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Abstract
Stock price forecasting is an inherently difficult problem. According to the efficient market
hypothesis financial prices are unpredictable. However, a great number of machine learning
methods have obtained consistent results on anticipating market movements. Most recent
time-series prediction methods attempt to predict prices polarity, that is, whether prices
have increased or fallen compared to the last time-step. Such approaches are inefficient in
real scenarios, as forecasting price polarity alone makes financial planning a hard task,
due to the fees and operation costs. Most of these methods use only Recurrent Neural
Networks, but recent advances in temporal convolutional networks also may prove to be
promising in prediction of general time-series, making better predictions with easier to
train models. Recent hybrid architectures have also obtained important results using
additional unstructured information from financial news. We propose a novel deep neural
architecture to predict stock prices based on Temporal Convolutional Networks and built
upon on a state of the art acoustic model for voice synthesis. Experimental results show
that our model can consistently improve individual stocks prediction when compared to
traditional methods.

Keywords: Stocks Forecast; Neural Networks; Natural Language Processing; Time-Series
Prediction



Resumo
A previsão dos preços de ações é um problema inerentemente difícil. De acordo com a
hipótese do mercado eficiente, os preços financeiros são imprevisíveis. No entanto, muitos
métodos de aprendizado de máquina têm obtido resultados consistentes na antecipação de
movimentos de mercado. Modelos de previsão de séries temporais recentes têm tentado
prever apenas a polaridade dos preços, ou seja, se eles subiram ou caíram em relação
ao passo temporal anterior. Tal abordagem é ineficiente em cenários reais, pois dificulta
o planejamento financeiro em virtude dos custos e taxas presentes em cada operação.
A maioria desses métodos usa Redes Neurais Recorrentes, porém, avanços recentes em
redes temporais convolutivas têm se mostrado promissores na previsão de séries temporais,
possibilitando previsões melhores com modelos mais fáceis de treinar. Arquiteturas híbridas
também têm obtido resultados importantes ao processar informações não estruturadas
de notícias financeiras. Propomos neste estudo uma nova arquitetura neural profunda
para previsão de preço de ações baseada em Redes Convolucionais Temporais e inspirada
em um modelo acústico do estado da arte para síntese de voz. Resultados experimentais
mostram que nosso modelo pode melhorar de forma consistente a previsão do preço de
ações individuais quando comparado aos métodos tradicionais.

Palavras-chaves: Previsão de Ações; Redes Neurais; Processamento de Linguagem
Natural; Previsão de Séries Temporais
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1 Introduction

The automation of financial decisions has become popular in the stock market.
Since BM&F Bovespa (the Brazilian stock exchange) started high-frequency trades1 almost
ten years ago, the number of high-frequency operations increased from 2.5% in 2009 to
36.5% in 2013 (ZHOU et al., 2018). This new scenario requires accurate and reliable
forecasting systems to ensure some gain in operations.

In fact, financial price forecasting has been an important academic research field
since long before the recent hype and the popularization of trading robots. However, there
is no consensus about the feasibility to forecast the trading market. According to the
strong version of the efficient market hypothesis (EMH) (FAMA, 1965), financial prices
are mostly or completely unpredictable. However, the weak form of the Efficient Market
Hypothesis (EMH) (ROBERTS, 1967) asserts that prices fully reflect only the information
contained in the historical sequence of prices, thus, new public information can be explored
by forecasters.

Other researchers have indeed studied factors which could have impacted on stock
prices. For instance, BONDT; THALER has proposed that traders are subject to emotional
overreactions that can make prices oscillate systematically. KAHNEMAN; TVERSKY has
proposed that traders also can be overconfident in their ability to predict a future stock
price. We believe that this kind of psychological bias, if exists, should be really difficult
to be detected and handled by human analysts in traditional forecasting, but should be
better exploited by machine learning methods.

Most of these recent methods do not try to predict exactly the future stock price,
but rather its polarity. In other words, whether its movement in time t will be up or down
relative to time t− 1. However, financial management is hampered by these models. Some
investors, for instance, cannot estimate how much they will earn in a particular operation,
but only if such an operation will yield profit or loss. Therefore, it is well known that
small gains, when they do not exceed the cost of the operation, can result in losses.

Despite these difficulties, many advances have been reported in the last years on
anticipating market movements using machine learning techniques, generally proposed to
time series forecast. Most techniques explore the trend of people following rumors spread by
News published, for instance, in web pages (GIDOFALVI; ELKAN, 2001; NASSIRTOUSSI
et al., 2015) and in social media (OLIVEIRA; CORTEZ; AREAL, 2017; BOLLEN; MAO;
ZENG, 2011; MITTAL; GOEL, 2012). Thus, the understanding of finance news content
1 High-frequency trading (HFT) is a type of algorithmic trading characterized by high speeds, high

turnover rates, and high order-to-trade ratios that leverages high-frequency financial data and electronic
trading tools. (ALDRIDGE, 2010)
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may provide useful information to forecast trader reactions and stock price movements.

Online news are valuable input sources for predictive models due to their high
abundance and availability. In the context of stock forecasting they seem even more
important, since traders tend to check these sources before their decisions. Several hybrid
approaches have also emerged as an alternative to traditional stock time series forecasting,
which use not only price and volume data as input features for the model, but also
unstructured external information, such as interactions in social networks (BOLLEN;
MAO; ZENG, 2011), news events (DING et al., 2014) and news events embeddings
(NASCIMENTO; CRISTO, 2015).

In particular, deep auto regressive neural models are now widely used to improve
the accuracy of predictions in time series. Most of these models are based on Recurrent
Neural Networks (HOPFIELD, 1982) such as LSTMs (HOCHREITER; SCHMIDHUBER,
1997) and GRUs (CHUNG et al., 2015). More recently, however, temporal convolutional
architectures (RENÉ; HAGER, 2017) inspired by WaveNet (OORD et al., 2016a) have
been successfully applied on many time series prediction tasks with some advantages
over classical RNNs such as larger long-term memory, easier and faster training. (BAI;
KOLTER; KOLTUN, 2018)

As we will see later, temporal convolutional neural networks are not so far from
a standard discrete wavelet transform operation2. Such perception leads us to imagine
that other fields, apparently very distinct, can bring important contributions to financial
forecasting. One of the most interesting branches in digital signal processing is generative
audio synthesis. WaveNet (OORD et al., 2016a) synthesizes human speech with utter
naturalness in high-resolution and with high sampling rates. That model has inspired us
to build a new stock forecasting architecture, StockNet, that aims at synthesizing a new
price forecast model that will mimic human behavior in the buying and selling of assets in
all its nuances, just as WaveNet does with vocal synthesis.

In this work, we intend to propose and evaluate how a deep architecture, based on
temporal CNNs, will perform on stock forecasting using as input not only the stock prices,
but also evidence extracted from financial News. Our hypothesis is that a deep neural
network, used as extractor, can better capture useful latent patterns present in online
news and rightly combine it with price series. Further, Temporal CNNs are expected to
be easier to train in a scenario with long term events and larger sources of data. As result,
we expect to observe improvements on financial prices prediction.
2 Discrete Wavelet Transform (DWT) is a famous technique for extract hidden information patterns

from a input signal in the scale domain.
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1.1 Research Objective
Propose a neural-based method for representing sources of information extracted

from financial News and, based on such information and the price history, predicting stock
prices.

1.1.1 Specific Goals

• Build a model to represent information extracted from financial news to be used as
evidence for stock price forecasting;

• Propose a stock prediction model based on a temporal convolutional architecture;

• Evaluate the proposed model with respect to its forecasting performance when
compared with state-of-the-art methods in literature.

1.2 Research Contribution
The main contributions of this work for stock market prediction are (a) a model

for representing financial news information as input for a timeseries forecasting model,
(b) new intraday datasets with financial news and stock prices ready to be used in future
research and (c) a state-of-the-art stock price prediction model.

1.3 Organization
This proposal is organized as follows:

• Chapter 1 (Introduction) presents the problem, general and specific research objecti-
ves and expected academic contribution.

• Chapter 2 (Fundamentals) explains some theoretical basis of the techniques used in
this work.

• Chapter 3 (Related Work) presents the related literature review about stock markets
time-series prediction.

• Chapter 4 (StockNet: A Multivariate Deep NeuralArchitecture for stock prices
prediction) explains our proposed method.

• Chapter 5 (Experiments) describes our experiments, methodology and results.

• Conclusion briefly reviews results, their meaning and limitations.
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2 Fundamentals

In this chapter, we describe concepts related to the prediction of stock prices using
unstructured text and neural networks besides feature engineering steps that should be
applied before training the model. Moreover, we also describe neural network methods we
used in our architecture proposal.

2.1 Discrete-time Time-series
A time series is a numerical set of observations X = {x0, .., xt−1}, each one being

recorded at a specific time t. It also can be understood as a stochastic process where
random variables are indexed by time. A discrete-time time series is one in which the set
T0 of times at which observations are made is a discrete set, as is the case, for example,
when observations are made at fixed time intervals. (BROCKWELL; DAVIS; CALDER,
2002)

A financial series comprises two components: (i) an index, in this case the time T ,
and (ii) a series of observed prices for each unit of that same time. These two components,
by themselves, have inherent difficulties from their own nature. Prices, for example, may
be used as an imperfect indication of the supply and demand of his related asset, but seem
highly insufficient to inform all the factors present in its own market definition. At very
large time scales, there is no stability of the currency to which prices refer, since currency
is also an asset and can often experience changes resulting from government intervention,
relative value perception, or inflation and interest rates. On the other hand, at small
time scales there is only the last transaction. The time index, by itself, is not a good
abstraction for the time in the real world. In fact, it does not even represent it, but rather
the sampling frequency, that is, how many times per unit of time (and in discreet time) a
price was observed.

Such inherent difficulties make it hard to place the problem itself and correctly
identify its characteristics. There is no consensus, for example, on a kind of stochastic
process that serves as adequate and generic abstraction for the stock market. It is not
to be expected that, in the face of all these difficulties, the prediction of financial prices
would be a simple task. Nevertheless, time series are heavily used in different fields of
sciences such as statistics, weather forecasting, electroencephalography, signal processing,
pattern recognition, econometrics, mathematical finance among many other fields.
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2.2 Financial Time-series Prediction
We can describe a traditional auto regressive stock prediction as the joint probability

of a sequence of prices x = [x1, ..., xN ], given by the following product of conditional
probabilities:

p(x) =
N∏
t=1

p(xt | x1, ..., xt−1) (2.1)

where xt is the price of the stock at timestep t and N is the price history size. In that
way, a particular price is conditioned on all previous price information.

Given a news time-series input ϕ = [ϕ1, ..., ϕN ], where ϕt is the set of news headlines
published at time frame t, there are two possible ways of feeding the auto-regressive model.
The first one consists on performing arbitrary operations between price entry and news,
as follows:

p(x|ϕ) ≈
N∏
t=1

p(xt | x1 + ϕ1, ..., xt−1 + ϕt−1) (2.2)

The second one consists on adopting a predictive model which learns how to
combine the two signals, as follows:

p(x|ϕ) ≈
N∏
t=1

p(xt | x1, ..., xt−1;ϕ1, ..., ϕt−1) (2.3)

Therefore, the previous prices and News are always the inputs to make a particular
price prediction at each time-step. Later, during the explanation of our proposed model,
we will use the second method.

2.3 Using news content as input
Computational methods that use news texts as input for stock prediction models

have been applied with reasonable success in recent years. Since all prediction computa-
tional algorithms require numeric inputs, these texts need to be handled and properly
processed. The natural language processing (NLP) area has several techniques for word
processing and information extraction that are commonly used in prediction models.

In particular, to use news content in machine learning methods, many information
representation techniques have been adopted. They range from the simple bag-of-words to
complex natural language processing (NLP) strategies such as named entity recognition
(e.g., determine that Apple is an entity in sentence S = “Apple Inc has sued Samsung”),
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noun phrase extraction (e.g, to detect Apple Inc as an entity in S), and structured event
extraction (e.g: to detect {Apple Inc, sued, Samsung} as an event in S).

The following subsections explain some NLP methods to process text input and
how word embeddings and event extraction are made, since they are the techniques we
used in our experiments.

2.3.1 Input text as sequence

One common way to feed a machine learning model with text is to represent its
words (or characters) as integer numbers. For example, in the phrase “The love of money
is the root of all evil”, we can choose a number for each word, as {the: 1, love: 2, of: 3,
money: 4, is: 5, root : 6, all: 7, evil: 8} and rewrite it as the following numeric sequence:
[1, 2, 3, 4, 5, 1, 6, 3, 7, 8] which is now treatable by a mathematical model.

After converting the text, we will have another setback. Most models need a
fixed-size input to work, but, for instance, when feeding the model with the phrases
“The love of money is the root of all evil” and “That is all about it”, represented here as
sequences by [1, 2, 3, 4, 5, 1, 6, 3, 7, 8], with length of 10, and [9, 5, 7, 10, 11], with length
of 5, we will have now two sequences of different lengths. To circumvent this problem we
can cut the larger sequences (which would not be desirable as we would lose information)
or pad the smaller sequences. For example, to feed a model with length of 12 by choosing
the number 0 (zero) as the padding term, we will have both sequences with equalized sizes:
[1, 2, 3, 4, 5, 1, 6, 3, 7, 8, 0, 0] and [9, 5, 7, 10, 11, 0, 0, 0, 0, 0, 0, 0].

2.3.2 One-Hot Encoding

One-hot encoding is a term borrowed from digital electronics that defines a binary
method for mapping categorical data or words into numeric vectors for a feasible use as
input by mathematical algorithms and machine learning methods. It is one of the simplest
methods of converting input text into useful input for a natural language processing model.
In one-hot encoding, each word in a dictionary represents a position in vector, where the
vector size is also the size of the input language vocabulary. To represent a word, we
simply fill its vector position with 1 (high signal level in electronics), while keeping all
other positions marked zero (low level), in a such way that each input word is represented
as an one-hot vector.

The main disadvantage of one-hot encoding is its sparsity. While only one bit of
information is used to mark the position of a language term, all other positions maintain
a zero. In languages with large vocabularies, such as English, each vector will need the
size of this vocabulary to represent each single word. Of course, without any compression,
there is also an inefficient memory consumption. The Second Edition of the 20-volume
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Oxford English Dictionary contains full entries for 171,476 words. If we use one byte to
represent each digit, as in most modern programming languages, and if we wanted to
feed a model with Shakespeare’s Antony & Cleopatra (26,456 words), using all English
vocabulary as a one-hot encoding vector, we would use more than 4.6G of memory just
to store this input. Feeding the model with larger corpus extracted from web would be
unfeasible.

2.3.3 Bag of Words

A multi-set or a bag is a particular type of set where elements repetition is allowed.
A Bag of Words (BoW) is a form of representing texts as input for machine learning and
information retrieval models. A possible way of building a Bag of Words for multiple
documents (or multiple fragments of an larger text) is using a sparse matrix, where a row
i represents a distinct term from the input vocabulary and each column j can be seen as
a vector of words representing a particular document. Thus, we can indicate the simple
presence of a word wi in the document dj by filling in with 1 the position Mij in the BoW
matrix M , or even indicating how many times that term i appears in the document j by
filling in the position with his frequency on that document.

The standard Bag of words modeling does not care about word order or syntactic
and semantic aspects of the text. Therefore, there are some solutions to circumvent these
limitations, such as using n-grams to capture syntactic text construction related to word
order or using latent semantic analysis (LSA) (DEERWESTER et al., 1990).

2.3.4 Word Embeddings

Distributed representations of words as vectors in a continuous vector space is a
common way to use text as input for natural language processing tasks. This technique,
also known as word embedding, has been used since 1986 (RUMELHART; HINTON;
WILLIAMS, 1986) in different areas related to natural language processing. This kind of
word representation also relies on the distributional structure hypothesis (HARRIS, 1954),
which states that the distribution of words in a text is not random and that close words
in a text may also have similar semantics.

There are two ways to train a neural model for this task: the Continuous Bag of
Words (CBOW) and the Skip-gram method. Those algorithms learn word representations
that maximize the probabilities of a word given other contextual words (CBOW) or of a
word occurring in the context of a target word (Skip-gram).
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2.3.4.1 Continuous Bag of Words

The Continuous Bag of Words (CBOW) model is trained to predict a target word
given the near words in the context (phrase or text fragment). For instance, given the
phrase “The answer to life the universe and everything”, if we feed a CBOW model with
the list of words [“the”, “answer”, “to”, “the”, “universe”, “and”, “everything”], we would
expect the word “life” as its output. For sure, in this case we are inferring that the resulting
output word “life” is the most common word in our corpus when the input context is
[“the”, “answer”, “to”, “the”, “universe”, “and”, “everything”]. The same training is
performed using all other phrases in the input text corpus. More formally, given a context
C, a predicted word ŵt is inferred as:

ŵt = P (wt|{wt−c, ..., wt−1, wt+1, ..., wt+c}) (2.4)

where {−c ≤ t ≤ c; t 6= 0} in which t is the word index and c represents half window
size (how many words before and after the word wt will be used to feed the model). To
accomplish this, given the context C as input, we can infer the probability of the missing
word by maximizing the average log probability over the T words in the vocabulary:

ŵt = 1
T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt|wt+j)) (2.5)

This leads us to a particular sampling problem. In cases where a particular word
is very common in a context, rare words in that context, while important, will never be
predicted by the model, since they have a low probability. Thus, we will have a model
that predicts only popular words and penalizes those rarely found in our input corpus.
One alternative and simple way to avoid it is use the Skip-gram model.

2.3.4.2 Skip-gram

In Skip-gram (MIKOLOV et al., 2013), the objective is the reverse. A word serves
as input to the model that tries to infer its “context”, that is, the words that are commonly
found together. Therefore, in the phrase “The answer to life the universe and everything”,
if we remove the word “life” and use it as input to the model, we can expect as the most
likely output the sequence [“the”, “answer”, “to”, “the”, “universe”, “and”, “everything”].
For sure, in this case we are inferring that the resulting context phrase is the most common
phrase, in our corpus, given the input word “life”. More formally, given a word wt, a
predicted context Ĉ is inferred as:

Ĉ = P ({wt−c, ..., wt−1, wt+1, ..., wt+c}|wt) (2.6)
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where {−c ≤ t ≤ c; t 6= 0} in which t is the word index and c represents the half window
size (how many words before and after the word wt will used to feed the model). As
before, given the word wt as input, we now infer the probability of a related context by
maximizing the average log probability:

Ĉ = 1
T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j|wt)) (2.7)

Figure 1 depicts the architecture of these two common (shallow) neural embedding
models where {H1, ..., Hn} are the neurons in the hidden layer, n is the embedding matrix
length and c is the half window size. Wt represents a neuron at model border, which will
receive a context and predict a word or receive a word and predict its context.

Figure 1 – CBOW and Skip-gram architecture overview

During the training of some of these models, such as word2vec (MIKOLOV; YIH;
ZWEIG, 2013), it was possible to verify that words of similar meanings were found
geometrically close together. For example, conceptually close words (e.g.: uncle and
aunt, lion and tiger) are expected to be spatially close. Certain regularities became
evident in these word representations and some arithmetic operations can even be used as
semantically logic operations. For example, the operation vector(’Paris’) - vector(’France’)
+ vector(’Italy’) results in a vector very close to vector(’Rome’). Semantic arithmetic also
implies that the meaning expressed by a set of word embeddings can be exploited by linear
and non linear models.

This characteristic is due to the process by which these embeddings are trained.
The purpose of these neural models is to predict the missing word in a context or vice
versa, but what interests us is what happens in its hidden layers. Using a sufficiently large
input text corpus, during training, the weights of the hidden layer neurons seem to be
optimized in a such way that words commonly used together in the input corpus are also
found geometrically close in a spatial projection of that hidden layer.
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After training, the hidden layer weights of a neural network are used as embedding
representation. As CBOW and Skip-gram are unsupervised, they are able to effectively
learn patterns from billions of word occurrences.

2.3.5 Information Extraction

Information Extraction (IE) is growing as one of the active research areas in
artificial intelligence for enabling computers to read and comprehend unstructured textual
content (Etzioni et al., 2008).

Information extraction (IE) turns the unstructured information expressed in na-
tural language text into a structured representation (Jurafsky and Martin, 2009). That
structured representation can be modeled in the form of tuples containing phrase syntactic
elements present in the semantic relationships among them. For instance, the tuple
{arg1; relation; arg2} represents a relations among elements arg1 and arg2.

2.3.5.1 Open information extraction

Open information extraction (OpenIE) contrasts with traditional information
extraction methods, since it is not limited by structured information domains, as in
ontologies. Additionally, to reduce the knowledge acquisition cost, since defining ontologies
is a manual task, OpenIE methods try to find indirectly potential relations looking on
syntactic constructions among entities present in unstructured texts. After that, these
constructions are represented as triples describing relations (P ) between actors (A) and
objects (O) as in {A, P, O }. For instance, {‘Romeo’, ‘loved’, ‘Juliet’} or {‘The cat’,
‘sat’, ‘on the mat’}. OpenIE methods can be learned by machine learning models or even
constructed using heuristics.

The first Open Information Extraction method was called TextRunner (BANKO
et al., 2007). Later, improvements and new versions of OpenIE were introduced by other
authors as Reverb (ETZIONI et al., 2011), OLLIE (MAUSAM et al., 2012), ClausIE and
(CORRO; GEMULLA, 2013).

In the Stanford Open IE approach (ANGELI; PREMKUMAR; MANNING, 2015),
a classifier was learned to split a sentence into a set of logically implied shorter statements,
recursively traversing its dependency tree and predicting at each step whether an edge
should produce an independent clause. After that, each independent clause was then
shortened by executing a natural logical inference on it. Finally, a small set of 14 manually
created patterns was used to extract a triple of predicate argument from each statement.
An overview of this approach is shown in Figure 2.
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Figure 2 – An illustration of Stanford Open IE’s approach. From left to right, a sentence
yields a number of independent clauses. From top to bottom, each clause
produces a set of entailed shorter utterances, and segments the ones which
match an atomic pattern into a relational triple (ANGELI; PREMKUMAR;
MANNING, 2015).

2.3.6 Structured Events Embeddings

Traditional methods to forecast stock prices based on News rely on auto-regressive
predictors that incorporate News content as overlay data. In such models, prices are taken
as a time series where future prices are seen as a combination of past prices and concepts
represented by sets of words, phrases, or structured events.

As previously described, words and phrases from unstructured text can be directly
fed to a neural model using sequences, one-hot encoding, Bag of Words, Structured
Events, and Embeddings (Continuous Bag of Words or Skip-gram representations). A
common way of feeding structured events as input for neural models is applying Open
Information Extraction (OpenIE) (BANKO et al., 2007) methods as a pre-processing step
on unstructured text. A combined way would be represent the extracted events triples as
embeddings.

Structured Events embeddings (SEEs) (NASCIMENTO; CRISTO, 2015) are struc-
tured events (SEs) (DING et al., 2015) represented in concept spaces learned such that
SEs share a semantic distributed representation. SEs are a subset of all relationships
extracted using OpenIE method. This subset contains only event based relations, that is,
actors performing their actions on an object.

SEE treats each event as a set of words, where each word is represented using
the Skip-gram algorithm. More specifically, each word is represented by a feature vector
in a feature space. (NASCIMENTO; CRISTO, 2015) represented structured events as
the summation of their constituting word vectors, in each day, using the skip-gram
implementation by Mikolov et al. (MIKOLOV et al., 2013), referred to as Word2Vector
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and publicly available.

In this method, a text document can be viewed as a sequential stream of events. An
structured-event (SE) is composed of an action P , an actor O1 that conducted the action,
and an object O2 on which the action were performed. Formally, an event is represented
as:

E = (T,O1, P, O2) (2.8)

where T is the timestamp, O1 is the actor, P is the action and O2 is the object (DING et
al., 2014). As an example, the News fragment “Microsoft purchases Nokia’s phone business”
should be extracted as {Microsoft, purchases, Nokia’s phone business}, as exemplified in
Figure 3

2009/april/3 - Reuters: Microsoft puchases Nokia Phone Business

2009/april/2 - Reuters: Google agreed to sell Motorola’s handset division

{date1; Nokia;lay o ; employees in latin america}

{date1; Microsoft; puchases; Nokia Phone Business}

{date2; Google; sells;Motorola’s handset division}

2009/april/2 - Bloomberg: Nokia will lay o  employees in latin america
O
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Figure 3 – Extracting events from news stream. (NASCIMENTO; CRISTO, 2015)

Raw text data are translated into events using the Open Information Extraction
(BANKO et al., 2007) approach. As OpenIE toolbox as Reverb (ETZIONI et al., 2011),
an extractor for verb-mediated relations, is used to extract the events super set.

2.3.7 Sentiment Analysis

Another way to extract high-level information from text for later use in predictive
models is by using sentiment analysis. A process of sentiment analysis is the task of extract
the polarity of sentiments in a input text, which can be positive, negative or even neutral
in the cases where the sentiment polarity is not explicit in the text or when the model
was not able to detect it. In addition, this analysis can be modeled to be performed at
three granularity levels: Document Level, Phrase Level, and Aspect Level. (FANG; ZHAN,
2015)

At the document level, it is useful to determine if a particular document, such
as an entire product review or a twitter comment for example, has positive or negative
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sentiment polarity. At this level, the task is to analyze whether the whole opinion of
that document communicates a positive or negative sentiment. At the sentence level, we
try to identify the sentence polarity. At the aspect level, the observed entities and their
characteristics (aspects) are evaluated for their eventual positive or negative polarity. For
instance, given the review “Amazing food, desserts and wine selection. Great place for a
dinner for two. Although the waiter was not so attentive, I am happy with the overall
experience.”, it is clearly positive at document level with positive aspects (e.g., “food”,
“desserts”, wine”) and, at least, one negative (“service”) observed in a negative sentence,
“the waiter was not so attentive”.

Term frequency of words related to human emotions is a traditional form to infer the
mood of a particular publication or comment on social networks. For example, we might
infer that a high number of words like “good”, “excellent”, “great”, “joyful”, “amazing”, or
“happy” in a particular document would denote that it has a positive content or expresses
the happiness of its author.

2.3.7.1 Sentiment Analysis of Financial Texts

Detecting investors mood by these methods seems useful in stock prices prediction.
BOLLEN; MAO; ZENG have even shown that the mood of Twitter users can even affect
the stock price and be used for financial forecasting.

However, determining whether the content of news is useful in predicting stock
prices is a hard task. Beyond the classic problems of sentiment analysis field, such as the
difficulty in perceiving irony, it is also clear that capturing the happiness or sadness of a
certain news document seems not so useful in forecasting. In that cases, we are interested
in detecting how much a financial news document or headline will impact the stocks prices
of a company to which it refers and not whether this news is happy or sad. Therefore,
some lists of words more suitable for financial analysis have been made. A commonly used
source is the list made by (LOUGHRAN; MCDONALD, 2011) that provides 353 positive
and 2,337 financial negative words.

2.4 Artificial Neural Networks
We often need to construct less complex abstractive models to describe extremely

complex nature systems and then apply them to solutions of particular problems. Von Neu-
mann states that “Natural organisms are, as a rule, much more complicated and subtle, and
therefore much less well understood in detail, than are artificial automata.” (NEUMANN,
1951).

In fact, there are even questions about how information is processed and stored in
the brain. We have now two main neurobiological hypotheses to explain how information
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is stored by the human brain. The symbolic hypothesis argues that, upon perception,
information is encoded in our brain in a likely decipherable and similar manner among all
humans. Such coding would establish a one-to-one relationship between information and
that symbolic format. The connectionist hypothesis, on the other hand, holds that such a
relationship is not so simple, and that the chain of neurons itself would be responsible for
representing information through their synaptic connections. Those of artificial neurons
we will present are based on the connectionist hypothesis. (ROSENBLATT, 1958) which
was widespread and had important supporters when the perceptron model was proposed
(KNOTT, 1951) (HAYEK, 1952) (UTTLEY, 1956) (ASHBY, 1952).

We know that a typical biological neuron consists basically of a cell body (also
called soma), some cellular extensions and its branches (dendrites) and a third component
called Axon, that carries nerve signals away from (and back to) the soma. The transmission
of information between different neurons through these axons forms a biological neural
network. Recent research findings have suggested that neuronal soma membrane excitability
and synaptic connections among neurons throughout the axons produce behavior and
cognition (RUTECKI, 1992).

Artificial neurons were born from the mathematic simplified abstraction of real
biological neurons. The very first mathematical model of an artificial neuron was the
Threshold Logic Unit (DUDA; SINGLETON, 1944), but the most famous model was the
Perceptron (ROSENBLATT, 1958), briefly described in Figure 4, where the capital sigma
represents the weighted sum of the n total inputs x1, .., xn and the tiny sigma represents
the activation function which will “decide” if the summed signal will flow to the output
or not. In the first version of perceptron, proposed by ROSENBLATT, the activation
function was as simple as checking whether the weighted sum of the input weights was
greater or less than a threshold, but several other types of functions have been used over
the years.

Xn

X2

X1

Xbias

..
.

P
output

In
p
u
ts

Bias

Figure 4 – Rosenblatt’s Perceptron Representation

The bias input (xbias) is used to shift the activation function image positively or
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negatively. More formally, the perceptron model can be described by:

output = σ(xbias + w1x1 + w2x2 + ...+ wnxn) = σ(wT + b) (2.9)

MINSKY; PAPERT demonstrated severe limitations in the single hidden layer
perceptron model, such as the impossibility of learning the xor function. This publication
had a striking effect on the artificial neural network field, considerably reducing investments
in academic research based on the connectionist hypothesis by a few years.

The roots behind this general scientific “overreaction” are beyond our research
scope. Fortunately, later more powerful techniques such as adding multiple perceptron
layers (which solves xor problem) and the backpropagation (RUMELHART; HINTON;
WILLIAMS, 1985) (which facilitates the network train), contributed to rekindle the
research interest in the neural network field.

2.4.1 Activation Function

It is noticeable that matrix multiplications between inputs and neuron weights are
later normalized by a mathematical function that is also responsible, in some cases, for
adding a nonlinear transformation to these weights: the activation function, represented
as σ at Figure 4. Several types of activation functions can be chosen for a particular
layer in a neural network. In Figure 5, we list some popular activation functions, in order:
Threshold (also called Heaviside step or binary step), Sigmoid (also called logistic), tanh,
Rectified linear unit (or simply ReLU (NAIR; HINTON, 2010)) and Leaky ReLU (MAAS;
HANNUN; NG, 2013).

Figure 5 – List of common activation functions.
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2.4.2 Loss Function

The loss function (also called cost function) give us a measure of how wrong the
model is in terms of its ability to estimate the classification or prediction with respect
to input data. This metric is usually calculated as a difference between the real correct
value and the value predicted by the neural network and depends on the type of output
we expect from the model output. The most commonly used loss functions for time
series autoregressive prediction are Mean Absolute Error (MAE) and Mean Squared Error
(MSE), formally described by the following equations:

MAE = 1
N

N∑
t=1
|yt − ŷt| (2.10)

MSE = 1
N

N∑
t=1

(
yt − ŷt

)2
(2.11)

where N is the number of training instances, ŷ is the prediction made by the forecaster,
and y is the real value.

However, it is well known that, in financial time series, errors that result in gains
should not be punished in the same way as those that result in financial losses. GRANGER
proposed a linear-linear loss function (LIN-LIN) that weights positive and negative forecast
errors of similar magnitude differently (asymmetric loss). In the case of asymmetric loss
functions, optimal forecasts are consistent with neither the Mean Square Error (MSE) nor
Mean Absolute Error (MAE) criteria and both mean and median forecast errors can have
expected values different from zero (KEANE; RUNKLE, 1998). HONG; LEE conducted a
comprehensive analysis of different loss functions used in financial forecasting.

In fact, the mean absolute error loss function penalizes forecast optimism and
pessimism equally and the respective explanation for the forecast bias is attributable
to skewness in the distribution of earnings. However, some studies suggest that using
asymmetric functions has no benefit over the mean absolute error loss function and
that analyst motivation may be driven by the costs associated with under-predicting
earnings being higher than the costs of over-predicting earnings, i.e., asymmetric loss
functions. (SINGH, 2015).

The right choice of the cost function is also an important step for computational
costs, since it will and its complexity will also increase the complexity of backpropagation
weight calculations, as all derivatives and calculations will use it by base, as detailed in
the next section.



Chapter 2. Fundamentals 20

2.4.3 Backpropagation

Methods for gradient error minimization have existed since the 19th century (CAU-
CHY, 1847). The iterative optimization of weights for equation systems is even older,
and has been carried out since the advent of chain rule in differential calculus by Leib-
niz (LEIBNIZ, 1684) and l’Hôpital in the 17th century (L’HOPITAL, 1696). But, the
back-propagation for weight optimization in the strict context of neural networks was first
proposed by Werbos (WERBOS, 1974) with posterior contributions from Rumelhart (RU-
MELHART; HINTON; WILLIAMS, 1985). This method propagates the prediction error
to all network weights after its calculation using some specified loss function.

According to GOODFELLOW; BENGIO; COURVILLE, we can calculate the
backpropagation for any neural network using only the next four formulas described below.
Considering L the number of layers in a neural network, C a arbitrary chosen loss function,
we can obtain the error in the output layer δL by the following Hadamard product:

δL = OaC � σ′(zL) (2.12)

where OaC is the gradient of the cost function with respect to a, which is the result of
the activation function from the previous layer. The error σ′(zL) as the derivative of the
output activation function applied to z, which is the weighted input to the activation
function for neurons in output layer. The error δl for each next layer l is calculated as
follows:

δl = ((wl+1)T δl+1)� σ′(zl) (2.13)

where (wl+1)T is the transpose of the weight matrix from the (l+ 1)th layer and δl+1 is the
error propagated from that layer.

Now we can also easily calculate the rate of change of the cost C with respect to
any bias blj by:

∂C

∂blj
= δlj (2.14)

And the rate of change of the cost C with respect to any weight wljk by:

∂C

∂wljk
= al−1

k δlj (2.15)

All above equations are in the simplified fully matrix-based form.
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2.4.4 Weight Initialization

One of the initial choices when training a neural network is how to initialize the
network weights. The initial state of our training will depend on that decision. We can
choose from several types of initialization, such as simply setting all weights to zero,
initializing them to random values according to a previously chosen statistical distribution,
or even combining activation functions that also are “aware” of the initialization of weights,
such as ReLU (NAIR; HINTON, 2010) and Leaky ReLU (MAAS; HANNUN; NG, 2013)
that use the method in Equation 2.16 proposed by (HE et al., 2016) or such as tanh that
uses Equation 2.17, proposed by (GLOROT; BENGIO, 2010). Both equations multiply a
Gaussian random weights initialization Wσ, in each network layer l, in the following way:

Wl = Wσ ·
√

2
N l−1 (2.16)

Wl = Wσ ·
√

1
N l−1 (2.17)

where Wl is the initialized weights of layer l and N is the number of input units in the
weight tensor.

This choice of the initialization technique can hugely impact network learning. A
weight too close to the upper activation limit can easily saturate the neuron, while values
too close to the lower activation limit will fatally turn the neuron off. Both conditions,
occurring in a sufficiently large part of neurons, would difficult the network learning.

2.4.5 Input Normalization

We usually need to transform model input values to suitable scales. For a network
that uses the sigmoid as activation function, for instance, it would be appropriate if the
input values were also contained within the same range, in this case, between 0 and 1.
In fact, we know that neural networks and specially convolutional networks are highly
sensitive to scale (HU et al., 2018a). To avoid that problems, we need to perform a scale
conversion operation to a specific numerical range, this process is also called normalization.

The simplest and most common way to normalize an input dataset is through the
formula:

zi = xi −min(X)
max(X)−min(X) (2.18)

where X = (x1, .., xn) is the raw input and zi is the ith normalized input.
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2.4.6 Recurrent Networks

The networks mentioned so far, also called feedfoward, use only the current and
unchanging state of the network, that is, they use their weights in all their layers, for all
their predictions. However, in some problems, such as sequence prediction, each sample is
temporally dependent on the previous ones. Recurring networks are used in these cases
when we need previous states of the network to be used in future forecasts. To achieve
this, recurring networks feed back into the network with previous outputs, as shown in
Figure 6. In this way the network will see all previous inputs and outputs at each forecast
step, while learning to remember those with impact on the current forecast.

Since they were proposed, we know that recurring networks are hard to train
(HOPFIELD, 1982). In addition to the high memory consumption required to maintain
all previous states, we will often not be able to converge network weights due to the
huge amount of successive gradients applied during backpropagation computation, which
will inevitably converge to zero, and because of the limitations of discrete computational
operations will result in zero, preventing the error propagation. This problem is known as
vanishing gradient.

To help solve these two main problems, some recurring architectures have been
proposed, the most famous being LSTM (HOCHREITER; SCHMIDHUBER, 1997) and
GRU (CHUNG et al., 2015) which function as electronic circuits that have memory cells 6
capable of learning which stimuli are important in each recurrence layer and which of these
stimuli should be attenuated or even forgotten (acting as a deterministic regularization).
That is, these architectures, although they seem more complex, are in the background
reducing the complexity of the final model.

Figure 6 – Illustration of (a) LSTM and (b) GRU memory cells. (a) i, f and o are the
input, forget and output gates, respectively. c and c̃ denote the memory cell
and the new memory cell content. (b) r and z are the reset and update gates,
and h and h̃ are the activation and the candidate activation. (CHUNG et al.,
2014)
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2.4.7 1D Convolution

Despite being widely used in image classification, 2D convolution does not seem
suitable for sequence classification and prediction. A numerical sequence is by definition
an one-dimensional vector, so one-dimensional convolution is required. In this type of
convolution, one-dimensional vectors will be learned, working as kernels that will be
convolved with inputs during prediction or classification.

Suppose an 1D input signal f = [f(0), ..., f(N − 1)] and an 1D receptive field
g = [g(0), ..., g(M − 1)], where M and N are their sizes. The discrete convolution of g and
f is given by:

Convolution(f, g)(i) = (f ∗ g)(i) =
∑M−1

j=0 f(j) · g(i− j) (2.19)

2.4.8 Causal Convolution

The problem with feeding convolutional networks with a sequence is that both
past and future inputs can be “seen” by the model. In order to avoid that, it is necessary
to mask the input so that only the current input and the strides are seen by the net at
each training step. That technique is also called causal convolution, since this establishes
a causal relationship to be maintained between previous and current inputs.

2.4.9 Residual Connections

To prevent the neural network from “wasting time” trying to learn raw input
rather than optimizing its weights accordingly, HE et al. suggested the residual connection.
Bypass connections between layers are used to bring the unchanged input information to
the next layers. In other words, each entry is multiplied by an identity matrix and added
to the layer to which we want to make the residual connection. It works as a wire directly
from the entrance of one layer to another.

Such a procedure may seem extremely simplistic, and even questionable, at first
glance, but it has obtained great results in several deep neural networks, reducing training
time and increasing the number of layers by avoiding the vanish gradients. (HE et al.,
2016) (TAI; YANG; LIU, 2017) (OORD et al., 2016a) (WANG et al., 2017)

2.5 Temporal Convolutional Networks
The Temporal Convolutional Network term was firstly adopted by (RENÉ; HAGER,

2017) in the activity segmentation field. BAI; KOLTER; KOLTUN also adopt this term
not as a label for a truly new architecture, but as a simple descriptive term for a family of
architectures for convolutional sequence prediction.
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According to (BAI; KOLTER; KOLTUN, 2018), a Temporal Convolutional archi-
tecture has two distinct characteristics: 1D convolutions and Causality. In these models,
the input of the network has the same size of the output, which increases in each step,
having as an additional input for the next prediction the result predicted in the previous
step.

2.5.1 Kernel Dilatation

That requirement about to keep the length of the output vector the same as the input
leads us to a new problem, as soon as each convolution or pooling operation will inevitably
reduce the output vector dimensionality in all network layers. To solve this problem
MITTELMAN proposed a five-layers 1D-convolutional model with different receptive field
sizes upsampled through the layers to preserve the input length. BOROVYKH; BOHTE;
OOSTERLEE introduced the dilated conditional convolutions for time-series forecasting.

The purpose of the dilatation is to use larger kernels with internal zero-paddings
to keep the output with the same size as the input after the convolution and pooling
operations. The introduction of dilation method has highly increased the depth of causal
1D convolution networks.

2.5.2 Wavelet Transform and 1D Convolution

The financial time series are indexed numerical sequences, so they can be analyzed
and treated by techniques applied to other types of indexed numerical series.

It is also possible to understand a time series as an analog signal in the time
domain and thus make use of methods from the electronics and signal processing areas
in its analysis. A Fourier transform could be used to bring this financial series into the
frequency domain and thus discover which spectral levels are present in the signal. These
spectral levels could be understood as a histogram of the volatility densities found in the
financial series.

We can compute a Fourier transform F at a particular frequency k for an input
signal xi in its discrete form by:

Fk = 1
N

N−1∑
i=0

xie
i2π.k i

N (2.20)

where N is the number of sampled points extracted from the input signal, ei2π is the
spinning operation around the circle at frequency k.

The Fourier transform breaks the input signal into the sum of sinusoids representing
all the different frequencies that make up the signal. Such behavior reminds the extraction
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of time series components by the classical econometric models, which decompose the
time series into its components like trend, seasonality and white noise. However, such an
approach is not suited to work in non stationary or transitory characteristics of financial
timeseries. Furthermore, it would not be able to indicate in the time domain what it
indicates in the frequency domain. In other words, an acceleration in the volatility of
an asset would be detected using this kind of transform, but such a procedure would be
unable to tell us where exactly that perturbation occurred in time.

We also could use another important math tool that would convert the input signal
to the scale domain, the wavelet transform, as a useful method to indicate in which time
point ρ such volatilities are located and at what scale s it would be possible locate a
pattern of interest ψ, as follows:

F̂ (s, ρ) =
∫
f(~t)ψ(s, ρ) · dt (2.21)

where ψ is the chosen wavelet function and the inputs s and p are respectively its scale
and the time shifting on the chosen wavelet function.

If we, intuitively, imagine the entire process applied by a wavelet transform, that
breaks down a signal in a sum of wavelet coefficients (set of different scaled and shifted
versions of a previous chosen wavelet function) convolved with a input signal in order
to filter out surges, attenuation or other patterns, we would inevitably imagine it as a
convolution operation inside a networks neural. The wavelet coefficients, in this case,
would be nothing more than the weights to be learned by the kernel and its scale could be
understood as the dimensions of that kernel.

In fact, at first glance, Wavelet transform seems really similar to previous explained
convolution operations, but it has as premise that the the input signal should be at least
partially continuous and integrable. Even using its discrete and less computationally
expensive Wavelet forms, to manually choose a pattern from a bank of wavelets functions
for each prediction problem is not a feasible task. The main advantage of 1D convolutions
over traditional wavelet transforms lies exactly in the fact that the interest patterns
(kernels) are automatically learned by the network during training.

2.5.3 Dilated Causal Convolutional Architecture

Based on WaveNet (OORD et al., 2016a), a recent convolutional architecture for
audio waveforms, Borovykh’s (BOROVYKH; BOHTE; OOSTERLEE, 2017) model seems
better captures the long short term dynamics, since each model layer has a resolution on
time-series sampling twice larger than the prior layer.

Compared with other RNN architectures, such as LSTMs and GRUs, dilated CNNs
have two important advantages. First they better take advantage of the parallelism since
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that, in RNNs, a recurring step is just performed after the previous one. As a dilated CNN
“sees” the entire sequence at once, it is much more parallelizable. Further, convolution
operations are also much less susceptible to the vanishing gradient problem and learning
is very effective with the adoption of residual connections (HE et al., 2016), usually used
in CNNs. The overview of the dilated causal convolutional network structure is presented
in the Figure 7.

Figure 7 – Dilated Causal Convolutional Neural Network Structure (OORD et al., 2016a)

In this figure we observe that all the network weights in the previous steps are
used in each future prediction, however not all weights are considered in the prediction.
The output uses only two weights from the previous layer, which in turn also use only two
weights from its previous layer and so on. If we look at the image from bottom to top
(from input to output), we realize that the next layer weights are no longer considered by
a ratio of 2, which is the value of the network dilation. Thus, the output will be connected
with all input examples, but it “forgets” about them each layer according to the dilation
rate. In other words, the network “sees” the input signal in lower resolution at each layer.

This different signal resolution in each layer of a dilated CNN helps it to dynamically
capture patterns at different temporal granularities. In WaveNet (OORD et al., 2016a),
for example, each layer has twice the resolution of the previous one. This peculiarity helps
the model to use both long-term and short-term patterns simultaneously in prediction.
Skip-connections, as presented on Figure 8, also help accelerating training time while
enabling deeper models. Its Residual connections, in turn, help the model to quickly
rebuild the input signal through a continuous stream, preventing the network from wasting
time trying to learn the input signal during the forecast.

In Figure 8 we note the model masks the previous inputs through a causal con-
volution and initiates the dilated convolution to avoid reducing the output size using
the product of tanh and a sigmoid as activation function. The result of this composite
activation function then goes through a 1D convolution, here called 1x1, and is added to
the input for residual propagation as well as being propagated outside the layer and added
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Figure 8 – Residual block and WaveNet architecture (OORD et al., 2016a)

to the results of the other next layers. Finally, two sets of ReLU/1D convolution are then
applied to a last softmax to predict the probability distribution at the output.

It is important to note that WaveNet was originally proposed for voice synthesis,
in addition to some experiments conducted with music synthesis in its generative form.
Using WaveNet for financial forecasting is a alternative but fully viable proposal given the
autoregressive nature of the problem.
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3 Related Work

3.1 Financial time-series prediction methods
The classic econometric models commonly used in financial time-series forecasting

include the autoregressive model (AR), the moving average model (MA), the autoregressive
moving average model (ARMA), the autoregressive integrated moving average model
(ARIMA) and vector autoregressions (VAR) (HAMILTON, 1994). All of these methods
make a future price estimate using a linear auto regression. That is, the same variable is
sampled at a discrete frequency and this history is used for future predictions through a
linear regression learned by the model.

Signal processing and machine learning based techniques also have been used in
stock price forecasting, such as artificial neural networks (ROJAS, 2013) on (SONG;
ZHOU; HAN, 2018), support vector machines (HEARST et al., 1998), and ensembles
(DIETTERICH, 2000), since that discovering useful patterns in time series values is a
non-trivial task. For a full revision of the prior literature, we refer the readers to the
surveys published by (YU; KAK, 2012) and (FU, 2011). Even more recently, deep learning
models using core traditional signal processing methods as wavelet transform remain being
applied successfully (LIANG et al., 2019).

3.2 Text based techniques
Recent years also have seen a large increase in the adoption of textual data extracted

from the web and social networks to attempt to create better predictive models in various
application fields (YU; KAK, 2012). In fact, Twitter mood was already used to improve
stock predictions (BOLLEN; MAO; ZENG, 2011) and (HUANG et al., 2015) even had used
Granger Causality Analysis to demonstrate the importance of a Twitter mood time-series
in financial time-series prediction. Twitter based frameworks for stock prediction have
been heavily used by investors by now (DAS et al., 2018).

Traditional models used raw text features as input, such as bag-of-words. However,
Ding et al. (DING et al., 2014) achieved a substantial improvement on stock-price polarity
(up and down) prediction by using structured events and a multilayered feed-forward neural
network. Using the same dataset, Peng and Jiang (PENG; JIANG, 2015) also adopted
structured events to analyze market movement polarity using a deep neural network.

Embeddings were first introduced by (BENGIO et al., 2003). In that work, words
were represented by neuron activations of a hidden layer of a neural network built to
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distinguish correct sentences (“the cat sat on the bed”) from random sequences of words
(“bed the on sat”). As result, related words are represented by similar patterns of neuron
activations.

More recently, very effective ways to obtain similar representations have been
introduced, such as the unsupervised algorithms Conceptual Bag of Words (CBOW) and
Skip-gram with Negative Sampling (Skip-gram) (MIKOLOV et al., 2013).

Sentiment Analysis techniques also have been used for a long time in unstructured
text based machine learning models. A recent paper (PROSKY et al., 2017) made some
experiments on Sentiment Predictability for Stocks using Vader (GILBERT, 2014) and
Google Sentiment API without reach important results, since his model training did not
converge. For a full revision of the sentiment analysis and NLP based stock forecasting
literature, we refer the readers to the surveys published by (ABIRAMI; GAYATHRI, 2017)
and (XING; CAMBRIA; WELSCH, 2018).

3.3 Deep Models for financial time-series prediction
LSTMs (HOCHREITER; SCHMIDHUBER, 1997) were also used to improve

language models (SUNDERMEYER; SCHLÜTER; NEY, 2012). A newer version of LSTM
using Gated Return Units (CHUNG et al., 2015) was also used to predict stock prices,
but only as a replacement of traditional methods for time series, instead to adding textual
information from news. A recent survey of time-series prediction using deep learning
methods was made by (GAMBOA, 2017)

Dilated Conditional Convolutional Neural Network (DC-CNN) (OORD et al.,
2016a) architectures and the Augmented WaveNet have demonstrated better performance
than traditional CNN design and comparable or even better performance than LSTM on
forecast time-series (BOROVYKH; BOHTE; OOSTERLEE, 2017).

Bidirectional-LSTM with self attention mechanism also have been used to encode
news text and capture the context information in order to predict directional changes in
both S&P500 and individual companies stock. (LIU, 2018). More recently, a method similar
to a Discrete Wavelet Transform (DWT) have used a LSTM model with Phase-Space
Reconstruction (PSR) method to predict market polarity. (YU; YAN, 2019)

The Temporal Convolutional Network term was first adopted by (RENÉ; HAGER,
2017) in the action segmentation field. BAI; KOLTER; KOLTUN also adopt this term,
not as a label for a truly new architecture, but as a simple descriptive term for a family of
architectures for convolutional sequence prediction. Temporal Convolutional Networks are,
in a bottom line, just causal 1D networks with causal constraints between model layers.
The first causal 1D convolution model was used by (MITTELMAN, 2015). New models
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have used more complex and allegedly more effective approaches to predicting stock trends
only (polarity) using Hybrid Attention Networks (HU et al., 2018b), Adversarial Networks
(FENG et al., 2018) and Multi-filters Neural Networks (LONG; LU; CUI, 2019).

It is important note that all previous deep architectures were used to predict only
the price polarity and not the price of stock market assets. In other words, while most
related works are trying to predict if a particular stock price will increase or decrease, we
are trying to predict which will be their exact stock price.

3.4 SeriesNet - A novel and complex stock forecasting architecture
A recent work using a hybrid architecture of dilated convolutions and LSTMs has

presented good results in stock forecasting: The SeriesNet (SHEN et al., 2019). This
model does not use news as input, but we decided to compare our model against it, since
it is a state of the art work and the metrics and methodologies used in our proposed
architecture can also easily be applied to SeriesNet.

Figure 9 – SeriesNet Stock Forecasting Architecture (SHEN et al., 2019)

In Figure 9 we show a high level view of the SeriesNet model. The authors
concatenated the output of a LSTM (HOCHREITER; SCHMIDHUBER, 1997) with a
dilated causal convolution output, certainly inspired by WaveNet (OORD et al., 2016a)
model. The authors also used a ReLU (MAAS; HANNUN; NG, 2013) activation function
on model output and applied batch normalization (IOFFE; SZEGEDY, 2015) after causal
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convolution output. They used the daily values from SP&500 and other indices as input
for both LSTM and Causal Dilated Convolution networks.

3.5 SEE - An older but robust model for stock prediction
In our first work, called Structured event embeddings (SEE), we modelled the

target price at time t (ŷt) as a linear combination of prices at times t− 1, t− 2, ..., t− n
(that was, lag variables yt−1, yt−2, ..., yt−n). To help capture long-term temporal patterns,
we also incorporated into the model quadratic and cubic time transformations (t2 and t3).
We also represented the target price using categorical temporal attributes (month and
quarter) and interaction variables associated with each lag variable ((t− 1)yt−1, (t− 2)yt−2,
..., (t− n)yt−n).

Were Ai, Ni and Mi are word2vec matrices in R100 space

Figure 10 – Structured event embeddings (SEE) representation (NASCIMENTO; CRISTO,
2015)

In the original paper, the News information was represented as overlay data by
summing the term vectors, as described in Figure 10. More specifically, in our last approach,
the resulting 100-D vector embedding of timestamp t (that included all the structured
events observed at t) was also used to represent the price at t. That method improved the
time-series prediction results in about 10%, leading us to try more deep architectures to
improve our results. (NASCIMENTO; CRISTO, 2015)
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4 StockNet: Multivariate Deep Neural Archi-
tecture for stock prices prediction

In this section we describe our proposed model and its hyper-parameters.

4.1 Integrating News in a Convolutional Temporal Model
Based in Borovykh’s (BOROVYKH; BOHTE; OOSTERLEE, 2017) model we pro-

pose a novel convolutional causal architecture for stock prices prediction. This architecture
will be trained to learn the next price for a particular stock and, at the same time, also
learn how the news published between time interval ti−1 and ti can contribute to improve
the asset price prediction at time ti.

4.1.1 Probabilistic View

The joint probability p(x|ϕ) given a sequence of prices x = [x1, ..., xN ] and the
news semantic features sequence ϕ = [ϕ1, ..., ϕN ] give us the normalized predicted price as
follows:

p(x|ϕ) ≈
N∏
t=1

p(xt | x1, ..., xt−1;ϕ1, ..., ϕt−1) (4.1)

where xt is the price at time interval t and ϕt is the semantic rankings features extracted
from the news headlines published at time frame t.

To compute this probability we masked the inputs to make available only the past
inputs using a causal conviction 1D for each input, one for price input x and another
five convolutions for our semantic ranking inputs ϕ, which will be described in the next
section.

We also proposed a new activation method called linear gated activation unit. Such
method is similar to that used by gated PixelCNN (OORD et al., 2016b) architecture but
with a rectified linear unit (MAAS; HANNUN; NG, 2013) instead of the sigmoid function.
In our experiments, this replacement gave us similar results, but the model converged
much faster, making training easier. So, formally,

zk = tanh(W f,k ∗ (x + ϕ)) � ReLU(W g,k ∗ (x + ϕ)) (4.2)

where zk is the causal dilated convolution output at layer k, Wf,k and Wg,k are the
kernel weights at layer k, give us the normalized output z which will be used as main
activation function in each layer of our convolutional neural network. Being u, the complete
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computation for each layer is in the form:

u = z0 ∗W h,0 +
L∑
k=1

(zk ∗W h,k +Rk−1;k>0) (4.3)

where Wh,k represents the kernel weights at layer k, L is the total number of layers in
our model and Rk−1 is the residual connection coming from the previous layer, the model
output can be finally computed by:

output = Sigmoid(ReLU(W j ∗ReLU(u ∗W i))) (4.4)

where Wi and Wj are the kernel weights at output convolutions.

4.1.2 Financial Semantic Field Ranking

Traditional sentiment analysis does not usually fit financial news context. This
inadequacy occurs as consequence of the specific nature of the social networks in which
such methods were born. For instance, an important financial headline about MSFT as
“Microsoft hits 1 trillion USD stock-price value” can not be classified as “happy” or “sad”
and is commonly classified as neutral by most sentiment analysis methods.

To overcome that limitation (LOUGHRAN; MCDONALD, 2011) proposed five
“financial mood” lists. As an important contribution, they sought not only to map positive
and negative words for financial news analysis, but also created lists of words commonly
found in five situations: positive, negative, litigious, constraints and uncertain.

We propose a simple ranking technique to extract the semantic field from the news
words using the financial sentiment lexicon proposed by (LOUGHRAN; MCDONALD,
2011). Our method outputs a probability distribution relative to the financial sentiment of
the news input. This probabilistic distribution is later used as input to the neural network.

We also built five word embedding vector spaces based on these lists, also creating
five different semantic vector spaces (or semantic fields). To feed our model, instead of
using pure news word embeddings as input, we calculated the cosine distances from the
five respective semantic spaces to each word present on news headlines. The resulting
distribution is composed by these resulting spatial distances that are treated as five
individual probability scores (pos_score, neg_score, lit_score, con_score and unc_score).
We then feed them into the model during neural architecture training in a multivariate
way. Our experiments demonstrated that this way of feeding the model is superior to the
traditional method proposed by the baseline.

Formally, we can represent the semantic ranking ϕϕϕt for the news published at
time interval t as a five-dimensional matrix where each element is represented by ϕkt with
k ∈ {pos, neg, lit, con, unc}, that are the five semantic fields labels. Therefore, we can
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compute the particular semantic ranking vector ϕkt using all words vectors wi from the
news headlines published at time t as follows:

ϕkt = 1
n.m

n∑
i=0

m∑
j=0

cos(wi, ukj ) (4.5)

or using the vector form by:

ϕkt = 1
n.m

n∑
i=0

m∑
j=0

wi · ukj
||wi|| · ||ukj ||

(4.6)

where ukj is the word vector matrix for the semantic field k, and n is the is the number of
word vectors in the news set published at time t and m is the number of word vectors in
semantic field k.

For sure, we could directly rank these probabilities or perform an additional average
to feed the model with a single discrete variable instead of using an output distribution,
but we decided to use the dilated convolution layers for this task since the score in each
semantic field might be useful to improve prices prediction. These new semantic scores
are weighted during the training as an additional five-dimensional feature matrix that will
later be propagated to the other layers of the model via dilated convolutions and residual
connections.

4.1.3 High level architecture

As the main contribution of our work, we will make extensive experiments to figure
out how much our proposed architecture can contribute to improve financial time-series
price prediction in comparison to our baseline models and also suggest an effective way of
integrating a raw news flow into temporal convolutional neural networks while optmize
the entire architecture for predicting stocks using TCNs. Our final proposed architecture
is detailed in Figure 11.

4.1.4 Hyper-parameters

The StockNet architecture has about 4,354,234 parameters. We used 20% dropout
regularization (SRIVASTAVA et al., 2014) in the convolutional layer inputs and Xavier
uniform initialization (GLOROT; BENGIO, 2010) for the weights of each neuron. As
loss function, we use the Mean Squared Error function (MSE), formally defined in the
equation 2.11.

To train the proposed neural architecture we used the Adam optimizer (KINGMA;
BA, 2014) with the following Hyper-parameters: Learning rate: 0.001 and decay ra-
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Figure 11 – StockNet architecture Overview

tio of zero, since these were the same optimizer and parameters used in our WaveNet
implementation.

4.1.5 Model Objective

Unlike previous work, we are trying to predict the stock price rather than its polarity
(whether the price will go up or down) as in a regression model. This objective needs
a continuous function rather than a distribution as an output target. In the WaveNet
model (OORD et al., 2016a), even for a regression task, the authors chose to use a
distribution as output instead of continuous probability values. That was an affordable
alternative since the output syntetic voice can be successful represented as a quantizable
signal in the time domain, allowing, in a reasonable computational time, the proposed
246-bit sampling of the signal amplitude.

It is also possible, in a similar way, to use Softmax for price prediction, simply by
maximizing the probability of the output distribution. So, in that case, Sigmoid(ŷ) would
give us the maximum likelihood price for a specific prediction ŷ. However, our model
is intended to apply to assets described at totally different price ranges. For example,
while AAPL stock track record has prices ranging from a dime to USD 250,00 GOOGL, a
similar stock with similar business and related news, has a price range between USD 54.16
and USD 1,300.

Training a model capable of automatically normalize these price ranges or adapt to
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scale changes while learning the importance of price-sensitive variations caused by financial
news could largely increase training time. Additionally, since our model will predict only
continuous values representing precise prices, we decide to propose an architecture with a
Sigmoid function at the model output instead of an arg max(Softmax(ŷ)).

4.1.5.1 Price prediction and polarity forecasting

As mentioned in the related works section, the overwhelming majority of stock
forecasting methods do not attempt to predict the exact price of assets at a future
point in time, but rather whether the price will rise or fall. Such an approach is more
straightforward since it converts the task into a binary classification problem, as well
as using simpler metrics such as Precision, Recall or Matthew’s correlation coefficient.
Moreover, it is noticeably more difficult to use textual information with news in purely
numerical auto-regressive models.

However, we disregard this approach in our proposed model, since we can argue
that no rational operator initiates an operation without calculating its probable return,
and the simple polarity prediction cannot indicate how much gain or loss an operation
will return. Moreover, all operations in the real world have lateral costs, even those with
free brokerage. Thus, often a small gain can result in losses at operation closing. In a
bottom line, polarity-based methods are unable to calculate returns against real scenarios
with operating costs, taxes and risks. our method is an accurate pricing model that can
be used in real scenarios using only a time series and text as input.



37

5 Experiments

In this chapter, we present an overview of the adopted methodology applied in
our experiments and also the preliminary and final results achieved by our experimented
methods.

5.1 Stock Prices Dataset
Our first work (NASCIMENTO; CRISTO, 2015) used the publicly available daily

S&P500 index. Now, we will use a more extensive 30 minute window stock prices dataset
including the 10 more liquid stocks extracted from Dow Jones and NASDAQ from January,
2004 to August 2018.

This is a personal dataset that we have decided to make publicly available along
with this work. 1

5.2 News Dataset
The experiments in our first work (NASCIMENTO; CRISTO, 2015) were made

using the same dataset used by (DING et al., 2014) and (PENG; JIANG, 2015). This
dataset consists of publicly available financial news from Reuters (106,521 documents)
and Bloomberg (447,145 documents), gathered from October 2006 to November 2013,
and stock market prices from Standard & Poor’s 500 (S&P 500) index. It includes the
international financial crisis that occurred in 2008, particularly important, since many
stock operations appear to have been driven by overreaction, apparently caused by the
huge amount of bad news about the market. All the news files included in this dataset are
named with the day, month and year of each publication, since the publishers (DING et
al., 2014) used the daily S&P500 index in their method.

We could not use a daily flow news dataset in conjunction with our financial
time-series dataset composed by prices sampled every 30 minutes. Fortunately, the dataset
used by (DING et al., 2014) also contained the publication date and time metadata
inside each document. So, we rearranged the daily news series into a 30-minute news
series, using the date information contained in news metadata. This allowed us to create
a great 30-minute sliced news time-series for all headlines since October 2006 which we
now published at github. 1

1 Available at https://github.com/hypernote/stocknet
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5.3 News Embeddings
There are several pre-trained skip-gram word embeddings available for us to use in

our experiments, however we have selected a trained news template, since it fits best in
financial scenarios. Furthermore embeddings trained over on generalist content bases such
as Wikipedia corpus (WU; WELD, 2010) may have been really unsuitable for financial
news data. So, in our experiments we used a previous trained embedding as input, trained
over 100 billion words extracted from Google News. That embedding data-set contains
300-dimensional vectors for 3 million words and phrases. (MIKOLOV et al., 2013)

We specifically chose these particular word vectors since they presented interesting
semantic results when queried about financial terms, including company names and stock
codes. For instance, the summing of word vectors miner + brazil + stock returns, between
the most near vectors, the name and stock code from the company Vale do Rio Doce S/A,
the larger miner Brazilian company while summing the vectors oil + brazil + company
returns the name and the stock code from Petrobras, the largest oil company in Brazil, as
showed in Table 1. Each term in our headlines time-series dataset was mapped in a 300-d
vector before being used as input by our model.

Vector Query 1:
miner + brazil + stock

Vector Query 2:
oil + brazil + company

giant Vale VALE5.SA LKC interval n
Barrick ABX producer OAO Rosneft

Tamaya Resources Statoil ASA Norway
CVRD RIO Holdings LKOH.RS

Namisa iron ore Brazil Petrobras
Southern Copper PCU Pemex PEMX.UL

VALE5.SA Statoil Norway
Vale RIO Petrobras PETR4.SA Quote

Freeport McMoRan FCX Bolivia nationalizes
giant Vale VALE Petroleos Mexicanos Pemex

Table 1 – Top 10 more similar vectors in trained embeddings given two different queries.

5.4 Baseline
Our objective is to outperform our first News based stock prediction model cal-

led SEE (NASCIMENTO; CRISTO, 2015) and the novel state of the art deep neural
architecture SeriesNet10 (SHEN et al., 2019). We also performed other experiments using
alternative neural time-series prediction methods based on GRU (CHUNG et al., 2015)
and WaveNet (OORD et al., 2016a).
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5.5 Experiment Setup
We performed all the experiments of this work using C++ (STROUSTRUP,

2000) and Python (OLIPHANT, 2007) programming languages. All neural models were
implemented using Keras (CHOLLET et al., 2015) and Tensorflow (ABADI et al., 2016)
frameworks. We also heavily use numpy, pandas and matplotlib libraries, as well as various
GNU environment tools. All experiments were made using a personal desktop computer
equipped with the NvidiaTM GTX 1050 video card, running the Arch LinuxTM operational
system.

5.6 Methodology
The prediction task consists in determining 10 highly liquid stocks listed in the

S&P 500 index. The S&P 500, or the Standard & Poor’s 500, is a publicly available stock
market index based on the market capitalization of 500 large companies having common
stocks listed on the The New York Stock Exchange (NYSE) and in National Association
of Securities Dealers Automated Quotations (NASDAQ).

We will compare the methods using two traditional loss metrics methods used
in regression applications, that is, the Rooted Mean Squared Error (RMSE) and the
Mean Absolute Percentage Error (MAPE). In a nutshell, RMSE and MAPE are given by
Equations 5.1 and 5.2, respectively.

RMSE =

√√√√ 1
N

N∑
t=1

(
yt − ŷt

)2
(5.1)

MAPE = 1
N

N∑
t=1

∣∣∣∣∣yt − ŷiyt

∣∣∣∣∣ (5.2)

where N is the number of instances, ŷ is the prediction made by the forecaster, and y is
the correct value.

5.7 Preliminary Experiment (S&P500)
As a preliminary experiment, we tried to overcome the SEE and the state of

the art architecture SeriesNet10 on S&P 500 daily index prediction. We applied our
main proposed architecture StockNet against that methods and also against six other
alternative neural architectures we had proposed earlier during our research.

We first proposed two alternative architectures using well known time-series fo-
recasting methods: the GRU (CHUNG et al., 2015) and the WaveNet (OORD et al.,
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2016a) in their pure forms. In this first experimental phase, we simply applied a vanilla
implementation of GRU and WaveNet to the daily prices time-series, without any tex-
tual news information, and output the results. The GRU, as the most recent version
of Recurrent Neural Network (WILLIAMS; ZIPSER, 1989), seemed to us able to better
capture the temporal dynamics observed on stock forecasting and the WaveNet is the first
convolutional temporal network able to overcome recurrent architectures in sequence and
time-series prediction problems.

The third proposed alternative architecture, which we call now GRU+SEE com-
bine two GRU networks (CHUNG et al., 2015) for the input prices and news embeddings
time-series and a traditional fully connected network(FCN) for the price output instead of
the random forest based method proposed by the baseline. In fact, it seemed better to use
the structure event features as input instead of just summing term-vectors as proposed by
the baseline. We better describe this preliminary model GRU+SEE in Figure 12.

The fourth proposed alternative architecture, which we call now GRU+RAW also
used a GRU (CHUNG et al., 2015) with raw embeddings as input, extracted directly from
news text embeddings instead of SEE’s structured events. We intent to solve the event
sparsity problem in the daily news data-set and figure out if the model could infer other
latent relationships and patterns hard to be detected by methods using open information
extraction.

The fifth alternative architecture, which we call now WN+SEE used a multivariate
version of the WaveNet architecture (OORD et al., 2016a) but with SEE’s structured
events as input. Therefore, instead of summing the term vectors and using them as input
to a random forest, as proposed by the baseline, we feed the multivariate WaveNet with
the structured event embeddings.

And the last proposed alternative architecture, which we call now WN+RAW
also used a multivariate version of the WaveNet architecture (OORD et al., 2016a) but
with raw embeddings as input, extracted directly from news text embeddings instead of
SEE’s structured events, in a similar way we had mad in GRU+RAW architecture.

5.7.1 Preliminary Results

As described in Table 2, in our preliminary results, SeriesNet10 architecture and the
vanilla models (GRU and WaveNet) do not overcome the SEE baseline, the third method
(GRU+SEE), despite winning from the baseline, showed little significant differences. The
raw text based models (GRU+RAW and WN+Raw) were unable to converge, maintaining
high levels of validation error and vanishing gradients even after several parametric
adjustments. Likely, the relative small amount of relevant news in the data-set when
predicting generic S&P500 behavior and the apparent inability of the network to learn the
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Figure 12 – Preliminary Experiment GRU+SEE with GRU Recurrent Architecture

Method RMSE MAPE

SEE (Baseline) 8,6430 0,5878
SeriesNet10 (Prices Only) 10,3464 0,6985
GRU (Prices Only) 9,8188 0,6493
Wavenet (Prices Only) 8,6203 0,5855
GRU+SEE 8,4151 0,5741
GRU+RAW No Convergence No Convergence
WN+SEE 7,9833 0,5542
WN+RAW No Convergence No Convergence
StockNet 7,4699 0,5190

Table 2 – StockNet results against baseline and alternative architectures for S&P500 (lower
is better)

delta impact of news on stock price arises as the main bottlenecks.

The WN+SEE model that used structured events on a multivariate WaveNet
performed well, surpassing the baseline by more than 7% and finally, our better model,
the StockNet, surpassed the baseline by over 13%.

5.8 StockNet Intraday Extensive Experiments
Even a large financial news dataset, containg between 2006~2013, became small on

a daily granularity, especially for neural networks training. From a daily perspective, the
original news dataset have only 2,609 days (samples). Neural networks perform better
when a huge amount of data is available for training.

Thus, we performed a new experiment using our StockNet architecture against the
second best method in our previous experiment using a shorter time frame, with samples
taken every 30 minutes. We also used individual stocks rather than S&P500 index. These
seems increase our model’s advantage over that baseline.
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5.8.1 Temporal News Subsampling

Our final intraday experiment tried to avoid some drawbacks with low input size
and the small time-frame problems reported in our preliminary results. We note that,
even using this 30-minute fashion, a total of 21,330 timesteps still have no more than 1
headline published. This is more than 26% of the entire news flow. In order to mitigate
this imbalance, we reduced the number of headlines per timestep to maximum of 20 in
the whole dataset, selecting the headlines in a random way on those timesteps to create a
subsampled timeseries. A published news histogram after this intraday splitting procedure
is shown in Figure 13.

Figure 13 – Intraday news histogram with 30-minute time splitting

We note in Figure 13 that the intraday splitting procedure evidenced a huge
imbalance in the number of published news at each time bucket. For instance, while there
is only a unique new published between 9:00PM and 9:15PM in 01/03/2006, there is 123
news published between 07:30AM and 07:45AM in 06/08/2012. In the whole dataset, we
found an average number of 6.76 news published by time step (after removing the gaps
with no news published) in this 30 minute time frame.

5.8.2 Individual Stocks instead of Market Indexes

As explained in the section about our price dataset, another major modification
was use individual stock time-series rather than market indexes in our final experiment,
since we have inferred that particular important news about Microsoft Company could
strongly affect MSFT stock prices, but their importance will be strongly diluted in the
S&P500 index.
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5.8.3 Final Results

In the Table 3 below we show the final results obtained from our new multivariate
architecture (StockNet) against our last model (NASCIMENTO; CRISTO, 2015) for ten
highly liquid stocks listed at NYSE and NASDAQ:

Stock Market Name SEE RMSE SEE MAPE StockNet RMSE StockNet MAPE

AAPL Apple Inc 0.8105 1.1766 0.1465 0.1869
AMZN Amazon.com, Inc 8.5422 2.3042 2.3961 0.5473
CSCO Cisco Systems, Inc 0.1005 0.4937 0.4434 1.9754
F Ford Motor Company 0.1466 1.1261 0.0732 0.5518
IBM IBM Common Stock 1.1556 0.7382 2.6192 1.6593
JPM JPMorgan Chase & Co 0.4044 0.8165 0.2844 0.5726
MSFT Microsoft Corporation 0.2861 0.8581 0.1302 0.3616
NFLX Netflix, Inc 1.8634 3.8745 0.5022 0.9789
WMT Walmart Stores, Inc 0.1507 0.1883 0.1203 0.1274
XOM Exxon Mobil Corporation 0.3919 0.4812 0.1836 0.2127

Average Error 1.38519 1.20574 0.68991 0.71739

Table 3 – StockNet results against baseline (lower is better)

As described in Table 3, for a 30-minute sampling and using individual stocks (which
is much closer to a real-world application), our proposed model considerably increased the
gains against baseline, reaching an average advantage of almost 50% on the most liquid
stocks, but did not do better than baseline for Cisco Systems and IBM stocks.

To better understand the cases where our model was underperformed, we now plot
in Figure 14 the prediction for IBM Inc. We can see an abrupt change in the direction of
the share price in the previous steps. The previous model (SEE) was able to capture this
change almost immediately, while StockNet seems to have suffered a delay or considered
other information, more distant in past time. In other words, the new model seemed to
“disbelieve” that price direction would experiment such a drastic change.

A similar behavior was observed in Figure 15, in the case of Cisco Systems Inc. We
note a drastic change in the direction of the prices near to the prediction. SEE seems a
better model for these particular cases, since it clearly reached low RMSE and MAPE
values.

In both cases where Stocknet underperformed, prices changed sharply. We then
wondered if this occurred whenever there were sudden movements. Thus, we ran new
experiments using other highly liquid stocks (out of our initial dataset) with unexpected
market movements and obtained similar results.

Extreme and unexpected market movements are also known as Black Swans.
Figure 16 shows the results for Verizon. It is possible note that its expected direction
changes sharply and in that scenario we also find StockNet’s behavior worse than the
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Figure 14 – Results for IBM

baseline. Such evidence may leads us to hypothesize that the SEE method only overcomes
StockNet in Black Swan events, but we could not support this hypothesis without a future
systematic study.
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Figure 15 – Results for Cisco Systems
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Figure 16 – Results for Verizon (not in initial dataset)
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6 Conclusions

In the present work we propose StockNet, a novel state of the art architecture for
stock prices prediction. In addition to overcoming the intended baseline, StockNet was also
able to surpass the state of the art method by about 27 of RMSE on the S&P500 index
forecasting task and almost 50% of RMSE in the individual company price prediction
scenario.

StockNet is a novel robust and highly precise forecasting architecture for non-
stationary financial time series in scenarios with sufficient news information. It has
demonstrably superior performance for both index prediction and price prediction in
real-world situations (huge number of news and high sample rates) while needs reduced
attribute engineering, making it a more straightforward neural method for real financial
forecasting. However, it has shown some limitations, in particular, associated with Black
Swan events.

6.1 Future Work
Future investigations can assess the impact of StockNet’s lower forecast accuracy

on black swan scenarios in comparison with other models and also experiment it in low
liquidity stocks scenarios or that where financial news about these assets are scarce.

A larger dataset with more news and more information sources can also be experi-
mented in the StockNet input. The architecture hyper-parameters can also be handled.
For instance, one can change the number of 1D-conv layers or experiment alternative types
of activation functions as the recent proposed Gaussian Error Linear Units (HENDRYCKS;
GIMPEL, 2016) instead of ReLU.

In the model hyper parameters, we also would experiment different forms of weight
initialization for each layer, apply other regularization methods and even use other types
of symmetric and asymmetric loss functions.

In the news text model input, we use a pre-trained embedding learned with the
Skip-gram algorithm. Other newer embedding techniques like FastText (JOULIN et al.,
2016) or even the more recent BERT (DEVLIN et al., 2018) can be experimented in order
to extract word vectors from the news flow.

Recently a new more comprehensive lexicon for sentiment analysis in financial news
has been proposed (SARDELICH; KAZAKOV, 2018) in addition to that proposed by
(LOUGHRAN; MCDONALD, 2011). A future work can repeat our experiments using this
lexicon as input to the semantic ranking and evaluate if gains are obtained in RMSE or
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MAPE.

This work was initially inspired by WaveNet results as an deep acoustic model for
speech synthesis. New deep acoustic generative models as Tacotron (WANG et al., 2017)
or SV2TTS (JIA et al., 2018) can be experimented on stock prediction instead of pure
Wavenet in order to evaluate its results.

StockNet model used a pre-trained embedding model, trained on a corpus extracted
from google news. Such a corpus is made up of news of all kinds. We consider important
to conduct future experiments using a new embedding model trained on a specific corpus
composed only of financial news.

In our final experiment, we used stocks from companies from different industrial
fields and extracted news related to those stocks. New experiments can be made using as
input only news headlines extracted from the sector of activity of the target company. For
example, we could include news headlines related to oil market into the news dataset of
an oil company.

Along with the textual input extracted from the news, we used only the stock
prices time series. This decision was intended to simplify the model, but may have
contributed to the inappropriate behavior of our architecture in Black Swan scenarios.
Future experiments may consider the use of volume time series, which is often used by
graphic financial analysts to anticipate sudden movements and market manipulation.

New experiments could also study news selection techniques, take into account their
qualitative aspects such as importance, freshness, diversification, publisher importance
and correlation with the target asset.
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