
UNIVERSIDADE FEDERAL DO AMAZONAS - UFAM

INSTITUTO DE COMPUTAÇÃO - ICOMP

PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA - PPGI

DIEGO DE AZEVEDO RODRIGUES

A STUDY ON MACHINE LEARNING

TECHNIQUES FOR THE SCHEMA

MATCHING NETWORKS PROBLEM

Manaus, AM

2018

DIEGO DE AZEVEDO RODRIGUES

A STUDY ON MACHINE LEARNING

TECHNIQUES FOR THE SCHEMA

MATCHING NETWORKS PROBLEM

Tese apresentada ao Programa de Pós-
Graduação em Informática da Universidade
Federal do Amazonas, como requisito parcial
para a obtenção do grau de Doutor em
Informática.

Orientador: Prof. D.Sc. Altigran Soares da Silva

Manaus, AM

2018

Ficha Catalográfica

R696s A Study on Machine Learning Techniques for the Schema
Matching Networks Problem / Diego de Azevedo Rodrigues. 2018
 109 f.: il. color; 31 cm.

 Orientador: Altigran Soares da Silva
 Tese (Doutorado em Informática) - Universidade Federal do
Amazonas.

 1. Casamento de Esquemas em Rede. 2. Reconciliação de
Esquemas em Rede. 3. Integração de Dados. 4. Aprendizagem de
Máquina. 5. Banco de Dados. I. Silva, Altigran Soares da II.
Universidade Federal do Amazonas III. Título

Ficha catalográfica elaborada automaticamente de acordo com os dados fornecidos pelo(a) autor(a).

Rodrigues, Diego de Azevedo

iii

iv

Resumo

Casamento de Esquemas é a tarefa de encontrar correpondências entre elemen-

tos de diferentes esquemas de bancos de dados. É um problema desafiador, uma

vez que o mesmo conceito geralmente é representado de maneiras distintas nos

esquemas.Tradicionalmente, a tarefa envolve um par de esquemas a serem mapea-

dos. Entretanto, houve um crescimento na necessidade de mapear vários esquemas

ao mesmo tempo, tarefa conhecida como Casamento de Esquemas em Rede, onde

o objetivo é identificar elementos de vários esquemas que correspondem ao mesmo

conceito. Este trabalho propõe uma famı́lia de métodos para o problema do casa-

mento de esquemas em rede baseados em aprendizagem de máquina, que provou

ser uma alternativa viável para o problema do casamento tradicional em diver-

sos domı́nios. Para superar o obstáculo de obter bastantes instâncias de treino,

também é proposta uma técnica de bootstrapping para gerar treino automático.

Além disso, o trabalho considera restrições de integridade que ajudam a nortear

o processo de casamento em rede. Este trabalho também propõe uma estratégia

para receber avaliações do usuário, com o propósito de melhorar o resultado final.

Experimentos mostram que o método proposto supera outros métodos comparados

alcançando valor F1 até 0.83 e sem utilizar muitas avaliações do usuário.

Palavras-chave: Casamento de Esquemas em Rede, Reconciliação de Esquemas

em Rede, Integração de Dados, Aprendizagem de Máquina, Banco de Dados.

v

vi

Abstract

Schema Matching is the problem of finding semantic correspondences between

elements from different schemas. This is a challenging problem, since the same

concept is often represented by disparate elements in the schemas. The traditional

instances of this problem involved a pair of schemas to be matched. However,

recently there has been a increasing interest in matching several related schemas

at once, a problem known as Schema Matching Networks, where the goal is to

identify elements from several schemas that correspond to a single concept. We

propose a family of methods for schema matching networks based on machine

learning, which proved to be a competitive alternative for the traditional matching

problem in several domains. To overcome the issue of requiring a large amount of

training data, we also propose a bootstrapping procedure to automatically generate

training data. In addition, we leverage constraints that arise in network scenarios

to improve the quality of this data. We also propose a strategy for receiving user

feedback to assert some of the matchings generated, and, relying on this feedback,

improving the quality of the final result. Our experiments show that our methods

can outperform baselines reaching F1-score up to 0.83.

Keywords: Schema Matching Networks, Schema Reconciliation Networks, Data

Integration, Machine Learning, Databases.

vii

viii

Contents

List of Figures xii

List of Tables xiii

1 Introduction 1

1.1 Motivation . 2

1.2 Goals and Research Questions . 10

1.3 Contributions . 11

2 Background and Related Work 15

2.1 Classic Schema Matching Problem 16

2.1.1 Heuristic Methods . 18

2.1.2 Machine Learning Methods 23

2.2 Schema Matching Networks Problem 30

2.2.1 Classic Schema Matching versus Schema Matching Networks 31

2.2.2 Network Integrity Constraints 32

2.3 Schema Reconciliation Networks . 40

3 Using Machine Learning for Schema Matching and Schema Rec-
onciliation Networks 45

3.1 Why a learning approach? . 46

3.2 Choosing a Learning Approach - RF4SM 49

3.3 RF4SM-Boosting . 52

3.3.1 Unfiltered -RF4SM-B . 52

3.3.2 Filtered -RF4SM-B . 54

3.4 Filtered -RF4SM-B-Reconciliation 57

3.5 Summing up . 59

4 Experiments 63

4.1 General Settings . 63

ix

4.2 Evaluating Machine Learning Algorithms for the Schema Matching
Networks Problem . 67
4.2.1 Validating RF4SM . 69
4.2.2 RF4SM x Heuristic Strategy - Base Methods 71

4.3 RF4SM-B: Experimental Evaluation 72
4.3.1 Training with Automatically Labeled Examples 73
4.3.2 Leveraging Network Inconsistencies 76
4.3.3 Training Set Quality . 77
4.3.4 Training with Filtered Instances 79
4.3.5 RF4SM-B x Baselines . 84

4.4 RF4SM-B-Rec: Experimental Evaluation 88
4.4.1 Reconciliation Benefits . 88
4.4.2 RF4SM-B-Rec Results . 92

4.5 Summing up . 98

5 Conclusions and Future Work 101

x

List of Figures

1.1 Classic schema matching . 3
1.2 Classic Schema Matching vs Schema Matching Network 5
1.3 Resulting matching network of the Purchase Order dataset. 6
1.4 Schema matching network . 7
1.5 Simple cycle constraint demonstration 9

2.1 Similarity values based on the Levenshtein distance. 17
2.2 General process of COMA/COMA++ execution. 20
2.3 General process of Similarity Flooding execution. 21
2.4 Changing from similarity matrices to machine learning instances. . . 24
2.5 A single decision tree can classify pairs based on their similarity

values. 25
2.6 YAM first uses its knowledge base to create a dedicated matcher,

then it creates correspondences between schemas. 28
2.7 One-to-one constraint violation. 33
2.8 Cycle constraint violation. 35
2.9 User assertion of two matching candidates. 42

3.1 Draft Algorithm flow. 48
3.2 RF4SM algorithm flow. 51
3.3 Unfiltered RF4SM-B algorithm flow. 53
3.4 One-to-one constraint violation. 55
3.5 Filtered-RF4SM-B algorithm flow. 56
3.6 Filtered -RF4SM-B-Rec algorithm flow. 59

4.1 Averaged F1 scores reached by each classifier with different sizes of
training. 70

4.2 Average results of supervised and heuristic methods in five datasets. 72
4.3 Average results obtained by RF4SM-B using as training set the an-

swers taken from COMA. 74
4.4 Average results obtained by RF4SM-B using as training set the an-

swers from Similarity Flooding. 75

xi

4.5 The amount of positive examples automatically acquired by taking
COMA’s answers. 79

4.6 The amount of positive examples automatically acquired by taking
Similarity Flooding’s answers. 80

4.7 Precision of the positive examples given by COMA before and after
appying the constraints filter. 81

4.8 Precision of the positive examples given by Similarity Flooding be-
fore and after appying the constraints filter. 81

4.9 Average results obtained by RF4SM-B using the different training
sets taken from COMA’s answers. 82

4.10 Average results obtained by RF4SM-B using the different training
sets taken from Similarity Flooding’s answers. 83

4.11 RF4SM-B (Unfiltered and Filtered) compared to RF4SM (when using
COMA as the base system). 85

4.12 RF4SM-B (Unfiltered and Filtered) compared to RF4SM (when using
SF as the base system). 86

4.13 Precision achieved by RF4SM-B when running different base systems. 87
4.14 Recall achieved by RF4SM-B when running different base systems. . 87
4.15 F1 scores reached after user feedback in two different scenarios based

on COMA’s answers. 89
4.16 F1 scores reached after user feedback in two different scenarios based

on Similarity Flooding’s answers. 90
4.17 The effort made by the user in the reconciliation phase when labeling

COMA’s candidate matchings. 91
4.18 The effort made by the user in the reconciliation phase when labeling

Similarity Flooding’s candidate matchings. 91
4.19 F1 scores achieved when performing reconciliation at the end of the

process. 93
4.20 F1 scores achieved when performing reconciliation at the end of the

process. 93
4.21 The user effort required in the reconciliation of the network of an-

swers generated by COMA and RF4SM-B. 94
4.22 The user effort required in the reconciliation of the network of an-

swers generated by SF and RF4SM-B. 94
4.23 Comparative between RF4SM-B and RF4SM-B-Rec in all datasets us-

ing COMA as the base system. 96
4.24 Comparative between RF4SM-B and RF4SM-B-Rec in all datasets us-

ing SF as the base system. 97
4.25 Average F1-score achieved by methods grouped by the amount of

user participation in the matching task. 99

xii

List of Tables

4.1 Datasets characteristics . 64
4.2 Number of constraints violated per matching network task. 77
4.3 Inconsistencies types . 77

xiii

Chapter 1

Introduction

In the last decade, more and more applications and systems have been built to

produce information, which are usually stored in databases. Hence, there has been

an increasing demand to enable different databases, e.g., maintained by different

corporations/institutions, on a given application domain to be integrated or at

least interoperate. As these databases are designed by different people, they often

follow distinct logical designs, i.e., the same information is represented in different

ways in each one of them.

For instance, different universities maintain their own databases of academic

information, each one with a specific logical design. To get global statistics

of these universities, one needs to integrate data from these databases, which

store data in the same domain, but have different schemas. The integration

process requires that one should know which elements in each schema repre-

sent the same concept in the real world. This is called the schema matching

task [Bonifati and Velegrakis, 2011]. Once the matching is complete, further op-

erations can be performed such as comparisons, union, concatenation, etc.

2 Introduction

This matching task is the first challenge in every integration process

and it is crucial that it is correctly performed in order to allow the in-

teroperability between systems. Schema matching is the task of find-

ing semantic correspondences between elements (or attributes) of two given

database schemas [Do and Rahm, 2002, Madhavan et al., 2001, Doan et al., 2001,

Bernstein et al., 2011, Bonifati and Velegrakis, 2011]. Such task is very important

for enabling data integration and interoperability in domains such as e-commerce,

geospace, biology, health, etc.

In this Chapter, we present the schema matching problem through a motivating

example and we present a glimpse of work done addressing this task. We also

address how approaches started considering matching a network of many schemas

and the new challenges the task presented. Next, we introduce this thesis goals and

research questions related. Finally, we summarize our contributions and present

the thesis organization.

1.1 Motivation

Consider the (simplified) schemas of databases on academic information from

univerisities illustrated in Figure 1.1. The schema matching task is to iden-

tify the matchings (depicted as dotted lines) between elements from those

schemas. In this example, the schemas model data on students in different

ways, even using particular representations of hierarchy and attribute names.

Schema attributes may represent the same concept in the real world. How-

ever they are often modeled using different attribute names. For instance,

BROWN.PERSONALDATA.NAME.Firstname and CMU.biography.fname represent the

1.1 Motivation 3

Figure 1.1: Parts of the schemas from university application forms (Brown and
CMU) and matchings between elements (dotted lines).

student’s first name. Also, there might be more challenging matchings to be

discovered, e.g. BROWN.BIRTHINFORMATION.Dateofbirth and CMU.dob, both rep-

resenting the students date of birth, which may be validated only by a domain

specialist or the schema owners.

Traditionally, the schema matching task is performed manually by specialists

who have extensive knowledge about the domain and the schemas involved. How-

ever, even for a specialist, this task may be time-consuming, costly and error-prone.

The schema matching task is challenging for many reasons. First, schema

elements, e.g., attributes, representing the same concept may have different names

in different schemas. On the other hand, elements with similar names may refer

to distinct concepts. In addition, equivalent elements in two schemas may have a

different structure. Finally, there may be the case in which many elements from

one schema represent a concept that is represented by a single element in the other

schema.

Over the years, several research initiatives have been carried out

4 Introduction

to deal with schema matching, resulting in a number of papers pub-

lished [Madhavan et al., 2001, Doan et al., 2012, Do and Rahm, 2002,

Melnik et al., 2002, Li et al., 2005, Hung et al., 2014] and several proto-

types and commercial systems were made available [Popa et al., 2002,

Aumueller et al., 2005, Peukert et al., 2011].

Many of these methods rely on a set of predefined steps and param-

eters to perform the matching between schemas (e.g. [Do and Rahm, 2002,

Aumueller et al., 2005, Cruz et al., 2009]). While these methods perform well in

certain domains, their performance decreases when applied in adverse scenarios,

as they need tuning on strategies and parameters.

As an alternative to fixed heuristics methods, machine learning methods

arose with the advantage of creating a specific model for each matching scenario

(e.g. [Doan et al., 2001, Duchateau et al., 2009, de Carvalho et al., 2013]). These

methods are easy to adapt to different matching tasks, but they require the user

to label a large amount of examples to train its models which is a disadvantage

compared to heuristic methods in terms of user-effort.

As the problem evolved, schema matching tasks have appeared in a networked

scenario, where more than two data sources (schemas, query forms, databases)

need to be matched [He and Chang, 2003, Madhavan et al., 2005, Su et al., 2006,

Nguyen et al., 2011, Hung et al., 2014, Toan et al., 2018]. In this case, the match-

ing task is performed with all the schemas together, instead of between pairs of

schemas as depicted in Figure 1.2. From this point forward, the matching between

only two schemas will be referred as the classic schema matching and, when the

task involves more than two schemas, it will be referenced as the schema matching

networks task.

1.1 Motivation 5

(a) (b)

Figure 1.2: Classic Schema Matching (1.2(a)) only takes two input schemas while
in the Schema Matching Network (1.2(b)) setting all the schemas are matched
together.

In the classic schema matching, the methods are usually executed by submit-

ting all the combinations of schemas involved. For instance, schema A with schema

B, schema A with schema C and schema B with schema C. In the schema matching

networks task, the method receives all the schemas together and performs mul-

tiple matchings at once. This setting yields the use of extra information based

on integrity constraints between schema elements, as it is done in methods pro-

posed for similar problems [Aberer et al., 2003, Cudré-Mauroux et al., 2006], and

takes advantage of similar concepts that are present in a network [Su et al., 2006,

Madhavan et al., 2005, Nguyen et al., 2011].

In Figure 1.3 we illustrate the result of a schema maching networks task. Each

point represents an schema element, points closer to one another mean they come

from the same schema. A line between two points means they were matched,

therefore, they have the same meaning in the real world. Points without lines could

not be matched to elements in other schemas, whether the method used could not

find any correspondences or they actually do not have any correspondences in

other schemas.

The schema matching networks task shares some of the same challenges

6 Introduction

SupplierOrderReference

BuyerOrderReference

TextHeader

TextFooter

SupplierOrderDate

BuyerOrderDate

OrderDetails

CurrencyCode

Currency

Percentage

DaysDue

Discount1

Description
NetDays

TermsOfPayment

DelivType
TransportType

TermsOfDelivery

POHead

Name Street

City

State

PostalCode

Country

CountryCode

Address
FirstNameLastNameTitle

JobTitle

Phone

Fax

Email
Contact SupplierReferenceNo

BuyerReferenceNo

VAT_RegistrationNo

Buyer

Name

Street City

State

PostalCode
Country

CountryCode

Address
FirstName

LastName

Title

JobTitle

Phone

Fax

Email

Contact

SupplierReferenceNo

BuyerReferenceNo

VAT_RegistrationNo

Supplier

Name

StreetCity

State

PostalCode
Country

CountryCode

Address

FirstName

LastNameTitle

JobTitle

Phone

Fax

EmailContact

SupplierReferenceNo

BuyerReferenceNo

VAT_RegistrationNo

DeliverTo

Name

Street

City State
PostalCode

Country

CountryCode

Address

FirstName
LastName

Title
JobTitle

Phone

Fax
Email

Contact SupplierReferenceNo

BuyerReferenceNo

VAT_RegistrationNo

InvoiceTo

SupplierPartID

SupplierPartDesc

BuyerPartID

BuyerPartDesc

EANProduct
UnitPrice

PricePerUnitOfMeasure

PriceQuotientPrice

QuantityAmount

PackCode

PackSize

UnitOfMeasure

Quantity

DateYear

DateWeek

Date

RequestedDeliveryDate

PercentageDaysDue

Discount

VAT_AmountTotal

VAT_Rate
VAT_Amount

Amount_ExclVAT

Amount_InclVAT

Amount

LineNo

POLine

VAT_AmountTotal

VAT_Rate

VAT_Amount

Amount_ExclVAT

Amount_InclVAT

TotalAmount

NumberOfLines

OrderTotal

Order

poDate

poNumber

POHeader

contactName

contactFunctionCode
contactEmailcontactPhone

Contact

city

attn

country

stateProvince

street

postalCode
entityidentifider

POShipTo

city

attn

country

stateProvince

streetpostalCode

entityidentifider

POBillTo

uom

unitPrice

qty

partNo

line
Item

startAtcount

POLines

POyourPartnerNumber

unitPrice

unitOfMeasure

salesValue

quantity

partNumber

partDescriptionitemNumber

Item

itemCountItemscontactName
companyName

e-mail

telephone
Contact

street

stateProvince

postalCode

country
city

Address

DeliverTo

contactName

companyName

e-mail

telephoneContact
street

stateProvince

postalCode
country

city

Address

InvoiceTo

contactName

companyName

e-mail
telephone

Contact

orderNum

orderDate

ourAccountCode

yourAccountCode

Header

totalValue

Footer

PurchaseOrder

referenceNo
name

regiatrationNo

VATRegistrationNo

url
Organizationstreet

city state

postalCode
country

Address

InvoiceTo

referenceNo

name

regiatrationNo

VATRegistrationNo

url Organizationstreetcity

state

postalCode

country

Address

DeliverTo referenceNo

firstName

lastName

title

suffix
position
tel

fax

email

ContactPerson

VATRate

amountExclVAT

VATAmount

amountInclVAT

Amount

VATRate

amountExclVATVATAmount

amountInclVATAmount

lineNo

productRef

productName

quantity

unitOfMeasureRef

unitPrice

shipmentDate

priceLevelRef

projectRef

projectTaskRef

Line

shipmentDatecustomerOrderRef

comments

orderDate
totalAmount

roundingAmount

currencyCode

PurchaseOrder

ComputerID

OrderNo

OrderDesc

DateCreated

OrderInq

Comment

OrderHeader

LotSize

ColNo

SizeIdx

Qty

EAN

UPC

ItemNo

SizeDesc
NetPrchPrice

PosNo

ColSize
ColModLines

StartAt

ColSizes

ModNo

LotSize

ModType

OrdLineTyp

CatalogNo

TotalPrchPrice

EarlDelDate

LatDelDate

LineNo

ModQtyBrandNo

Model
ModLines StartAt

TotalOrderLines
OrdModels

SupID

SupName

CityAddress
PostalCodeCountry

CountySupplier

Department

Name

Phone

Fax
Email

Contact CustomerID

CompanyName

City

Address
PostalCode
Country

CountyBillTo

Department

Name

Phone

Fax

Email
Contact

BranchID

CompanyName

City
Address

PostalCode

Country

County

ShipTo

CurrencyID

ExchangeRate

CurrencyInfo

Order

Figure 1.3: Resulting matching network of the Purchase Order dataset.

1.1 Motivation 7

Figure 1.4: Schema matching networks task: the schemas from university applica-
tion forms (CMU, Brown, Cornell, and Berkeley) and matchings between elements
(dotted lines).

8 Introduction

as the classic setting. Consider as an example the matching network in

Figure 1.4. Schema elements might have slight different names besides

model the same concept, such as BROWN.PERSONALDATA.NAME.Lastname and

CORNELL.BibliographicInformation.NAME LAST meaning the last name of a stu-

dent, elements with similar names refer to distinct concepts, e.g. CMU.cityob

referring to city of birth and CORNELL.CITY referring to a student’s cur-

rent city, and attributes with different structures representing the same con-

cept (BROWN.PERSONALDATA.NAME.Firstname has path with depth = 4 and

BERKELEY.BiographicalInformationType.FIRST NAME has path with depth =

3, the inner elements do not share similar words).

The schema matching networks task also introduces a new aspect to con-

sider: the integrity of the matching network. To guarantee that match-

ings across the network remain consistent, several network constraints have

to be taken into consideration when making matches between elements. One

of the constraints to be considered is the cycle constraint : matched el-

ements from different schemas should form a cycle in the graph formed

by all the schema elements. Consider the network in Figure 1.5 and

that the element BROWN.PERSONALDATA.NAME.Firstname is matched to both

CMU.biography.fname and CORNELL.BiographicalInformation.NAME FIRST.

For the cycle constraint to be obeyed, we should add the matching between

CMU.biography.fname and CORNELL.BiographicalInformation.NAME FIRST.

Besides that, schema matching networks methods still have to cope with the

number of schemas presented. The more schemas involved, more schema elements

to be matched and the number of possible matching combinations grows exponen-

tially, which can be overwhelming.

1.1 Motivation 9

Figure 1.5: The cycle constraint requires that matched elements from different
schemas should form a cycle in the graph.

We recognize that matching tasks can involve complex matches. They occur

when one element from a schema can be matched to many elements in other

schema, such as Fullname could be matched to FirstName, MiddleName and

LastName. Complex matches can make the problem even more challenging and

there are studies devoted only to this kind of matching [de Carvalho et al., 2013,

He et al., 2004]. Due to its incompatibility with the network constraints (presented

later in Section 2.2.2), we consider these kind of matchings out-of-scope and do

not address them in our work.

In spite of being a successful approach to the classic matching pairs of schemas,

only recently machine learning techniques have been considered for the network

scenario. For instance, the work presented in [Hung et al., 2014] applies a boosting

technique, by querying the user for accepting or rejecting correspondences given

by a matching method while maintaining a network graph with probabilities of

the matching correctness.

10 Introduction

1.2 Goals and Research Questions

Our work focus on studying new methods for the schema matching networks task

through machine learning. Our main goal is to use machine learning techniques

to address schema matching network tasks and produce good quality matching

results. We also consider the user participation in the process and aim to easier

its effort during the task execution. Hence, we define research questions that drive

this work:

• Can machine learning methods be suitable when considering the schema

matching networks scenario? Machine learning methods can achieve good

results in the classic schema matching problem, if the training is done cor-

rectly, this approach can create different models for each matching tasks and

be independent of expert tuning.

• How to acquire a large number of training examples without asking the user

for labels? Can we generate good models with this training? Machine learning

based methods depend directly of the training examples provided, regarding

both quantity and quality. We study how these two factors affect the quality

of models learned and matchings generated.

• Can we increase matching quality by asking the user for approval of corre-

spondences? Can we promote this task without causing the exhaustion of the

user by asking a large number of assertions? Usually the user participates

in the matching process by reviewing the correspondences generated by a

method. We study how much the matching quality is increased when the

user reviews answers. Also, we study if techniques can be applied to reduce

1.3 Contributions 11

the user effort in the reconciliation task while maintaining the quality of the

matchings.

1.3 Contributions

We make our contibutions through three methods in Chapter 3. We summarize

them in the following list:

• First, we investigate an approach in which classifiers are trained with existing

matchings given by a specialist. In the experiments, we show that our method

reaches high values of precision, for instance 0.89 in one of the matching

tasks, topping the baselines. Also, to the best of our knowledge, this is the

first supervised learning method that uses classifiers to address the schema

matching networks problem.

• Next, we investigate if machine learning methods can cope with several dif-

ferent domains in opposition to heuristic methods. Heuristic methods need

a different set of parameters to achieve the best results in every different

matching task. As the schema matching networks task can be viewed as an

aggregation of various classic matching tasks, to find a common good set of

parameters might require a lot of knowledge of the method and the schemas

domain. This challenge may be better addressed by using a learning strategy,

as it can create models independent of domain as long as it has matching

examples. In our experiments, we show that while the heuristic methods, de-

pending on the domain, perform better in favor of either precision or recall,

the more stable balancing of the learning strategy leads to better results in

12 Introduction

the average scenario.

• Then, as labeled examples may be hard to obtain, we also present a follow-up

method that removes the requirement of having previously labeled examples.

We rely on examples from previous matchings obtained by heuristic unsu-

pervised methods and use network constraints to prune mislabels. Hence,

we guarantee a large training set of examples with no cost to the user, saving

them for the last stage of the integration task, where she can correct mis-

labels. In experiments, we show that RF4SM-B (Random Forest for Schema

Matching - Boosting) at least matches the F1-score of RF4SM besides using no

previously labeled examples. We also show that, on average, it outperforms

the baseline methods by 0.4 in F1-score.

• Finally, the matching process ends with a reconciliation task, in which a

specialist reviews matches generated by the matching method. Hence, we

also address this last step in the matching process by taking both user-input

and the network constraints to enhance matching quality. By doing that, we

show the virtually maximum level of F1-score the methods can reach. In our

experiments, we show that our method allows the specialist to participate

in the process by reviewing at least 4 times less instances than the baselines

and helping the method to achieve even better matching quality.

This thesis proposal is organized as follows:

• Chapter 2 presents the necessary background on the schema matching prob-

lem and reviews some of the related work on schema matching, including

heuristic methods, machine learning methods and works that consider the

schema matching networks scenario.

1.3 Contributions 13

• Chapter 3 presents, first, RF4SM (Random Forest for Schema Matching) –

the supervised method based on classifiers that addresses the schema match-

ing networks problem. Then, we present RF4SM-B (Random Forest for

Schema Matching - Boosting) – the boosting strategy that removes the pre-

defined training examples and gathers automatic matchings from heuristic

methods and uses them as training, and finally, we show RF4SM-B-Rec

(Random Forest for Schema Matching - Reconciliation) – the strategy which

brings the user back in the process making them review matchings.

• Chapter 4 presents the experimental evaluation performed and discussions

of results observed.

• Chapter 5 offers conclusions and shows future directions of our work.

14 Introduction

Chapter 2

Background and Related Work

In this chapter we review basic concepts of the schema matching problem by

showing examples and the literature that we consider as more related to our

work. We review the work addressing the classic schema matching as well as

the schema matching networks problem. We also address the work that uses net-

work constraints in similar problems and how the constraints were used. Finally,

we review some work adressing the reconciliation of matching networks. A more

comprehensive coverage on the general schema matching problem, which has been

explored for a longtime in the literature, can be found in several surveys and

text books [Rahm and Bernstein, 2001, Doan et al., 2012, Bellahsene et al., 2011,

Bernstein et al., 2011]. As for the other problems addressed, we highlight some of

the projects that stood out in the literature over the years.

16 Background and Related Work

2.1 Classic Schema Matching Problem

Schema matching is the task of finding semantic correspondences between elements

of two schemas [Do and Rahm, 2002]. The schemas can be any distinct heteroge-

neous data sources (e.g. database schemata, XML DTDs, HTML form tags, etc.)

in the same domain [Gal, 2006]. As it results in connecting two different sources

of information, the task is considered to be required in any data integration task.

Despite several prototypes and methods being presented over the years ad-

dressing this task, there is no method considered to completely solve the problem.

In addition, often a specialist user is required to review answers after a method is

executed, to guarantee the quality of matching results.

Usually, schema matching methods apply one or more functions to establish a

similarity value between pairs of elements from schemas. Each pair of elements

is called a matching candidate. These functions, called matchers, receive two ele-

ments as input and estimate a similarity value between 0 and 1, the highest the

value more similar the elements are. Figure 2.1 shows an example of similarity val-

ues generated by the well-known Levenshtein distance function [Miller et al., 2009]

calculated for some elements from two datasets in the Books domain.

Matchers can apply several techniques to measure similarity between elements.

These techniques can be based on the characteristics of schema elements, structural

information, constraints and rules designed by specialists [Nguyen, 2014]. They

apply functions on characteristics such as searching for commom prefix/suffix in

names, compare n-grams, use external information such as dictionaries, compare

the structure of the schemas (tree heights, leaves and children, etc.) and get hints

provided by users.

2.1 Classic Schema Matching Problem 17

Levenshtein
Matcher

Schema B

searchForm
.search

searchForm
.searchType

searchForm
.keyword

searchForm
.shortTitle

searchForm
.shortAuthor

Schema A

search 1.0000 0.6000 0.1429 0.2000 0.2727

search.field
-title

0.0909 0.1818 0.0909 0.3636 0.0000

search.field
-subject

0.1538 0.1538 0.0769 0.0769 0.0769

search.field
-asin

0.2000 0.0000 0.1000 0.0000 0.0000

search.field
-publisher

0.1333 0.1333 0.0667 0.1333 0.2000

search.field
-dateyear

0.1429 0.1429 0.1429 0.1419 0.1429

search.field
-keywords

0.1429 0.1429 0.5000 0.0000 0.1429

Figure 2.1: Similarity values based on the Levenshtein distance.

18 Background and Related Work

Many methods usually have a library of matchers available. After calculating

similarities of matching candidates, these methods might aggregate all similarities

in one matrix (i.e. by calculating the average of all similarities) and use it to select

the matches. The selection of matches can be carried out with simple strategies

such as applying a threshold, or more sophisticated techniques such as machine

learning.

In the example of Figure 2.1, if a method chooses to apply a threshold value of

0.7 in that similarity matrix, the only matching candidate that would be selected

is 〈search,searchForm.search〉.

In the following sections, we highlight some works addressing the classic schema

matching problem. They may rely on heuristics or machine learning techniques.

While heuristics are faster and usually produce a large number of matching, ma-

chine learning methods can produce dedicated models for each different task and

generate better matching results.

2.1.1 Heuristic Methods

The heuristic methods are largely used as they are simple to implement/ execute,

often run fast and generate a large number of matches. However, these methods

are not always consistent when running through different datasets. As observed by

previous studies [Rahm and Bernstein, 2001, Bernstein et al., 2011], these meth-

ods can perform better depending on the dataset and the parameteres chosen.

Some systems such as eTuner [Lee et al., 2007] and SMB [Gal and Sagi, 2010]

were devoted to determine how the matching can be improved by tun-

ing parameters. Systems such as Similarity Flooding [Melnik et al., 2002],

2.1 Classic Schema Matching Problem 19

CUPID [Madhavan et al., 2001], COMA [Do and Rahm, 2002] and Agreement

Maker [Cruz et al., 2009] are representative systems that use fixed heuristics for

combining matchers.

COMA/COMA++ [Do and Rahm, 2002, Aumueller et al., 2005] is a method for

combining matching algorithms. Its execution is a good illustrator of how heuris-

tic methods perfom. Its flow of execution is depicted in Figure 2.2: (a) it starts

by receiving two input schemas from the same domain; (b) all combinations of

elements from the schemas are submitted to pairwise functions called matchers

(such as the Levenshtein distance or evaluating the compatibility of elements data

types). The matchers assign a similarity value to each pair of elements, one of

each schema, according to a predefined function that ranges between [0,1], being 1

the similarity score that means a high similarity. After calculating the similarities,

one aggregator function (such as the Average) is used to summarize all the sim-

ilarities calculated by matchers into one matrix; (c) finally, it applies a selection

method (such as using thresholds) to generate the method’s matching answers and

(d) present them to user.

The authors report, empirically, the best combinations of strategies which are

in its majority, lexical functions. In fact, it is worth noting that a subset of the

matchers proposed is reported as leading to the best combination of matchers.

They also tested different combinations of aggregation and selection functions.

The experiments were performed on ten pairwise matching tasks from the Purchase

Order domain. The authors report results for different configurations of COMA and

argue that each different configuration can be used in different scenarios. When

its best configuration (also referred as the default configuration) is used, COMA

20 Background and Related Work

(a)

(c)

(b)

(d)

Figure 2.2: General process of COMA/COMA++ execution.

achieved Overall1 (a combination of precision and recall) values ranging from 0.6

to 0.7.

Although COMA has matchers that consider the structural hierarchy of elements,

their similarities are diluted by the aggregation function, losing this important

aspect when addressing the schema matching problem. Similarity Flooding

[Melnik et al., 2002] appears as an alternative that strongly considers the struc-

tural aspect of the schemas as its algorithm is based in graph analisys. Its execution

is depicted in Figure 2.3.

Similarity Flooding algorithm starts by (a) transformating the two input

schemas in graphs. Then it applies (b) a string matcher to estimate initial sim-

ilarities between the pairs of elements from the schemas. Next, (c) the flooding

algorithm propagates similarities through graph nodes. Similarities between ele-

ments in the same branches tend to receive partial scores from ancestor elements;

1Overall is defined by the authors as recall ∗ (2− 1
precision).

2.1 Classic Schema Matching Problem 21

(a)

(c)

(b)

(d)

Figure 2.3: General process of Similarity Flooding execution.

Finally, (d) a threshold is applied to prune the most plausible matchings and the

highest similarities are given as the method’s matching answers.

The authors report experiments using nine pairwise matching tasks whose

ground truth were provided by volunteers. On average, the Similarity Flooding

method reached an accuracy value around 0.55. The authors note that in some

of the tasks, the algorithm could perform better as the schemas had more struc-

tural information and, when there were zero or minimal structural information,

the method would struggle to find correspondences. The authors also conclude

that for many matching tasks, at least half of the manual work in matching two

schemas can be saved by using their algorithm. The work by [Shiang et al., 2008]

also uses graph similarity, but they use a string matcher to filter matching candi-

dates and to reduce computation. The method was evaluated with nine matching

22 Background and Related Work

problems and the authors report on average accuracy around 0.59.

As implementations of the methods can be found publicly, COMA and Similar-

ity Flooding were used as representatives of heuristic methods in our experiments.

We give a brief description of two more representative systems that use this kind

of strategy: CUPID and Agreement Maker.

In CUPID [Madhavan et al., 2001], the authors propose a combination of two

types of matchers: linguistic matchers and structural matchers. Linguistic match-

ers use element names, data types and domains. A thesaurus is adopted to address

short forms, acronyms, and synonyms. Structural matchers are based on seman-

tic relationships of schema elements, e.g., elements with matched sub-elements in

XML schemas, are matched. To determine mappings, the similarity evaluations

provided by the matchers are combined using a weighted mean, with weights as-

certained manually. The authors compare CUPID with other matching systems

according to different aspects such as the use of schema structure, thesaurus and

user interaction, though they do not report results on the quality of the results

generated (e.g, precision and recall).

Agreement Maker [Cruz et al., 2009] uses a library of matchers in layers. The

result of the first layer can be used as the input of the following layers. The

matching process is divided into two steps: similarity computation and mapping

selection. In the first step, each pair of elements from both schemas is compared in

order to generate similarities matrices. In the second step, the similarity matrices

are scanned to select the best matchings, taking into account thresholds and the

cardinality of correspondences. Authors presented a demo [Cruz et al., 2009] but

did not report experimental results.

2.1 Classic Schema Matching Problem 23

2.1.2 Machine Learning Methods

Distinct methods can apply a number of different techniques to modify and se-

lect similarity values from the matrices. Some techniques can be heuristics (as

highlighted in the previous section) or machine learning driven approaches. The

latter is one of the most popular approaches, transforms the similarity matrices

in a list of matching candidates with a set of characteristics (i.e. their similarity

values as depicted in Figure 2.4) and addresses the problem as a machine learning

classification problem, in which instances must be classified as TRUE if they are a

true matching pair or FALSE otherwise.

In the example of Figure 2.4, each line of the table (right side) is a match-

ing candidate, containing two schema elements and their similarity values. Each

matching candidate must receive a label TRUE or FALSE depending or whether or

not they represent the same concept.

Once the matching task is modeled as a classification problem, any machine

learning classification algorithm can be, in principle, used to obtain matches.

Strategies vary from learning weights to similarity matrices, to complex models

such as neural networks, and to more intuitive and readable strategies such as

decision trees. As any learning-based strategy, learning-based schema matching

methods also require labeled training examples so a model can be generated. Once

a model is generated, it is used to evaluate unlabeled instances and classify them

as TRUE, if they represent a matching, or FALSE, otherwise.

In Figure 2.5, a model based on decision tree is depicted. Decision Tree

[Quinlan, 1993] is a simple learning strategy that takes decisions in its inner nodes

based on the evaluated instance’s features. When the decisions reach a leaf node,

24 Background and Related Work

Levenshtein
Matcher

Schema B

searchForm
.search

searchForm.
searchType

searchForm.
keyword

...

Schema
A

search 1.0000 0.6000 0.1429 ...

search.field-title 0.0909 0.1818 0.0909 ...

search.field-subject 0.1538 0.1538 0.0769 ...

...

Schema A Schema B Levenshtein Children ...

search searchForm.search 1.0000 0.0385 ...

search searchForm.searchType 0.6000 0.0421 ...

search searchForm.keyword 0.1429 0.0466 ...

search.field-title searchForm.search 0.0909 0.1850 ...

search.field-title searchForm.searchType 0.1818 0.2511 ...

search.field-title searchForm.keyword 0.0909 0.1850 ...

search.field-subject searchForm.search 0.1538 0.2750 ...

search.field-subject searchForm.searchType 0.1538 0.2333 ...

search.field-subject searchForm.keyword 0.0769 0.3292 ...

...

Similarity Matrices

Machine Learning Table

Children
Matcher

Schema B

searchForm
.search

searchForm.
searchType

searchForm.
keyword

...

Schema
A

search 0.0385 0.0421 0.0466 ...

search.field-title 0.1850 0.2511 0.1850 ...

search.field-subject 0.2750 0.2333 0.3292 ...

...

Figure 2.4: Changing from similarity matrices to machine learning instances.

2.1 Classic Schema Matching Problem 25

Levenshtein > 0.7

Children > 0.5

TRUE
tru

e
TRUE FALSE

tru
e

false

false

Figure 2.5: A single decision tree can classify pairs based on their similarity values.

the decision tree gives its classification for that instance.

Taking as example the matching candidate 〈search,searchForm.search〉 de-

scribed as the first row in the table in Figure 2.4, the tree would first evaluate the

decision in the root node: as the matching candidate Levenshtein value is higher

than 0.7, the tree would follow its left path leading to the leaf node TRUE, which

is the label given to that candidate by that decision tree.

The next matching candidate 〈search,searchForm.searchType〉 when sub-

mitted to the same decision tree to evaluation would take the right path after the

first decision (as the matching candidate value of Levenshtein is lower than 0.7),

the second decision also leads to the right path (as the value of Children is lower

than 0.5), and finally reaches a leaf node making the label definition as a FALSE

matching.

As using one single decision tree is a very brittle approach, pro-

posed methods usually combine many learning methods to obtain bet-

ter matching quality [Ngo and Bellahsene, 2012]. State-of-the-art methods

use several strategies, such as combining several decision trees to build a

26 Background and Related Work

meta-model [Duchateau et al., 2009, Rodrigues et al., 2015], combining differ-

ent learning algorithms to create more complex models [Doan et al., 2000,

Gal and Sagi, 2010], and using specialists inputs to help learning models to better

weigh strategies and tune learning parameters [Li et al., 2005].

Once machine learning classifiers require a training set, the user must clas-

sify a substantial amount of instances in the same domain, which may be hard

to acquire. This is a disadvantage if we compare them to the previously de-

scribed heuristic methods, which are unsupervised. On the other hand, machine

learning-based methods are able to generate different models for different match-

ing tasks. A few methods in the literature have applied machine learning tech-

niques to the problem of combining matchers. Amongst the most representative

methods in this category we cite LSD [Doan et al., 2000], SMDD [Li et al., 2005],

YAM [Duchateau et al., 2009] and SMB [Gal and Sagi, 2010].

The LSD system [Doan et al., 2000] was one of the first using a machine learn-

ing method in schema matching problems. According to this approach, first, the

element-level matchers, called base learners, are evaluated using training data.

Then, a component called meta-learner selects and weighs the base learners ac-

cording to their performance on training data. The model resulting from this

process is used for matching tasks. A number of matchers based on schema infor-

mation, instance information and schema constraints are used. LSD is extensible

to receive new matchers. Reported results show that LSD system achieved a pre-

dictive accuracy of from 0.62 to 0.75. All the experiments were conducted on a

single dataset in the Real State domain2.

SMDD - Schema Matching based on Data Distribution [Li et al., 2005] is a

2At the time of writing, we could not find a public source link containing this dataset

2.1 Classic Schema Matching Problem 27

method based on neural networks. It analyses data contents to perform schema

matching. In each matching task, the method receives two schemas S and T . The

method extracts data instances from the schema elements (from schema S) and,

by analyzing its distribution and characteristics, generates distribution vectors as

output. Then, these vectors are clustered into categories (the number of categories

is defined by the user). This result is used to train a neural network in a way that

each node in the output layer represents a cluster. Learning rates can be set by the

user. The distribution vectors from schema T are used as input in the network and

the output is the similarity between input vectors and each category of S. Finally,

candidates with high similarity are selected as answers. The experiments were

conducted using relational schemas from Educational domain. Reported results of

the best cases show a F-Measure value over 0.65.

YAM/YAM++ (Yet Another Matcher) [Duchateau et al., 2009,

Ngo and Bellahsene, 2012] is based on the idea of generating a dedicated

schema matcher for every task, i.e. it generates a different machine learning

model for every new matching task. We depict its execution in Figure 2.6. It has

two phases: a learning phase and a matching phase. In the learning phase, the

method uses a database of matching examples to train its library of matchine

learning classifiers 3. The matching examples are acquired by saving previous

matching tasks or they are provided by a user. Then, the best classifier in

the learning phase is elected as the dedicated matcher. In the matching phase,

the dedicated matcher is used to generate the correspondences of the current

matching task. Optionally, the user can input correspondences as training and

state a preference for precision or recall. Experiments reported show that YAM

3Classifiers from the Weka package available at http://www.cs.waikato.ac.nz/ ml/weka

28 Background and Related Work

User-labeled
correspondences

User
preferences

Training
classifiers

Knowledge
base

Matching
model

Dedicated
matcher

Figure 2.6: YAM first uses its knowledge base to create a dedicated matcher, then
it creates correspondences between schemas.

outperformed COMA++ and Similarity Flooding. It reached an F-Measure of

0.8 in 4 out of 10 matching tasks. The experiments were conducted on several

datasets including travel, currency and webform domains.

As being one of the state-of-the-art machine learning methods for the schema

matching problem, YAM was chosen to be the machine learning baseline method

in our experiments. However, as no public implementation of YAM is available,

we use an emulation of the method in our experiments.

We highlight other methods that use machine learning to address the classic

schema matching problem: SMB [Gal and Sagi, 2010] which tries to use boosting

to tune matchers and the method by [de Carvalho et al., 2013] which proposes a

genetic programming method to find complex matches.

2.1 Classic Schema Matching Problem 29

In [Gal and Sagi, 2010], the authors propose a supervised method called

Schema Matcher Boosting (SMB), which uses the AdaBoost algorithm to combine

schema matchers. In this method, First-line matchers (which receive two attributes

as input) are applied to generate similarity matrices. Second-line matchers (which

receive a similarity matrix as input) are applied to transform one (or more) similar-

ity matrices into another similarity matrix. These matchers are modeled as weak

classifiers and AdaBoost is used to weigh these classifiers taking advantage of the

Boosting technique. The authors reported results showing that SMB can improve

weak classifiers F-Measure up to 34% achieving an F-Measure around 0.75.

The work by [de Carvalho et al., 2013] proposes a genetic programming method

to find complex matchings between two databases. The method analyses data

from two databases and apply strategies previoulsy used in record deduplication

and information retrieval fields to find complex matches. The method is based on

genetic programming. It considers matching functions (and its combinations) as

individuals of the evolutionary population. Following the idea of genetic program-

ming approaches, it performs genetic operations such as crossover and mutation

to evolve individuals for a predefined number of rounds. At the end of the pro-

cess, the population of individuals define which functions will be used to match the

databases. The experiments were conducted with three synthetic datasets and one

real dataset from Google Fusion Tables 4. The reported results were similar for

both real and synthetic datasets. It achieved accuracy value of 1 when identifying

matchings in Real State and Restaurant datasets. The accuracy for Car Dealers

dataset was 0.8. We note that, in our work, we do not consider the identification

of complex matches as they do not comply with the network constraints presented

4https://support.google.com/fusiontables

30 Background and Related Work

later in Section 2.2.

Besides taking only two schemas as input, some methods in the literature of-

ten had considered using information about other schemas in the same domain,

in order to achieve higher accuracy in creating matchings. Some methods would

save previous matches and similarity values to build a knowledge base to train ma-

chine learning methods [Madhavan et al., 2005, Nguyen et al., 2011]. As methods

evolved considering more information and using more complex approaches, the

problem also evolved by the need of finding matches involving data in more than

two schemas. Hence, methods started to consider the schema matching networks

problem.

2.2 Schema Matching Networks Problem

With the number of different sources getting higher and the necessity of in-

teroperability between systems being more commom, there has been a neces-

sity of creating global schemas to represent many different sources in a integra-

tion process. However, when adding a new source to the process, the global

schema created often needed to be rebuilt making this an impractical solu-

tion [Cudré-Mauroux et al., 2006]. Moreover, applications are getting more and

more complex and require more than two schemas unlike the classic schema match-

ing problem. Schema matching network takes as input a (potentially large) set

of schemas in the same domain and outputs matches of elements of the schemas

altogether [Hung et al., 2013].

Classic schema matching methods can be used to generate attribute corre-

spondences between all pairs of schemas. By combining these matches, we have a

2.2 Schema Matching Networks Problem 31

notion of a schema matching network : a network of connected schemas in which

two schemas to be matched do not exist in isolation but participate in a larger

interaction and connect to several other schemas at the same time [Nguyen, 2014].

Consider the schema matching network presented in Figure 1.4. A clas-

sic matching method could execute runs by taking two schemas at a time

(〈Brown,CMU〉, 〈Brown,Cornell〉, 〈Brown,Berkeley〉, ...), and after that, we could

combine all matchings discovered and create a network of matches. However, due

to limitations of such methods, they often generate mismatches and create inco-

herent matchings when evaluating the network as a whole.

To cope with such a coherence issue, some proposals in the literature considered

using network integrity constraints to help maintain the consistency of a matching

network [Hung et al., 2014, Hung et al., 2015].

2.2.1 Classic Schema Matching versus Schema Matching

Networks

Let schemas S = {s1, s2, ..., sn} and T = {T1, T2, ..., Tm} be schemas with their

respective set of elements. A classic schema matching task M is a tuple M =

〈S, T, C〉 containing the schemas S and T , and a set of matching candidates C =

{c1, c2, ..., cj}, where each matching candidate is a tuple c = 〈s, t, l, v〉,∀s ∈ S,∀t ∈

T . Each matching candidate c has associated a label l ∈ {TRUE,FALSE} which

value is TRUE if the elements represent a real matching or FALSE otherwise and a

vector of similarities v.

Each matching candidate c has also associated a vector v = 〈v1, v2, ...vm〉(m ≥

1, vm ∈ [0, 1]) . Each value in v is a similarity score given by one of the m

32 Background and Related Work

matchers available reflecting how similar the elements from c are. Consider

the values given by the matchers Levenshtein and Children in Figure 2.4, the

candidate 〈search.field-subject,searchForm.keyword〉 has the vector v =

{0.0769, 0.3293} as its similarities scores. These similarity values can be also be

visualized as similarity matrices such as the one shown in Figure 2.1.

Given a schema matching M , the task is to find all of the matching candidates

c which its label value l is TRUE.

When considering the networked scenario, a schema matching network N is a

tuple N = 〈S, C,Ω〉 containing a collection of schemas S = {S1, S2, ..., Sn} that

should be matched together, the set of matching candidates C = {c1, c2, ..., cj},

where each candidate is a tuple c = 〈s, t, l, v〉,∀s ∈ Sk,∀t ∈ Sl, (Sk, Sl) ∈ S.

As in the classic schema matching, each candidate c has a vector v of similarity

values and a label l associated. The matching network also has a set of network

constraints Ω = {ω1, ω2, ...}.

When a schema mathing network task N is presented, the goal is to find all

matching candidates c which its label value l is TRUE. The correspondences in the

matching network produced should comply with the set of network constraints Ω.

In this work, we consider two network constraints and their modelling will be

presented in the following section.

2.2.2 Network Integrity Constraints

When a set of correspondences is generated by automatic methods, they often

contain several incoherent matchings creating an uncertain matching network.

The correspondences that are inconsistent with each other are referred as uncertain

2.2 Schema Matching Networks Problem 33

BROWN

● PERSONALDATA
● NAME

● Prefix
● Firstname
● Middlename
● Lastname

CMU

● biography
● fname
● mname
● dob
● lname
● ssn

a
b

c

Figure 2.7: One-to-one constraint violation.

correspondences. To help detecting such inconsistencies, some methods rely on the

concept of network constraints from studies in mapping messagens between P2P

systems [Aberer et al., 2003, Cudré-Mauroux et al., 2006]. These constraints help

to stablish natural consistency conditions of a schema matching network. While

an inconsistent schema matching network violates at least one integrity constraint,

a consistent one has to satisfy all of them [Nguyen, 2014]. The constraints used in

this work are domain-independent, other constraints may be added depending on

the matching task if needed.

In this work, we consider two types of integrity constraints:

• Type I - One-to-one constraint : Any attribute of a schema has at most one

matching attribute in another schema. In Figure 2.7, a, b and, c are uncertain

matchings as the attribute Firstname from Brown has three correspondences

in the schema from CMU.

Formally, ω1 (One-to-one constraint) is defined as follows: Consider elements

a ∈ S1 and b ∈ S2. If a matching c = 〈a, b〉 has label l =TRUE, no other

34 Background and Related Work

candidate cx = 〈a, x〉(x ∈ S2 ∧ x 6= b) can have lx =TRUE and no other

candidate cy = 〈y, b〉(y ∈ S1 ∧ y 6= a) can have ly =TRUE.

• Type II - Cycle constraint : Attributes matched together in different schemas

must form a cycle. In Figure 2.8, the matchings 〈k, l,m〉 violate the cy-

cle constraint as they do not close a cycle. To fix this inconsistency, ei-

ther matching k should be changed to connect Middlename(Brown) and

mname(CMU) or matching m should be changed to connect fname(CMU)

and NAME MIDDLE(Cornell).

Formally, ω2 (Cycle constraint) is defined as follows: Consider elements a ∈

S1, b ∈ S2 and c ∈ S3. If the matching candidates cx = 〈a, b〉 and cy = 〈b, c〉

have labels lx, ly =TRUE, then the candidate cz = 〈a, c〉 must have label

lz =TRUE.

Notice that a group of matchings that do not violate any constraint can still

be incorrect matches, p.e. if we choose 〈Middlename,fname, NAME MIDDLE〉 in Fig-

ure 2.8 as the matching answers, the cycle constraint holds. However, they do not

represent the same concept in the real world. Also, a group of uncertain matchings

may not have a single correct matching.

Network integrity constraints may not guaranttee that matchings are correct.

However, they can be used to find incorrect matches. When a group of uncertain

matches is found, at least one of the matchings is guaranteed to be an invalid cor-

respondence. Methods that rely on this constraints have to decide which matching

is incorrect by using another source of information such as their similarity values.

Although the network integrity constraints presented can help identify possible

mistakes in the network, they do not hold when complex matches occur in the

2.2 Schema Matching Networks Problem 35

BROWN

● PERSONALDATA
● NAME

● Prefix
● Firstname
● Middlename
● Lastname

CMU

● biography
● fname
● mname
● dob
● lname
● ssn

CORNELL

● BiographicalInformation
● NAME_LAST
● NAME_FIRST
● NAME_MIDDLE
● SS_NUM
● CITY

k

l

m

Figure 2.8: Cycle constraint violation.

matching task. For example, if the BROWN schema contains an element FullName

and schema CMU contains the elements FisrtName and LastName, they should be

matched together as they represent one concept in the schemas. This problem has

been considered in the classic schema matching scenario [de Carvalho et al., 2013].

As other works in schema matching networks [Hung et al., 2014, Nguyen, 2014],

we do not consider this type of matchings.

We highlight a couple of proposals that first used the network con-

straints to help establish the consistency of networks [Aberer et al., 2003,

Cudré-Mauroux et al., 2006] and some methods addressing the schema

matching problem when a global schema is known and can be matched

against [He and Chang, 2003, Madhavan et al., 2005, Su et al., 2006,

Nguyen et al., 2011].

36 Background and Related Work

The network constraints presented in Section 2.2 were first considered for other

areas of study. Aberer et al. [Aberer et al., 2003] address the problem of establish-

ing mappings between P2P systems in order to make them interoperate between

themselves. Their method creates a network model between all the peers. Peers

start pinging neighbours and spreading messages with their own semantics. Using

syntatic similarities as initial scores, these values are propagated to neighbours

using the network rules (such as the cycle constraint). In experiments, the authors

conclude that with more links between peers, the better is the propagation of the

mappings.

The work by Cudré-Maroux et al. [Cudré-Mauroux et al., 2006] also focus on

providing a model to enable messages between P2P systems. They consider that

there is no global schema that every schema can be mapped against. Instead they

focus on making local compositions, pair-wise mappings and then propagate them

through the network. The method starts by modeling the Peer Data Management

Systems as probabilistic graphs. Probabilities between peers are assigned if a

mapping is found between such peers. Using the cycle constraint, the probabilities

are propagated and with each propagation round, new probabilities are calculated.

In the experiments, the authors calculate the accuracy of mappings using different

values of a threshold. They found that when using the threshold Θ = 0.6, they

achieve at least 0.50 of accuracy. Higher values of threshold do not lead to better

results.

Unlike the aforementioned work that consider a global schema does not ex-

ist, several works in the schema matching field have been presented making that

assumption. They consider that, for each domain, there is a global schema that

all schemas in the same domain can be matched against, and, usually, the global

2.2 Schema Matching Networks Problem 37

schema is known.

The MGS framework [He and Chang, 2003] aims at matching input schemas

by finding correspondences between them and a schema model. The hypothesis

is that schemas are being generated by a finite vocabulary of schema attributes,

with some probabilistic behavior. The framework has tree steps: Hypothesis Mod-

eling, Hypothesis Generation and Hypothesis Selection. In the step of hypothesis

modeling, a synonym discovery approach is used to generate matching candidates

and associate them with a probability score. In the hypothesis generation step,

consistent models are generated, i.e. sets of matching candidates with non-zero

probabilities are selected as long as they do not contradict each other. Finally,

in the hypothesis selection step, models are tested with Chi-Square test (χ2) to

quantify how consistent the model is with the data from input schemas. Based on

this test, a model is selected as the schema model. The framework was tested with

more than 200 sources (web queries) over four domains (movies, music, automo-

biles and books). In experiments, authors report that the method could find most

of the correct matches when there are more schemas to be analyzed. It reached

precision of 0.84 and recall of 0.88. We notice the number of matchings in the

tasks were small: 8 on average.

Corpus-based Schema Matching [Madhavan et al., 2005] builds a corpus of

schemas in a given domain to improve matching algorithms. The corpus is a

collection of schemas and mappings between some schema elements. Schemas in

the corpus are related but need not be mapped to each other. Since the schemas

were defined by different designers, the corpus has a number of representations of

each concept in the domain. When new schemas are matched, its elements are

matched against the set of concepts. Hence, it can increase the evidence about

38 Background and Related Work

a schema element by adding data from the corpus and learn patterns to infer

constraints and prune candidate correspondences. The authors use several base

learners to match schema elements to concepts in the corpus (such as name and

data instance learners). These learners are trained with examples of schema ele-

ments that have a known mapping to another element and schema elements that

are similar to each other. A meta-learner uses logistic regression to combine the

base learners predictions and decide if an element is similar to a concept in the

corpus. Once elements are matched to concepts, an augment method is applied

to enrich elements information. The augmented model is used to generate several

statistics about elements, for instance neighborhood and ordering. These statistics

that are later used to generate and prune candidate matchings. Similar ideas were

also used in [He and Chang, 2003]. The experiments were performed with four

datasets5(AUTO, REAL STATE, INVSMALL and INVENTORY). It achieved

average precision around 0.83, average recall around 0.79 and average f-measure

around 0.79.

Holistic Schema Matching (HSM) [Su et al., 2006] focus on matching across

query interfaces. The method uses the network of schemas in a different way: it

takes advantage of terms occurrence patterns within a domain to discover match-

ings. Also, the method can discover complex matchings. It calculates two scores:

the matching score and the grouping score. The matching score reflects the simi-

larity of a candidate based on their cross-copresence count in schemas. This score

is calculated as follows: a set of synonym attributes are generated by taking pairs

of schema attributes, a heuristic is applied to reduce the number of candidates,

each candidate receives a score based on its cross-copresence count, the higher

5The datasets are no longer available at the reported web address

2.2 Schema Matching Networks Problem 39

its counter, the more likely the attributes are synonym attributes. The grouping

score generates higher score between two attributes if they co-occur in the same

schema. This score is used to discover complex matchings, for instance, if at-

tributes first-name and last-name co-occur frequently in schemas, they receive

a high grouping score. After calculating scores, a greedy algorithm is applied to

generate the list of matchings returned. Candidate pairs with higher matching

scores are added to the set of matchings. If a pair contains an attribute already

matched, it is added to the set of matchings only if the grouping score is higher than

a threshold. Thus, the attributes are grouped composing a complex match. HSM

was tested in TEL-8 and BAMM datasets6, across the two datasets, it achieved

average target precision of 0.75 and average target recall of 0.92.

Nguyen et. al [Nguyen et al., 2011] face the problem of integrating several

product descriptions from online stores sources into their catalog (their global

schema). Each store sells many products from different categories. For each cate-

gory, the stores have a list of attributes describing products in that category (which

can be viewed as a schema). Their task is to find correspondences between the

attributes in the stores schemas and their catalog, in order to enable adding prod-

uct information in the catalog database. The method uses distributional similarity

functions and machine learning to perform the matching task.

The work by Alani and Saad [Alani and Saad, 2017] proposes an ontology-

based clustering approach to match web-query interfaces (which act as schemas).

It has two phases: First, the method creates an ontology by using a semantic

knowledge dictionary called XBenchMatch. The elements of the ontology created

6Datasets from UIUC Web Integration Repository, available at
http://metaquerier.cs.uiuc.edu/repository

40 Background and Related Work

are related to each schema attributes. The matching is performed by calculating

scores for each attribute based on their labels and values. Scores used include

similarity by N-Gram, semantic (using a external dictionary) and TF-IDF. A clus-

tering method based on the work by Williams [Williams, 2010] is used to aggregate

similar nodes in the ontology. The authors report results in two datasets reaching

F1-score of at least 0.86.

The work by Toan et. al [Toan et al., 2018] addresses the problem by using

a probabilistic model to find common concepts in different schemas. Their as-

sumption is that schemas in the same domain are formed by the same concepts,

however, concepts might be modelled differently. By using a pre-calculated simi-

larity scores, the method generates a probability for each concept being present in

each schema. Then, concepts with higher probabilities classified as being present

in the schema. The authors report results in the Purchase Order dataset using

different thresholds. The method manages to achieve values of precision and recall

from at least 0.6.

2.3 Schema Reconciliation Networks

The matching methods proposed over the years can achieve a good performance

on some datasets. However, they cannot be expected to yield a correct result in

general. Since matchers rely on heuristic techniques, their result is inherently un-

certain. In practice, data integration tasks often include a post-matching phase, in

which correspondences are reviewed and validated by an expert [Hung et al., 2014].

The expert can also tune parameters. However, this is the most difficult kind

of interaction, as the user must know details on the method and the schemas

2.3 Schema Reconciliation Networks 41

involved. In addition, tuning the parameters can lead to trial-and-error use of the

method [Do and Rahm, 2002, Lee et al., 2007].

In the case of machine learning based methods, when the user provides match-

ing examples to a method, they usually have to be in the same domain, so the

method can learn from them. In this case, the user also should be familiar with the

concepts in the domain. This interaction is often performed before the execution of

supervised machine learning methods [Doan et al., 2001, Duchateau et al., 2009]

and can be performed during the execution of active learning methods.

In our work, we consider the schema reconciliation approach, which adopts

a post-matching phase where a human expert reviews, validates and corrects the

generated correspondences [Nguyen et al., 2013]. The reconcilation phase often oc-

curs after a schema matching method is executed as it generates many mismatches

and many uncertain matching answers. The generated answers are submitted to

a user (or a crowd of users) to assertion.

As evidenced by Duchateau et al. [Duchateau et al., 2008], it is most advan-

tageous to assert generated correspondences than providing matching examples,

i.e., it is easier to validate or not a discovered mapping than manually browsing

large schemas for adding new matches. Hence, our work addresses the last part of

the matching task by taking user assertion on generated matchings, although we

briefly address the user participating in the beggining of the matching process as

well.

As an example, in Figure 2.9, a matching method generated two matching

candidates and presented them to user assertion. The user can accept or reject

any of the candidates. A reliable user would accept the matching candidate a -

〈Firstname,fname〉 and reject the candidate b - 〈Firstname,lname〉. Therefore, a

42 Background and Related Work

BROWN

● PERSONALDATA
● NAME

● Prefix
● Firstname
● Middlename
● Lastname

CMU

● biography
● fname
● mname
● dob
● lname
● ssn

a

b

Figure 2.9: User assertion of two matching candidates.

method can correct its matching network with two user assertions.

If a matching method also considers the integrity constraints in its model,

the reconciliation phase can be optimized: instead of asking the user to assert

the two matching outputs, a method can guide a user to review candidates in a

certain order that can minimize her effort. In the same example in Figure 2.9, if

an user accepts the matching a - 〈Firstname,fname〉, a method can realize that

Firstname can no longer have any matching in the CMU schema, otherwise it will no

longer satisfy the one-to-one constraint. Therefore, the method can automatically

reject the matching candidate b - 〈Firstname,lname〉. That way, the reconciliation

process queries the user only one time instead of two.

As representatives of methods that adopt the reconciliation approach,

we highlight the works of by Hung et. al [Hung et al., 2014] and

ArgSM [Nguyen et al., 2013]. While the first presents a probabilistic model to

reduce the uncertainty of matching networks, the latter presents a tool to help

guiding users in reconciling schema matching networks generated by automatic

methods.

2.3 Schema Reconciliation Networks 43

The work by Hung et. al [Hung et al., 2014] proposes a model for probabilistic

matching networks. The method takes the output of a matching system and it

constructs a network that contains the schema elements matched and a confidence

score associated, both provided by the matching system. As the answers given by

a matching system are often incorrect, the graph constructed will have violations

of the constraints (presented in Section 2.2.2). The method aims at selecting the

correspondences with higher confidence score associated and satisfy all integrity

constraints. A measure of uncertainty of the network is calculated, when its value

is zero it means that there are no violations in the network. The method continues

in a loop selecting a correspondence, eliciting user approval or disapproval and

updating probabilities of correspondences until the uncertainty reduces to a de-

sired value or it reaches a limit budget of user effort. When the loop stops, all the

remaining correspondences are presented as the matched network. The authors

did experiments with four datasets (Business Partner, Purchase Order, Univer-

sity Application Form and WebForms)7 and reported average results of precision

(0.85) and recall (0.70). The a priori evidence used in this work is the output of

semi-automatic matching prototypes. In contrast, other studies rely on matchers

similarities.

The next work by Hung et. al [Nguyen et al., 2013] proposes ArgSM, a frame-

work to help the process of reconciling a network of schemas. They propose a

representation that captures the experts beliefs and enable reasoning about their

inputs. The framework can detect conflicts in assertions and guide the resolu-

tion by re-asking users. The collaborative reconciliation works as follows: First,

an individual validation phase occurs, when each one of the experts evaluate the

7Datasets available at http://lsirwww.epfl.ch/schema matching/

44 Background and Related Work

same quantity of matches, but different sets (with overlapping matchings). Then

an input combination phase takes place, when the individual inputs are combined.

The correspondences should satisfy all network constraints, if there are conflicting

views about a matching, they apply an argumentation algorithm to decide which

view to accept.

Others consider using a crowd of users when reconciliating matching net-

works [Nguyen et al., 2013, Hung et al., 2013]. They consider, besides the asser-

tions of matching answers, the quality of the users based on their domain knowledge

and previous assertions. However, we consider these settings out of our scope and

do not address this kind of interaction.

To the best of our knowledge, none of the aforementioned pieces of work have

a public tool available for testing. To address the participation of the specialist in

the reconciliation process experiments, we assume as well as all mentioned works

that she will always give correct assertions about matching candidates and we will

consider an unlimited assertions budget. We also address the reconciliation as a

step of the matching process. We consider the reconciliation task with a single

user with no optimizations regarding the order of questions asked, i.e., we do not

intend to minimize the number of asked questions as other works may focus. The

reconciliation is only performed to show that our method can achieve even higher

results regarding the matching quality. We leave the optimization as a future work.

Chapter 3

Using Machine Learning for

Schema Matching and Schema

Reconciliation Networks

As discussed in Section 2.1.2, learning methods have been used by several methods

in the literature to address the classic schema matching. However, to the best of

our knowledge, this kind of technique has not been exploited when considering the

networked scenario. In our work, we exploit this approach in a family of methods

we present in this chapter. First, we present RF4SM - Random Forest for Schema

Matching, a machine learning based technique to address the schema matching net-

works problem. Next, we present RF4SM-B - Random Forest for Schema Matching

Boosting, which is an extension the first method that acquires training instances

with no labelling effort by taking answers from unsupervised heuristic methods

while maintaining matching quality. Finally, we present RF4SM-B-Rec, which

brings the specialist back into the process by asking them to assert matching an-

46 Using Machine Learning for Schema Matching and Schema Reconciliation Networks

swers from our method. That way, she can contribute to improve matching quality,

but the method spares her from exhaustive work.

3.1 Why a learning approach?

Learning approaches have appeared as the technique of choice for several schema

matching methods such those by Li et al. [Li et al., 2005], Madhavan et

al. [Madhavan et al., 2005] and YAM [Duchateau et al., 2009]. These methods

rely on getting a large set of examples to train models. Once models are created,

new schema matching tasks can be provided as input and the method can generate

correspondences between the schemas.

Unlike heuristic methods, learning methods can create different matching gen-

erators for each new matching task provided. By its deterministic nature, the only

way heuristic methods can create new models is if their parameters are changed.

However, tuning parameters of such method requires a deep knowledge of the

functionality of the method and on the schemas involved. In other words, the

designer should know which functions to tune up and which ones to fade down to

achieve better matching quality. This instability across different domains can be

observed as there is no single method with better matching quality and several

new heuristics keep appearing in the literature [Bernstein et al., 2011].

To avoid such directed tunings, we decided to explore using learning ap-

proaches. As detailed in Chapter 2, the schema matching task is viewed as a

classification task, where, given a pair of elements from two schemas 〈eS1 , eS2〉 (or

a matching candidate), the method should assign a label TRUE if the elements are

a real matching, or FALSE otherwise.

3.1 Why a learning approach? 47

We start the conception of this method by testing several supervised

learning approaches to verify if there is a suitable technique to the schema

matching networks problem. Considering that the same labeled set of in-

stances is given as the training set of examples, we can generate several

models for the matching task and use the ground truth to evaluate such

models. We tested as our base learning strategies: the Decision Tree

(J48) [Quinlan, 1993], AdaBoost algorithm [Freund and Schapire, 1997], Logis-

tic Regression [Walker and Duncan, 1967], Random Trees [Ho, 1995] and Random

Forest [Bishop, 2006]. All of the learning strategies available in the Weka pack-

age [Hall et al., 2009].

Figure 3.1 illustrates how we carried out the testing process. For each matching

task, a random set of instances (matching examples) was taken as the training

examples Itr. Next, the same set of examples is given to each classifier that learns a

different supervised model (Sup Model) according to its strategy. Finally, models

are tested with the remainder of unlabeled instances. Each model generates a label

for each matching instance: if elements correspond to each other, the label given

is TRUE. Otherwise, the label given is FALSE.

Formally, given a labeled training set of examples Itr, perform training accord-

ing to a supervised learning algorithm and create a model Sup Model that will

classify the remainder of unlabeled instances, the test set Its. In Chapter 4, we

detail this experiment and the results obtained for each of the learning strategies

tested. The best supervised learning algorithm according to that experiment was

chosen to be the base classifier of the method. This draft method is described in

Algorithm 1.

The draft method works by taking a random subset of examples and providing

48 Using Machine Learning for Schema Matching and Schema Reconciliation Networks

Decision Tree

Levenshtein > 0.7

Children > 0.5

TRUE FALSE TRUE

AdaBoost

FALSE TRUE

Decision
Stump

5.28
Decision
Stump

0.99

Decision
Stump

0.79

Class True :
-6.13 +
[Datatype] * 1.51 +
[Synonym] * 1.62 +
[ISubPaths] * -0.24 +
[Leaves] * 1.2 +
[NamePath] * 0.82

Class False :
6.13 +
[Datatype] * -1.51 +
[Synonym] * -1.62 +
[ISubPaths] * 0.24 +
[Leaves] * -1.2 +
[NamePath] * - 0.82

Logistic
Regression

Random
Tree

FALSE TRUE

Random
Forest

Training
examples

Matching
answers

Itr
Sup_Model M+

Figure 3.1: Draft Algorithm flow.

3.2 Choosing a Learning Approach - RF4SM 49

Algorithm 1 Draft Algorithm(C, p)

C is the set of all matching candidates from the matching network
p is the percentage of training instances used

1: Itr ← randomSubset(C, p) . random training instances
2: Its ← I \ Itr . test set
3: Sup model← SupervisedLearningAlgorithm(Itr) generates a learning model

using one of machine learning methods available
4: (M+,M−)← classify(Sup model, Its) . classified instances
5: return M+ . matching candidates classified as TRUE

them as training for a supervised learning algorithm. Once the learning occurs, a

model is generated and it can be used to classify the remainder of the instances.

All the matches found by the model compose the matching network.

3.2 Choosing a Learning Approach - RF4SM

The experiments for choosing the most suitable approach to the schema match-

ing networks problem are further detailed in Section 4.2. Our conclusion is that

Random Forest was the most suitable algorithm and it was chosen as our base clas-

sifier. The Random Forest algorithm is simple and flexible enough to be applied

to different types of input [Bishop, 2006] and easy to implement.

Besides better matching quality, other methods (such as Yet Another

Matcher [Duchateau et al., 2009, Ngo and Bellahsene, 2012], the work of Rong et.

al [Rong et al., 2012], ALMa [Rodrigues et al., 2015], and the work of Reis et.

al [Reis et al., 2017]) used forests of trees or random forests as learning algorithms

to address the matching problem. This fact also backed up our decision to go with

decision trees as the basic learning approach.

Once we decided on the base classifier, the supervised learning method for

50 Using Machine Learning for Schema Matching and Schema Reconciliation Networks

schema matching networks can be defined according to Algorithm 2. We modify

the Draft Algorithm by setting the Random Forest as the default learning algo-

rithm. From this point forward, the strategy will be referenced as RF4SM - Random

Forest for Schema Matching and it is depicted in Figure 3.2.

RF4SM receives as input a network of schemas to be matched. By combining

all possible pairs of elements between schemas, a set C of matching candidates is

created. A random subset of the matching candidates is labeled and used as the

training set Itr. Next, the RF4SM model is generated by training according to

the Random Forest technique. Finally the model is used to evaluate the matching

candidates. Those which get the label TRUE will compose the answer of the method,

i.e. the schema matching network M+.

Algorithm 2 RF4SM Algorithm(C)

C is the set of all matching candidates from the matching network
p is the percentage of training instances used

1: Itr ← randomSubset(C, p) . random training instances
2: Its ← I \ Itr . test set
3: RF4SM model← randomForestSupervisedLearning(Itr)
4: (M+,M−)← classify(RF4SM model, Its) . classified instances
5: return M+ . matching candidates classified as TRUE

This simple training and testing technique has been used to address the classic

schema matching problem. One can try create a different model for every pair

of schemas in a matching network and unify their matches. The issue with this

approach is that is hard to learn good models with a small amount of examples.

Also if the matching tasks are addressed separately, no common knowledge can be

transferred from one to another as opposed to the networked scenario where all

data from schemas are in one task.

RF4SM takes a labeled set of examples as training and generates a learning

3.2 Choosing a Learning Approach - RF4SM 51

FALSE TRUE

Random Forest

Matching
candidates

Training
examples

<random>

Network of schemas

Schema Matching
Network

RF4SM

M+

RF4SM_Model

I tr

C

Figure 3.2: RF4SM algorithm flow.

model. The generated model then evaluates the matching candidates from the

network and classifies them as TRUE if the candidate is a valid correspondence or

FALSE otherwise. In cases where a large set of labeled examples is obtained without

asking the user for labels, RF4SM can be a suitable option, such as when a crowd

of users is available for labeling. However, that might not always be the case.

Also, the schema matching networks problem requires that network constraints

are obeyed.

To cope with that scenario, we evolved our method to take in consideration

both facts and make it more suitable to the problem. The next goal is to generate

a network of matchings with no inconsistencies while sparing the user the effort of

52 Using Machine Learning for Schema Matching and Schema Reconciliation Networks

labelling instances.

3.3 RF4SM-Boosting

A supervised strategy can achieve good results regarding the matching quality.

However, it requires a massive training set of labeled examples making it unfeasible

in real applications as the examples must be revised by an human expert.

As a successful approach in the classic schema matching, the supervised method

faces new challenges when considering the networked scenario: the amount of data

in the task is much bigger, the amount of training required might be unfeasible or

costly, and there are network constraints that should not be violated.

3.3.1 Unfiltered-RF4SM-B

To overcome the scalability issue, we decided to test an automatic training ap-

proach. We depict this strategy in Figure 3.3. We are going to boost the learning

process by taking the answers of a base method, more specifically, a heuristic

method generates a set of positive matchings (A+) which automatically label the

matching candidates used in traning. Similar to RF4SM (presented in Section 3.2),

the combination pairs of all schema elements form the set of matching candidates

C.

Those candidates which were evaluated as positives by the base method receive

the label TRUE. By default in heuristic methods, all the remaining matching can-

didates receive the label FALSE (A−). As the number negative examples are much

bigger than the positives, only a random subset of this set is used in training. Once

the training set is automatically created, it is submitted to the learning algorithm

3.3 RF4SM-Boosting 53

FALSE TRUE

Random Forest

Matching
answers

Training
examples

<random>

Network of
schemas

Schema Matching
Network

Unfiltered
RF4SM-B

Heuristic
methodC

I tr

RF4SM_Model

M+

Figure 3.3: Unfiltered RF4SM-B algorithm flow.

based on Random Forest and the RF4SM-B model is generated. Finally, the model

is used to classify all matching candidates and those evaluated as TRUE matchings

will compose the schema matching network.

Heuristic methods often generate incorrect matching answers. Hence, the auto-

matically labeled training might contain many mislabels. As no prunning strategy

is applied to remove possible mislabels, this method is referenced as Unfiltered

RF4SM-B. This strategy is described in Algorithm 3.

This approach is able to gather a great amount of training examples. As ev-

idenced by further experiments (see Section 4.3.1), this process can address the

issue of amount of examples. However, as automatic methods do not consider

the network constraints, they often generate inconsistent matchings containing

54 Using Machine Learning for Schema Matching and Schema Reconciliation Networks

Algorithm 3 Unfiltered RF4SM-B Algorithm(C,A+)

C is the set of all maching candidates from the network
A+ is the set of positive answers given by the base method

1: A− ← I \ A+

. by default, all non-positive answers from a base method are considered as
negative

2: A− ← randomSubset(A−, k)
. k is the size of the random negative subset of instances

3: Itr ← A+ ∪ A− . the training set is the union of positive and negative sets
4: RF model← randomForestSupervisedLearning(Itr)

. training procedure
5: (M+,M−)← classify(RF model, I) . classifying instances
6: return M+ . matching candidates classified as TRUE

possible false positives, making the automatic training lack in quality of the ex-

amples. When these mislabeled matchings are used as training, they can confuse

the learning process creating even more inconsistent matching networks.

3.3.2 Filtered-RF4SM-B

In order to obtain a cleaner automatic training set, we also consider taking the set

of positive answers given by the base method and submitting them to the network

constraints. The rationale is to avoid false positives in the training set and possibly

learning better models. Also, the network constraints help to identify negative

examples, which in Unfiltered RF4SM-B were taken as the default answer of the

heuristic method.

For example, in Figure 3.4 (which we repeat in this chapter, for better reading),

if the matching a is given as a TRUE matching, we can automatically label matching

candidates b and c as FALSE matchings. We obtained three labeled instances with

only one given label. Using this rationale, we can automatically generate FALSE

3.3 RF4SM-Boosting 55

BROWN

● PERSONALDATA
● NAME

● Prefix
● Firstname
● Middlename
● Lastname

CMU

● biography
● fname
● mname
● dob
● lname
● ssn

a
b

c

Figure 3.4: One-to-one constraint violation.

matchings to our training set. Hence, we stop taking negative examples from the

heuristic method.

In Figure 3.5 we depict the flow of the Filtered-RF4SM-B algorithm. First, a

set of schemas is submitted to the (heuristic) base method. It generates a set of

positive matches A+. Unlike Unfiltered -RF4SM-B (presented in Section 3.3.1),

the set A+ is filtered using the network constraints (previously presented in Sec-

tion 2.2.2). The filtering generates a set of accepted matchings A+, a set of

rejected matchings A− and a set of uncertain matchings U . The accepted match-

ings are the ones that do not conflict with any other. The rejected matchings are

automatically generated used the network constraints (as mentioned in the exam-

ple above). The uncertain matchings are the set of matchings that conflict with

each other.

The accepted and the rejected matchings are used in the training step. The

Filtered RF4SM-B model is generated using the Random Forest algorithm. Fi-

nally, the model is used to evaluate the matching candidates. Candidates classified

56 Using Machine Learning for Schema Matching and Schema Reconciliation Networks

FALSE TRUE

Random Forest

Matching
answers

Training
examples

Network of
schemas

Schema Matching
Network

Filtered
RF4SM-B

Heuristic
method

<network constraints>

C

I tr

M+

RF4SM_Model

Figure 3.5: Filtered-RF4SM-B algorithm flow.

as TRUE matchings compose the schema matching network.

As in Unfiltered RF4SM-B algorithm, all of the positive matchings found (M+)

are used to build the schema matching network. In the further experiments in

Section 4.3, we test both strategies to verify how the filtering process changes

the models learned and the impact caused when evaluating the matching answers

generated. We verify that besides a smaller training set, the filtered set has better

quality and it leads to better matching quality.

The Filtered RF4SM-B method is an evolution of RF4SM-B that eliminates the

user participation in labeling examples. A further improvement would be to use

the user knowledge in the reconciliation matching network task, which is, usually,

less laborious than labeling training examples. Also, at this point, a network of

3.4 Filtered -RF4SM-B-Reconciliation 57

Algorithm 4 Filtered RF4SM-B Algorithm(C,A+)

C is the set of all maching candidates from the network
A+ is the set of positive answers given by the base method

1: (A+, A−, U)← networkRestrictionsF ilter(A+)
. the network restrictions produce three sets: the accepted instances A+, the
rejected instances A− and the uncertain instances U

. A+ is the set of matchings that were given as TRUE and accepted by the
network restrictions

. A− is the set of matchings that were rejected by network
restrictions. Recall Figure 3.4, when one matching is accepted as TRUE, other
matchings can be taken as FALSE

. U is the set of uncertain matchings, i.e. they conflict with each other.
2: Itr ← A+ ∪ A− . the training set is the union of positive and negative sets
3: RF model← randomForestSupervisedLearning(Itr)

. training procedure
4: (M+,M−)← classify(RF model, I) . classifying instances
5: return M+ . matching candidates classified as TRUE

matchings is already built, which means this step is optional and only needed if a

boost in the quality of the matchings is required.

3.4 Filtered-RF4SM-B-Reconciliation

As it occurs after the schema matching process finishes, the reconciliation task can

be optional. However, it is an important step as it can help to enhance the results of

a matching network process. The user participates in the process by reconciliating

matching answers, i.e. the user acts by accepting or rejecting matching answers

(or matching candidates).

This process does not require much knowledge from the user (compared to tun-

ing the parameters of a method) apart from knowing the schemas involved. Also,

it is smaller than the job of labeling training examples. Moreover, the networked

scenario magnifies the task size and the task requires an eased user effort to avoid

58 Using Machine Learning for Schema Matching and Schema Reconciliation Networks

human errors and lower the cost of the process.

Some methods [Hung et al., 2013, Nguyen et al., 2013] consider that a crowd

of users is available. However, we do not consider this option as other factors have

to be considered such as reliability of a user. We consider that only one user is

available and she is reliable to perform the reconciliation. Our goal is to verify how

much the quality of matching results can be improved. We leave the optimizations

of that task for future researches.

The reconciliation process is described in Figure 3.6. After the schema match-

ing network task is performed by Filtered-RF4SM-B, a set of matching answers M+

is generated. This set of answers is submitted to the network constraints in order

to obtain a consistent set of answers. The uncertain matchings U+ are given to the

user for reconciliation, the user can either accept an uncertain matching labeling it

as a TRUE matching or rejecting it (hence labeling it as FALSE). The final matching

answers are the union of both sets of classified TRUE matchings by the method and

the accepted matchings by the user. The RF4SM-B-Rec algorithm is described in

Algorithm 5.

The user effort by only reconciliating the uncertain matches is reduced (com-

pared to evaluating all of the answers). Further optimizations can be performed

to reduce the quantity of user assertions, such as changing the order uncertain

matches are presented to the user [Hung et al., 2014] and using a crowd of experts

to evaluate answers, we leave that to future work. Our intent in this study is

to verify how a user can contribute to the schema matching network task while

keeping the reconciliation a feasible task.

Section 4.4 presents the experiments performed to verify the improvement pro-

vided by a user when reconciliating the results of RF4SM-B. We compare the effort

3.5 Summing up 59

Network of
schemas

Schema Matching
Network

RF4SM-B-Rec

Filtered
RF4SM-B

<network constraints>

Uncertain
matchings

<user assertion>

Final Schema
Matching Network

M+

U

M
+

Figure 3.6: Filtered -RF4SM-B-Rec algorithm flow.

made by a user when reconciliating automatic methods and Filtered-RF4SM-B

and how the use of different base systems impact in the final stage.

As evidenced by our experiments, we conclude that it is more advantageous

to first prune uncertain matching candidates before giving them to user assertion.

We observe that their work can be highly reduced up to 6 times while achieving

similar levels of final matching quality.

3.5 Summing up

In this chapter we presented a family of methods to address the Schema Matching

Networks problem by using machine learning techniques. First, in Section 3.2,

we presented Random Forest for Schema Matching - RF4SM. This first method

60 Using Machine Learning for Schema Matching and Schema Reconciliation Networks

Algorithm 5 RF4SM-B-Rec Algorithm(C,A+)

C is the set of all matching candidates from the network
A+ is the set of positive answers given by the base method

1: M+ ← Filtered RF4SM -B Algorithm(C,A+)
. Filtered-RF4SM algorithm presented in Algorithm 4

2: (M+,M−, U)← networkRestrictionsF ilter(M+)
. the network restrictions produce three sets: the accepted instances M+, the
rejected instances M− and the uncertain instances U

3: (U+, U−)← userReconciliation(U)
. the user accepts or rejects instances in the reconciliation process

4: M+ ←M+ ∪ U+

5: return M+ . matching candidates classified as TRUE

leverages the use of a machine learning algorithm to address the schema matching

networks problem. Machine learning approaches have the advantage over heuristic

approaches as they can yield specific models for different matching tasks, whilst

heuristic approaches heavily rely on an expert for tunning the method and finding

the best heuristic for every single task.

Next, we presented RF4SM-B in Section 3.3, a method that uses a boosting

strategy to automatically acquire training examples. Hence it eliminates the user

participation in labeling examples. The training examples are acquired by taking

answers from a heuristic approach. In RF4SM-B this set of answers were handled

in two ways: by applying or not a filter based on network constraints. Unfiltered-

RF4SM-B does not uses the filter when taking the automatic training. On the other

end, Filtered-RF4SM-B uses network constraints to prune inconsistent matchings

from the training. The cleaner the training set, the better the models are learned

leading to better matching quality in terms of precision.

As the user was spared of labeling examples in the begginning of the matching

process, she can now be used to assert the schema matching network generated by

3.5 Summing up 61

our method. This is the process knows as the schema reconciliation. In Section 3.4,

we present RF4SM-B-Rec, a method that uses the network constraints and user

assertions to enhance the matching quality. As the user provides feedback, her

assertions can be used to remove incorrect matchings. Also, using the network

constraints, the method can derive undiscovered matchings and prevent the user

of asserting unnecessary mismatches.

In the following chapter, we present experiments that corroborate our hypoth-

esis that cleaner training sets yield to better models, evaluate how much “dirty”

training there is in the training sets and its impact in the matching networks. We

also present experiments verifying that our method yield less amount of user effort

in the schema reconciliation process.

62 Using Machine Learning for Schema Matching and Schema Reconciliation Networks

Chapter 4

Experiments

In this chapter, we present an experimental evaluation of the methods we proposed

and presented in the previous chapters. Our goal is to validate our assumptions and

claims, by evaluating how our methods perform running over datasets previously

used in schema matching experiments.

4.1 General Settings

Datasets. All of the experiments presented in this study will feature a collection

of five datasets. Each dataset represents a task of matching a network of schemas,

and contains more than two schemas. All of the schemas in a dataset belong to the

same domain. An overview of the datasets characteristics is presented in Table 4.1.

As indicated in this table, all these datasets were already used in previous work.

There are five domains with a certain number of schemas that compose a

network. Also, each pair of schemas in each network has different numbers of

matches between them. We stress that the actual number of matches to be found

64 Experiments

Table 4.1: Datasets characteristics. For better reading, we present the
references cited in this table here. A-[Duchateau and Bellahsene, 2010],
B-[Aumueller et al., 2005], C-[Drumm et al., 2007], D-[Hung et al., 2014],
E-[Su et al., 2006], F-[He and Chang, 2003], G-[Do and Rahm, 2002], H-
[Rodrigues et al., 2015].

Domain Betting
Business
Partner

Magazine
Subscription

Online
Book

Purchase
Order

#Schemas
in network

12 3 12 4 5

#Matching
tasks

66 3 66 6 10

#Candidate
matchings

45013 20840 87200 7882 49192

#Correct
matchings

863 177 810 44 298

#Elements per
schema (avg)

26 84 36 36 72

#Elements with
a match (avg)

18 74 16 9 46

Used in A, B C, D E E, F D, G, H

is actually very low compared to the number of candidate matches, making it a

challenging task. Even though these datasets have been used in previous work,

some of the datasets were made available without their ground truths. Therefore,

we had manually matched the schema networks in advance performing experiments

with the methods. For this study, complex matches were not considered and

were discarded. Also, the ground truth of the matching networks generated are

guaranteed to obey all of the network constraints.

Hardware. All the experiments presented in this study were performed in a com-

puter with the following configuration: 64-Bits-Ubuntu 14.04.1 LTS operational

system, QuadCore Intel Xeon (2.9 GHz) processor and 9995 MiB memory.

Evaluation Metrics. Let M be the set of all matching candidates, C be the set

4.1 General Settings 65

of correct matchings of a matching network and C ⊂ M . Let A be the set of all

answers given by a method, i.e., the set of matches generated by some method.

We evaluate the effectiveness of a method according to precision (|A∩C||A|), recall

(|A∩C||C|) and F1-score (2∗precision∗recall
precision+recall

). Notice that, due to unbalancing of valid

and invalid matching candidates, the invalid candidates being the large majority,

we only consider the positive candidates in our evaluation. Also, finding the valid

matching candidates is the real goal of a matching task.

Largely used in the schema matching field, precision and recall can not be

used alone to evaluate the quality of a matching network. Precision measures how

correct the correspondences returned are, i.e., the more correct correspondences

are returned by a method, higher its precision value. Recall measures how much

the set of answers returned cover the perfect solution, in other words, the lower

the recall, the higher the number of correct correspondences are missing.

To compact both metrics in one value, often the F1-score is used. It is a

harmonic mean of the two values. It treats both precision and recall as equally

important scores. Duchateau et. al [Duchateau et al., 2008] argues that, in a

user point-of-view, recall is more important than precision, as it is harder to find

undiscovered correpondences than to assert incorrect correspondences returned by

a method. In this work, we do not intend to propose a new evaluation method.

Hence, we stick with F1-score to represent an overall quality measure of matching

results.

Base Systems

The RF4SM-B and RF4SM-B-Rec methods will use a black box system as its

base provider of matching candidates. We used as the base systems unsuper-

66 Experiments

vised methods that use heuristic approaches, namely, the well-known methods

COMA/COMA++ [Do and Rahm, 2002, Aumueller et al., 2005] and Similarity

Flooding [Melnik et al., 2002]. Both base systems are available online 12.

We selected the library of matchers available in COMA/COMA++ and Simi-

larity Flooding to be the base matchers for all learning techniques presented. All

of the answers given by the methods were collected, and those were used to build

a network of answers which can be evaluated according to the aforementioned

metrics.

In COMA/COMA++, we used the best combination of matchers and param-

eters reported by the authors. They report that in its best configuration, COMA

runs all the hybrid matchers, agregates matrices by Average, matches in Both

directions and selects matches by using the MaxDelta strategy (max = 1 and

∆ = 0.02).

All of the results reported for Similarity Flooding were obtained by running the

method in its default configuration. Similarity Flooding runs by making a string

matching between schemas elements names, then applies the flooding algorithm

that propagates the similarities through nodes in the graph. Finally, it applies

filters to select the matchings.

All of the results reported for machine learning algorithms are the average of

30 runs, each one with a different random seed.

1https://sourceforge.net/p/coma-ce
2http://infolab.stanford.edu/˜melnik/mm/rondo/

4.2 Evaluating Machine Learning Algorithms for the Schema Matching Networks Problem 67

Baselines

As representatives of heuristic approaches, we will also use COMA and Similarity

Flooding as baselines. To the best of our knowledge, both methods were never

presented addressing the schema matching networks problem. However, they can

be adapted to run in the networked setting by running each method taking every

combination of pairs of schemas (classic schema matching) and creating a network

of matching answers.

There are several machine learning methods proposed in the literature for

the classic schema matching scenario [Duchateau et al., 2009, Gal and Sagi, 2010,

Nguyen et al., 2011, Rodrigues et al., 2015]. Thus, instead of adapting each

method to the networked scenario, we constructed network schema matching meth-

ods with their core classification algorithms, and run experiments with them.

The methods for the classic schema matching use all kinds of matchine

learning algorithms: the work of Gal [Gal and Sagi, 2010] uses the statistical-

based method Naive-Bayes ; YAM [Duchateau et al., 2009] uses tree-based algo-

rithms such as J48, functions such as Logistic Regression and Bayes Networks ;

the method by Nguyen et. al [Nguyen et al., 2011] also uses Regression and

ALMa [Rodrigues et al., 2015] also is tree-based.

4.2 Evaluating Machine Learning Algorithms for

the Schema Matching Networks Problem

In this section we present two experiments. The first was designed to evaluate

different machine learning methods previously used for the classic schema match-

68 Experiments

ing scenario (Section 4.1) in the context of the schema matchig networks task.

This experiment resulted in choosing Random Forests as our base classifier. This

experiment also provides our machine learning baseline. The second experiment

tested the random forests against the base methods (COMA and SF) to verify if

the learning method can achieve results comparable to the heuristics used by the

family of RF4SM methods.

Setup. We performed experiments with several machine learning algorithms fea-

tured in the Weka package [Hall et al., 2009]. We ran each classifier with five

different sizes of training sets, ranging from 10% to 50%. The remainder of the

instances were used in the test set. All the results reported are the average of 30

runs. All the algorithms were tested in the five previously presented datasets. For

the first experiment, the average of the results in the five datasets are shown as

the final result.

For details of the algorithms parameters, please refer to the Weka documenta-

tion3. The specific settings for each algorithm were set as follows:

• AdaBoost: weightThreshold = 100, baseClassifier = DecisionStump,

numberOfIterations = 10;

• J48: unpruned = false, confidenceFactor = .25, subtreeRaising = true,

binarySplits = false;

• Logistic Regression: maxIts = −1, ridge = 1.0E − 8;

• Random Forest: numTrees = 100, maxDepth = unlimited;

3http://weka.sourceforge.net/doc.stable/

4.2 Evaluating Machine Learning Algorithms for the Schema Matching Networks Problem 69

• Random Tree: KV alue = random, maxDepth = unlimited, minNum =

1.0

• SVM: svm type = 0, kernel type = 2(radial), degree = 3, gamma =

1/num features, cost = 1, nu = .5, epsilon = 0.1, epsilon(tolerance) =

0.001, weight = 1.

4.2.1 Validating RF4SM

In this first experiment, we wanted to test which of a variety of popular classifiers

were best suited to the task of matching networks of schemas. To each of the

five datasets, we randomly divided the instances in two groups: training and test

sets. The training set is given to each of the classifiers to build models, then the

test set is submitted to the models and we evaluated the classification according

to aforementioned metrics. We repeated the experiment with 30 different random

seeds, varying the size of the training sets.

We report the average F1-score obtained by the classifiers in Figure 4.1. The

Random Forest classifier achieved the highest average of F1-scores consistently

when increasing the training set. We point out that classifiers based on en-

semble of trees were also chosen as the base classifier in other works such as

YAM [Duchateau et al., 2009] and ALMa [Rodrigues et al., 2015]. With this ex-

periment, we established that Random Forest were the base classifier for the

method. From this point, it will be referenced as Random Forest for Schema

Matching - RF4SM.

The learning strategies tested in this experiment are featured in several

works that address the classic schema matching task [Duchateau et al., 2009,

70 Experiments

10% 20% 30% 40% 50%

0.00

0.25

0.50

0.75

1.00

● ● ● ● ●

Base Classifiers

Percentage of training instances

A
ve

ra
ge

 F
1−

S
co

re

●

J48
AdaBoost
Logistic Regression
Random Trees
Random Forest
SVM

Figure 4.1: Averaged F1 scores reached by each classifier with different sizes of
training.

4.2 Evaluating Machine Learning Algorithms for the Schema Matching Networks Problem 71

Gal and Sagi, 2010, Nguyen et al., 2011]. With that in mind, we decided to take

the learning algorithms as the representatives of these methods and considering

them as the baselines of this work for the schema matching networks task.

4.2.2 RF4SM x Heuristic Strategy - Base Methods

The next experiment was designed to evaluate the base classifier against the base

methods. We ran RF4SM with training sets of different sizes ranging from 10% to

50% of each experimental dataset. Our goal with this experiment was to find the

amount of learning instances required to achieve results comparable to the base

methods. This amount ultimately corresponds to the effort needed by a user for

labeling examples before the matching process in a supervised setting.

For brevity, we opted to show only the precision, recall and F1-scores achieved

by RF4SM using 30%, 40% and 50% of training, alongside with the base methods

in Figure 4.2. On average, RF4SM with 50% of training instances reaches F1-score

of 0.70, topping COMA’s F1-score (0.68), SF reached 0.65 trailing RF4SM-30% (0.66).

We also point out that RF4SM-40% achieved the highest average precision (0.78)

and RF4SM-50% achieved the highest precision in a single task (0.89).

The downside to this method is that it needs a massive amount of training

examples. Ultimately, the labeling of instances translates into user-effort. While

RF4SM makes use of the user effort, COMA and SF are heuristics, therefore they might

seem to be the most advantageous choice in a real application. However, heuristic

methods rely heavily on tuning of parameters and, depending on the heuristic

used, they only can be applied to a finite set of application domains.

In absolute numbers, RF4SM needed an average of 16800 examples to train its

72 Experiments

Betting Business Magazine Book Order

Base Classifiers x Heuristics
F1−Score

Datasets

A
ve

ra
ge

 F
1−

S
co

re

0.0

0.2

0.4

0.6

0.8

1.0

RF4SM−30% RF4SM−40% RF4SM−50% COMA SF

B
et

tin
g

B
us

in
es

s

M
ag

az
in

e

B
oo

k

O
rd

er

Precision

Datasets

A
ve

ra
ge

 P
re

ci
si

on

0.0

0.2

0.4

0.6

0.8

1.0

B
et

tin
g

B
us

in
es

s

M
ag

az
in

e

B
oo

k

O
rd

er

Recall

Datasets

A
ve

ra
ge

 R
ec

al
l

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.2: Average results of supervised and heuristic methods in five datasets.

models, what is a high number of instances to get with a high cost as they must

be labeled. This issue will be addressed in the next set of experiments.

4.3 RF4SM-B: Experimental Evaluation

The following experiments were designed to test our boosting strategy that uses

an automatic labeled training set. RF4SM-B was tested using two different training

4.3 RF4SM-B: Experimental Evaluation 73

sets, the first is composed by the answers produced by the base systems (Unfiltered-

RF4SM-B) and the latter is composed by filtered answers by network constraints

(Filtered-RF4SM-B). Additionally, we performed an experiment to verify differ-

ences in the training sets such as accuracy and quantity of positive examples.

Setup. In this set of experiments the methods were evaluated in all five datasets

(presented in Table 4.1). As RF4SM-B contains a random component, all of the

results of the method are the average of 30 runs. We ran RF4SM-B using the

two different base systems (COMA and SF) and the models were trained with the

two aforementioned training sets. Base methods featured in this section were run

with their default settings, as described in Section 4.1. Both COMA and Similar-

ity Flooding are used as base methods and they represent the heuristic methods

baselines for this set of experiments. In results reports, Unfiltered-RF4SM-B will

appear as Unf-RF4SM-B and Filtered-RF4SM-B will appear as Filt-RF4SM-B.

4.3.1 Training with Automatically Labeled Examples

As described in Chapter 3.3, aiming at reducing the user effort to zero, we per-

formed the next experiment by taking the answers from the base methods and

used them as training set to RF4SM. We also used the network constraints to create

a filter and created a second training set of examples. Both sets were submitted to

the learning process and the models generated were evaluated in the five datasets

previously presented.

We show the average precision, recall and F1-scores of Unfiltered-RF4SM-B when

using answers from COMA in Figure 4.3 and SF in Figure 4.4.

We notice that Unfiltered-RF4SM-B struggled to keep the same levels of precision

74 Experiments

Betting Business Magazine Book Order

Unfiltered RF4SM−B (COMA base system)
F1−Score

Datasets

F
1−

S
co

re

0.0

0.2

0.4

0.6

0.8

1.0

COMA RF4SM (50%) Unf−RF4SM−B (COMA)

B
et

tin
g

B
us

in
es

s

M
ag

az
in

e

B
oo

k

O
rd

er

Precision

Datasets

P
re

ci
si

on

0.0

0.2

0.4

0.6

0.8

1.0

B
et

tin
g

B
us

in
es

s

M
ag

az
in

e

B
oo

k

O
rd

er

Recall

Datasets

R
ec

al
l

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.3: Average results obtained by RF4SM-B using as training set the answers
taken from COMA.

4.3 RF4SM-B: Experimental Evaluation 75

Betting Business Magazine Book Order

Unfiltered RF4SM−B (SF base system)
F1−Score

Datasets

F
1−

S
co

re

0.0

0.2

0.4

0.6

0.8

1.0

SF RF4SM (50%) Unf−RF4SM−B (SF)

B
et

tin
g

B
us

in
es

s

M
ag

az
in

e

B
oo

k

O
rd

er

Precision

Datasets

P
re

ci
si

on

0.0

0.2

0.4

0.6

0.8

1.0

B
et

tin
g

B
us

in
es

s

M
ag

az
in

e

B
oo

k

O
rd

er

Recall

Datasets

R
ec

al
l

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.4: Average results obtained by RF4SM-B using as training set the answers
from Similarity Flooding.

76 Experiments

as the supervised strategy RF4SM. Generally, the worst the precision of the base

method, the worst the boosted learning. On the other side, the ’not so correct’

training of Unfiltered-RF4SM-B allows it to discover a lot more false negatives than

the other methods, raising recall by using both base systems.

On average, almost 80% of the matchings were found by Unfiltered-RF4SM-B.

This high recall value might be important if a user is available to perform a post-

matching task, where she can look the answers of the method and remove false

positives, automatically improving the precision of the matching network gener-

ated. Regarding F1-score, on average COMA and RF4SM (40%) tie at 0.68, RF4SM

(50%) reaches 0.70 and Unfiltered-RF4SM-B reaches 0.63.

The low values of precision indicates that the models generated might be in-

correct, or at least, too general, thereby generating a lot more matchings than it

should. On that thought, we decided to investigate the quality of the training set

generated for RF4SM-B in the next experiments.

4.3.2 Leveraging Network Inconsistencies

The network constraints presented in Section 2.2 are good indicators of the in-

tegrity of the matching network. As such, they can be used as a “tool” to iden-

tify possible incorrect matches and also to find possible missing correspondences.

Therefore, when the network has a high number of inconsistencies (i.e., the network

is uncertain), it is an indicative that the network has many mismatches.

In this experiment, we want to inspect the networks of matchings created

by the answers of the base methods, to assess if they have a notable number

of inconsistencies, and how large this number is.

4.3 RF4SM-B: Experimental Evaluation 77

Table 4.2: Number of constraints violated per matching network task.
Dataset Betting Business Magazine Book Order

COMA
Type I 5 2 6 6 15
Type II 248 20 278 16 211
Total 253 22 284 22 226

SF
Type I 0 0 0 0 0
Type II 364 0 305 10 72
Total 364 0 305 10 72

Table 4.3: Inconsistencies types
Constraint associated

Type I one-to-one constraint
Type II cycle constraint

To build the networks of answers, for each of the five domains we submitted

every combination of pairs of schemas to the unsupervised methods. After that,

all of the methods answers were gathered and inserted in a network of answers.

We counted every time a match candidate m violated a constraint, we also had

the counters divided by the type of constraint violated (see Section 2.2.2). All the

results are shown in Table 4.2. For convenience, Table 4.3 summarizes the types

of inconsistencies associated with the presented in Section 2.2.2.

We notice that methods tend to generate more inconsistencies when there are

more schemas to be matched. Also, we stress that the Similarity Flooding network

of answers did not violate the constraint of Type I (one-to-one constraint) not even

once. This might be caused by its more “graph-oriented” approach.

4.3.3 Training Set Quality

An inconsistent network of answers can be an indicative of mislabeled matchings.

In order to test the quality of the training set provided, we designed an experiment

78 Experiments

to verify if the automatic training sets provided contains useful instances (positive

examples - as they are more rare) and accurate labels in some degree that do not

misleads the learning process. As observed in Section 4.3.1, inaccurate labels in

training sets lead to a confusing process of learning, generating poor models.

As show in Table 4.2, the answers of automatic methods are quite inconsistent

making them less reliable. In the next experiment, we took the answers of both

COMA and SF and applied to them the network constraints, the inconsistent matches

were removed from the set of answers.

We notice the number of positive examples decreases after applying the network

constraints as shown in Figure 4.5 and Figure 4.6. This means that several of

the positive examples given as answers by the methods are conflicting with false

positive examples, hence both candidates are removed from the network of answers.

We notice in Figure 4.6, the Business and Book datasets had an increase in the

training size due to network constraints deriving a new matching using the cycle

constraint (if A is matched to B and B is matched to C, we can derive that A is

matched to C).

In contrast to the number of positive examples, the quality (measured by pre-

cision) of the set of filtered answers is better than the unfiltered answers. We

measured the precision in the sets of answers and the results are shown in Fig-

ure 4.7 and Figure 4.8. By removing the uncertain candidates, we increase the

probability of good training examples which, we believe, lead to better models

learned.

Recalling Table 4.2, we notice that the SF answers break less constraints than

COMA’s. This fact has a direct implication here, as the lower the number of con-

straints violated the smaller is the difference between filtered and unfiltered sets

4.3 RF4SM-B: Experimental Evaluation 79

Betting Business Magazine Book Order

Training set provided by COMA's answers

Datasets

Tr
ai

ni
ng

 s
iz

e

0

140

280

420

560

700

Unfiltered COMA answers Filtered COMA answers

Figure 4.5: The amount of positive examples automatically acquired by taking
COMA’s answers.

of matches.

The network constraints allows us to automatically get negative examples as

well. As the negative examples are the great majority of candidates, there are only

few mislabels in that set and they do not impact in the learning process.

4.3.4 Training with Filtered Instances

The next experiment was designed to verify if filtered training sets in fact lead to

better models learned. As performed in Section 4.3.1, RF4SM-B receives as training

the matching network answers from a base system. This time, however, the train-

ing set provided is filtered by the network constraints presented in Section 2.2.

Any pair of inconsistent matches are discarded from the set of examples. The

base systems and RF4SM were used with the same settings as presented in previous

experiments.

We present the average precision, recall and F1-scores of RF4SM-B when using

80 Experiments

Betting Business Magazine Book Order

Training set provided by Similarity Flooding's answers

Datasets

Tr
ai

ni
ng

 s
iz

e

0

160

320

480

640

800

Unfiltered SF answers Filtered SF answers

Figure 4.6: The amount of positive examples automatically acquired by taking
Similarity Flooding’s answers.

filtered answers from COMA in Figure 4.9 and SF in Figure 4.10. We notice that,

when trained with filtered datasets, RF4SM-B achieved better results of precision

and F1-score. This corroborates with the hypothesis that better learning sets

generate better models. Also, we notice that not only the precision was improved,

but the improvement was not in detriment of recall, as filtered -RF4SM-B achieved

similar results of recall compared to the unfiltered version. This proves that the

filters help to generate accurate models and they can generalize true matchings.

We can now establish that the filtered version of RF4SM-B is the more suitable to

the schema matching networks problem. In the next section, we compare RF4SM-B

with previous baselines to see if it is worth to automatically gather examples and

filter them to use in a supervised method.

4.3 RF4SM-B: Experimental Evaluation 81

Betting Business Magazine Book Order

Training set provided by COMA's answers

Datasets

P
re

ci
si

on

0.0

0.2

0.4

0.6

0.8

1.0

Unfiltered COMA answers Filtered COMA answers

Figure 4.7: Precision of the positive examples given by COMA before and after
appying the constraints filter.

Betting Business Magazine Book Order

Training set provided by Similarity Flooding's answers

Datasets

P
re

ci
si

on

0.0

0.2

0.4

0.6

0.8

1.0

Unfiltered SF answers Filtered SF answers

Figure 4.8: Precision of the positive examples given by Similarity Flooding before
and after appying the constraints filter.

82 Experiments

Betting Business Magazine Book Order

RF4SM−B (COMA as base system)
F1−Score

Datasets

F
1−

S
co

re

0.0

0.2

0.4

0.6

0.8

1.0

Unfiltered RF4SM−B (COMA) Filtered RF4SM−B (COMA)

B
et

tin
g

B
us

in
es

s

M
ag

az
in

e

B
oo

k

O
rd

er

Precision

Datasets

P
re

ci
si

on

0.0

0.2

0.4

0.6

0.8

1.0

B
et

tin
g

B
us

in
es

s

M
ag

az
in

e

B
oo

k

O
rd

er

Recall

Datasets

R
ec

al
l

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.9: Average results obtained by RF4SM-B using the different training sets
taken from COMA’s answers.

4.3 RF4SM-B: Experimental Evaluation 83

Betting Business Magazine Book Order

RF4SM−B (SF as base system)
F1−Score

Datasets

F
1−

S
co

re

0.0

0.2

0.4

0.6

0.8

1.0

Unfiltered RF4SM−B (SF) Filtered RF4SM−B (SF)

B
et

tin
g

B
us

in
es

s

M
ag

az
in

e

B
oo

k

O
rd

er

Precision

Datasets

P
re

ci
si

on

0.0

0.2

0.4

0.6

0.8

1.0

B
et

tin
g

B
us

in
es

s

M
ag

az
in

e

B
oo

k

O
rd

er

Recall

Datasets

R
ec

al
l

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.10: Average results obtained by RF4SM-B using the different training sets
taken from Similarity Flooding’s answers.

84 Experiments

4.3.5 RF4SM-B x Baselines

Once established the filtered set as the most suitable to our method, we compare

RF4SM-B (both Filtered and Unfiltered) to the baselines. All of the strategies do not

require any effort from a user, although RF4SM-B is a semi-supervised method. We

report two runs of RF4SM-B, each one with a different base system. We compared

the results against the base system (heuristic baseline) and the RF4SM (supervised

learning baseline). The first run uses COMA as base system and the F1-scores

achieved are depicted in Figure 4.11. The second run uses Similarity Flooding

as base system, the results are reported in Figure 4.12.

RF4SM-B can achive better results of F1-score in the majority of the datasets.

On average, it outperforms both of the base systems, COMA and SF, and RF4SM

whilst making use of no user input. Still regarding the training set, the filtering

process managed to acquire around 40% of labeled examples on average (similar

to RF4SM) yet those labels are not validated by a user nor guaranteed to be 100%

correctly labeled.

Results of precision and recall achieved by RF4SM-B in each dataset are shown

in Figure 4.13 and Figure 4.14. We notice that precision when taking different

base systems was not much different except in Book and Order datasets. Recall

Figure 4.7 and Figure 4.8, these two datasets were the ones with big differences in

training set precisions (the set given by COMA with higher precision than SF set).

RF4SM-B managed to train a random forest without asking the user for labels,

however, the user can be a valuable source of information and they can still enhance

matching results. Hence, in the next step, we will include the user knowledge in

the process by asking them to validate matchings in the reconciliation process.

4.3 RF4SM-B: Experimental Evaluation 85

Betting Business Magazine Book Order

RF4SM−B (COMA base system)
F1−Score

Datasets

F
1−

S
co

re

0.0

0.2

0.4

0.6

0.8

1.0

COMA Unf−RF4SM−B (COMA) Filt−RF4SM−B (COMA)

B
et

tin
g

B
us

in
es

s

M
ag

az
in

e

B
oo

k

O
rd

er

Precision

Datasets

P
re

ci
si

on

0.0

0.2

0.4

0.6

0.8

1.0

B
et

tin
g

B
us

in
es

s

M
ag

az
in

e

B
oo

k

O
rd

er

Recall

Datasets

R
ec

al
l

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.11: RF4SM-B (Unfiltered and Filtered) compared to RF4SM (when using
COMA as the base system).

86 Experiments

Betting Business Magazine Book Order

RF4SM−B (SF base system)
F1−Score

Datasets

F
1−

S
co

re

0.0

0.2

0.4

0.6

0.8

1.0

SF Unf−RF4SM−B (SF) Filt−RF4SM−B (SF)

B
et

tin
g

B
us

in
es

s

M
ag

az
in

e

B
oo

k

O
rd

er

Precision

Datasets

P
re

ci
si

on

0.0

0.2

0.4

0.6

0.8

1.0

B
et

tin
g

B
us

in
es

s

M
ag

az
in

e

B
oo

k

O
rd

er

Recall

Datasets

R
ec

al
l

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.12: RF4SM-B (Unfiltered and Filtered) compared to RF4SM (when using
SF as the base system).

4.3 RF4SM-B: Experimental Evaluation 87

Betting Business Magazine Book Order

RF4SM−B using different base systems

Datasets

P
re

ci
si

on

0.0

0.2

0.4

0.6

0.8

1.0

Filtered RF4SM−B (COMA) Filtered RF4SM−B (SF)

Figure 4.13: Precision achieved by RF4SM-B when running different base systems.

Betting Business Magazine Book Order

RF4SM−B using different base systems

Datasets

R
ec

al
l

0.0

0.2

0.4

0.6

0.8

1.0

Filtered RF4SM−B (COMA) Filtered RF4SM−B (SF)

Figure 4.14: Recall achieved by RF4SM-B when running different base systems.

88 Experiments

4.4 RF4SM-B-Rec: Experimental Evaluation

As observed in Section 4.3, RF4SM-B managed to train an ensemble of random trees

by gathering a training set without asking the user for labels. However, the user

can still be involved in the matching process by reviewing answers from a method,

this process is called Reconciliation. The next set of experiments were designed to

verify if the reconciliation brings improvements to the results and how great is the

difference to the original matching.

Setup. In this set of experiments the methods were evaluated in all five datasets

previous presented in Table 4.1. As RF4SM-B-Rec contains a random component,

all of the results presented are the average of 30 runs. The settings of other

methods featured in this section remain the same as previous experiments. In this

study, the user is considered to give only reliable assertions, i.e., if they confirm

a candidate as a TRUE matching, then we can assume the matching is TRUE. The

same can be considered to FALSE matchings. As there is no optimization aiming the

minimum user-effort made, the order in which matching candidates are preseted

for reviewing do not affect the outcome.

4.4.1 Reconciliation Benefits

As we consider the user will always give the correct feedback about a candidate

matching, it is clear that they will always improve the results of a method (by

removing false positives from the answers generated by a method). Thus, we

decided to measure the improvement granted by the user when evaluating the

list of straight answers of a method and when they evaluate the network of those

answers, keeping in mind the amount of effort made in each case. The difference

4.4 RF4SM-B-Rec: Experimental Evaluation 89

Betting Business Magazine Book Order

Reconciliation after COMA execution

Datasets

F
1−

S
co

re

0.0

0.2

0.4

0.6

0.8

1.0

COMA COMA−Rec COMA+NETWORK−Rec

Figure 4.15: F1 scores reached after user feedback in two different scenarios based
on COMA’s answers.

between the two situations is that, when considering the network of answers, the

user approval or rejection of a matching candidate can affect the network and

validate/invalidate other candidates leading to even better results, whereas in the

other scenario the acceptance of an answer results in keeping the candidate in the

set of answers whilst the rejection of an answer leads to its removal.

For each of the base methods (COMA and SF), we performed the reconciliation

phase after the method execution and measured the scores of precision, recall and

F1-score (reported as BASE-METHOD-Rec). Also, after the methods were ran, we

built the network of answers of the methods and applied the network constraints to

them, filtering the inconsistent answers. After that, we submitted the inconsistent

answers to the user for approval/rejection and then measured the results (reported

as BASE-METHOD+NETWORK-Rec).

We show results of F1-scores reached in this set of experiments. We used COMA

and Similarity Flooding as base methods. Both results are shown in Figure 4.15

90 Experiments

Betting Business Magazine Book Order

Reconciliation after SF execution

Datasets

F
1−

S
co

re

0.0

0.2

0.4

0.6

0.8

1.0

SF SF−Rec SF+NETWORK−Rec

Figure 4.16: F1 scores reached after user feedback in two different scenarios based
on Similarity Flooding’s answers.

(COMA) and Figure 4.16 (Similarity Flooding). As expected, all of the scenarios

with the user input reached high levels of F1. When analizing precision and recall,

the reconciliation helps to improve precision in all cases (as the user will reject

false candidate matchings) and the recall can be higher when the network is used

(as new undiscovered matchings can be found by applying the cycle constraint).

In many of the cases, one of two (or more) conflicting answers is accepted by

the user, automatically rejecting the other. This elevates the importance of the

user input as they virtually label two instances for the price of one. This effect

is highlighted in Figure 4.17 and Figure 4.18, in the scenario BASE METHOD-Rec,

the user has to look all of the answers given by a method in order to find false-

positives. We stress that the number of answers of a method tends to grow as

the number of schemas being matched get higher making it a more difficult task.

When solving inconsistencies, the network constraints cut the user’s job at least

by half while keeping comparable levels of F1-Score, hence establishing the value

4.4 RF4SM-B-Rec: Experimental Evaluation 91

Betting Business Magazine Book Order

User effort made in COMA reconciliation

Datasets

U
se

r
ef

fo
rt

 (
#l

ab
el

s
gi

ve
n)

0

140

280

420

560

700

COMA−Rec COMA+NETWORK−Rec

Figure 4.17: The effort made by the user in the reconciliation phase when labeling
COMA’s candidate matchings.

Betting Business Magazine Book Order

User effort made in SF reconciliation

Datasets

U
se

r
ef

fo
rt

 (
#l

ab
el

s
gi

ve
n)

0

160

320

480

640

800

SF−Rec SF+NETWORK−Rec

Figure 4.18: The effort made by the user in the reconciliation phase when labeling
Similarity Flooding’s candidate matchings.

92 Experiments

of these rules when considering the task of matching schemas.

4.4.2 RF4SM-B-Rec Results

After successfully acquiring training instances sparing the user of the job of la-

belling them, we wanted to improve the matching results by using their powerful

source of information by asking to reconciliate the network of schemas generated.

The next experiment was designed to verify if RF4SM-B-Rec can achieve better

results than reconciliating from the base systems.

For this experiment, we took the network of answers of our method, separated

the uncertain candidates (the ones that have a conflict with another answer) and

submitted them to user assertion: the user can validate a candidate as a correct

answer or reject it and removing it from the pool of answers (similar to the ex-

periment in Section 4.4.1). After the reconciliation, we measured precision, recall

and F1-scores of the methods.

We show the F1-scores reached in Figure 4.19 when we reconciliate the network

of answers of RF4SM-B when it acquires automatic answers from COMA. On average,

the reconciliation from RF4SM-B reaches F1-score of 0.83 against score of 0.81

from COMA’s reconciliation. However, COMA’s reconciliation requires way more user

intervention as shown in Figure 4.21. Besides similar performance considering

the F1-scores, from the point of view of a expert that will perform manually the

reconciliation, it is most advantageous to go with RF4SM-B as its task is reduced

by 5 times.

We also performed a similar experiment considering the automatic learning

set will be gathered taking Similarity Flooding’s answers. The F1-scores reached

4.4 RF4SM-B-Rec: Experimental Evaluation 93

Betting Business Magazine Book Order

Reconciliation (Base method:COMA)

Datasets

F
1−

S
co

re

0.0

0.2

0.4

0.6

0.8

1.0

COMA COMA−Rec RF4SM−B−Rec

Figure 4.19: F1 scores achieved when performing reconciliation at the end of the
process.

Betting Business Magazine Book Order

Reconciliation (Base method:SF)

Datasets

F
1−

S
co

re

0.0

0.2

0.4

0.6

0.8

1.0

SF SF−Rec RF4SM−B−Rec

Figure 4.20: F1 scores achieved when performing reconciliation at the end of the
process.

94 Experiments

Betting Business Magazine Book Order

Reconciliation effort (Base system: COMA)

Datasets

U
se

r
ef

fo
rt

 (
#l

ab
el

s
gi

ve
n)

0

140

280

420

560

700

COMA−Rec RF4SM−B−Rec

Figure 4.21: The user effort required in the reconciliation of the network of answers
generated by COMA and RF4SM-B.

Betting Business Magazine Book Order

Reconciliation effort (Base system: SF)

Datasets

U
se

r
ef

fo
rt

 (
#l

ab
el

s
gi

ve
n)

0

160

320

480

640

800

SF−Rec RF4SM−B−Rec

Figure 4.22: The user effort required in the reconciliation of the network of answers
generated by SF and RF4SM-B.

4.4 RF4SM-B-Rec: Experimental Evaluation 95

are show in Figure 4.20. On average, RF4SM-B achieved F1-score of 0.77 against

0.75 from Similarity Flooding. The behavior was similar to the observed in the

COMA’s experiment, the user had to label a bigger amount of Similarity Flooding’s

answers to reach comparable F1-score. The amount of labels given by the user in

the reconciliation task is given in Figure 4.22. In this experiment, the user effort

also was reduced by approximately 6 times.

RFMS-B-Rec managed, when using both base systems, to find more matchings

that were previously undiscovered hence achieving higher values of recall, with

average of 0.77 against 0.69 (COMA-Rec) and 0.61 (SF-Rec). Also, it maintained a

high average result of precision (0.89) compared to the perfect precision as if the

reconciliation was performed with the base methods answers.

Finally, we compare results of RF4SM-B and RF4SM-B-Rec to see how much

the reconciliation can improve the result of our method. We show the results of

precision, recall and F1-score for the methods using COMA as the base system in

Figure 4.23. As expected, the reconciliation process lead to better results achieving

an average F1-score of 0.83 while asking for a low number of labels to the user (55

per dataset on average).

The same behavior can be observed when analizing results of the method when

it uses SF as the base system (Figure 4.23). On average, RF4SM-B-Rec achieved

F1-score of 0.77 and the user labeled 49 candidates per dataset leading us to believe

that our method can be applied to any automatic matching system as a black box.

Also by comparing the results of both base systems, the better the base system,

the better will be the boosting provided by RF4SM-B-Rec.

96 Experiments

Betting Business Magazine Book Order

RF4SM−B/RF4SM−B−Rec (COMA as base system)
F1−Score

Datasets

F
1−

S
co

re

0.0

0.2

0.4

0.6

0.8

1.0

RF4SM−B RF4SM−B−Rec

B
et

tin
g

B
us

in
es

s

M
ag

az
in

e

B
oo

k

O
rd

er

Precision

Datasets

P
re

ci
si

on

0.0

0.2

0.4

0.6

0.8

1.0

B
et

tin
g

B
us

in
es

s

M
ag

az
in

e

B
oo

k

O
rd

er

Recall

Datasets

R
ec

al
l

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.23: Comparative between RF4SM-B and RF4SM-B-Rec in all datasets using
COMA as the base system.

4.4 RF4SM-B-Rec: Experimental Evaluation 97

Betting Business Magazine Book Order

RF4SM−B/RF4SM−B−Rec (SF as base system)
F1−Score

Datasets

F
1−

S
co

re

0.0

0.2

0.4

0.6

0.8

1.0

RF4SM−B RF4SM−B−Rec

B
et

tin
g

B
us

in
es

s

M
ag

az
in

e

B
oo

k

O
rd

er

Precision

Datasets

P
re

ci
si

on

0.0

0.2

0.4

0.6

0.8

1.0

B
et

tin
g

B
us

in
es

s

M
ag

az
in

e

B
oo

k

O
rd

er

Recall

Datasets

R
ec

al
l

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.24: Comparative between RF4SM-B and RF4SM-B-Rec in all datasets using
SF as the base system.

98 Experiments

4.5 Summing up

We gathered the average F1-score of methods discussed in past sections and divided

them in groups according to the type of user interaction in the matching task, they

are all shown in Figure 4.25.

The first group “Exhaustive User Effort” contains the supervised method RF4SM

that was run with different sizes of training. This group runs after a training set

is provided. The training set used is labeled by an expert and contains a massive

amount of examples. Although RF4SM can achieve higher results of precision than

other methods, it required over 3000 training examples (in the smallest dataset)

which is not suitable to our requirements in a real application.

The group “No User Effort” contains the heuristic methods (COMA and SF)

and the semi-supervised boosting technique (RF4SM-B). None of the methods use

any input from an expert (despite they can have tuned parameters) during the

execution. Tipically these methods matching answers are reviewed by the expert

after the execution. Besides taking into consideration the hierarchical aspect of the

schemas, COMA and SF do not consider the network constraints, hence they rely on

their heuristics that prioritize precision while RF4SM-B can create more generalized

models that lack on precision in favor of recall, but they can be validated later.

The group “Some User Effort” has the reconciliation stage of all methods afore-

mentioned. Both COMA and SF can improve their previous results but at a higher

cost of user effort (on average, the user reviews over 300 candidate matches). As

RF4SM-B-Rec uses the network constraints to prune their answers, a great number

of answers can be automatically invalidated. In addition, the network constraints

help to gather a most reliable automatic training set of examples thus generating

4.5 Summing up 99

0.5 0.6 0.7 0.8 0.9 1.0

Exhaustive
user effort

No user
effort

Some user
 effort

RF4SM−B−Rec (SF)
RF4SM−B−Rec (COMA)
SF−Rec
COMA−Rec
RF4SM−B (SF)
RF4SM−B (COMA)
SF
COMA
RF4SM 50%
RF4SM 40%

F1−score grouped by amount of user input

F1−Score

Figure 4.25: Average F1-score achieved by methods grouped by the amount of
user participation in the matching task.

better learning models. By invalidating answers, the constraints also help to ease

the user effort. RF4SM-B-Rec reduced the reconciliation task by at least 4 times in

each dataset and using each of the base systems. RF4SM-B-Rec was able to achieve

slightly higher values of F1-score while reducing the effort needed to validate the

final matching answers and potentially can be used with any base system as a

black box.

100 Experiments

Chapter 5

Conclusions and Future Work

The schema matching problem has been studied for many years, in result of that,

many research and commercial initiaves have been proposed. However, none of

them fully solves the problem. In addition, the most effective approaches rely on

user tunning or user assertion of generated matches.

With the integration of data being more present and being required by more

applications, the schema matching networks problem has surfaced. In this setting,

instead of matching a pair of schemas (the classic schema matching), it matches

several schemas together. The schemas should have connections with all of the

other schemas and must respect network integrity constraints.

In this work, we presented a study to apply machine learning techniques to

the schema matching networks problem. To the best of our knowledge, this is the

first piece of work that considers matching a network of schemas while respecting

network integrity constraints. These constraints define rules to guarantee that the

matching network remains consistent. Also, they might be used to help prune

erroneous matches generated by our models.

102 Conclusions and Future Work

First, we presented RF4SM, which is the method that uses machine learning

algorithms to find correspondences between several schemas. In our experiments,

we showed that the method is suitable for the problem of matching networks.

However, it relies on a large number of labeled training examples which may not

be available for every task. The method still reaches the highest average precision

value: 0.70.

Next, we presented RF4SM-B, which is an evolution of the previous method. It

addresses the obstacle of not having a large number of labeled training examples

by using heuristics to generate synthetic training examples. Even with mislabeled

examples, the method could train models and generate a large number of correct

matches. We showed how the network constraints can be used to clean incorrect

training examples and the impact they have on the final results. On average,

Filtered-RF4SM-B achieved F1-score around 0.73.

Finally, we present RF4SM-B-Rec, which addresses the Schema Matching Rec-

onciliation problem. In this task, the user is invoked to assert generated matchings

by methods. They can accept or reject them. As previous methods do not consider

integrity constraints, they miss out in a valueable source of information to prune

bad correspondences. In our experiments, we show that RF4SM-B results can be

even higher with the reconciliation process. We also show that F1-scores achieved

are higher than other methods whilst asking for a lower number of labels. The

experiments show that the user effort in the task can be reduced 6 times.

As future directions of our work, we recognize that there are still room for

improvement: as evidenced by Hung et. al [Hung et al., 2014], the order the user

assert matchings can be optimized if they are guided to solve inconsistencies in

the network. In other words, this means their effort can be reduced even more to

103

achieve the same F1-scores.

We also point out that advances in the machine learning aspect can be made.

In this work we used classic machine learning techniques that were largely used

in previous methods in the classic schema matching field. We recognize that new

methods are emerging and they yield large amount of data which is one of the

challenges of the schema matching network problem.

104 Conclusions and Future Work

Bibliography

[Aberer et al., 2003] Aberer, K., Cudre-Mauroux, P., and Hauswirth, M. (2003).
Start making sense: The chatty web approach for global semantic agreements.
Journal of Web Semantics, 1(1):89–114.

[Alani and Saad, 2017] Alani, H. and Saad, S. (2017). Schema matching for large-
scale data based on ontology clustering method. International Journal on Ad-
vanced Science, Engineering and Information Technology, 7(5):1790–1797.

[Aumueller et al., 2005] Aumueller, D., Do, H.-H., Massmann, S., and Rahm, E.
(2005). Schema and ontology matching with coma++. In Proceedings of the 2005
ACM SIGMOD International Conference on Management of Data, SIGMOD
’05, pages 906–908. ACM.

[Bellahsene et al., 2011] Bellahsene, Z., Bonifati, A., and Rahm, E., editors
(2011). Schema Matching and Mapping. Springer.

[Bernstein et al., 2011] Bernstein, P. A., Madhavan, J., and Rahm, E. (2011).
Generic schema matching, ten years later. PVLDB, 4(11):695–701.

[Bishop, 2006] Bishop, C. M. (2006). Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer-Verlag New York, Inc., Secaucus,
NJ, USA.

[Bonifati and Velegrakis, 2011] Bonifati, A. and Velegrakis, Y. (2011). Schema
matching and mapping: from usage to evaluation. In Proc. of the 14th Intl.
Conf. on Extending Database Technology, pages 527–529.

[Cruz et al., 2009] Cruz, I. F., Antonelli, F. P., and Stroe, C. (2009). Agreement-
maker: efficient matching for large real-world schemas and ontologies. Proc.
VLDB Endowment, 2(2):1586–1589.

[Cudré-Mauroux et al., 2006] Cudré-Mauroux, P., Aberer, K., and Feher, A.
(2006). Probabilistic message passing in peer data management systems. In
ICDE, page 41. IEEE Computer Society.

106 Bibliography

[de Carvalho et al., 2013] de Carvalho, M. G., Laender, A. H. F., Gonçalves,
M. A., and da Silva, A. S. (2013). An evolutionary approach to complex schema
matching. Information System, 38(3):302–316.

[Do and Rahm, 2002] Do, H.-H. and Rahm, E. (2002). Coma: A system for flex-
ible combination of schema matching approaches. In Proceedings of the 28th
International Conference on Very Large Data Bases, VLDB ’02, pages 610–621.
VLDB Endowment.

[Doan et al., 2001] Doan, A., Domingos, P., and Halevy, A. Y. (2001). Reconciling
schemas of disparate data sources: A machine-learning approach. In ACM
Sigmod Record, volume 30, pages 509–520. ACM.

[Doan et al., 2000] Doan, A., Domingos, P., and Levy, A. (2000). Learning source
descriptions for data integration. In Proceedings of the Third International
Workshop on the Web and Databases, WebDB’2000, pages 81–86.

[Doan et al., 2012] Doan, A., Halevy, A. Y., and Ives, Z. G. (2012). Principles of
Data Integration. Morgan Kaufmann.

[Drumm et al., 2007] Drumm, C., Schmitt, M., Do, H.-H., and Rahm, E. (2007).
Quickmig: Automatic schema matching for data migration projects. In Pro-
ceedings of the Sixteenth ACM Conference on Conference on Information and
Knowledge Management, CIKM ’07, pages 107–116, New York, NY, USA. ACM.

[Duchateau and Bellahsene, 2010] Duchateau, F. and Bellahsene, Z. (2010). Mea-
suring the quality of an integrated schema. In Proceedings of the 29th Inter-
national Conference on Conceptual Modeling, ER’10, pages 261–273, Berlin,
Heidelberg. Springer-Verlag.

[Duchateau et al., 2008] Duchateau, F., Bellahsene, Z., and Coletta, R. (2008). A
flexible approach for planning schema matching algorithms. In Meersman, R.
and Tari, Z., editors, On the Move to Meaningful Internet Systems: OTM 2008,
pages 249–264, Berlin, Heidelberg. ”Springer Berlin Heidelberg.

[Duchateau et al., 2009] Duchateau, F., Coletta, R., Bellahsene, Z., and Miller,
R. J. (2009). (not) yet another matcher. In Proceedings of the 18th ACM Confer-
ence on Information and Knowledge Management, CIKM ’09, pages 1537–1540,
New York, NY, USA. ACM.

[Freund and Schapire, 1997] Freund, Y. and Schapire, R. E. (1997). A decision-
theoretic generalization of on-line learning and an application to boosting. Jour-
nal of Computer and System Sciences, 55(1):119 – 139.

Bibliography 107

[Gal, 2006] Gal, A. (2006). Why is schema matching tough and what can we do
about it? SIGMOD Rec., 35(4):2–5.

[Gal and Sagi, 2010] Gal, A. and Sagi, T. (2010). Tuning the ensemble selection
process of schema matchers. Inf. Syst., 35(8):845–859.

[Hall et al., 2009] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P.,
and Witten, I. H. (2009). The weka data mining software: An update. SIGKDD
Explor. Newsl., 11(1):10–18.

[He and Chang, 2003] He, B. and Chang, K. C.-C. (2003). Statistical schema
matching across web query interfaces. In Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’03, pages 217–228,
New York, NY, USA. ACM.

[He et al., 2004] He, B., Chang, K. C.-C., and Han, J. (2004). Discovering complex
matchings across web query interfaces: A correlation mining approach. In Pro-
ceedings of the Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’04, pages 148–157, New York, NY, USA.
ACM.

[Ho, 1995] Ho, T. K. (1995). Random decision forests. In Proceedings of 3rd In-
ternational Conference on Document Analysis and Recognition, volume 1, pages
278–282 vol.1.

[Hung et al., 2015] Hung, N. Q. V., Tam, N. T., Chau, V. T., Wijaya, T. K., Mikl.,
Aberer, K., Gal, A., and Weidlich, M. (2015). Smart: A tool for analyzing and
reconciling schema matching networks. In ICDE, pages 1488–1491. IEEE.

[Hung et al., 2013] Hung, N. Q. V., Tam, N. T., Miklós, Z., and Aberer, K.
(2013). On Leveraging Crowdsourcing Techniques for Schema Matching Net-
works. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Hung et al., 2014] Hung, N. Q. V., Tam, N. T., Miklós, Z., Aberer, K., Gal, A.,
and Weidlich, M. (2014). Pay-as-you-go reconciliation in schema matching net-
works. In IEEE 30th International Conference on Data Engineering, Chicago,
ICDE 2014, IL, USA, March 31 - April 4, 2014, pages 220–231.

[Lee et al., 2007] Lee, Y., Sayyadian, M., Doan, A., and Rosenthal, A. S. (2007).
etuner: Tuning schema matching software using synthetic scenarios. The VLDB
Journal, 16(1):97–122.

[Li et al., 2005] Li, Y., Liu, D.-B., and Zhang, W.-M. (2005). Schema matching
using neural network. In The 2005 IEEE/WIC/ACM International Conference
on Web Intelligence (WI’05), pages 743–746.

108 Bibliography

[Madhavan et al., 2005] Madhavan, J., Bernstein, P. A., Doan, A., and Halevy, A.
(2005). Corpus-based schema matching. In 21st International Conference on
Data Engineering (ICDE’05), pages 57–68.

[Madhavan et al., 2001] Madhavan, J., Bernstein, P. A., and Rahm, E. (2001).
Generic schema matching with cupid. In Proceedings of the 27th International
Conference on Very Large Data Bases, VLDB ’01, pages 49–58, San Francisco,
CA, USA. Morgan Kaufmann Publishers Inc.

[Melnik et al., 2002] Melnik, S., Garcia-Molina, H., and Rahm, E. (2002). Similar-
ity flooding: A versatile graph matching algorithm. In Proceedings of Eighteenth
International Conference on Data Engineering, San Jose, California.

[Miller et al., 2009] Miller, F., Vandome, A., and McBrewster, J. (2009). Leven-
shtein Distance. VDM Publishing.

[Ngo and Bellahsene, 2012] Ngo, D. and Bellahsene, Z. (2012). Yam++: A multi-
strategy based approach for ontology matching task. In Proceedings of the 18th
International Conference on Knowledge Engineering and Knowledge Manage-
ment, EKAW’12, pages 421–425, Berlin, Heidelberg. Springer-Verlag.

[Nguyen et al., 2011] Nguyen, H., Fuxman, A., Paparizos, S., Freire, J., and
Agrawal, R. (2011). Synthesizing products for online catalogs. Proc. VLDB
Endow., 4(7):409–418.

[Nguyen et al., 2013] Nguyen, H. Q. V., Luong, X. H., Miklós, Z., Quan, T. T.,
and Aberer, K. (2013). Collaborative Schema Matching Reconciliation. Springer
Berlin Heidelberg, Berlin, Heidelberg.

[Nguyen, 2014] Nguyen, Q. V. H. (2014). Reconciling schema matching networks.

[Peukert et al., 2011] Peukert, E., Eberius, J., and Rahm, E. (2011). Amc - a
framework for modelling and comparing matching systems as matching pro-
cesses. In Proceedings of the 2011 IEEE 27th International Conference on Data
Engineering, ICDE ’11, pages 1304–1307. IEEE Computer Society.

[Popa et al., 2002] Popa, L., Hernadez, M. A., Velegrakis, Y., Miller, R., Nau-
mann, F., and Ho, H. (2002). Mapping xml and relational schemas with CLIO.
In Proc. of the 18th Intl. Conf. on Data Engineering, pages 0–498.

[Quinlan, 1993] Quinlan, J. R. (1993). C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[Rahm and Bernstein, 2001] Rahm, E. and Bernstein, P. A. (2001). A survey of
approaches to automatic schema matching. The VLDB Journal, 10(4):334–350.

Bibliography 109

[Reis et al., 2017] Reis, D. G., Carvalho, R. N., Carvalho, R. S., and Ladeira,
M. (2017). Two-phase parallel learning to identify similar structures among
relational databases. In 2017 16th IEEE International Conference on Machine
Learning and Applications (ICMLA), pages 1020–1023.

[Rodrigues et al., 2015] Rodrigues, D., da Silva, A. S., Rodrigues, R., and dos
Santos, E. (2015). Using active learning techniques for improving database
schema matching methods. In 2015 International Joint Conference on Neural
Networks, IJCNN 2015, Killarney, Ireland, July 12-17, 2015, pages 1–8.

[Rong et al., 2012] Rong, S., Niu, X., Xiang, E. W., Wang, H., Yang, Q., and Yu,
Y. (2012). A machine learning approach for instance matching based on similar-
ity metrics. In Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat,
J., Hauswirth, M., Parreira, J. X., Hendler, J., Schreiber, G., Bernstein, A., and
Blomqvist, E., editors, The Semantic Web – ISWC 2012, pages 460–475, Berlin,
Heidelberg. Springer Berlin Heidelberg.

[Shiang et al., 2008] Shiang, W.-J., Chen, H.-C., and Rau, H. (2008). An intelli-
gent matcher for schema mapping problem. In 2008 International Conference
on Machine Learning and Cybernetics, volume 6, pages 3172–3177.

[Su et al., 2006] Su, W., Wang, J., and Lochovsky, F. (2006). Holistic schema
matching for web query interfaces. In Proceedings of the 10th International
Conference on Advances in Database Technology, EDBT’06, pages 77–94, Berlin,
Heidelberg. Springer-Verlag.

[Toan et al., 2018] Toan, N. T., Cong, P. T., Thang, D. C., Hung, N. Q. V., and
Stantic, B. (2018). Bootstrapping uncertainty in schema covering. In Wang,
J., Cong, G., Chen, J., and Qi, J., editors, Databases Theory and Applications,
pages 336–342, Cham. Springer International Publishing.

[Walker and Duncan, 1967] Walker, S. H. and Duncan, D. B. (1967). Estimation
of the probability of an event as a function of several independent variables.
Biometrika, 54(1-2):167–179.

[Williams, 2010] Williams, P. K. (2010). A Clustering Rule Based Approach for
Classification Problems. PhD thesis, Auburn, AL, USA. AAI3430661.

	List of Figures
	List of Tables
	Introduction
	Motivation
	Goals and Research Questions
	Contributions

	Background and Related Work
	Classic Schema Matching Problem
	Heuristic Methods
	Machine Learning Methods

	Schema Matching Networks Problem
	Classic Schema Matching versus Schema Matching Networks
	Network Integrity Constraints

	Schema Reconciliation Networks

	Using Machine Learning for Schema Matching and Schema Reconciliation Networks
	Why a learning approach?
	Choosing a Learning Approach - RF4SM
	RF4SM-Boosting
	Unfiltered-RF4SM-B
	Filtered-RF4SM-B

	Filtered-RF4SM-B-Reconciliation
	Summing up

	Experiments
	General Settings
	Evaluating Machine Learning Algorithms for the Schema Matching Networks Problem
	Validating RF4SM
	RF4SM x Heuristic Strategy - Base Methods

	RF4SM-B: Experimental Evaluation
	Training with Automatically Labeled Examples
	Leveraging Network Inconsistencies
	Training Set Quality
	Training with Filtered Instances
	RF4SM-B x Baselines

	RF4SM-B-Rec: Experimental Evaluation
	Reconciliation Benefits
	RF4SM-B-Rec Results

	Summing up

	Conclusions and Future Work

