7. CONCLUSÃO

Como conclusões do presente trabalho, temos:

- Os fosfolipídios potencializaram a resposta de macrófagos M0 e polarizados para M1 na produção de NO, porém não mudam as características fenotípicas dos M2.

- POPC e PaldOPC apresentaram efeito sinérgico na função inflamatória dos M0 e M1 (citocinas e quimiocinas), mas não são agentes inflamatórios naturais. Para o perfíl M2 os fosfolipídios modificaram o estado basal inflamatório, porém esse efeito não foi somatório ao estímulo inflamatório do LPS.

- Os macrófagos AMJ2-C11 apresentaram plasticidade, sendo polarizados para M1 ou M2 dependendo do estímulo.

- Os fosfolipídios apresentaram efeito sinérgico na resposta inflamatória dos M0, devido ao aumento da expressão de receptores da imunidade inata e moléculas adaptadoras, e de modo independente da polarização dos macrófagos.

- POPC aumentou a produção de PGD₂ e está correlacionado ao aumento da fagocitose de Klebsiella pneumoniae.
8. REFERÊNCIAS


ALMSTRAND, A.-C.; VOELKER, D.; MURPHY, R. C. Identification of oxidized phospholipids in bronchoalveolar lavage exposed to low ozone levels using multivariate analysis. *Analytical biochemistry*, v. 474, p. 50–8, 1 abr. 2015.


ZENG, X. et al. Interferon-Inducible Protein 10, but Not Monokine Induced by Gamma Interferon, Promotes Protective Type 1 Immunity in Murine Klebsiella pneumoniae Pneumonia. *Infection and Immunity*, v. 73, n. 12, p. 8226–8236, 1 dez. 2005.