
Universidade Federal do Amazonas
Instituto de Computação

Programa de Pos-Graduação em Informática

Luis Miguel Rojas Aguilera

Metamorphic malware identification
through Annotated Data Dependency

Graphs’ dataset indexing

Manaus, 2018

PODER EXECUTÍVO
MtNISTÉRIO DA EDUCAÇÃO IV^'^^/^^'

INSTITUTO DE COMPUTAÇÃO \^ |^^ j F í /

PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA - ^ c ^ - '

UFAM

FOLHA DE APROVAÇÃO

"Metamorphic malware identificatíon througli Annotated Data
Dependency Graptis' datasets indexin"

LUIS MIGUEL ROJAS AGUILERA

Dissertação de Mestrado defendida e aprovada pela banca examinadora constituída pelos

Professores:

-—\

Prof. Eduaháe-JaMesWreira Souto - PRESIDENTE

Prof. Eduardo Luzeiro Feitosa - MEMBRO INTERNO

Profa. Eulanda Miranda dos Santos - MEMBRO INTERNO
<^-- r-' K

Prof. André Ricardo Abed Grégio - MEMBRO EXTERNO

Manaus, 23 de Março de 2018

Luis Miguel Rojas Aguilera

Metamorphic malware identification
through Annotated Data Dependency

Graphs’ dataset indexing

Dissertation submitted to Programa
de Pós-Graduação em Informática of
Instituto de Computação at Univer-
sidade Federal do Amazonas in par-
tial fulfillment of the requirements
for the Degree of Master’s in Com-
puter Sciences.

Advisors: PhD. Professor Eduardo
James Pereira Souto and PhD. Pro-
fessor Gilbert Breves Martins

Co-Tutor: PhD. Professor Gilbert
Breves Martins

Manaus, 2018

Rojas, Luis Miguel.
Metamorphic malware identification through Anno-

tated Data Dependency Graphs’ dataset indexing
88 pages
Dissertation (Master) - Instituto de Computação of

Universidade Federal do Amazonas. Departamento de
Informática.

1. code metamorphism

2. malware detection

3. graphs dataset indexing

4. data dependency graphs

Judging commission:

PhD. Professor PhD. Professor
Eulanda Miranda dos Santos André Ricardo Abed Grégio

PhD. Professor
Eduardo Luzeiro Feitosa

Acknowledgments
I would like to thank Professors Eduardo James Pereira Souto PhD and Gil-

bert Breves Martins PhD, for their guidance, encouragement and patience th-

rough out the project. I am thankful for the professors of the Postgraduate Pro-

gram in Informatics (PPGI) at the Universidade Federal do Amazonas (UFAM)

for their valuable training, advise and feedback. I also thank the Coordination for

the Improvement of Higher Education Personnel (CAPES) for providing financial

aid.

Finally, this project would not have been possible without the support of my

family and, especially my loving wife, Yadini Perez Lopez.

iii

Resumo

A mutação de código e o metamorfismo têm sido empregados com sucesso para a criação

e proliferação de novas instâncias de malware a partir de códigos maliciosos existen-

tes. Com estas técnicas é possível modificar a estrutura de um código sem alterar as

funcionalidades originais para obter novas instâncias que não se encaixam nos padrões

estruturais e de comportamento presentes em bases de conhecimento dos sistemas de

identificação de malware, dificultando assim a detecção. Pesquisas anteriores que abor-

dam a detecção de malware metamórfico podem ser agrupadas em: identificação por

meio do matching de assinaturas de código e detecção baseada em modelos de classifi-

cação. O matching de assinaturas de código tem apresentado taxas de falsos positivos

inferiores às apresentadas pelos modelos de classificação, uma vez que estas estruturas

são resilientes aos efeitos do metamorfismo e permitem melhor discriminação entre as

instâncias. Entretanto a complexidade temporal dos algoritmos de comparação impe-

dem a aplicação desta técnica em sistemas de detecção reais. Por outro lado, a detecção

baseada em modelos de classificação apresenta menor complexidade algorítmica, porém

a capacidade de generalização dos modelos se vê afetada pela versatilidade de padrões

que podem ser obtidos por médio da aplicação de técnicas de metamorfismo. Para

superar estas limitações, este trabalho apresenta uma metodologia para a identificação

de malware metamórfico através da comparação de grafos de dependência de dados

anotados extraídos de malwares conhecidos e de instâncias suspeitas no momento da

análise. Para lidar com a complexidade dos algoritmos de comparação, permitindo as-

sim a utilização da metodologia em sistemas de detecção reais, as bases de grafos são

indexadas empregando algoritmos de aprendizagem de máquina, resultando em modelos

de classificação multiclasse que discriminam entre famílias de malwares a partir das ca-

racterísticas estruturais dos grafos. Resultados experimentais, utilizando um protótipo

da metodologia proposta sobre uma base composta por 40,785 grafos extraídos de 4,530

instâncias de malwares, mostraram tempos de detecção inferiores aos 150 segundos para

processar todas as instâncias e de criação dos modelos inferiores aos 10 minutos, bem

como acurácia média superior à maioria de 56 ferramentas comerciais de detecção de

malware avaliadas.

Palavras-chave: malware metamórfico, grafos de dependência de dados, indexação de

bases de grafos, comparação de grafos

iv

Abstract

Code mutation and metamorphism have been successfully employed to create and

proliferate new malware instances from existing malicious code. With such techniques,

it is possible to modify a code’s structure without altering its original functions, so, new

samples can be made that lack structural and behavioral patterns present in knowl-

edge bases of malware identification systems, which hinders their detection. Previous

research endeavors addressing metamorphic malware detection can be grouped into

two categories: identification through code signature matching and detection based on

models of classification. Matching code signatures presents lower false positive rates

in comparison with models of classification, since such structures are resilient to the

effects of metamorphism and allow better discrimination among instances, however,

temporal complexity of matching algorithms prevents the application of such technique

in real detection systems. On the other hand, detection based on classification mod-

els present less algorithmic complexity, however, a models’ generalization capacity is

affected by the versatility of patterns that can be obtained by applying techniques of

metamorphism. In order to overcome such limitations, this work presents methods

for metamorphic malware identification through matching annotated data dependency

graphs, extracted from known malwares and suspicious instances in the moment of

analysis. To deal with comparison algorithms’ complexity, using these methods on real

detection systems, the databases of graphs were indexed using machine learning algo-

rithms, resulting in multi-class classification models that discriminated among malware

families based on structural features of graphs. Experimental results, employing a pro-

totype of the proposed methods from a database of 40,785 graphs extracted from 4,530

malware instances, presented detection times below 150 seconds for all instances, as well

as higher average accuracy than 56 evaluated commercial malware detection systems.

Keywords: metamorphic malware, data dependency graph, graphs datasets indexing,

graph matching

v

List of Figures

1.1 Quantity of malware samples found from the fourth quarter of

2015 to the third quarter of 2017 2

2.1 Sample of CFG extracted from assembly code in Table 2.1 11

2.2 Sample DDG extracted from code in 1 13

2.3 Example of an ADDG extracted from pseudocode 1 13

2.4 Example of equivalent instructions substitution 19

2.5 Representation of code reordering and dead code insertion. 21

3.1 Similarity scores between one iteration generated from NGVCK

instances and benign files according to Baysa et. al approach . . . 27

3.2 Similarity scores between two iterations generated from NGVCK

instances and benign files according to Baysa et. al approach . . . 28

3.3 Differences among metamorphic malware families in (Kim and

Moon, 2010) . 30

3.4 Similarity score among metamorphic variants of Evol malware fa-

mily (Breves et.al,2015). 31

3.5 Similarity score among metamorphic variants of Polipmalware fa-

mily (Breves et.al,2015). 31

4.1 Overview of the proposed approach for metamorphic malware de-

tection. 36

4.2 Overview of feature vectors extraction phase. 37

4.3 Example of a CFG extracted from a function of program ls 39

4.4 Labeled DDG extracted from the CFG in Figure 4.3 39

4.5 Index induction and identification work-flows 44

4.6 Suspicions instance classification phase 47

5.1 Experimentation phases and steps. 49

5.2 Initial dataset splitting for training and testing. 53

5.3 Training-testing dataset configurations for model creation 53

5.4 Architecture for commercial tools virus detection rate lifting. . . . 58

5.5 Average disassembly time by file size ranges. 59

5.6 Feature space sizes for different datasets vs threshold employed for

feature space reduction. 61

5.7 Accuracy score for Code Pervertor generated instances using only

seeds for training. 63

5.8 Accuracy score for Code Pervertor’s generated instances using se-

eds plus 20% of families for training. 63

5.9 Accuracy score of multi-class models trained with Seeds only and

tested with Revert4 generated instances graphs’ feature vectors. . 64

5.10 Accuracy score of multi-class models trained with Seeds plus 20%

of Revert4 instances and tested with 80% of Revert4. 64

5.11 Training time with seeds plus 20% of each family of Code Pervertor

generated instances. 65

vii

5.12 Training time with seeds plus 20% of each family of Revert4 gene-

rated instances. 66

5.13 Times training with graphs extracted from seeds instances only. . 67

5.14 ROC Curves for OVR based models employing only seeds for trai-

ning, using a threshold of feature space reduction of 0 and Code

Pervertor instances for testing. 68

5.15 ROC Curves for OVR based models employing seeds and 20% of

Code Pervertor for training , using a threshold of feature space

reduction of 0 and the remaining 80% for testing. 68

5.16 ROC Curves for OVR based models employing only seeds for trai-

ning, using threshold of feature space reduction of 0.8 and Code

Pervertor for testing. 69

5.17 ROC Curves for OVR based models employing seeds and 20%

of Code Pervertor for training, using threshold of feature space

reduction of 0.8 and the remaining 80% for testing. 69

5.18 ROC Curves for OVR based models employing only seeds for trai-

ning, using threshold of feature space reduction 0 and Rever4 ge-

nerated instances for testing. 69

5.19 ROC Curves for OVR based models employing seeds and 20% of

Revert4 generated instances for training, using threshold of feature

space reduction 0 and remaining 80% for testing. 69

5.20 Accuracy of models trained with seeds only and tested with Code

Pervertor generated instances. 70

5.21 Accuracy of models trained with seeds plus 20% of families of Code

Pervertor generated instances and tested with the remaining 80%. 70

viii

5.22 Accuracy of models trained with seeds only and tested with Re-

vert4 generated instances. 71

5.23 Accuracy of models trained with seeds plus 20% of families of

Revert4 generated instances and tested with the remaining 80%. . 71

5.24 Training times with graphs extracted from seeds instances only. . 72

5.25 Top 15 ranked models and antivirus for instances mutated with

Revert4. 73

5.26 Top 15 ranked models and antivirus for instances mutated with

Code Pervertor. 74

ix

List of Tables

2.1 Assembly code sample . 11

2.2 Example of hash signature extracted from code 15

2.3 Examples of techniques that can be applied to alter the code body

without affecting its original functionalities 17

2.4 Examples of instruction reordering 18

2.5 Two generations of Win95/Regswap. 19

2.6 Metamorphic variants of the virus Win32/Evol. 20

3.1 Example of an IOM structure as employed by Canfora et. al . . . 23

3.2 Example of report extracted from notepad.exe as employed by

Choudhary and Vidyarthi . 24

3.3 Comparative table of state-of-the-art research on metamorphic

malware detection . 32

4.1 Example of mnemonics and their classes according to the x86asm[dot]net

reference. 41

4.2 Examples of classifications given to assembly code instruction ope-

rands by mapping references in LLVM and Capstone. 41

4.3 Example of a feature vector extracted from the DDG in Figure 4.4. 43

4.4 Example of ground truth binarization applied. 46

4.5 Example of the use of OvR ensembles for classification. 46

5.1 Dataset distribution . 50

5.2 Configuration of training algorithms used for experimentation . . 54

5.3 ADDG and CFG construction times for Seeds and Code Pervertor

mutated instances. 59

5.4 Graphs’ Average Construction Time vs CFG size for Reverter4

generated files. 60

xi

Nomenclature

ADDG Annotated Data Dependency Graph

API Application Programming Interface

AUC Area Under the ROC Curve

CFG Control Flow Graph

CPU Central Processing Unit

DDG Data Dependency Graph

HMM Hidden Markov Models

InfoSec Information Security

IOM Instruction Occurrence Matrix

IoT Internet of Things

ISA Instruction Set Architecture

MAIL Malware Analysis Intermediate Language

MSDN Microsoft Documentation

NGVCK Next Generation Virus Construction Kit

ROC Receiver Operating Characteristics

RPME Real Permutation Engine

SMIT Symantec Malware Indexing Tree

SVM Support Vector Machines

xiii

List of Equations

5.1 Algorithms’ and processes’ execution time. 51

5.2 Models’ accuracy score. 51

5.3 Machine learning algorithms’ training time. 52

5.4 Classifiers’ true positive rate . 57

5.5 Classifiers’ false positive rate . 57

5.6 Time coefficient of variation by file size and CFG size ranges. 58

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Objective . 5

1.3 Contributions . 6

1.4 Document structure . 6

2 Background 7

2.1 Graph theory . 7

2.2 Control Flow Graphs . 9

2.3 Data Dependency Graphs . 12

2.4 Malware . 13

2.5 Traditional malware detection techniques 14

2.5.1 Anomaly-Based Detection 14

2.5.2 Signature-Based Detection 14

2.6 Code obfuscation techniques used to avoid detection 15

2.7 Metamorphic malware . 16

2.7.1 Code morphing techniques used in metamorphic malware . 17

3 Literature Review 22

3.1 Detection based on statistical models of classification 22

3.2 Identification using code signature matching 26

3.3 Final considerations . 32

4 Methods proposal 35

4.1 Feature vectors extraction . 36

4.1.1 Data Dependency Graph construction 37

4.1.2 Annotated Data Dependency Graph construction 40

4.1.3 Feature vectors construction 42

4.2 Index induction . 43

4.2.1 Single-model multi-class classification 44

4.2.2 One-vs-Rest for multiple-classifiers multi-class classification 45

4.3 Suspicious instance classification 47

4.4 Chapter’s final considerations . 47

5 Experimentation 48

5.1 Experimental setup . 48

5.1.1 Dataset construction . 49

5.1.2 Dataset indexing . 51

5.2 Experimental results . 58

5.2.1 Dataset construction results 58

5.2.2 Dataset indexing results 60

5.2.3 Comparison with tier-one commercial antiviruses 73

6 Final thoughts and future works 76

Bibliography 78

xvi

Chapter 1

Introduction

In the past few decades, the Information Security (InfoSec) worldwide panorama
has been characterized by the rising creation and spread of information system
threats. The rapid rate which interconnectivity and online activity evolves, with
around 2.5 quintillion bytes of data produced everyday [1], and the steady increase
in the number of connected devices due to the upswing of technologies, as the
Internet of Things (IoT)[2] and wearable devices [3], has increased vulnerabilities
and the chances of attacks, as well as the challenge of keeping systems secure.

Security reports continually state worrying information about threats. Ac-
cording to Symantec’s 2016 Internet Threat Report [4] in 2015 the number of
zero-day vulnerabilities increased 125 percent from 2014. On average, a new
zero-day vulnerability was found every week in 2015. There was more malware
found from 2014 to 2015 than in the previous 10 years combined [5]. ENISA’s
2018 Threat Landscape Report [6] stated that in 2017 anti-virus vendors like
Avira [7] detected more than 4 million samples per day and more than 700 mil-
lion samples in the first quarter of 2017. McAfee Labs 2017 Threat Report [8]
points out a record of 57.6 million new unique malwares and a total of more than
750 million samples found only in the third quarter of 2017 (Figure 1.1).

The existence of such critical landscape is mostly politically [9] and finan-
cially motivated [10]. Cyber-crime is incentivized by a commercial industry with
revenues of several million dollars a year[11]. Malicious users (hackers) seek unde-
tectable attacks that stay hidden as long as possible, allowing hackers to perform
illegal and profit rewarded activities like: a) stealing and selling login details
[12]; b) pay-per-click fraud [13]; c) social media spam [14]; d) premium-rate SMS
; e) banking fraud [15] and f) gaining distributed computational power from
thousands or millions of terminals (ex. botnets) [16].

To support these malicious activities, endpoint binary executable programs
are employed, meant to be executed on a terminals’ hosted operating system.
Such programs are known as malicious software or malware, and according to

Figure 1.1: Quantity of malware samples found from the fourth quarter of 2015 to the
third quarter of 2017
Source: McAfee Labs Threat Report 2017 [8]

their behavior and/or purpose can be non-exhaustively classified into [17]: a)
computer virus; b) worm; c) trojan horse; d) spyware or e) ransomware. Some
reports [18] [6] have stated that, in 2016 and 2017, malware was the top threat,
surpassing other historically important threats like: a) web based attacks; b)
phishing ; c) spam , d) identity theft and e) cyber-espionage.

In general, systems created for malware detection have presented better re-
sults by implementing signature matching [19]. That is, once a code is analyzed
and labeled as malicious, a signature is created from its payload and integrated
into a reference database, which is later used to detect instances of the same
malware through comparisons. For example, one technique that is broadly used
to construct such signatures consists of applying a checksum algorithm (MD5,
SHA-256, SHA-512) to a malicious binary code’s body to construct a hash that
uniquely represents such instance. In a general signature-based detection system,
such hashes are stored and later compared with the hashes of suspicious samples
by exact or pattern matching, and are then labeled as malicious or not.

Although signatures have a low false positive rate, the number of malware
samples covered by each signature is also low, typically one [20]. If a malware’s
source code is changed and recompiled, the signature of the obtained binary is
likely to be different than the signature of the first original binary, which can also
be obtained by compiling the same source code with different compilers given that
each compiler employs different optimization methods.

When the signature of a suspicious instance is not found in reference databases,
a common detection alternative is a set of heuristics. Some drawbacks of using
heuristics are: a) they require a significant amount of resources and high process-
ing capabilities; b) thwarting sandboxing analysis is possible with minor efforts
[21]; c) given the increasingly use of protections against code stealing, included
mostly in proprietary software, heuristics based on characteristics of the code or

2

its behavior are prone to fail and, in many cases, present false positive rates above
10% due to the difficulty of discriminating between malicious and legitimate traits
based on its behavior [22] [23] [24].

In addition, to make malware even more difficult to detect, hackers have
invented techniques that exploit the deficiencies presented by signature matching
and heuristics. One such technique is code obfuscation, which generates new
instances of malware with previously unseen patterns , that is, the probability
that such new instance’s signatures and patterns (structure and behavior) will
be present in anti-virus databases are reduced.

Metamorphism is one technique employed for code obfuscation, which creates
new instances of malware by changing the code of existing malware instances
without altering its original functions. A set of operations can be applied to code
to alter its structure without affecting its execution capabilities and original pur-
pose. Several tools, like: a) Next Generation Virus Construction Kit (NGVCK)
1; b) Code Pervertor and c) Revert4 2; automate such processes and generates
thousands of different samples in a matter of minutes, increasing the diversity of
a malware family and reducing the capacity of detectors to match new malware
instances from the knowledge in databases, therefore, impacting detection.

This study addresses the challenges of malware identification resistant to code
metamorphism. The main goal was to create a method that uses semantic signa-
tures as structures that broadly represent instances of malware families to cope
with the complexity of graph matching in datasets with thousands of instances.
The methods in this work constitute a practical approach that can be imple-
mented for large-scale endpoint malware detection.

1.1 Motivation
As Cohen stated [25], the creation of general definitive methods for malware
detection is an undecidable problem. The exponential growth and sophistication
of information and communication technologies has broadened the sensitivity
complexity of systems. Therefore, it is easy for malicious organizations to find
more targets and vulnerabilities to exploit. This scenario is confirmed by recent
security reports, showing a significant increase in attacks and threats, as well as
generation of new unique malware instances that have not been seen before [26]
[8] [6].

Along with this panorama, malicious hackers and malware creators have
emerged with advanced contrivances and intentions to disturb mechanisms em-
ployed by anti-malware suites. Many reports about information security [11]

1Publicly available at: http://vxheaven.org/vx.php?id=tn02
2Publicly avilable at: http://z0mbie.daemonlab.org

3

[26] [27] have addressed the impact of malware detection and system perfor-
mance associated with the use of code obfuscation techniques used to change the
structures and patterns present in viruses to avoid detection. Automatic code
mutation, code permutation, and metamorphism are very effective techniques for
code obfuscation that create several samples from previous instances, with high
randomization in code structures and patterns. Such level of diversity, which can
be obtained in an automated manner from a single malware at exponential rates,
reduces the complexity of effective malware generation and makes the creation
of accurate malicious pattern identification models more difficult.

Also, Symantec’s 2017 Internet Security Threat Report [26] recognizes the
inefficiency of current malware detection tools to cope with this critical landscape.
There is an evident need for research and development of more accurate and
better techniques for malware detection..

Concerning that issue, several studies have aimed to create malware identi-
fication and detection methods that are resilient to code morphing techniques
and that have low impacts on time and resource consumption. Some usual ap-
proaches are: a) statistical modeling of morphing engine creation patterns [28]
[29]; b) analysis of opcode instruction sequence occurrence distributions [30] [31];
c) statistical scanners made from the combination of feature ranking methods
on opcodes n-grams sets [32] [33]; and d) analysis of intermediate semantic rep-
resentations of codes such as pseudocodes [34], control flow graphs [35], system
API call graphs [36] [37] and data dependency graphs [38] [39]. Usually such
approaches are accompanied by classification models based on machine learning
algorithms like: a) Decision Trees; b) Random Forest; c) Naive Bayes; d) Support
Vector Machines (SVM) and e) Hidden Markov’s Models.

However, such proposals do not completely solve the problem. Some limita-
tions of such approaches are: a) necessary supervision of the creation and ad-
justment of models according to the malware family and/or creation kit of which
instances are to be detected; b) high variance in the identification results; c) re-
duced capacity of generalization due to high variability in patterns and behaviors
reached by metamorphism and the high appearance rate of new vulnerabilities
and stealth techniques; and d) performance issues associated with complexity of
comparison algorithms.

The use of Data Dependency Graphs stands out as a promissory approach
since such semantical representations remain mostly invariant when the code is
modified, without changing their original functions. Kim and Moon [39] examined
how such code mutations confused anti-virus tools, however, remained ineffectual
for Data Dependency Graphs (DDG). The graphs were similar even when the
source code was significantly altered.

Given the resilience to metamorphism provided by DDGs, the adopted ap-

4

proach for metamorphic malware detection consists on partial matching of DDGs
in suspicious instances with previously gathered DDGs of malwares, looking for
pieces of such graphs that permits identify the presence of known malware pat-
terns [39] [38]. The main drawback of this method is associated with performance
issues since current algorithms for partial matching of graphs or subgraph iso-
morphisms are NP-Hard [40]. To address that problem, genetic algorithms and
graph reductions techniques have been employed. However, such procedures are
computationally expensive and, when executed on large bases with thousands of
graphs, can be time consuming, therefore considered an impractical approach for
real-time malware detection. Shrinkage operations applied to the structures, by
omitting unnecessary parts to reduce execution time of the matching algorithm,
results in the omission of representative information that could contribute to the
accuracy of identification.

To address current issues of metamorphic malware detection, this study pro-
poses a method for endpoint malware detection resilient to code metamorphism
based on semantic-aware large-scale annotated data dependency graph match-
ing. Through reverse engineering, a DDG is constructed for each function in the
assembly code of the suspicious binary, such DDG is labeled with a tag that rep-
resent the semantic of the assembly instruction present in each node of the DDG.
Then a vector is constructed with structural features of the graphs to conform
a dataset of signatures used to create models that serve as indexes to retrieve
instances presenting the same patterns on input suspicious binary, with practical
performance.

1.2 Objective
The objective of this study is to create and evaluate a method for malware de-
tection that is resilient to metamorphism, based on the comparison of annotated
data dependency graphs of malware instances using indexing models created with
machine learning algorithms.

To accomplish this main objective we proposed the following specific objec-
tives as auxiliary elements to the final goal:

• Define a schema for executable binary representation based on the use of
annotated data dependency graphs and the classification of instructions in
its nodes as a semantic signature employed for pattern matching.

• Define and evaluate a graph dataset indexing approach based on the use of
machine learning algorithms that provides a mechanism to leverage infor-
mation about databases of annotated data dependency graphs to identify

5

if an instance was generated from mutations applied to a sample of that
database.

1.3 Contributions
To fulfill our objectives the following contributions were made:

• A method for semantic aware annotated data dependency graphs extraction
from executable code based on: a)assembly code instructions classification
and b)data flow analysis.

• A new heuristic for graph matching based on the use of machine learning
algorithms and structural features in annotated data dependency graphs.

The following scientific publications were originated from this research:

• L. M. Rojas, E. Souto, and G. Breves, “Detecção de malware metamorfico
baseada na indexação de grafos de dependencia de dados”, Awarded Honor-
able Mention in XVII Simpósio Brasileiro em Segurança da Informação e de
Sistemas Computacionais: SBSEG 2017: Anais. SBC, 2017, pp. 264–277.

1.4 Document structure
The rest of this document is organized as follows: Chapter 2 presents definitions
and explanations about the domains of: a) malware detection; b) anti-malware
evasion and metamorphic malware; c) graph theory and d) control and data flow
graphs; which are provided to better understand this work’s proposal. Chapter 3
presents a state-of-the-art study in the field of metamorphic malware detection,
to comprehend current limitations and development, as well as contributions of
this work, given the current panorama. Chapter 4 presents the methods for
metamorphic malware detection, as well as details about the methods’ compo-
nents. Chapter 5 consists of the experiments carried out to evaluate the proposed
methods, which determined the validity and applicability of such methods in real
world detection systems. Finally, Chapter 6 provides conclusions and future re-
search needed to understand the limitations and contributions of the proposed
methods.

6

Chapter 2

Background

This chapter presents a set of definitions and explanations necessary to under-
stand the components of the methods presented in this study. Given that the
methods for malware detection in this research are based on the use of graphs, this
chapter begins with a set of definitions about graph theory, which are maintained
throughout this document. Afterwards, explanations of Control Flow and Data
Dependency Graphs to state the characteristics of such structures employed in
this work are provided. Thereupon, characteristics of the malware detection tech-
niques used and a critical view of its advantages and limitations are presented.
Furthermore, techniques used by malware creators to avoid current mechanisms
of detection are introduced and explained, further focusing on metamorphism as
the main issue addressed in this research.

2.1 Graph theory
This section provides a theoretical background about the field of graph theory.
Initially, it provides a definition of Graph, stated by Harris et.al [41] in the book:
Combinatorics and graph theory, since it fits the conception and notion of the
term used by the authors of this study:

Definition 1 Graphs
A graph consists of two finite sets, 𝑉 and 𝐸. Each element of 𝑉 is called a
vertex (plural vertices). The elements of 𝐸, called edges, are unordered pairs of
vertices. For instance, the set 𝑉 might be {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ}, and 𝐸 might be
{{𝑎, 𝑑}, {𝑎, 𝑒}, {𝑏, 𝑐}, {𝑏, 𝑒}, {𝑏, 𝑔}, {𝑐, 𝑓}, {𝑑, 𝑓}, {𝑑, 𝑔}, {𝑔, ℎ}}. Together, 𝑉 and
𝐸 are a graph 𝐺.

A more accurate definition of graph employed herein is Attributed Graph,
however, both terms are used synonymously throughout this work:

Definition 2 Attributed Graph
An attributed graph is a six-tuple 𝐺 = (𝑉,𝐸,𝛼, 𝛽, 𝐿𝑣,𝐿𝑒), where 𝑉 denotes a finite
set of nodes, 𝐸 ⊆ 𝑉 × 𝑉 is a finite set of edges, 𝛼 : 𝑉 → 𝐿𝑣 is a node labeling
function, 𝛽 : 𝐸 → 𝐿𝑒 is an edge labeling function, 𝐿𝑣 is a set of node labels, and
𝐿𝑒 is a set of edge labels.

Since all the graph structures used herein are considered directed graphs,
defined by Allen as [42]:

Definition 3 Directed Graphs
A directed graph, 𝐺, can be denoted by 𝐺 = (𝐵,𝐸) where 𝐵 is the set of nodes
(blocks) {𝑏1,𝑏2,...,𝑏𝑛} in the graph and 𝐸 is the set of directed edges {(𝑏𝑖,𝑏𝑗) ,
(𝑏𝑘,𝑏𝑙),...}. Each directed edge is represented by an ordered pair (𝑏𝑖, 𝑏𝑗) of nodes
(not necessarily distinct) which indicate that a directed edge goes from node 𝑏𝑖 to
node 𝑏𝑗.

Also it is introduced the concept of subgraph as follows:

Definition 4 Subgraph
A subgraph 𝐺𝑠 = (𝑉𝑠,𝐸𝑠,𝛼𝑠, 𝛽𝑠, 𝐿𝑣,𝐿𝑒) of a graph 𝐺, 𝐺𝑠 ⊆ 𝐺 is a six-tuple, where
𝑉𝑠 ⊆ 𝑉 , 𝐸𝑠 ⊆ 𝐸 ∩ (𝑉𝑠 × 𝑉𝑠), 𝛼𝑠(𝑣) = 𝛼𝑠(𝑣)∀𝑣 ∈ 𝑉𝑠 and 𝛽𝑠(𝑒) = 𝛽(𝑒)∀𝑒 ∈ 𝐸𝑠

Graphs are used as a representation of control and data flow in executable
programs’ code. Matching such structures determines similarities between two
different programs. In general, two graphs 𝐺 and 𝐺′ can be compared by de-
termining a mapping function 𝑢, which associates nodes and edges of 𝐺 with
nodes and edges of 𝐺′ and vice versa. Some of the more frequently used mapping
functions are graph isomorphism and subgraph isomorphism.

Graph isomorphism is defined as:

Definition 5 Graph Isomorphism
A bijective function 𝑢 : 𝑉 → 𝑉 ′ is a graph isomorphism from a graph 𝐺 =
(𝑉,𝐸,𝛼, 𝛽, 𝐿𝑣, 𝐿𝑒) to a graph 𝐺 = (𝑉 ′,𝐸 ′,𝛼′, 𝛽′, 𝐿𝑣, 𝐿𝑒) if: 𝛼(𝑣) = 𝛼′(𝑢(𝑣)) ∀
𝑣 ∈ 𝑉 , for any edge 𝑒 = (𝑣1,𝑣2) ∈ 𝐸 there exists an edge 𝑒′ = (𝑢(𝑣1),𝑢(𝑣2)) ∈
𝐸 ′ such that 𝛽(𝑒) = 𝛽′(𝑒′) and for any 𝑒′ = (𝑣′1,𝑣

′
2) ∈ 𝐸 ′ exists an edge 𝑒 =

(𝑢−1(𝑣′1), 𝑢
−1(𝑣′2)) ∈ 𝐸 such that 𝛽(𝑒) = 𝛽′(𝑒′).

Intuitively speaking, two graphs are isomorphic if they are equal. For most
applications, this mapping is much too strict. In practical scenarios, more relax-
ing concepts are introduced, one of which is the subgraph isomorphism. Similarly,
by mapping one graph to another, a graph can be mapped onto parts of another
graph. Such mapping can be defined as a subgraph isomorphism [43] :

8

Definition 6 Subgraph Isomorphism
An injective function 𝑢 : 𝑉 → 𝑉 ′ is a subgraph isomorphism from 𝐺 to 𝐺′ if
there exists a subgraph 𝐺𝑠 ⊆ 𝐺′ such that 𝑢 is a graph isomorphism from 𝐺 to
𝐺𝑠.

Other graph matching mapping functions include maximum common sub-
graph and graph edit distance, however, are not used herein.

Since are used for Control Flow Graphs and Data Dependency Graphs, hereby
is introduced the definitions for successor and predecessor functions, as follows:

Definition 7 Successor and Predecessor functions
Given a directed graph 𝐺 = (𝐵,𝐸), a successor function Γ𝑙

𝐺 maps 𝐺 into 𝐺 such
that Γ𝑙

𝐺(𝑏𝑖) = {𝑏𝑗|(𝑏𝑖,𝑏𝑗) ∈ 𝐸}. In the same way a predecessor function Γ−𝑙
𝐺 is

defined as the inverse of the successor function such that Γ−𝑙
𝐺(𝑏𝑗) = {𝑏𝑖|(𝑏𝑗,𝑏𝑖) ∈

𝐸}.

The sets provided by the successor and predecessor functions are called the
immediate successors and predecessors, respectively. Both sets can be empty.
Herein, successor and predecessor functions are used for analysis and construction
of Control Flow and Data Dependency Graphs.

2.2 Control Flow Graphs
Any static global analysis of the expression and data relationships in a program
require knowledge of its control flow [42]. A Control Flow Graph (CFG) repre-
sents the relations of control between the parts of a program. To express such
relations, the program is divided into groups of indivisible units of code sen-
tences, called basic blocks. With the aim of denoting a Control Flow Graph, the
following set of definitions are provided [44].

Initially, the definition for the Control Flow Graph’s basic blocks are presented
as follows:

Definition 8 Basic Block
A basic block is a maximal sequence of instructions with a single entry and a
single exit point. There is no instruction after the first instruction that is the
target instruction of a jump instruction, and only the last instruction can jump
to a different block.

Instructions that can start a basic block include the followings:

• The first code’s instruction,

9

• Target of a branch or function call, and

• A fall through instruction, i.e. an instruction following a branch, a function
call or a return instruction.

Instructions that can end a basic block includes :

• Conditional or unconditional branches,

• Function calls,

• Return instructions

In a CFG the relations of control between basic blocks are expressed through
control flow edges:

Definition 9 Control Flow Edge
A control flow edge 𝑒 = (𝑎, 𝑏) is a directed edge that expresses relation of control
between blocks 𝑎 and 𝑏. That is, block 𝑎 contains an instruction that calls for the
execution of block 𝑏.

Finally, the definition of Control Flow Graph is:

Definition 10 Control Flow Graph
A Control Flow Graph (CFG) is a directed graph 𝐺 = (𝑉,𝐸, 𝛼, 𝛽, 𝐿𝑣, 𝐿𝑒), where
𝑉 is the set of basic blocks, 𝐸 is the set of control flow edges, 𝐿𝑣 is the group of
instructions’ sets inside each basic block and 𝛼(𝑣) ∀ 𝑣 ∈ 𝑉 determines the set of
instruction from 𝐿𝑣 belonging into 𝑣.

Figure 2.1 shows a sample CFG constructed from the assembly code in Table
2.1, extracted from the entry point function of program cat present in any linux
distribution.

10

Table 2.1: Assembly code sample

Address Assembly code
0x00405268 mov rdx, rbx
0x0040526b mov rsi, r12
0x0040526e mov edi, r13d
0x00405276 test rax, rax
0x00405279 mov rbp, rax
0x0040527c jns 0x4052a0
0x00405283 mov eax, dword [rax]
0x00405285 cmp eax, 4
0x00405288 je 0x405268
0x0040528a cmp eax, 0x16
0x0040528d jne 0x4052a0
0x0040528f cmp rbx, 0x7fffe000
0x00405296 jbe 0x4052a0
0x00405298 mov ebx, 0x7fffe000
0x0040529d jmp 0x405268
0x0040529f nop
0x004052a0 add rsp, 8
0x004052a4 mov rax, rbp
0x004052a7 pop rbx
0x004052a8 pop rbp
0x004052a9 pop r12
0x004052ab pop r13

Figure 2.1: Sample of CFG extracted from assembly code in Table 2.1

Every block in the CFG ends up with a control instruction that changes
execution flow (ex. jns, je, jmp). Blocks with a last instruction of conditional
jump have two edges outgoing, with a different line pattern to denote possible
outcomes of execution flow according to the condition asserted.

11

2.3 Data Dependency Graphs
A Dependency Graph of a program represents the dependence relations among
its parts so that, if a program is divided into single units, represented by 𝑈 =
{𝑢1, 𝑢2, ..., 𝑢𝑛}, there is a dependence between any pair of units (𝑢𝑖, 𝑢𝑗) if one of
them has no meaning in the program without the existence of the other [45].

A Data Dependency Graph (DDG) is a dependency graph that expresses
relations between parts of code based on the use of data made by such parts.
In a DDG there is a node for each instruction that consumes and/or modifies
data and an outgoing edge from the node that consumes entering the node that
modifies.

The edges used to express such relations are denominated Dependency Edges.
In this work the definition of Dependency Edge is adapted from the definition by
Kim and Moon [39], presented as follows:

Definition 11 There is a dependency edge from vertex 𝑣1 to vertex 𝑣2 if there is
a certain variable 𝑋 such that 𝑋 is used on 𝑣1 while the value of 𝑋 is assigned
on 𝑣2.

A formal definition for Data Dependency Graph is provided as follows:

Definition 12 A Data Dependency Graph (DDG) of a program is a directed
graph 𝐺 = (𝑉,𝐸), where 𝑉 represents the set of instructions that handles data
and 𝐸 is the set of dependency edges.

DDGs have been used for: a) compiler optimizations [45], b) software pla-
giarism detection [46] and c) malware detection [38] [39]. In this work, Data
Dependency Graphs are used to represent data flow and dependency of assembly
code instructions based on its use of registers and memory.

The following definition for Annotated Data Dependency Graph (ADDG) is
used:

Definition 13 An Annotated Data Dependency Graph (ADDG) of a program is
a 𝐷𝐷𝐺 = (𝑉,𝐸) in which every vertex 𝑣𝑖 ∈ 𝑉 , 𝑣𝑖 is assigned a label.

Figure 2.2 shows an example of a DDG induced from the pseudo-code ex-
pressed in Algorithm 1. Every vertex on that DDG represents a line of code in
Algorithm 1, such correspondence is presented with a number on each vertex ac-
cording to the line number such vertex represents. The edges connecting vertexes
4 with 2 and 4 with 3 exist because 𝑥1 is declared in 2, 𝑥2 is declared in 3 and
both variables are used in 4, this same reasoning explains the edge connecting
node 4 with node 5. Similarly, in Figure 2.3 an example of an ADDG extracted
from Pseudo-code in 1 is presented.

12

Algorithm 1: Pseudocode of simple example function
1 function SampleFunction ();
2 𝑥1 ← 1 ;
3 𝑥2 ← 3 ;
4 𝑥3 ← 𝑥1 + 𝑥2 ;
5 print(𝑥3) ;

Figure 2.2: Sample DDG ex-
tracted from code in 1

Figure 2.3: Example of an
ADDG extracted from pseu-
docode 1

2.4 Malware
Malware is a collective noun which denotes programs that have a malicious in-
tent – the neologism standing for mal-icious soft-ware [47]. According to Gary
MacGrow and Greg Morriset’s definition, malicious code is any code created with
the intention to cause harm or subvert the functions of information systems [48].

A malware carries out activities such as setting up back doors for bots, up
keyboard loggers, prepend on benign programs to steal personal information, con-
sume system resources, and allow unauthorized access to compromised systems.
Specifically, malware usually denotes hostile, intrusive, or simply annoying soft-
ware that is programmed to gather sensitive information, gain access to private
systems, or disrupt the legitimate computer operations in any other way. Also,
malware comes in various forms such as virus, worm, Trojan horses, and other
programs created with malicious intent [49].

13

2.5 Traditional malware detection techniques
Although anti-malware suites differ in the implementation of their identification
techniques, they tend to incorporate the same detection mechanisms. These
mechanisms can be classified as signature matching and anomaly-based detection.
Furthermore, there are hybrids that incorporate the best of both approaches [50]
[51].

2.5.1 Anomaly-Based Detection

Anomaly-based detection systems are designed to detect any kind of misusing
that falls out of the ordinary activity of a computer system by monitoring ac-
tivities and classifying them as either normal or anomalous [52]. It looks for
indicators that position the input file as suspicious, such as: a) very big file sizes;
b) large debug sections; c) entry-point code redirection; and d) suspicious kernel
operations. This behavior is incorporated in detection suites through heuristics
that express conditions that label an instance as malign. In general, heuristics are
founded in analysis of: a) network traffic; b) system registers used; c) program
logs; and d) structural characteristics of code body.

Some studies have addressed high rates of false positives presented by de-
tection mechanisms based on heuristics [53] [31]. In many cases it is hard to
distinguish between malicious or benign, based on the behavior and trails left by
systems [31].

Some of the drawbacks presented by anomaly-based detection are:
a) Some heuristics are based on inspecting behavior and code body character-

istics and look for patterns frequently seen in malware. However, such patterns
start to be seen in legitimate software as code presents encrypted sections and
other reverse engineering deceiving techniques to protect it against copy [23] and
massive generation of network traffic (usually employed by real-time applications
[54]).

b) Usually suspicious programs are executed on an emulated environment
in order to protect the host system from malware’s activities. However, some
mechanisms can be integrated in malware to detect when it is being virtualized,
which consequently makes the malware behave normally in such scenarios [55].

c) c) Complexity and computational costs of execution lead to slower perfor-
mance and high resource consumption.

2.5.2 Signature-Based Detection

Signature-based detection consists of searching the same byte sequences, previ-
ously seen in malware, from the suspicious instance’s code body under analysis.

14

Table 2.2: Example of hash signature extracted from code

Opcode Assembly Code
C7060F000055 mov [esi], 0x5500000F

C746048BEC5151 mov[esi+0004],0x5151EC8B
Signature: C7060F000055C746048BEC5151

Once a malicious file is detected by software security analysts or automatic tools,
other copies of such instance, in which modifications have not been applied, can
be recognized as well by comparing both instances’ signatures. Although less
proactive than desired, signature-based malware scanning is still the dominant
approach to identify malware samples in the wild due to its extremely low false
positive rate, that is, the probability of mistaking a good-ware program for a
malware program is very low [56].

Most signatures used in existing signature-based malware scanners are hashes
of malicious binaries. Although hash signatures have a low false positive rate, the
number of malware samples covered by each hash signature is also low, typically
one. As a result, databases of signatures employed by anti-viruses grow at the
same rate that new instances appear in the wild [20]. Table 2.2 presents an
example of a hash signature that would be used for scanners while analyzing files
looking for signatures matchings.

Usually, antiviruses incorporate more sophisticated mechanisms to enhance
the speed of signature matching, since with every new malware discovered the
quantity of signatures in the bases increases. An example is the use of wildcard
methods that perform comparisons skipping bytes or byte ranges, thus improving
speed by reducing the quantity of comparisons made in one second [57].

2.6 Code obfuscation techniques used to avoid de-
tection

Malware creators develops sophisticated code obfuscation and hiding mechanisms
that permits replication of malware to new instances with original functionalities
but with different signature and execution flow. Techniques to avoid signature
based detection through modifications of the malware body have evolved to more
sophisticated methods, as malware analysts have found efficient methods to deal
with obfuscated code. A major concern is that obfuscation methods have been
automated and incorporated in malware creation kits, which allows massive gen-
eration of new malware even by non-technical users [58]. Some ways to create
obfuscated malware are:

15

a) Packing applied by compressing the malware with a specified packing
method that should be unknown by the anti-virus. A packed instance must be
unpacked in order to perform detection, however, unpacking a program is only
possible with a specific unpacker. Most detection tools employ entropy analysis
to address packed malware [59] [60].

b) Encryption consists of encrypting the malware payload for distribution
and decrypts it on runtime. An encrypted virus generally contains two elements
: the encrypted virus code and a small decryption engine that decrypts the virus
payload at runtime. Since code is decrypted on execution, applying signature
matching on the code in memory can be effective to detect encrypted malware
with few limitations [61].

c) Oligomorphism also employs encryption, however, a set of encryption
engines are used and not just one. The decryptor is changed in successive gen-
erations by modifying the body of the decryptor code. This way the obfuscation
and hiding presents high variability. The decrypted code resides in memory at
runtime and can be detected with a signature based approach [62].

d) Polymorphism is applied through encryption, but the cryptographic gen-
erator is modified on each run of the program using obfuscation techniques. This
results in an immense quantity of possible variants of encryption engines. Poly-
morphic malware is also detected by signature matching when the decrypted code
is loaded into memory [61].

e) Metamorphism consists of applying operations to malware’s code body
to modify it without compromising the original functions. Such operations can
be: a) code blocks transposition, b) variable renaming, c) dead code insertion, d)
code replacement, and others. These operations can be applied to the malware
by an external permutation tool or included as a function so it auto-mutates
on each replication. Empirical studies have demonstrated how difficult it is for
commercial antiviruses to detect obfuscated code and, more specifically, meta-
morphic malware [39] [63] [38]. More details on this technique are presented in
the next section.

2.7 Metamorphic malware
Malware creators have realized that using encryption to generate obfuscated vari-
ants that avoid signature based detection, presents inefficiencies. The creation of
encryption schemes with high entropy, which are less likely to be detected, can be
highly resource consuming. Virus writers used to waste weeks or months creating
a new polymorphic virus that often did not have a chance to appear in the wild
due to its bugs. While, a researcher might be able to detect such a virus in a
few minutes or days. Most polymorphic viruses decrypt themselves to a single

16

constant virus body in memory, while metamorphic malware do not. Therefore,
detection of the virus code in memory needs to be algorithmic because the virus
body does not become constant, even in the memory [64].

Moreover, the same obfuscation performed on the encryption engines can be
applied to the malware code body, which results in modifications of the hashes
of the programs without losing the original functionalities. This way encryption
was abandoned, and metamorphism emerged. The next subsection provides more
details about techniques employed to create metamorphic malware, as well as
more details about techniques used to avoid signature based detection by applying
modifications to executable code’s opcodes.

2.7.1 Code morphing techniques used in metamorphic mal-
ware

To create metamorphic malware, morphing techniques can be applied that modify
the structure of code body at an instruction level or modify the control flow.
Table 2.3 presents examples of techniques that can be applied for code mutation
at a high level code representation.

Table 2.3: Examples of techniques that can be applied to alter the code
body without affecting its original functionalities

(a) Original code (b) Dead code insertion (c) Variable renaming

dim n, p, i dim n, p, i dim a, b, c
n = 5 n = 5 a = 5
p = 1 p = 1 b = 1
for i = 1 to n do for i = 1 to n do for c = 1 to a do
p = p * i if i >0 then b = b * c
end for p = p * i end for

end if
end for

(d) Code replacement (e) Statement reordering

dim n, p, i dim i, p
n = 5 p = 1
p = n / 5 dim n
for i = 1 to n do n = 5
p = p * i for i = 1 to n do
end for p = i * p

end for

By combining the techniques presented in Table 2.3, highly variable codes
can be generated. Some mutations frequently found in metamorphic malware

17

creations are:
a) Instruction reordering , which consists of transposing instructions that

do not depend on the output of previous instructions. When instructions are re-
ordered, signatures involving the instructions can be broken, while code execution
is unaffected. [65]. This technique can also be achieved by applying commutative
and/or associative operators as presented in Table 2.4.

To avoid affecting original execution order, control flow instructions are used
(e.x jump) as shown in Figure 2.5.

Table 2.4: Examples of instruction reordering

a = 10; a = 10;
b = 20; can be changed to: b = 20;
x = a * b; x = b * a

Original machine and assembly codes
c7 45 f4 0a 00 00 00 movl [rbp-0xc], 0xa ; a = 10
c7 45 f8 14 00 00 00 movl [rbp-0x8], 0x14 ; b = 20
8b 45 f4 mov eax, [rbp-0xc] ;
0f af 45 f8 imul eax, [rbp-0x8] ; a * b
89 45 fc mov [rbp-0x4], eax ; x = a * b

Mutated machine and assembly codes
c7 45 f4 0a 00 00 00 movl [rbp-0xc], 0xa ; a = 10
c7 45 f8 14 00 00 00 movl [rbp-0x8], 0x14 ; b = 20
8b 45 f8 mov eax, [rbp-0x8] ; (reordered)
0f af 45 f4 imul eax, [rbp-0xc] ; b * a (reordered)
89 45 fc mov [rbp-0x4], eax ; x = b * a

b) Dead code insertion is implemented by randomly inserting code that is
either not executed or, if executed, has no effect on the results of the original
program. Usually, this is implemented by the insertion of NOP instructions
which does not affect the CPU state and some antiviruses are eventually trained
to ignore flat instructions like those. Other examples include MOV eax, eax
, ADD eax, 0 and SUB eax, 0. Dead code insertion can be very effective to
change statistical patterns of malware families [66] [44]. By applying dead code
insertion, infinite variants can be obtained from a single instance. However,
as an instruction’s address is changed it can affect cross referencing, making
code inexecutable or changing its original function. To avoid damaging cross
references, dead code should be inserted in unused spaces [67].

c) Register renaming consists of using different registers for each new gen-
erated variant. Therefore, the signature changes and makes detection based on
register-using patterns identification difficult. Win95/Regswap and Win32/Evol
viruses implements metamorphosis via register usage exchange. Any part of the
virus body use different registers from one variant to another but the original
intention remains. Tables 2.5 and 2.6 exemplify the application of this technique

18

on the viruses Win95/Regswap and Win32/Evol both found in the wild in 1995
and 2000 respectively.

Table 2.5: Two generations of Win95/Regswap.

5A pop edx
BF04000000 mov edi,0004h
8BF5 mov esi,ebp
B80C000000 mov eax,000Ch
81C288000000 add edx,0088h
8B1A mov ebx,[edx]
899C8618110000 mov [esi+eax*4+00001118],ebx
58 pop eax
BB04000000 mov ebx,0004h
8BD5 mov edx,ebp
BF0C000000 mov edi,000Ch
81C088000000 add eax,0088h
8B30 mov esi,[eax]
89B4BA18110000 mov [edx+edi*4+00001118],esi

d) Subroutine permutation consists of reordering the subroutines of a
program, since the order in which subroutines appear in code is not critical
to its execution. The order of subroutines is different from one generation to
another, which leads to n! different virus generations, where n is the number
of subroutines. The BadBoy DOS virus family had eight subroutines, 8! =
40,320 different generations and Win32/Ghost (discovered in May 2000) had
10 functions, 10! = 3,628,800 combinations [64]. Subroutine permutation is
employed in The Real Permutation Engine (RPME), which was used to generate
the highly metaphoric families of malwares like Metaphor and Zmist [67] [68].

Figure 2.4: Example of equivalent instructions substitution

e) Equivalent instruction replacement: The instruction set for modern
processors have numerous equivalent instructions (or groups of instructions). For
example, MOV eax, 0, is equivalent to SUB eax, eax and XOR eax, eax. Figure
2.4 illustrates an example where a single instruction is equivalent to a sequence
of instructions.

f) Code reordering consists of inserting a conditional or unconditional
branch instruction after a block of instructions. Blocks defined by such branch-
ing instructions can then be permuted to change the control flow. Figure 2.5

19

Table 2.6: Metamorphic variants of the virus Win32/Evol.

a) Generation A:
C7060F000055 mov dword ptr [esi],5500000Fh
C746048BEC5151 mov dword ptr [esi+0004],5151EC8Bh
b) Generation B:
BF0F000055 mov edi,5500000Fh
893E mov [esi],edi
5F pop edi
52 push edx
B640 mov dh,40
BA8BEC5151 mov edx,5151EC8Bh
53 push ebx
8BDA mov ebx,edx
895E04 mov [esi+0004],ebx
c) Generation C:
BB0F000055 mov ebx,5500000Fh
891E mov [esi],ebx
5B pop ebx
51 push ecx
B9CB00C05F mov ecx,5FC000CBh
81C1C0EB91F1 add ecx,F191EBC0h ; ecx=5151EC8Bh
894E04 mov [esi+0004],ecx

illustrates the ‘spaghetti code’ that can easily be generated by this approach.
At this point, consecutive instructions are permutated and linked together by
unconditional jumps. The reordering of instructions does not modify the order
in which they are executed, but breaks signatures that rely on the adjacency of
certain sets of instructions.

A more advanced technique for metamorphism proposes an evolutionary ap-
proach through genetic frameworks [69] [47]. To drive evolution towards the cre-
ation of malicious applications that are hard to detect, an individual is awarded
a progressively higher fitness value if they satisfy a series of predefined requisites.
During this process, it is possible to obtain non-valid programs, unable to compile
or not executed correctly. Moreover, programs that are compiled and executed
successfully could lose the malware characteristics, becoming harmless software
applications.

Interpreted languages can have poly/metamorphic behavior but rely on a
static compiled interpreter to execute, which usually applies many optimization
strategies not possible to control from the high level code, hence a large por-
tion of the ’run-time signature’ is not mutable. Compiled low level languages
are preferred over high level languages when it comes to metamorphic malware
creation, since they offer enough computational flexibility. That said, herein, we
only address metamorphic malware in the form of mutated endpoint executable

20

Figure 2.5: Representation of code reordering and dead code insertion.

binaries.
Currently, metamorphic malware detection is an issue for the InfoSec commu-

nity, which is corroborated by the constant emergence of new studies on the topic
and the potential threat acknowledged by recent annual security reports [37] [70]
[26] [71]. The current knowledge about malware creation and malware detection
techniques, the proliferation of malware creation kits accessible on the Internet
1, and the organization of cybercrime moved by financial motives, indicates that
most metamorphic malware may exist without being detected.

1Tools publicly available on: http://vxheaven.org/ and http://z0mbie.daemonlab.org/

21

Chapter 3

Literature Review

Several strategies have been proposed to improve malware detection resilient
to metamorphism. This chapter presents a revision of previous research efforts
about metamorphic malware detection. The approaches discussed in this section
are broadly grouped into: a) pattern recognition and b) semantic structures
matching.

The first group consists of approaches that employ statistical models of clas-
sification, constructed by previously gathered knowledge about malware families
and virus construction kits. These models decide if a suspicious instance can be
classified into a set of defined classes of interest, such as malware or benign, or if
instances were generated with a specific engine of metamorphism or construction
kit. The second group consists of approaches that employ algorithms to compare
semantic structures extracted from known malware and instances under analysis
to decide if a suspicious instance is or was generated from a known malware,
based on the similarity of its representative structures.

3.1 Detection based on statistical models of clas-
sification

The approaches presented in this section provide solutions to metamorphic mal-
ware identification based on statistical models that represent the patterns found
in a) malign code families, b) benign code, c) metamorphic engines and d) virus
creation kits. Typically, in such methods, machine learning algorithms [72] are
employed to construct binary classifiers that discriminate into: a) malware and
benign, b) does or does not belong to a specific family and c) was or was not
generated with a specific virus construction or metamorphic engine.

Canfora et al. [32] proposes a detection technique that relies on the as-
sumption that a common side effect metamorphic engines is the dissemination of

repeated instructions in the body of malwares, which permits elaborate identifica-
tion models based on statistical patterns of instructions and opcode distributions
in a malware’s code body. Through comparative analysis, Canfora et al. con-
cluded that the distribution of opcodes in trusted programs are different from
the distribution of those same opcodes in malware programs. Based on such con-
clusion, the authors proposed a data structure that associates each opcode with
the number of unique instructions that it contains, with at least 2 occurrences
in the code, called an Instruction Occurrence Matrix (IOM). Such IOM struc-
ture, which is shown in Table 3.1, serves as a feature vector that characterizes
a malware’s code body based on the frequency of appearance of its instructions.
IOMs are employed to train classifiers and, in tandem with such models, to clas-
sify a suspicious code as malware or benign. Five decision trees: J48, Ladtree,
Nbtree, Random Forest, and Reptree are built using Weka [73], where the inter-
mediate nodes contain the conditions applied to one of the attributes selected for
classification and the end nodes represent the predicted class. The classification
analysis showed that the method can correctly classify both malware and non-
malware with an accuracy of 94% and a false positive rate of 3% for non-malware
and generated malwares. The approach is equally effective for non-metamorphic
malware detection, however, the accuracy of the method decreases when benign
codes are added to the malware.

Table 3.1: Example of an IOM structure as employed by Canfora et. al

8086 Op-code Number of unique in-
structions with more
than one occurrence

AAA 0
AAD 5
AAM 3
AAS 2
ADC 0
ADD 15
... ...
INT 2
.

The use of Hidden Markov Models [74] for metamorphic malware detection
is one of the first and most abided approaches in the topic [75] [76] [77] [78].
In such studies, opcode sequences in metamorphic malware families are used to
construct models that express the underlying probabilities of specific opcodes
that appear after other given opcode. Afterwards, such models are employed to
determine similarities among previously seen and under analysis instances based

23

on whether they presents the same probabilistic patterns, using algorithms like:
a) Forward algorithm [79], b) Viterbi Algorithm [80] and c) Baum-Welch Re-
estimations [81]. Such models determine if an instance is part of a specific family
of malware but are bound to the mutator or metamorphic engine that generated
the instances. Studies have been carried out to create metamorphic engines to
defeat Hidden Markov Models (HMM) based approaches, obtaining exact and
promissory results. For example, Desai [82] and Tamboli et al [67] demonstrated
such technique was ineffective when more than 20% of dead and benign like codes
were inserted into the program.

Singh et al. [83] proposed an approach to classify binaries into benign or
malware by applying Support Vector Machines (SVM) [84].In that work, they
studied three similarity scoring techniques that can be used to discriminate be-
tween malwares and benign, namely: a) Hidden Markov Models, b) Simple Sub-
stitution Distance, and c) Opcode Graphs similarity. For each technique, they
carefully analyzed the degree of malware mutation needed to break the score, us-
ing the area under the ROC curve (AUC) as a measure of success. The authors
trained binary classification models, which discriminated between malware and
benign, employing SVM to obtain a hyperplane of maximal separation for the
previously mentioned scores. Through experimentation with instances created
by the Next Generation Virus Construction Kit 1 (NGVCK) and metamorphic
Malicia Project’s 2 malware families, the authors concluded that more accuracy
was obtained by combining the scores with SVM, rather than individually using
each technique. Such method presented an average accuracy of 87% and a false
positive rate of 4%.

Table 3.2: Example of report extracted from notepad.exe as employed by
Choudhary and Vidyarthi

Process name PID Operation Path Detail
notepad.exe 616 CreateFile C:/Windows/System32 Desired Access: Generic
notepad.exe 616 CloseFile C:/Windows/System32/notepad.exe
notepad.exe 616 LoadImage C:/Windows/System32/notepad.exe Image Base: 0xc0000
notepad.exe 616 LoadImage C:/Windows/System32/ntdll.dll Image Base: 0x77240000
notepad.exe 616 CreateFile C:/Windows/Prefetch Access: Read
notepad.exe 616 QueryStandardInfo C:/Windows/Prefetch AllocationSize: 45,056

Choudhary and Vidyarthi [70] studied the behavior of metamorphic malware
instances by execution in virtual environments and by analyzing the reports gen-
erated with a text mining-based technique. In Table 3.2 an example of the reports
obtained is presented. Such reports contain information regarding the effects of

1Publicly available on: http://vxheaven.org/vx.php?id=tn02
2Publicly available on: http://malicia-project.com

24

the program execution on the host system and the state of program during ex-
ecution, such as: a) operations performed by the main and children processes,
b) location where operations are performed and c) parameters passed during
such operations. Then, the Information Gain [85] was calculated for each word
present in reports, based on their frequency of occurrence in benign and malware.
Furthermore, by using Information Gain as a measure of word representativity
for malware or benign, a model for binary classification was trained using Sup-
port Vector Machines. Experimentation demonstrated effectiveness in separating
malware from benign files with an accuracy of 97.8%. Using 10-fold cross valida-
tion, 188 (91 malwares + 97 benign) samples were classified with four instances
misclassified as benign. However, this method is ineffective for techniques like
anti-debugging, anti-vm, and anti-emulation, which avoid dynamic malware de-
tection by providing malware instances that are able to detect if they are being
analyzed and avoid executing their malicious activity in such conditions [86] [55].

Vinod et al. [49] proposed a statistical method for malware detection that
does not rely on similarity matching of signatures. For analysis, a program is
disassembled using IDA-Pro [87] and the code obtained is parsed to extract the
frequency of occurrence of mnemonics’ n-grams sets for 𝑛 values 1 to 5. Also, the
instructions’ opcodes frequency of occurrence are calculated. With the gathered
information, feature vectors are constructed. Redundant features are eliminated
using: a) Class-wise Document Frequency (CDF) [88], b) Scatter Criterion [89]
and d) Principal Component Analysis (PCA) [90]. With the resulting features,
malware or benign binary classifiers are trained by: a) K-NN’s IBk [91], b) J48
Decision Tree [92], c) AdaBoost [93], d) Random Forest [94] and e) Sequential
Minimal Optimization (SMO) [95]. For identification of benign files, the best
results were obtained using IBk with a 0.98 true negative rate and 0.02 false
negative rate. For malware identification, the best model presented a 0.96 true
positive rate and a 0.09 false positive rate.

Eskandari and Hashemi [96] studied semantic patterns in API Call Graphs
extracted from metamorphic malware. In such graphs, nodes exists in each part of
the malware’s code, which makes a system’s API call and directed edges represent
the sequence where it occurs. From each malware in a set, an API call graph was
constructed and was later reduced to a feature vector. With the obtained vectors,
classification algorithms were employed to train models that labeled an instance
into benign or malware. Experimental outcomes presented accuracy scores below
85% for all the models of classification obtained.

25

3.2 Identification using code signature matching
This section presents approaches of metamorphic malware identification using
similarity-matching of structures extracted from a code’s body. In such ap-
proaches, structures that represent the semantics and functionalities of assembly
codes are extracted from malwares. Those structures are selected due to their
resilience to the effects of metamorphism, since metamorphic instances are gen-
erated by mutations applied to existent malwares that do not alter their original
functions.

Baysa, Low, and Stamp [29] proposed a solution for metamorphic malware
identification based on matching of files with a similarity-matching algorithm
called string edit distance [97], which was applied to code sequence segments of
files under analysis and known malwares. Their solution focused on code sorting
and analysis of data areas, characterizing them by the peculiarity of their byte
sequences, as well as their lengths, which was later used to compare two files.
This solution started by splitting each file into sequences of segments with dif-
ferent entropy levels, using wavelet [98] and entropy analysis [99], then aligned
the sequences of the two files by calculating the edit distance between the seg-
ments, obtaining the similarity between two files. Such technique was tested on
metamorphic variants created with the following virus creation kits and engines
of metamorphism: a) G2, b) NGVCK and c) MWORM. For each family under
analysis, similarity scores were higher among instances of the same family and
between malware and benign instances. For each family under analysis, similarity
scores are lifted among instances of the same family and between malware and
benign instances. For G2 and MWORM, the difference between similarity scores
among malwares and benign instances was evident. However, as seen in Figures
3.1 and 3.2, it was not possible to select a threshold that completely separated
NGVCK generated instances from benign ones without incurring false positives
or false negatives. Experimentation did not compare instances of different fam-
ilies, so it was not possible to confirm if the method was able to distinguish
between different families from the results.

Methods based on matching structures in malware families rely on the as-
sumption that the selected structure is resilient to the effect of metamorphism.
One approach that seeks metamorphic-resilient structures is code normalization
[100] [101].

Intermediate languages are widely used for code normalization. Alam, Hospool,
and Traore [34] studied problems with previous intermediate languages and de-
veloped a new language called MAIL (Malware Analysis Intermediate Language).
As described by the authors, MAIL was designed as a small, simple, and extensive
language that represents structural and behavioral information of an assembly
program by translating instructions into a representation grouped according to

26

Figure 3.1: Similarity scores between one iteration generated from NGVCK instances
and benign files according to Baysa et. al approach

its semantic. To perform detection, a binary program is first disassembled and
translated to a MAIL program. The MAIL program is then annotated with pat-
terns that represent the logic of each line of code. A Control Flow Graph (CFG)
is later built from the annotated program, which becomes part of the program’s
signature and is matched against a database of known malware samples. The
CFG is divided into smaller CFGs, each per function found in the code. A pro-
gram that contains part of the control flow from a training malware sample is
classified as a malware if a percentage (compared to some predefined threshold)
of the CFGs involved in a malware signature match the signature of a stored
sample of known malware. For successful matching, all the statements in the
matching blocks must have the same patterns. Experimental evaluation using an
existing dataset yields a malware detection rate of 93.92% and false positive rate
of 3.02%.

A programs’ semantics can be effectively represented by graphs in which the
portions of code and its relations are modeled by nodes and edges. Those graphs
are usually called dependency graphs since there structures represent dependen-
cies between parts of code. One advantage of this kind of signature is that it
is more resilient to metamorphism. Since obfuscation techniques must be ap-
plied without eliminating original functioning, dependency graphs represent the
original intention and function of the code. Therefore, a detection system, using
dependency graphs as signature, can classify files by comparing the dependency
graph of that file with stored graphs, previously identified as malware.

Xin Hu et al. [102] proposed a malware database management system called

27

Figure 3.2: Similarity scores between two iterations generated from NGVCK instances
and benign files according to Baysa et. al approach

SMIT (Symantec Malware Indexing Tree), in which detection is based on match-
ing malware’s function-call graphs. Since each malware program is represented
as a graph, the problem of searching for the most similar malware program in
a database to a given malware sample is cast into a K Nearest Neighbors [103]
search problem in a graph database. To speed up such search, the authors de-
veloped a method to compute graph similarity that exploits the structural and
instruction-level information in the underlying malware programs, and a mul-
tiresolution indexing scheme that uses feature vectors for early pruning. Xin Hu
et al. described effective pruning power and scalability of the nearest neighbor
search mechanism proposed. Experimentation results showed database query ex-
ecution up to 400 seconds for less than 50 graphs distances computations. The
authors recognized that, since SMIT analyzes malware samples at the level of
individual instructions and function calls, it may be susceptible to advanced ob-
fuscation techniques such as a) instruction reordering, b) equivalent instruction
substitution and import table modification (to hide the symbolic names of im-
ported functions).

Lee et al. [104] proposed a method for malware detection resilient to meta-
morphism based on the comparison of known malwares of suspicious instances
using API call graphs extracted from the instances. In such graph, there is a node
for each system’s API call made by the program and edges connect such calls ac-
cording to the sequence in which such calls are made. Afterwards, the nodes are
classified into groups depending on the type of operation that is performed, which
are: a)open; b)close;c) write and d) read. Also, the object involved in the opera-

28

tion is included in the node’s label, which is selected from 32 objects present in the
Microsoft Documentation reference (MSDN), including: a) socket, to represent
the interface object involved in a network operation and b) registry, to represent
an object involved in a read/write operation. Then, a similarity index is calcu-
lated by computing the intersection and union of the graphs constructed and by
dividing the number of unions by the number of edge intersections. Experiments
tested how uniquely the proposed graph structure represented the semantics by
comparing graphs extracted from benign and malicious files. If comparison out-
puts a similarity score above 0.9, then the graphs were considered equal. One
out of 30,000 possible pairs of malware and benign instances in the experimental
dataset had a similarity greater than 0.9. The system tested generated variants of
10 malwares by applying code insertion, code reordering, and code replacement
for 10% to 100% of the sample codes, obtaining an accuracy score of 91% and a
false positive score of 6%. Such method presented performance issues associated
with extensive graph comparison operations of big datasets.

Runwal et al. [105] presented an approach for metamorphism identification
based on executable file differentiation. The authors developed a similarity mea-
sure based on extracted opcode sequences that can be used to compare executable
files. The method proposed employs weighted directed graphs that express the
probability an opcode appears after another in a family of malwares. Such graphs
are normalized by adjacency matrices made from all the possible opcodes in an
8,086 assembly code, and the probability of each opcode occurring after the others
in each graph. Then, the problem is reduced to compare such matrices with that
of an input graph to determine if an instance was generated from another instance
in the dataset. Experiments about benign, malware, and partially morphed of
each kind showed coefficients of similarities with an average over 0.5 between
instances of the same family. Such approach was inefficient for code integration
where malwares were introduced into the body of known benign instances, as
well as for removing uncommon opcodes from the malware.

Kim and Moon [39] studied the effects of metamorphism in data dependency
graphs and proposed an approach based on graph matching for malware identi-
fication. Regarding effects of metamorphism on the Data Dependency Graphs,
through experimentation, the authors concluded: a) format alteration and vari-
able renaming do not change anything, even in the control flow graph, b) state-
ment reordering actually changes the order of vertices in the dependency graph
while the structure remains the same, c) more complex techniques such as state-
ment replacement, control replacement, and junk code insertion can add one or
more vertices into the dependency graph, however, new vertices do not harm
the structure of the previous dependency graph because it should keep the same
functionality as before and d)Spaghetti code alters the control flow of a graph

29

and adds vertices for unconditional jump into the dependency graph. Likewise,
authors implemented previous experiences from Liu et. al [106], which concluded
that DDGs are robust to the following five disguises in software plagiarism: for-
mat alteration, variable renaming, statement reordering, control replacement,
and junk code insertion.

Kim and Moon labeled an instance a metamorphic variant by comparing max-
imum subgraphs isomorphism [107]. Since this process involves high computa-
tional complexity, heuristics based on the use of genetic algorithms are employed
to reduce comparison time. This method was tested against metamorphic vari-
ants of malware scripts found in the wild. The dataset also included generated
instances that applied techniques of metamorphism. When compared to a set
of commercial antiviruses, the approach by Kim and Moon outperformed by de-
tecting 16 of the 18 variants tested. Kim and Moon’s method correctly identified
100% of the malware families highly metamorphic variants: Hello, Neves Rabit
and Small.

Figure 3.3 shows the scores of differences among metamorphic malware in-
stances in the same family, calculated by Kim and Moon. The figure shows that
two instances presented a similarity of 50% and 80% respectively, while all the
other instances presented similarity of 100%.

Figure 3.3: Differences among metamorphic malware families in (Kim and Moon, 2010)

Breves et al. [38] proposed an approach based on the use of Data Dependency
Graphs, with emphasis on a technique that reduces the complexity without com-
promising the accuracy of graph matching. Initially, vertexes were classified into:

30

a) load, where a variable is created and starts a dependency chain, b) processor,
a variable that transform the data, and c) decision, a variable that modifies the
flow of the program based on some condition (an assembly code found as CMP
statements that are placed before a jump instruction). Graphs were pruned
considering the most relevant vertices only from those classified as decision. To
identify the most relevant decision vertices, a four step process was performed, as
follows: a) calculate the shortest relative distance between each decision vertex,
b) construct a derived virtual graph, consisting only of decision vertices, with
edges representing the relative distance between each vertex of the decision, c)
calculate the maximum clique derived from this virtual graph and d) reduce the
dependency graph by removing any vertices and edges that are not associated
with the vertices of decision present in the maximum clique of the derived virtual
graph.

Figure 3.4: Similarity score among
metamorphic variants of Evol mal-
ware family (Breves et.al,2015).

Figure 3.5: Similarity score among metamor-
phic variants of Polipmalware family (Breves
et.al,2015).

Breves’ method was applied to 63 samples of Evol.a malware and 10 sam-
ples of Polip malware. All the samples were then subjected to comparison with
metamorphic versions using either the graph generated by the reference reduc-
tion process or the version reduced by the use of virtual clique. As a result, the
number of vertices reduced on average was 23.52%. Figures 3.4 and 3.5 present
scores of similarities among metamorphic variants of malware families Evol.a and
Polip respectively, as presented by Breves et.al. In such figures, the average simi-
larity among samples of the family Polip is around 80% and 60% among instances
of the Evol family. In all cases, the DDGs extracted from samples in the same
family remained similar for over 50% of its structure.

31

3.3 Final considerations
The previous sections include a set of state-of-the-art studies about metamorphic
malware detection. Such studies were found by applying several search criteria
related to the topic in the following scientific research databases : IEEE Xplore,
Elsevier, ACM Press and Springer. Finally, studies that elaborated about the
topic and presented relevant results were selected. Table 3.3 summarizes the
selected studies, presenting the detection techniques used, best accuracy score,
best false positive rates, and size of employed dataset. The following are some
deficiencies identified in the selected works:

The high variability in patterns and behaviors reached by metamorphism
and the high rate of appearing of new vulnerabilities and stealth techniques is
a factor that affects the capacity of generalization of detection models. Works
that perform detection by separating into malware and benign are prone to low
accuracy when several characteristics of benign code are inserted into malicious
variants [82]. In general, approaches that perform detections by classifying into
malware families have more discrimination capacity.

Approaches based on comparisons of semantic representations of code body
are more resilient to metamorphism mutations [39], however, still deal with per-
formance issues associated to matching algorithms[107] [108]. Graph matching
in growing bases of millions of signatures is time consuming, as suspicious in-
stances have to be compared with each instance in the database, in a brute force
fashion. This only worsens when considering the rate at which databases grow,
with thousands of new malware instances found every day.

Table 3.3: Comparative table of state-of-the-art research on metamorphic
malware detection

Work refer-
ence

Technique Detection
accuracy
(Best
result)

False pos-
itive rate
(Best re-
sult)

Data set
size (Be-
nign/Malware)

(CANFORA;
IANNACCONE;
VISAGGIO,
2013)

Code in-
structions
mining

94% 3% 500/500

(SINGH et al.,
2015)

Support
Vector
Machines

88% 4% 40/950

32

(CHOUDHARY;
VIDYARTHI,
2015)

Dynamic
analysis,
text mining

97.8% 1% 97/91

(VINOD et al.,
2014)

Statistical
analysis,
mnemonic
n-gram

96% 9% 4050/2430

(BAYSA; LOW;
STAMP, 2013)

Statistical
analysis,
structural
entropy

100 0 16/100

(ESKANDARI;
HASHEMI,
2012)

API Call
graph
mining

85% 48% 2140/2305

(ALAM; HOR-
SPOOL;
TRAORE,
2013)

Code nor-
malization,
inter-
mediate
language,
subgraph
matching

93.92% 3.02% 1137/250

(PAYANDEH,
2014)

Hidden
Markov
Models

70% 0% 0/200

(LEE; JEONG;
LEE, 2010)

System
API Call
Graph
Matching

91% 1.3% 300/100

(RUNWAL;
LOW; STAMP,
2012)

Opcode
graph
similarity

96% 6% 41/225

(ALAM et al.,
2015)

Code nor-
malization,
annotated
control
flow graph
matching

93.92% 3.02% 2330/1020

33

(KIM; MOON,
2010)

Data de-
pendency
graphs
matching

100% 0% 0/18

(MARTINS
BREVES; FRE-
ITAS; SOUTO,
2014)

Data de-
pendency
graphs
matching

100% 0% 0/73

(ROJAS; MAR-
TINS BREVES;
SOUTO, 2017)
This work

Data de-
pendency
graphs’
database
indexing

97.7% 3.3% 0/4530

Matching semantic structures provides lower false positive rates since higher
discrimination and uniqueness between instances can be obtained, however, per-
formance issues remain. On the other hand, pattern recognition is more practical
due to lower algorithmic complexity, though, the chances a malware instance will
be labeled as benign and vice-versa are higher.

In order to leverage advantages and overcome limitations found in previous
studies , we present a hybrid approach for semantic structures matching and
pattern recognition. This approach is based on the studies of Kim and Moon
and Breves et.al. In these works, and herein, Data Dependency Graphs are used
because of their resilience to metamorphism, as studied by Kim and Moon [39]
and Liu et. al [106]. However, in our proposed methods„ to reduce the effects
of metamorphism and create a structure that better represents the graphs, we
use information about the semantic of programs by labeling DDG’s nodes with a
tag from assembly instructions classification, which allowed us to introduce the
concept of Annotated Data Dependency Graphs (ADDG) as stated in Definition
13. In the previous studies, shrinking techniques were proposed to reduce the
quantity of nodes compared during graph matching. Herein, such pre-processing
is not applied directly to the graphs, but to feature vectors extracted from the
graphs in a process of information gain optimization. Furthermore, different
then in previous proposals, in this work, comparisons are applied not by exact
matching of instances but based on pattern matching employing models of clas-
sification trained with machine learning algorithms. Such models are optimized
to discriminate instances from each other in the same dataset by selecting the
most prominent and representative features of the graphs, reducing complexity
of comparison and enhancing matching accuracy. The next chapter presents all
the insights of the proposed methods.

34

Chapter 4

Methods proposal

Herein, we propose a method for malware detection that is resilient to code
metamorphism through Data Dependency Graphs (DDG) matching. Such graphs
were selected given their resilience to the effects of metamorphism and code
mutation, as seen in previous studies [46] [39] [38].

However, such studies have shown that DDGs are not fully immune to meta-
morphism. Kim and Moon [39] stated that complex techniques such as statement
replacement, control replacement, and junk code insertion can add one or more
vertices into a dependency graph, even though new vertices do not harm the
structure of the previous dependency graph since the same functionality should
remain. Furthermore, spaghetti codes alter the control flow of graphs and add
vertices for unconditional jump to dependency graphs. Subroutine inlining and
outlining is the most complex technique and can modify up to 50% of a depen-
dency graph [39] [46]. In addition, generated ADDGs may not be accurate due
to deficiencies inherent to binary reverse engineering.

Given the previously mentioned drawbacks, which can affect the accuracy of
constructing such graphs, DDGs matching through graph isomorphism (exact
matching) is prone to false negatives. Since most of the graphs are not modified,
subgraph isomorphism is best suited, notwithstanding, subgraph isomorphism is
NP-Hard [40]. For that reason, herein, DDGs matching is performed through
pattern recognition instead of exact graph matching, using classification models
trained with machine learning algorithms.

Such models are recognized as an index since they recover a previously iden-
tified malware from a reference base. A feature vector extracted from an ADDG
represents a query to such index. The inner structure of the classification model
discriminates among malware families according to structural characteristics of
the Annotated Data Dependency Graphs (ADDG) that conforms the instances
in such families. Such models are obtained through a process of fitting that op-
timizes such discrimination. This all identifies which malware a binary is related

to by submitting the feature vector of an ADDG extracted from such instance,
without comparing the ADDG with all the malwares in the base.

Therefore, we propose a method for metamorphic malware identification com-
prised of two phases: a) index induction and b) suspicious instance classification.
The first phase constructs an index structure that permits perform matching
of an input instance to a base of graphs extracted from known malware. The
second phase identifies if an input suspicious instance was generated from one
of the instances from malwares base. Figure 4.1 presents a diagram represent-
ing the proposed method. The next sections provide details about the method’s
components.

Figure 4.1: Overview of the proposed approach for metamorphic malware detection.

4.1 Feature vectors extraction
For both phases of the proposed methods, we implemented a static process of
feature vectors extraction. Such vectors represent structural characteristics of
ADDGs extracted from the assembly code in previously identified malwares, dur-
ing index induction, and in suspicious instances during index querying. In order
to construct such feature vectors, the following steps were sequentially executed
for each input binary instance: a) binary disassembling, b) Control Flow Graph
construction, c) Data Dependency Graph construction, d) Annotated Data De-
pendency Graph construction and e) ADDG’s structural features extraction.

36

Figure 4.2: Overview of feature vectors extraction phase.

Figure 4.2 shows the steps of feature extraction proposed in this research.
Initially, the object code (in which the input binary program was expressed) was
reverse engineered to transform the opcodes to instructions in assembly code.
For each function in the obtained assembly code representation, a Control Flow
Graph (CFG) was constructed that expressed the order of execution of code
blocks inside the function. The obtained CFGs were then transformed into Data
Dependency Graphs (DDG) using data flow analysis, which mapped data depen-
dencies among instructions throughout all blocks of the CFG. Then, each node of
the DDGs was given a label that expressed the semantic of the instruction con-
tained in such node, based on the instruction’s mnemonic and operands, resulting
in an ADDG for each DDG. From the obtained ADDGs, structural features were
extracted to conform the feature vectors employed during index induction and
querying.

4.1.1 Data Dependency Graph construction

The first step for feature vector extraction was construction of the Data Depen-
dency Graphs based on executable programs. During index induction, DDGs
were extracted from known malware samples and during the process of analysis
from the input suspicious instance. This section explains the process of binary
code’s DDG extraction used.

Given an executable binary, the object code was expressed in a higher level
format that represented the semantics and functioning of the program, best suited
for data and control flow analysis. Initially, a process of reverse engineering was
applied to binaries, to recover a representation in assembly code. Afterwards, a
CFG was constructed through a process of control flow analysis for each func-
tion in the assembly code obtained. Such steps can be performed by reverse
engineering frameworks like: a) Radare2 [109], b) IDA-Pro [87] and c) LLVM
[110].

From each CFG, a DDG was constructed as a result of data flow analysis.
Such process aimed to identify the points in a code where a variable was modified
and/or consumed and connected those points to develop a graph structure with
the characteristics of a DDG, as detailed in Section 2.3.

37

Algorithm 2: Worker-list approach for Data-flow analysis and DDG con-
struction
1 function BuildGDD (𝐶𝐹𝐺);

Input : Control Flow Graph of binary function
Output: Data Dependency Graph

2 𝑂𝑢𝑡(𝑠)← ∅ for 𝑠 in 𝐶𝐹𝐺 ;
3 𝑉 ← ∅ ;
4 𝐸 ← ∅ ;
5 𝑊 ← ∅ ;
6 𝑊 .Push(𝐶𝐹𝐺.entryBB)
7 while 𝑊 ̸= ∅ do
8 𝑠← 𝑊 .Pop() ;
9 𝐼𝑛(𝑠)← ∩𝑠′∈𝑝𝑟𝑒𝑑𝑠(𝑠)𝑂𝑢𝑡(𝑠′) ;

10 𝑡𝑒𝑚𝑝← 𝐼𝑛(𝑠) ;
11 for Instruction 𝑖 in 𝑠 do
12 for Variable 𝑣 read by 𝑖 do
13 if 𝑣 exists in 𝑡𝑒𝑚𝑝 then
14 if 𝑖 not in 𝑉 then
15 𝑉 .Add(𝑖) ;
16 end
17 if 𝑡𝑒𝑚𝑝[𝑣] not in 𝑉 then
18 𝑉 .Add(𝑡𝑒𝑚𝑝[𝑣]) ;
19 end
20 𝐸.Add(Vertex(𝑖, 𝑡𝑒𝑚𝑝[𝑣])) ;
21 end
22 end
23 for Variable 𝑣 modified by 𝑖 do
24 𝑡𝑒𝑚𝑝[𝑣]← 𝑖 ;
25 if 𝑖 not in 𝑉 then
26 𝑉 .Add(𝑖) ;
27 end
28 end
29 end
30 if 𝑂𝑢𝑡(𝑠) ̸= 𝑡𝑒𝑚𝑝 then
31 𝑊 .Push(Successors(𝑠))
32 end
33 end
34 𝐷𝐷𝐺← Graph(𝑉 , 𝐸) ;
35 return 𝐷𝐷𝐺 ;

We propose an algorithm for data flow analysis based on the work-list ap-
proach [111]. In such algorithm, presented in Algorithm 2, a CFG is run through

38

iteratively, block by block, to identify the instructions that perform read/write
operations and determine chains of data-dependency.

On each iteration of the algorithm, a DDG is constructed by applying updates
to its structure based on the states of data-dependency chains.

Data dependency chains are expressed in two mapping functions, namely
In() and Out(). Given a variable 𝑥, function In() provides a reference to the
instruction that last modified 𝑥, considering all the predecessors of the basic block
under analysis for each iteration of the algorithm. Function Out() maintains
a map of variables of the instructions that modify it only for the instructions
inside each block. A map Out() is saved for each block and updated with new
relationships of data-dependency found in each iteration of the algorithm.

Figure 4.3: Example of a CFG extracted from a function of program ls

Figure 4.4: Labeled DDG extracted from the CFG in Figure 4.3

The basic blocks processed are collected into a queue. On each iteration, a
block is taken from the queue, thus the algorithm stops when the queue is empty.
When the algorithm starts execution, the queue only contains the basic block
referring to the analyzed assembly code’s entry point. After each iteration, the
queue is populated with the successors of the block processed on that iteration.

39

If the state of the last computed Out() of the analyzed block differs from the
one computed in the current iteration, no population in the queue is done. As
the processing queue is populated according to the blocks connectivity, isolated
blocks end up being taken out of analysis.

On each iteration, In() is initially computed by intersecting the Out() of the
immediate predecessors of the block being processed. Then, a new Out() starts to
be computed for the current block and is initialized with the state of In(). From
this point on, if each instruction in the block handles data (read/write operation)
involving a variable or flag, one of the followings operations are performed:

i. If the variable is being manipulated for the first time, a new vertex is added
to the DDG and Out() is updated with a map relating to the variable and address
of the instruction.

ii. If the variable is already mapped in Out() and its value is not changed by
current instruction, one of the following actions is taken:

ii.i) If the instruction that modifies the variable value already has a vertex in
the DDG a new node is created for the current instruction;

ii.ii) Otherwise, two nodes are created in the DDG, one for current instruction
and the other for the instruction that changes the variable value. In either case,
a new edge is added to the graph, outgoing from the node of the instruction that
modifies towards consuming node.

iii. If the instruction alter the contents of the variable, operations described
in ii. are executed, and the map of the variable in Out() is updated to contain
only the current instruction.

Figures 4.3 and 4.4 show examples of a DDG and the CFG used to construct
the DDG. As shown in Figure 4.4, there are outgoing edges from the vertices
that represent instructions 3 and 1 and entering into the vertex for instruction
4, given that 4 defines the value of the register 𝑒𝑎𝑥 and this same variable is
consumed by 3 and 1.

Some metamorphic engines implement trash instruction insertion by trans-
forming one instruction into many equal ones, mostly in arithmetic operations as
sums, or by inserting several 𝑛𝑜𝑝 instructions (i.e instructions that perform no ac-
tion). To make the process less susceptible to such obfuscation, equal successive
instructions are handled only once.

4.1.2 Annotated Data Dependency Graph construction

At the same time a DDG is being constructed, its nodes are labeled to conform
an ADDG. ADDGs constitute an enhanced program representation since they
also include semantic and functionality of instructions. ADDGs bring informa-
tion about program’s semantics into the identification process, which provides

40

classification models with better discrimination capacity, thus, enhance identifi-
cation accuracy. Furthermore, this process aims at reducing the effects of single
instruction substitution by providing a label for each node in the DDG that rep-
resents all possible node’s equivalent instructions. This section elaborates details
about the ADDG construction process.

Given a node 𝑣 of a DDG, 𝑣 is labeled with a string followed by the union
of substrings, each representing a classification of the parts that conforms the
instruction in 𝑣 (i.e mnemonic and operands). Such label follows the naming
pattern 𝐼 = 𝐼𝑚_𝐼𝑜 for any given instruction 𝐼, in which 𝐼𝑚 is a class for the
mnemonic in 𝐼 and 𝐼𝑜 is the union of classes assigned to each element in the
operands present in 𝐼 separated by an underline character.

Table 4.1: Example of mnemonics and their classes according to the
x86asm[dot]net reference.

Classes Mnemonics
branch jnl, jnae, call, jnp, ret, loopne, jno, jb, jnb, js, alter, jpe,

ja, jmpe, retn
stack push, popa, pushad, pushf, pushal, pop
datamov setne, movd, setge, movlps, movbe, cmovo, sete, fistp
control fdisi, wait, fstcw, hint, nop,fneni nop, fwait, ud2

The classes employed for 𝐼𝑚 (mnemonic in the instruction) are taken from the
map mnemonic-class proposed in the x86[dot]net reference [112]. This reference
maps 709 mnemonics into 60 class labels according to their semantics, for exam-
ple, mnemonics that: a) perform control flow operations creating a branch in the
program execution flow (jne, ret, jnp etc.) are labeled branch, b) perform opera-
tions with the program’s memory stack (push, pop, pushal) are labeled stack and
c) perform operations that modify the pace of program execution (wait, nop) are
labeled control. Regardless of the label assigned, such classes group mnemonics
according to their meaning. Table 4.1 presents examples of mappings proposed
by such reference.

Table 4.2: Examples of classifications given to assembly code instruction
operands by mapping references in LLVM and Capstone.

Operands Classification
0x40ada4, 0x40adb4 (immediate value of fixed address) imm
eax, ebx, ecx (registers) reg
byte[eax+0xc1], dword[eax+0x4d] (calculated values
from data in memory)

mem

41

To create 𝐼𝑜 (label for operands) the mapping of class-operand is that used
by disassemblers LLVM [110] and Capstone [113]. In such mapping, reference
operands are classified according to their meaning, for example: a) fixed code
addresses are labeled imm (immediate values); b) registers are classified as reg
and c) calculated values from memory data are tagged with mem. Table 4.2
presents examples of such classifications, more examples can be found in the
source code of such frameworks that are publicly available 1 2.

Figure 4.4 shows an example of the application of the proposed labeling
method. For the instruction in line 3, mnemonic test is translated to class arith
and operands 𝑒𝑎𝑥, 𝑒𝑎𝑥 to class 𝑟𝑒𝑔_𝑟𝑒𝑔, in the corresponding label.

4.1.3 Feature vectors construction

After ADDG construction, feature vectors extraction are executed during the
phases of index induction and suspicious instance analysis for identification, .
Such feature vectors are employed in the process of model training and as input to
identification models during suspicious instance’s analysis. This section provides
explanations about the process of ADDG’s feature vector extraction.

For each ADDG extracted from each function of assembly code, a feature
vector was constructed. Such process was executed as the DDG was traversed for
labeling. These feature vectors expressed structural characteristics of the ADDG
and also included information on the operations expressed by the instruction of
each node in the ADDG.

Given a feature vector 𝑓 extracted from an ADDG, for any given characteristic
𝑐𝑤 of 𝑓 , 𝑐𝑤 is tagged following the naming convention expressed by the pattern
𝑐𝑤 = 𝐹𝑒_𝐹𝑟. In this pattern, 𝐹𝑟 is reserved to include a label from the set of
labels used to annotate DDGs and 𝐹𝑒 represents prefixes derived from the graph
structure, being: a) n for the number of occurrences of 𝐹𝑟 in a graph’s nodes, b)
i for quantity of edges entering into vertices containing 𝐹𝑟 and c) o to express
the quantity of edges originated in nodes containing 𝐹𝑟.

Table 4.3 presents an example of a feature vector extracted from the DDG in
Figure 4.4. Since the graph contains two vertices with the label branch_imm, the
entry for the feature n_branch_imm has the value of 2. Also i_arith_reg_reg is
valued 1 given that there is one edge entering vertices with arith_reg_reg from
the DDG in Figure 4.4.

Since ADDGs only contained nodes related to instructions that perform read
and write operations, feature labels that were not related to data handling opera-
tions received the value zero for all the feature vectors. Given the low variability

1Unofficial Automated Mirror of LLVM, Online: https://github.com/llvm-mirror
2Capstone Github Repository, Online: https://github.com/aquynh/capstone

42

Table 4.3: Example of a feature vector extracted from the DDG in Figure
4.4.

n_branch_imm i_branch_imm o_branch_imm n_arith_reg_reg i_arith_reg_reg ...
2 0 2 1 1 ...

in values of such features throughout the dataset, such features presented the
lowest entropy and highest information gain, which gave them a better score in
the process of feature selection. In general, such behavior was undesired since it
affected generalization and reduced the ability to correctly classify new instances.

Since the quantity of features in the feature vectors used herein were higher
than 50% of most training datasets, feature vectors were considered of high-
dimensionality. This made the available data sparse, which is problematic for
any method that requires statistical significance. In order to obtain a statistically
sound and reliable result, the amount of data needed to support the result often
grows exponentially with the dimensionality. Also, organizing and searching data
often relies on detecting areas where objects form groups with similar properties.
However, for high dimensional data, all objects appear to be sparse and dissimilar
in many ways, which prevents common data organization strategies from being
efficient. In machine learning and data mining this phenomenon is known as the
curse of dimensionality [114].

In order to reduce bias towards features with higher information gain [85],
feature selection is recommended before models creation to decrease the model’s
training and prediction execution times, as well as to avoid the curse of dimen-
sionality and enhance accuracy of identification.

4.2 Index induction
The problem with identifying instances with the same semantic pattern as sus-
picious input binary, based on its ADDG, is formulated as a classification task.
Given the dataset of feature vectors extracted from the ADDGs in known malware
samples, a classification model was created with a class for each malware instance
represented in the dataset. Such step was denoted as index induction since the
model induced was employed as an index structure. For classification, the models
received a feature vector as input to obtain an identifier of the malware as out-
put, the instance that ADDG belonged to was related. The previously explained
consists of index induction and identification work-flows, which are presented in
Figure 4.5.

In order to create such models, we adopted a method of supervised classifiers
training [72]. Given a training data set of the form {(𝑥𝑖, 𝑦𝑖)} for 𝑖 in {1...𝑁},

43

Figure 4.5: Index induction and identification work-flows

the dataset with 𝑁 feature vectors, such that 𝑥𝑖 ∈ R𝑑 is the feature vector of
the i-th example and 𝑦𝑖 is its label (i.e class, identifier of a malware sample the
𝑖th ADDG belongs to). The objective is to apply a learning algorithm to fit the
function 𝑔 : 𝑋 → 𝑌 where 𝑋 is the input space and 𝑌 is the output space.

There are two classical approaches for dealing with multiple class data sets
(i.e more than two classes): a single classifier that discriminates among all classes,
or alternatively, by dividing the problem into multiple classifiers [115]. The first
approach is also called multinomial, polytomous, or single-label classification
and can be formally expressed as finding a classifier 𝑔 that discriminates among
𝐾 classes employing a scoring function 𝑓 : 𝑋 × 𝑌 → R that co-relates the
probability of a feature vector 𝑥𝑖 to belong to class 𝑦𝑘 for 𝑘 ∈ {1...𝐾}, such that
𝑔 is defined as returning the 𝑦 value that gives the highest score of probability
𝑔(𝑥) = arg max𝑥 𝑓(𝑥,𝑦). One-vs-Rest and One-vs-All are examples of strategies
employed to reduce multi-class classification to multiple classifiers [115].

In the proposed methods, both approaches for multi-class classification fit the
component Index induction. In this work, we explore single classifiers for multi-
class classification, as well as One-vs-Rest strategy for multi-class to multiple
classifiers reduction.

4.2.1 Single-model multi-class classification

For this strategy, the goal was to construct models that gave the feature vectors
of ADDGs extracted from a given binary as outputs for an identifier of the seed
instance from which such binary was generated.

Such models were intended to identify and separate patterns of the function-
ing of each family expressed in the ADDGs. Therefore, a supervised training
process was executed, where machine learning algorithms were given the previ-
ously constructed feature vectors as input and the md5 hash of the seed instance
from which the binary input graph was extracted from was the expected output.

44

Such process is known as training.
For models to present higher accuracy on classification when training with

seed instance information only, structural patterns for each family should be
caught from the information of one member. Since ADDGs within the same
family also belong to the same identity patterns, models that better over-fit the
data are prone to present higher accuracy. However, it is possible that instances
from different families while training, present similar patterns and end up being
grouped in the same cluster of the classifier inner structure. As the purpose
is to discover which family an instance belongs to, this is convenient since an
instances’ membership is not known beforehand.

4.2.2 One-vs-Rest for multiple-classifiers multi-class classi-
fication

One-Vs-Rest (OVR) is the most commonly used strategy for multi-class to mul-
tiple subproblems reduction [115]. This consists of fitting one classifier per class.
For each classifier, the class is fitted against all the other classes. Algorithm 3
details training following the One Vs Rest approach.

Algorithm 3: Algorithm for training models following the One-vs-Rest
approach
1 function TrainOvR (𝐿,𝑋, 𝑌);

Input :
A machine learning algorithm 𝐿 ;
Set 𝑋 of size 𝐾 made of the feature vectors; Set of targets 𝑌 of size 𝐾
where 𝑌𝑖∈{1...𝐾} is the expected output of sample 𝑋𝑖

Output:
A list of classifiers 𝑓𝑘 for 𝑘 ∈ {1...𝐾}

2 for 𝑘 in {1...𝐾} do
3 Construct a new set of targets 𝑧 of size 𝐾 in which 𝑧𝑖 = 1 if 𝑦𝑖 = 𝑘 and

𝑧𝑖 = 0 otherwise ;
4 Apply 𝐿 to 𝑋,𝑧 to obtain 𝑓𝑘
5 end

Ground truth employed in the multi-class approach needs to be binarized to
fulfill the requirements of OvR, in which not only classifiers are to be trained to
detect if an instance belongs to a class but also if it does not belongs. Given a
dataset 𝐷 of size 𝑁 with 𝐾 classes, binarization consists on replacing the ground
truth with a set of vectors 𝑉 in which 𝑉𝑖∈1,...𝑁 has shape 1 by 𝐾.

45

Table 4.4: Example of ground truth binarization applied.

Original Ground Truth Binarized Ground Truth
Label Vector 𝑉𝑖

j=1 (Class A) j=2 (Class B) j=3 (Class C) j=4 (Class D)
𝑌1 = A 1 0 0 0
𝑌2 = B 0 1 0 0
𝑌3 = C 0 0 1 0
𝑌4 = A 1 0 0 0
𝑌5 = C 0 0 1 0
𝑌6 = D 0 0 0 1

For all vectors in 𝑉 , every position 𝑗 ∈ 1, ...𝐾 in 𝑉𝑖 represents a unique class.
𝑉𝑖 receives 1 in 𝑗 and 0 for all other positions if 𝑗 represents the same class as that
of expected output in the original dataset 𝐷. In Algorithm 3 binarization occurs
in line number 3. In Table 4.4 an example of a binarized dataset is presented.

Classification means applying all classifiers to an unseen sample 𝑥 and predict-
ing the label 𝑘 for which the corresponding classifier reports the highest confidence
score 𝑦 = arg max𝑘∈{1...𝐾} 𝑓𝑘(𝑥) where 𝐾 represents the quantity of classes in the
dataset as well as the quantity of binary classifiers. At that stage, each classifier
in the OvR ensemble is applied to a feature vector of one ADDG extracted from
the instance under analysis.

Table 4.5: Example of the use of OvR ensembles for classification.

Probability for each class 𝑖
i=1 i=2 ... i=K

𝑝𝑖=1 .85 .0527
𝑝𝑖=2 .33 .7612
...

𝑝𝑖=𝐾 .48 .5895
max (𝑝𝑖) .85 .7695

Class selected is 𝐾 with the highest probability(.95)

Each classifier outputs a set 𝑝𝑖 of size 𝐾 containing at each position 𝑖 ∈ 1..𝐾
the probability given by the classifier of the input feature vector belonging to
class 𝑖. All such sets 𝑝𝑖 are summarized to one by selecting the highest score of
probability in each position of 𝑝𝑖. Then, when the resulting set is selected, the
correct class is represented by the set position with the highest score. Table 4.5
presents an example of the use of OvR ensembles for classification.

46

4.3 Suspicious instance classification

Figure 4.6: Suspicions instance classification phase

The models created in the phase of index induction were later employed to
identify which malware family an input instance belonged to. For that, all the
steps involved in the construction of ADDG’s feature vectors were executed on the
input instance, which resulted in a set of feature vectors. Such feature vectors
were submitted to an index which outputs a set of md5 hashes, identifiers of
binaries in the reference base. To determine which instance generated the input,
the most repeated hash in the set of returned hashes was selected. The diagram
in Figure 4.6 presents the steps involved in this phase.

4.4 Chapter’s final considerations
This chapter presents the methods proposed for metamorphic malware identifi-
cation based on DDGs matching. Each of the methods’ components, as well as
the intermediate structures and algorithms employed, are described separately in
each section. Next, we present some aspects to be considered in future metamor-
phic malware identification studies.

The proposed methods depended on reverse engineering, as well as control
and data flow analysis. The accuracy of such processes can be affected by the
quality of the tool used for such tasks. Techniques like obfuscation, packing, and
anti-analysis can be applied to affect the output of such tools. In this work, such
problems are not addressed, and no specific tools are recommended, although we
do site some tools used in previous works.

The assembly instructions classification proposed may not obtain equivalent
instructions grouping and further evaluation and adjustment of such component
could enhance identification accuracy. Also, since the mapping proposed focuses
on Instruction Set Architecture (ISA), different mappings should be used accord-
ing to the architecture of the suspicious binary analyzed.

The algorithms employed for index induction and feature selection, as well
as the structural features considered, can also affect the accuracy of the models
created following the proposed methods. In any case, model tuning, according
to the dataset used, is recommended.

47

Chapter 5

Experimentation

In order to evaluate the proposed methods, we implemented a prototype following
the definitions provided in Chapter 4. A set of mutated malware samples were
submitted to the implemented prototype to evaluate its performance in terms of
the components’ execution times and classification accuracy. The next section
presents a description of the experiments applied and the results obtained from
those experiments.

5.1 Experimental setup
The experimental setup was comprised of all the components in the proposed
methods., Experimentation was divided into two main blocks, according to the or-
der the methods were executed, namely: feature vectors construction and dataset
indexing. Figure 5.1 presents an overview of the experimental setup employed in
this work.

Initially, a set of malware samples collected in the wild were submitted to two
code mutators to generate a set of mutated metamorphic instances. The obtained
metamorphic instances, as well as the malware samples collected in the wild, were
submitted to reverse engineering to obtain a set of ADDGs from each malware
instance. Afterwards, a process of feature vectors extraction was performed on
the obtained ADDGs.

The set of feature vectors was divided into two datasets, one for training and
one for testing. The training dataset was employed to fit classification models,
following the single classifier and One-vs-Rest approaches for multi-class classi-
fication. The testing dataset was used to evaluate the accuracy of the obtained
models.

Data preprocessing and malware identification was conducted in a virtual en-
vironment with 4 processing units of 2.1 Ghz each, 4GB of RAM, and 20GB

of swapping memory. Model training was executed using a PC with 62 pro-
cessing units with 2.1 Ghz clock-rate and 128GB of RAM. The prototype was
implemented in the version 3.5 of the Python programming language. The follow-
ing subsections provide further explanation about the steps of the experimental
setup.

Figure 5.1: Experimentation phases and steps.

5.1.1 Dataset construction

The dataset used in this work consisted of the feature vectors extracted from
ADDGs of malware instances found in the wild, as well as instances mutated
with code metamorphism techniques. Initially a set of seed malware instances
(i.e binaries samples used to generate metamorphic instances through mutations)
were obtained in Malshare[dot]com 1, a public database of malware. Afterwards,
ADDGs were extracted from seeds and mutated instances. Structural features
were extracted from the obtained ADDGs to conform to the set of feature vectors
employed for experimentation.

1Public repository of malware of the Malshare Project, Online: http://www.malshare.com

49

Mutated instances generation

To generate mutated instances we employed the code mutators Revert4 (R4)
and Code Pervertor (CP) created by the Russian hacker Zombie2, which can
be obtained at vxheaven[dot]org. The code permutation techniques included
in such tools are: a) Single and batch instructions substitution, b) Instruction
reordering, c) Trash-code insertion and d) Variable renaming. Some executions
for mutations were not completed due to errors that arose during the process.
However, we ensured that for each seed instance at least three mutated instances
for each mutator were included in the dataset. Table 5.1 presents the quantity of
malware instances grouped by mutators, as well as the quantity of seed instances
employed.

Table 5.1: Dataset distribution

Malware
samples

Avg. File Size /
Standard Devi-
ation

Graphs ex-
tracted

Avg.
Graphs per
file/Standard
Deviation

Seeds 291 216Kb / 258 5825 20/36
Code
perver-
tor

3574 365Kb / 395 13975 4/14

Revert4 665 371Kb/ 357 14720 22/30

In order to construct the experimental dataset of vectors for all the functions
in the binaries of the malware instances batch, graphs and their feature vectors
were extracted as a result of executing the implemented prototype. Table 5.1
includes the number of graphs that were extracted, and the average number of
graphs extracted by binary, as well as the standard deviation of that measure.

ADDGs construction and feature extraction

As previously stated, the proposal presented for malware identification started
with binary disassembling, CFG construction, and ADDG construction. Herein,
the initial two tasks were performed through Radare 3, a framework for binary
analysis that, among other steps, performs: a) entry point and symbol identifica-
tion through flags analysis, b) cross reference identification, c) function structures
identification, d) computed references identification through code emulation and
e) consecutive function analysis [116]. After, an implementation of the Algorithm

2See official website on: http://z0mbie.daemonlab.org/
3Radare2 Github Repository, Online: https://github.com/radare/radare2

50

2 for data flow analysis was applied to the assembly code obtained from reverse
engineering, resulting in an ADDG from each function in the binary.

It is of interest in this research to lift parameters and their values that evaluate
suitability of the proposed approach so they can be used as a practical detection
tool. To analyze how well the proposed methods performed when applied to
real life malware binaries, we measured execution times for: a) disassembling, b)
CFG construction and c) ADDG construction. For each file in the set of malware
instances from the wild, as well as those generated by means of mutations, the
initial steps of the method, until ADDG construction, were executed and for
each step we calculated the time of execution as the difference between ending
and starting timestamps (number of seconds since January 1st, 1970 in UTC),
as follows:

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 = 𝐸𝑛𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝− 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 (5.1)

Also, we analyzed the influence of metamorphism on reverse engineering by
comparing graph sizes and times of execution between seeds and mutated in-
stances. Since mutation introduces complexity in the structures extracted from
code, higher execution times and graph sizes are expected.

Since DDG labeling and feature vector construction were done while con-
structing the ADDG and such operations had complexity 𝑂(1), execution times
for those processes were not measured separately, but as part of ADDG construc-
tion.

5.1.2 Dataset indexing

Once we extracted the dataset of feature vectors, models of classification were
trained to be used in the new suspicious files analysis phase. As previously stated,
such step was performed following two approaches: a) single-model multi-class
classifiers and b) ensemble of binary classifiers following One-vs-Rest.

For each classifier from both approaches of multi-class classification, we cal-
culated the accuracy of identification as:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑦,𝑦′) =
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1∑︁
𝑖=0

1(𝑦′𝑖 = 𝑦𝑖) (5.2)

In equation 5.2, 𝑛 represents the quantity of graphs in the testing dataset
and 𝑦 refers to the md5 hash of the seed instance from which the instance of the
graph was generated.

Also, as part of the prototype implementation’s performance assessment, we
gathered the time for training as the sum of all the time taken to process each

51

feature vector. Such metric was computed using the equation 5.3, in which 𝑡 is
the quantity of graphs in the training dataset.

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 =

𝑡𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1∑︁
𝑖=0

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑖 (5.3)

Dataset splitting for training and testing

A preliminary experiment was performed to evaluate how models were able to
classify mutated instances trained only with information of the seeds. Such
approach is considered advantageous, since it is independent from mutated in-
stances’ data, which can be hard to lift and generalize given the high variability
and diversity of techniques that can be included in engines and virus generation
kits.

Since mutator patterns are not previously known, and most metamorphic
engines are expected not to be public, ideally, models should present higher
accuracy when trained with seed instances only. However, most techniques are
well known and can be implemented to generate mutated instances that can be
used for training.

Likewise, in a second experiment, models were trained with seeds plus 20% of
instances from each family. Herein, we were interested in observing the influence
on identification accuracy by including information about the patterns present in
mutation engines. We expected increased accuracy, as well as increased training
time and dataset size.

The training dataset’s feature spaces were reduced based on the features’
variance throughout each dataset. Features presenting variance below a given
threshold 𝑡 ∈ {0, 0.2, 0.4, 0.6, 0.8} were excluded. For example, when employing
𝑡 = 0, features that had the same value in all feature vectors of the dataset were
removed. Choosing higher values of t meant reducing tolerance to repetitions.
For each threshold of variance, a new reduced training dataset was obtained.

Figure 5.2 presents how the initial dataset was split to conform training and
testing batches. Blocks inside the training batch were further divided according
to the variance threshold employed for feature selection, however, is not shown
in the figure. After splitting the initial dataset and applying feature selection on
the datasets in the training batch, we obtained 15 datasets for training and 4
datasets for testing.

Classification models creation

To obtain models of classification, a set of machine learning algorithms can be
used. Herein, we selected: a) Adaboost [117], b) Decision Tree (CART) [118],

52

Figure 5.2: Initial dataset splitting for training and testing.

c) KNN [119] with 𝑘 ∈ {3, 20, 100}, d) Multilayer Perceptron [120], e) Naive
Bayes and f) Random Forest with 10, 100 and 1000 trees. Such selection was
based on the most common algorithms from previous works in the field. In order
to execute such algorithms, we employed its implementations from the Python
framework for machine learning Sklearn [121] [122].

For each dataset in the training batch and for each machine learning training
algorithm used, we created a new model of identification. Figure 5.3 presents the
dataset configurations used for model creation.

Figure 5.3: Training-testing dataset configurations for model creation

Such configurations can be described as: a) training with seeds only and
testing with Code Pervertor’s generated instances; b) training with seeds only
and testing with Revert4’s mutated instances; c) training with seeds plus 20%
of Code Pervertor’s generated instances and testing with the remaining 80%; d)
training with seeds plus 20% of Revert4’s generated instances and testing with

53

the remaining 80%. Since we employed 15 datasets for training and 10 machine
learning algorithms, afterwards, 150 single models of multi-class classification
were obtained.

Table 5.2 provides the configuration parameters used to execute the mentioned
learning algorithms. Such configurations were provided to aid other researchers
in implementing the proposed methods. However, further studies on such algo-
rithms are necessary to understand the descriptions in the table.

Table 5.2: Configuration of training algorithms used for experimentation

Algorithm Parameter name Parameter De-
scription

Value

AdaBoost Base estimator The base estima-
tor from which the
boosted ensemble is
built

Decision trees

Quantity of estima-
tors

The maximum
number of esti-
mators at which
boosting is termi-
nated.

50

Learning rate Learning rate
shrinks the con-
tribution of each
classifier by the
value this param-
eter. There is a
trade-off between
the learning rate
and quantity of
estimators.

1

Decision
Tree
(CART)

Criterion The function to
measure the quality
of a split

Information gain

Minimum samples
split

The minimum num-
ber of samples re-
quired to split an
internal node

2

54

Minimum samples
leaf

The minimum num-
ber of samples re-
quired to be at a
leaf node

1

KNN Number of neigh-
bors

Number of neigh-
bors to use for data-
points grouping

3, 20, 100

Grouping algorithm Algorithm used to
compute the near-
est neighbors

Ball Tree

Multi
Layer
Perceptron

Hidden Layers Quantity of full-
connected hidden
layers

1

Size of layers Number of neurons
on each hidden
layer

100

Activation function Activation function
for the hidden layer

Rectified Linear
Unit

Iterations Quantity of iter-
ations performed
by the back prop-
agation fitting
algorithm

100

Naive
Bayes

Algorithm Naive Bayes ap-
proach

Multinomial Naive
Bayes

Random
Forests

Quantity of estima-
tors

Number of trees in
the forest

10,100, 100

Criterion The function to
measure the quality
of a split

Gini

Minimum samples
split

The minimum num-
ber of samples re-
quired to split an
internal node

2

Minimum samples
leaf

The minimum num-
ber of samples re-
quired to be at a
leaf node

1

55

One-vs-Rest classifiers

For each configuration of training presented in the previous section, we also cre-
ated an ensemble of multiple binary classifiers following the One-vs-Rest strategy
(OvR). For each ensemble, all the classifiers were created with a single training
algorithm also called estimator. The same algorithms presented in the previous
subsection were employed as estimators. To execute such algorithms, we em-
ployed the algorithms’ implementations from the Python framework for machine
learning Sklearn [121] [122].

The output of each classifier in the OvR ensembles were characterized into one
of four possible outcomes: a) a true positive, input expresses that the instance
belongs to a class and it truly does; b) a true negative, the outcome expresses
that the instance does not belong to a class and it truly does not; c) a false
negative, instance is classified as belonging to a class and does not; and e) a false
negative, input is classified as not belonging to the class and it actually does.

The trained OvR ensembles were evaluated to determine their performance
regarding training execution time, as well as prediction accuracy. It is important
to know how well the classifiers inside each ensemble discriminated instances into
the classes such classifiers were trained for. To address that, we computed the
metrics Receiver Operating Characteristics (ROC) and Area Under the Curve
(AUC) for each ensemble.

Receiver Operating Characteristics curve (ROC) consists of a two dimensional
graph that represents the true positive rate (TPR), also known as sensitivity, on
the 𝑦 axis, against the false positive rate (FPR), also stated as 1−𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦, on
the 𝑥 axis. Such metrics are extracted from the model under different probability
thresholds, allowing classification quality assessment over all possible operating
points. ROC analysis is directly and naturally related to cost/benefit analysis of
diagnostic decision making [123].

The area under the ROC curve (AUC) measures the capacity of a classifier
to discriminate the classes it was trained for, under different thresholds of prob-
ability. As this score approaches one, the better the classifier discriminated each
class or the classifier presented higher accuracy [123].

To plot the ROC curves for each OvR ensemble, all probabilities in the super-
set 𝑃 = 𝑝𝑖,𝑗,𝑥∀𝑖 ∈ {1...𝐾}, 𝑗 ∈ {1...𝐾}, 𝑥 ∈ {1..𝑁} of each classifier 𝑐 ∈ {1...𝐾}
in the ensemble e are considered, with 𝐾 as the quantity of classes and 𝑁 the
quantity of test cases in the testing dataset. For each classifier, the 𝑇𝑃𝑅𝑖,𝑡 and
𝐹𝑃𝑅𝑖,𝑡 for each value of 𝑡𝑖 𝑖 ∈ 𝑢𝑛𝑖𝑞𝑢𝑒(𝑝𝑖,𝑗,𝑥) is computed as:

56

𝑇𝑃𝑅𝑖,𝑡 =

∑︀𝐾
𝑗=1

∑︀𝑁
𝑥=1 𝑇𝑃𝑗,𝑥∑︀𝐾

𝑗=1

∑︀𝑁
𝑥=1 𝑇𝑃𝑗,𝑥 +

∑︀𝐾
𝑗=1

∑︀𝑁
𝑥=1 𝐹𝑁𝑗,𝑥

(5.4)

𝐹𝑃𝑅𝑖,𝑡 =

∑︀𝐾
𝑗=1

∑︀𝑁
𝑥=1 𝐹𝑃𝑗,𝑥∑︀𝐾

𝑗=1

∑︀𝑁
𝑥=1 𝐹𝑃𝑗,𝑥 +

∑︀𝐾
𝑗=1

∑︀𝑁
𝑥=1 𝑇𝑁𝑗,𝑥

(5.5)

Such values of 𝑡𝑖 are used as a threshold to decide if the outputted 𝑝𝑖,𝑗,𝑥 is
considered for each 𝑔𝑖,𝑗,𝑥 in the ground truth of the testing dataset, as follows:

a) a TP if 𝑝𝑖,𝑗,𝑥 > 𝑡𝑖 and the expected output 𝑔𝑖,𝑗,𝑥 = 1;
b) a FP if 𝑝𝑖,𝑗,𝑥 > 𝑡𝑖 and the expected output 𝑔𝑖,𝑗,𝑥 = 0 ;
c) a FN if 𝑝𝑖,𝑗,𝑥 < 𝑡𝑖 and the expected output 𝑔𝑖,𝑗,𝑥 = 1 and
d) a TN if 𝑝𝑖,𝑗,𝑥 < 𝑡𝑖 and the expected output 𝑔𝑖,𝑗,𝑥 = 0.
Al the computed values of 𝐹𝑃𝑅𝑖,𝑡 and 𝑇𝑃𝑅𝑖,𝑡 are averaged to obtain the final

set of points 𝑜𝑡 = (𝑇𝑃𝑅𝑡,𝐹𝑃𝑅𝑡)∀𝑡 ∈ 𝑢𝑛𝑖𝑞𝑢𝑒(𝑝𝑖,𝑗,𝑥) to be plotted in the ROC
curve. This approach is known as micro-average ROC plotting [123]. Intuitively
speaking, it assesses how well classifiers classify their classes and at what cost
(false positives).

Comparison with tier-one commercial antiviruses

Even though metamorphic malware detection is still an issue and threatens in-
formation security, it is not a new problem, with several investigations focused
on solutions. More advanced techniques in the scientific community are expected
to be included in commercial anti-malware tools.

Herein, we studied the capacity of current tier-one commercial malware de-
tections tools to detect instances with metamorphism. Also, we studied how
the classification models obtained in this work compare to antiviruses accuracy
scores. For that, the same binaries employed to train and test the models gener-
ated in this work were submitted to a set of 56 anti-malware tools, among which,
were: McAfee 4, Avira 5, Avast6 and Kavspersky 7.

To perform such operation, we used the platform VirusTotal 8, which allowed
4McAfee Antivirus, Online: https://www.mcafee.com/us/index.html
5Avira Anivirus, Online: https://www.avira.com
6Avast Antivirus, Online: https://www.avast.com
7Kaspersky Labs, Online: https://www.kaspersky.com
8VirusTotal-Free online virus, malware and URL scanner. Online:

https://www.virustotal.com

57

us to automatically submit several binary instances to the analysis mechanism of
67 well known anti-malware suites. Seed instances were sent before mutation, to
ensure tools were provided with each family pattern before metamorphic instances
were submitted, so the conditions were similar to the models trained and tested
using the methods proposed in this research. Figure 5.4 presents the architecture
executed to lift virus detection rate using commercial malware identification tools.

Figure 5.4: Architecture for commercial tools virus detection rate lifting.

5.2 Experimental results
The following subsections present the results of the experiment used to assess
performance indicators of the proposed method.

5.2.1 Dataset construction results

Figure 5.5 presents the average times of disassembling by file size, separated
according to the mutator employed. On top of each bar it is placed its height as
well as the standard deviation with a thin line. Outliers detection is performed
employing the clusterization-based algorithm DBSCAN [124] implemented in the
python library Scikit Learn [121]. The quantity of outliers for each group of
files (according the mutator employed) did not exceed 0.5 % of the group. File
sizes are presented in ranges, selected so the time value on each range presents a
coefficient of variation below 0.1, this value is calculated as:

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝜎)

𝑀𝑒𝑎𝑛(𝜇)
(5.6)

For most of the file ranges in Figure 5.5, disassembling mutated instances took
longer than disassembling seeds. This happened because such modifications,
applied by Code Pervertor and Revert4, were also intended to dwarf reverse
engineering by making the virus more complex. Such complexity was attained
by: a) trash code insertion; b) instructions and data offset randomization and c)
spaghetti code, which hindered cross references identification. For most of files
the disassembling time was lower than 1.5 seconds.

58

Figure 5.5: Average disassembly time by file size ranges.

Table 5.3: ADDG and CFG construction times for Seeds and Code Perver-
tor mutated instances.

CFG Size range CFG construction time ADDG construction time

Seeds CP
Generated Seeds CP

Generated
<15 0.15 0.12 0.17 0.13

15 - 37 0.17 0.14 0.2 0.21
37 - 52 0.25 0.21 0.33 0.38
52 - 65 0.37 0.32 0.36 0.4

241 - 253 0.34 0.36 0.87 0.82
253 - 257 0.42 0.41 0.94 0.97
337 - 342 1.25 1.28 1.55 1.65
342 - 350 1.53 1.61 2.52 2.72

Table 5.3 presents times for ADDG and CFG construction vs size of CFG, for
Seeds and Code Pervertor generated instances. The ranges presented in the first
column of the table represent CFG sizes and were selected so the time value on
each range presents a coefficient of variation below 0.1 employing equation 5.6.

Times for ADDG and CFG construction increased with higher CFG sizes. As
seen in Algorithm 2 for data flow analysis, DDG construction time depends on
the size of the CFG that is inputed to such algorithm, which justifies the steady
increase in ADDG construction time alongside the increase of CFG size.

Since ADDG and CFG construction times are directly related to the size of
CFG (see Algorithm 2) and the transformations applied by CP does not affect
control flow, and by consequence CFG neither, graph’s construction time for
Seeds and Code Pervertor (CP) generated instances remained similar. There-

59

fore, the same CFG size ranges were seen for CFGs in Seeds and CP generated
instances.

Table 5.4: Graphs’ Average Construction Time vs CFG size for Reverter4
generated files.

CFG Size range CFG construction
time

ADDG
construction time

<182 0.7 0.17
182 - 307 2.14 3.22
307 - 360 1.33 1.4
360 - 381 1.22 0.68
381 - 620 1.16 0.41
620 - 732 2.44 0.73
732 - 915 1.59 0.65
915 - 1090 1.72 1.71
1090 - 1113 1.87 1.52
1113 - 1220 1.97 1.67
1220 - 1268 1.82 1.21

Table 5.4 presents times for ADDG and CFG construction vs size of CFG,
for Revert4 generated instances. The ranges presented in the first column of
the table represent CFG sizes and were selected so the time value of each range
presents a coefficient of variation below 0.1, using equation 5.6.

ADDGs and CFGs, extracted from Revert4 generated instances, presented
more nodes than Seeds and CP generated instances. This happened because
R4 applied techniques like junk code insertion, code integration, and spaghetti
code that affected control flow by inserting new basic blocks, as well as CFG and
DDG. This also affected processing time, since more basic blocks were processed
by the disassembler to construct a CFG and by the data flow analysis algorithm
for ADDG construction.

Such insertions of basic blocks in CFGs are applied by R4 in a random fashion,
affecting the relationship between the size of the CFG and the data dependencies
observed for Seeds and CP generated instances (Table 5.3). Since part of the
inserted code did not fit in the original code’s data dependency chains, newly
inserted basic blocks were not processed by the algorithm for ADDG construction.

5.2.2 Dataset indexing results

This section presents the results for the process of dataset indexing. Correspond-
ing our experimental setup , this section presents results and analysis about the:

60

a) effect of feature selection on features space size; b) times of training and test-
ing for single-model multi-class classifiers and One Vs Rest multi-class classifiers;
and c) accuracy score of models following both proposed approaches.

Feature space reduction

Figure 5.6: Feature space sizes for different datasets vs threshold employed for feature
space reduction.

Figure 5.6 presents the impact of feature selection on feature space size, con-
sidering: a) only seeds; b) seeds plus 20% of each family of Code Pervertor
generated instances; and c) seeds plus 20% of each family of Revert4 generated
instances. Each group of columns represents a different threshold t of variance
employed.

Before we performed feature selection, all datasets presented 10,080 features,
however, as seen in Figure 5.6 this number dropped by more than nine thousands
when reduction with the initial variance threshold (value of 0) was applied.

Feature vectors initially presents all possible feature labels, accounting 10080,
made of the combinations of the tags employed to classify each part of the instruc-
tion on each DDG node and a prefix with three possible values that represents
the cardinality of the node. Such process outputs several feature labels that end
up being not related with any node in the DDG. Most instructions that are not
related with read write operations are eliminated in the process of data flow anal-
ysis and does not make it to the ADDG, so does not its related labels. Since such
labels are not present in any ADDG its value on the feature vector is always zero
for all instances in the dataset, also the variance is zero. Is for that reason that
the initial reduction prunes more than nine thousands unused features.

61

For thresholds of variance above 0.2 in all datasets, feature space sizes reduc-
tion eliminated less than ten features from one threshold to the other. For seeds
plus 20% of Revert4 generated instances, no features were pruned for values of t
above 0.4. Such low variation indicates that it might not be necessary to apply
reductions to a value of t above 0.2 if the objective is to enhance performance and
accuracy of prediction models. A direct relation exists between features space
size with execution time of training algorithms, model’s prediction accuracy, and
model’s prediction execution time, so a variation in such metrics is expected to
be in the same proportion.

More features were pruned from the dataset containing only seed instances
due to the extra code or trash code inserted by mutators. Code Pervertor inserts
randomly selected non-functioning sentences in the spaces between instructions.
Revert4 inserts randomly selected groups of instructions with no restriction of
space or functioning, without affecting the original code’s functionalities. Such
mutations resulted in codes with a higher diversity of instructions for mutated
instances than for seeds, which lead to less features with zero in all instances
for the datasets of mutations than for seeds, and thus, more features pruned for
seeds. Since Revert4 extensively used trash code insertions, less features were
pruned from its dataset compared to the others.

Classification models were trained for each of the datasets obtained for fea-
ture selection from all thresholds. In the following subsections we present the
effect of feature reduction on training and testing execution time and accuracy
of identification.

Single model multi-class classifiers

This section presents the results of experiments using single-model multi-class
classifiers. Training and prediction times, as well as the accuracy presented by
the obtained classifiers, are shown and analyzed.

Figure 5.7 plots the accuracy score of each classifier trained, using only infor-
mation of seed instances and tested in Code Pervertor generated instances. The
horizontal axis represents the values of variance threshold t employed for feature
space reduction. All scores presented in the figure are below 0.4 and above 0.2,
accounting for an undesired result, since more than half of instances went unde-
tected. In this case, classifiers did not learn the graphs’ structural patterns well
enough.

Figure 5.8 presents accuracy of models trained using seeds and Code Pervertor
mutated instances. Including mutated instances for training brought enhance-
ment on classifier’s accuracy, reaching the highest value of 87% for Random Forest
with 1000 trees. In this case, models are not only provided with structural fea-
tures of the graphs in each family of malwares, but with information regarding

62

Figure 5.7: Accuracy score for Code Pervertor generated instances using only seeds for
training.

Figure 5.8: Accuracy score for Code Pervertor’s generated instances using seeds plus
20% of families for training.

the changes performed by the mutator employed to generate instances in the
family.

Code Pervertor applies mutations on the instruction level only, replacing one
instruction with a maximum of two others with equivalent functioning. During
the process of ADDG construction, the program instructions are transformed into
a label with the aim of reducing the effects of single instruction substitution since
the label substituting the instruction is expected to be the same for equivalent

63

Figure 5.9: Accuracy score of multi-class models trained with Seeds only and tested with
Revert4 generated instances graphs’ feature vectors.

Figure 5.10: Accuracy score of multi-class models trained with Seeds plus 20% of Revert4
instances and tested with 80% of Revert4.

instructions. However, when Code Pervertor transforms one instruction into
two, such labeling is ineffectual. This justifies the accuracy increment when
considering mutated instances for training, since such traits are provided to the
model.

The impact feature space reduction had on accuracy was almost insignificant,
i.e accuracy remained mostly invariant for all thresholds in most models, with
and without mutated instances for training. However, accuracy scores varied

64

most with variance threshold t when only seeds were used for training. Likewise,
more variation was perceived on feature space reduction for the dataset of seeds
than for the other datasets (Figure 5.6).

Each sample in the datasets represent an ADDG of a single function in a
malware instance (average 20 functions per malware, see Table 5.1). No struc-
tural relation between binaries existed in the seed dataset, and neither among
functions belonging to the same binary. In that case, the underlying distribution
generating the data can be thought as stochastic and the data samples not have
identical distribution. In the case of mutated malware samples, can be estab-
lished a relationship between instances based on the seed instance from which
the mutation was obtained, as well as the mutator employed, with groups of sam-
ples that follow the same distribution as the other instances inside the group but
differ from distributions in other groups. Such aggregations can contain graphs
of the same function from different mutated samples with a common seed.

Due to the stochastic distribution of the datasets used, in which, samples
are not continually distributed and do not have an identical distribution, non-
parametric models (i.e models that makes no assumption on the population dis-
tribution or sample size) like KNN, Random Forest and Decision Trees presented
the highest scores of accuracy and parametric models like Adaboost, Naive Bayes
and MLP presented the lowest [125]. When considering mutated instances for
training, accuracy of parametric models enhanced since there were more samples
with identical distribution (i.e similar graphs of the same function in mutated
instances with a common seed). For Adaboost, any enhancement was perceived
when including mutated samples in the training dataset.

Figure 5.11: Training time with seeds plus 20% of each family of Code Pervertor gener-
ated instances.

65

Figure 5.12: Training time with seeds plus 20% of each family of Revert4 generated
instances.

Figure 5.9 presents the accuracy of models trained only with seeds and tested
with Revert4 generated instances. Figure 5.10 presents scores for when R4 gener-
ated instances were considered for training along with seeds. As with the previ-
ous dataset configuration, which considered Code Pervertor generated instances,
prediction accuracy was enhanced by including mutated instances for training.
However, for both training configurations (i.e. only considering seeds and con-
sidering seeds plus Revert4 mutated instances) the obtained models presented
an accuracy no higher than 20%, which accounted for an undesired result since
more than three quarters of samples passed undetected.

The models obtained using the single-model multiclass approach presented
more difficulty identifying instances mutated with Revert4. This is mostly due
to the high level of metamorphism introduced by this mutator that provided more
modifications to graphs than Code Pervertor. Accuracy was also lower for models
trained with R4 mutated instances than for models trained with Code Perver-
tor generated instances. As with the models created employing Code Pervertor
generated instances, non-parametric models presented higher accuracy scores.
Models were not capable of catching the underlying distribution of graphs for
the same function in different samples of the same family, when Revert4 mutated
instances were included for training.

Even though considering Revert4 and Code Pervertor mutated instances for
training enhanced accuracy, this cannot be seen as a positive result. Since we
did not assess variations among mutated instances of the same family and we are
not sure if mutators modified all code’s functions (which graphs are compared
for detection), it is possible the occurrence of graphs in the dataset that are

66

Figure 5.13: Times training with graphs extracted from seeds instances only.

completely equal. Therefore, the enhanced accuracy with the introduction of
mutated instances for training and testing could be a result of biased classifiers.
Further studies are needed to assess such issue.

Figure 5.13 presents training times using only graphs extracted from seed in-
stances. Even though models created employing Decision Trees, Random Forests
with 10 and 100 trees, and Random Forests with 1,000 trees (RM1000) ranked
among the most accurate in tests with Revert4 and Code Pervertor datasets,
RM1000 took 3 more seconds for training than the others. This also happened
when training with 20% of each families of Code Pervertor and Revert4 generated
instances, as seen in Figures 5.8, 5.10, 5.11 and 5.12.

No pattern suggests that reducing features space size also reduced training
time. For most algorithms, there was no steady linear decrease nor increase of
training time in consonance with reduction of feature space. However, in Figure
5.6 feature spaces decreased linearly with higher thresholds.

For training configurations that considered mutated instances, a rather erratic
behavior was observed in the variation of training time for MLP, along with
the feature space reduction variance threshold used, in which training time did
not increase or decrease with decreased feature space size. This was due to
the functioning of MLP, in which the delay of training converging to a solution
depends on the initial set of weights assigned to each neuron of the net.

When considering all times and accuracy scores for each model and machine
learning algorithm, the KNN with 𝐾 = 3 stands out as a good option for tree-
based algorithms. In any case, time exceeded one second and accuracy scores
were among the highest. However, Random Forests with 10 trees presented the

67

best trade-off since they did not take longer than a second to train all dataset
configurations, and the prediction accuracy was as good or better than all the
other algorithms.

One-Vs-Rest Classifiers

Figure 5.14: ROC Curves for OVR based
models employing only seeds for training,
using a threshold of feature space reduc-
tion of 0 and Code Pervertor instances
for testing.

Figure 5.15: ROC Curves for OVR based
models employing seeds and 20% of Code
Pervertor for training , using a threshold
of feature space reduction of 0 and the
remaining 80% for testing.

Figures 5.14 and 5.15 presents the ROC curves for models employing only
seeds and those trained with seeds plus 20% of each family of Code Pervertor
generated instances respectively. As with the multi-class approach, such models
trained employing mutated instances presented better performance (i.e higher
accuracy and lower training time). Random Forest with 1000 and 100 trees
presented AUC score of 1m which means that all submitted instances to the
detection mechanism were correctly identified. Most classifiers presented AUC
scores above 0.9 even for models trained only with seed instances.

Compared to outcomes in Figures 5.16 and 5.17, in which was employed
threshold of variance of 0.8 for features’ space reduction, it is not evident how
reducing feature space affected AUC score, since for some models, there is an
improvement and other presented worst results, however differences does not ex-
ceed 0.5. On the other hand as shown in Figure 5.24, in which are presented
times of training for all models, employing only seeds, exists a tendency to time
decrease along with the reduction of the quantity of features employed for train-
ing. It indicates that in this case reducing the feature space was favorable since
reduced training time without reducing accuracy. ROC curves for other values of

68

Figure 5.16: ROC Curves for OVR based
models employing only seeds for training,
using threshold of feature space reduc-
tion of 0.8 and Code Pervertor for test-
ing.

Figure 5.17: ROC Curves for OVR based
models employing seeds and 20% of Code
Pervertor for training, using threshold of
feature space reduction of 0.8 and the re-
maining 80% for testing.

variance threshold employed for feature space reduction are not presented since
no variation on the AUC score was experienced.

Figure 5.18: ROC Curves for OVR based
models employing only seeds for training,
using threshold of feature space reduc-
tion 0 and Rever4 generated instances for
testing.

Figure 5.19: ROC Curves for OVR based
models employing seeds and 20% of Re-
vert4 generated instances for training,
using threshold of feature space reduc-
tion 0 and remaining 80% for testing.

69

Figure 5.20: Accuracy of models trained with seeds only and tested with Code Pervertor
generated instances.

Figure 5.21: Accuracy of models trained with seeds plus 20% of families of Code Pervertor
generated instances and tested with the remaining 80%.

Figures 5.18 and 5.19 present the ROC curves and AUC scores for models
trained following the One vs Rest approach, using only seeds (Figure 5.18) and
seeds plus 20% of each family of Revert4 generated instances. Models trained
following the OvR approach presented better sample identification score than
models trained with the single-model classifiers approach. For most points on
the ROC curve, the true positive rate was higher than the false positive rate,
which means that when considering the outcomes’ average for all graphs in a

70

binary to predict its seed instance, chances are higher that classification is a true
positive. However, just like models trained following the single-model classifier
approach, classifiers in the OvR approach also presented more difficulty to detect
Revert4 generated instances than for Code Pervertor generated instances.

Figure 5.22: Accuracy of models trained with seeds only and tested with Revert4 gener-
ated instances.

Figure 5.23: Accuracy of models trained with seeds plus 20% of families of Revert4
generated instances and tested with the remaining 80%.

Figures 5.20, 5.21, 5.22 and 5.23 present the accuracy scores of models trained
following the OvR approach, for all the dataset’s training and testing configu-
rations. As with the single-model classifier approach, non-parametric training

71

algorithms also presented the highest accuracy scores. Even though the ground
truth was modified into binarized vectors to comply with the OvR requirements,
the independent variables of the training dataset was not modified and did not
present an identical distribution, which explains why the non-parametric models
presented better accuracy than parametric models.

Adaboost takes the place of KNN with 𝑘 = 3 among the first in the single
model multi-class approach. These models created with Adaboost were collocated
among the first presenting similar results to models created with non-parametric
algorithms. Similarly, when considering time of training, Adaboost is a better
option since it presented a lower execution time than non-parametric algorithms.

Figure 5.24: Training times with graphs extracted from seeds instances only.

Figure 5.24 presents training times using seeds only, for all the values of
threshold employed for features’ space reduction. Even though models trained
with Random Forests of 1000 trees presented the highest accuracy scores , training
time was also the highest, which is a disadvantage. Models created following the
OvR approach presented higher accuracy for all models compared to models
trained through the single classifier multi-class approach. Furthermore, times
were higher, however, for all models except Random Forests with 1000 trees the
time difference did not exceed 12 seconds, which can still be considered practical.
For Random Forests with 1000 trees, training took 97 seconds longer when using
only seeds in the OvR approach, as compared to the training time for the single
classifier multi-class approach with the same algorithm.

In general, Adaboost presented lower training times than the algorithms used
to create models with similar accuracy, for all configurations in the One vs Rest
approach. On the other hand, Multilayer Perceptron presented some of the high-

72

est training times and the accuracy of its respective models were among the
lowest.

Models following the OvR approach presented higher accuracy scores than
models of the single classifier multi-class approach, however, training times were
higher. Even though accuracy scores were higher with the OvR approach, the
main drawback compared to multi-class was training time. While the algorithms
took less than 15 seconds to train with the multi-class approach, primarily oc-
curring between 0 and 5 seconds, the OvR approach experienced times above 500
an to 600 seconds. Such behavior is expected, since the OvR one classifier had
to be trained for each class, and binarization had to be performed.

5.2.3 Comparison with tier-one commercial antiviruses

The analysis in this subsection shows the capacity of current tier-one commer-
cial antivirus’ for metamorphic malware identification based on their detection
rate score. Such scores are compared to the accuracy scores presented by mod-
els from the proposed methodology, solely considering models trained with seed
instances only. This analysis provides a comparison between our proposed meth-
ods and current state-of-art detection approaches, as such tools are created and
maintained by leading representatives of malware detection worldwide.

Figure 5.25: Top 15 ranked models and antivirus for instances mutated with Revert4.

Figures 5.25 and 5.26 present the detection rate scores of the top 15 ranked
between models created in this work and antivirus, for Revert4 and Code Per-
vertor’s generated instances respectively. Most detectors presented better results

73

detecting the Code Pervertor mutated instances. Revert4 applied more com-
plex mutation techniques and provoked a higher deviation in generated mutated
instances from the structural patterns of its seeds when compared to Code Per-
vertor. Instances generated with Revert4 hindered detection so that most an-
tiviruses’ accuracy were below 80%, even though seeds were already known by
all tools when this experiment was executed. The best accuracy obtained for
Revert4 generated mutations was 85%, which means that 99 instances passed
undetected.

Figure 5.26: Top 15 ranked models and antivirus for instances mutated with Code Per-
vertor.

Most antiviruses presented a score above 90% detecting instances generated
with Code Pervertor. The highest score among the antivirus was from Invincea,
which scored 94%. For the other antiviruses, their scores decreased by 1% or
more along with their ranking position. Two-hundred and fourteen instances
went undetected by the highest scoring antivirus.

For Code Pervertor generated instances detection, 6 of the models trained
herein ranked among the top 15. Random Forests with 1000 and 100 trees ranked
first with 97%, which was 3% higher than the best ranked antivirus. Accuracy
score enhanced 0.003% for Random Forest based models by adding trees to the
model. Training times were 89% higher for models created with 1000 trees,
however, accuracy remained similar. That said, if Random Forest with 1000
trees is not considered in the comparison, Random Forest based models would
still rank first, 3% higher than the highest ranked antivirus. Therefore, Random
Forests with 100 trees can be considered a better option.

74

Even though 3 of the generated models ranked among the top 15 most accu-
rate for detection of Revert4 generated instances, none of the detection models
trained in this work overcame 73% detecting Revert4 instances. On the other
hand, the models trained in this research presented higher scores than the best
ranked antiviruses for detecting Code Pervertor instances. The difference in ac-
curacy among mutators presented by models was mostly due to the complexity
of structural patterns added by Revert4 compared to Code Pervertor, which only
applies simple and multiple instructions substitution. Such difference can also be
seen in antivirus’ detection accuracy. The quantity of instances that remained
undetected by the tier-one antivirus tools showed that code metamorphism for
malware detection hindering is still an unsolved issue.

75

Chapter 6

Final thoughts and future works

Herein, we proposed a method for metamorphic malware identification based
on indexing annotated data dependency graph databases extracted from binary
codes. A prototype implementation of the proposed methods was tested against
mutated malware samples and presented detection accuracy within the top 15
when compared to 56 current commercial anti-malware tools. Furthermore, the
execution times presented by each of the steps in these methods can be considered
practical.

Malware instances from the wild were used to test the efficiency of our pro-
posed methods. Mostly, found instances’ size did not exceed 4 megabytes, which
was expected to occur since malware creators likely prefer smaller sized samples
that are easier to distribute. Tools used for reverse engineering presented exe-
cution times of less than5 seconds for processing most instances. Construction
time of graphs (i.e CFGs and ADDGs) remained below 2 seconds for most sam-
ples. Subjectively, such times can be considered practical and demonstrate the
feasibility of using reverse engineering for malware analysis.

We also proposed a scheme for executable binary representation based on
annotated data dependency graphs, which has not previously been seen. Using
ADDGs brings binary executable analysis to malware identification information
regarding the semantics associated with instructions in the assembly code of
binaries.

Applying feature space reduction techniques eliminated more than 95% of
the initial set of features, reduced dataset size, lowered execution time of model’s
training, and enhanced accuracy of models. These techniques also demonstrated
that most labels in the set of possibilities are not employed. In general, labels
representing instructions that did not perform operations of read and write re-
ceived values of zero for all features vectors, which was expected since ADDGs
are intended to represent data flow patterns only.

Models that presented the highest accuracy of detection followed the multiple

classifier One vs Rest approach for multi-class classification, employing Random
Forests. Likewise, Adaboost and KNN ranked among the most accurate and pre-
sented low training execution times. Models created with the Random Forests
with 100 trees algorithm presented similar accuracy as models created with Ran-
dom Forest with 1000 trees. Furthermore, training times were about 90% lower,
which makes this algorithm the best configuration of the employed models given
the favorable trade-off between training time and accuracy score.

Models’ training was executed in an environment with high computing ca-
pacity given its 128 GB of RAM and 61 processing units. Such step does not
need to be executed in the same environment where detection is to be applied.
Malware identification can be performed in a wide variety of equipments, with
different power capacities, from IoT devices to super-computers. After a model is
trained (preferably in an environment with enough resources) it can be serialized
and distributed for detection, like current endpoint malware scanners in which
signature bases are constructed and later distributed to endpoint systems to be
employed in the moment of detection.

Training times for index induction significantly increased with the addition
of instances to the dataset. Datasets in the wild present billions of malware
instances, which is much higher than the datasets used in this work. Currently,
exponential growth of data is not limited to information security and is seen
in many other areas. How much more time is needed to train classification
models with bigger datasets depends on the time complexity of the algorithm
used and the processing capabilities of the procedures executed. In order to
address performance enhancement, future research should focus on strategies
based on parallelization, on-line training, and knowledge transfer.

Even though metamorphism is not a recent issue, with several studies ad-
dressing its detection, current commercial anti-malware suites have difficulties
detecting mutated instances, as shown in our results . The detection of such
tools decreases as complexity in mutations increase, and even with simple mod-
ifications, in less than 10% of a program, its maliciousness can be hidden from
those tools. Such decrease in accuracy also occurred in the detection models
obtained in this work.

Accuracy scores obtained in this work were competitive with current com-
mercial anti-malware suites, however, several instances were misclassified. In
order to enhance detection accuracy, future studies should address: a) effects of
metamorphism on ADDGs; b) labeling strategies using more accurate opcode in-
struction classifications to enhance normalization; c) comparison of feature space
reduction methods; d) comparison of models created with other machine learning
algorithms not presented herein.

77

Bibliography

[1] U. Sivarajah, M. M. Kamal, Z. Irani, and V. Weerakkody, “Critical anal-
ysis of Big Data challenges and analytical methods,” Journal of Business
Research, vol. 70, pp. 263–286, 2017.

[2] F. Xia, L. T. Yang, L. Wang, and A. Vinel, “Internet of things,” Interna-
tional Journal of Communication Systems, vol. 25, no. 9, p. 1101, 2012.

[3] L. Piwek, D. A. Ellis, S. Andrews, and A. Joinson, “The rise of consumer
health wearables: promises and barriers,” Journal PLoS Medicine, vol. 13,
no. 2, p. e1001953, 2016.

[4] P. Wood, B. Nahorney, K. Chandrasekar, S. Wallace, and K. Haley, “ISTR
April 2016,” tech. rep., 2016.

[5] K. Wood, Paul and Nahorney, Benjamin and Chandrasekar, Kavitha and
Wallace, Scott and Haley, “2015 Internet Security Threat Report,” Tech.
Rep. April, 2015.

[6] ENISA, “Enisa threat landscape report 2017, top 15 top cyber-threats and
trends,” tech. rep., European Union Agency For Network and Information
Security, 2018.

[7] “2017 Avira Threat Landscape,” tech. rep., 2017. Accessed: 2017-12-03.

[8] N. Minihane, F. Moreno, E. Peterson, and R. Samani, “McAfee Labs Threat
Report 2017,” Tech. Rep. December, 2017.

[9] E. Lange-Ionatamishvili, S. Svetoka, and K. Geers, “Strategic communica-
tions and social media in the russia ukraine conflict,” Cyber War in Per-
spective: Russian Aggression against Ukraine, Tallinn: NATO CCD COE
Publications, 2015.

[10] M. C. Libicki, D. Senty, and J. Pollak, Hackers Wanted: An Examination
of the Cybersecurity Labor Market. RAND Corporation, 2014.

[11] Cisco, “Cisco 2015 Annual Security Report,” tech. rep., 2015.

[12] B. Kumar and S. Yadav, “Storageless credentials and secure login,” in Pro-
ceedings of the Second International Conference on Information and Com-
munication Technology for Competitive Strategies, p. 55, ACM, 2016.

[13] B. Kitts, J. Y. Zhang, G. Wu, W. Brandi, J. Beasley, K. Morrill, J. Et-
tedgui, S. Siddhartha, H. Yuan, F. Gao, et al., “Click fraud detection:
adversarial pattern recognition over 5 years at microsoft,” in Real World
Data Mining Applications, pp. 181–201, Springer, 2015.

[14] C. Cao and J. Caverlee, “Detecting spam urls in social media via behavioral
analysis,” in European Conference on Information Retrieval, pp. 703–714,
Springer, 2015.

[15] M. Carminati, R. Caron, F. Maggi, I. Epifani, and S. Zanero, “Banksealer:
A decision support system for online banking fraud analysis and investiga-
tion,” Computers & Security, vol. 53, pp. 175–186, 2015.

[16] N. Hoque, D. K. Bhattacharyya, and J. K. Kalita, “Botnet in ddos attacks:
trends and challenges,” IEEE Communications Surveys & Tutorials, vol. 17,
no. 4, pp. 2242–2270, 2015.

[17] J. Aycock, Computer viruses and malware, vol. 22. Springer Science &
Business Media, 2006.

[18] Ernst and Young (EY), “Cybersecurity regained: preparing to face cyber
attacks,” tech. rep., 2017.

[19] O. Sukwong, H. Kim, and J. Hoe, “Commercial antivirus software effective-
ness: an empirical study,” Computer, vol. 44, no. 3, pp. 63–70, 2011.

[20] K. Griffin, S. Schneider, X. Hu, and T.-C. Chiueh, Recent Advances in
Intrusion Detection, vol. 5758 of Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer Berlin Heidelberg, 10 2009.

[21] A. Yokoyama, K. Ishii, R. Tanabe, Y. Papa, K. Yoshioka, T. Matsumoto,
T. Kasama, D. Inoue, M. Brengel, M. Backes, et al., “Sandprint: Finger-
printing malware sandboxes to provide intelligence for sandbox evasion,” in
International Symposium on Research in Attacks, Intrusions, and Defenses,
pp. 165–187, Springer, 2016.

[22] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-llvm–
software protection for the masses,” in Software Protection (SPRO), 2015
IEEE/ACM 1st International Workshop on, pp. 3–9, IEEE, 2015.

79

[23] S. Schrittwieser, S. Katzenbeisser, J. Kinder, G. Merzdovnik, and
E. Weippl, “Protecting software through obfuscation: Can it keep pace
with progress in code analysis?,” ACM Computing Surveys (CSUR), vol. 49,
no. 1, p. 4, 2016.

[24] C. W. Dilshan Keragala, “Detecting Malware and Sandbox Evasion Tech-
niques,” tech. rep., January 2016.

[25] F. Cohen, “Computer Viruses : theory and experiments.,” Comput. Secur.,
vol. 6, no. 1, pp. 22–35, 1987.

[26] K. Chandrasekar, G. Cleary, O. Cox, and L. Hon, “Symantec 2017 internet
security threat report,” tech. rep., 2017.

[27] J. Antonakos, A. Davidi, C. De La Fuente, and D. Sachin, “2017 trustwave
global security report,” tech. rep., 2017.

[28] S. Attaluri, “Detecting metamorphic viruses using profile hidden markov
models,” Diss. San Jose State University, 2007.

[29] D. Baysa, R. M. Low, and M. Stamp, “Structural entropy and metamorphic
malware,” Journal of Computer Virology and Hacking Techniques, vol. 9,
pp. 179–192, 4 2013.

[30] B. B. Rad, M. Masrom, and S. Ibrahim, “Opcodes histogram for classi-
fying metamorphic portable executables malware,” in 2012 International
Conference on E-Learning and E-Technologies in Education, ICEEE 2012,
pp. 209–213, IEEE, sep 2012.

[31] G. Shanmugam, R. M. Low, and M. Stamp, “Simple substitution distance
and metamorphic detection,” Journal of Computer Virology and Hacking
Techniques, vol. 9, pp. 159–170, 3 2013.

[32] G. Canfora, A. N. Iannaccone, and C. A. Visaggio, “Static analysis for
the detection of metamorphic computer viruses using repeated-instructions
counting heuristics,” Journal of Computer Virology and Hacking Tech-
niques, vol. 10, pp. 11–27, 9 2013.

[33] J. Kuriakose and P. Vinod, “Ranked linear discriminant analysis features
for metamorphic malware detection,” in 2014 IEEE International Advance
Computing Conference (IACC), pp. 112–117, IEEE, 2 2014.

[34] S. Alam, R. N. Horspool, and I. Traore, “MAIL: Malware Analysis Inter-
mediate Language,” in Proceedings of the 6th International Conference on

80

Security of Information and Networks - SIN ’13, (New York, New York,
USA), pp. 233–240, ACM Press, 2013.

[35] S. Alam, I. Traore, and I. Sogukpinar, “Annotated Control Flow Graph
for Metamorphic Malware Detection,” The Computer Journal, vol. 58,
pp. 2608–2621, 10 2015.

[36] H. R. Ranjbar, M. Sadeghzadeh, and A. Keshavarz, “A novel data mining
method for malware detection,” Journal of Theoretical and Applied Infor-
mation Technology, vol. 70, no. 1, pp. 43–51, 2014.

[37] S. Alam, I. Sogukpinar, I. Traore, and R. Nigel Horspool, “Sliding window
and control flow weight for metamorphic malware detection,” Journal of
Computer Virology and Hacking Techniques, vol. 11, pp. 75–88, May 2015.

[38] G. Martins Breves, R. D. Freitas, and E. Souto, “Virtual Structures and
Heterogeneous Nodes in Dependency Graphs for Detecting Metamorphic
Malware,” 2014.

[39] K. Kim and B.-R. Moon, “Malware detection based on dependency graph
using hybrid genetic algorithm,” Proceedings of the 12th annual conference
on Genetic and evolutionary computation - GECCO ’10, p. 1211, 2010.

[40] J. Choi, Y. Yoon, and B.-R. Moon, “An efficient genetic algorithm for
subgraph isomorphism,” in Proceedings of the 14th annual conference on
Genetic and evolutionary computation, pp. 361–368, ACM, 2012.

[41] J. Harris, J. Hirst, and M. Mossinghoff, Combinatorics and Graph Theory.
Undergraduate Texts in Mathematics, Springer New York, 2008.

[42] F. E. Allen, “Control flow analysis,” in ACM Sigplan Notices, vol. 5, pp. 1–
19, ACM, 1970.

[43] C. Irniger, “Graph Matching–Filtering Databases of Graphs Using Ma-
chine Learning Techniques,” Master’s thesis, Institut für Informatik und
angewandte Mathematik, Universität Bern, 2005.

[44] S. Alam, R. Horspool, I. Traore, and I. Sogukpinar, “A framework for meta-
morphic malware analysis and real-time detection,” Computers & Security,
vol. 48, pp. 212–233, 2 2015.

[45] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence
graph and its use in optimization,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 9, no. 3, pp. 319–349, 1987.

81

[46] C. Liu, C. Chen, J. Han, and P. S. Yu, “GPLAG,” in Proceedings of the
12th ACM SIGKDD international conference on Knowledge discovery and
data mining - KDD ’06, (New York, New York, USA), p. 872, ACM Press,
2006.

[47] A. Cani, M. Gaudesi, E. Sanchez, G. Squillero, and A. Tonda, “Towards
automated malware creation: Code generation and code integration,” in
Proceedings of the 29th Annual ACM Symposium on Applied Computing,
SAC ’14, (New York, NY, USA), pp. 157–160, ACM, 2014.

[48] G. McGraw and G. Morrisett, “Attacking Malicious Code: A Report to the
Infosec Research Council,” IEEE Software, vol. 17, no. 5, pp. 33–41, 2000.

[49] P. Vinod, V. Laxmi, M. S. Gaur, and G. Chauhan, “Detecting malicious files
using non-signature-based methods,” International Journal of Information
and Computer Security, vol. 6, no. 3, pp. 199–240, 2014.

[50] E. Skoudis and L. Zeltser, Malware: Fighting Malicious Code. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 2003.

[51] D. Shinder, “The Pros and Cons of Behavioral Based, Signature
Based and Whitelist Based Security.” http://www.windowsecurity.
com/articles-tutorials/misc{_}network{_}security/
Pros-Cons-Behavioral-Signature-Whitelist-Security.html, 2018.

[52] I. A. Saeed, A. Selamat, A. M. A. Abuagoub, and S. B. Abdulaziz, “A Sur-
vey on Malware and Malware Detection Systems,” analysis, vol. 3, no. 10,
pp. 13–17, 2013.

[53] I. E. Kamarudin, S. A. M. Sharif, and T. Herawan, “On analysis and effec-
tiveness of signature based in detecting metamorphic virus,” International
Journal of Security and its Applications, vol. 7, no. 4, pp. 375–386, 2013.

[54] S. G. Perlman and R. van der Laan, “System for streaming databases
serving real-time applications used through streaming interactive video,”
July 18 2017. US Patent 9,707,481.

[55] Y. Oyama, “Trends of anti-analysis operations of malwares observed in api
call logs,” Journal of Computer Virology and Hacking Techniques, pp. 1–17,
2017.

[56] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated
dynamic malware-analysis techniques and tools,” ACM Computing Surveys
(CSUR), vol. 44, no. 2, p. 6, 2012.

82

http://www.windowsecurity.com/articles-tutorials/misc{_}network{_}security/Pros-Cons-Behavioral-Signature-Whitelist-Security.html
http://www.windowsecurity.com/articles-tutorials/misc{_}network{_}security/Pros-Cons-Behavioral-Signature-Whitelist-Security.html
http://www.windowsecurity.com/articles-tutorials/misc{_}network{_}security/Pros-Cons-Behavioral-Signature-Whitelist-Security.html

[57] E. A. Daoud, I. Jebril, and B. Zaqaibeh, “Computer virus strategies and
detection methods,” Int. J. Open Problems Compt., 2008.

[58] J. Jones, “The state of Web exploit kits,” BlackHat Las Vegas, 2012.

[59] P. O’Kane, S. Sezer, and K. McLaughlin, “Obfuscation: The hidden mal-
ware,” Security & Privacy, IEEE, vol. 9, no. 5, pp. 41–47, 2011.

[60] B. B. Rad, M. Masrom, and S. Ibrahim, “Opcodes histogram for classifying
metamorphic portable executables malware,” in 2012 International Confer-
ence on E-Learning and E-Technologies in Education (ICEEE), pp. 209–
213, IEEE, 9 2012.

[61] Q. Zhang, Polymorphic and metamorphic malware detection. North Car-
olina State University, 2008.

[62] I. You and K. Yim, “Malware Obfuscation Techniques: A Brief Survey,” in
2010 International Conference on Broadband, Wireless Computing, Com-
munication and Applications, pp. 297–300, IEEE, 11 2010.

[63] J.-M. Borello, “Are current antivirus programs able to detect complex meta-
morphic malware? An empirical evaluation,” 2009.

[64] W. Wong and M. Stamp, “Hunting for metamorphic engines,” Journal in
Computer Virology, vol. 2, pp. 211–229, 11 2006.

[65] A. H. Toderici and M. Stamp, “Chi-squared distance and metamorphic
virus detection,” Journal of Computer Virology and Hacking Techniques,
vol. 9, pp. 1–14, 9 2012.

[66] B. B. Rad, M. Masrom, and S. Ibrahim, “Camouflage in malware: from
encryption to metamorphism,” 2012.

[67] T. Tamboli, T. H. Austin, and M. Stamp, “Metamorphic code generation
from LLVM bytecode,” Journal of Computer Virology and Hacking Tech-
niques, vol. 10, pp. 177–187, 11 2013.

[68] W. Wong and M. Stamp, “Hunting for metamorphic engines,” Journal in
Computer Virology, vol. 2, pp. 211–229, nov 2006.

[69] S. Noreen, S. Murtaza, M. Z. Shafiq, and M. Farooq, “Evolvable malware,”
in Proceedings of the 11th Annual conference on Genetic and evolutionary
computation, pp. 1569–1576, ACM, 2009.

83

[70] S. Choudhary and M. D. Vidyarthi, “A Simple Method for Detection of
Metamorphic Malware using Dynamic Analysis and Text Mining,” Procedia
Computer Science, vol. 54, pp. 265–270, 2015.

[71] J. Kuriakose and P. Vinod, “Unknown metamorphic malware detection:
Modelling with fewer relevant features and robust feature selection tech-
niques,” IAENG International Journal of Computer Science, vol. 42, no. 2,
pp. 139–151, 2015.

[72] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised machine learn-
ing: A review of classification techniques,” 2007.

[73] Z. Markov and I. Russell, “An introduction to the WEKA data mining
system,” ACM SIGCSE Bulletin, vol. 38, no. 3, pp. 367–368, 2006.

[74] L. Rabiner and B. Juang, “An introduction to hidden markov models,” ieee
assp magazine, vol. 3, no. 1, pp. 4–16, 1986.

[75] S. G. Dastidar, S. Mandal, F. A. Barbhuiya, and S. Nandi, “Detecting
metamorphic virus using Hidden Markov Model and genetic algorithm,”
2012.

[76] S. Attaluri, S. McGhee, and M. Stamp, “Profile hidden Markov models
and metamorphic virus detection,” Journal in Computer Virology, vol. 5,
pp. 151–169, 2008.

[77] K. Xin, G. Li, Z. Qin, and Q. Zhang, “Malware Detection in Smartphone
Using Hidden Markov Model,” International Conference on Multimedia In-
formation Networking and Security, pp. 857–860, 2012.

[78] A. H. Toderici and M. Stamp, “Chi-squared distance and metamorphic
virus detection,” Journal of Computer Virology and Hacking Techniques,
vol. 9, no. 1, pp. 1–14, 2013.

[79] P. Zhang and C. G. Cassandras, “An improved forward algorithm for opti-
mal control of a class of hybrid systems,” IEEE Transactions on Automatic
Control, vol. 47, no. 10, pp. 1735–1739, 2002.

[80] G. D. Forney, “The viterbi algorithm,” Proceedings of the IEEE, vol. 61,
no. 3, pp. 268–278, 1973.

[81] Y. Zhang, D. Zhao, and J. Liu, “The application of baum-welch algorithm
in multistep attack,” The Scientific World Journal, vol. 2014, 2014.

84

[82] P. Desai, “A highly metamorphic virus generator,” Intelligence, vol. 1, no. 4,
pp. 402–427, 2011.

[83] T. Singh, F. Di Troia, V. A. Corrado, T. H. Austin, and M. Stamp, “Sup-
port vector machines and malware detection,” Journal of Computer Virol-
ogy and Hacking Techniques, 2015.

[84] S. Suthaharan, “Support vector machine,” in Machine learning models and
algorithms for big data classification, pp. 207–235, Springer, 2016.

[85] J. T. Kent, “Information gain and a general measure of correlation,”
Biometrika, vol. 70, no. 1, pp. 163–173, 1983.

[86] C. V. Liță, D. Cosovan, and D. Gavriluț, “Anti-emulation trends in modern
packers: a survey on the evolution of anti-emulation techniques in upa
packers,” Journal of Computer Virology and Hacking Techniques, pp. 1–20.

[87] C. Eagle, The IDA Pro Book: The Unofficial Guide to the World’s Most
Popular Disassembler. San Francisco, CA, USA: No Starch Press, 2008.

[88] H. Parvin, B. Minaei, H. Karshenas, and A. Beigi, “A new n-gram feature
extraction-selection method for malicious code,” in International Confer-
ence on Adaptive and Natural Computing Algorithms, pp. 98–107, Springer,
2011.

[89] K. Fukunaga and S. Ando, “The optimum nonlinear features for a scat-
ter criterion in discriminant analysis,” IEEE Transactions on Information
Theory, vol. 23, no. 4, pp. 453–459, 1977.

[90] R. Bro and A. K. Smilde, “Principal component analysis,” Analytical Meth-
ods, vol. 6, no. 9, pp. 2812–2831, 2014.

[91] D. Aha and D. Kibler, “Instance-based learning algorithms,” Machine
Learning, vol. 6, pp. 37–66, 1991.

[92] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1, no. 1,
pp. 81–106, 1986.

[93] M. Collins, R. E. Schapire, and Y. Singer, “Logistic regression, adaboost
and bregman distances,” Machine Learning Journal, vol. 48, no. 1-3,
pp. 253–285, 2002.

[94] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5–32,
2001.

85

[95] Z.-Q. Zeng, H.-B. Yu, H.-R. Xu, Y.-Q. Xie, and J. Gao, “Fast training
support vector machines using parallel sequential minimal optimization,”
in Intelligent System and Knowledge Engineering, 2008. ISKE 2008. 3rd
International Conference on, vol. 1, pp. 997–1001, IEEE, 2008.

[96] M. Eskandari and S. Hashemi, “A graph mining approach for detecting
unknown malwares,” Journal of Visual Languages & Computing, vol. 23,
no. 3, pp. 154–162, 2012.

[97] G. Sidorov, H. Gómez-Adorno, I. Markov, D. Pinto, and N. Loya, “Comput-
ing text similarity using tree edit distance,” in Fuzzy Information Process-
ing Society (NAFIPS) held jointly with 2015 5th World Conference on Soft
Computing (WConSC), 2015 Annual Conference of the North American,
pp. 1–4, IEEE, 2015.

[98] A. Rényi, “On measures of entropy and information,” tech. rep., Hungarian
Academy of Sciences, Budapest Hungary, 1961.

[99] C. Torrence and G. P. Compo, “A practical guide to wavelet analysis,”
Bulletin of the American Meteorological society, vol. 79, no. 1, pp. 61–78,
1998.

[100] D. Bruschi, L. Martignoni, and M. Monga, “Code Normalization for Self-
Mutating Malware,” IEEE Security and Privacy Magazine, vol. 5, pp. 46–
54, 3 2007.

[101] Q. Zhang and D. S. Reeves, “MetaAware: Identifying Metamorphic Mal-
ware,” in Twenty-Third Annual Computer Security Applications Conference
(ACSAC 2007), pp. 411–420, IEEE, 12 2007.

[102] X. Hu, T.-c. Chiueh, and K. G. Shin, “Large-scale malware indexing us-
ing function-call graphs,” in Proceedings of the 16th ACM conference on
Computer and communications security, pp. 611–620, ACM, 2009.

[103] R. Paredes and E. Chávez, “Using the k-nearest neighbor graph for prox-
imity searching in metric spaces,” in International Symposium on String
Processing and Information Retrieval, pp. 127–138, Springer, 2005.

[104] J. Lee, K. Jeong, and H. Lee, “Detecting metamorphic malwares using code
graphs,” in Proceedings of the 2010 ACM Symposium on Applied Computing
- SAC ’10, (New York, New York, USA), p. 1970, ACM Press, 2010.

[105] N. Runwal, R. M. Low, and M. Stamp, “Opcode graph similarity and meta-
morphic detection,” Journal in Computer Virology, vol. 8, pp. 37–52, 4
2012.

86

[106] C. Liu, C. Chen, J. Han, and P. S. Yu, “Gplag: Detection of software
plagiarism by program dependence graph analysis,” in Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’06, (New York, NY, USA), pp. 872–881, ACM, 2006.

[107] J. W. Raymond and P. Willett, “Maximum common subgraph isomorphism
algorithms for the matching of chemical structures,” Journal of computer-
aided molecular design, vol. 16, no. 7, pp. 521–533, 2002.

[108] D. Yuan, P. Mitra, and C. L. Giles, “Mining and indexing graphs for su-
pergraph search,” Proceedings of the VLDB Endowment, vol. 6, no. 10,
pp. 829–840, 2013.

[109] Radare2, “Radare2 github repository.” https://github.com/radare/
radare2, 2017.

[110] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” in Proceedings of the 2004 Interna-
tional Symposium on Code Generation and Optimization (CGO’04), (Palo
Alto, California), Mar 2004.

[111] K. D. Cooper, T. J. Harvey, and K. Kennedy, “Iterative data-flow analysis,
revisited,” tech. rep., 2004.

[112] K. Lejska, “X86 opcode and instruction reference.” http://ref.x86asm.
net/index.html, 2017. Accessed: 2017-12-30.

[113] C. Nguyen Anh Quynh, “Capstone: next generation disassembly
framework.” http://www.capstone-engine.org/BHUSA2014-capstone.
pdf, 2014.

[114] E. Keogh and A. Mueen, “Curse of dimensionality,” in Encyclopedia of
Machine Learning and Data Mining, pp. 314–315, Springer, 2017.

[115] N. Sánchez-Maroño, A. Alonso-Betanzos, P. García-González, and
V. Bolón-Canedo, “Multiclass classifiers vs multiple binary classifiers using
filters for feature selection,” in Neural networks (ijcnn), the 2010 interna-
tional joint conference on, pp. 1–8, IEEE, 2010.

[116] E. Eilam, Reversing: Secrets of Reverse Engineering. New York, NY, USA:
John Wiley & Sons, Inc., 2005.

[117] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting,” Journal of computer and
system sciences, vol. 55, no. 1, pp. 119–139, 1997.

87

https://github.com/radare/radare2
https://github.com/radare/radare2
http://ref.x86asm.net/index.html
http://ref.x86asm.net/index.html
http://www.capstone-engine.org/BHUSA2014-capstone.pdf
http://www.capstone-engine.org/BHUSA2014-capstone.pdf

[118] W.-Y. Loh, “Classification and regression trees,” Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, vol. 1, no. 1, pp. 14–23,
2011.

[119] N. Bhatia et al., “Survey of nearest neighbor techniques,” arXiv preprint
arXiv:1007.0085, 2010.

[120] G. E. Hinton, “Connectionist learning procedures,” in Machine Learning,
Volume III, pp. 555–610, Elsevier, 1990.

[121] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-
learn: Machine learning in Python,” Journal of Machine Learning Research,
vol. 12, pp. 2825–2830, 2011.

[122] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel,
V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. Vander-
Plas, A. Joly, B. Holt, and G. Varoquaux, “API design for machine learn-
ing software: experiences from the scikit-learn project,” in ECML PKDD
Workshop: Languages for Data Mining and Machine Learning, pp. 108–
122, 2013.

[123] D. J. Hand and R. J. Till, “A simple generalisation of the area under the
roc curve for multiple class classification problems,” Mach. Learn., vol. 45,
pp. 171–186, Oct. 2001.

[124] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters a density-based algorithm for discovering clusters
in large spatial databases with noise,” in Proceedings of the Second Inter-
national Conference on Knowledge Discovery and Data Mining, KDD’96,
pp. 226–231, AAAI Press, 1996.

[125] M. Dundar, B. Krishnapuram, J. Bi, and R. B. Rao, “Learning classifiers
when the training data is not iid,” in Proceedings of the 20th International
Joint Conference on Artifical Intelligence, IJCAI’07, (San Francisco, CA,
USA), pp. 756–761, Morgan Kaufmann Publishers Inc., 2007.

[126] A. Gandomi and M. Haider, “Beyond the hype: Big data concepts, meth-
ods, and analytics,” International Journal of Information Management,
vol. 35, no. 2, pp. 137–144, 2015.

88

