++ .
2 – No = 0, Yes = + .

Most works present in this study, 26 out of 29, offer approximated solutions. Only
seven works out of 29 offer exact solutions: Chen et al. (2008), He and Mueller (2012a),
Valentin et al. (2015b), Alahmad and Gopalakrishnan (2011), Chantem et al. (2011),
Chen and Thiele (2008), and Chu et al. (2009). The number of exact solutions suggests a
need to investigate how to exactly solve this problem.

A.3.1.3 Instance size

This section exposes the size of the problem instances used during empirical ex-
periments in each primary work. Table 19 presents a list of primary works with their
respective largest reported instance size. The column Total is the result of the multi-
plication between the maximum reported value on each parameter, which includes the
number of tasks, number of processors, number of power modes, and number of processor
frequencies.

A.3. Results of the Systematic Literature Review 137

Table 19 – Classification based on the size of the instance

REF Exact
Solution

Tasks* Processors* Power
Modes*

Frequencies* Total

(Chen et al., 2011) No N/R N/R 1 1 1
(Chen and Kuo, 2007) No N/R N/R N/R N/R 1
(Yang et al., 2012) No 54 N/R 1 N/R 54
(Yang et al., 2009) No 14 6 1 1 84
(Hung et al., 2006) No 10 2 1 5 100
(Goossens et al., 2008) No 20 10 2 1 400
(Prescilla and Selvakumar,
2013)

No 100 4 1 N/R 400

(Terzopoulos and Karatza,
2013)

No 3 8 2 12 576

(Hettiarachchi et al., 2013) No 64 8 2 1 1024
(Zhang et al., 2015) No 140 8 1 1 1120
(Chen and Thiele, 2009) No 30 20 2 1 1200
(Chen et al., 2009) No 30 30 2 1 1800
(Chen and Thiele, 2011) No 40 30 2 1 2400
(He and Mueller, 2012b) No 20 16 3 5 4800
(Kim et al., 2005, 2008) No 50 8 1 16 6400
(Prasanna and Yu, 2002; Yu
and Prasanna, 2003)

No 100 10 1 8 8000

(Awan and Petters, 2013) No 500 5 5 1 12500
(Saha et al., 2012) No 200 64 1 N/R 12800
(Barrefors et al., 2014) No 450 20 2 1 18000
(Min-Allah et al., 2012) No 50 12 1 100 60000
(Chen et al., 2008) Yes 20 N/R 2 1 40
(Chen and Thiele, 2008) Yes 20 2 2 1 80
(Alahmad and Gopalakrish-
nan, 2011)

Yes 10 4 2 4 320

(Chantem et al., 2011) Yes 30 11 1 1 330
(Chu et al., 2009) Yes 25 30 1 1 750
(Valentin et al., 2015b) Yes 30 32 2 5 9600
(He and Mueller, 2012a) Yes 100 16 3 5 24000

* – N/R = Not Reported.

138 ANNEX A. Systematic Literature Review

The largest problem instance solved exactly is 100 tasks, 16 cores, three power
modes, and five frequencies. The largest problem instance reported with an approximated
solution is an experiment with 50 tasks, 12 cores, one power state, and 50 frequencies.

A.3.1.4 Workload considerations

This Section categorizes each primary work based on the workloads applied in
empirical experiments. Table 20 presents a list of primary works with their respective
coverage and applicability on each workload type. The column Total represents the num-
ber of crosses.

Table 20 – Classification based on the type of workloads

REF Off-line
allocation1

On-line
allocation2

Workload
Type3

Total

(Chen and Kuo, 2007; He and Mueller,
2012a)

0 0 + 1

(Alahmad and Gopalakrishnan, 2011; Bar-
refors et al., 2014; Chantem et al., 2011),
(Chen et al., 2011, 2009; Chen and Thiele,
2008, 2009, 2011; Chu et al., 2009; Goossens
et al., 2008; Hettiarachchi et al., 2013; Hung
et al., 2006; Min-Allah et al., 2012; Prasanna
and Yu, 2002; Prescilla and Selvakumar,
2013; Saha et al., 2012; Valentin et al., 2015b;
Yang et al., 2009, 2012; Yu and Prasanna,
2003; Zhang et al., 2015)

+ 0 + 2

(Terzopoulos and Karatza, 2013) 0 +++ + 4
(Chen et al., 2008; He and Mueller, 2012b) + +++ + 5
(Awan and Petters, 2013) + 0 ++++ 5
(Kim et al., 2005, 2008) 0 +++ ++++ 7

1 – No = 0, Yes = + .
2 – No = 0, Yes = +++ .
3 – Mixed Hard & Soft RT = ++++, Periodic/Sporadic Tasks (P) = +.

Most works, 24 out of 29, present an off-line allocation solution. There are only
five works providing on-line based allocation solutions. The most used workload type, 26
out of 29, is Periodic or Sporadic real-time tasks. Only the works conducted by Awan and
Petters (2013), Kim et al. (2008), and Kim et al. (2005) consider a mixed workload type,

A.3. Results of the Systematic Literature Review 139

sporadic or periodic tasks together with best effort tasks.

A.3.1.5 Task model considerations

This section classifies the primary works according to the complexity of task models
reported in their text. Table 21 presents a list of primary works with their respective
applicability to each task model characteristic. The column Total represents the number
of crosses.

Table 21 – Classification based on task model considera-
tions

REF MA1 PA2 PC3 EC4 RTA5 UA6 Total

(Chen and Kuo, 2007; Hettiarachchi
et al., 2013; Kim et al., 2005, 2008; Ter-
zopoulos and Karatza, 2013)

0 0 0 0 0 0 0

(Alahmad and Gopalakrishnan, 2011;
Awan and Petters, 2013; Barrefors et al.,
2014; Chen et al., 2009; Chen and
Thiele, 2008, 2009, 2011; Chu et al.,
2009; He and Mueller, 2012a; Hung
et al., 2006; Prescilla and Selvakumar,
2013; Yang et al., 2009)

0 0 0 0 0 + 1

(Chantem et al., 2011; Yang et al., 2012) 0 0 +++ 0 0 0 3
(Chen et al., 2011; He and Mueller,
2012b; Prasanna and Yu, 2002; Saha
et al., 2012; Yu and Prasanna, 2003;
Zhang et al., 2015)

0 +++ 0 0 0 + 4

(Goossens et al., 2008) +++ 0 0 0 0 + 4
(Min-Allah et al., 2012) 0 +++ 0 0 +++ 0 6
(Chen et al., 2008) 0 +++ +++ +++ 0 + 10
(Valentin et al., 2015b) 0 +++ +++ +++ +++ 0 12

1 – Migration allowed (MA): No = 0, Yes = +++ .
2 – Preemption allowed (PA): No = 0, Yes = +++ .
3 – Precedence Constraints (PC): No = 0, Yes = +++ .
4 – Exclusion Constraints (EC): No = 0, Yes = +++ .
5 – Response Time Analysis (RTA): No = 0, Yes = +++ .
6 – Utilization Analysis (UA): No = 0, Yes = + .

140 ANNEX A. Systematic Literature Review

Only the work of Goossens et al. (2008) considers task migration. Additionally,
only Min-Allah et al. (2012), and Valentin et al. (2015b) take response time analysis
into account. Similarly, only Chen et al. (2008), and Valentin et al. (2015b) account for
mutual exclusion constraints. Most works, 20 out of 29, consider utilization bound. Only
four out of 29 works consider precedence constraints. The work conducted by Valentin
et al. (2015b) accounts for preemption, precedence and exclusion constraints, together
with response time analysis, which compose the most complex task model according to
these criteria.

A.3.1.6 Energy constraints

This section classifies the primary works according to the complexity of the energy
models. Table 22 presents a list of primary works with their respective consideration of
energy constraints in their models. The column Total represents the number of crosses.

Table 22 – Classification based on energy model consid-
erations

REF Power-
Aware1

Thermal-
Aware2

Power
Model3

Energy
Model4

Power
Techniques5

Total

(Chen and Kuo, 2007) 0 0 + + + 3
(Awan and Petters, 2013;
Zhang et al., 2015)

+ 0 + + + 4

(Chen et al., 2011; Kim
et al., 2005, 2008; Min-Allah
et al., 2012; Prasanna and
Yu, 2002; Prescilla and Sel-
vakumar, 2013; Terzopoulos
and Karatza, 2013; Yu and
Prasanna, 2003)

+ 0 + + + 4

(Chen and Thiele, 2008, 2009,
2011; Chen et al., 2008; He and
Mueller, 2012a)

+ 0 + + ++ 5

(Chu et al., 2009) + 0 + +++ + 6
(Yang et al., 2012) 0 + + +++ + 6
(Hung et al., 2006; Valentin
et al., 2015b; Yang et al., 2009)

+ 0 + +++ + 6

(Chantem et al., 2011; Saha
et al., 2012)

+ + + +++ + 7

continued

A.3. Results of the Systematic Literature Review 141

Table 22 – Classification based on energy model consid-
erations

REF Power-
Aware1

Thermal-
Aware2

Power
Model3

Energy
Model4

Power
Techniques5

Total

(Hettiarachchi et al., 2013) 0 + +++ +++ + 8
(He and Mueller, 2012b) + 0 + +++ +++ 8
(Chen et al., 2009) + 0 +++ +++ + 8
(Alahmad and Gopalakrish-
nan, 2011; Goossens et al.,
2008)

+ 0 +++ +++ ++ 9

(Barrefors et al., 2014) + + + +++ +++ 9

1 – No = 0, Yes = + .
2 – No = 0, Yes = + .
3 – Convex function = +, Non-Convex Function = +++.
4 – Dynamic Power = +, Dynamic & Static Power = +++.
5 – DPM = +, DVFS = +, DVFS & DPM = ++, DVFS & DPM & Load Balance =

+++ , Load Balance = +, Load Balance & DPM = ++.

In this set of works, only five works propose solutions applicable to thermal con-
strained scenarios: Yang et al. (2012), Chantem et al. (2011), Saha et al. (2012), Het-
tiarachchi et al. (2013), and Barrefors et al. (2014). Most works, 26 out of 29, consider
low-power use cases. The most frequent power model, 25 out of 29, is the convex power
function. Only four works out of 29 consider non-convex power models. The lack of ex-
isting works considering non-convex power models suggests that it is worth exploring
different models. Only 7 of these 29 works consider DVFS combined with the DPM tech-
nique in their solutions. Alahmad and Gopalakrishnan (2011), Barrefors et al. (2014), and
Goossens et al. (2008) contain the most complex power models according to these criteria.

A.3.1.7 Compendious classification

This section summarizes each previous category. We list each primary work ac-
cording to their results in the classification of overall model, solution type, workload
considerations, task model considerations, energy constraints, and instance size. Table 23
presents a list of primary works with their respective coverage for each category.

142 ANNEX A. Systematic Literature Review

Table 23 – Compendious classification of primary works

REF Overall
Model

Solution
Type

Workload
Type

Task Model Energy Instance
Size

(Chen et al., 2011) 3 1 2 4 4 1
(Chu et al., 2009) 4 4 2 1 6 750
(Valentin et al., 2015b) 5 3 2 12 6 9600
(Alahmad and Gopalakr-
ishnan, 2011)

6 4 2 1 9 320

(Awan and Petters, 2013) 3 1 5 1 4 12500
(Barrefors et al., 2014) 6 1 2 1 9 18000
(Chantem et al., 2011) 6 4 2 3 7 330
(Chen and Kuo, 2007) 1 1 1 0 3 1
(Chen and Thiele, 2008) 4 4 2 1 5 80
(Chen et al., 2008) 4 3 5 10 5 40
(Chen and Thiele, 2009) 4 1 2 1 5 1200
(Chen and Thiele, 2011) 4 1 2 1 5 2400
(Chen et al., 2009) 4 1 2 1 8 1800
(He and Mueller, 2012a) 5 3 1 1 5 24000
(He and Mueller, 2012b) 5 1 5 4 8 4800
(Hettiarachchi et al., 2013) 3 1 2 0 8 1024
(Hung et al., 2006) 4 1 2 1 6 100
(Prasanna and Yu, 2002) 6 1 2 4 4 8000
(Kim et al., 2005) 6 1 7 0 4 6400
(Kim et al., 2008) 6 1 7 0 4 6400
(Goossens et al., 2008) 2 1 2 4 9 400
(Min-Allah et al., 2012) 4 1 2 6 4 60000
(Prescilla and Selvakumar,
2013)

4 1 2 1 4 400

(Saha et al., 2012) 5 1 2 4 7 12800
(Terzopoulos and Karatza,
2013)

5 1 4 0 4 576

(Yang et al., 2012) 6 1 2 3 6 54
(Yang et al., 2009) 4 1 2 1 6 84
(Yu and Prasanna, 2003) 6 1 2 4 4 8000
(Zhang et al., 2015) 2 1 2 4 4 1120

A.3. Results of the Systematic Literature Review 143

The work of Valentin et al. (2015b) covers most items considered in this classifi-
cation. Although the work performed by Valentin et al. (2015b) lacks experimentation on
large instances, it contains complex power models, task models, and solutions. Chen and
Kuo (2007) has the least coverage of characteristics considered in this study.

A.3.2 Statistics on the primary works

This section classifies and presents statistics regarding primary works. The statis-
tics presented in this section provide an overview of the coverage of different aspects, in-
cluding modeling techniques, solution methods, and benchmarks. We present the statistics
related to schedulability tests, problem models, solution methods, empirical experiment
design, benchmarks, solution precision, allocation time, workload type, energy constraints,
type of power reduction, power model, and power control techniques. The following statis-
tics consider the 29 primary works presented in the final database of this study.

The most frequent schedulability test is the utilization-based condition, whereas
the least frequent is the response-time analysis. Figure 26 illustrates the distribution of
the schedulability tests across the 29 works.

0

5

10

15

20

 E
xa

ct

 N
ot

 R
ep

or
te

d

 S
u
ff
ic
ie
n
t

Schedulability Test

N
u
m

b
er

 o
f
p
ri

m
a
ry

 w
o
rk

s

Figure 26 – Distribution of schedulability tests found in this study

Regarding the problem of minimizing the energy consumption of hard real-time
systems executed on heterogeneous multicore platforms, the most frequent formal problem
formulation is integer linear programming (ILP). However, most works, a total of 15
(51 %), present a non-formal problem description. Figure 27 has a bar graph with the
distribution of problem models across the 29 works.

144 ANNEX A. Systematic Literature Review

0

5

10

15

Q
T

S
A

N
L
P

IL
P

N
F
M

Problem Formulation

N
u
m

b
er

 o
f
p
ri

m
a
ry

 w
o
rk

s

Figure 27 – Distribution of problem formulations found in this study: Integer Linear Pro-
gramming (ILP), Non-Linear Programming (NLP), Schedulability Analysis
(SA), Queue Theory (QT), and No Formal Model (NFM)

Figure 28 presents a bar graph with the distribution of solution methods across
the 29 works. The most frequent, 9 (31 %), solution method in this study is heuristics.

Simulated environments, 26 (89 %), are the most frequent empirical experimenta-
tion method. Only one work reports the results of experiments conducted using a real-life
environment. The tools E3S (EEMBC, 2014), TGFF (Dick et al., 1998), and UUnifast
(Bini and Buttazzo, 2004) are benchmarks used in four primary works of this study. The
majority of the works, 24 (82 %), disregard benchmark usage.

Figure 29 shows the distribution of power control techniques across the 29 works.
The most frequent, 16 (55 %), power control technique is DVFS. DVFS also appears
combined with other techniques, such as DPM and load balance.

Figure 30a shows the solution precision presented by the works in this study, in
which the most frequent is approximated solutions. Figure 30b shows the type of allocation
used by the works in this study, in which the most frequent is off-line allocation. Figure
30c depicts the workload type, in which the most frequent is periodic or sporadic real-
time tasks. Figure 30d shows the energy constraints found in this study, in which the
most frequent is energy minimization. Figure 30e shows the type of energy minimized, in
which the most frequent is dynamic power minimization. Figure 30f illustrates the type

A.3. Results of the Systematic Literature Review 145

0.0

2.5

5.0

7.5

B
P
S
O

 D
P P

 S
A

 T
C

 B
−an

d
−B

 L
R

 G
A

 S
cA

 E
+

H H

Solution Method

N
u
m

b
er

 o
f
p
ri

m
a
ry

 w
o
rk

s

Figure 28 – Distribution of solution methods found in this study: (BPSO) Methaheuris-
tic, Dynamic Programming (DP), Evolutionary Methods (GA), Branch-And-
Bound (B-and-B), Exact + Heuristic (E+H), Heuristics(H), Linear Relax-
ation (LR), Protocol (P), Schedulability Analysis (ScA), Simulated Annealing
(SA), Thermal Controller (TC)

of dynamic power model, in which the most frequent is the convex function model.

For the readers’ consideration, we present a summary of the usage of techniques
in Table 24. Table 24 relates each work with all techniques found in this study to model,
solve, analyze, and experiment the problem of interest. Table 24 is a reference of current
modeling assumptions and modeling limitations and highlights under which circumstances
each primary work can be best applied. Whenever the modeling assumption or technique
applies to a primary work, the column is marked with a “Y” symbol. For example, in
the first row, Yu and Prasanna (2003) use a discrete set of frequencies for their processor
clock, in specialized processing units, to allocate a periodic workload off-line considering
low power constraints and deriving approximated solutions. However, Yu and Prasanna
(2003) overlook the thermal problem, and their solution is applicable only when the power
consumption is a convex and increasing function of frequency, neglecting the static power
that is commonly present in modern processors.

146 ANNEX A. Systematic Literature Review

0

5

10

15

D
P
M

+
L
B

D
P
M

D
V
F
S
+

D
P
M

+
L
B

L
B

D
P
M

 +
 D

V
F
S

D
V
F
S

Power Control

N
u
m

b
er

 o
f
p
ri

m
a
ry

 w
o
rk

s

Figure 29 – Distribution of power control techniques found in this study: DVFS, DPM,
and Load Balance (LB)

A.3. Results of the Systematic Literature Review 147

0

10

20

30

Type

Approximated

Exact

(a) Solution Precision.

0

10
20

Type

Off−line

On−line

(b) Allocation Moment.

0

10
20

Type

 Periodic/Sporadic

Soft + Hard RT

(c) Workload Type.

0

10
20

30

Type

Applicable to Low−Power

Applicable to Thermal

(d) Energy Constraint.

0

10
20

Type

Dynamic and Static

Dynamic Power

(e) Power Minimized.

0

10
20

Type

Convex Funcion

Non−Convex Function

(f) Power Model.

Figure 30 – Distribution of works with respect to solution precision, allocation moment,
workload type, energy constraint, power minimized, and power model. The
pie graphs present the number of works (0 - 29) on each category

148
A

N
N

EX
A

.
System

atic
Literature

Review
Table 24 – Summary of technique usage per paper

Clock Processor Soluc. Alloc. Workload Schedulability
Test

Energy Man-
agement

Problem
Model

Power
Con-
trol

Solution Method

REF C
on

tin
uo

us

D
isc

re
te

H
et

er
o.

C
lu

st
er

s

Sp
ec

.A
rc

hi
te

ct
ur

e

Pe
rf.

Va
ria

tio
n

Ex
ac

t

A
pp

ro
xi

m
at

ed

O
ffl

in
e

O
nl

in
e

Pe
rio

di
c

M
ix

ed

M
ig

ra
tio

n

Pr
ee

m
pt

io
n

Pr
ec

ed
en

ce

M
ut

ua
lE

xc
lu

sio
n

R
es

po
ns

e
T

im
e

U
til

iz
at

io
n

Lo
w

Po
we

r

T
he

rm
al

C
on

ve
x

D
yn

.P
ow

er

D
yn

.P
ow

er

D
yn

.+
St

at
ic

Po
we

r

IL
P

Q
PP

N
LP

D
V

FS

D
PM

Lo
ad

Ba
la

nc
e

H
eu

ris
tic

Br
an

ch
-A

nd
-B

ou
nd

Pr
ot

oc
ol

Sc
he

du
la

bi
lit

y
Te

st

T
he

rm
al

PI
D

Ev
ol

ut
io

na
ry

Ba
se

d

D
yn

.P
ro

g.

Li
ne

ar
R

el
ax

at
io

n

(Zhang et al., 2015) Y Y Y Y Y Y Y Y Y Y Y Y
(Yu and Prasanna, 2003) Y Y Y Y Y Y Y Y Y Y Y Y Y

(Yang et al., 2009) Y Y Y Y Y Y Y Y Y Y Y
(Yang et al., 2012) Y Y Y Y Y Y Y Y Y Y Y

(Terzopoulos and Karatza, 2013) Y Y Y Y Y Y Y Y Y Y
(Saha et al., 2012) Y Y Y Y Y Y Y Y Y Y Y Y Y Y

(Prescilla and Selvakumar, 2013) Y Y Y Y Y Y Y Y Y Y Y Y
(Min-Allah et al., 2012) Y Y Y Y Y Y Y Y Y Y Y Y
(Goossens et al., 2008) Y Y Y Y Y Y Y Y Y Y Y

(Kim et al., 2008) Y Y Y Y Y Y Y Y Y Y
(Kim et al., 2005) Y Y Y Y Y Y Y Y Y Y

(Prasanna and Yu, 2002) Y Y Y Y Y Y Y Y Y Y Y Y Y
(Hung et al., 2006) Y Y Y Y Y Y Y Y Y Y

(Hettiarachchi et al., 2013) Y Y Y Y Y Y Y Y
(He and Mueller, 2012b) Y Y Y Y Y Y Y Y Y Y Y Y Y Y
(He and Mueller, 2012a) Y Y Y Y Y Y Y Y Y Y Y

(Chen et al., 2009) Y Y Y Y Y Y Y Y Y Y Y
(Chen and Thiele, 2011) Y Y Y Y Y Y Y Y Y Y Y Y Y
(Chen and Thiele, 2009) Y Y Y Y Y Y Y Y Y Y Y Y Y

(Chen et al., 2008) Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
(Chen and Thiele, 2008) Y Y Y Y Y Y Y Y Y Y Y Y Y
(Chen and Kuo, 2007) Y Y Y Y Y Y Y
(Chantem et al., 2011) Y Y Y Y Y Y Y Y Y Y Y Y Y Y
(Barrefors et al., 2014) Y Y Y Y Y Y Y Y Y Y Y Y Y Y

(Awan and Petters, 2013) Y Y Y Y Y Y Y Y Y Y
(Alahmad and Gopalakrishnan, 2011) Y Y Y Y Y Y Y Y Y Y Y Y Y

(Valentin et al., 2015b) Y Y Y Y Y Y Y Y Y Y Y Y Y Y
(Chu et al., 2009) Y Y Y Y Y Y Y Y Y Y Y Y
(Chen et al., 2011) Y Y Y Y Y Y Y Y Y Y Y

A.4. Answers to the research questions 149

A.4 Answers to the research questions
In this section, we discuss the answers to each of our research questions.

Q1 – What are the available solutions?

Table 25 answers this question listing all solutions found (algorithms, heuristics,
methods, schedulability tests, techniques, etc). This table also presents a relation between
the reference and the proposed techniques and lists each method and technique.

Table 25 – List of all solutions found

Reference Proposed solution

(Alahmad and Gopalakrishnan, 2011)
ScheduleExact
SchedulePruned

(Awan and Petters, 2013)
LLED (Least Loss Energy Density)
MM (MaxMin Algorithm)
SP (Second Phase of Task Mapping)

(Chantem et al., 2011)
MILP formulation
ThermalSched
DelayInsertion

(Chen et al., 2013) Pay Burst Only Once Algorithm (PBOOA)
(Chen et al., 2011) ACO

(Chen et al., 2009)
S-GREEDY
E-GREEDY
S-GREEDY-GV
E-GREEDY-GV

(Chen and Thiele, 2011)
MAEF (Minimum Average Energy First)
R-MAEF (Restricted Minimum Average Energy
First)

(Chen and Thiele, 2009) MAEF (Minimum Average Energy First)

(Chen and Thiele, 2008)
GREEDY
Optimal solution by DP
FPTAS TRIM

(Luo and Jha, 2002) List-scheduling Heuristic
(Schmitz et al., 2002) Genetic list-scheduling
(Kirovski and Potkonjaka, 1997) Energy-efficient synthesis
(Chen and Kuo, 2006) Approximations
(Chen et al., 2008) MFP-PCP

(Goossens et al., 2008)
Random Algorithm (RA)
First-Fit Decreasing Density (FFDD)

continued

150 ANNEX A. Systematic Literature Review

Table 25 – List of all solutions found

Reference Proposed solution

Simulated Annealing (SA)
Genetic Algorithm (GA)

(He and Mueller, 2012a) ACPI based heuristic
(Hettiarachchi et al., 2013) M-TROC

(Hung et al., 2006)

R-GREEDY
S-GREEDY
D-GREEDY
D-E-GREEDY
D-DP
D-S-GREEDY

(Kim et al., 2005)

OLB (Opportunistic Load Balancing)
FG (Fast Greedy)
Switching
Min-Min
Sufferage
Originator
Random

(Kim et al., 2008)

OLB (Opportunistic Load Balancing)
MEG (Minimum Energy Greedy)
ME-MC (Minimum Energy Minimum Comple-
tion Time)
ME-ME (Minimum Energy Minimum Energy)
CRME (Contention Resolved Minimum Energy)
Originator
Random

(Min-Allah et al., 2012)
Lowest Feasible Speed (LFS)
Lightest task shifting policy (LTSP)

(Prescilla and Selvakumar, 2013)
Novel BPSO
Modified BPSO

(Saha et al., 2012) Hybrid Worst-fit Genetic Algorithm (HyWGA)
(Yang et al., 2009) MTRIM
(Prasanna and Yu, 2002) LR-Heuristic
(Yang et al., 2012) HTDSA
(Yu and Prasanna, 2003) LR-Heuristic
(He and Mueller, 2012b) Simulated Annealing (SA)

continued

A.4. Answers to the research questions 151

Table 25 – List of all solutions found

Reference Proposed solution

Q1.1 – What are the costs involved in / imposed by the existing solutions?

Authors avoid reporting the costs of their solutions. Only four works (Chantem
et al., 2011; Prescilla and Selvakumar, 2013; Terzopoulos and Karatza, 2013; Valentin
et al., 2015b) explicitly report related costs while using their solution. For instance,
the Novel BPSO and Modified BPSO require a trained input to obtain good solutions
(Prescilla and Selvakumar, 2013). This requires initial engineering effort / time to train
the algorithm. Chantem et al. (2011) report only the computational cost required while
using a MILP approach and highlight the time required to compute transient thermal
simulations. Similarly, additional computational cost is required to use the response time
analysis proposed by Valentin et al. (2015b). Terzopoulos and Karatza (2013) also report
performance degradation in terms of success rate while using ABDVS.

However, the majority of the works, 25, avoid explicitly reporting costs. Per re-
searchers judgement, however, the most recurring cost found is related to characterization
of the system energy consumption. It is required to know before-hand the energy cost of
executing each task on each processing unit. The cost representation is either by means
of worst-case execution cycles or the worst-case execution time of each task on each
processor, for every frequency available. Characterizing such items is a time-consuming
procedure, particularly when considering tens, or even hundreds, of processing units.

Q1.2 – What is the energy consumption reduction provided by each solution?

Unfortunately, it was not possible to answer this research question with the data
reported by the selected works. The main difficulty is the lack of standardized experimen-
tation. The area could achieve better comparative results by means of either benchmarks
or standard experiment design, such as using instance databases, clear task generation
procedures, and transparent description of simulation strategy and parameters. Another
complication is the energy results being typically reported in terms of percent energy
reduction. Also, the used references are different among works. The issue with percentage
or normalized results is the absence of a reference point.

Q1.3 – Are there any side effects expected while applying each solution (collaterals)
on other software metrics?

Similar to cost reporting, side effects are missing from existing reports. Authors
leave to the readers judgement to find possible side effects.

Q1.4 – What are the expected industry contexts that each solution applies to?

152 ANNEX A. Systematic Literature Review

The industry contexts reported by the works present in this study are as follows:
industrial automation; linear motor control (LMC) systems; CNC machines; X-ray con-
trol systems; control systems in the automotive area (ACAD), which consists of an airbag
control unit, an anti-lock braking system, and an electronic stability control system; vir-
tual machines scheduled in a cloud computing environment; traffic control (ground or air);
aerospace applications; engine control; control of chemical and nuclear power plants; small
mobile robots, soccer robots, electronic pet robots, whose tasks are obstacle avoidance,
environmental monitoring, localization, multirobot cooperation; ad hoc grids in heteroge-
neous computing environments for wildfire fighting, disaster management, and military
situations; mobile computing environments; and distributed embedded systems.

Q1.5 – Is the solution sufficient?

As detailed in Section A.3.1.5, most works consider utilization bounds, 20 out of
29. As well-known in the real-time systems literature, the utilization bound is a sufficient
schedulability condition. The common use of utilization bound in this subject can be
explained by its simplicity. The usage of a utilization bounds simplifies mathematical for-
mulation and the solving process because using such constraints produces models similar
to the knapsack problem.

Q1.6 – Is the solution necessary?

As detailed in Section A.3.1.5, only Min-Allah et al. (2012) and Valentin et al.
(2015b) propose a solution based on response time analysis, and therefore with sufficient
and necessary conditions. This result exposes a need for studies on this aspect.

Threats to Validity Systematic reviews may suffer of common threats to validity
of the presented findings. We highlight here potential threats on publication bias and
identification of studies, as well as the mitigation strategies that we adopted.

Positive findings are more likely to be accepted for publication when compared to
negative findings (Kitchenham and Charters, 2007). We see a side effect of the publication
bias in the answers to the research questions Q1.2 and Q1.3. However, we do consider the
bias as limitation to some of the answers and not as a major threat to the study.

Another limiting factor is the research coverage during the process of identification
of studies. The search strategy utilizes syntax matching with keywords in the search string.
Relevant works may not be retrieved, either because they use different nomenclature or
because the currently established nomenclature differs from what was in use at the time
the work was published. Nevertheless, we carefully built a search string to be as inclusive
as possible, adding not only keywords, but also synonyms.

A.5. Open research questions 153

A.5 Open research questions

The result of this systematic review, apart from producing the answers listed in
Section A.4, also allows us to highlight open research questions in the subject. Some topics
are only briefly addressed in primary works. In this section, we summarize the subjects
that require further exploration.

Some topics have only been slightly explored. For instance, only five works address
the problem of offering optimal solutions, although most works consider small- or medium-
size instances. Most works are also interested in solutions produced off-line. Only five
works consider on-line approaches.

The most challenging aspect is exact schedulability tests. We found only one work
addressing the analysis of task response times, whereas the majority consider utilization-
based analysis, which is a sufficient only condition.

Similarly, only one work explores task migration in this subject. Furthermore, only
one work studies mutual exclusion restrictions, and only four works consider precedence
constraints in their task models. The most explored workload type is periodic or aperiodic
tasks. The least explored workload type is that which combines soft real-time with hard
real-time tasks.

DVFS is the most used technique for addressing power consumption issues. Only
a minority of the works explore DPM, for instance. Similarly, we emphasize the need for
studying the thermal topic on this subject, as we found only five works addressing tem-
perature control. Most works have interest in full heterogeneous architectures. However,
heterogeneous clusters are becoming increasingly studied.

Most works investigated for the purposes of this review focus on dynamic power
reduction. Additionally, most works consider the dynamic power as a convex power func-
tion. We highlight that the static power consumption is non-negligible in current modern
processors. Moreover, advanced power management techniques, such as AVS, and the
thermal behavior of processors change the increasing convex power consumption func-
tion (Alahmad and Gopalakrishnan, 2011). Therefore, we highlight the need to explore
different power models, apart from optimizing the dynamic power using a convex power
function.

We found only three benchmarks in use on the subject. The lack of standardization
in empirical experimentation design and reporting complicates the process of comparing
existing solutions. Comparing the results of expected energy consumption reduction is par-
ticularly challenging due to the lack of standardization. Consequently, we highlight the
need for benchmarks and reference instances. Furthermore, it is crucial to have studies
reporting fair comparisons between existing works under controlled environment exper-
imentation. Thus, we also highlight a need for standardized empirical experimentation

154 ANNEX A. Systematic Literature Review

to improve the level of scientific evidence reported in this subject. Reporting research
limitations, costs, and empirical results is a major concern. Only two works highlight the
expected costs for applying their solutions.

A.6 Chapter Summary
We have presented a systematic literature review of scheduling hard real-time

tasks on multiple heterogeneous processors under energy constraints, such as low power
and temperature control. Using a repeatable, unbiased, and systematic approach, we
have identified, presented, classified, and criticized all 29 existing works on the subject.
During the process, we analyzed hundreds of works found in relevant digital libraries. We
concluded that, even though there has been an increasing interest in the subject over the
past years, there are still open questions to address.

The contribution of this chapter is to provide an understanding of the field through
a novel systematic review approach. The outcome of the systematic review contributes
by summarizing the recent research, evaluating trends, and exposing gaps. The process
to identify, extract data, and report the results is transparent and repeatable.

The subject is of interest to different research groups, across diverse industry con-
texts. We emphasize that the interested industries generally address life-critical situations.
Therefore, provisioning correctness is appealing for this research subject. We have also
highlighted, by means of this systematic review, different open research questions. We
believe that future research shall focus on this lacuna. As a future work, we intend to
reassess the systematic literature review to track the evolution of the research in this
subject. Another point of our interest as future work is to extend the present research to
consider a major focus to be sporadic task models.

	Title page
	Dedication
	Acknowledgments
	Epigraph
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	List of symbols
	List of Algorithms
	Contents
	Introduction
	Context
	Motivation
	Problem statement
	Objectives
	Existing Research
	Hypotheses
	Proposed Approach
	Overall Architecture
	Exact Schedulability Analysis based on Architectural Interference
	Mathematical Formulations
	Computational Technique of Resolution
	Resource Manager and Online Scheduler

	Outline

	Theoretical Preliminaries
	Real-Time Systems
	Schedulability Analysis
	Utilization based
	Response time analysis

	Multicore systems
	Full Chip platforms
	Per Core platforms
	Cluster-Based Multi-Core platforms
	Considerations on Response Time Analysis for Multicore Systems

	Power and energy concepts
	Dynamic Power Consumption
	Static Power Consumption
	Energy Aware Real-Time Scheduling and Task Allocation

	Integer Linear Programming
	Canonical Form for ILPs
	Variations of ILPs
	Exact Algorithms
	Heuristic Methods

	Chapter Summary

	Distribution of Independent Hard Real-time Tasks Among Heterogeneous Cores
	System Models
	Processor Model
	Task Model

	Mathematical Formulations for Different Scheduling Policies
	Theoretical Basis and Reference: The MGAP Model
	Estimating System Energy in the Objective Function
	Models for EDF
	MGAP Formulation with Utilization Bound for EDF
	Barrefor's Formulation with Utilization and Frequency Bound for EDF
	MGAP Formulation with Utilization and Frequency Bound for EDF

	MGAP Formulation with Utilization Bound for RM
	MGAP Formulation with Response Time Bound
	Analysis on Formulations

	Computational Techniques of Resolution
	Approximation by means of Evolutionary Algorithm (EA)
	Finding Optimal Solutions

	Computational Experience
	Experiment Environment
	Workload and target platform considerations
	Analysis on EA Parameters
	Experiment with Different Scheduling Policies
	Experiment on Formulations for EDF

	Discussion of Results
	Chapter Summary

	A Branch-and-Price Algorithm to Distribute Independent Hard Real-Time Tasks
	System Models
	Processor Model
	Task Model

	Columns Generation Algorithm
	Original Mathematical Formulation
	Reformulation for the Master Problem
	The Pricing Problem
	Dynamic Programming for the Pricing Problem
	Computational Technique of Resolution
	Branch-And-Price Algorithm
	Dynamic Programming Pricing Algorithm

	Barrefor's Formulation with Utilization and Frequency Bound for EDF
	Computational Experience
	Experiment Environment
	Experiments against BARREFORS
	Experiments against B&C MGAP

	Discussion of Results
	Chapter Summary

	Distribution of Dependent Hard Real-Time Tasks
	Processor Model
	Task Model
	Mathematical Formulations for Dependent Tasks
	Computational Technique of Resolution
	Case Study: a Cruiser and Collision Detector
	Chapter Summary

	Response Time Schedulability Test for Multicore Platforms
	Motivational Example
	Architecture latency for response time schedulability analysis
	Argumentation
	Empirical Experiments
	Experiment design
	Results
	Discussion

	Chapter Summary

	Related Work
	Single Processor Schedulability Analysis combined with Task Allocation
	Techniques and Methods applying Single Processor Solutions combined with Task Allocation
	Discussion

	Temperature Control
	Temperature Control Techniques on Heterogeneous Systems
	Discussion

	Schedulability Analysis For Multicore Systems
	Schedulability Analysis Techniques
	Discussion

	Notes about related literature reviews
	Chapter Summary

	Final Remarks
	Revisiting Objectives and Hypotheses
	Future Work
	List of Publications
	Published Papers
	Book Chapters

	References
	Annex
	Systematic Literature Review
	Introduction
	Objective and Scope
	Outline

	Research Method: Systematic Literature Review Protocol
	Research Questions
	Search Process
	Process for selecting and classifying primary studies (search strategy)
	Inclusion/Exclusion Criteria
	List of (digital) libraries
	Study quality assessment checklists and procedures
	Data Collection
	Data Analysis

	Results of the Systematic Literature Review
	Classifications and Metrics of the Existing Literature
	Overall Model
	Solution Type
	Instance size
	Workload considerations
	Task model considerations
	Energy constraints
	Compendious classification

	Statistics on the primary works

	Answers to the research questions
	Open research questions
	Chapter Summary

