Universidade Federal do Amazonas Instituto de Ciências Exatas Programa de Pós-Graduação em Matemática Mestrado em Matemática

Rigidez de variedades tipo-Einstein gradiente

Gabriel Araújo de Sousa

Manaus - AM Fevereiro de 2019

Universidade Federal do Amazonas Instituto de Ciências Exatas Programa de Pós-Graduação em Matemática Mestrado em Matemática

Rigidez de variedades tipo-Einstein gradiente

por

Gabriel Araújo de Sousa

sob a orientação do

Prof. Dr. Antonio Airton Freitas Filho

Manaus - AM Fevereiro de 2019

Rigidez de variedades tipo-Einstein gradiente

por

Gabriel Araújo de Sousa ¹

Dissertação apresentada ao Programa de Pós-Graduação em Matemática da Universidade Federal do Amazonas como requisito parcial para obtenção do título de Mestre em Matemática.

Área de Concentração: Matemática.

Aprovada em 15 de Fevereiro de 2019.

Banca Examinadora:

Antonio Ainton Freitas Filho

Prof. Dr. Antônio Airton Freitas Filho - (Orientador) Universidade Federal do Amazonas - UFAM

Prof. Dr. José Nazareno Vieira Gomes - (Membro)

Universidade Federal do Amazonas - UFAM

Prof. Dr. Manoel Vieira de Matos Neto - (Membro Externo)

Universidade Federal do Piauí - UFPI

¹O autor foi bolsista da CAPES durante a elaboração desta dissertação.

Ficha Catalográfica

Ficha catalográfica elaborada automaticamente de acordo com os dados fornecidos pelo(a) autor(a).

Sousa, Gabriel Araújo

S725r

Rigidez de variedades tipo-Einstein gradiente / Gabriel Araújo Sousa. 2019

48 f.: 31 cm.

Orientador: Antonio Airton Freitas Filho Dissertação (Mestrado em Matemática Pura e Aplicada) -Universidade Federal do Amazonas.

1. Rigidez. 2. Variedades tipo-Einstein. 3. Curvatura escalar constante. 4. Variedades Einstein. I. Freitas Filho, Antonio Airton II. Universidade Federal do Amazonas III. Título

Esta dissertação é dedicada à minha mãe Noemia Araújo de Castro.

Agradecimentos

À minha família, pelo apoio e incentivo. À minha mãe Noemia Castro, pelo amor, por estar ao meu lado continuamente e ter dado auxílio imensurável para meus estudos. À minha companheira Sara Caroline, pelo carinho e força que sempre transmitira com palavras de incentivo.

Ao professor Antonio Airton Freitas Filho, pela orientação, por todo suporte e disponibilidade concedidos para a realização desta dissertação.

Ao professor José Nazareno Vieira Gomes, pelos ensinamentos nas aulas e nos seminários extraclasses. Ao professor Manoel Vieira de Matos Neto, pelas críticas e sugestões finais. E à ambos por terem aceitado participar da banca.

Aos colegas de faculdade que de alguma forma, direta ou indiretamente, fizeram parte da minha formação.

Ao PPGM, seu corpo docente, direção e administração pela oportunidade.

E à CAPES, pela assistência financeira.

"Na sombra teus olhos resplandecem enormes."

 $\overline{\text{(Carlos Drummond de Andrade)}}$

Resumo

Esta dissertação tem como fundamento o estudo detalhado dos resultados de rigidez obtidos no preprint intitulado "A note on gradient Einstein-type manifolds" devido a José N. V. Gomes [arXiv:1710.10549, preprint 2017]. Mais precisamente, foi provado que uma variedade tipo-Einstein gradiente compacta com curvatura escalar constante é isométrica a uma esfera padrão com função potencial dada explicitamente. No caso não compacto, foi assumido as hipóteses do Teorema de Karp e de curvatura escalar constante para deduzir que uma variedade tipo-Einstein gradiente é isométrica a um espaço Euclidiano, um espaço hiperbólico ou um produto deformado Einstein. Finalmente, sob certas condições dos parâmetros, foi mostrado que uma variedade tipo-Einstein gradiente homogênea, não compacta e não degenerada é Einstein.

Palavras-chave: Rigidez, Variedades tipo-Einstein, Curvatura escalar constante, Variedades Einstein.

Abstract

This dissertation is based on the detailed study of rigidity results obtained in the preprint entitled "A note on gradient Einstein-type manifolds" due to José N. V. Gomes [arXiv:1710.10549, preprint 2017]. More precisely, it has been proved that a compact gradient Einstein-type manifold with constant scalar curvature is isometric to a standard sphere with potential function explicitly given. In noncompact case, was assumed the hypotheses of Karp's Theorem and constant scalar curvature to deduce that a gradient Einstein-type manifold is isometric to a Euclidean space, a hyperbolic space or a Einstein warped product. Finally, under certain conditions of the parameters, it has been shown that a homogeneous, noncompact and nondegenerate gradient Einstein-type manifold is Einstein.

Palavras-chave: Rigidity, Einstein-type manifolds, Constant scalar curvature, Einstein manifolds.

Sumário

Introdução			1
1	Preliminares		5
	1.1	Tensores	5
	1.2	Operadores diferenciais	9
	1.3	Campos conformes	14
	1.4	Resultados auxiliares	15
2	Variedades tipo-Einstein gradiente		17
	2.1	Caso compacto	18
	2.2	Caso não compacto	22
\mathbf{A}	pênd	ice A O hessiano da função altura em \mathbb{S}^n e \mathbb{H}^n	31
	A.1	Cálculo via projeção estereográfica	31
	A.2	Cálculo via imersão	36
\mathbf{R}	eferê	ncias Bibliográficas	37

Introdução

Atualmente tem havido um crescente interesse em variedades suaves cuja métrica Riemanniana satisfaz certas equações tensoriais, podendo envolver o tensor de Ricci, campos vetoriais globais, a curvatura escalar, entre outros entes geométricos. Tais equações serão referidas como equações de estrutura e surgem naturalmente em diferentes contextos como veremos mais adiante.

A equação de estrutura de uma variedade Einstein (M^n, g) é dada por $Ric = \lambda g$, para alguma função suave λ em M, em que Ric denota o tensor de Ricci na métrica Einstein g. Tal métrica surge como ponto crítico do funcional Einstein-Hilbert, para detalhes veja Besse [6]. Ao longo dos anos foram feitas generalizações desta equação precursora. Recentemente, Catino et al. [12] introduziram o conceito de variedade tipo-Einstein a qual abrange várias dessas estruturas, de forma a unificar problemas de classificações estudados na literatura.

Uma variedade Riemanniana conexa (M^n, g) , com $n \ge 3$, é uma variedade tipo-Einstein ou admite uma estrutura tipo-Einstein se existem $X \in \mathfrak{X}(M)$ e $\lambda \in C^{\infty}(M)$ tais que

$$\alpha Ric + \frac{\beta}{2} \mathcal{L}_X g + \mu X^{\flat} \otimes X^{\flat} = (\rho S + \lambda) g, \tag{1}$$

para alguns parâmetros $\alpha, \beta, \mu, \rho \in \mathbb{R}$, com $(\alpha, \beta, \mu) \neq (0, 0, 0)$. Quando X for identicamente nulo ou λ for não constante diremos que a estrutura é *trivial* ou *própria*, respectivamente. Note que a nomenclatura própria no contexto de variedades tipo-Einstein é distinta do conceito de função própria.

Um caso especial ocorre quando $X = \nabla f$, para alguma função suave $f: M \to \mathbb{R}$. Neste caso, a equação (1) é reescrita como segue

$$\alpha Ric + \beta \nabla^2 f + \mu df \otimes df = (\rho S + \lambda)g, \tag{2}$$

e diremos que a variedade tipo-Einstein é gradiente. A função f é denominada função potencial e o termo trivial refere-se ao fato de f ser constante.

Observe que, escolhendo adequadamente os parâmetros e a função λ em (1), obtemos os seguintes casos particulares: variedades Einstein, sólitons de Ricci, sólitons ρ -Einstein, quase-sólitons de Ricci, quase-sólitons de Yamabe e variedades m-quasi-Einstein genera-

lizada. Cada uma delas têm sua importância particular. Por exemplo, os sólitons de Ricci correspondem às soluções auto-similares do fluxo de Ricci e são fundamentais para a compreensão das singularidades do mesmo, veja Hamilton [16]. Os sólitons ρ -Einstein correspondem às soluções auto-similares do fluxo de Ricci-Bourguignon [8], veja Catino e Mazzieri [13]. Os quase-sólitons de Ricci são generalizações dos sólitons ρ -Einstein, apesar de terem sido introduzidos como generalizações dos sólitons de Ricci, veja Pigola et al. [26]. Os sólitons de Yamabe correspondem às soluções auto-similares do fluxo de Yamabe, fluxo este introduzido por Hamilton [17].

Em outro cenário temos a noção de variedades m-quasi-Einstein generalizada, definidas a partir das variedades m-quasi-Einstein gradiente. Esta última foi originada do estudo de variedades que são produtos deformados Einstein, veja [6]. Foi mostrado que um produto deformado é Einstein se, e somente se, a fibra é Einstein e a base satisfaz a equação de uma variedade m-quasi Einstein gradiente. Os resultados de rigidez de variedades tipo-Einstein gradiente compactas e não compactas em Gomes [14] foram motivados do estudo de variedades m-quasi-Einstein generalizada, veja Barros e Gomes [1] e de quase-sólitons de Ricci homogêneos, veja Calviño-Louzao et al. [9]. Em Barros e Gomes [2] foi realizado um estudo de variedades m-quasi-Einstein generalizada compactas (não necessariamente gradiente) através da decomposição de Hodge-de Rham, no qual concluiu-se que toda variedade m-quasi-Einstein compacta Einstein é trivial.

Em suma, os sólitons de Ricci, sólitons ρ -Einstein e os sólitons de Yamabe são caracterizados como soluções auto-similares do fluxo de Ricci, fluxo de Ricci-Bourguignon e do fluxo de Yamabe, respectivamente. Enquanto que uma variedade m-quasi-Einstein gradiente é caracterizada como base de um produto deformado Einstein. Algumas restrições para a construção de produtos deformados Einstein podem ser encontradas em Case et al. [11] e em Kim e Kim [19].

Destacaremos agora alguns detalhes e propriedades que seguem das definições dadas anteriormente.

Primeiramente, na definição de variedade tipo-Einstein observe que o termo ρS poderia ser agregado à função λ . Entretanto, o referido termo está destacado para incluir explicitamente o caso de sólitons ρ -Einstein.

No caso em que a variedade tipo-Einstein gradiente é trivial, segue diretamente da definição que tal variedade é Einstein ($\alpha \neq 0$) e a estrutura gradiente é não própria. Isto mostra que toda variedade tipo-Einstein gradiente própria é não trivial.

Por outro lado, suponha que a variedade (M^n, g) é Einstein, então por (2), obtemos

$$\beta \nabla^2 f + \mu df \otimes df = \left(\rho S + \lambda - \frac{S}{n}\alpha\right)g.$$

Desta forma, escolhendo convenientemente os parâmetros, obtemos um quase-sóliton de Yamabe no qual f é não necessariamente constante, isto é, não garantimos que a

estrutura gradiente é trivial.

Dizemos que uma variedade tipo-Einstein gradiente (com $\beta \neq 0$) é $n\tilde{a}o$ degenerada se $\beta^2 \neq (n-2)\alpha\mu$, e degenerada se $\beta^2 = (n-2)\alpha\mu$. A justificativa desta terminologia é dada através da equivalência entre variedades tipo-Einstein gradiente degenerada e variedades conformemente Einstein, veja [12]. Esta condição é essencial para a determinação de variedades tipo-Einstein gradiente que são Einstein em [14].

Em [12], o caso $\beta = 0$ foi tratado separadamente e foi dada uma precisa descrição da métrica para o caso $\alpha = 0$. Foi provado ainda que uma variedade tipo-Einstein gradiente completa, não compacta, não trivial e não degenerada pode ser localmente caracterizada quando o tensor de Bach é nulo e a função potencial é própria. A proposta em [14] é analisar casos não estudados em [12].

No primeiro capítulo faremos uma exposição sobre alguns conceitos fundamentais utilizados nos principais resultados do trabalho, os quais serão abordados no segundo capítulo.

O primeiro resultado de rigidez é para variedades compactas com curvatura escalar constante.

Teorema 1. Seja (M^n, g) uma variedade tipo-Einstein gradiente compacta, não trivial, de curvatura escalar constante com β e μ não nulos. Então, (M^n, g) é isométrica a uma esfera padrão $\mathbb{S}^n(c)$. Além disso, a menos de homotetia e uma constante, a função potencial é dada por

$$f = \frac{\beta}{\mu} \ln \left(\tau - \frac{h_v}{n} \right),$$

onde $\tau \in (\frac{1}{n}, +\infty)$ e h_v é uma função altura definida na esfera unitária \mathbb{S}^n .

A função potencial destacada neste teorema motiva a obtenção de estruturas tipo-Einstein gradiente. Exemplificaremos para esses casos as variedades \mathbb{R}^n , \mathbb{H}^n e \mathbb{S}^n , embora as duas primeiras sejam não compactas, veja Exemplos 2.1 e 2.2.

Para o caso não compacto o próximo resultado de rigidez assume as hipóteses do Teorema de Karp [18], para contornar a não compacidade, uma vez que o método para sua demonstração tem o mesmo ponto de partida do caso compacto, veja Lema 2.1.

Teorema 2. Seja (M^n, g) uma variedade tipo-Einstein gradiente completa, não compacta, não trivial, de curvatura escalar constante e com α, β e μ não nulos. Considere $u = e^{\frac{\mu}{\beta}f}$ e a bola geodésica B(r) centrada em algum ponto fixado $x \in M$. Além disso, suponha que pelo menos uma das seguintes condições seja satisfeita:

(1)
$$\lim_{r \to \infty} \inf \frac{1}{r} \int_{B(2r) \setminus B(r)} \|\mathring{Ric}(\nabla u)\| dM = 0.$$

(2)
$$\lim_{r\to\infty}\inf\frac{1}{r}\int_{B(2r)\backslash B(r)}\|\nabla u\|dM=0$$
 e as curvaturas de Ricci são limitadas superiormente

- (3) Existe L > 0 tal que $vol(B(r)) \leq Lr^q$, para $r \geq 1$ e $\mathring{Ric}(\nabla u) \in L^p(M, dM)$, onde $\frac{1}{p} + \frac{1}{q} = 1$ e q > 1.
- (4) Existe L > 0 tal que vol $(B(r)) \leq Lr$, para $r \geq 1$ e $\|\nabla u\| \to 0$ uniformemente para o infinito em M.

Então, (M^n, g) é uma variedade Einstein com curvatura escalar S não positiva e u possui no máximo um ponto crítico. Mais precisamente:

- (i) Se S = 0, então λ não possui zeros e (M^n, g) é isométrica a um espaço Euclidiano.
- (ii) Se S < 0 e u possui apenas um ponto crítico, então (M^n, g) é isométrica a um espaço hiperbólico.
- (iii) Se S < 0 e u não possui ponto crítico, então (M^n, g) é isométrica a um produto deformado $\mathbb{R} \times_{\varphi} \mathbb{F}$, onde \mathbb{F} é uma variedade Einstein completa, e φ é uma solução positiva da equação diferencial $\ddot{\varphi} + \frac{S}{n(n-1)}\varphi = 0$ em \mathbb{R} .

O último caso de rigidez envolve condições para uma variedade tipo-Einstein não compacta ser Einstein.

Teorema 3. Seja (M^n, g) uma variedade tipo-Einstein gradiente homogênea, própria, não compacta, não degenerada e com α e μ não nulos. Se $\beta^2 \neq \alpha \mu$, então (M^n, g) é uma variedade Einstein.

É interessante destacar que a não degenerescência é crucial para a demonstração desse resultado. Ademais, a hipótese $\beta^2 \neq \alpha \mu$ torna-se exatamente a não degenerescência em dimensão três.

Capítulo 1

Preliminares

Neste trabalho, o par (M^n, g) indicará a variedade suave conexa M de dimensão $n \ge 3$, munida com a métrica Riemanniana g (ou \langle , \rangle). O símbolo $\mathfrak{X}(M)$ será usado para designar o conjunto dos campos vetoriais suaves $X: M \to TM$ e $C^{\infty}(M)$ para o conjunto das funções suaves $f: M \to \mathbb{R}$.

Utilizaremos a convenção de soma de Einstein, na qual índices repetidos em posições invertidas indicará um somatório (índice no expoente não significará potência). Também iremos admitir noções de variedades suaves e de geometria Riemanniana que podem ser encontradas em [7], [10] ou [20].

1.1 Tensores

Um (1, r)-tensor em M é uma aplicação

$$T: \underbrace{\mathfrak{X}(M) \times \cdots \times \mathfrak{X}(M)}_{(r)} \longrightarrow \mathfrak{X}(M)$$

multilinear sobre o anel $C^{\infty}(M)$, isto é, um campo de tensores em M, enquanto que em um (0,r)-tensor o contradomínio é $C^{\infty}(M)$. Especificamente,

$$T(Y_1, \dots, fX + hY, \dots, Y_r) = fT(Y_1, \dots, X, \dots, Y_r) + hT(Y_1, \dots, Y, \dots, Y_r),$$

para todos $X,Y\in\mathfrak{X}(M)$ e $f,h\in C^\infty(M).$

Exemplo 1.1. O tensor métrico $g: \mathfrak{X}(M) \times \mathfrak{X}(M) \to C^{\infty}(M)$ que faz corresponder a cada ponto $p \in M$ e a cada par $x, y \in T_pM$, o produto interno de x e y na métrica Riemanniana de M, isto é, $g_p(x,y) = \langle x,y \rangle_p$, é um (0,2)-tensor e suas componentes no referencial $\{\partial_i\}$ são as funções g_{ij} da métrica Riemanniana no sistema de coordenadas dado.

Observação 1.1. Em uma variedade Riemanniana, um campo de vetores $X \in \mathfrak{X}(M)$ pode ser identificado com um único (0,1)-tensor $X^{\flat}:\mathfrak{X}(M)\to C^{\infty}(M)$ (ou equivalentemente uma 1-forma diferenciável) dado por

$$X^{\flat}(Y) = \langle X, Y \rangle, \ para \ todo \ Y \in \mathfrak{X}(M).$$
 (1.1)

É conveniente considerar o isomorfismo musical sharp $^{\sharp}: \mathfrak{X}^{*}(M) \to \mathfrak{X}(M)$ que associa cada 1-forma diferenciável ω a um único campo ω^{\sharp} , dado por

$$\omega(Y) = \langle \omega^{\sharp}, Y \rangle$$
, para todo $Y \in \mathfrak{X}(M)$,

ou seja, a inversa da aplicação $flat \, ^{\flat} \colon \mathfrak{X}(M) \to \mathfrak{X}^{*}(M)$ que leva cada campo diferenciável X no seu dual X^{\flat} dado por (1.1).

Em geral, um (0,r)-tensor T pode ser identificado com um (1,r-1)-tensor \tilde{T} através da métrica como segue

$$\langle \tilde{T}(Y_1, \dots, Y_{r-1}), Y_r \rangle = T(Y_1, \dots, Y_r).$$

Por conveniência indicaremos \tilde{T} simplesmente por T. Em particular, o (0,2)-tensor métrico g é associado ao (1,1)-tensor identidade em $\mathfrak{X}(M)$, o qual denotaremos por I.

Definição 1.1. A derivada covariante de um (1,r)-tensor T é um (1,r+1)-tensor ∇T , dado por

$$\nabla T(X, Y_1, \dots, Y_r) = \nabla_X (T(Y_1, \dots, Y_r)) - \sum_{i=1}^r T(Y_1, \dots, \nabla_X Y_i, \dots, Y_r).$$
 (1.2)

Para cada $X \in \mathfrak{X}(M)$, define-se a derivada covariante $\nabla_X T$ de T em relação a X como um tensor de mesma ordem que T dado por

$$\nabla_X T(Y_1, \dots, Y_r) = \nabla T(X, Y_1, \dots, Y_r).$$

Analogamente a derivada covariante de um (0, r)-tensor T é um (0, r + 1)-tensor ∇T dado pela expressão (1.2). A definição da derivada covariante de tensores é naturalmente motivada pela regra de Leibniz.

Exemplo 1.2. A derivada do tensor métrico é o tensor nulo. De fato, dados $X, Y_1, Y_2 \in \mathfrak{X}(M)$, temos

$$\nabla g(X, Y_1, Y_2) = \nabla_X g(Y_1, Y_2) = \nabla_X (g(Y_1, Y_2)) - g(\nabla_X Y_1, Y_2) - g(Y_1, \nabla_X Y_2)$$

$$= \nabla_X (g(Y_1, Y_2)) - \nabla_X (g(Y_1, Y_2))$$

$$= 0.$$

Definição 1.2. O tensor curvatura de Riemann é o (1,3)-tensor

$$R: \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}(M) \longrightarrow \mathfrak{X}(M),$$

dado por

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z.$$

Este tensor pode ser interpretado como uma generalização da noção de curvatura em curvas e superfícies diferenciáveis. O aparecimento da derivada de segunda ordem é natural e a disposição das parcelas são introduzidas para que R seja de fato um tensor.

Além disso, se considerarmos um sistema de coordenadas em torno de um ponto $p \in M$ e usarmos que $[\partial_i, \partial_j] = 0$, obtemos

$$R(\partial_i, \partial_j)\partial_k = (\nabla_{\partial_i}\nabla_{\partial_j} - \nabla_{\partial_j}\nabla_{\partial_i})\partial_k,$$

isto é, a curvatura mede a não-comutatividade da derivada covariante.

Com a métrica, podemos definir o (0,4)-tensor associado ao (1,3)-tensor curvatura

$$R: \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}(M) \longrightarrow C^{\infty}(M),$$

dado por

$$R(X, Y, Z, W) = \langle R(X, Y)Z, W \rangle.$$

Deste modo, é possível verificar propriedades de simetria do tensor curvatura. A Proposição seguinte mostra isso e sua demonstração pode ser vista em Carmo [10].

Proposição 1.1. O tensor curvatura R satisfaz as seguintes propriedades:

- (i) R(X, Y, Z, W) = -R(Y, X, Z, W) = R(Y, X, W, Z);
- $(ii) \ R(X,Y,Z,W) = R(Z,W,X,Y);$
- (iii) R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0 (Primeira identidade de Bianchi);
- (iv) $(\nabla_X R)(Y,Z)W + (\nabla_Y R)(Z,X)W + (\nabla_Z R)(X,Y)W = 0$ (Segunda identidade de Bianchi).

A partir do tensor curvatura podemos definir os seguintes entes geométricos:

Definição 1.3. Considere $p \in M$. A curvatura seccional de $x \ e \ y \in T_pM$ é definida por

$$K_p(x,y) = \frac{\langle R(x,y)y, x \rangle}{|x \wedge y|^2},$$

onde $|x \wedge y|^2 = |x|^2 |y|^2 - \langle x, y \rangle^2$, e desde que x, y gerem um plano $\pi \subset T_pM$.

Esta definição não depende da escolha dos vetores que geram π , veja [10]. Desta forma, podemos denotar $K_p(x,y)$ por $K_p(\pi)$, a curvatura seccional em p segundo o plano π .

Observe que em um referencial $\{E_i\}$ em uma vizinhança $U \subset M$ a função $K: U \to \mathbb{R}$ é suave. Em particular, se o referencial for ortonormal, então

$$K(E_i, E_j) = \langle R(E_i, E_j) E_j, E_i \rangle$$
, para $i \neq j$.

Definição 1.4. Definimos o traço de um (0,2)-tensor T como sendo o traço do (1,1)-tensor associado, ou seja, se $\{E_i\}$ é uma base ortonormal, então

$$\operatorname{tr}(T) = \sum_{i} \langle T(E_i), E_i \rangle = \sum_{i} T(E_i, E_i).$$

Na base coordenada $\{\partial_i\}$,

$$\operatorname{tr}(T) = g^{ij}T(\partial_i, \partial_j).$$

Com isso, é possível definir um produto interno entre (0,2)-tensores T,S chamado produto interno de Hilbert-Schmidt, da seguinte forma:

$$\langle T, S \rangle = \operatorname{tr}(T^*S).$$

Em uma base ortonormal $\{E_i\}$, tem-se

$$\operatorname{tr}(T^*S) = \sum_{i} \langle T^*S(E_i), E_i \rangle = \sum_{i} \langle S(E_i), T(E_i) \rangle.$$

Com esta expressão podemos concluir diretamente as propriedades de produto interno e que $tr(T) = \langle T, g \rangle$.

Note que a definição do produto interno de Hilbert-Schmidt é equivalente a $\langle T, S \rangle = \operatorname{tr}(TS^*)$.

Exemplo 1.3. A parte sem traço de um (0,2)-tensor T em (M^n,g) é definida por

$$\mathring{T} = T - \frac{\operatorname{tr}(T)}{n}g. \tag{1.3}$$

Deste modo, $\operatorname{tr}(\mathring{T}) = 0$ e

$$0 \le |\mathring{T}|^2 = |T|^2 - \frac{\operatorname{tr}(T)^2}{n}.$$

Definição 1.5. O tensor de Ricci é definido como sendo o traço do tensor curvatura, isto

é, se $\{E_i\}$ é um referencial ortonormal, então

$$Ric(X,Y) = \sum_{i} \langle R(E_i,X)Y, E_i \rangle.$$

Observe que pela Proposição 1.1, o tensor de Ric é um (0,2)-tensor simétrico. Com isso, para cada $p \in M$, o Teorema Espectral garante a existência dos autovalores $\{\rho_i(p)\}$, para uma base ortonormal de autovetores $\{E_i(p)\}$, do operador $Ric_p: T_pM \to T_pM$ dados por

$$Ric_p(E_i(p)) = \rho_i(p)E_i(p). \tag{1.4}$$

Estes autovalores são denominados curvaturas de Ricci em p e são suaves como funções pois $\rho_i = Ric(E_i, E_i)$.

Finalmente, definimos a $curvatura\ escalar\ S$ como sendo o traço do tensor de Ricci, isto é,

$$S = \sum_{i} Ric(E_i, E_i) = 2 \sum_{i < j} K(E_i, E_j).$$
 (1.5)

Observação 1.2. Seja (M^n, g) uma variedade Einstein, ou seja, $Ric = \lambda g$, em que $\lambda \in C^{\infty}(M)$. Através do traço obtemos que $\lambda = \frac{S}{n}$. Além disso, por (1.3) dizer que (M^n, g) é Einstein significa $\mathring{Ric} \equiv 0$.

Teorema 1.1 (Lema de Schur). Seja (M^n, g) uma variedade Einstein, isto é, $Ric = \lambda g$, onde $\lambda \in C^{\infty}(M)$. Se $n \geq 3$, então λ é constante.

$$Demonstração$$
. Veja [10].

1.2 Operadores diferenciais

Assim como a derivada covariante de campos vetoriais permite estender a noção de derivada direcional do espaço Euclidiano para variedades Riemannianas, a derivada covariante de tensores estende certos operadores diferenciais tais como gradiente, divergente, laplaciano, entre outros.

Destacaremos agora alguns desses operadores.

Definição 1.6. Seja $f: M \to \mathbb{R}$ uma função suave. O gradiente de f é o campo vetorial suave ∇f , definido sobre M por

$$\langle \nabla f, X \rangle = df(X) = X(f) = \nabla_X f,$$

para todo $X \in \mathfrak{X}(M)$.

Escreva $\nabla f = a^i E_i$ em termos de um referencial ortonormal $\{E_i\}$ em uma vizinhança $U \subset M$. Temos que $a^i = \langle \nabla f, E_i \rangle$, e portanto em U,

$$\nabla f = \sum_{i} \langle \nabla f, E_i \rangle E_i = \sum_{i} E_i(f) E_i.$$

Em geral, se $\{\partial_i\}$ é o referencial coordenado em U, teremos

$$\nabla f = g^{ij} \partial_j(f) \partial_i.$$

Além disso, segue das propriedades de derivação que se $f, h: M \to \mathbb{R}$ são funções suaves, então $\nabla(f+h) = \nabla f + \nabla h$ e $\nabla(fh) = h\nabla f + f\nabla h$.

Proposição 1.2. Se $f: M \to \mathbb{R}$ e $\phi: \mathbb{R} \to \mathbb{R}$ são funções suaves, então

$$d(\phi \circ f) = \phi'(f)df.$$

Demonstração. Pelo caráter tensorial da diferencial df, provaremos apenas no referencial coordenado $\{\partial_i\}$. Por definição,

$$d(\phi \circ f)(\partial_i) = \partial_i(\phi \circ f) = \phi'(f)\partial_i(f) = \phi'(f)df(\partial_i).$$

Observação 1.3. Dizemos que um referencial ortonormal $\{E_i\}$ em um aberto $U \subset M^n$ é geodésico em $p \in U$ se $(\nabla_{E_i} E_j)(p) = 0$, para todos i, j = 1, ..., n.

Definição 1.7. Seja X um campo de vetores suave em M. A divergência de X é a função suave $\operatorname{div} X: M \to \mathbb{R}$, definida por

$$(\operatorname{div} X)(p) = \operatorname{tr}\{v \mapsto \nabla_v X(p)\},\$$

onde $v \in T_pM$.

Seja $\{E_i\}$ um referencial ortonormal em uma vizinhança $U\subset M$ de p. Escrevendo o campo $X=\sum_i a_i E_i$ em U, temos

$$\operatorname{div} X = \sum_{i} \langle \nabla_{E_{i}} X, E_{i} \rangle = \sum_{i} \left(E_{i} \langle X, E_{i} \rangle - \langle X, \nabla_{E_{i}} E_{i} \rangle \right)$$
$$= \sum_{i} \left(E_{i} (a_{i}) - \langle \nabla_{E_{i}} E_{i}, X \rangle \right).$$

Em particular, se o referencial $\{E_i\}$ for geodésico em $p \in U$, teremos div $X = \sum_i E_i(a_i)$.

Ademais, segue diretamente das propriedades de conexão e da definição de gradiente que

$$\operatorname{div}(X+Y) = \operatorname{div}X + \operatorname{div}Y \text{ e } \operatorname{div}(fX) = f\operatorname{div}X + \langle \nabla f, X \rangle.$$

Definição 1.8. Seja $f:M\to\mathbb{R}$ uma função suave. O laplaciano de f é a função suave $\Delta f:M\to\mathbb{R}$ dada por

$$\Delta f = \operatorname{div}(\nabla f).$$

Segue pelas propriedades do gradiente e divergente que $\Delta(f+h) = \Delta f + \Delta h$, e para duas funções suaves $f, h: M \to \mathbb{R}$, tem-se

$$\Delta(fh) = \operatorname{div}(\nabla(fh)) = \operatorname{div}(h\nabla f) + \operatorname{div}(f\nabla h)$$
$$= h\operatorname{div}(\nabla f) + \langle \nabla h, \nabla f \rangle + f\operatorname{div}(\nabla h) + \langle \nabla f, \nabla h \rangle$$
$$= h\Delta f + f\Delta h + 2\langle \nabla f, \nabla h \rangle.$$

Definição 1.9. Seja $f: M \to \mathbb{R}$ uma função suave. Definimos o hessiano de f como o (1,1)-tensor dado por

$$\nabla^2 f(X) = \nabla_X \nabla f,$$

para todo $X \in \mathfrak{X}(M)$.

Através do (0, 2)-tensor associado, obtemos

$$\nabla^2 f(X,Y) = \langle \nabla_X \nabla f, Y \rangle = X \langle \nabla f, Y \rangle - \langle \nabla f, \nabla_X Y \rangle$$
$$= X(Y(f)) - (\nabla_X Y)(f) = \nabla^2_{XY}(f). \tag{1.6}$$

Além disso, o hessiano é um tensor simétrico. De fato,

$$\nabla_{Y,X}^{2}(f) = Y(X(f)) - (\nabla_{Y}X)(f). \tag{1.7}$$

Subtraindo (1.6) de (1.7) concluímos a afirmação. Ademais, segue da definição que

$$\Delta f = \operatorname{tr}(\nabla^2 f). \tag{1.8}$$

Proposição 1.3. Sejam f, h funções suaves em (M^n, g) . Então são válidas as afirmações:

- (1) $\nabla^2 f = \nabla df$;
- (2) $\nabla h df = h \nabla^2 f + dh \otimes df$;
- (3) $\nabla^2 f(\nabla f, \cdot) = \frac{1}{2} d|\nabla f|^2$.

Demonstração. (1) Segue por definição da derivada covariante e do hessiano que, para todos $X,Y\in\mathfrak{X}(M)$, tem-se

$$\nabla df(X,Y) = \nabla_X (df(Y)) - df(\nabla_X Y)$$
$$= X(Y(f)) - (\nabla_X Y)(f)$$
$$= \nabla^2 f(X,Y).$$

(2) De fato, pelas propriedades de conexão e por (1), para todos $X, Y \in \mathfrak{X}(M)$, obtemos

$$\nabla h df(X,Y) = (\nabla_X h df)(Y) = h(\nabla_X df)(Y) + X(h) df(Y)$$
$$= h \nabla df(X,Y) + dh(X) df(Y)$$
$$= (h \nabla^2 f + dh \otimes df)(X,Y).$$

(3) Com efeito, por definição de gradiente e pela compatibilidade da métrica, para todo $X \in \mathfrak{X}(M)$ temos

$$\begin{split} d|\nabla f|^2(X) &= X(|\nabla f|^2) = X\left(g(\nabla f, \nabla f)\right) \\ &= 2g(\nabla_X \nabla f, \nabla f) = 2\nabla^2 f(X, \nabla f) \\ &= 2\nabla^2 f(\nabla f, X). \end{split}$$

Definição 1.10. Definimos a divergência de um (1,r)-tensor T em (M^n,g) como sendo o (0,r)-tensor dado por

$$(\operatorname{div} T)(v_1,\ldots,v_r)(p) = \operatorname{tr}(w \mapsto (\nabla_w T)(v_1,\ldots,v_r)(p)),$$

onde $p \in M$ e $(v_1, \ldots, v_r) \in T_pM \times \cdots \times T_pM$.

Para o (1, 1)-tensor T considere um referencial ortonormal local $\{E_i\}$, então, para todo $Z \in \mathfrak{X}(M)$, tem-se

$$(\operatorname{div}T)(Z) = \sum_{i} g((\nabla_{E_{i}}T)(Z), E_{i})$$

$$= \sum_{i} g(\nabla_{E_{i}}T(Z) - T(\nabla_{E_{i}}Z), E_{i})$$

$$= \operatorname{div}(T(Z)) - \sum_{i} T(\nabla_{E_{i}}Z, E_{i}).$$

12

Portanto,

$$\operatorname{div}(T(Z)) = (\operatorname{div}T)(Z) + g(\nabla Z, T^*). \tag{1.9}$$

Proposição 1.4. Seja T um (0,2)-tensor simétrico em (M^n,g) . Então, para cada $Z \in \mathfrak{X}(M)$ e cada $\varphi \in C^{\infty}(M)$,

$$\operatorname{div}(T(\varphi Z)) = \varphi(\operatorname{div}T)(Z) + \varphi(\nabla Z, T) + T(\nabla \varphi, Z).$$

Demonstração. Segue das propriedades do divergente, da equação (1.9) e da simetria de T que

$$\operatorname{div}(T(\varphi Z)) = \operatorname{div}(\varphi T(Z)) = \varphi \operatorname{div}(T(Z)) + g(\nabla \varphi, T(Z))$$
$$= \varphi(\operatorname{div}T)(Z) + \varphi(\nabla Z, T) + T(\nabla \varphi, Z).$$

Proposição 1.5. Seja (M^n, g) uma variedade Riemanniana. São válidas as afirmações:

- (1) $\operatorname{div}(fI) = df$;
- (2) $\operatorname{div} Ric = \frac{1}{2} dS$ (Segunda identidade de Bianchi contraída duas vezes).

Demonstração. (1) Segue da equação (1.9) e das propriedades de divergente de campos que

$$\operatorname{div}(fI)(X) = \operatorname{div}(fI(X)) - g(\nabla X, fI)$$
$$= f \operatorname{div} X + g(\nabla f, X) - f \operatorname{div} X$$
$$= df(X).$$

(2) Pelo caráter pontual dos tensores, é suficiente provar para um referencial geodésico $\{E_i\}$ em $p \in M$. Para isso, usaremos as notações $R(E_i, E_j)E_k = R_{ijk}$ e $\nabla_{E_i} = \nabla_i$. Sendo assim, observe que, em p,

$$dS(E_k) = E_k(S) = E_k\left(\sum_i Ric(E_i, E_i)\right) = \sum_{i,j} E_k\langle R_{jii}, E_j\rangle = \sum_{i,j} \langle \nabla_k R_{jii}, E_j\rangle.$$

Pela antissimetria dos dois primeiros índices do tensor curvatura e pela Segunda Identidade de Bianchi 1.1, obtemos

$$dS(E_k) = -\sum_{i,j} \langle \nabla_k R_{iji}, E_j \rangle = \sum_{i,j} \langle \nabla_i R_{jki}, E_j \rangle + \sum_{i,j} \langle \nabla_j R_{kii}, E_j \rangle$$
$$= \sum_{i,j} \langle \nabla_i R_{jki}, E_j \rangle + \sum_{i,j} \langle \nabla_j R_{ikj}, E_i \rangle$$
$$= 2 \sum_{i,j} \langle \nabla_i R_{jki}, E_j \rangle, \tag{1.10}$$

onde na penúltima parcela usamos que $E_j\langle R_{kii}, E_j\rangle = E_j\langle R_{ikj}, E_i\rangle$ em p e na última parcela trocamos i por j. Por outro lado, ainda no ponto p, temos

$$(\operatorname{div}Ric)(E_k) = \sum_{i} \langle (\nabla_i Ric) E_k, E_i \rangle = \sum_{i} \langle \nabla_i Ric(E_k), E_i \rangle$$

$$= \sum_{i} E_i \langle Ric(E_k), E_i \rangle = \sum_{i,j} E_i \langle R_{jki}, E_j \rangle$$

$$= \sum_{i,j} \langle \nabla_i R_{jki}, E_j \rangle. \tag{1.11}$$

De (1.10) e (1.11) segue o resultado.

1.3 Campos conformes

Um campo de vetores $X \in \mathfrak{X}(M)$ em uma variedade Riemanniana (M^n, g) é conforme se existir uma função suave ψ em M tal que

$$\mathcal{L}_X g = 2\psi g.$$

A função ψ é chamada fator conforme de X. Diremos que X é um campo de vetores conforme trivial se ψ for constante.

O caráter conforme de um campo é invariante por mudança conforme da métrica. Isto significa que se g e \overline{g} são métricas conformes, isto é, $\overline{g} = \mu g$, para alguma função positiva $\mu \in C^{\infty}(M)$, e X é conforme em relação à g, então X é conforme em relação à \overline{g} . De fato,

$$\mathcal{L}_X \overline{g} = \mathcal{L}_X(\mu g) = X(\mu)g + \mu \mathcal{L}_X g$$
$$= X(\mu)g + 2\mu \psi g$$
$$= 2(X(\mu)/2\mu + \psi)\overline{g}.$$

Portanto \overline{g} também é conforme em relação à X com fator conforme $\psi + X(\mu)/2\mu$.

Outras propriedades de campos conformes são as equações encontradas em Obata e Yano [24]. Se X é conforme em (M^n, g) , com fator conforme ψ , então

$$\begin{cases} \frac{1}{2}\mathcal{L}_X S = -(n-1)\Delta\psi - S\psi; \\ \mathcal{L}_X \mathring{Ric} = -(n-2)\mathring{\nabla}^2\psi = -(n-2)\left(\nabla^2\psi - \frac{\Delta\psi}{n}g\right). \end{cases}$$
(1.12)

Em particular, se a curvatura escalar for constante em (1.12), então

$$-\Delta \psi = \frac{S}{n-1}\psi,\tag{1.14}$$

isto é, ψ é uma autofunção do laplaciano. Na hipótese mais forte de (M^n, g) ser Einstein, então pelo Lema de Schur 1.1, a curvatura escalar é constante e a equação (1.13) é reescrita como segue

$$\nabla^2 \psi = \frac{\Delta \psi}{n} g = -\frac{S}{n(n-1)} \psi g. \tag{1.15}$$

1.4 Resultados auxiliares

Em seguida, abordaremos alguns resultados que serão utilizados no decorrer do trabalho.

Proposição 1.6. Seja (M^n, g) uma variedade Riemanniana e $f \in \mathfrak{X}(M)$. Então,

$$\mathcal{L}_{\nabla f}g = 2\nabla^2 f.$$

Demonstração. De fato, pela propriedade da derivada de Lie para (0,2)-tensores, veja Petersen [25], temos

$$(\mathcal{L}_{\nabla f}g)(Y,Z) = \nabla f(g(Y,Z)) - g([\nabla f,Y],Z) - g(Y,[\nabla f,Z])$$

$$= g(\nabla_{\nabla f}Y,Z) + g(Y,\nabla_{\nabla f}Z) - g(\nabla_{\nabla f}Y - \nabla_{Y}\nabla f,Z) - g(Y,\nabla_{\nabla f}Z - \nabla_{Z}\nabla f)$$

$$= g(\nabla_{Y}\nabla f,Z) + g(\nabla_{Z}\nabla f,Y)$$

$$= 2\nabla^{2}f(Y,Z).$$

Proposição 1.7. Sejam X, Y campos de vetores suaves em (M^n, g) . Então,

$$Ric(X,Y) = \operatorname{div}(\nabla_X Y) - \langle X, \nabla(\operatorname{div} Y) \rangle - \langle \nabla X, \nabla Y \rangle.$$

Demonstração. Veja Gomes [15].

Proposição 1.8. Seja f uma função suave em (M^n, g) . Então,

$$\operatorname{div}(\nabla^2 f) = d\Delta f + Ric(\nabla f, \cdot).$$

Demonstração. Com efeito, pela Proposição 1.7,

$$Ric(X, \nabla f) = \operatorname{div}(\nabla_X \nabla f) - \langle X, \nabla (\operatorname{div}(\nabla f)) \rangle - \langle \nabla X, \nabla \nabla f \rangle$$
$$= \operatorname{div}(\nabla^2 f(X)) - (d\Delta f)(X) - \langle \nabla X, \nabla^2 f \rangle.$$

Utilizando a equação (1.9), obtemos

$$Ric(X, \nabla f) + (d\Delta f)(X) = \operatorname{div}(\nabla^2 f(X)) - \langle \nabla X, \nabla^2 f \rangle$$
$$= (\operatorname{div}\nabla^2 f)(X),$$

para todo $X \in \mathfrak{X}(M)$. O resultado segue pela simetria do tensor de Ricci.

Teorema 1.2 (Teorema da Divergência). Seja (M^n, g) uma variedade Riemanniana compacta, orientada e $X \in \mathfrak{X}(M)$. Se o bordo ∂M de M está munido com a orientação e a métrica induzida por M, e ν denota o normal exterior a M ao longo de ∂M , então

$$\int_{M} \operatorname{div} X dM = \int_{\partial M} \langle X, \nu \rangle d(\partial M).$$

Em particular, se $\partial M = \emptyset$ tem-se

$$\int_{M} \operatorname{div} X dM = 0.$$

Demonstração. Veja Lee [20].

Teorema 1.3 (Princípio do Máximo de Hopf). Seja (M^n, g) uma variedade Riemanianna compacta sem bordo, orientável e f uma função suave em M. Se $\Delta f \geqslant 0$ (ou $\Delta f \leqslant 0$), então f é constante.

Demonstração. De fato, segue por hipótese e do Teorema da Divergência 1.2 que

$$0 \leqslant \int_{M} \Delta f dM = \int_{M} \operatorname{div}(\nabla f) dM = 0.$$

Desta forma, $\Delta f = 0$ e o resultado segue das Identidades de Green, veja [20].

Capítulo 2

Variedades tipo-Einstein gradiente

O nosso objetivo é estudar algumas propriedades da estrutura tipo-Einstein gradiente. Os dois primeiros resultados de rigidez serão estudados através de uma função auxiliar u. Seja (M^n,g) uma variedade Riemanniana admitindo a estrutura tipo-Einstein gradiente (2). Considere a função suave $u: M \to \mathbb{R}^+$ dada por $u = e^{\frac{\mu}{\beta}f}$, onde β e μ são não nulos. Então, pela Proposição 1.2 tem-se $du = \frac{\mu}{\beta}udf$, e usando a Proposição 1.3, obtemos

$$\nabla^2 u = \nabla du = \frac{\mu}{\beta} \nabla u df = \frac{\mu}{\beta} \left(u \nabla^2 f + du \otimes df \right) = \frac{\mu}{\beta} u \left(\nabla^2 f + \frac{\mu}{\beta} df \otimes df \right).$$

Desta forma, podemos escrever

$$\frac{\beta^2}{\mu u} \nabla^2 u = \beta \nabla^2 f + \mu df \otimes df.$$

Substituindo em (2), concluímos que a estrutura tipo-Einstein gradiente é equivalente a

$$\frac{\alpha}{\beta}Ric + \frac{\beta}{\mu u}\nabla^2 u = \tilde{\lambda}g,\tag{2.1}$$

onde $\tilde{\lambda} = \frac{1}{\beta}(\rho S + \lambda)$.

O lema a seguir é essencial para o resultado de rigidez no caso compacto e também é usado no estudo do caso não compacto.

Lema 2.1. Seja (M^n, g) uma variedade tipo-Einstein gradiente com β e μ não nulos. Então,

$$\operatorname{div}(\mathring{Ric}(\nabla u)) = \frac{n-2}{2n} \langle \nabla u, \nabla S \rangle - \frac{\alpha \mu}{\beta^2} u \|\mathring{Ric}\|^2,$$

 $em \ que \ u = e^{\frac{\mu}{\beta}f}.$

Demonstração. De fato, pela expressão (1.9), temos

$$\operatorname{div}(\mathring{Ric}(\nabla u)) = (\operatorname{div}\mathring{Ric})(\nabla u) + \langle \nabla^2 u, \mathring{Ric} \rangle. \tag{2.2}$$

Usando a Proposição 1.5, temos que

$$(\operatorname{div} \mathring{Ric})(\nabla u) = (\operatorname{div} Ric)(\nabla u) - (\operatorname{div} \frac{S}{n}g)(\nabla u)$$

$$= \frac{1}{2}dS(\nabla u) - \frac{1}{n}dS(\nabla u)$$

$$= \frac{n-2}{2n}\langle \nabla S, \nabla u \rangle. \tag{2.3}$$

Por outro lado, lembrando que $\langle g, \mathring{Ric} \rangle = \operatorname{tr}(\mathring{Ric}) = 0$ e usando a expressão (2.1), obtemos

$$\langle \nabla^2 u, \mathring{Ric} \rangle = \frac{\mu}{\beta} u \left\langle \tilde{\lambda} g - \frac{\alpha}{\beta} Ric, \mathring{Ric} \right\rangle = -\frac{\alpha \mu}{\beta^2} u \left\langle \mathring{Ric} + \frac{S}{n} g, \mathring{Ric} \right\rangle$$
$$= -\frac{\alpha \mu}{\beta^2} u \|\mathring{Ric}\|^2. \tag{2.4}$$

Portanto, substituindo (2.3) e (2.4) em (2.2) segue o afirmado.

2.1 Caso compacto

O primeiro resultado de rigidez é sobre a esfera padrão e sua demonstração é motivada do resultado correspondente em variedades m-quasi-Einstein generalizada em Barros e Gomes [1].

Assumiremos que β e μ sejam não nulos. Entretanto, para $\alpha = \mu = 0$, a estrutura é abrangida em Obata [23]. Já o caso $\alpha \neq 0$, $\mu = 0$ é suficiente usar os resultados de quase-sólitons de Ricci em Barros e Ribeiro [3]. Em ambos a conclusão é que a variedade é isométrica a uma esfera padrão, desde que a curvatura escalar seja constante.

Teorema 2.1. Seja (M^n, g) uma variedade tipo-Einstein gradiente compacta, não trivial, de curvatura escalar constante com β e μ não nulos. Então, (M^n, g) é isométrica a uma esfera padrão $\mathbb{S}^n(c)$. Além disso, a menos de homotetia e uma constante, a função potencial é dada por

$$f = \frac{\beta}{\mu} \ln \left(\tau - \frac{h_v}{n} \right),$$

onde $\tau \in \left(\frac{1}{n}, +\infty\right)$ e h_v é uma função altura na esfera unitária \mathbb{S}^n .

Demonstração. Analisaremos primeiro o caso em que $\alpha \neq 0$. Como a curvatura escalar S

é constante, pelo Lema 2.1,

$$\operatorname{div}(\mathring{Ric}(\nabla u)) = -\frac{\alpha\mu}{\beta^2} u \|\mathring{Ric}\|^2.$$

Aplicando o Teorema da Divergência 1.2, temos

$$0 = \int_{M} \operatorname{div} \left(\mathring{Ric}(\nabla u) \right) dM = -\frac{\alpha \mu}{\beta^{2}} \int_{M} u \|\mathring{Ric}\|^{2} dM.$$

Como $\alpha, \mu \neq 0$ e u é uma função positiva segue que $\|\mathring{Ric}\|^2 = 0$, isto é, (M^n, g) é uma variedade Einstein. Reescrevendo (2.1), obtemos

$$\frac{\alpha}{\beta} \frac{S}{n} g + \frac{\beta}{\mu u} \nabla^2 u = \tilde{\lambda} g \quad \Rightarrow \quad \nabla^2 u = \left(\frac{\mu}{\beta} \tilde{\lambda} u - \frac{\alpha \mu}{\beta^2} \frac{S}{n} u \right) g \tag{2.5}$$

e, pela Proposição 1.6,

$$\mathcal{L}_{\nabla u}g = 2\psi g$$
, onde $\psi = \left(\frac{\mu}{\beta}\tilde{\lambda} - \frac{\alpha\mu}{\beta^2}\frac{S}{n}\right)u$. (2.6)

Desta forma, ∇u é um campo vetorial gradiente conforme não trivial. De fato, tomando o traço em (2.6) e usando a Proposição 1.6, temos que o fator conforme é dado por $\psi = \frac{\Delta u}{n}$. Segue do Princípio do Máximo de Hopf 1.3 e da estrutura tipo-Einstein gradiente ser não trivial que ψ não pode ser constante.

Como por hipótese S é constante, pela equação (1.14) referente a campos conformes, temos

$$-\Delta \psi = \frac{S}{n-1}\psi,\tag{2.7}$$

e portanto $\frac{S}{n-1}$ é um autovalor do laplaciano. Segue que S>0, pois ψ não é constante.

Por (M^n, g) ser Einstein, então pela equação (1.15) referente a campos conformes, obtemos que

$$\nabla^2 \psi = -\frac{S}{n(n-1)} \psi g.$$

Agora podemos aplicar o Teorema de Obata [23] para concluir que (M^n, g) é isométrica à esfera padrão $\mathbb{S}^n(c)$, de curvatura $c = \sqrt{\frac{n(n-1)}{S}}$. Fazendo homotetia na métrica podemos supor S = n(n-1). Substituindo em (2.7) e usando que $\psi = \frac{\Delta u}{n}$, obtemos

$$-\Delta \Delta u = n\Delta u. \tag{2.8}$$

Desta maneira, Δu é uma autofunção associada ao primeiro autovalor da esfera unitária

 \mathbb{S}^n . Por Berger [4], segue que $\Delta u = h_v$, onde $v \in \mathbb{S}^n$. Assim, podemos reescrever a equação (2.8) como segue

$$-\Delta h_v = n\Delta u \quad \Rightarrow \quad \Delta\left(\frac{h_v}{n} + u\right) = 0.$$

Pelo Princípio do Máximo de Hopf 1.3 concluímos que $u=\tau-\frac{h_v}{n}$, onde τ é uma constante positiva. Ademais, como v é unitário segue que $h_v\leqslant 1$ e portanto,

$$0 < u = \tau - \frac{h_v}{n} \quad \Rightarrow \quad \frac{h_v}{n} < \tau \quad \Rightarrow \quad \frac{1}{n} < \tau.$$

Para o caso $\alpha = 0$, a equação (2.1) é reduzida a

$$\nabla^2 u = \psi g$$
, onde $\psi = \frac{\mu}{\beta} \tilde{\lambda} u$. (2.9)

Novamente pela Proposição 1.6 segue que ∇u é um campo vetorial gradiente conforme não trivial, explicitamente, $\mathcal{L}_{\nabla u}g = 2\psi g$, onde $\psi = \frac{\Delta u}{n}$.

Como S é constante, pela equação (1.14) referente a campos conformes $\Delta \psi = -\frac{S}{n-1}\psi$. Desta forma,

$$\Delta u = n\psi = -\frac{n(n-1)}{S}\Delta\psi,$$

e pelo Princípio do Máximo de Hopf 1.3 existe uma constante τ tal que

$$u = -\frac{n(n-1)}{S}\psi + \tau \quad \Rightarrow \quad \psi = -\frac{S}{n(n-1)}u + \frac{S}{n(n-1)}\tau.$$

Usando (2.9), obtemos

$$\nabla^2 \psi = -\frac{S}{n(n-1)} \nabla^2 u = -\frac{S}{n(n-1)} \psi g.$$

Agora basta proceder como no caso anterior.

No Apêndice A calculamos o hessiano da função altura h_v na esfera unitária (e no espaço hiperbólico) de duas maneiras. A partir disso pode-se verificar que a função altura é uma autofunção do laplaciano.

Na prova do Teorema 2.1 identificamos que o Lema 2.1 é a principal fórmula para analisarmos o caso não compacto. Além disso, a equivalência entre as equações (2) e (2.1) e a definição da função u motiva o estudo dos seguintes exemplos.

Exemplo 2.1. Seja (\mathbb{R}^n, g_\circ) o espaço Euclidiano. Considere a função $f = \frac{\beta}{\mu} \ln(u)$ com β e μ números reais não nulos e $u = ||x||^2 + \tau$, onde τ é uma constante positiva. Então, o

hessiano de u como (1,1)-tensor é dado matricialmente por

$$\nabla^2 u = \left[\partial_i \partial_j(u)\right]_{n \times n} = \left[\partial_i (2x_j)\right]_{n \times n} = 2\left[\delta_{ij}\right]_{n \times n} = 2I. \tag{2.10}$$

Deste modo, observando que em (\mathbb{R}^n, g_\circ) o tensor de Ricci é identicamente nulo, podemos substituir (2.10) no lado esquerdo da equação (2.1), obtendo

$$\frac{\alpha}{\beta}Ric + \frac{\beta}{\mu u}\nabla^2 u = 2\frac{\beta}{\mu u}g_{\circ}.$$

Sendo assim, como a curvatura escalar S também é identicamente nula, podemos tomar $\lambda = 2\frac{\beta^2}{\mu u}$ concluindo que f e λ parametrizam (\mathbb{R}^n, g_\circ) com uma estrutura tipo-Einstein gradiente não trivial.

Exemplo 2.2. Seja $(\mathbb{M}^n(c), g_\circ)$ a esfera padrão \mathbb{S}^n para c = 1 ou o espaço hiperbólico \mathbb{H}^n para c = -1. Denote por h_v a função altura com $v \in \mathbb{R}^{n+1}$ fixo e unitário. Considere as funções $f = \frac{\beta}{\mu} \ln(u)$, onde $u = \tau - \frac{c}{n} h_v$ com $\tau \in \left(\frac{c}{n}, +\infty\right)$ e

$$\lambda = c \left[-\rho n(n-1) + \alpha(n-1) + \frac{\beta^2}{\mu} \frac{(\tau - u)}{u} \right],$$

onde ρ, α, β e μ são constantes reais com β e μ não nulos.

Usando que S = cn(n-1) e como $(\mathbb{M}^n(c), g_\circ)$ é uma variedade Einstein, segue que $Ric = c(n-1)g_\circ$. Além disso, $\nabla^2 u = \frac{h_v}{n}g_\circ$ (veja Apêndice A), e assim,

$$\frac{\alpha}{\beta}Ric + \frac{\beta}{\mu u}\nabla^2 u = \frac{\alpha}{\beta}c(n-1)g_\circ + \frac{\beta}{\mu u}\frac{h_v}{n}g_\circ$$

$$= c\left[\frac{\alpha}{\beta}(n-1) + \frac{\beta}{\mu u}\frac{c}{n}h_v\right]g_\circ$$

$$= c\left[\frac{\alpha}{\beta}(n-1) + \frac{\beta}{\mu}\frac{(\tau-u)}{u}\right]g_\circ.$$

Por outro lado,

$$\begin{split} \frac{1}{\beta}(\rho S + \lambda) &= \frac{1}{\beta} \left\{ \rho c n(n-1) + c \left[-\rho n(n-1) + \alpha(n-1) + \frac{\beta^2}{\mu} \frac{(\tau - u)}{u} \right] \right\} \\ &= c \left[\frac{\alpha}{\beta} (n-1) + \frac{\beta}{\mu} \frac{(\tau - u)}{u} \right]. \end{split}$$

Desta forma, f e λ parametrizam $(\mathbb{M}^n(c), g_\circ)$ com uma estrutura tipo-Einstein gradiente não trivial.

2.2 Caso não compacto

O objetivo dessa seção é, sob algumas condições geométricas, estabelecer resultados de rigidez de variedades tipo-Einstein gradiente não triviais. A ideia provém do Lema 2.1, onde no caso compacto é utilizado o Teorema da Divergência para concluir que a variedade é Einstein. O primeiro passo é provar o seguinte lema.

Lema 2.2. Seja (M^n, g) uma variedade tipo-Einstein gradiente não trivial com β e μ não nulos. Se (M^n, g) é uma variedade Einstein, então a função suave positiva $u = e^{\frac{\mu}{\beta}f}$ produz um campo concircular especial em (M^n, g) . Mais precisamente, u satisfaz a equação

$$\nabla^2 u = (-Ku + C)g,$$

com coeficientes constantes K e C, onde $K = \frac{S}{n(n-1)}$.

Demonstração. Se (M^n, g) é uma variedade Einstein, pela segunda equação de (2.5) temse que

$$\nabla^2 u = \left(\frac{\mu}{\beta}\tilde{\lambda}u - \frac{\mu\alpha}{\beta^2}\frac{S}{n}u\right)g \quad \text{e} \quad \Delta u = \left(\frac{\mu}{\beta}\tilde{\lambda}u - \frac{\mu\alpha}{\beta^2}\frac{S}{n}u\right)n. \tag{2.11}$$

Segue da Proposição 1.5 que div $(\nabla^2 u) = \nabla \left(\frac{\mu}{\beta}\tilde{\lambda}u - \frac{\mu\alpha}{\beta^2}\frac{S}{n}u\right)$. Logo, pela Proposição 1.8,

$$\nabla \left(\frac{\mu}{\beta} \tilde{\lambda} u - \frac{\mu \alpha}{\beta^2} \frac{S}{n} u \right) = \nabla \left(\frac{\mu}{\beta} \tilde{\lambda} n u - \frac{\mu \alpha}{\beta^2} S u \right) + \frac{S}{n} \nabla u,$$

e assim,

$$\nabla \left(\frac{\mu}{\beta} \tilde{\lambda}(n-1)u + \frac{S}{n}u - \frac{\mu\alpha}{\beta^2} \frac{(n-1)}{n} Su \right) = 0.$$

Dividindo esta equação por (n-1), obtemos

$$\nabla \left(\frac{\mu}{\beta} \tilde{\lambda} u + \frac{S}{n(n-1)} u - \frac{\mu \alpha}{\beta^2} \frac{S}{n} u \right) = 0.$$

Pela conexidade de M existe uma constante C tal que

$$\frac{\mu}{\beta}\tilde{\lambda}u = -\frac{S}{n(n-1)}u + \frac{\mu\alpha}{\beta^2}\frac{S}{n}u + C. \tag{2.12}$$

Substituindo na primeira identidade de (2.11) obtemos $\nabla^2 u = \left(-\frac{S}{n(n-1)}u + C\right)g$ e tomando $K = \frac{S}{n(n-1)}$ o resultado segue. Note que pelo Lema de Schur 1.1 S é constante. \square

O segundo passo é o Teorema de Karp, uma extensão geral do Teorema de Stokes para o caso não compacto, e um de seus corolários.

Lema 2.3 (Teorema de Karp [18]). Seja (M^n, g) uma variedade Riemanniana completa e não compacta. Considere a bola geodésica B(r) de raio r centrada em algum ponto fixado $x \in M$ e um campo vetorial X tal que

$$\lim_{r \to \infty} \inf \frac{1}{r} \int_{B(2r) \setminus B(r)} ||X|| dM = 0.$$

Se divX possui uma integral (ou seja, se (divX)⁺ ou (divX)⁻ for integrável), então $\int_M \operatorname{div} X dM = 0$. Em particular, se divX não muda de sinal fora de algum conjunto compacto, então $\int_M \operatorname{div} X dM = 0$.

Corolário 2.1. Seja (M^n, g) uma variedade Riemanniana completa, não compacta e com a seguinte propriedade: existe L > 0 e $q \ge 1$ tal que $vol(B(r)) \le Lr^q$, para $r \ge 1$. Se $\operatorname{div} X \ge 0$ fora de algum conjunto compacto e ou (a) q > 1 e $X \in L^p(M, dM)$, onde 1/p + 1/q = 1 ou (b) q = 1 e $||X|| \to 0$ uniformemente para o infinito em M, então $\int_M \operatorname{div} X dM = 0$.

Teorema 2.2. Seja (M^n, g) uma variedade tipo-Einstein gradiente completa, não compacta, não trivial, de curvatura escalar constante e com α, β e μ não nulos. Considere $u = e^{\frac{\mu}{\beta}f}$ e a bola geodésica B(r) centrada em algum ponto fixado $x \in M$. Além disso, suponha que pelo menos uma das seguintes condições seja satisfeita:

- (1) $\lim_{r \to \infty} \inf \frac{1}{r} \int_{B(2r) \backslash B(r)} \|\mathring{Ric}(\nabla u)\| dM = 0.$
- (2) $\lim_{r\to\infty}\inf\frac{1}{r}\int_{B(2r)\backslash B(r)}\|\nabla u\|dM=0$ e as curvaturas de Ricci são limitadas superiormente.
- (3) Existe L > 0 tal que $vol(B(r)) \leq Lr^q$, para $r \geq 1$ e $\mathring{Ric}(\nabla u) \in L^p(M, dM)$, onde $\frac{1}{p} + \frac{1}{q} = 1$ e q > 1.
- (4) Existe L > 0 tal que vol $(B(r)) \leqslant Lr$, para $r \geqslant 1$ e $\|\nabla u\| \to 0$ uniformemente para o infinito em M.

Então, (M^n, g) é uma variedade Einstein com curvatura escalar S não positiva e u possui no máximo um ponto crítico. Mais precisamente:

- (i) Se S=0, então λ não possui zeros e (M^n,g) é isométrica a um espaço Euclidiano.
- (ii) Se S < 0 e u possui apenas um ponto crítico, então (M^n, g) é isométrica a um espaço hiperbólico.
- (iii) Se S < 0 e u não possui ponto crítico, então (M^n, g) é isométrica a um produto deformado $\mathbb{R} \times_{\varphi} \mathbb{F}$, onde \mathbb{F} é uma variedade Einstein completa, e φ é uma solução positiva da equação diferencial $\ddot{\varphi} + \frac{S}{n(n-1)}\varphi = 0$ em \mathbb{R} .

Demonstração. Em vista do Lema 2.1 e das condições do Teorema de Karp 2.3, o teorema será provado sob a hipótese mais fraca de S constante para $\langle \nabla u, \nabla S \rangle \leq 0$ em M, se $\alpha \mu > 0$, ou $\langle \nabla u, \nabla S \rangle \geq 0$ em M, se $\alpha \mu < 0$. Em todo caso, $\operatorname{div}(\mathring{Ric}(\nabla u))$ no Lema 2.1 não muda de sinal em M.

Item (1): Se (1) vale, então pelo Lema 2.1 e usando o Teorema de Karp 2.3, obtemos

$$0 = \int_{M} \operatorname{div}(\mathring{Ric}(\nabla u)) dM$$
$$= \int_{M} \frac{n-2}{2n} \langle \nabla u, \nabla S \rangle dM - \int_{M} \frac{\alpha \mu}{\beta^{2}} u \|\mathring{Ric}\|^{2} dM. \tag{2.13}$$

Pela hipótese mais fraca de $\operatorname{div}(\mathring{Ric}(\nabla u))$ não mudar de sinal em M, segue que ambas as parcelas de (2.13) são nulas. Em particular, $\mathring{Ric} \equiv 0$, isto é, M é uma variedade Einstein e pelo Lema de Schur 1.1 S é constante. Ademais, como M também é completa e não compacta, segue do Teorema de Bonnet-Myers que $S \leq 0$ (ver Bonnet [5] e Myers [22]).

Item (2): Suponha que (2) seja válido. Então existe uma constante K > 0 tal que $\rho_i \leq \sqrt{\frac{K}{n}}$, para $i = 1 \dots n$, onde ρ_i são as curvaturas de Ricci. Seja $\{E_1, \dots, E_n\}$ um referencial ortonormal e note que, por (1.4), tem-se

$$||Ric||^2 = \sum_{i=1}^n \langle Ric(E_i), Ric(E_i) \rangle = \sum_{i=1}^n \rho_i^2 \leqslant K.$$

Assim,

$$\|\mathring{Ric}(\nabla u)\|^2 \leqslant \|\mathring{Ric}\|^2 \|\nabla u\|^2 = \left(\|Ric\|^2 - \frac{S^2}{n}\right) \|\nabla u\|^2 \leqslant K \|\nabla u\|^2.$$

Portanto, o Item (2) implica o Item (1).

Itens (3) **e** (4): Ambos os Itens (3) e (4) implicam o Item (1). Isto segue diretamente do Corolário 2.1 do Teorema de Karp.

Agora, como consequência do Lema 2.2, u satisfaz

$$\nabla^2 u = \left(-\frac{S}{n(n-1)}u + C\right)g,\tag{2.14}$$

onde C é uma constante dada em (2.12). Desta forma, podemos aplicar o Teorema 2 em Tashiro [27] para deduzir que (M^n, g) é como em (i) - (iii).

(a) Caso S=0: Aqui a prova depende da nulidade ou não da função λ . De (2.12) obtemos que $C=\frac{\mu}{\beta^2}\lambda u$. Assim, se C=0, então $\lambda\equiv 0$. Reciprocamente, se existe $x\in M$ tal que $\lambda(x)=0$, então C=0 e $\lambda\equiv 0$. E, se λ não possui zeros, teremos $C\neq 0$.

Item (i): Suponha por absurdo que exista $x \in M$ tal que $\lambda(x) = 0$. Então C = 0, $\lambda \equiv 0$ e consequentemente $\nabla^2 u = 0$ e $Ric \equiv 0$ por (2.1). Desta forma, $\Delta u = 0$ e isto é uma contradição, pois não seria possível encontrar uma função harmônica positiva não constante u em uma variedade com tensor de Ricci nulo, veja Yau [28]. Assim, segue que $C \neq 0$ e $\nabla^2 u = Cg$. Portanto, (M^n, g) é isométrica a um espaço Euclidiano. Como u por construção é positivo, podemos tomar, por exemplo, $u(x) = ||x||^2 + \tau$, com $\tau > 0$. Neste caso, a estrutura tipo-Einstein gradiente em (M^n, g) é dada no Exemplo 2.1.

(b) Caso S < 0: A prova depende nesse caso do número de pontos críticos do campo escalar concircular u (que é no máximo um, veja [27]).

Item (ii): Se u possui apenas um ponto crítico, então (M^n, g) é isométrica a um espaço hiperbólico. Uma solução positiva não trivial de (2.14) em \mathbb{H}^n foi apresentada no Exemplo 2.2.

Item (iii): Se u não possui pontos críticos, então (M^n, g) é isométrica a um produto deformado Einstein $\mathbb{R} \times_{\varphi} \mathbb{F}$, onde \mathbb{F} é uma variedade Einstein completa e φ é uma solução positiva da equação diferencial $\ddot{\varphi} + k\varphi = 0$ em \mathbb{R} , com $k = \frac{S}{n(n-1)}$, veja Masahiko [21].

Exemplo 2.3. Seja I um intervalo aberto da reta contendo a origem de forma que φ : $I \to \mathbb{R}^+$, dada por

$$\varphi(t) = \frac{a}{\sqrt{-k}} \operatorname{senh}(\sqrt{-k}t) + \sqrt{\frac{a^2 + l}{-k}} \operatorname{cosh}(\sqrt{-k}t),$$

seja uma função positiva, onde $a>0, l\geqslant 0$ e k<0 são constantes. Note que esta função é solução da equação diferencial $\ddot{\xi}+k\xi=0$. De fato,

$$\dot{\varphi}(t) = a \cosh(\sqrt{-k}t) + \sqrt{a^2 + l} \operatorname{senh}(\sqrt{-k}t)$$

e

$$\ddot{\varphi}(t) = a\sqrt{-k} \operatorname{senh}(\sqrt{-k}t) + \sqrt{-k}\sqrt{a^2 + l} \operatorname{cosh}(\sqrt{-k}t),$$

portanto $\ddot{\varphi} + k\varphi = 0$. Além disso, observe que

$$\varphi(t) = \dot{\varphi}(0) \frac{1}{\sqrt{-k}} \operatorname{senh}(\sqrt{-k}t) + \varphi(0) \operatorname{cosh}(\sqrt{-k}t).$$

Seja agora $(\mathbb{F}^{n-1}, g_{\mathbb{F}})$ uma variedade Einstein completa com tensor de Ricci dado por

$$Ric_{g_{\mathbb{F}}} = -(n-2) \left(-\dot{\varphi}(0)^2 - k\varphi(0)^2 \right) g_{\mathbb{F}}$$
$$= -(n-2) \left[-a^2 - k \left(\frac{a^2 + l}{-k} \right) \right] g_{\mathbb{F}}$$
$$= -(n-2) l g_{\mathbb{F}}.$$

Então, pelo Lema 2.1 em Pigola et al. [26] podemos construir um produto deformado Einstein $M^n = I \times_{\varphi} \mathbb{F}$ munido com a métrica

$$g = dt^2 + \varphi(t)^2 g_{\mathbb{F}}$$

e tensor de Ricci dado por Ric = (n-1)kg. Além disso, $u(t,p) = \varphi(t)$ é uma função positiva satisfazendo a equação diferencial $\nabla^2 u + kug = 0$ em (M^n, g) . Escrevendo $u = e^{\frac{\mu}{\beta} \frac{\beta}{\mu} \ln(u)}$, então pelo lado esquerdo da expressão (2.1), obtemos

$$\frac{\alpha}{\beta}Ric + \frac{\beta}{\mu u}\nabla^2 u = \frac{\alpha}{\beta}(n-1)kg - \frac{k\beta}{\mu}g = \left(\frac{\alpha}{\beta}(n-1)k - \frac{k\beta}{\mu}\right)g.$$

Por outro lado,

$$\frac{1}{\beta}(\rho S + \lambda)g = \left(\frac{1}{\beta}\rho n(n-1)k + \frac{\lambda}{\beta}\right)g.$$

Desta forma, tomando $\lambda = -\rho n(n-1)k + \alpha(n-1)k - \frac{k\beta^2}{\mu}$ concluímos que $f = \frac{\beta}{\mu} \ln(u)$ e λ parametrizam (M^n,g) com uma estrutura tipo-Einstein gradiente não trivial, para cada α,β,μ e ρ , onde β e μ são não nulos.

Agora, iremos estudar algumas condições para uma variedade tipo-Einstein gradiente não compacta (com $\beta \neq 0$) ser uma variedade Einstein. Entretanto, algumas restrições sobre os parâmetros α e μ precisam ser estabelecidas. A primeira, que parece ser mais natural, é considerá-los não nulos. Neste caso, como feito em (2.1), a equação (2) é equivalente a

$$Ric + h\nabla^2 u = \ell q, \tag{2.15}$$

onde $u=e^{\frac{\mu}{\beta}f}$, $h=\frac{\beta^2}{\alpha\mu}\frac{1}{u}$ e $\ell=\frac{1}{\alpha}(\rho S+\lambda)$. Agora, podemos aplicar a abordagem de variedades m-quasi-Einstein generalizada.

No que segue, assumiremos que u, h e ℓ são funções suaves arbitrárias satisfazendo a equação (2.15) na variedade Riemanniana (M^n, g) . Então, usando as Proposições 1.5, 1.4

e 1.8, temos

$$\frac{1}{2}dS = \operatorname{div}Ric = \operatorname{div}(\ell g - h\nabla^2 u) = \operatorname{div}(\ell g) - \operatorname{div}(h\nabla^2 u)$$

$$= d\ell - h\operatorname{div}\nabla^2 u - \nabla^2 u (\nabla h, \cdot)$$

$$= d\ell - hRic(\nabla u, \cdot) - hd\Delta u - \nabla^2 u (\nabla h, \cdot).$$
(2.16)

Note que $d(h\Delta u) = hd\Delta u + \Delta udh$. Tomando o traço em (2.15), por (1.5) e (1.8) tem-se que $h\Delta u = n\ell - S$. Substituindo em (2.16), obtemos

$$\frac{1}{2}dS = d\ell - hRic(\nabla u, \cdot) - nd\ell + dS + \Delta udh - \nabla^2 u(\nabla h, \cdot)$$

o que implica

$$(n-1)d\ell = \frac{1}{2}dS - hRic(\nabla u, \cdot) + \Delta udh - \nabla^2 u(\nabla h, \cdot).$$
 (2.17)

Por outro lado, segue da equação (2.15) e da Proposição 1.3 que

$$hRic(\nabla u, \cdot) = \ell h du - h^2 \nabla^2 u(\nabla u, \cdot)$$
$$= \ell h du - \frac{h^2}{2} d|\nabla u|^2.$$
(2.18)

Substituindo (2.18) em (2.17), obtemos

$$(n-1)d\ell = \frac{1}{2}dS - \ell h du + \frac{h^2}{2}d|\nabla u|^2 + \Delta u dh - \nabla^2 u(\nabla h, \cdot).$$
 (2.19)

Em particular, para $h = \frac{c}{u}$, onde $c = \frac{\beta^2}{\alpha \mu}$, temos

$$dh = -\frac{c}{u^2}du \quad e \quad c\Delta u = (n\ell - S)u. \tag{2.20}$$

Substituindo (2.20) em (2.19) e usando novamente a Proposição 1.3, obtemos

$$(n-1)d\ell = \frac{1}{2}dS - \frac{c}{u}du + \frac{c^2}{2u^2}d|\nabla u|^2 - \frac{c\Delta u}{u^2}du + \frac{c}{u^2}\nabla^2 u(\nabla u, \cdot)$$
$$= \frac{1}{2}dS - \frac{c}{u}\ell du + \frac{c^2}{2u^2}d|\nabla u|^2 - \frac{n\ell - S}{u}du + \frac{c}{2u^2}d|\nabla u|^2.$$

Assim,

$$(n-1)u^2d\ell = \frac{u^2}{2}dS - cu\ell du - (n\ell - S)udu + \left(\frac{c^2 + c}{2}\right)d|\nabla u|^2.$$

Aplicando a derivada exterior, obtemos

$$d[(n-1)u^{2}] \wedge d\ell = d\left(\frac{u^{2}}{2}\right) \wedge dS - d(cu\ell) \wedge du - d[(n\ell - S)u] \wedge du + d\left(\frac{c^{2} + c}{2}\right) \wedge d|\nabla u|^{2}.$$

O que implica

$$2(n-1)udu \wedge d\ell = udu \wedge dS - cud\ell \wedge du - nud\ell \wedge du + udS \wedge du.$$

Desta forma,

$$2(n-1)udu \wedge d\ell = -cud\ell \wedge du - nud\ell \wedge du.$$

Dividindo esta equação por u e substituindo o valor $c = \frac{\beta^2}{\alpha \mu}$, obtemos

$$2(n-1)du \wedge d\ell = \frac{\beta^2}{\alpha \mu} d\ell \wedge du - nd\ell \wedge du.$$

Portanto,

$$[\beta^2 - (n-2)\alpha\mu]du \wedge d\ell = 0. \tag{2.21}$$

Notavelmente, é necessário considerar a condição de não degenerescência $\beta^2 - (n-2)\alpha\mu \neq 0$ para obter uma boa relação entre u e ℓ . O seguinte lema mostra isto e dá mais um sentido à questão da degenerescência.

Lema 2.4. Seja (M^n, g) uma variedade tipo-Einstein gradiente não trivial, não degenerada e com α e μ não nulos. Então, $\nabla \ell = \psi \nabla u$ para alguma função $\psi \in C^{\infty}(M)$, onde $\ell = \frac{1}{\alpha}(\rho S + \lambda)$ e $u = e^{\frac{\mu}{\beta}f}$.

Demonstração. De fato, como $\alpha, \mu \neq 0$, segue da não degenerescência e da equação (2.21) que $du \wedge d\ell = 0$. Portanto, existe $\psi \in C^{\infty}(M)$ tal que $d\ell = \psi du$, isto é, $\nabla \ell = \psi \nabla u$.

Em termos de (1,1)-tensor, a equação (2.17) pode ser escrita como

$$hRic(\nabla u) = \frac{1}{2}\nabla S - (n-1)\nabla \ell + \Delta u\nabla h - \nabla^2 u(\nabla h). \tag{2.22}$$

Substituindo as equações de (2.20) e (2.15) em (2.22), obtemos

$$\frac{c}{u}Ric(\nabla u) = \frac{1}{2}\nabla S - (n-1)\nabla \ell - \frac{c}{u^2}\Delta u\nabla u + \frac{c}{u^2}\nabla^2 u(\nabla u)
= \frac{1}{2}\nabla S - (n-1)\nabla \ell - \frac{n\ell - S}{u}\nabla u + \frac{\ell}{u}\nabla u - \frac{1}{u}Ric(\nabla u).$$

Multiplicando esta equação por u, temos

$$cRic(\nabla u) = \frac{u}{2}\nabla S - (n-1)u\nabla \ell - (n\ell - S)\nabla u + \ell \nabla u - Ric(\nabla u).$$

Finalmente, substituindo $c = \frac{\beta^2}{\alpha \mu}$ e reagrupando, obtemos

$$\frac{\beta^2 + \alpha \mu}{\alpha \mu} Ric(\nabla u) = \frac{u}{2} \nabla S - (n-1)u \nabla \ell - [(n-1)\ell - S)] \nabla u. \tag{2.23}$$

Como aplicação da equação (2.23) e do Lema 2.4 deduziremos o próximo teorema. A configuração mais apropriada é considerar a classe de variedades tipo-Einstein (M^n, g) próprias, as quais são não triviais. Os Exemplos 2.1 e 2.2 são variedades Einstein admitindo uma estrutura tipo-Einstein gradiente própria, enquanto que o Exemplo 2.3 é uma variedade Einstein admitindo uma estrutura tipo-Einstein gradiente, não trivial e não própria.

Teorema 2.3. Seja (M^n, g) uma variedade tipo-Einstein gradiente homogênea, própria, não compacta, não degenerada e com α e μ não nulos. Se $\beta^2 \neq \alpha \mu$, então (M^n, g) é uma variedade Einstein.

Demonstração. Provaremos o teorema sob a condição mais fraca de homogeneidade para curvaturas de Ricci constantes e consequentemente curvatura escalar constante, veja Calviño-Louzao et al. [9]. Pelo Lema 2.4, existe $\psi \in C^{\infty}(M)$ tal que $\nabla \ell = \psi \nabla u$. Assim, podemos escrever a equação (2.23) como

$$\frac{\beta^2 + \alpha \mu}{\alpha \mu} Ric(\nabla u) = -\left[(n-1)u\psi + (n-1)\ell - S \right] \nabla u. \tag{2.24}$$

Por hipótese, $\beta^2 \neq \alpha \mu$, segue que ∇u é um autovetor do tensor de Ricci e podemos escrever (2.24) como segue

$$Ric(\nabla u) = k\nabla u,$$

onde $k=-\frac{\alpha\mu}{\beta^2+\alpha\mu}\left[(n-1)u\psi+(n-1)\ell-S\right]$ é constante, pois as curvaturas de Ricci são constantes. Temos também que

$$\mathring{Ric}(\nabla u) = Ric(\nabla u) - \frac{S}{n}\nabla u = \left(k - \frac{S}{n}\right)\nabla u.$$

Denotando $\overline{k}=k-\frac{S}{n}$, aplicando o divergente e usando o Lema 2.1, obtemos

$$\overline{k}\Delta u = \operatorname{div}\left(\mathring{Ric}(\nabla u)\right) = -\frac{\alpha\mu}{\beta^2}u\|\mathring{Ric}\|^2.$$

Deste modo, pela segunda equação de (2.20), temos

$$\overline{k}\Delta u = \overline{k}\frac{\alpha\mu}{\beta^2}(n\ell - S)u = -\frac{\alpha\mu}{\beta^2}u\|\mathring{Ric}\|^2.$$

Assim,

$$\overline{k}(n\ell - S) = -\|\mathring{Ric}\|^2.$$

Afirmamos que $\overline{k}=0$. De fato, suponha que $\overline{k}\neq 0$, como (M^n,g) possui curvaturas de Ricci constantes segue que $\|\mathring{Ric}\|^2$ é constante e, deste modo λ também o seria, uma contradição. Assim, $\overline{k}=0$ implica $\mathring{Ric}=0$ donde concluímos a demonstração.

Finalizaremos o capítulo com uma observação sobre a rigidez deste último resultado.

Observação 2.1. Uma variedade Riemanniana (M^n, g) que satisfaz as hipóteses do Teorema 2.3 é Einstein, o que nos permite usar o Lema 2.2 e aplicar o Teorema 2 em [27] para deduzir, novamente, que (M^n, g) é como em (i) - (iii) do Teorema 2.2.

Apêndice A

O hessiano da função altura em \mathbb{S}^n e \mathbb{H}^n

Seja $(\mathbb{M}^n(c), g)$ a esfera padrão \mathbb{S}^n para c = 1 ou o espaço hiperbólico \mathbb{H}^n para c = -1 com suas respectivas métricas canônicas. Nesta notação, podemos escrever

$$\mathbb{M}^{n}(c) = \left\{ y \in \mathbb{N}^{n+1}(c) : \langle y, y \rangle_{c} = \sum_{l=1}^{n} y_{l}^{2} + cy_{n+1}^{2} = c \right\},\,$$

em que, para c=1 temos \mathbb{S}^n isometricamente imersa no espaço Euclidiano $\mathbb{R}^{n+1}=\mathbb{N}^{n+1}(1)$ e, para c=-1 temos \mathbb{H}^n isometricamente imerso no espaço de Lorentz $\mathbb{L}^{n+1}=\mathbb{N}^{n+1}(-1)$. Dado um vetor unitário fixado $v\in\mathbb{N}^{n+1}(c)$, a função altura em $\mathbb{M}^n(c)$ é definida por

$$h_v(y) = \langle v, y \rangle_c$$
.

A seguir calcularemos o hessiano da função altura de duas formas distintas. Primeiramente através da projeção estereográfica e, posteriormente, usaremos a teoria de imersões isométricas (ver [10], [15] ou [25]).

A.1 Cálculo via projeção estereográfica

Para o cálculo do hessiano usando a projeção estereográfica, primeiro note que

$$h_v(y) = \langle v, y \rangle_c$$

= $v^1 y_1 + \dots + v^n y_n + c v^{n+1} y_{n+1}$
= $v^l y_l + c v^{n+1} y_{n+1}$.

onde $l = 1, \ldots, n$.

Desta forma, em coordenadas,

$$(\nabla^{2}h_{v})_{ij} = g(\nabla_{\partial_{i}}\nabla h_{v}, \partial_{j})$$

$$= g(\nabla_{\partial_{i}}\nabla (v^{l}y_{l} + cv^{n+1}y_{n+1}), \partial_{j})$$

$$= v^{l}g(\nabla_{\partial_{i}}\nabla y_{l}, \partial_{j}) + cv^{n+1}g(\nabla_{\partial_{i}}\nabla y_{n+1}, \partial_{j})$$

$$= v^{l}(\nabla^{2}y_{l})_{ij} + cv^{n+1}(\nabla^{2}y_{n+1})_{ij}, \tag{A.1}$$

onde $\{\partial_i\}$ é o referencial coordenado em um sistema de coordenadas de $\mathbb{M}^n(c)$ dado. Portanto, para calcular o hessiano de h_v basta calcular o hessiano de y_α , para $\alpha = 1, \ldots, n+1$.

Considere o sistema de coordenadas em $\mathbb{M}^n(c)$ através da inversa da projeção estereográfica $x: U_c \to \mathbb{M}^n(c)$ dada por

$$x(u) = (x_1(u), \dots, x_{n+1}(u)) = \left(\frac{2u}{1+c|u|^2}, \frac{|u|^2-c}{1+c|u|^2}\right),$$

onde U_c é o espaço Euclidiano \mathbb{R}^n para c=1, ou a bola aberta unitária centrada na origem $B_1(0) \subset \mathbb{R}^n$ para c=-1.

Desta forma, o hessiano de x_{α} em coordenadas é expresso por

$$(\nabla^2 x_{\alpha})_{ij} = \partial_i \partial_j x_{\alpha} - \Gamma^k_{ij} \partial_k x_{\alpha}, \tag{A.2}$$

onde $\alpha = 1, \ldots, n+1$ e ∂_k significará $\frac{\partial}{\partial u_k}$ daqui em diante, onde $k = 1, \ldots, n$.

Definindo $\lambda_c = \frac{2}{1+c|u|^2}$ podemos escrever $x(u) = (\lambda_c u, c(1-\lambda_c))$. Como $|u|^2 = \sum_{l=1}^n u_l^2$, segue que

$$\partial_l \lambda_c = -\frac{2}{(1+c|u|^2)^2} \cdot 2cu_l = -c\lambda_c^2 u_l.$$

Com isso, denotando por e_1, \ldots, e_{n+1} a base canônica de \mathbb{R}^{n+1} , segue que

$$x = (x_1, \dots, x_{n+1}) = \sum_{\alpha=1}^{n+1} x_{\alpha} e_{\alpha},$$

então, como

$$g_{ij} = \langle \partial_i, \partial_j \rangle_c,$$

devemos calcular $\partial_i x$, para $i = 1, \dots, n$.

$$\partial_{i}x = \sum_{l=1}^{n} \partial_{i}x_{l}e_{l} + \partial_{i}x_{n+1}e_{n+1}$$

$$= \sum_{l=1}^{n} \partial_{i}(\lambda_{c}u_{l})e_{l} + \partial_{i}(c(1-\lambda_{c}))e_{n+1}$$

$$= \sum_{l=1}^{n} ((\partial_{i}\lambda_{c})u_{l} + \lambda_{c}\partial_{i}u_{l})e_{l} + \lambda_{c}^{2}u_{i}e_{n+1}$$

$$= \sum_{l=1}^{n} (-c\lambda_{c}^{2}u_{i}u_{l} + \lambda_{c}\delta_{il})e_{l} + \lambda_{c}^{2}u_{i}e_{n+1}. \tag{A.3}$$

E assim, obtemos

$$g_{ij} = \langle \partial_i x, \partial_j x \rangle_c$$

$$= \sum_{l=1}^n (\lambda_c \delta_{il} - c \lambda_c^2 u_i u_l) (\lambda_c \delta_{jl} - c \lambda_c^2 u_j u_l) + c \lambda_c^4 u_i u_j$$

$$= \sum_{l=1}^n (\lambda_c^2 \delta_{il} \delta_{jl} - c \lambda_c^3 u_j u_l \delta_{il} - c \lambda_c^3 u_i u_l \delta_{jl} + \lambda_c^4 u_i u_j u_l^2) + c \lambda_c^4 u_i u_j.$$

O que implica

$$g_{ij} = \lambda_c^2 \delta_{ij} - 2c\lambda_c^3 u_i u_j + \lambda_c^4 u_i u_j |u|^2 + c\lambda_c^4 u_i u_j$$

$$= \lambda_c^2 \delta_{ij} + u_i u_j \lambda_c^3 \left(-2c + \lambda_c |u|^2 + c\lambda_c \right)$$

$$= \lambda_c^2 \delta_{ij} + u_i u_j \lambda_c^3 \left(-2c + 2c \right)$$

$$= \lambda_c^2 \delta_{ij}.$$

Deste modo, $x: U_c \to \mathbb{M}^n(c)$ é um sistema de coordenadas conforme a métrica canônica Euclidiana. Observe que no caso da esfera padrão \mathbb{S}^n essa é uma parametrização para $\mathbb{S}^n \setminus \{e_{n+1}\}$. Para cobrir \mathbb{S}^n podemos adicionar uma parametrização similar a essa para $\mathbb{S}^n \setminus \{-e_{n+1}\}$, por exemplo.

Agora podemos calcular as parcelas do hessiano de x_{α} em (A.2). Note que, por (A.3),

$$\begin{cases} \partial_j x_l = \lambda_c \delta_{jl} - c \lambda_c^2 u_j u_l, & \text{para } l = 1, \dots, n. \\ \partial_j x_{n+1} = \lambda_c^2 u_j. \end{cases}$$

Com isso, para $l = 1, \ldots, n$,

$$\partial_{i}\partial_{j}x_{l} = \partial_{i}\left(\lambda_{c}\delta_{jl} - c\lambda_{c}^{2}u_{j}u_{l}\right)$$

$$= \partial_{i}(\lambda_{c})\delta_{jl} - c\left(2\lambda_{c}\partial_{i}(\lambda_{c})u_{j}u_{l} + \lambda_{c}^{2}(\partial_{i}u_{j})u_{l} + \lambda_{c}^{2}u_{j}\partial_{i}u_{l}\right)$$

$$= -c\lambda_{c}^{2}u_{i}\delta_{jl} + 2\lambda_{c}^{3}u_{i}u_{j}u_{l} - c\lambda_{c}^{2}u_{l}\delta_{ij} - c\lambda_{c}^{2}u_{j}\delta_{il}$$

$$= 2x_{i}x_{j}x_{l} - c\lambda_{c}x_{i}\delta_{jl} - c\lambda_{c}x_{j}\delta_{il} - c\lambda_{c}x_{l}\delta_{ij}, \tag{A.4}$$

Para o outro caso,

$$\partial_{i}\partial_{j}x_{n+1} = \partial_{i}(\lambda_{c}^{2}u_{j})$$

$$= 2\lambda_{c}\partial_{i}(\lambda_{c})u_{j} + \lambda_{c}^{2}\partial_{i}u_{j}$$

$$= -2c\lambda_{c}^{3}u_{i}u_{j} + \lambda_{c}^{2}\delta_{ij}$$

$$= -2c\lambda_{c}x_{i}x_{j} + \lambda_{c}^{2}\delta_{ij}.$$
(A.5)

Além disso, os símbolos de Christoffel são dados por

$$\Gamma_{ij}^{k} = \frac{1}{2}g^{kl} \left(\partial_{i}g_{jl} + \partial_{j}g_{il} - \partial_{l}g_{ij}\right)$$

$$= \frac{1}{2}\lambda_{c}^{-2}\delta^{kl} \left(\partial_{i}(\lambda_{c}^{2}\delta_{jl}) + \partial_{j}(\lambda_{c}^{2}\delta_{il}) - \partial_{l}(\lambda_{c}^{2}\delta_{ij})\right)$$

$$= \frac{1}{2}\lambda_{c}^{-2}\delta^{kl} \left(\partial_{i}(\lambda_{c}^{2})\delta_{jl} + \partial_{j}(\lambda_{c}^{2})\delta_{il} - \partial_{l}(\lambda_{c}^{2})\delta_{ij}\right)$$

$$= \frac{1}{2}\lambda_{c}^{-2} \left(\partial_{i}(\lambda_{c}^{2})\delta_{jk} + \partial_{j}(\lambda_{c}^{2})\delta_{ik} - \partial_{k}(\lambda_{c}^{2})\delta_{ij}\right)$$

$$= \lambda_{c}^{-1} \left(\partial_{i}(\lambda_{c})\delta_{jk} + \partial_{j}(\lambda_{c})\delta_{ik} - \partial_{k}(\lambda_{c})\delta_{ij}\right)$$

$$= -c\left(\lambda_{c}u_{i}\delta_{jk} + \lambda_{c}u_{j}\delta_{ik} - \lambda_{c}u_{k}\delta_{ij}\right)$$

$$= -c\left(x_{i}\delta_{ik} + x_{j}\delta_{ik} - x_{k}\delta_{ii}\right).$$

Então, para $l=1,\ldots,n$, temos

$$\Gamma_{ij}^{k}\partial_{k}x_{l} = \sum_{k=1}^{n} -c(x_{i}\delta_{jk} + x_{j}\delta_{ik} - x_{k}\delta_{ij})(\lambda_{c}\delta_{kl} - cx_{k}x_{l})$$

$$= \sum_{k=1}^{n} -c(\lambda_{c}x_{i}\delta_{jk}\delta_{kl} - cx_{i}x_{k}x_{l}\delta_{jk} + \lambda_{c}x_{j}\delta_{ik}\delta_{kl} - cx_{j}x_{k}x_{l}\delta_{ik} - \lambda_{c}x_{k}\delta_{ij}\delta_{kl} + cx_{l}x_{k}^{2}\delta_{ij})$$

$$= -c\lambda_{c}x_{i}\delta_{jl} + x_{i}x_{j}x_{l} - c\lambda_{c}x_{j}\delta_{il} + x_{i}x_{j}x_{l} + c\lambda_{c}x_{l}\delta_{ij} - x_{l}\delta_{ij}\sum_{k=1}^{n} x_{k}^{2}$$

$$= 2x_{i}x_{j}x_{l} - c\lambda_{c}x_{i}\delta_{jl} - c\lambda_{c}x_{j}\delta_{il} + c\lambda_{c}x_{l}\delta_{ij} - x_{l}\delta_{ij}(c - cx_{n+1}^{2}).$$

Por conseguinte, usando (A.4),

$$(\nabla^{2}x_{l})_{ij} = \partial_{i}\partial_{j}x_{l} - \Gamma^{k}_{ij}\partial_{k}x_{l}$$

$$= 2x_{i}x_{j}x_{l} - c\lambda_{c}x_{i}\delta_{jl} - c\lambda_{c}x_{j}\delta_{il} - c\lambda_{c}x_{l}\delta_{ij}$$

$$- 2x_{i}x_{j}x_{l} + c\lambda_{c}x_{i}\delta_{jl} + c\lambda_{c}x_{j}\delta_{il} - c\lambda_{c}x_{l}\delta_{ij} + x_{l}\delta_{ij}(c - cx_{n+1}^{2})$$

$$= -2c\lambda_{c}x_{l}\delta_{ij} + cx_{l}\delta_{ij}(1 - x_{n+1}^{2})$$

$$= -2c\lambda_{c}x_{l}\delta_{ij} + cx_{l}\delta_{ij}(1 - (1 - \lambda_{c})^{2})$$

$$= -2c\lambda_{c}x_{l}\delta_{ij} + cx_{l}\delta_{ij}(2\lambda_{c} - \lambda_{c}^{2})$$

$$= c\lambda_{c}x_{l}\delta_{ij}(-2 + 2 - \lambda_{c})$$

$$= -cx_{l}\lambda_{c}^{2}\delta_{ij}$$

$$= -cx_{l}g_{ii}.$$
(A.6)

E para n+1,

$$\Gamma_{ij}^k \partial_k x_{n+1} = \sum_{k=1}^n -c(x_i \delta_{jk} + x_j \delta_{ik} - x_k \delta_{ij}) \lambda_c x_k$$

$$= -c \lambda_c x_i x_j - c \lambda_c x_i x_j + c \lambda_c \delta_{ij} \sum_{k=1}^n x_k^2$$

$$= -2c \lambda_c x_i x_j + c \lambda_c \delta_{ij} (c - c x_{n+1}^2)$$

$$= -2c \lambda_c x_i x_j + \lambda_c \delta_{ij} \left(1 - (1 - \lambda_c)^2 \right)$$

$$= -2c \lambda_c x_i x_j - \lambda_c^3 \delta_{ij} + 2\lambda_c^2 \delta_{ij},$$

que usando (A.5) resulta

$$(\nabla^{2}x_{n+1})_{ij} = \partial_{i}\partial_{j}x_{n+1} - \Gamma_{ij}^{k}\partial_{k}x_{n+1}$$

$$= -2c\lambda_{c}x_{i}x_{j} + \lambda_{c}^{2}\delta_{ij} + 2c\lambda_{c}x_{i}x_{j} + \lambda_{c}^{3}\delta_{ij} - 2\lambda_{c}^{2}\delta_{ij}$$

$$= -\lambda_{c}^{2}\delta_{ij} + \lambda_{c}^{3}\delta_{ij}$$

$$= -c^{2}(1 - \lambda_{c})\lambda_{c}^{2}\delta_{ij}$$

$$= -cx_{n+1}q_{ij}.$$
(A.7)

Por (A.6) e (A.7) concluímos que o hessiano de h_v em (A.1) é dado por

$$(\nabla^{2}h_{v})_{ij} = v^{l}(\nabla^{2}x_{l})_{ij} + cv^{n+1}(\nabla^{2}x_{n+1})_{ij}$$

$$= -cv^{l}x_{l}g_{ij} - v^{n+1}x_{n+1}g_{ij}$$

$$= -c(v^{l}x_{l} + cv^{n+1}x_{n+1})g_{ij}$$

$$= -ch_{v}g_{ij}.$$

isto é, $\nabla^2 h_v = -ch_v g$.

A.2 Cálculo via imersão

Alternativamente, para o cálculo do hessiano usando a imersão, considere ∇ e $\overline{\nabla}$ as conexões de $\mathbb{M}^n(c)$ e $\mathbb{N}^{n+1}(c)$, respectivamente. Seja α a segunda forma fundamental de $\mathbb{M}^n(c)$ e A_N o operador de Weingarten associado à α , em que N é um campo de vetores normais em $\mathbb{M}^n(c)$, isto é, $\langle N, N \rangle_c = c$.

Assim, para $X, Y \in \mathfrak{X} (\mathbb{M}^n(c))$ vale

$$\overline{\nabla}_X Y = \nabla_X Y + \alpha(X, Y)
= \nabla_X Y + c \langle \alpha(X, Y), N \rangle_c N
= \nabla_X Y + c \langle A_N X, Y \rangle_c N.$$
(A.8)

Note que podemos considerar $N(x) = \vec{x}$, em que $\vec{x} \in \mathbb{N}^{n+1}(c)$ é o vetor posição em $x \in \mathbb{M}^n(c)$. Além disso, como $A_N = -dN$, segue que $A_N = -I$. Substituindo em (A.8), temos

$$\overline{\nabla}_X Y = \nabla_X Y - c\langle X, Y \rangle_c \vec{x}. \tag{A.9}$$

Para cada $X \in \mathfrak{X}(\mathbb{M}^n(c))$, temos

$$\langle \nabla h_v, X \rangle_c = X(h_v) = X\langle v, \vec{x} \rangle_c = \langle v, X(x) \rangle_c = \langle v^\top, X \rangle_c,$$

donde $\nabla h_v = v^{\top}$.

Escrevendo $v = v^{\top} + c \langle v, \vec{x} \rangle_c \vec{x}$ e usando (A.9), obtemos

$$\nabla^{2}h_{v}(X) = \nabla_{X}\nabla h_{v}$$

$$= \nabla_{X}v^{\top}$$

$$= \overline{\nabla}_{X}v^{\top} + c\langle X, v^{\top}\rangle_{c}\vec{x}$$

$$= \overline{\nabla}_{X}\left(v - c\langle v, \vec{x}\rangle_{c}\vec{x}\right) + c\langle X, v\rangle_{c}\vec{x}$$

$$= -cX\left(\langle v, \vec{x}\rangle_{c}\right)\vec{x} - c\langle v, \vec{x}\rangle_{c}X(x) + c\langle X, v\rangle_{c}\vec{x}$$

$$= -c\langle v, X\rangle_{c}\vec{x} - ch_{v}(x)X + c\langle X, v\rangle_{c}\vec{x}$$

$$= -ch_{v}(x)X.$$

Portanto, $\nabla^2 h_v = -ch_v I$.

Referências Bibliográficas

- [1] Barros, A.; Gomes, J. N. A compact gradient generalized quasi-Einstein metric with constant scalar curvature. J. Math Anal. Appl. (Print) 401 (2013) 702-705
- [2] Barros, A.; Gomes, J. N. Triviality of compact m-quasi-Einstein manifolds. Results Math 71 (2017) 241-250
- [3] Barros, A.; Ribeiro, E. Some characterizations for compact almost Ricci solitons. Proc. Amer. Math. Soc. 140 (2012) 1033-1040
- [4] BERGER, M.; GAUDUCHON, P.; MAZET, E. Le spectre d'une variètè Riemannienne. Springer-Verlag, New York, 1971. (Lectures Notes in Mathematics, v. 194)
- [5] BONNET, O. Sur quelques propriétés des lignes géodésiques. C. R. Ac. Sc., Paris 40 (1855) 1311-1313
- [6] BESSE, A. L. Einstein manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987
- [7] BIEZUNER, R. B. Notas de aula, Geometria Riemanniana. UFMG, Minas Gerais, 2017
- [8] BOURGUIGNON, J.-P. *Ricci curvature and Einstein metrics*. Global differential geometry and global analysis, Lecture Notes in Math., v. 838. Springer, Berlin, 1981, p. 42-63
- [9] CALVIÑO-LOUZAO, E.; FERNÁNDEZ-LÓPEZ, M.; GARCÍA-RÍO, E.; VÁZQUEZ-LORENZO, R. Homogeneous Ricci almost solitons. Isr. J. Math. 220 (2017) 531-546
- [10] CARMO, M. P. Geometria Riemanniana. 5^a ed. Projeto Euclides, IMPA, Rio de Janeiro, 2011
- [11] CASE, J.; Shu, Y.; Wei, G. Rigity of quasi-Einstein metrics. Differential Geom. Appl. 29 (2011) 93-100

- [12] CATINO, G.; MASTROLIA, P.; MONTICELLI, D.; RIGOLI, M. On the geometry of gradient Einstein-type manifolds. Pacific J. Math. 286 (1) (2017) 39-67
- [13] CATINO, G.; MAZZIERI, L. Gradient Einstein solitons. Nonlinear Anal. 132 (2016) 66-94
- [14] Gomes, J. N. A note on gradient Einstein-type manifolds. ARXIV. e-print ar-Xiv:1710.10549 (2017)
- [15] Gomes, J. N. Operadores diferenciais em variedades Riemannianas, Notas de Aula. USP, São Paulo, 2015
- [16] Hamilton, R. S. The formation of singularities in the Ricci flow. Surveys in Differential Geometry (Cambridge, MA, 1993), International Press, Cambridge, MA, (1995) 7-136
- [17] Hamilton, R. S. The Ricci flow on surfaces. Contemp. Math. 71 (1988) 237-261
- [18] KARP, L. On Stokes's theorem for noncompact manifolds. Proc. Amer. Math. Soc. 82 (1981) 487-490
- [19] Kim, D.-S.; Kim, Y. H. Compact Einstein warped product spaces with nonpositive scalar curvature. Proc. Amer. Math. Soc. 131 (8) (2003) 2573-2576
- [20] LEE, J. M. Introduction to smooth manifolds. 2^a ed. Springer-Verlag, New York, 2013. (Graduate Texts in Mathematics v. 176)
- [21] MASAHIKO, K. On a differential equation characterizing a Riemannian structure of a manifold. Tokyo J. Math. 6 (1) (1983) 143-151
- [22] Myers, S. B. Riemannian manifolds with positive mean curvature. Duke Math. J. 8 (1941) 401-404
- [23] Obata, M. Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Japan 14 (1962) 333-340
- [24] OBATA, M.; YANO, K. Conformal changes of Riemann metrics. J. Diff. Geo. 4 (1970) 53-72
- [25] PETERSEN, P. Riemannian geometry. 3^a ed. Springer-Verlag, New York, 2016. (Graduate Texts in Mathematics v. 171)
- [26] PIGOLA, S.; RIGOLI, M.; RIMOLDI, M.; SETTI A. Ricci almost solitons. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) Vol. X (2011) 757-799

- [27] Tashiro, Y. Complete Riemannian manifolds and some vector fields. Trans. Amer. Math. Soc. 117 (1965) 251-275
- [28] YAU, S. T. Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math. 28 (2) (1975) 201-228