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Abstract

The main goal of an Indoor Positioning System (IPS) is to estimate the
position of mobile devices in indoor environments. For this, the primary source of
information is the signal strength of packets received by a set of routers. The fin-
gerprint technique is one of the most used techniques for IPSs. By using supervised
machine learning techniques, it trains a model with the received signal intensity
information so it can be used to estimate the positions of the devices later in an
online phase. Although the k-Nearest Neighbors (kNN) is one of the most widely
used classification methods due to its accuracy, it has no scalability since a sample
we need to classify must be compared to all other samples in the training database.
In this work, we use a novel hierarchical navigable small world graph technique to
build a search structure so the location of a sample can be efficiently found, allowing
the IPSs to be used in large scale scenarios or run on devices with limited resources.
To carry out our performance evaluation, we proposed a synthetic IPS dataset gen-
erator as well as implemented a complete real-world, high scale IPS testbed. We
compared the performance of our graph-based solution with other known kNN vari-
ants, such as Kd-Tree and Ball-Tree. Our results clearly show the performance gains
of the proposed solution at 96% when compared to the classic kNN and at least 77%
when compared to the tree-based approaches.

Key-words: indoor positioning systems, nearest neighbors, small world graphs.
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1 Introduction

Location Based Services (LBSs) have been extensively used in outdoor environ-
ments by several applications due to the ready availability of accurate positioning infor-
mation (Liu et al., 2007; Farid et al., 2013; Boukerche et al., 2007). Currently, most mobile
devices are equipped with Global Positioning System (GPS), allowing the development
and growing usage of some exciting and useful applications such as Waze and Google
Maps, to cite a few (Boukerche et al., 2008).

Unfortunately, even though several LBSs have been used in outdoor environments,
the same cannot be observed in indoor settings, such as offices, shopping malls, and
parking lots. The main reason for this is the inaccurate positions in these environments
reported by GPS, since the latter requires a direct view of the satellites to work prop-
erly (Lima et al., 2018). Thus, a lot of interesting applications that could exist today still
hasn’t been developed for these indoor scenarios due to the lack of accurate positioning
technology.

Currently, the leading available solution for this problem is the Indoor Positioning
Systems (IPSs). In this case, a local infrastructure available or installed in the building
is used to allow the precise location of mobile devices inside this building. Among the
most used infrastructure for IPS is the WiFi, due to its abundant availability and no need
for additional hardware, since most buildings and devices (e.g., smartphones, smart TVs,
Internet of Things) already come equipped with this technology. In this case, the Received
Signal Strength Indicator (RSSI) of the packets received by the WiFi access points are
used to locate the mobile device that sent these packets.

However, using the available WiFi infrastructure for an indoor location of mobile
devices is not something trivial due to the high variability of the RSSI. Unfortunately,
the several obstacles and walls inside buildings make it difficult to translate a signal
strength into distance information to be used in the positioning. To overcome this problem,
currently, the most considered solution for an IPS is using the fingerprint technique.

As depicted in Figure 1, the fingerprint technique is divided into two phases: the
training and the positioning, also known as offline and online phases, respectively. In the
training phase, several points of the scenario are trained by physically going to these
locations and start sending WiFi packets. The packets sent from each training point are
received by several access points that can compute the RSSI of these packets. All of this
information is then sent to a central server that stores them in a training database. In the
positioning phase, which is when the IPS is online and working, when a mobile device
sends a packet, the RSSIs of this packet perceived by several access points are sent to
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Server

I. Training (offline phase)

II. Positioning (online phase)

Classroom

Access Points Mobile DeviceTraining Points

Figure 1: The two phases of a centralized fingerprint-based indoor positioning system implemented in a
campus scenario: training and positioning.

the central server. The server then compares the received RSSIs to the ones stored in the
training database to find the training point that mostly matches the received data. The
returned point is the position of the mobile device.

To implement a fingerprint-based IPS, we typically use an architecture as de-
picted in Figure 2. Usually, supervised machine learning techniques are among the most
viable solutions (Fang and Lin, 2012; Sayed et al., 2005; Yim, 2008). They use the pre-
viously recorded training database to train a classifier, such as the k-Nearest Neighbors
(kNN) (Khodayari et al., 2010; Tao et al., 2008; Yim, 2008), so it can be used to esti-
mate/classify the positions of the nodes later in the online phase.

The use of the fingerprint technique for this purpose has grown due to two crucial
factors: (1) there is no need for additional hardware to gather location information since
the WiFi infrastructure is usually enough; and (2) the ability of the system to remain
consistent even with the unpredictability of the signal strength values of the devices.
Recently, the fingerprint technique has been improved by several proposals, so that in
some works it is already possible to locate devices in an indoor environment with errors
of only one meter or so (Khodayari et al., 2010; Li et al., 2006; Fang and Lin, 2012).

kNN is one of the most used classification methods in fingerprint-based positioning
systems due to its high precision results (Lin and Lin, 2005). However, it lacks scalability
since each sample to be classified must be compared to all other samples in the training



Chapter 1. Introduction 12

Training Data
WAP001

-47-18 -87

...

...

T.Point WAP001 WAP002

Room 101

Reception

Conference

Room 76

-20 -45

-15

-60

--

WAP002 WAP003

Machine Learning
Algorithm

Classifier
Model Signal Strenghts of

the Mobile Device

Position
 Estimation
 of the Mobile
Device

Figure 2: A typical architecture for a fingerprint-based indoor positioning system running on a centralized
server.

database (Kuo and Tseng, 2011). Also, the training database tends to increase in size
drastically as we increase the location scenario or when we need more precision, since the
more data we have, the more precise it tends to be the estimated positions (Chen et al.,
2006).

If we take an example of a medium sized room where there may be several training
points (e.g., one for every two square meters), and knowing that for each of these points
we need several packet samples (e.g., between 100 and 1000 packets), we can quickly
have more than tens of thousands of samples in the training database collected from a
single room. Moreover, each sample (row) in the database has several attributes (columns)
according to the number of WiFi access points present in the whole scenario. Thus, it is
easy to see that as we increase the area of the IPS, we also need to add more access points,
increasing both the number of attributes and the dimension of the classification (Fang and
Lin, 2012). Taking the example of a shopping mall and a university campus, which are
relatively large in scale, the database used for training and positioning can easily reach
billions of samples with hundreds or even thousands of attributes. Finally, taking into
account that the goal is to have real-time location information for each of the thousands
of mobile devices every second (something easily done by GPS), it is clear that a highly
efficient classification method is required (Kuo and Tseng, 2011; Li et al., 2006; Youssef
et al., 2003).

In this dissertation we studied the problem of the Indoor Positioning Systems,
focusing on the fingerprint approach. We proposed using a novel technique called Hier-
archical Navigable Small World (HNSW) (Malkov and Yashunin, 2016) to speed up the
task of searching for nearest neighbors. In this technique, a graph-based data structure
is carefully crafted to have the characteristics of a small-world network (Guidoni et al.,
2012). This data structure is then used to find the nearest neighbors, as done by the kNN
technique. Our hypothesis was that the use of a graph-based approach would yield per-
formance gains over the approaches being used in the literature, without causing quality
losses in the result.
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To validate the hypothesis, experiments were performed in practical environments
and in reference collections. We evaluated the performance of the solution using our
proposed large-scale synthetic fingerprint dataset generator. We argue and show that this
simulation-based synthetic dataset can evaluate the performance of any large scale IPS
under several different scenarios, something not possible to do in a real-world testbed.
Additionally, we also carried out high-scale real-world experimentations, implementing a
complete IPS testbed in a school building. Finally, we compared our results to the UJI
Indoor dataset, used by several known works to evaluate the performance of IPSs (Torres-
Sospedra et al., 2014). In all of these cases, we compared the performance of the HNSW
to two other known kNN optimizations: Kd-Tree and Ball-Tree. Our results clearly show
the performance gains when using the graph-based solution by 96% when compared to
classic kNN and at least 77% when compared to the tree-based approaches.

The remainder of this paper is organized as follows. In the next section, we present
our related work. The graph-based technique is explained in section 3. We then show and
discuss our performance evaluation in Section 4. Finally, in section 5 we present our
conclusions and future work.
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2 Related Work

Our related work is divided into three categories: (1) scenario analysis and fin-
gerprint, in which we show known fingerprint-based techniques; (2) computational cost
reduction, in which we show proposed techniques to improve the efficiency of the finger-
print, usually reducing the training data; and (3) efficiency without loss of information,
in which we show some current work that is more closely related to our approach that
improves efficiency without reducing the training data.

2.1 Scenario Analysis and Fingerprint
The work developed by Bahl and Padmanabhan (2000) was one of the first to

use the RSSI of WiFi devices as information to estimate their locations. The proposed
fingerprint-based solution, called RADAR, resulted in an accuracy of 2 to 3 meters. Sub-
sequently, as seen in Bahl et al. (2000), the authors have made improvements based on
the Viterbi algorithm, increasing the accuracy of location up to 33%.

Roos et al. (2002) presented a fingerprint-based approach to estimate the location
of users. The authors considered the location as a machine learning problem, where the
task would be to model how the RSSIs are distributed in different geographic areas based
on samples collected in various known areas. From this, they presented a probabilistic
structure responsible for estimating the location of the mobile devices. Such a structure
uses Bayes’ theorem to compute the likelihood between the collected signals given each
possible location of the same. Using real-world samples to demonstrate their results, they
have shown estimates with an average location error of about 2 meters.

In Haeberlen et al. (2004), it is also proposed a probabilistic approach. The authors
collected the data received throughout a 3-story building, remaining about 2 minutes in
each office or region with a mobile device emitting the signals, resulting in a location
accuracy of 95% in all predictions. However, the proposed solution has a room-based
resolution, not being able to pinpoint the position of the users inside the rooms. The
results of this work also presented robustness concerning various unforeseen phenomena at
the time of data collection, such as the presence or absence of people in the environment
throughout the day. These and most current proposed solutions focus mainly on the
accuracy and precision of the systems (Lin and Lin, 2005) while other aspects related to
complexity and performance are ignored.
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2.2 Computational Cost Reduction
To reduce the computational cost, Youssef et al. (2003) proposed a technique based

on clustering, in which it groups the locations from a set of WiFi access points. Called
Joint Clustering, the technique has two key points: (1) use of probability distributions
to improve accuracy and (2) use of groups of mapped data to reduce the cost of online
positioning. Later, in Youssef and Agrawala (2005), the authors presented the system
entitled Horus, following the same probabilistic approach and optimization from cluster-
ing, but with advances in the preprocessing of signal power models to consider spatial
and temporal variations characteristics of the wireless channel. The results of the Horus
system presented an average precision of up to 39𝑐𝑚 in one of the tests performed.

Chen et al. (2006) seek to reduce the computational cost by reducing the size of
the database used to train the classification algorithms. They developed an algorithm
called CaDet that selectively chooses some access points to be used in the estimation,
allowing an intelligent subdivision of access points necessary for a precise location. In
this way, by reducing the required number of access points for each estimate, there is an
efficiency gain. Also, the solution allows for a lower energy cost, which is paramount to
the approach, since the classification processing is done directly on mobile devices. CaDet
uses a combination of information theory, cluster analysis, and decision tree to achieve
good accuracy with performance gain.

Yim (2008) sought to optimize IPSs by proposing the discretization of the RSSI
values in the database to train a decision tree-based model during the offline phase. The
authors had the premise of reducing the time needed to both generate the training model
and locate the mobile device. From that, they presented experiments that demonstrate
gains concerning the complexity of the proposed approach. However, little was said about
the results of accuracy, only making it clear that they are no worse than the methods
compared.

Fang and Lin (2012) reduce the computational cost by combining related access
points information and using Principal Component Analysis (PCA) to decrease the di-
mensionality of the data. An algorithm is proposed to intelligently transform incoming
signals into main components, instead of selecting access points, so the information re-
ceived can be used more efficiently, reducing the computation required in the online phase.
Compared to other approaches, the authors have demonstrated that this solution can re-
duce the positioning error by 34% and has a 40% reduction in time complexity. Also, the
transformation into main components results in some other benefits, such as the need for
less training data and tolerance to anomalies in the received signals.
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While all of these works result in the reduction of the computational cost, they
are all based on the removal or combination of features from the training base, resulting
in the loss of information. This information removal can lead to higher errors in specific
scenarios since there is usually a loss of potentially relevant information, also making it
difficult or even impossible to implement adaptive solutions and other forms of calibration,
which can be used to reduce the location errors (Chen et al., 2005).

2.3 Efficiency Without Loss of Information
In our current proposal, we focus mainly on solutions that do not need to lose

training information to achieve better performance. Some known algorithms of tree-based
classification have been proposed with this goal, such as Ball-Tree (Omohundro, 1989)
and KD-Tree (Bentley, 1975), as well as other approaches (Muja and Lowe, 2014; Houle
and Nett, 2015; Chen et al., 2006; Yim, 2008) that take advantage of this type of data
structure to quickly search and find, within the training base, a set of data that behaves
similarly to the search entry. Recently, the use of graph-based methods to search for the
𝑘-nearest neighbors have shown competitive gains in performance when dealing with large
datasets, as seen in Dong et al. (2011) and Malkov et al. (2014a).

Thus, in this work we seek to explore the application of hierarchical navigable
small world graphs, recently proposed by Malkov and Yashunin (2016), to reduce the
computational cost of IPS without loss of information while maintaining the accuracy of
the results. The main idea of this algorithm is to use graph-based data structures and
small world techniques to improve the search for areas that are similar to the input entry.
The use of small world techniques allows large jumps in the graph, as explained in more
detail in the next section. As far as we know, this is the first time that a graph-based
machine learning algorithm is explored and applied to indoor positioning systems.
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3 IPS using Hierarchical Navigable Small
World Graphs

When it comes to optimizing the search for a particular area of the training
database where the attributes are similar to the one we are searching (i.e., the near-
est neighbors), most approaches tend to perform a reduction of the training data, causing
loss of information (Houle and Nett, 2015; Chen et al., 2006; Yim, 2008), or are based on
a tree structure to rearrange the training data (Omohundro, 1989; Bentley, 1975; Muja
and Lowe, 2014).

Recently, some proposed solutions have shown significant advances in the use of
graph-based methods to search for the nearest neighbors on high dimensional datasets.
This efficiency in high dimensional datasets is an essential aspect for fingerprint-based
high-scale indoor positioning systems since a training database can be composed of hun-
dreds to millions of access points (i.e., attributes, dimensions).

One of the critical points for the use of a graph-based structure is the imple-
mentation of a small world model. In this case, the generated graph has two essential
characteristics for the search process: (1) small path length values between nodes (sam-
ples in the case of IPSs), and (2) high cluster coefficient values (Guidoni et al., 2012).
The first feature allows for a quick (logarithmic or less) searching for a similar sample
in the training database. This fast search happens because a small percentage of distant
nodes can have links between them, allowing the search to bypass most of the database
in a single hop. The second feature guarantees the connectivity of the nodes (existence of
paths) and facilitates the location of the k values closest to a given sample.

Based on that, a proximity graph for the nearest neighbor search called Navigable
Small World was proposed in Ponomarenko et al. (2011) and Malkov et al. (2014b). These
solutions use an alternative approach of the simple greedy search used on proximity graphs
and also a probabilistic skip list structure (Pugh, 1990) that allows a logarithmic scaling
for the search.

Proposed by Malkov and Yashunin (2016), the Hierarchical Navigable Small World
Graphs (HNSW) implemented the idea of representing each sample of the dataset as a
node in the graph. It separates their links according to their length scale, producing a
multilayer graph that allows the evaluation of only a small subset of the connections for
each element, thus reducing the computational cost of performing the search.
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Figure 3: Indoor positioning system classification using hierarchical navigable small world graphs, based
on Malkov and Yashunin (2016).

To build the multilayer graph, the links are set with different distance scales by
artificially introducing layers, as depicted in Figure 3. Each layer is represented by an
integer number, called level number, and every node on the graph receives a level number
representing the maximum layer for which this node belongs. The top layers represent con-
nections between distant nodes, which gives the graph its main small-world characteristics.
On the bottom layers, the graph has the connections between closer nodes, connecting
a node to its neighborhood. Each node is inserted on the graph at the layer represented
by its level number, as well as at the descending layers up until the ground layer (Layer
0), being linked to its nearest nodes in each level. The level number is randomly selected,
and an exponentially decaying probability distribution is used to concentrate the nodes
at the lower layers and enable close connections, and letting only a few nodes at the top
layers, using a parameter to normalize this distribution.

After the graph construction, as depicted in Figure 3, when a new search is re-
quired, it starts on the highest layer and greedily traverses the graph selecting elements
only at that layer until it finds a local optimum. Once the local optimum is found, the
search continues on the next layer below in the hierarchy. This process is repeated starting
from the local minimum found in the previous layer, using its nodes as entry points, and
so on until the ground layer is reached.
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A variant of a greedy search algorithm based on Malkov et al. (2014b) is used
to find the closest neighbors at each layer. A dynamic list is used to keep the ef closest
nodes found at that layer, and during the search, this list is updated at each step by
evaluating the neighborhood of the closest previously non-evaluated element in the list
until the neighborhood of every element from the list is evaluated. Initially started as 1, to
represent a simple greedy search, the ef parameter is incremented up to efConstruction,
another parameter which is used to control the recall of the greedy search procedure. This
value can be increased to improve the quality of the constructed graph, leading to higher
accuracies but also increasing the indexing time. Another parameter, M, defines the max-
imum number of neighbors in the zero and above-zero layers. In most of our experiments
we used the default value of 100 for both the efConstruction and ef parameters, and the
value 15 for M, which resulted in the best accuracies.

The HNSW has two of the main characteristics we need for a fingerprint-based,
high-scale IPS: (1) connectivity (clusterization) of near/similar samples, allowing the elec-
tion of the best sample based on the 𝑘 nearest neighbors (kNN), and (2) a fast search for
the sample with most similar attributes. In this work, we explore the use of the HNSW
in the task of estimating the location of mobile devices in a fingerprint-based IPS. Our
performance evaluation methodology, as well as our obtained results, are discussed in the
next sections.
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4 Performance Evaluation

Our performance evaluation aimed at comparing the cost of building the search
index (model fitting) and also the cost of searching for the nearest neighbors (sample
classification) achieved by the studied methods. Also, we analyzed the error of the indoor
positioning system when varying the algorithm adopted to find the nearest neighbors.
Below we describe our evaluation setup and experimental results.

4.1 Methodology and Datasets
We compared the hierarchical navigable small world graphs (HNSW) to two tree-

based methods: Kd-Tree and Ball-Tree. We also compared the results to the classic kNN
search, commonly known as brute force. For the implementation of the HNSW search,
we used the Non-Metric Space Library (NMSLIB) (Boytsov and Naidan, 2013), while
for the other methods we used the Scikit-Learn (Pedregosa et al., 2011), both using
Python language. All of the results were reached through the mean of a ten-fold cross-
validation (Kohavi et al., 1995).

We evaluated the performance of the implemented solutions using three very dif-
ferent datasets:

1. Synthetic Indoor Positioning Dataset

2. SmartCampus Indoor Positioning Dataset

3. UJI Indoor Localization Dataset

These datasets are detailed in the next sections.

4.1.1 Synthetic Indoor Positioning Dataset

We built an indoor positioning simulator based on known propagation models for
indoor environments to generate synthetic IPS training databases from different scenarios
such as varying the number of routers, rooms, and training points. By using this simulator,
we were able to evaluate the performance of the studied algorithms in hundreds of different
indoor scenarios, something that would not be feasible to do in a real-world testbed.

Even though we implemented some of the most known propagation models such as
the Free-Space (Friis, 1946) and the Log-Distance (Rappaport, 2001), they didn’t result
in a good performance for the positioning since they do not take into consideration some
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Figure 4: Example of a signal strength simulation: white lines are the walls of the rooms. X marks the
position of the routers. In (a), we have only a single router in the most bottom-left room. While in (b)
and (c) we have two and three routers, respectively.

scenario information such as walls, floors, and ceilings. Thus, we implemented our model
based on the known Simple Indoor Signal Propagation Model (Plets et al., 2013), in which
the authors proposed a heuristic indoor path loss prediction model that is both simple
and quick (as the statistical models) but is also very accurate. They formulated an indoor
path loss model for 2.4 GHz-band, performing simulations in four very different buildings
to help on the path loss measurements and parameter determinations. The model takes
into consideration both wall and floor attenuation factors, as suggested by Bahl and
Padmanabhan (2000).

By feeding the simulator with the map of the location, as well as the values for
the model variables, we were able to compute the RSSI perceived by the routers from
any place in the scenario. Figure 4 shows an example of the generated signals strengths
in a simple scenario composed of 5 rooms. In Figure 4(a), we have only a single router
in the most bottom-left room. While in Figures 4(b) and 4(c), we have two and three
routers, respectively. From this, to create our synthetic positioning training dataset, we
got several samples of RSSIs from equally spaced training points inside the rooms.

The synthetic training dataset generated by us has 378 distinct rooms within one
floor, being that 196 simulates rooms and 182 simulates halls. There are 21 points for
each room and 7 in each hall, where we simulated 50 samples for each point, a total of
about 270, 000 samples.
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Figure 5: SmartCampus Architecture: a complete, large-scale, indoor positioning system testbed. All
beacons send a Bluetooth advertisement packet every second. These packets are received by the scanners,
that forward the data to the gateway using a 900MHz, long-range, communication. The gateway sends
the data to the central server, which can localize all of the beacons using the proposed graph-based
technique.

4.1.2 SmartCampus Indoor Positioning Dataset

The second dataset used on our performance evaluation was based on our real-
world indoor positioning testbed. We implemented a complete IPS in a working high
school composed of 42 custom-made routers (we called them scanners) and 60 rooms.
For each room, we trained several training points every two meters. For each training
point, we collected more than 1, 000 samples, resulting in an indoor positioning dataset
composed of approximately 490, 000 samples.

This testbed is the beginning of a bigger project to create an indoor position-
ing system financed by Positivo Technologies, one of the biggest technology companies
in Brazil. This project, called SmartCampus, aims at providing location information of
students in high schools, allowing several interesting applications such as:

∙ automatic student attendance record keeping

∙ checking whether a student is in the classroom he is supposed to be

∙ entry and exit control of students from the school

∙ where the student sits inside the classroom

∙ interaction among students and friend groups

For this, we proposed and implemented the SmartCampus Architecture, depicted
in Figure 5. In this architecture, beacon nodes (worn by the students) send Bluetooth
advertisement packets. These packets are received by several Bluetooth-enabled devices,
called scanners (similar to routers in WiFi IPSs). These scanners compute the RSSI of the
received packets and send them directly to a central device, the gateway, using long-range,
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(a) Beacons (b) Scanners

Figure 6: SmartCampus Hardware: (a) beacons with Bluetooth communication; one beacon is inside a
bracelet, as used by the users; the other beacons are outside the bracelet (front and back), and opened to
show hardware (front and back); and (b) scanners with Bluetooth and 900Mhz long-range communication
(front, opened, back, and installed on the ceiling). The gateway has a similar hardware footprint as of
the scanners, and the server is not shown.

900Mhz, communication. The gateway is connected to a central server, that can locate
all of the received beacons using the proposed graph-based machine learning technique.

All of the hardware used in the SmartCampus architecture was developed and
created by Positivo Technologies. The hardware is depicted in Figure 6. Finally, Figure 7
shows an overview of the floorplan of the school in which we implemented the testbed as
well as the location of the gateways.

4.1.3 UJI Indoor Localization Dataset

For the third dataset used to evaluate the performance of the techniques, we used
another real-world scenario: the popular UJI Indoor Localization dataset (Torres-Sospedra
et al., 2014). This dataset has been used in the literature and allows the comparison of
our results to other published work. Also, this scenario is quite different from our Smart-
Campus testbed. It covers a surface of 108, 703𝑚2 with 3 different buildings comprised
of 4 to 5 floors. There is a total of 520 routers with a total of 21, 049 samples. The data
was collected by more than 20 users with 25 different mobile device models.

Compared to our SmartCampus dataset, it is easy to see that the UJI testbed
scales on the number of routers since it has 520 routers while our testbed contains only 42
routers. However, the UJI dataset does not have several samples per training points,
and these training points are not equally distributed. Thus, the UJI contains only 21, 049
packet samples, while our SmartCampus testbed contains approximately 490, 000 samples.
Therefore, our SmartCampus testbed scales on the number of samples.
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Figure 7: SmartCampus Testbed Floor Plan: an entire school composed of 60 rooms/halls were trained.
42 scanners were distributed throughout the school; 430 points were trained, about 2𝑚 distant from each
other; for each training point, about 1100 samples were collected, to a total of about 490.000 samples.

Positioning Dataset /
Feature

Synthetic SmartCampus UJI

Number of Routers 196 42 520
Number of Rooms 378 60 123
Number of Training Points 5, 390 430 493
Number of Samples per TPs 50 ∼1, 100 ∼10 (avg)
Total Number of Samples ∼270, 000 ∼490, 000 ∼21, 000

Table 1: Comparison among the three experimented IPS datasets.

Table 1 compares the main characteristics of the three datasets. Next, we show the
results of our performance evaluation, starting with the experiments with the synthetic
base, since this is the most controlled scenario.

4.2 Impact of the Number of Samples on the Classification
The use of a graph-based data structure by the HNSW is done to reduce the search

time required at the time of classification and, also, to avoid an increase in the positioning
error. With this in mind, in our first experiment, we varied the number of samples in the
training database from 26 thousand to 269 thousand samples to analyze the scalability of
the methods as the size of the training base increases. In this scenario, we had 196 access
points (attributes in the dataset).
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Figure 8: Scalability test results from a dataset containing 196 access points (attributes) and varying
the number of samples. (a) classification time including the brute force and (b) without the brute force
method.

For the synthetic database scenario, we can see in Figure 8(a) the results re-
garding the performance of the compared methods. In this case, we are comparing the
time needed to classify 10% of the database (used as the test dataset), using the ten-fold
cross-validation. It is easy to see that any of the optimized methods exhibit a considerable
performance gain over the classic kNN using brute force. The graph-based solution is 96%
faster than the classic kNN brute force, while the Kd-Tree and the Ball-Tree were 85%
and 77% faster, respectively.

To facilitate the visualization, Figure 8(b) repeats the previous experiment without
the brute force kNN, since the difference from the optimized methods is too high. Now,
we can clearly see that the HNSW technique is also able to outperform the tree-based
approaches. In these experiments, the graph-based technique was 59% faster than Kd-
Tree and 76% faster than Ball-Tree. Also, we can easily see the difference in the curve
behavior. For now on, we will refrain from showing the brute force kNN in order to better
evaluate the optimized approaches.

In Figure 9(a) we compare the results of the methods concerning the positioning
error as we increase the size of the training database. As expected, the more training
data we have, the lower the positioning error. In our case, we can see that the position
error decreased from 2.33𝑚 to 1.19𝑚, a reduction of 49%, as we increased the number of
samples from 26 thousand to 269 thousand. These results help us realize the importance
of additional samples in the training database for more accurate positioning. Although
the brute force method is not on the chart, it is important to note that it has achieved
roughly the same error results as Kd-Tree and Ball-Tree. In the chart we can also notice
another significant result, the HNSW technique resulted in smaller positioning errors
when compared to tree-based methods. Even though the difference is not much, it was
still possible to reduce the positioning error by 9% at best.
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Figure 9: Scalability test results from a dataset containing 196 access points (attributes) and varying the
number of samples. (a) Positioning error obtained by the experimented methods; and the (b) impact of
the number of access points.

4.3 Impact of the Number of Access Points
The number of access points is also another factor that significantly affects the

computational cost of an IPS since each additional access point is accountable for including
a new column (attribute) for all samples in the training database. Besides, increasing the
density of the access points is also a known technique used in the literature to reduce
the positioning error, where better accuracy is sought by increasing the number of access
points per square meter.

To assess this impact, we varied the number of access points in the experiments
from 36 to 196, but we maintained the density of the access points constant, i.e., we
increased both the number of access points and the size of the scenario (number of rooms
and number of training points). This constant access point density is needed since we
wanted to analyze the impact on the computational cost but without the positioning
error being affected by poor distribution of the density of the access points.

As depicted in Figure 9(b), another interesting aspect of the HNSW technique is
that its performance advantages also scale up as we increase the number of access points,
being 77% faster than Ball-Tree for 196 access points.

4.4 Impact of the Number of Samples on the Model Fitting
One of the steps in an IPS architecture is the creation of the model, or the indexing

of the data in its respective search structure, based on the available training data (the
fitting task). This step was depicted earlier in Figure 2. Even though the fitting task
execution time is not an essential factor in IPSs since it is executed only once, it might
affect some known techniques that require a periodic model fitting, such as calibration-
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Figure 10: Scalability evaluation including the (a) model fitting time; and (b) the total time
(fit+classification).

based and adaptive solutions (Chen et al., 2005) that are known to reduce even more the
positioning error over time.

In this way, it is depicted in Figure 10(a) the fitting times as we increase the
number of samples in the training database. For this task, the brute-force method (not
included in the chart) has a constant time close to zero, since it does not execute any
indexing of the data. As we can see, especially in the larger scenarios, the creation of the
graph-based model is faster than the tree-based models, reaching 86% faster fitting times.

Finally, Figure 10(b) shows the complete total time (fitting+classification) of the
experimented models. When including both model creation and sample classification, the
HNSW technique is 79% faster then Ball-Tree and 69% faster than Kd-Tree.

4.5 SmartCampus Dataset Experiments
As mentioned before, we also performed real-world experiments of our solution by

implementing a complete IPS in a school building. The resulted SmartCampus dataset
represents a real-world scenario in a building with distinct floors and spaces, and it ap-
proaches the number of samples of the synthetic dataset, allowing the analysis of the scal-
ability of our proposal in a real scenario. Despite this, the SmartCampus is the dataset
with the least amount of access points among the three evaluated datasets, even though 42
is a reasonable amount of access points (higher than most experiments in the literature)
and is also wholly consistent with many situations in the real world.

With the complete dataset, we analyzed the impact of the 𝑘 variation on precision
and time. In Figure 11(a) we can see that there was a slight advantage in the use of graphs,
with a mean error difference of a few centimeters, when looking to the best results achieved
for each method.
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Figure 11: (a) Positioning error and (b) total time (fitting + classification) when using the real-world
SmartCampus scenario dataset and varying the k value.

Figure 12: (a) Fitting time and (b) classification time evaluation results when using the real-world Smart-
Campus scenario dataset and varying the k value.

For this experiment, we changed the default values of HNSW parameter M, from 15
to 50, and the parameter ef, from 100 to 200. In other words, we allow greater connectivity
in the graph and allow a search with greater recall, respectively. This adjustment was
necessary to reach the accuracy comparable with the other methods, with up to a certain
advantage, which meant an extra cost of performance, compared to the standard values
of the parameters. However, the method allows this flexibility, and yet we maintained a
remarkable superior performance.

While the accuracy advantage is small, the performance gain achieved by HNSW
is impressive, as it can be seen in Figure 11(b). For instance, detailing each different task,
with 𝐾 = 5 the graph-based method was 3 times faster than both tree-based methods
on the fitting time, as shown in Figure 12(a). Moreover, for the classification task, the
HNSW was 6 times faster than Kd-Tree and more than 8 times faster than the Ball-Tree,
as shown in Figure 12(b).
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Figure 13: (a) Positioning error and (b) classification time when using the real-world UJI indoor dataset
and varying the k value.

4.6 UJI Dataset Experiments
Finally, we also performed our experiments using the popular UJI Indoor Local-

ization (Torres-Sospedra et al., 2014) dataset in order to evaluate the performance of the
methods using real scenario data available in the literature. A point to take into account
of this training dataset is that even though it has 529 access points (attributes), it only
has approximately 20 thousand samples, since for each place determined for the collection
of the samples there was little to no repetition, that is, only a few packets were sent by
the mobile device from each training point.

Because of this, the training dataset of the UJI has only 10% the number of samples
from our synthetic database. On the other hand, this dataset has 2.7 times the number of
access points, which is an interesting scenario to analyze, being a very different case from
our previous experiments. Since this is a relatively small dataset, and since we did not
have much control over it, we kept all of the fixed scenario characteristics and changed
the value of the 𝑘 nearest neighbors to be found from 1 to 7 to perform the experiments.

Analyzing the results in Figure 13(b), the HNSW method was faster in all cases,
being 66% faster than Ball-Tree and 50% faster than Kd-Tree for 𝑘 equals to 1. In the
figure, we can also see that the total time for HNSW increases at a higher rate than the
other tree-based methods, showing the influence of the 𝑘 value on the creation of the
graph structure.

However, as depicted in Figure 13(a), the lowest positioning errors are obtained
by the lowest 𝑘 values, which can be expected since in this dataset there was almost no
repetition of packets from the same location.
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5 Conclusions

High efficiency is a key factor toward a precise, scalable, and real-time indoor
positioning system. It can lead to a precise and robust positioning by allowing the increase
in the number of samples per training point. It allows the scalability of the scenario by
allowing the increase in the number of training points and also the increase in the number
of access points. Finally, it allows real-time locations by being able to compute thousands
or millions of positions every second.

Given the growing interest in applications based on IPSs, we have a growing area
of research to look at. While these new applications and possibilities are starting to
becoming real, new accurate and efficient positioning techniques will be required. Thus,
we can clearly see the need for efficient and robust machine learning algorithms as we
intend to scale these IPSs in large-scale, real-time scenarios.

Based on some recent work that has shown significant advances in the use of graph-
based methods to look for the nearest neighbors in high-dimensional datasets, in this work
we proposed the use of Hierarchical Navigable Small World graphs as an optimized data
structure to be used in IPSs. We also created a simulation-based synthetic dataset as well
as implemented a complete IPS testbed in a school building to evaluate the performance
of the experimented solutions under different conditions.

Our results clearly show the performance gains of the proposed graph-based solu-
tion since it was able to estimate the position of the nodes 96% faster than the classic
brute force kNN and at least 77% faster than the tree-based optimizations. All of these
performance gains were obtained while maintaining almost the same positioning error
in all of the experimented synthetic and real-world scenario datasets. Since our solution
does not require the loss of information on the training database, most current techniques
proposed in the literature to improve accuracy and performance can also be applied on
top of our solution.

These results are very promising, but some advantages still need to be further
exploited in future works. For instance, we intend to use the knowledge of the last known
position of the mobile device, a data readily available in IPSs, to reach even faster the
ground layer of the hierarchical navigable small world graph allowing for an almost in-
stantaneous location of a node that has been located before.
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