
FEDERAL UNIVERSITY OF AMAZONAS - UFAM
Institute of Computing - ICOMP

Post-graduate Program in Informatics - PPGI

COMBINATORIAL APPROACHES FOR THE CLOSEST STRING PROBLEM

Omar Latorre Vilca

A thesis submitted to the Post-graduate Pro-

gram in Informatics of the Institute of Com-

puting of the Federal University of Amazonas

in partial fulfillment of requirements for the de-

gree of Doctor of Science. Concentration area:

Informatics.

Advisor: Eduardo Luzeiro Feitosa, D.Sc.

August 2019

Manaus - AM

Ficha Catalográfica

V699c Combinatorial Approaches for the Closest String Problem / Omar
Latorre Vilca. 2019
 106 f.: il. color; 31 cm.

 Orientador: Eduardo Luzeiro Feitosa
 Tese (Doutorado em Informática) - Universidade Federal do
Amazonas.

 1. Combinatorial Optimization. 2. Integer Programming. 3.
Heuristics. 4. Consensus String. I. Feitosa, Eduardo Luzeiro II.
Universidade Federal do Amazonas III. Título

Ficha catalográfica elaborada automaticamente de acordo com os dados fornecidos pelo(a) autor(a).

Vilca, Omar Latorre

PODER EXECUTIVO
MINISTÉRIO DA EDUCAÇÃO

INSTITUTO DE COMPUTAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA

U FA M

FOLHA DE APROVAÇÃO

"Combinatorial Approaches for the Closest String Problem"

OMAR LATORRE VILCA

Tese de Doutorado defendida e aprovada pela banca examinadora constituída pelos Professores:

Prof. Eduardo Luzeiro Feitosa - PRESIDENTE

Prof. Juan G iel Colonna - MEMBRO INTERNO

Profa. Fabiola Guerra Nakamura - MEMBRO EXTERNO

Profa. Renata da Encarnação Onety - MEMBRO EXTERNO

Prof. Joaquim aci dtosta Craveiro - MEMBRO EXTERNO

Manaus, 23 de Agosto de 2019

Av. Rodrigo Otavio, 6.200 - Campus Universitário Senador Arthur Virgilio Filho - CEP 69077-000 - Manaus, AM, Brasil

Si Tel. (092) 3305 1193 Lbs; E-mail: secretariappgi@icomp.ufam.edu.br ft www.ppgi.ufam.edu.br

Abstract of thesis presented to IComp/UFAM as a partial fulfillment of the

requirements for the degree of Doctor of Science (D.Sc.)

COMBINATORIAL APPROACHES FOR THE CLOSEST STRING PROBLEM

Omar Latorre Vilca

August/2019

Advisor: Eduardo Luzeiro Feitosa

Program: Postgraduate in Informatic

The closest string problem (CSP) that arises in computational molecular biology

and coding theory is to find a string that minimizes the maximum Hamming dis-

tance from a given set of strings, the CSP is an NP-hard problem. The main aim of

this work is to propose exact methods for this problem, for this purpose, we charac-

terize special cases for this problem with emphasis in the number of strings. Until

now our contribution is: linear-time algorithms for CSP with up to three strings and

for four binary strings, in addition to an heuristic greedy algorithm and a recursive

exact algorithm for CSP for the general case. Furthermore, for each proposed al-

gorithm formal proofs will be presented, also numerical experiments will show the

effectiveness of the proposed algorithms.

Keywords: Combinatorial Optimization, Integer Programming, Heuristics.

i

Contents

List of Figures vi

List of Tables vii

1 INTRODUCTION 1

1.1 Motivation . 2

1.2 Hypothesis . 4

1.3 Objectives . 5

1.4 Thesis contribution . 5

1.5 Thesis structure . 7

2 THEORETICAL FOUNDATIONS 8

2.1 String selection problems . 8

2.1.1 Complexity hierarchy . 10

2.1.2 Hamming distance . 11

2.1.3 Normalized process . 12

2.2 Combinatorial optimization . 12

2.2.1 Approximation algorithms . 12

2.2.2 Integer programming . 13

2.3 Parameterized complexity . 14

2.3.1 Fixed parameter algorithm . 14

2.4 Remarks . 15

3 CLOSEST STRING PROBLEM 16

3.1 Formal definition . 16

3.2 Formulations in integer programming 17

ii

CONTENTS iii

3.3 Approximation algorithms . 20

3.4 Fixed parameter complexity . 22

3.4.1 Fixed parameter algorithms for the CSP 23

3.4.2 Kernelization algorithms of the CSP 25

3.5 Metaheuristics . 26

3.6 Matheuristics . 28

3.7 Remarks . 29

4 PROPOSED METHODS 31

4.1 A linear-time algorithm with up to three strings 31

4.1.1 An IP formulation for 3-CSP 32

4.1.2 CS3 Efficient linear-time solution for k = 3 33

4.1.3 MFA Efficient linear-time algorithm for 3-strings 34

4.1.4 Memory usage analysis in CS3 and MFA 40

4.1.5 Remarks . 40

4.2 A linear-time algorithm for four binary strings 42

4.2.1 An IP formulation for 4-CSP 42

4.2.2 Exact algorithm for four binary strings 43

4.2.3 Remarks . 50

4.3 A recursive exact algorithm for the general case 51

4.3.1 GREEDY heuristic algorithm 51

4.3.2 Recurrence relation . 56

4.3.3 Remarks . 61

5 COMPUTATIONAL EXPERIMENTS 63

5.1 Test environment . 63

5.2 Results for linear-time algorithm with up to three strings 64

5.3 Results for linear-time algorithm for four binary strings 64

5.4 Results for recursive exact algorithm for the general case 68

5.5 Results for GREEDY algorithm for the general case 69

6 CONCLUSION 75

6.1 Future Works . 76

CONTENTS iv

References 77

A Step-by-step examples 83

A.1 MSA step-by-step example . 83

A.2 GREEDY step-by-step example . 91

A.3 CSP-R step-by-step example . 106

Acknowledgements

I have always believed that the satisfaction that comes from doing what you want,

in the way you want, is a key point in the life of everyone. I think it is the greatest

source of inspiration and encouragement to really try to give the best. Hoping that

my thesis will be just a start, I am really proud of the result, because this is the

kind of work that I wanted to do.

This has been possible thanks to prof. Mário Salvatierra Júnior, to whom I want

to express my gratitude for helping me review the correctness proofs of the different

proposed algorithms, also thanks to Elena Yudovina that helped me to revise our

main articles in English, correcting probably millions of errors in my drafts, as

well as proposing new ideas in making the articles. I was really happy to have

the opportunity of working with them for all these months, it was a real learning

experience. I also want to thank prof. Eduardo Luzeiro Feitosa, thesis adviser, for

his guidance and specially for his confidence in me.

A special thanks go to all the fellow students that shared their knowledge with

me. Thanks to Marcos Salvatierra for being an excellent study partner, and to

Marcela Pessoa for encouraging and stimulating to be a better person in these years.

Thank to the Almighty God, thank you for the guidance, strength, power of

mind, defense, skills and for giving us a healthy life.

And last but not least, I wish to thank all my family, to which this work is

dedicated. I am sure that my belated mother and father would be proud to know

that we are very united despite the physical distance that separates us.

v

List of Figures

1.1 Illustration of application for Bioinformatics. Source [Cornell, 2016]. . 3

1.2 Illustration of application for Cryptography and web searching Source

[Roman, 1992] and the authors. 4

2.1 String selection problems and their reductions. Source: the authors. . 10

2.2 Reducing from NP-Hard problems to selection string problems. Source:

the authors. 11

4.1 Illustration of application of Cases 1 and 2. Source: the authors. . . . 39

4.2 Illustration of application of Cases 3 and 4. Source: the authors. . . . 39

5.1 Computational results for MFA and IP-3. Source: the authors. 66

5.2 Computational result values for Boucher, MSA, and IP-4. Source:

the authors. 68

5.3 Boxplot: Running times for GREEDY and exact methods by M.

Source: the authors. 69

5.4 Boxplot: Running times for GREEDY and exact methods by K.

Source: the authors. 73

vi

List of Tables

3.1 A list of articles that concerns other names referring to CSP. 17

3.2 A list of articles involving formulations in integer programming. . . . 20

3.3 A list of articles that tackles approximate algorithms to CSP. 22

3.4 A list of articles that uses exact methods to solve the CSP. 25

3.5 A polynomial kernelization status for the CSP. 26

3.6 A list of articles related to heuristics for CSP. 28

3.7 A list of articles related to matheuristics for CSP. 29

5.1 Summary of Results for 3-CSP with 2, and 4 characters. 65

5.2 Summary of Results for 3-CSP with 20 characters. 65

5.3 Number of instances for which the optimal value is provided. 65

5.4 Summary of results, for 4-sequences with 2 Characters. 67

5.5 Number of instances for which the optimal value is provided. 67

5.6 Summary of Results for the Alphabet with Two Characters. 70

5.7 Summary of Results for the Alphabet with Four Characters. 71

5.8 Summary of Results for the Alphabet with Twenty Characters. 72

5.9 Summary of Results for the McClure Instances, over the Alphabet

with 20 Characters. 74

vii

Chapter 1

INTRODUCTION

Combinatorial optimization is an emerging field at the cutting edge of combinatorial

and theoretical computer science that aims to use combinatorial techniques to solve

discrete optimization problems. A discrete optimization problem seeks to determine

the best possible solution from a finite set of possibilities.

From a computer science perspective, combinatorial optimization seeks to im-

prove an algorithm by using mathematical methods either to reduce the size of the

set of possible solutions or to make the search itself faster. From a combinatorial

perspective, it interprets complicated questions in terms of a fixed set of objects

about which much is already known: sets, graphs, polytopes, and strings. Combina-

torial optimization refers primarily to the methods used to approach such problems

and, mainly, does not provide guidelines on how to turn real-world problems into

abstract mathematical questions, or vice versa.

A classic combinatorial optimization problem is the Closest String Problem

(CSP) since in the literature there are much articles using different techniques to

solve this problem, CSP belongs to a set of string comparison and selection problems.

It sometimes called the Center String Problem, CSP has many practical application

such as computational biology, coding theory, and web searching; the aim of a CSP

instance is to find the geometric center of the given set of strings.

In the CSP, the objective is to find a string t that minimizes the number of

differences among elements in a given set S of strings. The distance is defined as

the Hamming distance between t and each si ∈ S. The Hamming distance between

two strings a and b of equal length is calculated by simply counting the character

1

positions in which a and b differ. For instance, if s =CCACT and t =TACCA, then

dH(s, t) = 4. Let us formally state the CSP:

Closest String Problem (CSP)

Input: strings S = {s1, . . . , sk} of length m.

Output: a closest string t such that max∀s∈SdH(t, s) ≤ dopt.

We are interested in optimal solutions for the general case of the CSP where k

the number of strings is a fixed parameter. With this objective, we explored the

literature concern to the CSP, there are several approximation algorithms, exact

methods, and heuristics derived from the literature review. These gotten methods

from the literature have a theoretical interest, however, new practical methods, to

solve CSP in polynomial time using parameterized complexity, are still needed.

1.1 Motivation

The Human Genome Project made available a draft map of the Deoxyribonucleic

acid (DNA) sequence in human beings. The completion of the enormous effort in

sequencing the human DNA sequence developed several tools that were used for

sequencing the DNA of other species.

Several byproducts of the Human Genome Project are now commonly used in

real life, for example, DNA testing to identify criminals and paternity. But the

benefits do not stop here. The DNA of many plants has been sequenced and with

those, best pesticides could be discovered, which resulted in better productivity for

farmers. With all these advances, new research areas have been created and/or old

ones have re-appeared.

One area that has re-appeared is Bioinformatics, also called computational biol-

ogy, that has almost the same age as computer science. Among many definitions for

Bioinformatics, we particularly like the following two. Bioinformatics derives knowl-

edge from computer analysis of biological data and Bioinformatics or computational

biology is the use of techniques from applied mathematics, informatics, statistics,

and computer science to solve biological problems [Shaik et al., 2019].

String comparison problems using Hamming distance have important applica-

tions in diverse areas of computational biology. One area where this is useful, for

2

example, is in drug target design. The objective can be to find a target genetic

sequence that kills, for instance, all pathologic bacteria but does not affect human

beings [Lanctot et al., 2003].

Another application in the same sense is multiple alignments. Multiple sequence

alignments can be helpful in many circumstances like detecting historical and familial

relations between sequences of proteins or amino acids and determining certain

structures or locations on sequences [McClure et al., 1994].

Its application can also be found in the analysis of large conserved regions in the

protein of diverse species in molecular evolution analysis using phylogenetic methods,

and the construction of phylogenetic trees [Lance and Williams, 1967]. Figure 1.1

shows 8 different protein sequences from diverse species and its consensus string.

Consensus methods attempt to find the optimal multiple sequence alignment given

multiple different alignments of the same set of sequences.

Furthermore, in coding theory [Roman, 1992], the CSP is a key problem because

in a lot of situations the objective is to find the sequences of characters which are

closest to some given set of strings. This process aims to find the best way of

encoding a set of messages. Figure 1.2 [Cryptography] presents an application in

cryptography for data encryption.

Figure 1.1: Illustration of application in the construction of phylogenetic trees in Multiple

Alignment of Protein Sequences taken from various species. Source [Cornell, 2016].

Finally, in web searching one of the challenges is multiple occurrences of the

same data, whether in exact duplicates or with minor changes [Amir et al., 2016].

Figure 1.2 [Web searching] shows an application in the analysis alongside in history

of the same data accessed by each user using different search engines.

3

(a) Cryptography (b) Web searching

Figure 1.2: [Cryptography] Illustration of application of an arithmetic coding visualized

as a circle, the values in red encoding "WIKI" and "KIWI". [Web searching] Illustration of

application for web searching: a user chooses different search engines to search the target

data, the dates accessed alongside is registered in a log. Source [Roman, 1992] and the

authors.

1.2 Hypothesis

To the best of the author knowledge, there is one fixed-parameter algorithm for CSP

parameterized by the number k of given strings proposed by [Gramm et al., 2003].

In particular, they showed an Integer Program has a number of variables dependent

only on k, and thus by Lenstra’s theorem [Lenstra, 1983] they obtain an algorithm

with O(k!4.5k!m) integer operations on integer size O(k!2k!m). In their paper, they

admit that because of the huge constants, the algorithm is not feasible for k > 4.

In [Bulteau et al., 2014] a challenge was launched, which consists in creating a

fixed-parameter tractable algorithm for CSP parameterized by k (number of strings),

thus, avoiding the use of integer linear programming, since that several attempts

have been made to overcome this challenge.

In this context, this doctoral thesis is based on the following hypothesis:

4

Desing and implement a direct combinatorial fixed-parameter algorithm for Clos-

est String parameterized by the number k of input strings (thus avoiding integer

linear programming).

1.3 Objectives

The main objective of this work is to elaborate combinatorial algorithms for the

Closest String Problem, treating different parameters with emphasis on the number

of strings and the size of the alphabet due to practical interest in Bioinformatics

and Cryptography. Thus, the general objective is broken down into the following

specific objectives:

1. Analyze and design a fixed-parameter algorithm for the CSP treating any

parameter;

2. Elaborate combinatorial algorithms for polynomial cases, involving a small

number of strings;

3. Design and implement a heuristic algorithm for the general case;

4. Develop a combinatorial approach for the CSP parameterized by the number

k (number of input strings).

1.4 Thesis contribution

This thesis aims to propose a fixed-parameter algorithm parameterized by k (number

of input strings). To solve this challenge, we have progressed through three different

stages. A first strategy was to study CSP for a small k (number of input strings),

that is, 3-strings, since for k = 2 we have a trivial solution for CSP. In the second

strategy, we add the complexity to k = 4 with a binary alphabet. Finally, for the

third strategy, we extended our technique to the general case so we proposed a greedy

algorithm that gives a good approximation for an optimal solution, consequently, we

were able to establish an exact method, also for the general case. As a result, overall

the objectives were achieved. The following will explain each solution strategy in

more detail.

5

The first proposed strategy is a linear-time algorithm for the closest

string problem with up to three strings. Called Minimization First Algorithm

(MFA), it solves the CSP for up to three strings. The key idea is to identify column-

position types in the input-instance, allowing to decompose it into five different

tuples, corresponding to the position of each string in the set of strings, and to

determine all unfixed column positions by simple evaluation through the different

cases. A formal proof of the correctness and the computational complexity of the

proposed algorithm are given. The proposed algorithm is compared with an integer

programming formulation for 3-CSP. Furthermore, computational experiments in

comparison tables will show the effectiveness of the proposed algorithm.

In the literature there is an algorithm to solve the CSP for k = 3 with an ar-

bitrary alphabet proposed by [Gramm et al., 2001] whose implementation uses the

concept of tuples and has the space complexity usage of O(km logm), meanwhile,

the MFA has memory usage O(k×m). Both algorithms always find optimal solution

values with execution time O(m). For a more detailed description of the algorithms,

see Sections 4.1 and 5.2. The original MFA idea was published in the 1st Comput-

ing Theory Meeting, a satellite event of the 2016 Brazilian Society of Computing

Congress [Latorre and de Freitas, 2016].

The second strategy is a linear time algorithm for the Closest String

Problem with four binary strings. We propose an efficient algorithm for solv-

ing the CSP for four strings with a binary alphabet called Minimization Second

Algorithm (MSA). The key idea is to apply normalization for the CSP instances,

allowing to decompose the problem in eight different cases corresponding to the

position of each string in the set of strings and to determine all unfixed column

positions by simple evaluation through the different cases. MSA is compared with

an integer programming formulation and Boucher’s method for 4-CSP with a bi-

nary alphabet. Furthermore, computational experiments in comparison tables will

show the effectiveness of the proposed algorithm. For a more detailed explanation

of the approaches, see Sections 4.2 and 5.3. The original MSA idea was published

in CLAIO 2018 [Latorre and de Freitas, 2018].

The third strategy is a recursive exact algorithm for the Closest String

Problem. We propose a recursive exact method for the CSP (general case) called

6

CSP-R. The CSP-R algorithm is a recursive exact method over k (number of input

strings) to solve the CSP. Let S = {s1, . . . , sk} be the input instance, it solves

recursively sub instances with S \ {si} (i = 1, . . . , k) that is, k − 1 strings taken

from the input instance. Let xi be the optimal solution for S \ {si}, based on

these partial solutions, it builds a partially filled candidate. Finally, it fixes the

unfixed column positions by a greedy heuristic algorithm (GREEDY). Furthermore,

computational experiments in comparison tables will show the effectiveness of the

proposed algorithm.

Sections 4.3 and 5.4 give a more detailed account of the proposed algorithm.

The results of this algorithm appeared in JCMCC - 2019 "Journal of Combinatorial

Mathematics and Combinatorial Computing" (accepted paper on July 1st, 2019)

[Latorre and Salvatierra, 2019].

1.5 Thesis structure

Concerning organization, this thesis proposal is divided into chapters. Chapter 2

presents formally string selection problems that are related to the CSP, and it poses

basic definitions. Chapter 3 shows a benchmarking among methods and algorithms

for the CSP. Chapter 4 shows two linear-time algorithms for the Closest String

Problem, one with up to three strings, and others with four binary strings, also a

recursive approach for the CSP with k strings. Chapter 5 demonstrates the compu-

tational experiments in comparison tables for the proposed algorithms. Finally, the

conclusion chapter poses all main findings, they are listed and summarized.

7

Chapter 2

THEORETICAL FOUNDATIONS

Comparison problems are among the most important faced by researchers in the

area of computational biology. When working with the genome, or other types

of amino-acid sequences, one of the main issues is how to correctly determine the

similarities and differences occurring in two given sequences. These are in essence

combinatorial problems and can be solved, as we shall discuss in this chapter, using

techniques developed by the operations research community. This chapter defines

string selection problems associated with the CSP and explains some notation that

will be useful to describe problems on strings.

2.1 String selection problems

This section defines formally five string selection problems linked to the CSP, whose

decision versions belong to NP-complete, according to [Lanctot et al., 2003]. Each

problem is explained by an instance and an optimal solution. As can be defined

later in the next chapter, the study of solving the CSP instances will be useful to

solve instances from those problems. The formal definition of those problems are

the following:

Farthest String Problem (FSP)

Let a finite set S = {s1, s2, · · · , sk} with k strings, each one of length m, under

an alphabet Γ, the objective is to find a string x of lengthm under Γ, that maximizes

d such that for each string si ∈ S, we have dH(x, si) ≥ d.

As an example let the instance of FSP be the following: consider a set of strings

8

S = {AAACA,GTCTA,AATGC,CTTAC}. An optimal solution is given by the

string x =TCGAG with d = 4.

Closest Substring Problem (CSubSP)

Given a finite set S = {s1, s2, · · · , sk} with k strings of length at leastm under an

alphabet Γ, the objective is to find a string x of length m under Γ, that minimizes d

such that for each string si in S, the relation dH(x, y) ≤ d is truth for some substring

y, of length m, from si.

As an example, consider S = {AAT,CCAA,CCTA,TCA}. In this case, an opti-

mal solution is ACA with d = 2.

Farthest Substring Problem (FSubSP)

Given a finite set S = {s1, s2, . . . , sk} with k strings of length at leastm under an

alphabet Γ, the objective is to find a string x of length m under Γ, that maximizes

d such that for each string si in S and for all substring y, of length m from si, we

have dH(x, y) ≥ d.

For example consider S = {AAT,CCAA,CCTA,TCA}. In this case, an optimal

solution is ACA with d = 1.

Close to Most String Problem (CMSP)

Given a finite set S = {s1, s2, . . . , sk} with k strings of length m under an

alphabet Γ and a threshold l > 0, the objective is to find a string x of length m

under Γ, maximizing the number of strings si ∈ S such that dH(x, si) ≤ l.

For example consider S = {AATCC,CCAAT,CCTAC,TCACC}. If l = 3, then

an optimal solution is CCTCT with four strings satisfying dH(x, si) ≤ 3. If l = 2,

then an optimal solution is ACAAC and three strings satisfying dH(x, si) ≤ 2.

Distinguishing String Selection Problem (DSSP)

Given two finite sets of strings Sc and Sf , all the strings of length at least m,

under an alphabet Γ, and two positive integer numbers lc and lf , the objective is to

find a string x of length m under Γ such that for each string sc ∈ Sc, there is some

substring yc, of length m, from sc that satisfied dH(x, yc) ≤ lc, and for all substring

yf , of length m, from sf ∈ Sf we have dH(x, yf) ≥ lf .

For example, consider Sc = {AATCC,CCAAT,CCTAC,TCACC} and a set Sf =

{AATAA,CCACT,GGTAC,TCAAC}. If lc = 3 and lf = 2, then ACACC is an

9

optimal solution.

2.1.1 Complexity hierarchy

Notice that the four first problems described above are optimization problems, mean-

while the last problem is a decision problem. As mentioned later at the beginning of

this chapter, these five problems have an interesting relationship with the CSP. Fig-

ures 2.1 and 2.2 show the relationship between those problems, in terms of reduction

and computational complexity.

Figure 2.1 presents a set of NP-hard problems that are closely related, this hierar-

chy of complexities were proposed in [Lanctot et al., 2003]. Figure 2.2 presents some

reductions from classic NP-hard problems to string selection problems [Boucher et al., 2012].

Furthermore, each of them has equivalent complexity. As a consequence an optimal

solution for one of them will be used to solve the others, hence finding a method to

solve one of them can be used to solve the other related problems.

3SAT

FSPDSSP FSubSP

CSP

CSubSP DSSP

Figure 2.1: Hierarchy of complexities in the consensus sequence problem: the relation-

ships between problems, in terms of reductions, and consequent computational complexi-

ties. By 3SAT, we mean 3-Satisfaction. Source: the authors.

10

ISP

FFMSP

CMSP2SAT

Figure 2.2: A set of NP-complete problems. By 2SAT, and ISP we mean 2-Satisfaction,

and Independent Set Problem, respectively. Remember that there is a well known de-

terministic algorithm of polynomial time for the 2SAT, but the 3SAT and ISP belong to

NP-complete. Source: the authors.

2.1.2 Hamming distance

According to [Hill, 1986], a metric on a set X is a function, called distance function

or distance is given by:

d : X ×X → <,

where < is the set of real numbers. For all x, y, z ∈ X, this function needs to

satisfy the following conditions:

1. d(x, y) ≥ 0 (non-negativity)

2. d(x, y) = 0 if and only if x = y (identity)

3. d(x, y) = d(y, x) (symmetry)

4. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

Let (Fq)
n the set of all n-tuples ordered a = a1a2...an where every ai ∈ Fq. Fq

is an alphabet q-ith element is obtained from the set of sequences of symbols where

each symbol is chosen from the set Fq = {λ1, λ2, ..., λq} q different elements. The

Hamming distance between two vectors x and y of (Fq)
n is the number of positions

in which differ. It is denoted by d(x, y).

For example,

a. In the (F2)5 we have d(00111, 11001) = 4,

11

b. While in (F4)5 we get d(AACGG,AGACG) = 3.

2.1.3 Normalized process

In general, an instance can be reduced to its isomorphic instance [Gramm et al., 2001]

by a bijective function. More formally we have the following definition:

Definition 1 (Normalized instance). Let S be an instance, that is, S = {s1, . . . , sk},

where |si| = m, with 1 ≤ i ≤ k and 1 ≤ j ≤ m. Let Mk×m be a matrix of characters

from S each column is a position of the strings in S, so we have M [c1, c2, . . . , cm].

Let Γj be the alphabet of cj we ordered the symbols in Γj according to their frequency

in cj in non-decreasing order, we get, fσ1 ≥ fσ2 · · · ≥ fσq . Let Γ′j be an alphabet

such that |Γj| = |Γ′j|, let φ : Γ→ Γ′ be a bijective function such that,

φ(cj)j=1,...,m =



λ1 if cij = σ1 i = 1, . . . , k

λ2 if cij = σ2

. . .

λq if cij = σq σq ∈ cj; q = 1, . . . , |Γj|

(2.1)

LetM ′[c′1, . . . , c
′
m] be a matrix of characters composed of c′j, and S ′ be an instance

based on characters from M ′, as a result S ′ is called normalized instance from S.

2.2 Combinatorial optimization

Robert E. Bixby, in [Bixby, 1987], defines a combinatorial optimization problem as:

Let E be a finite set, S a family of subsets of E and w ∈ R|E| a weight function of real

values defined under the elements of E. The combinatorial optimization problem

associated is to find a set S∗ ∈ S such that

w(S∗) = max
S∈S

w(S)

where w(S) =
∑

e∈S w(e).

2.2.1 Approximation algorithms

The available techniques for solving optimization problems can be roughly classi-

fied into three main categories: exact, approximation, and heuristic methods. While

12

exact methods allow finding solutions with theoretical guarantees, their run-time in-

creases dramatically with the instance size. Heuristic approaches, on the other side,

sacrifice optimality guarantees to find solutions more efficiently, by spending only a

’reasonable’ amount of time to compute them. Unlike heuristics, where there is no

knowledge of the quality of the solution returned, approximation methods provide

solutions within a small constant factor of the optimal solution. The combination

of these approaches defines the category of hybrid methods.

Definition 2 (Approximation algorithm). According to [Cormen et al., 2009], let

Copt be the cost of the optimal algorithm for a problem of size n. An approximation

algorithm for this problem has an approximation ratio %(n) if, for any input, the

algorithm produces a solution of cost C such that:

max(
C
Copt

,
Copt
C

) ≤ %(n)

such an algorithm is called a %(n)−approximation algorithm.

An approximation scheme that takes as input ε > 0 and produces a solution such

that C = (1 + ε)Copt for any fixed ε, is a (1 + ε)−approximation algorithm.

A polynomial time approximation scheme (PTAS) is an approximation algorithm

that runs in time polynomial in the size of the input, n. A fully polynomial time

approximation scheme (FPTAS) is an approximation algorithm that runs in time

polynomial in both n and ε. For example, a O(n
2
ε) approximation algorithm is a

PTAS but not a FPTAS. A O(n
ε2

) approximation algorithm is a FPTAS.

2.2.2 Integer programming

Wolsey in [Wolsey, 1998] defined an integer programming as follows, suppose that

we have a linear programming

max{cx : Ax ≤ b, x ≥ 0}

where A is an m by n matrix, c an n-dimensional row vector, b an m-dimensional

column vector, and x an n-dimensional column vector of variables or unknowns.

Now we add in the restriction that certain variables must take integer values. If

some but not all variables are integer, we have a (Linear) Mixed Integer Program

13

(MIP), written as

max cx+ hy

s.a.: Ax+Gy < b

x ≥ 0, y ≥ 0 and integer

Where A is againm by n, G ism by p, h is a p row-vector, and y is a p column-vector

of integer variables. If all variables are integer, we have a (Linear) Integer Program

(IP), written as

max cx

s.a.: Ax ≤ b

x ≥ 0 and integer

2.3 Parameterized complexity

Parameterized complexity is a branch of computational complexity theory that fo-

cuses on classifying computational problems according to their inherent difficulty to

multiple parameters of the input or output. The complexity of a problem is then

measured as a function in those parameters. This allows the classification of NP-

hard problems on a finer scale than in the classical setting, where the complexity of

a problem is only measured by the number of bits in the input. The first systematic

work on parameterized complexity was done by [Downey and Fellows, 1999].

2.3.1 Fixed parameter algorithm

According to [Downey and Fellows, 1999] a Fixed Parameter Algorithm is an alter-

native way to deal with NP-hard problems instead of approximation algorithms.

There are three general desired features of an algorithm:

1. Solve NP-hard problems;

2. Run in polynomial time (fast);

3. Get exact solutions.

14

The idea is to aim for an exact algorithm but isolate exponential terms to a

specific parameter. When the value of this parameter is small, the algorithm gets

fast instances. Hopefully, this parameter will be small in practice.

A parameter is a nonnegative integer k(x) where x is the problem input. Typi-

cally, the parameter is a natural property of the problem (some k in input). It may

not necessarily be efficiently computable (e.g., OPT).

A parameterized problem is simply the problem plus the parameter or the prob-

lem as seen with respect to the parameter. There are potentially many interesting

parameterizations for any given problem.

The goal of fixed-parameter algorithms is to have an algorithm that is polynomial

in the problem size n but possibly exponential in the parameter k and still get an

exact solution. Fixed Parameter Tractability and kernelization algorithm are defined

by [Downey and Fellows, 1999] as follows.

Definition 3 (Fixed Parameter Tractability). A parameterized problem is fixed-

parameter tractable (FPT) if there is an algorithm with running time ≤ f(k)nO(1),

such that f : N→ N (non negative) and k is the parameter, and the O(1) degree of

the polynomial is independent of k and n.

Definition 4 (kernelization algorithm). A decidable problem is FPT if and only if

it is kernelizable: a kernelization algorithm for a problem Q takes an instance (x, k)

and in polynomial in |x|+ k produces an equivalent instance (x′, k′) (i.e., (x, k) ∈ Q

iff (x′, k′) ∈ Q) such that |x′| + k′ ≤ g(k) for some computable function g. The

function g is the size of the kernel, and if it is polynomial, we say that Q admits a

polynomial kernel.

2.4 Remarks

This chapter has provided the theoretical foundation, it is necessary for solving

Combinatorial Optimization Problems. The study of these concepts was extremely

important for the development of this work. Mainly the fixed parameter algorithm,

we use it to analyze the principal characterization of the CSP parameterized by k

(number of the given strings). The next chapter presents the main related works

applied to CSP.

15

Chapter 3

CLOSEST STRING PROBLEM

The Closest String Problem has been extensively studied since its introduction by

[Frances and Litman, 1997]. The problem was studied both in computational biol-

ogy and theoretical computer science. In this way, it made possible a series of articles

applying several existing techniques, they can be divided into four categories such

as formulations in integer programming, approximation algorithms, fixed parameter

tractability (exact solutions), meta-heuristics, and matheuristics for the CSP.

3.1 Formal definition

To formally state the problem, the following notation is needed: An alphabet Γ =

{σ1, σ2, . . . , σq} is a finite set of elements, called characters, si = {si1, si2, . . . , sim} is

a sequence of length m (|si| = m) on Γ(sij ∈ Γ, i = 1, 2, . . . , k). Given two sequences

si and sj on Γ such that |si| = |sj|, dH(si, sj) denotes their Hamming distance and

is given by dH(si, sj) = Σ
|si|
l=1∆(sil, s

j
l) where s

i
l and s

j
l are the characters in position l

in si and sj, respectively and ∆ : Γ×Γ→ {0, 1} is the predicate function such that

∆(a, b) =

 0 if a = b

1 otherwise

So the CSP can be formulated as a follows.

d = min{s : maxki=1Σ
|si|
l=1∆(sil, sl) : sl ∈ Γ}

Furthermore, there are other names that point out the same problem, we show

a benchmarking among articles that tackle the CSP in a different point of view re-

ceiving a different name instead of CSP, each of them highlights main characteristics

16

of the problem, through the time-line these names receive especially interest with

reference to technique used to solve the CSP. In Table 3.1, the column (Technique)

aims the approach using in the article, the Column (Name) mentions the particular

name referring to CSP, and finally, the Column (Reference) presents the pointing

out to that article.

Table 3.1: A list of articles that concerns other names referring to CSP.

Technique Name Reference

Metrical characterization (2-vectors set) Minimum Radius Problem [Frances and Litman, 1997]

Efficient approximation algorithms Hamming Center Problem [Gasieniec et al., 1999]

Exact solutions for Closest String Center String Problem [Gramm et al., 2001]

Polynomial-time approximation scheme Closest String Selection Problem [Deng et al., 2002]

Fixed-parameter algorithms Consensus String Problem [Gramm et al., 2003]

Polynomial-time approximation scheme Hitting String Problem [Lanctot et al., 2003]

Sample-driven and pattern-driven Motif Finding Problem [Sze et al., 2004]

Small Motifs Structure Consensus Sequence Problem [Boucher et al., 2009]

Hardness of Approximation Consensus Patterns [Boucher et al., 2015]

Configurations and minority String Consensus Problem [Amir et al., 2016]

3.2 Formulations in integer programming

An instance of CSP consists of S = {s1, . . . , sk} such that si = si1s
i
2 . . . s

i
m ∈ Γm,

for i = 1, . . . , k. The objective of the CSP is to find a string x ∈ Γm such that

maxi=1,...,k dH(x, si) is minimized.

Here we introduce the third Integer Programming (IP) formulation in [Meneses et al., 2004]

which is thought as the strongest; it always provides optimal solution for the general

case of CSP, and it converges more quickly for small instances.

Define a 0-1 variable xσ,j as xσ,j = 1 if the character σ of Uj is used in the j-th

position of a solution and 0 otherwise.

xσ,j =

 1 if σ ∈ Uj is used in the position j in a solution

0 otherwise.

17

The CSP can be reduced to the following IP problem:

min d (3.1)

s.t.:
∑
σ∈Uj

xσ,j = 1 j = 1, . . . ,m (3.2)

d ≥ m−
m∑
j=1

xsij ,j
i = 1, . . . , k (3.3)

xσ,j ∈ {0, 1} σ ∈ Uj ; j = 1, . . . ,m (3.4)

d ∈ Z+. (3.5)

The equations in (3.2) guarantee that only one character in Uj is used in each position

of a solution. The inequalities in (3.3) say that if a character in a string si is not in the

solution x∗, then that character will contribute to increasing the Hamming distance for x∗

to si. Constraints (3.4) are binary inequalities, and (3.5) forces d to assume non-negative

integer value. In truth we are interested in the minimized value.

Also, in [Gramm et al., 2003] was suggested an IP-formulation based on column-position

types, this yields fixed-parameter algorithm (FPT) for CSP concerning parameter k (num-

ber of input strings):

min d (3.6)

s.t.:
∑

t∈T (S)

∑
σ∈Γ\{σt,i}

xt,σ ≤ d ∀i ∈ {1, . . . , k} (3.7)

∑
σ∈Γ

xt,σ = #t ∀t ∈ T (S) (3.8)

xt,σ ∈ {0, 1, . . . ,#t} ∀σ ∈ Γ, ∀t ∈ T (S) (3.9)

In this formulation, for every t ∈ T (S) and σ ∈ Γ, the variable xt,σ is the number of

occurrences that σ has in the closest string at locations that correspond to column type

t. Let si ∈ S and let σt,i be the character of string si in column type t. The restrictions

(3.7) calculate the Hamming distance of si from the center string, that is, for each column

type t we sum the characters in the center string at locations that correspond to t that are

different from the character si has in these locations. Constraints (3.8) impose the number

of column types existed in each tuple, and (3.9) makes xt,σ to have integer values. Finally,

the objective is minimized the value d.

Furthermore, in [Chimani et al., 2011] is posed an IP-formulation. Let σ be an arbi-

trary but fixed character, then Γ′ = Γ \ {σ}.

18

min d (3.10)

s.t.:
∑

i:s|i∈Γ′

xi,s|i +
∑

i:s|i 6∈Γ′

(1−
∑
σ′∈Γ′

xi,σ′) + d ≥ m ∀s ∈ S (3.11)

∑
σ′∈Γ′

xi,σ′ ≤ 1 ∀i ∈ {1, . . . ,m} (3.12)

xi,σ′ ≥ 0 ∀i ∈ {1, . . . ,m}, σ′ ∈ Γ′ (3.13)

Observe, this formulation has |Γ|k constraints and (|Γ| − 1)m + 1 decision variables.

The inequalities (3.11) guarantee that d is at least as large as the number of mismatches

between t optimal solution and any s ∈ S. The constraints (3.12) and (3.13) are a complete

characterization of the feasible solution strings and are facets in the CSP polyhedron. In

conclusion, the goal is minimized the value d.

Similarly, in [Arbib et al., 2017], is presented an integer-programming formulation for

the binary case. Let Ii0 and Ii1 denote the set of indexes j such that sij = 0 and sij = 1,

respectively, the Hamming distance is 2d and ki =
∑m

j=1 s
i
j .

min d (3.14)

s.t.: 2d−
∑
j∈Ii0

xj +
∑
j∈Ii1

xj ≥ ki i = 1, . . . , k (3.15)

xj ∈ {0, 1} j = 1, . . . ,m (3.16)

d ≥ 0 (3.17)

Note that, this formulation has k restrictions and 1 + m decision variables. The in-

equalities (3.15) guarantee that the only one character in each xj is selected, at the same

time, calculate the Hamming distance between a vector solution x and the strings in S.

Constraints (3.16) are binary inequalities, and (3.17) imposes d to get non-negative value.

The target is minimized the value d.

Table 3.2 shows a benchmarking among articles related to formulations in integer pro-

gramming for CSP. The first formulation is for the general case, in the time-line has been

developed to gain a good feasible solution for biggest instances, in the other hand for

smallest instances that formulation is efficient in running time. The last two formulations

are for binary cases, in [Gramm et al., 2003] presents a fixed parameter algorithm on the

number of strings, and in [Arbib et al., 2017] aims that formulation focused only in the

binary alphabet.

19

Table 3.2: A list of articles involving formulations in integer programming.

Year Alphabet Restrictions Variables References

1997 q m+ k 1 +
∑m

j=1 |Vj | [Ben-Dor et al., 1997]

[Li et al., 2002]

[Meneses et al., 2004]

2003 q (1 + |Γ|)#t |Γ|#t [Gramm et al., 2003]

2011 q |Γ|k (|Γ| − 1)m+ 1 [Chimani et al., 2011]

2017 2 k 1 +m [Arbib et al., 2017]

Since our proposed methods are demarcated in the field of parameterized complexity,

a fair way of comparison would be to use the fixed parameter algorithm proposed by

[Gramm et al., 2003], that is, an FTP parameterized by k (number of strings). On the

other hand for comparison purposes, this algorithm was only possible to test it for 3 and

4 strings, specifically for 5 strings we come across an exponential explosion of variables.

For that reason, Meneses’ IP-formulation will be used [Meneses et al., 2004] as a base-

line for comparison, because this algorithm is proven to be robust, it has fast convergence

to find optimal solutions for larger instances, and it always finds an exact solution.

3.3 Approximation algorithms

The first approximation algorithm for CSP, with a performance guarantee of two, firstly

was presented in the Symposium on Discrete Algorithms (SODA, 1999), then was published

in [Lanctot et al., 2003]. This very simple algorithm can be described as in Algorithm 1.

The technique employed is to take one of the strings in the input (without loss of generality

we can take the first string) and return it as the solution.

This very simple algorithm can be shown to give a performance guarantee of two. To

do this, let x denote an optimal solution, which has a minimum distance at most d from

each solution in S, i.e., dH(x, si) ≤ d, for i ∈ {1, . . . , k}. If we take s1 as the solution,

as shown in Algorithm 1, then it is clear that dH(s1, si) ≤ dH(s1, x) + dH(x, si) ≤ 2d, for

i ∈ {2, . . . , k}. Thus, s1 is a solution with cost at most twice the optimum.

20

Algorithm 1: A 2-Approximation algorithm for the CSP.

1 Procedure Algorithm 1 (k,m,S)

2 k : number of strings

3 m : size of strings

Input : S = {s1, . . . , sk}

4 return s1 as a solution

A better solution was introduced by [Lanctot et al., 2003], who presented an approx-

imation algorithm with a performance guarantee of 4
3(1 + ε), for any small ε > 0. The

basic idea of the algorithm consists of formulating the problem as an integer programming

problem, solving the linear programming (LP) relaxation, and using the results of the LP

to find an approximate solution. To find the approximate solution from the LP solution,

the technique of randomized rounding is employed.

Randomized rounding is a technique for getting an integer 0−1 solution from a contin-

uous solution for an LP problem. This method works by defining the value of the variable

x ∈ {0, 1} to be x = 1 with probability x̄, where x̄ is the value of the continuous variable

corresponding to x in the relaxation of the original integer programming problem.

In [Lanctot et al., 2003], the solution found as described above is proved to be never

more than 4
3 of the optimum solution. This is shown by taking the expected value of the

solution and using some probabilistic bounds over the result.

Another algorithm was requested by [Li et al., 1999], a polynomial time approximation

scheme (PTAS) for the CSP. A PTAS is a special type of approximation algorithm that,

for each ε > 1, yields a guaranteed performance in polynomial time. Thus, this can be

viewed as a way of getting solutions with guaranteed performance, for any desired thresh-

old greater than one. The PTAS presented in [Li et al., 1999] is also based on randomized

rounding, and their basic steps are presented in Algorithm 2. The scheme is similar to the

algorithm in [Lanctot et al., 2003], but the idea of randomized rounding is refined to check

the results for a large (but polynomial) number of subsets of indices. The analysis of the

PTAS presented in this subsection is also similar to the one used in [Lanctot et al., 2003].

However, here there are a large number of iterations where the algorithm needs to solve

a linear relaxation of an integer program. This makes the resulting algorithm impractical

for any instance with large strings. It is interesting to note that a similar result appeared

independently in the context of coding theory in [Gasieniec et al., 1999].

21

Algorithm 2: A PTAS for closest string problem.

1 Procedure Algorithm 2 (k,m,S)

2 k : number of strings

3 m : size of strings

4 for each r-element subset of the input strings do

5 Find a subset P of positions in a string

6 Solve an IP relaxation to find the optimum solution for the positions in P

7 Calculate the cost of the resulting partial solution

8 for i ∈ {1, . . . , k} do

9 compute the cost of the i-th string as a solution to the problem

10 return the best of the solutions in the last two steps

In addition, [Andoni et al., 2006] showed a (1 + ε)-approximation algorithm with run-

ning time of kΩ(ε−2+γ) for any γ > 0, the technique applied is basically a review of the

Algorithm 2 using the dimensionality reduction method developed by the authors. Also,

in [Ma and Sun, 2008] was presented a (1 + ε)−approximation algorithm with a running

time ofmkO(ε−2). That last result was obtained using their new fixed-parameter algorithm.

The main results of this category are summarized in Table 3.3.

Table 3.3: A list of articles that tackles approximate algorithms to CSP.

Year Approx. Running time References

1999 2 O(1) [Lanctot et al., 2003]

1999 4
3 + ε LP [Lanctot et al., 2003]

1999 4
3 + ε LP [Gasieniec et al., 1999]

2002 1 + ε+ 1
2r−1 (km)rkO(log |Γ|× r

2

ε2
) [Li et al., 1999, Li et al., 2002]

2006 1 + ε mkO(ε−2 log(1
ε
)) [Andoni et al., 2006]

2008 1 + ε mkO(ε−2) [Ma and Sun, 2008]

3.4 Fixed parameter complexity

Another direction explored by researchers to solve the CSP is the use of parameterized

complexity [Downey and Fellows, 1999]. The central idea of parameterized complexity is

to study how difficult a problem remains after some of its parameters are fixed. Depending

on the problem, different behaviours can arise. For example, the problem can become

solvable in polynomial time. This is the case of the vertex cover problem, which can be

22

solved with practical algorithms, with time complexity in the order of O(1.3c + cn), when

the size c of the cover is fixed [Downey and Fellows, 1999, Fellows, 2002]. On the other

hand, some problems remain NP-hard even for a fixed parameter. For example, finding

a c-colouring of a graph is NP-complete even when the number of colors c considered is

equal to three only.

3.4.1 Fixed parameter algorithms for the CSP

For the CSP, parameterized complexity results have shown [Gramm et al., 2001] that when

the value of the minimum distance is fixed to d a polynomial algorithm can be used to give

exact solutions. In this case, the Algorithm 3 was proved to run in time O(km + kdd+1).

Although this result is not attractive for large values of d, sometimes in practice d is small

(less than 20). This can be justified since the objective in genetic applications is to find

strings which are quite similar to another, and therefore the resulting distance is small.

Most works deal with a decision version of the problem, rather than the optimiza-

tion version defined above. In the decision version, in addition to the set of strings,

a distance d is also part of the input. The objective is to decide whether there is a

consensus whose Hamming distance to each of the input string does not exceed d. Sto-

janovic [Berman et al., 1997] proposed a linear-time algorithm for d = 1. Ma and Sun

[Ma and Sun, 2008] presented another algorithm running in O(km + kd(16|Γ|)d) time,

where Γ denotes the alphabet.

Furthermore, there have been some efficient algorithms for a small constant k (num-

ber of input-strings). [Gramm et al., 2001] proposed a direct combinatorial algorithm for

finding a consensus string t for three strings. [Sze et al., 2004] showed a condition for

the existence of a string whose radius is less than or equal to d. [Boucher et al., 2009]

proposed a linear algorithm for finding a string t such that max1≤i≤4d(t, si) ≤ d for four

binary strings. [Amir et al., 2009] presented a linear algorithm finding a consensus string

minimizing both distance sum and radius for 3 strings. Finally,[Amir et al., 2016] posed

a quadratic time algorithm for 5 strings under binary alphabet. The main results in this

category are presented in Table 3.4.

In [Bulteau et al., 2014] a challenge was launched, which consists in creating a fixed-

parameter tractable algorithm for CSP parameterized by k (number of strings), thus,

avoiding the use of integer linear programming, since that several attempts have been

made to overcome this challenge. A first attempt was proposed by [Amir et al., 2016] with

running time O(k2mk), it does not fit the definition of fixed-parameter tractability, because

23

k the fixed-parameter is not isolated, that is, O(k2mk) ≤ f(k)mO(1), f(k) = k2, mO(1) ≈

mk, k 6∈ O(1). A second attempt was presented by [Dalpasso and Lancia, 2018] with

time complexity O(|Γ|mk+1), also this approach does not fit the previous definition, that

is, O(|Γ|mk+1) ≤ f(k)|Γ|mO(1), |Γ|mk+1 ≤ |Γ|mO(1), k + 1 6∈ O(1). As result, we can

conclude that until the present moment such a challenge is still open.

Algorithm 3: A FPT algorithm for CSP parameterized by d.

1 Recursive procedure CSd (s,∆d)

2 Global variables: Set of strings S = {s1, s2, ..., sk}, integer d

Input : Candidate string s and integer ∆d.

Output: A string ŝ with maxi=1,...,kdH(ŝ, si) ≤ d and dH(ŝ, si) ≤ ∆d, if it exists,

and "not found" otherwise.

3 if ∆d < 0 then return "not found";

4 if dH(s, si) > d+ ∆d for some i ∈ {1, ..., k} then return "not found";

5 if dH(s, si) ≤ d for all i = 1, ..., k then return s;

6 foreach i ∈ {1, ..., k} such that dH(s, si) > d do

7 P := {p | s[p] 6= si[p]}

8 Choose any P ′ ⊆ P with |P ′| = d+ 1

9 for all p ∈ P ′ do

10 s′ := s

11 s′[p] := si[p]

12 sret := CSd(s′,∆d− 1)

13 If sret 6= "not found" then return sret

14 Return "not found"

To know the characteristics of CSP with k as a fixed-parameter, we made an exploratory

analysis for special cases, a first case was for instances with k = 3 strings and an arbitrary

alphabet, for that case, we implemented a linear-time algorithm called Minimization First

Algorithm (MFA). In the literature, there can be found an exact method that solves for the

same case developed by [Gramm et al., 2003], it will be a baseline approach for comparison,

both methods are efficient and their running time is O(m).

Another special case explored was for instances with k = 4 and a binary alphabet,

for that case we designed and implemented a linear-time algorithm called Minimization

Second Algorithm (MSA). For the same case, [Boucher et al., 2009] presented an efficient

method, it will be a baseline method for comparison. Both methods have running time

O(m).

24

Finally, [Amir et al., 2016] and [Dalpasso and Lancia, 2018] proposed exact methods

for the general case, both methods set the parameter k (number of strings), for that reason,

they will be baseline methods for comparison. In those articles only the theoretical part

were presented, such as proof of correctness, and a very high-level script of their methods,

in this way, above the similarities and differences with the recursive exact method were

reported.

Table 3.4: A list of articles that uses exact methods to solve the CSP.

Year #Strings Alphabet Running time References

2003 k q O(km+ kdd+1) [Gramm et al., 2003]

2008 k q O(km+ kd(16|Γ|)d) [Ma and Sun, 2008]

2016 k q O(k2mk) [Amir et al., 2016]

2018 k q O(|Γ|mk+1) [Dalpasso and Lancia, 2018]

2019 k q O(kk+1m2) [Latorre and Salvatierra, 2019]

2001 3 q O(m) [Gramm et al., 2001]

2016 3 q O(m) [Latorre and de Freitas, 2016]

2011 3 2 O(m) [Liu et al., 2011]

2009 4 2 O(m) [Boucher et al., 2009]

2018 4 2 O(m) [Latorre and de Freitas, 2018]

2016 5 2 O(m2) [Amir et al., 2016]

3.4.2 Kernelization algorithms of the CSP

A fundamental and very powerful technique in designing FPT algorithms is kernelization.

In a nutshell, a kernelization algorithm for a parameterized problem is a polynomial-time

transformation that transforms any given instance to an equivalent instance of the same

problem, with size and parameter bounded by a function of the parameter in the input.

Typically this is done using so-called reduction rules, which allow the safe reduction of the

instance to an equivalent ’smaller’ instance.

In [Gramm et al., 2001] the authors showed that CSP is FPT parameterized by k

(number of strings), they also proved a polynomial time reduction O(k2d log k). Also,

in [Basavaraju et al., 2014] the authors presented that the CSP is not likely to have poly-

nomial kernels when parameterized by d (Hamming distance), they arrived at the results

by showing a polynomial parameter transformation from CNF-SAT parameterized by the

25

number of variables.

In Table 3.5, it can be observed that when the CSP is parameterized by k (number of

strings) is still open, as a consequence, it was not possible to find a reduction in polynomial

time. In this sense, kernelization can be viewed as polynomial time preprocessing which

has universal applicability, not only in the design of efficient FPT algorithms but also in

the design of approximation and heuristic algorithms. Our research also fits this challenge.

Table 3.5: A polynomial kernelization status for the CSP.

Parameters Kernel References

d None

k Open [Latorre and Salvatierra, 2019]

(d, k) O(k2d log k) [Gramm et al., 2001]

(d,m) @ [Basavaraju et al., 2014]

m -

(k,m, d) -

3.5 Metaheuristics

Normally, metaheuristics are applied at an early stage to make an exploratory analysis of

an optimization problem. In general, metaheuristics require the iterative application of a

sampling method and a selection criterion; first, the algorithm generates viable solutions

belonging to the search space using a predefined strategy, and, successively, it selects one

solution from the sampled space to use in the next iteration.

One of the most successful metaheuristics applied to an optimization problem is simu-

lated annealing (SA), it has been presented in [Keith et al., 2002]. Simulated Annealing is a

generalization of Monte Carlo methods, originally proposed by [Metropolis and Ulam, 1949]

as a means of finding the equilibrium configuration of a collection of atoms at a given tem-

perature.

The basic idea of SA was taken from an analogy with the annealing process used in

metallurgy, a technique involving heating and controlled cooling of a material to increase

the size of its crystals and reduce their defects. Methods based on SA apply a probabilistic

mechanism to escape local minima: the underlying idea is to accept, under certain condi-

tions, not only transitions that improve the objective function value, but also transitions

that do not. The probability of accepting worsening steps varies during the search phase,

26

and it slowly decreases to zero. In the original Metropolis scheme, an initial state (or

solution) is chosen, having energy E and temperature T . Keeping T constant, such initial

configuration is perturbed, and the energy change ∆E is computed. If ∆E is negative, the

new solution is always accepted. Otherwise, it is accepted with a probability given by the

Boltzmann factor e−(∆E/T). This process is repeated L times for the current temperature,

then the temperature is decremented and the entire process is repeated until a frozen state

is reached at T = 0. At the beginning of the search, when temperatures are high, the algo-

rithm behaves like a random search and therefore bad solutions can be accepted; whereas

for lower values of T , solutions are located in promising regions of the search space. Like

genetic algorithms for the CSP, a solution in SA is a sequence of characters, and solutions

minimizing the Hamming distance value have a higher probability of being accepted for

the next iteration of the algorithm.

One of the first meta heuristic algorithm for CSP, a Genetic Algorithm (GA), was pro-

posed by Mauch et al. [Mauch et al., 2003], which was combined with simulated annealing

and applied parallel strategies by Liu et al. in 2005 [Liu et al., 2005]. Moreover, an Integer

Programming (IP) formulation and a heuristic (Heur) for CSP was posed by Meneses et

al. [Meneses et al., 2004], improved their heuristic using parallel multi-start strategy by

Gomes et al. [Gomes et al., 2008]. In addition Liu et al. further improved their heuris-

tic in a compounded genetic and simulated annealing algorithm[Liu et al., 2008]. A more

recent Genetic Algorithm, based on a technique called data-based coding, was proposed

by Julstrom [Julstrom, 2009]. Faro and Pappalardo proposed an Ant Colony Optimiza-

tion (ACO) algorithm, called Ant-CSP, which was shown to outperform individual GA

and SA algorithms over extensive random benchmarks [Faro and Pappalardo, 2010]. Also,

in the same year, a Memetic Algorithm (MA) was proposed for the problem by Babaie

and Mousavi [Babaie and Mousavi, 2010]. Liu et al. in 2011 proposed a polynomial-time

heuristic resulting from a combination of local search strategies and an approximation al-

gorithm called Largest Distance Decreasing Algorithm (LDDA)[Liu et al., 2011]. At the

same time, a new algorithm for the problem based on a GRASP using the probabilistic

heuristic function was proposed by Mousavi and Esfahani [Mousavi and Esfahani, 2012].

Pappalardo et al. proposed a new heuristic for the problem that allows one to locate a

good starting solution for the SA method [Pappalardo et al., 2014]. Finally, Nienkötter

et al. proposed a heuristic using the distance-preserving vector space, it is an embedding

method applied to CSP [Nienkötter and Jiang, 2016]. Table 3.6 provides a summary for

those heuristics ranked by year of their publications.

27

One of the last published articles belonging to this category was proposed by Nienkötter

et al., in essence, this article presents a prototype-embedding approach [Ferrer et al., 2010]

for generalized median computation. In this method, the objects are embedded into a

Euclidean metric space using an embedding function. In the end, the median in vector

space is transformed back into the original problem space (reconstruction), resulting in an

approximation of the searched generalized median. The vector space embedding framework

is a general approach to consensus computation without knowing the structure of space.

It is an application of this framework.

Moreover, for purposes of comparison between the metaheuristics and our proposed

method, we must have access to the instances tested from those articles. Those instances

were not published by the authors. For that reason, we could not make a comparison

between those methods. On the other hand, our proposed algorithm called polynomial

greedy algorithm (GREEDY) exploit the mathematical structure of CSP, it is not fair to

compare any metaheuristic with GREEDY. The computational results demonstrate the

good approximation for an optimal solution.

Table 3.6: A list of articles related to heuristics for CSP.

Title Strategy Cited

Genetic algorithm GA [Mauch et al., 2003]

Branch and Bound algorithm and heuristic IP & Heur [Meneses et al., 2004]

Parallel genetic and simulated annealing algorithm PGSA [Liu et al., 2005]

A compounded genetic and simulated annealing algorithm CGSA [Liu et al., 2008]

A parallel local-search heuristic PLS [Gomes et al., 2008]

A genetic algorithm and data-based coding GA [Julstrom, 2009]

An ant colony optimization algorithm ACO [Faro and Pappalardo, 2010]

Memetic algorithm MA [Babaie and Mousavi, 2010]

Heuristic and local search strategies HLSS [Liu et al., 2011]

A GRASP algorithm using a probability-based heuristic GRASP [Mousavi and Esfahani, 2012]

A greedy-walk heuristic and simulated annealing algorithm GW & SA [Pappalardo et al., 2014]

Heuristic based on distance-preserving vector space DPVS [Nienkötter and Jiang, 2016]

3.6 Matheuristics

A new category of metaheuristics is formed by matheuristics, that use the solution of a re-

laxed model to create a feasible solution following a specific heuristic criterion. Matheuris-

28

tics are often known to give good results, without considering complex approaches. They

perform quite well in the CSP context, especially the ones that are based on the linear

continuous relaxation of the model. Table 3.7 provides a summary for those matheuristics

ranked by year of their publications.

The first algorithm of this category is a greedy approach to solve an Integer Program-

ming (GIRT) called greedy iterative rounding technique was proposed by Chen [Chen, 2007],

in this algorithm, if the number of strings is limited to 3, the algorithm is probably at most

1 away from the optimum, in many cases it can find an exact solution, even though it fails

to find an exact solution, the solution found is very close to optimal solution. Della Croce

and Salassa described three relaxation-based procedures. One procedure (RA) rounds up

the result of continuous relaxation, while the other two approaches (BCPA and ECPA) fix

a subset of the integer variables in the continuous solution at the current value and let the

solver run on the remaining (sub)problem [Della Croce and Salassa, 2012]. A new tech-

nique Lagrangian relaxation to the problem formulated as an integer programming using

Tabu Search was proposed by Tanaka [Tanaka, 2012]. Moreover, Croce and Garraffa de-

signed a multi-start relaxation-based algorithm (called the selective fixing algorithm) that

for a predetermined number of iterations takes a feasible solution as input and iteratively

selects variables to be fixed at their initial value until the number of free variables is small

enough that the remaining subproblem can be efficiently solved to optimality by an ILP

solver [Croce and Garraffa, 2014].

Table 3.7: A list of articles related to matheuristics for CSP.

Title Strategy Cited

Relaxation-based and iterative rounding technique LP & IRT [Chen, 2007]

Relaxation-based procedures LP & RBP [Della Croce and Salassa, 2012]

Linear programming and lagrangian relaxation LP & LR [Tanaka, 2012]

Relaxation-based and selective fixing algorithm LP & SFA [Croce and Garraffa, 2014]

3.7 Remarks

In the literature review, we learned many important techniques for implementing and

designing the proposed algorithms. By example, the column-position type concept, also

called tuple was proposed by [Gramm et al., 2001, Amir et al., 2016], it contributes to

implementing the MFA approach. The 1-mismatch block posed by [Amir et al., 2016],

29

the normalization process presented by [Gramm et al., 2001], and the identification of

tuples for four binary strings posed by [Boucher et al., 2009], they contribute to imple-

menting the MSA approach. Finally to implement the recursive exact method we use the

greedy walk posed by [Pappalardo et al., 2014], the pre-processing method proposed by

[Dalpasso and Lancia, 2018], and the minority and majority identification for each column-

position type presented by [Amir et al., 2016].

This chapter has provided the literature review necessary for solving the Closest String

Problem, the formal definition for the problem, formulations in IP, approximation algo-

rithms, fixed parameter complexity, meta-heuristics, and matheuristics were summarized.

30

Chapter 4

PROPOSED METHODS

One strategy to tackle with NP-hard problems is to solve using fixed-parameter complexity

to get optimal solutions in polynomial running time for some fixed parameter, with this

objective, this chapter reports the proposed algorithms theoretically suggested by formal

proofs, and two IP formulations for 3-CSP and 4-CSP.

4.1 A linear-time algorithm with up to three strings

In this section we are interested in optimal solutions for the Closest String with three

sequences. With this objective, this work gives the proof of correctness for a linear-time

algorithm to solve 3-CSP with an arbitrary alphabet, it always calculates the optimal

solution value.

Notation. Throughout this section, we will be considering our input instance as a

matrix. If Set S has n strings, s1, . . . , sn, each of length m, we view S as an n×m matrix.

We can thus refer to columns and rows. Thus, e.g., the element in the second row of

column j, is the jth symbol of s2. The distance of a string s′ from S is maxs∈SdH(s′, s).

Given a string s we denote with (sj) the character in the jth position of s. We refer to

two identical columns as having the same column-position type. We denote with V (S)

the set of column-position types from S. For a column type vi ∈ V (S) we denote with

ni the number of column-position types vi in S with i = 0, . . . , |V (S)|. We indicate with

v0, . . . , v4 the five column-position types obtained from the input 3-CSP instance with an

arbitrary alphabet, a column-position type is also named as tuple (previously-defined in

[Gramm et al., 2001]).

In order to compare our proposed algorithm, we elaborate an IP formulation for 3-CSP,

and also we report the theoretical analysis of the Minimization First Algorithm (MFA)

31

4.1.1 An IP formulation for 3-CSP

Gramm et al. solved the decision version of this IP directly using the algorithm of Lenstra

[Lenstra, 1983] that has an exponential dependency in the number of variables. Thus,

they were not able to solve the IP for more than four strings. The authors suggested an

IP-formulation based on column-position types, this yields fixed-parameter tractability for

CLOSEST STRING with respect to parameter k (number of strings)[Gramm et al., 2001].

Define n0 through n4 as the number of column-position types v0 through v4. In columns

of type v0, you clearly always pick α. Otherwise, you need to assign xα,1 of the columns

of type v1 to α (and the rest, xβ,1 = n1 − xα,1, to β), xα,2 columns of type v2 to α

(and the rest, xβ,2 = n2 − xα,2 to β), xα,3 columns of type v3 to α (and the rest, xβ,3 =

n3 − xα,3 to β), and xα,4, nβ,4, xγ,4 columns of type v4 to α, β, γ respectively (with xα,4 +

xβ,4 + xγ,4 = n4). Clearly, given xα,1 through xγ,4, the process of ”normalize the columns,

reorder the strings if necessary, make the selections, un-normalize the columns” takes time

O(m)[Gramm et al., 2003]. The numbers xα,1 through xγ,4 are the solution to the following

IP:

min d

s.t. : xα,1 + xβ,2 + xβ,3 + xβ,4 + xγ,4 ≤ d

xβ,1 + xα,2 + xβ,3 + xα,4 + xγ,4 ≤ d (4.1)

xβ,1 + xβ,2 + xα,3 + xα,4 + xβ,4 ≤ d∑
σ∈vj

xσ,j = nj j = 1, . . . , 4 (4.2)

xσ,j ∈ {0, 1, . . . , nj} (4.3)

d ∈ Z+. (4.4)

In this formulation, for every column position type vj ∈ V (S) where j = 1, . . . , 4 and

σ ∈ vj , the variable xσ,j is the number of occurrences that σ has in the closest string at

locations that correspond to column type vj . Let si ∈ S where i = 1, . . . , 3 be the input-

instance, and let σ be the character of string si in column-position type vj . The restrictions

(4.1) calculate the Hamming distance of si from the center string, that is, for each column

type vj we sum the characters in the center string at locations that correspond to vj that

are different from the character si has in these locations. Constraints (4.2) impose the

number of column types existed in each tuple, and (4.3) makes xσ,j have integer values.

Finally, the objective is to minimize the value d.

32

4.1.2 CS3 Efficient linear-time solution for k = 3

The Gramm’s algorithm for 3 strings with an arbitrary alphabet is a recursive algorithm,

the input instance is transformed into a normalized one, then it is reordered the columns of

the k×m matrix and considered consecutive columns in the reordered instance as a block.

By sorting, the columns are already ordered in the sequence in which we will process them:

(0) Identity Case. All columns of type [a, a, a]t,

(1) Diagonal Case. All blocks of type [baa, aba, aab]t,

(2) 3/2 Letters Case. All blocks of type [aa, ba, cb]t, [aa, bb, ca]t, or [ab, ba, ca]t (the order

of these three types among each other does not matter),

(3) 2/2 Letters Case. All blocks of type [aa, ab, ba]t, [ab, aa, ba]t, or [ab, ba, aa]t (we can

find only one of these three possibilities, since, otherwise, we would have been able

to build an additional block of type (1)),

(4) Remaining 2 Letters Case. All blocks of type [a, a, b]t, [a, b, a]t, or [b, a, a]t (as in

case (3), we can find only one of these possibilities, since, otherwise, we would have

been able to build an additional block in (3)),

(3’) 3/3 Letters Case. All blocks of type [aaa, bbb, ccc]t,

(4’) Remaining 3 Letters Case. All blocks of type [a, b, c]t.

Algorithm 4: CS3: Gramm’s algorithm for k = 3

Input: S = {s1, s2, s3}: a normalized and reordered by blocks instance.

Output: CS3(S) : an optimal solution

1 Function CS3(S)

2 (K0) Given [aaa]t then return a.CS3(S’)

3 (K1) Given [baa, aba, aab]t then return aaa.CS3(S’)

4 (K2) Given [aa, ba, cb]t or [aa, bb, ca]t or [ab, ba, ca]t then return ca.CS3(S’),

or ba.CS3(S’), or aa.CS3(S’)

5 (K3) Given [aa, ab, ba]t, or [ab, aa, ba]t or [ab, ba, ca]t then return aa.CS3(S’)

6 (k3′) Given [aaa, bbb, ccc]t then return abc.CS3(S’)

7 (K4′) Given [aa, bb, ca]t or [a, b, c]t then return ab.CS3(S’), or a.CS3(S’).

The Algorithm 4 is a recursive algorithm, it creates a normalized one and reordering

it, after that, recursively it fixes the characters in the current solution according to the

different cases (K0)(K1)(K2)(K3)(K4) or (K0)(K1)(K2)(K3′)(K4′). Finally, to built

the optimal solution to the original instance makes the reverse operation over the current

solution.

33

4.1.3 MFA Efficient linear-time algorithm for 3-strings

In the Minimization First Algorithm (MFA), the identification of column-position types

is needed, it breaks up into five tuples, finally, it decides a character for each column-

position by simple evaluation through the different cases according to the number of tuples

presented in the input instance. MFA can find the optimal solution by traversing all the

positions of the input strings only once. With the algorithm we obtain, the optimal value

dmaxi,j=1,2,3dH(si, sj)/2e and when the number of ”all mismatches” tuples is greater than

the others, its optimal value is d(n1 + n2 + n3 + 2n4)/3e.

In this algorithm w.l.o.g. consider the pairwise distances of strings s1, s2 and s3 satisfy

dH(s1, s2) ≥ dH(s1, s3) ≥ dH(s2, s3), that is, string s1 is farthest and s3 is closest to the

other two strings. In Algorithm 5, if the number of ”all mismatches” tuples is zero, we have

the binary case, then count is b(dH(su1 , su3)−dH(su2 , su3))/2c. Otherwise, if k1 +k2 > n4

and k2 > n4, then k1 is 0, k2 is n4, and count is b(k1 − k2 + n4)/2c; if k1 + k2 > n4 and

k2 ≤ n4, then k1 is n4 − k2, and count is b(k1 + k2 − n4)/2c; finally, if k1 + k2 < n4, then

count is zero.

Algorithm 5 assigns the characters of s1 to the solution x among the positions where

(all mismatches but k1 > 0) or (s1 matches s2 or s1 mismatches s3 but count> 0), and

once count is reduced to zero, it fixes the characters of s3 in the solution x. It assigns the

characters of s2 to the solution x among the positions where all mismatches but k2 > 0,

finally once k1 and k2 are reduced to zero, it fixes the characters of the set of strings in a

round-robin order in the solution x among the positions where all mismatches.

Running time

The if-then conditional of lines 1-31 is executed when the input-instance has 3-sequences,

it requires 1 step. Lines 2 and 3 sort the pairwise distances from s1, s2, and s3, it requires

4m iterations to get the Hamming distances and c1 steps to sort them in non-decreasing

order by its Hamming distances which is constant time. Lines 4 and 5 make arithmetic

operations over the Hamming distances, it takes a constant time c2. In Line 7, the n4

variable counts the number of times that the column-position type v4 (all mismatches)

are presented in the input-instance, it takes m steps. The if-then-else conditional of lines

8-16 makes arithmetic operations, it takes a constant time c3. The for-loop of lines 17-31

iterates in m steps, so it requires 3m iterations. The if-then-else conditional of lines 18-31

makes arithmetic operations, it takes a constant time c4. Therefore, the running time of

MFA is proven to be O(8m).

34

Algorithm 5: MFA pseudo-code.
Input: S = {s1, s2, s3}: a 3-CSP instance with m the length of strings.

Output: x: optimal solution such that dH(x, s) ≤ dopt ∀s ∈ S.

1 if |S| = 3 then

2 Sort the pairwise distances of s1, s2 and s3.

3 Let u1,u2 and u3 satisfy dH(su1 , su2) ≥ dH(su1 , su3) ≥ dH(su2 , su3)

4 k1 ← dH(su1 , su2)− dH(su2 , su3)

5 k2 ← dH(su1 , su2)− dH(su1 , su3)

6 k3 ← 0 ; // counter variable that iterates over the 3-strings

7 Let n4 be the number of column positions when all mismatches

8 if n4 = 0 then

9 count ← b(dH(su1 , su3)− dH(su2 , su3))/2c ; // Case 1, binary case

10 else if k1 + k2 > n4 then

11 if k2 > n4 then

12 count ← b(k1 − k2 + n4)/2c; k1 ← 0; k2 ← n4 ; // Case 3

13 else

14 count ← b(k1 + k2 − n4)/2c; k1 ← n4 − k2 ; // Case 4

15 else

16 count ← 0 ; // Case 2

17 for i=1 to m do

18 if (su1
i 6= su3

i and su1
i 6= su2

i and su2
i 6= su3

i) then

19 if (k1 > 0 or k2 > 0) then

20 if (k1 > 0) then

21 xi ← su1
i ; k1 ← k1 − 1

22 else if (k2 > 0) then

23 xi ← su2
i ; k2 ← k2 − 1

24 else

25 xi ← s
uk3+1

i ; k3 ← (k3 + 1)%3

26 else if (su1
i = su2

i or (su1
i 6= su3

i and count > 0)) then

27 xi ← su1
i

28 if (su1
i 6= su3

i and su2
i = su3

i) then

29 count ← count −1

30 else

31 xi ← su3
i

Theoretical analysis

We first introduce three lemmas, then use them to prove that MFA can find an optimal

solution of 3-CSP with an arbitrary alphabet.

35

Lemma 1. Let S = {s1, s2, s3} be a 3-CSP instance with lengthm. If string x is an optimal

solution of the CSP and dopt is the corresponding distance, then d(n1 +n2 +n3 +2n4)/3e ≤

dopt.

Proof. Independently of whether the character appears in the column position j in the

string solution x, it mismatches with minimum 1 character for v1, v2, v3 and with minimum

in 2 characters for v4. The sum of these values is equal to the Hamming distance between

x and si ∈ S; dividing it by 3 we get the average Hamming distance.

Lemma 2 ([Liu et al., 2011]). Let S be an instance of the CSP. If string x is an optimal so-

lution of the CSP and dopt is the corresponding distance, then dopt ≥ dmaxi,j=1,...,kdH(si, sj)/2e.

Lemma 3. Let S = {s1, s2, s3} be a 3-CSP instance with length m. The number of columns

satisfies the restriction n1 ≥ n2 ≥ n3.

Proof. From (4.5)-(4.9), we have dH(s1, s2) = n1 + n2 + n4, dH(s1, s3) = n1 + n3 + n4,

and dH(s2, s3) = n2 + n3 + n4. Assume without loss of generality that dH(s1, s2) ≥

dH(s1, s3) ≥ dH(s2, s3). After making arithmetic operations, we have, n2 ≥ n3 and n1 ≥

n2. Finally, we get, n1 ≥ n2 ≥ n3.

Theorem 1. Let 3-CSP be an instance of CSP with 3 sequences and an arbitrary alphabet.

MFA always finds an optimal solution value to 3-CSP.

Proof. The proof is composed by four cases, it is made by direct method.

v0 s1
j = s2

j = s3
j all matches (4.5)

v1 s1
j 6= s2

j = s3
j s1

j is the minority (4.6)

v2 s2
j 6= s1

j = s3
j s2

j is the minority (4.7)

v3 s3
j 6= s1

j = s2
j s3

j is the minority (4.8)

v4 s1
j 6= s2

j , s
1
j 6= s3

j , and s
2
j 6= s3

j all mismatches (4.9)

From (4.5)-(4.9), we have the identification of column-position types, also called tu-

ples. Observe that, some column positions presented in the input instance are repeated,

therefore, the number of different tuples presented in any input-instance is equals to five.

Consider the alignment of the three strings s1, s2, and s3. Note that, from (4.5)-(4.9),

we have, in general, for any input-instance there are five different column-position types.

According to Lemma 3, we get n1 ≥ n2 ≥ n3. It follows that:

36

Case 1. If n4 = 0, we have the binary case [Liu et al. proved it [Liu et al., 2011]]. Then in

Algorithm 5, the initial value of variable count is equal to d(n1−n2)/2e. Note that

|Γ| = 2 and so either s3
j = s1

j or s3
j = s2

j among the positions where s1 mismatches

s2. Hence dH(s1, s2) = n1 + n2. The solution x of MFA is decided by :

(1.1) Among the positions where s1 matches s2, xj = s1
j = s2

j

(1.2) Among the positions where s1 mismatches s2:

dH(x, s1) ≤ n1 − d(n1 − n2)/2e

dH(x, s2) ≤ n2 + d(n1 − n2)/2e

dH(x, s3) ≤ n3 + d(n1 − n2)/2e ≤ n3 + d(dH(s1, s2)− 2n2)/2e

≤ n3 − n2 + ddH(s1, s2)/2e ≤ ddH(s1, s2)/2e.

(4.10)

Taken together, sub-cases (1.1) and (1.2) give a lower bound, that is,maxi=1,2,3dH(x, si) ≤

dH(s1, s2)/2 (See Figure 4.1(a)).

Case 2 If n1 − n3 + n2 − n3 ≤ n4. Then in Algorithm 5, the initial value of variable count

is equal to 0, k1 = n1−n3, k2 = n2−n3. Note that |Γ| = 3. The solution x of MFA

is decided as:

(2.1) Among the positions where there are at least two different symbols, we have

xj = argmaxσ∈Γ
∑3

i=1 |sij = σ|

(2.2) Among the positions where all characters mismatches:

dH(x, s1) ≤ n3 + k1 + k2 + d2(n4 − k1 − k2)/3e

dH(x, s2) ≤ n3 + k1 + k2 + d2(n4 − k1 − k2)/3e

dH(x, s3) ≤ n3 + k1 + k2 + d2(n4 − k1 − k2)/3e

≤ n1 + n2 − n3 + d2(n4 − n1 − n2 + 2n3)/3e

≤ d(n1 + n2 + n3 + 2n4)/3e.

(4.11)

From (2.1) and (2.2), and by the Lemma 1, we obtain, maxi=1,2,3dH(x, si) ≤ d(n1 +

n2 + n3 + 2n4)/3e ≤ dopt (See Figure 4.1(b)).

Case 3 If n1−n3 +n2−n3 > n4 and n2−n3 > n4. Then in Algorithm 5, the initial value of

variable count is equal to d(n1−n3−(n2−n3−n4))/2e, k1 = 0, k2 = n4. Note that

|Γ| = 3 and so either s3
j = s1

j or s3
j = s2

j among the positions where s1 mismatches

s2, dH(s1, s2) = n1 + n2 + n4. The solution x of MFA is decided as:

(3.1) Among the positions where s1 matches s2, xj = s1
j = s2

j

37

(3.2) Among the positions where s1 mismatches s2:

dH(x, s1) ≤ n1 − d(n1 − n3 − (n2 − n3 − n4))/2e+ n4

dH(x, s2) ≤ n2 + d(n1 − n3 − (n2 − n3 − n4))/2e

dH(x, s3) ≤ n3 + d(n1 − n3 − (n2 − n3 − n4))/2e+ n4

≤ n3 + d(n1 − n2 + n4)/2e+ n4

≤ d(n1 + n2 + n4)/2e

Since k2 = n2 − n3 = n4 we get n3 = n2 − n4.

(4.12)

From (3.1) and (3.2), and by the Lemma 2, we get,maxi=1,2,3dH(x, si) ≤ dH(s1, s2)/2 ≤

dopt (See Figure 4.2(a)).

Case 4 If n1 − n3 + n2 − n3 > n4 and n2 − n3 ≤ n4. Then in Algorithm 5, the initial value

of variable count is equal to d(n1 − n3 − (n4 − n2 + n3))/2e, k1 = n4 − n2 + n3,

k2 = n2−n3. Note that |Γ| = 3 and so either s3
p = s1

j or s
3
j = s2

j among the positions

where s1 mismatches s2, dH(s1, s2) = n1 + n2 + n4. The solution x is decided as:

(4.1) Among the positions where s1 matches s2, xj = s1
j = s2

j

(4.2) Among the positions where s1 mismatches s2:

dH(x, s1) ≤ n1 − d(n1 − n3 − (n4 − n2 + n3))/2e+ n2 − n3

dH(x, s2) ≤ n2 + d(n1 − n3 − (n4 − n2 + n3))/2e+ n4 − n2 + n3

dH(x, s3) ≤ n3 + d(n1 − n3 − (n4 − n2 + n3))/2e+ n4

≤ d(n1 + n2 + n4)/2e.

(4.13)

Both (4.1) and (4.2), and by the Lemma 2, we obtain,maxi=1,2,3dH(x, si) ≤ dH(s1, s2)/2 ≤

dopt (See Figure 4.2(b)).

Altogether Cases 1, 3, and 4 force that the solution x of MFA is an optimal one and

the optimal solution is dmaxi,l=1,2,3dH(si, sl)/2e. Also, the optimal solution for Case 2 is

d(n1 + n2 + n3 + 2n4)/3e. Thus the theorem holds.

Illustration of application of Case 1, 3-CSP with a binary alphabet, there are three

column types to be considered v1, v2, and v3. The algorithm fixes 1-mismatch blocks, in

goldenrod orange and green colors, by their majority consensus value, after that, it assigns

column type v1 (in red color), half of them by their majority and for other one by their

minority consensus value. Illustration of application of Case 2, there are four column types

to be considered v1, v2, v3, and v4.The algorithm fixes 1-mismatch blocks, in goldenrod

orange color, by their majority consensus value, after that, it assigns v1 and v4 column

38

(a) Case 1 (b) Case 2

Figure 4.1: Illustration of application of Cases 1 and 2. Source: the authors.

types by their majority consensus value and the character of s1; it fixes v2 and v4 column

types by their majority consensus value and the character of s2; finally it assigns the rest

of column types v4 in a round-robin order. Source: the authors.

(a) Case 3 (b) Case 4

Figure 4.2: Illustration of application of Cases 3 and 4. Source: the authors.

Illustration of application of Case 3, there are four column types to be considered

v1, v2, v3, and v4.The algorithm fixes 1-mismatch blocks, in goldenrod orange color, by their

majority consensus value, after that, it assigns v2 and v4 column types by their majority

consensus value and the character of s2; it fixes column type v1 (in red color), half of

them by their majority and for other one by their minority consensus value. Illustration of

application of Case 4, there are four column types to be considered v1, v2, v3, and v4.The

algorithm fixes 1-mismatch blocks, in goldenrod orange color, by their majority consensus

value, after that, it assigns v1 and v4 column types by their majority consensus value and

the character of s1; it fixes v2 and v4 column types by their majority consensus value and

the character of s2; finally it fixes column type v1 (in red color), half of them by their

majority and for other one by their minority consensus value. Source: the authors.

Example 1. Let S be a CSP instance with 3-strings and each string of length 10, S ′

is obtained from S where the set of strings was ordered in a pairwise manner by their

39

Hamming distances, we get:

S =


AGTATTGGTG

CCCTTTGAGA

TAGTGGGTCT

S ′ =


TAGTGGGTCT

AGTATTGGTG

CCCTTTGAGA

S ′ =



v4 v4 v4 v2 v1 v1 v0 v4 v4 v4

T A G T G G G T C T

A G T A T T G G T G

C C C T T T G A G A

T A T T T T G T T A

The number of column-position types which all mismatches is n4 = 6, the three counters

have the following values k1 = n1 − n3 = 2, k2 = n2 − n3 = 1, and count = 0, with

these values, MFA identifies the Case 2, thus the optimal solution for S′ or S is x =

TATTTTGTTA with Hamming distance dH(x, s) ≤ 5, ∀s ∈ S. Note that, the optimal

solution value for the Case 2 is d(n1 + n2 + n3 + 2n4)/3e = d(2 + 1 + 0 + 2(6))/3e = 5.

4.1.4 Memory usage analysis in CS3 and MFA

The analysis of memory usage between CS3 algorithm (proposed by [Gramm et al., 2001])

and MFA (our proposal) as follows. CS3 is a recursive algorithm, it makes pre-processing

over input-instance (a character matrix with dimensions k ×m), and also it reorders the

normalized instance by column-positions to forming blocks, finally for each block, the

algorithm fixes the characters in the current solution, after that, it makes a recursive call

for the rest of unfixed column positions, the recursive calls generate a stack in internal

memory, in the worst case, the total number of recursive calls is log(m), it does the reverse

process over the current solution to obtain an optimal solution for the original instance,

so the total used internal memory is O(k ×mlog(m)), since for each call the CS3 creates

a copy of the processed instance.

On the other hand, MFA is an iterative algorithm, MFA iterates the input instance

through its column-positions, so the internal memory used is a matrix of dimensions k×m

plus a character vector of length m, so the total used internal memory is O(k ×m).

4.1.5 Remarks

In the literature there is an algorithm for 3-strings with an arbitrary alphabet, we use an im-

portant definition, column-position types known as tuples proposed by [Gramm et al., 2001].

40

Based on that we propose an efficient algorithm for the special case of CSP with 3-

sequences and alphabet size |Γ| ≥ 2 and its corresponding theoretical analysis. We explain

important differences between those algorithms, the CS3 algorithm has memory usage

O(k ×mlog(m)), meanwhile, the MFA method has memory usage O(k ×m). Both algo-

rithm always find the optimal soluton values, their running time is O(m). Furthermore

for any input instance there are 5 tuples, we extend that definition to 4-CSP, in the next

section will be presented.

41

4.2 A linear-time algorithm for four binary strings

Boucher [Boucher et al., 2009] proposed an exact method for the 4-CSP with a binary

alphabet, it is a combinatorial characterization of decoy sets, it embedded a linear-time

algorithm that easy to implement, this algorithm demonstrates a gap in finding the optimal

solution value at most 1 unit. To the contrary, this paper presents a formal proof for a

linear-time algorithm to solve the 4-CSP for binary alphabet, our method is based on

column types, and it always calculates the optimal solution value.

Notation. Throughout this section, we will be considering our input instance as a

matrix. If the set S has n strings, s1, . . . , sn, each of length m, we view S as a n × m

matrix. We can thus refer to columns and rows. Thus, e.g., the element is the second row

of column j, is the jth symbol of s2. The distance of a string s′ from S is maxs∈SdH(s′, s).

Given a string s we denote with sj the character in the jth position of s. We refer to two

identical columns as having the same column type. We denote with V (S) the set of column

types from S. For a column type vi ∈ V (S) we denote with ni the number of columns of

type vi in S with i = 0, . . . , |V (S)|. We indicate with v0, . . . , v7 the eight column types

obtained from the 4-CSP normalized instance.

Our proposed algorithm is compared with an integer programming formulation for

4-CSP, and also we report the theoretical analysis of the Minimization First Algorithm

(MFA)

4.2.1 An IP formulation for 4-CSP

Gramm et al. in 2001 presented an IP formulation that yields fixed-parameter tractability

for Closest String with respect to parameter n (number of strings) [Gramm et al., 2001].

Based on that formulation, we propose an IP formulation restricted to 4-CSP with a

binary alphabet, it is based on column-position types, it always provides optimal solution

values, also it converges more quickly than other formulations since it has few variables

and restrictions.

Define n0 through n7 as the number of normalized columns of type v0 through v7. In

columns of type v0, you clearly always pick α. Otherwise, you need to assign xα,1 of the

columns of type v1 to α (and the rest, xβ,1 = n1−xα,1, to β), xα,2 columns to type v2 to α

(and the rest, xβ,2 = n2−xα,2 to β), and so on, until xα,7 columns of type v7 to α (and the

rest, xβ,7 = n7−xα,7 to β). Clearly, given xα,1 through xβ,7, the process of "normalize the

columns, reorder the strings if necessary, make the selections, un-normalize the columns"

42

takes time O(m). The numbers xα,1 through xβ,7 are the solution to the following IP:

P1 : min d (4.14)

s.t.: xα,1 + xβ,2 + xβ,3 + xβ,4 + xβ,5 + xβ,6 + xβ,7 ≤ d

xβ,1 + xα,2 + xβ,3 + xβ,4 + xβ,5 + xα,6 + xα,7 ≤ d

xβ,1 + xβ,2 + xα,3 + xβ,4 + xα,5 + xα,6 + xβ,7 ≤ d (4.15)

xβ,1 + xβ,2 + xβ,3 + xα,4 + xα,5 + xβ,6 + xα,7 ≤ d∑
σ∈vj

xσ,j = nj j = 1, . . . , 7 (4.16)

xσ,j ∈ {0, 1, . . . , nj} (4.17)

d ∈ Z+. (4.18)

In this formulation, any column-position type vj ∈ V (S) where j = 1, . . . , 7 and σ ∈ vj ,

the variable xσ,j is the number of occurrences that σ has in the closest string at locations

that correspond to column type vj . Let si ∈ S where i = 1, . . . , 4 be the input-instance,

and let σ be the character of string si in column-position type vj . The restrictions (4.15)

calculate the Hamming distance of si from the center string, that is, for each column type

vj we sum the characters in the center string at locations that correspond to vj that are

different from the character si has in these locations. Constraints (4.16) impose the number

of column types existed in each tuple, and (4.17) makes xσ,j to have integer values. Finally,

the objective is to minimize the value d.

We note that the number of variables in P1 is the sum of the number of characters for

each tuple in (v1, . . . , v7) plus d (the maximum Hamming distance), that is, 15 variables;

and the number of constrains is the number of input-strings plus the number of different

column-position types, that is, 11 restrictions.

4.2.2 Exact algorithm for four binary strings

Although the CSP for a constant number of strings is solvable in polynomial time using

integer programming, this algorithm increases to huge running time even for moderate

number of variables [Gramm et al., 2001]. Hence, a combinatorial characterization of de-

coy sets for the special case of CSP with n = 4 strings and |Γ| = 2 was proposed in

[Boucher et al., 2009]. In opposition, MSA is based on column types.

43

Algorithm 6: MSA pseudo-code
Input: S: a 4-CSP normalized instance v0, . . . , v7

Output: x: optimal solution such that max(d[.]) = dopt

1 if |S| = 4 and |Γ| = 2 then

2 for j ← 1, . . . ,m do

3 u[j]← −∞;

4 for i← 0, . . . , 4 such that (S[.][j])t = vi do

5 ni ← ni + 1;

6 u[j]← i;

7 η1, Iη1 , η2 ← twoFirstGreatestNumber(n1, . . . , n4)

8 count← b(η1 − η2 − b(m− (n0 + · · ·+ n4))/2c)/2c;

9 for j ← 1, . . . ,m such that u[j] ≥ 0 do

10 x[j]← majority(S[.][j]);

11 for j ← 1, . . . ,m such that u[j] = Iη1 do

12 if count > 0 then

13 x[j]← minority(S[.][j]);

14 count← count− 1;

15 d[.]← dH(x,S[.]);

16 for j ← 1, . . . ,m such that x[j] is unfixed do

17 i← indexMaximum(d);

18 k ← indexMinimum(d);

19 iNumberMax ← numberOfMaximum(d[i], d)

20 switch iNumberMax do

21 case 1 or 4 do

22 x[j]← S[i][j];

23 case 2 or 3 do

24 if S[i][j] 6= S[k][j] then x[j]← S[i][j];

25 else

26 r ← index(S[.][j], i, k);

27 x[j]← S[r][j];

28 d[.]← updateHammingDistance(S[.][j], x[j], d[.]);

44

Algorithm 7: MSA Functions

Function twoFirstGreatestNumber(n1, . . . , n4):

η1, . . . , η4 ← sort(n1, . . . , n4) ;

iCount ← 1;

foreach i ∈ {n1, . . . , n4} do

if i = η1 then Iη1 ← iCount ;

iCount ← iCount+1

return η1, Iη1 , η2 ;

Function indexMaximum(d):

iMax ← 0 ;

for i← 1, . . . , 4 do

if iMax < d[i] then

iMax ← d[i];

iIndexMax ← i

return iIndexMax ;

Function indexMinimum(d):

iMin ←∞ ;

for i← 1, . . . , 4 do

if iMin > d[i] then

iMin ← d[i];

iIndexMin ← i

return iIndexMin ;

Function numberOfMaximum(iMax, d):

iCount ← 0 ;

for i← 1, . . . , 4 do

if d[i] =iMax then
iCount ← iCount+1

return iCount;

Function updateHammingDistance(S[.][j], σ, d[.]):

for i← 1, . . . , 4 do

if S[i][j] = σ then
d[i]← d[i]− 1

return d[.];

45

The Minimization Second Algorithm MSA

In the Minimization Second Algorithm (MSA), normalization process is required to trans-

form the input-instance into a normalized one, therefore it breaks up into eight tuples,

lastly, it decides a character for each column-position in 1-mismatch blocks by its majority

consensus value and the others by simple evaluation through the different cases according

to the number of tuples presented in the normalized instance.

Algorithm 6 assigns the characters that are with the majority consensus value to the

solution x among the column-positions that belong 1-mismatch block, it fixes the characters

that are with the minority consensus value to the solution x among the column-positions

that is the greatest number of tuples in 1-mismatch blocks where (count> 0), and once

count is reduced to zero, for each iteration the Hamming distances between the partially

filled candidate x and the set of strings are updated, hence, it assigns the characters of the

string with index of greatest Hamming distance among the positions where the number of

maximum Hamming distance is 1 or 4, otherwise it fixes the characters of the string with

index that is not the minimum or maximum Hamming distance in the current Hamming

distances vector.

Theoretical analysis of MSA

We first introduce one lemma, a lower bound for column-position types (v5, v6, v7), to prove

that MSA can find an optimal solution value of |S| = 4 , and |Γ| = 2 type of CSP.

Lemma 4. Let S = {s1, . . . , s4} be a CSP instance with length m, where each column

position belongs to v5, v6, v7 column types. Let n5, n6, n7 denote their number of columns.

If string t is an optimal solution of the CSP and dopt is the corresponding distance, then :

d(n5 + n6 + n7)/2e ≤ dopt.

Proof. Independently of whether the character appears in the column position j in the

string solution t, it mismatches with minimum 2 characters for v5, v6, v7. The sum of these

values is equals to the Hamming distance between t and si ∈ S, dividing it by 4 we get

the average Hamming distance, since the average distance from consensus to the 4-strings

is a lower bound on the maximum distance, we get the lemma.

Theorem 2. Let 4-CSP be an instance of CSP with 4 sequences and Γ = {α, β}. MSA

always finds an optimal solution value to 4-CSP.

Proof. The proof is composed in two main parts, one is made by direct method, and the

other one is demonstrated by induction method.

46

At first we construct a normalized instance from the input instance as follows. Let

Γj be the alphabet of cj we ordered the symbols in Γj according to their frequency in cj

in non-decreasing order, we get, fσ1 ≥ fσ2 · · · ≥ fσq . Let Γ′j be an alphabet such that

|Γj | = |Γ′j |, let φ : Γ→ Γ′ be a bijective function such that,

φ(cj)j=1,...,m =

 α if cij = σ1 i = 1, . . . , 4

β if cij = σ2 σq ∈ cj ; q = 1, 2
(4.19)

Note that, after we apply the φ(cj) function for each column position, we get only eight

column types vi, i = 0, . . . , 7, where each column type is a set of column positions.

v0 v1 v2 v3 v4 v5 v6 v7

α β α α α α α α

α α β α α α β β

α α α β α β β α

α α α α β β α β

Let P be a block of column types, that is, P = v0 . . . v4 and let Q be a block of the rest

of column types that is, Q = v5v6v7. P and Q are called affixes of S, we have S = P �Q.

Let A and B be two partially filled candidates with the same length and non-overlapping

sets of indices (i.e. if A[j] =␣, then B[j] 6= ␣ & vice versa), that is, {A,B} ∈ (Γ ∪ ␣)m,

the output of the function A�B is a string where each character belongs to the alphabet

Γ, more formally we have:

A�B =

 A[j] if B[j] = ␣ j = 1, . . . ,m

B[p] if A[p] = ␣ p = 1, . . . ,m
(4.20)

Let ni be the frequency of the vi column type, i = 0, . . . , 7. Suppose w.l.o.g. n1 ≥

n2 ≥ n3 ≥ n4. Let count be a number of column positions belong to v1, we have count=

n1 − n2 − b(n5 + n6 + n7)/2c. Thus, we break it into two cases:

Case 1: If n1 − n2 > b(n5 + n6 + n7)/2c ≥ 0, then count= n1 − n2 − b(n5 + n6 + n7)/2c.

In this case n1 is the greatest column type frequency, that is dH(s1, s2) = n1 +

n2 + (n5 + n6 + n7)/2, since in v1 and v2 the characters are different and the other

cases are equals and by the Lemma 4. Also we know that there not exits Hamming

distance less than (n1 +n2 +(n5 +n6 +n7)/2)/2, MSA determines a consensus value

n1−count/2. As a result we have to demonstrate that those values are equals, that

is, n1− (n1−n2− (n5 +n6 +n7)/2)/2→ (n1 +n2)/2 + (n5 +n6 +n7)/4, so we get,

(n1 + n2 + (n5 + n6 + n7)/2)/2.

47

Case 2: If n1 − n2 ≤ b(n5 + n6 + n7)/2c, then count≤ 0. In this case, MSA does not make

any processing in the P block.

Suppose that in the P block we do not consider the bcount/2c column positions which

belong to the v1 column type. Let x be a string of length m with unfixed characters, that

is xj ∈ Γ ∪ {␣} with 1 ≤ j ≤ m we have:

xj =


σ argmaxσk

4∑
i=1

|sij = σk| σk ∈ Pj k = 1, . . . , |Pj | ∀si ∈ P

␣ otherwise

(4.21)

Suppose that there exists bcount/2c column positions which belong to the v1 column

type, consider those column positions in the P block, x is the string solution, such that

xj with 1 ≤ j ≤ m is unfixed, we have:

xj =


σ argminσk

4∑
i=1

|sij = σk| σk ∈ Pj k = 1, . . . , |Pj | ∀si ∈ P

␣ otherwise

(4.22)

Note that at beginning x was a partially filled candidate, at this stage, if there are not

unfixed characters, then x is an optimal solution with dH(x, s) ≤ dopt ∀s ∈ S.

The Q block is a 4-CSP instance composing by the prefixes of S where each col-

umn position belonging to v5, v6, v7 column types. Let w be a vector of 4-integers,

wi = m with i = 1, . . . , 4. Let Φ(.) be a function, its input parameters are 4-integers

which are dH(x, si) si ∈ S when the j-th column position is being processed, it returns a

character to be fixed in the j-th column position, we have:

xj = Φ(w −
j∑

p=1

∆σ
Qp) (4.23)

∆σ
Qp =

 0 if s[p] = σ ∀s ∈ Q, σ ∈ Qp

1 otherwise
(4.24)

Let I be the set of indices of the maximum Hamming distance.

Ij = { argmaxi (wi −
j∑

p=1

∆σ
Qp), i = 1, . . . , 4} (4.25)

Let J be the set of indices of the minimum Hamming distance.

Jj = { argmini (wi −
j∑

p=1

∆σ
Qp), i = 1, . . . , 4} (4.26)

48

Note that, based on above definitions we define the Φ(.) function as follows,

Φ(w −
j∑

p=1

∆σ
Qp)∀s∈Q =


skj if |Ij | = {1, 4} k ∈ Ij

skj if |Ij | = {2, 3} & skj 6= slj k ∈ Ij , l ∈ Jj

srj if |Ij | = {2, 3} & skj = slj r 6= k, r ∈ Ij

(4.27)

We use induction for the rest of the proof on the number of unfixed positions in x

the optimal solution. Our inductive hypothesis is that, there are k fixed positions in x,

{j1, . . . , jk}, with k < m, that is, dH(x, s) ≤ d ∀s ∈ S, if xj is unfixed, then xj = Φ(w −∑j
p=1 ∆σ

Qp) with j ∈ {1, . . . ,m}\{j1, . . . , jk}, and dH(x, s) ≤ d−1 or dH(x, s) ≤ d ∀s ∈ S.

Base case : if there are not unfixed positions in x, then MSA ends being x the optimal

solution, with dH(x, s) ≤ dopt ∀s ∈ S.

Inductive Step: there are k + 1 fixed positions in x, {j1, . . . , jk+1}, by the inductive

hypothesis we get, dH(x, s) ≤ d−1 or dH(x, s) ≤ d ∀s ∈ S, consider that xj is unfixed with

j ∈ {1, . . . ,m}\{j1, . . . , jk+1}, then xj = Φ(w−
∑j

p=1 ∆σ
Qp), MSA minimizes the maximum

Hamming distance in 1 or 0 units, so we have dH(x, s) ≤ d− 2 or dH(x, s) ≤ d− 1 ∀s ∈ S,

the inductive hypothesis is maintained.

Running Time. The for-loop of lines 2-6 iterates in m steps the input instance, the in-

ner for-loop iterates for each column type v0 . . . , v4 in constant time, since the conditional

executes when one of them is true, thus it requiresm iterations. In the line 7, the twoFirst-

GreatestNumber function sorts in non-increasing order by the 4-integer values, it returns

the first and second numbers and its index associated, thus we get 4 log(4) which is con-

stant c1. The line 8 makes arithmetic operations, we have a constant time c2. The for-loop

of lines 9-10 iterates in m steps the integer-vector u, for each column position the ma-

jority function returns the most repeated character over the column position S[.][j], it

requires 4 steps, since there are only four strings, so we get 4m. The for-loop of lines

11-14 iterates in m steps the integer-vector u, note that in the worst case the variable

count is m/2, the minority function returns the least repeated character over the col-

umn position S[.][j], it requires 4 steps since the input instance consist only in 4 strings,

so it requires 4(m/2) = 2m. In line 15, dH function calculates the Hamming distance

between x and each input strings s ∈ S, so we get 4m. Note that, if all the positions

in x are fixed, then MSA stops. To sum up, the total execution time at this point is

max{m, c1, c2, 4m, 2m, 4m} = 4m.

The for-loop of lines 16-28 iterates in m steps when there is x[j] unfixed, so it requires

m iterations. The lines 17 and 18 calculate the maximum and minimum indices over

four integers which are the Hamming distances between x and s for each s ∈ S, in 4

49

iterations, so it requires 4m. In the line 19, the numberOfMaximum function calculates

the number of times that d[i] appears in d, it requires 4 iterations, so we have 4m. The

switch conditional of lines 20-27 evaluates according to the variable iNumberMax, The

line 21 is executed when the variable iNumberMax is 1 or 4, then a character is fixed,

so it takes m iterations. The switch-conditional branch of lines 23-27 is evaluated when

the variable iNumberMax is 2 or 3, then the if-conditional block evaluates the difference

of characters between the minimum and maximum indices on the j column position, the

if-then conditional requires 1 iteration, and the if-else conditional have 4 steps, so we have

4m. In the line 28, the updateHammingDistance function updates d[i] with i = 1 . . . , 4

subtracting one unit if the fixed character x[j] is presented in S[i][j] the i-th row, zero in

otherwise, it requires 4 steps in evaluating the integer vector d, so we have 4m. Note that,

at this step all the positions in x were fixed, the algorithm stops, the total execution time

is 4m. Therefore, the running time of MSA is proven to be O(8m).

Example 2. Let S be a CSP instance with 4-strings and each string of length 5, that is,

S = {00110, 00101, 11110, 11011}, applying MSA, we get:

S =



00110

00101

11110

11011

v5 v5 v4 v2 v7

0 0 1 1 0

0 0 1 0 1

1 1 1 1 0

1 1 0 1 1

∗ ∗ 1 1 ∗

v5 v5 v4 v2 v7

0 0 1 1 0

0 0 1 0 1

1 1 1 1 0

1 1 0 1 1

1 0 1 1 1

The column-position types are {v2, v4, v5, v7}, MSA makes pre-processing over the tuples

{v2, v4}, thus we obtain the partially filled candidate x = ∗ ∗ 01∗, where the character *

indicates that it has not been decided yet, for the rest unfixed column-positions, MSA fixes

them according to different cases, finally, the optimal solution is x = 10111. For more

details see Appendix A.1, it is a step-by-step for this example using the MSA approach.

4.2.3 Remarks

In the literature there is an efficient linear-time algorithm for four binary strings proposed

by [Boucher et al., 2009], it sometimes did not get the optimal solution, on the other hand,

our proposal, an efficient algorithm, always got the optimal solution. However, we are

interested in the CSP (general case), thus, our results will be extended to column-position

character, for each of them we calculate the Hamming distance, hence a greedy-choice will

minimize the maximum Hamming distance.

50

4.3 A recursive exact algorithm for the general case

In this section, we propose a greedy heuristic algorithm for CSP that allows one to get a

good approximation for an optimal solution. Also we pose an exact method, a recursive

algorithm for the general case.

Notation. Throughout this section, we will be considering our input instance as a

matrix. If the set S has k strings, s1, . . . , sk, each of length m, we view S as a k × m

matrix. We can thus refer to columns and rows, S[i][j] refers to string i, position j (i.e.

the indexing is row-first). The distance of a string s′ from S is maxs∈SdH(s′, s). Given a

string s we denote with s[j] the character in the jth position of s. A set of column positions

I is denoted as I = {p1, . . . , pm} ⊆ {1, . . . ,m} where p ∈ I is a specific column position.

For a given two strings s1 and s2, define Ps1,s2 as a set of indices where s1[p] = s2[p] for

p ∈ I, that is, Ps1,s2 = {p ∈ I| s1[p] = s2[p]} ⊆ I. LetQs1,s2 be a set of indices complement

of P, that is, Qs1,s2 = I \Ps1,s2 . Note that |Qs1,s2 | = dH(s1, s2). Let X be a set of optimal

solutions obtained from S, that is X = {x| x is an optimal solution of S \ si with si ∈

S, i = 1, . . . , k}. Let PX be a set of indices where all strings in X in those positions agree,

that is, PX = {p ∈ I| x1[p] = xi[p]; i = 2, . . . , k} ⊆ I. Let QX be a set of complement

indices, that is, QX = I \ PX . A sequence is a string of characters over an alphabet

Γ (σ is a typical symbol in Γ). A substring of a sequence s is a subsequence of successive

characters within s (not necessarily contiguous). Given a string s we denote with s[PX] a

substring of s restricted to a set of indices PX . A set of substrings S[PX] is called affixes

of S restricted to a set of indices PX , that is, S[PX] = {s[p] for s ∈ S, p ∈ PX}. Let Uj be

a set of characters used in the j-th position of the strings in S[j] = {s1[j], . . . , sk[j]} j ∈ I.

The recursive algorithm (CSP-R) is formally established by its proof of correctness

and its running time is described, at the same time GREEDY is posed by its theoretical

analysis and its correspondingly execution time also is presented.

4.3.1 GREEDY heuristic algorithm

This algorithm is a polynomial heuristic for solving the general CSP, it is a greedy algorithm

(GREEDY) because the choice at each position is global and guided, we choose a character

according to a global evaluation of the Hamming distance; moreover, our method identifies

a step on the solution space, since the choice of the character at position j affects the

choice of the character at position j + 1.

Definition 5 (Partially filled candidate[Amir et al., 2016]). We say that x∗ is a partially

51

filled candidate over Γ if for every symbol σ in x∗, σ ∈ Γ∪{␣}, where ␣6∈ Γ means that the

value of this symbol has not been decided yet.

Definition 6 (Consensus basis[Amir et al., 2016]). We say that a partially filled candidate

x∗ is a consensus basis if there exists a consensus string xc such that every symbol of x∗ is

either equal to the corresponding symbol of xc or is ␣.

Description of the greedy algorithm

GREEDY is a simple but effective method that can be used to solve the CSP. Firstly, in

this algorithm, the construction phase stores in M , the complement of the Hamming

distance between σ ∈ S[.][j] and S[.][j]. Also it stores, in M ′, the Hamming distance

between the partially filled candidate x∗ and s, ∀s ∈ S. Then an improve-solution

traverses all column-characters in M ′; any specific column-character is selected such that

it can be the best column character. The greedy-choice, at the same time, minimizes

the maximum Hamming distance, chooses the column-character that has the minimum

number of maximum Hamming distances, searches in three depth levels, and returns the

maximum number of characters presented in the best column character. After that, all

column characters associated to that column-position is removed in M ′, thus, GREEDY

iterates overM ′ by the same improve-solution. The stop criterion ism iterations because

at each iteration one column position is removed in M ′, where m is the size of the input-

strings.

Construction phase

The construction phase creates two similar structure matrices M and M ′, each of them is

an integer matrix of k rows and |Γ|×m columns. Their columns (j, σ), σ ∈ sj , ∀s ∈ S refer

to σ character in the j-th column in the given set of strings. Define Q as the set of indices

of S where there are more than 1 different symbol at any column position. Let Uj be a set

of characters used in the j-th position of the strings in S. Define Q× Uj as the Cartesian

product of two sets Q and Uj , that is, Q × Uj = {(j, σ) : j ∈ Q and σ ∈ Uj}. For any

element (j, σ) ∈ Q×Uj , jσ refers to any column-character. In M , each element consists of

only 1 or 0. In each iteration of GREEDY, for each jσ column-character, the σ character

is fixed in the j-th position of the current solution, thus in M ′, each column-character jσ

consists of Hamming distances between the current solution and each input-strings, that

is, if x[j] = σ then M ′[i, jσ] = dH(x, si), si ∈ S, i = 1, . . . , k; ∀σ ∈ Uj . More formally

52

we have

∆i
jσ =

 1 if si[j] = σ si ∈ S σ ∈ Γ

0 otherwise
(4.28)

Let w be the vector of Hamming distances, that is, wi = dH(x, si) si ∈ S i = 1, . . . , k. In

M ′, each element is a positive integer value defined as follows:

M ′[i, jσ] = wi −M [i, jσ] i = 1, . . . , k ∀jσ ∈ Q× Uj (4.29)

The function in (4.28) calculates the complement of the exclusive OR (XOR) between each

column-character and the set of input strings.

Improve-solution

The improve-solution, at each iteration, traverses the column-character in M ′, minimizes

the maximum Hamming distance, chooses the column-character that has the minimum

number of maximum Hamming distances, finally, searches depth in three levels and returns

the maximum number of characters presented in any column of the input-instance.

Theorem 3. Let S = {s1, . . . , sk} be an instance for CSP each string of length m. There

is xc a good approximation for an optimal solution obtained from GREEDY, such that,

dH(xc, si) ≤ d, i = 1, . . . , k; si ∈ S.

Proof. The proof is made by induction method. Define Q as the set of indices of S where

there are more than 1 different symbol at any column position. Let Q2,Q1 be subsets of

Q, that is, Q2 ⊆ Q1 ⊆ Q. Define Q × Uj as the Cartesian product of two sets Q and

Uj , that is, Q × Uj = {(j, σ) : j ∈ Q and σ ∈ Uj}. For any element (j, σ) ∈ Q × Uj , jσ

refers to any column-character. Define DQ1×Uj as the minimum of maximum Hamming

distance. Let DQ2×Uj be the minimum of number of times that DQ1×Uj appears in any

column-character.

DQ×Uj = maxi(wi −∆i
jσ) ∀(j, σ) ∈ Q× Uj i = 1, . . . , k (4.30)

DQ1×Uj = argminjσDQ×Uj ∀(j, σ) ∈ Q× Uj i = 1, . . . , k (4.31)

DQ2×Uj = argminjσ
k∑
i=1

|wi −∆i
jσ = DQ1×Uj | ∀(j, σ) ∈ Q1 × Uj (4.32)

min(S[Q]) =

 [argmaxjσ
∑k

i=1 ∆i
jσ]3 ∀(j, σ) ∈ Q2 × Uj If |Q| > 3

argmaxjσ
∑k

i=1 ∆i
jσ Otherwise

(4.33)

The function in (4.30) determines the maximum Hamming distance for each column-

character in Q × Uj . The function in (4.31) minimizes the maximum Hamming distance

53

between any column-character and the set of strings S[Q]. The function in (4.32) minimizes

the number of maximum Hamming distances presented in Q1×Uj . The function in (4.33)

reaches the best column-position-character in the third level when the number of column-

positions presented in Q is greater than three, otherwise, it maximizes the number of

characters presented in Q2×Uj . Finally the function in (4.33) is GREEDY applied to any

column-position j (j ∈ Q).

Base case: We start when the length of the strings is one, that is, |si| = 1, for i =

1, . . . , k. Let x be a string of size 1 with one free position. LetM [c1] be a character matrix

obtained from S. Note that if there are two different symbols at this column position, we

use the Function in (4.31). If there are three different symbols, we use the Function in

(4.33), and if all characters are different, we use the Function in (4.32). Thus, we use the

algorithm to fill in the blank to get a result f(M [c1]) = xc, such that dH(xc, s) ≤ d for all

s ∈ S.

Suppose there is a string xc of size l, and the input strings S = {s1, . . . , sk} of length

l, such that, dH(xc, s) ≤ d, ∀s ∈ S.

Inductive Step: Now we start when the length of the strings is l + 1, that is, |si| =

l + 1, for i = 1, . . . , k. Let M [c1 . . . cl+1] be a character matrix obtained from the input

instance, with l + 1 column positions. We apply the algorithm on that instance, that is,

f(M [c1 . . . cl+1]) = y to get cj (j ∈ {1, . . . , l+ 1}) a fixed column position at j-th position

in y. Note that y is a string of size l+1 with one fixed column position at j-th position. By

the inductive hypothesis there is a good approximation for a solution x of size l applying

over f(M [c1 . . . cl+1 \ cj]). Note that, the string x is a partially filled candidate, it has

one blank (free position) at j-th position, dH(x, s) ≤ d for all s ∈ S, so we fix it with the

(yj) character, as a result, the maximum Hamming distance value may keep the same or

reduce in one unit, thus, xc is a good approximation for a solution with size l + 1, such

that dH(xc, s) ≤ d, ∀s ∈ S; the inductive hypothesis is maintained.

The running time

In the Algorithm 8, the minimizeMaximumValue function has as input parameters:

(S) a set of strings, (k) the number of strings, (m) the size of strings, and (x) a consensus

basis. Line 2 calculates the Hamming distances between x and the set of strings, it requires

O(km). Line 3 initializes the 3-dimensional integer matrices. The for-loop of lines 4-9 stores

the Hamming distance for each character presented in any column position of the set of

strings, it takes O(m|Γ|k). The while-loop of lines 10-17 evaluates for each unfixed column

54

position the matrix T (3-dimensional integer matrix with dimensions m, |Γ|, and k), so it

takes O(|Γ|km2). Consequently, the total running time is O(|Γ|km2).

Example 3. Let S be a CSP instance with 3-strings and each string of length 4, that is,

S = {GTCC,AGAG,CGAG}, applying greedy, we get:

S =


GTCC

AGAG

CGAG

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

1 2 3 4

A C G G T A C C G

4 4 3 4 3 4 3 3 4

3 4 4 3 4 3 4 4 3

4 3 4 3 4 3 4 4 3

4 4 4 4 4 4 4 4 4

2 2 2 1 2 1 2 2 1

1 2 3 4

A C G G T A C C G

4 4 3 0 0 4 3 3 4

2 3 3 0 0 2 3 3 2

3 2 3 0 0 2 3 3 2

4 4 3 0 0 4 3 3 4

1 1 3 0 0 1 3 3 1

1 2 3 4

A C G G T A C C G

0 0 0 0 0 3 2 2 3

0 0 0 0 0 2 3 3 2

0 0 0 0 0 2 3 3 2

0 0 0 0 0 3 3 3 3

0 0 0 0 0 1 2 2 1

1 2 3 4

A C G G T A C C G

0 0 0 0 0 0 0 2 3

0 0 0 0 0 0 0 2 1

0 0 0 0 0 0 0 2 1

0 0 0 0 0 0 0 2 3

0 0 0 0 0 0 0 3 1

GREEDY initializes the current solution x = ∗∗∗∗ with Hamming distance d = [4, 4, 4],

also it creates two integer matrices H filled by 0-1 digits and T is the difference between

d and H (iteration #1) the column-character 2G is fixed as the best greedy-choice, now

x = ∗G ∗ ∗ d = [4, 3, 3], T is updated (iteration #2) the column-character 1G is fixed,

we get, x = GG ∗ ∗ d = [3, 3, 3], T is updated (iteration #3) the column-character 3A is

fixed, we have, x = GGA ∗ d = [3, 2, 2], T is updated (iteration #4) the column-character

4C is fixed, we get, x = GGAC with Hamming distance d = [2, 2, 2]. For more details see

Appendix A.2, it is a step-by-step for this example using the GREEDY algorithm.

55

Algorithm 8: GREEDY pseudo-code.
Input: S, k,m, x: CSP instance, number, length of strings, and consensus basis

Output: x is a good approximation for an optimal solution | maxi dH(x, si) ≤ d

1 Function minimizeMaximumValue(S, k,m, x):

2 d[.]← dH(x,S[.]);

/* H is 3-dimensional int matrix m|Γ|(k + 1) */

/* T is a 3-dimensional int matrix m|Γ|(k + 2) */

3 H ← ∅, T ← ∅

/* Construction phase */

4 for j ← 1, . . . ,m such that x[j] is unfixed do

5 foreach σ ∈ S[.][j] do

6 for i← 1, . . . , k do

7 if σ = S[i][j] then H[j][σ][i]← 1 ;

8 else H[j][σ][i]← 0;

9 H[j][σ][k + 1]← H[j][σ][k + 1] +H[j][σ][i]

/* Improve-solution */

10 while #unfixed > 0 do

11 T ← updateTable(H, d[.], x, T)

12 (T ′, d′, x′)← (T , d, x)

13 if #unfixed > 3 then (j, σ)← depthSearch3Levels(H, T ′, d′, x′);

14 else (j, σ)← chooseBestValue(H, T , x);

15 x[j]← σ

16 d[.]← updateHammingDistance(S[.][j], x[j], d[.])

17 #unfixed ← #unfixed −1

18 return x[.]

4.3.2 Recurrence relation

The CSP-R algorithm is a recursive exact method to solve the general CSP. Let S =

{s1, . . . , sk} be the input-instance with k strings of lengthm. Our method solves recursively

sub-instances of k− 1 strings, that is, S \{si} (i = 1, . . . , k); it removes one string for each

time from the input-instance. Let X be the set of optimal solutions obtained from S \{si},

hence X is a set of k strings of length m. Let PX be the set of column-positions where all

matches (characters agree), we can set x to be a consensus basis with fixed characters in

56

Algorithm 9: GREEDY functions.

Function updateTable(H, d[.], x, T)

for j ← 1, . . . ,m such that x[j] is unfixed do

foreach σ ∈ S[.][j] do
iMax ← 0

for i← 1, . . . , k do
T [j][σ][i]← d[i]−H[j][σ][i]

if iMax < T [j][σ][i] then iMax ← T [j][σ][i];
T [j][σ][k + 1]← iMax

iCount ← 0

for i← 1, . . . , k do

if T [j][σ][i] = iMax then iCount ← iCount +1 ;

T [j][σ][k + 2]← iCount
return T

Function depthSearch3Levels(H, T ′, d′[.], x′)
Q ← chooseBestValues(H, T ′, x′)

foreach (j, σ) ∈ Q do
x′′ ← x′

d′′[.]← d′[.]

for i← 1, . . . , 3 do
x′′[j]← σ

d′′[.]← updateHammingDistance(S[.][j], x′′[j], d′′[.])

T ′ ← updateTable(H, d′′[.], x′′, T ′)
T ′′ ← T ′′ ∪ chooseBestValue(H, T ′′, x′)

return chooseBestValue(H, T ′′, x′)
Function updateHammingDistance(S[.][j], σ, d[.])

for i← 1, . . . , k do

if S[i][j] = σ then d[i]← d[i]− 1;

return d[.];

Function chooseBestValue(H, T , x)
iMin1 ← chooseMinimumValue (T [.][.][k + 1])

iMin2 ← chooseMinimumValue (T [.][.][k + 2], iMin1)

iMax ← chooseMaximumValue (H[.][.][k + 1], iMin1, iMin2)

for j ← 1, . . . ,m such that x[j] is unfixed do

foreach σ ∈ S[.][j] do

if T [j][σ][k + 1], T [j][σ][k + 2],H[j][σ][k + 1] = iMin1,iMin2,iMax then
return (j, σ)

57

PX positions. Finally, our method uses GREEDY on S[QX] to fix the free positions in x,

thus x is an optimal solution for the input-instance, that is, dH(x, s) ≤ dopt ∀s ∈ S.

A recursive algorithm

Intuitively, we can construct a recursive algorithm for the CSP as follows:

(1) Divide the input instance S into k subproblems, that is, Si = S \{si} (i = 1, . . . , k).

The subproblem Si is built taking out the ith string of S.

(2) Solve each subproblem Si by solving them recursively. If the number of strings is

equal to two we get the base case.

(3) Combine the solutions to the subproblems, fix the column positions by their majority

consensus value when all characters in them are equals, as a result, we get a consensus

basis. Finally fill the free column positions by GREEDY.

The proof of correctness

Define Si as subset of S, that is, Si = S \ si (i = 1, . . . , k) such that |Si| = |S| − 1. The

main idea for the recursive algorithm is to solve recursively Si (i = 1, . . . , k); after that for

each subset Si we get an optimal solution xi. X is the set of these partial solutions. Based

on them the algorithm makes a consensus basis (i.e. fix the trivial column position by its

majority consensus value), finally it fixes the unfixed column positions by GREEDY. More

formally we get the following recursion:

Φ(S, k) ∈ {TRUE, FALSE} (4.34)

The output of the function Φ(.) is TRUE if there exists a string x such that dH(x, s) ≤

dopt ∀s ∈ S, an optimal solution, in agreement with [Dalpasso and Lancia, 2018].

Φ(S, k) =

 min S[I \ Ps1,s2] s1, s2 ∈ S if k = 2

min S[I \ PΦ(S\si,k−1)] i = 1, . . . , k if k > 2
(4.35)

To reconstruct the solution, we can set Φ(S, k) to be any x which makes true the Φ(.) in

(4.35). The output of Φ(S \ si, k − 1), i = 1, . . . , k is a set of partial solutions X with k

strings of length m. Moreover the affixes S[PX] is achieved by a pre-processing method,

and the affixes S[QX] is reduced by GREEDY .

We first introduce one lemma to prove that the CSP-R algorithm can find an optimal

solution value for the general case.

58

Lemma 5. Let S = {s1, s2} be an instance for CSP where each string is of length m,

there is x an optimal solution, if there exists, obtained from x = min S[I \ Ps1,s2], where

dH(x, si) ≤ d2
opt, i = 1, 2; si ∈ S.

base case. The proof is made by direct method. Let Ps1,s2 be a set of column positions,

that is, Ps1,s2 = {p ∈ I| s1[p] = s2[p]} ⊆ I. Let Qs1,s2 = I \ Ps1,s2 then we have

min S[Qs1,s2]. Let x′ be a partially filled candidate, where

x′[j] =

 σ if j ∈ Ps1,s2 σ ∈ S[j]

␣ if j ∈ Qs1,s2
(4.36)

Note that in the substring x[Qs1,s2] all its characters are unfixed, so we apply GREEDY

on the affixes S[Qs1,s2] for each column position r ∈ Qs1,s2 . By the Theorem 3, x[r] =

min S[r] ∀r ∈ Qs1,s2 . So we get dH(x, si) ≤ d2
opt, i = 1, 2; si ∈ S, so we have the optimal

solution and its corresponding optimal value. Therefore, the lemma holds.

The Lemma 5 can be deduce, let S = {s1, s2} be a CSP instance with 2-strings, as

follows:
v0 v1 v2

s1 α β α

s2 α α β

Note that, independently of whether the character appears in the column-position j in the

string solution x, it mismatches with minimum 1 character for v1, v2. The sum of these

values is equal to the Hamming distance between x and si ∈ S, dividing it by 2 we get the

average Hamming distance. The last result is also equal to the lower bound proposed by

[Liu et al., 2011], that is, dopt ≥ dH(s1, s2)2.

Finally we summarize our results in the following Theorem.

Theorem 4. Given a set of strings S = {s1, · · · , sk}, the recursive algorithm finds a string

x (an optimal solution, if there exists), such that dH(x, si) ≤ dopt, i = 1, . . . , k; si ∈ S.

Proof. The proof is made by an induction method

Base case

P (2) : There is an optimal solution x2 for two strings s1 and s2 getting from x2 =

min S[I \Ps1,s2] with s1, s2 ∈ S. By the Lemma 5, we get an optimal solution with length

m such that dH(x2, si) ≤ d2
opt, i = 1, 2; si ∈ S.

Assume that P (k − 1) is true. Let S̄ = {s1, . . . , sk−1} be a set of (k − 1)-strings,

then there is an optimal solution xk−1, taking from xk−1 = min S̄[I \ PΦ(S̄\si,k−2)], i =

1, . . . , k − 1; si ∈ S, where xk−1 is a string of length m such that dH(xk−1, si) ≤ dk−1
opt .

59

Inductive step

Consider P (k). Let S = {s1, . . . , sk} be a set of k-strings. Then S can be decomposed

into k subsets Si ⊆ S, where Si = S \ si, i = 1, . . . , k, then the optimal solution xk

will be made up of the set of k optimal solutions x̄i, i = 1, . . . , k getting from each subset

Si(subproblem), with |Si| = k−1. Then, X = ∪ki=1x̄
i, x̄i = min Si[I \PΦ(Si\si,k−2)], i =

1, . . . , k − 1; si ∈ Si with dH(x̄i, si) ≤ d̄iopt. Obtained by induction hypothesis. Thus,

PX = {p ∈ I| x̄1[p] = x̄i[p], i = 2, . . . , k}, and QX = I \ PX ; then we have min S[QX].

Note that, xk is a consensus basis, where

xk[j] =

 σ if j ∈ PX σ ∈ Γ

␣ if j ∈ QX
(4.37)

Note that, in the substring xk[QX] all its characters are free because it has not been decided

yet. So we apply GREEDY on the affixes S[QX] for each column position r ∈ QX . Thus by

the Theorem 3, there is xk, an optimal solution obtained from xk[r] = min S[r] ∀r ∈ QX .

So we get dH(xk, si) ≤ dkopt, i = 1, . . . , k; si ∈ S, so we have the optimal solution and its

corresponding optimal value. Therefore the theorem holds.

The running time complexity

The recursive combinatorial algorithm calls itself in k times, in order to determine the

running time. We propose the following complexity-time function: for k the number of

strings, we have

t(k) =

 |Γ|km2 if k = 2

k.t(k − 1) + |Γ|km2 if k > 2
(4.38)

To compute t(k), we expand out the recurrence (4.38), obtaining

t(2) = 2|Γ|m2 (4.39)

t(3) = 3(2|Γ|m2) + 3|Γ|m2 (4.40)

. . .

t(k) = k!|Γ|m2 + k!/2|Γ|m2 + · · ·+ k!/(k − 1)!|Γ|m2 (4.41)

The recurrence in (4.41) is the function’s value at the k-th iteration. Solving the sum,

we get t(k) = k!|Γ|m2
∑k

i=2
1

(k−1)! . Because the sum of the reciprocals of factorials converge

to e, we get
∑k

i=2
1

(i−1)! ≈ e which is a constant number. Finally, k! ≈ kk, and |Γ| ≈ k

since a CSP instance with alphabet |Γ| > k is isomorphic to a CSP instance with alphabet

|Γ′| = k [Gramm et al., 2001], thus t(k) = O(kk.km2) = O(kk+1.m2).

60

Example 4. Let S be a CSP instance with 3-strings and each string of length 4, that is,

S = {GTCC,AGAG,CGAG}, applying CSP-R (recursive exact method), we get:

S′′ =


CSP-R(s3, s2) x1 AGAG

CSP-R(s1, s3) x2 GGCG

CSP-R(s1, s2) x3 GGCG

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

1 2 3 4

A C G G T A C C G

4 4 3 0 0 4 3 0 0

1 2 2 0 0 1 2 0 0

2 1 2 0 0 1 2 0 0

4 4 3 0 0 4 3 0 0

1 1 1 0 0 1 1 0 0

1 2 3 4

A C G G T A C C G

0 0 0 0 0 3 2 0 0

0 0 0 0 0 1 2 0 0

0 0 0 0 0 1 2 0 0

0 0 0 0 0 3 2 0 0

0 0 0 0 0 1 3 0 0

CSP-R makes 3-recursive calls with all string combinations, that is, {s3, s2}, {s3, s1},

{s2, s1}, each of them constitutes a partial solution, CSP-R creates a new instances with

those partial solutions, after that it makes pre-processing over that instance, we get, x =

∗G∗G d = [4, 2, 2], then it uses greedy to creates H a 0-1 matrix and T = (d−H) (iteration

#1) the column-character 1G is fixed as the best greedy-choice, now x = GG ∗ G d =

[3, 2, 2], T is updated (iteration #2) the column-character 4C is fixed, we have, x = GGCG

with Hamming distance d = [2, 2, 2]. For more details see Appendix A.3, it is a step-by-step

for this example using the CSP-R exact recursive method.

4.3.3 Remarks

This chapter has provided the proposed methods to solve the Closest String Problem,

firstly, for three strings with an arbitrary alphabet, secondly, four strings with a binary al-

phabet, finally, for the general case, a heuristic polynomial greedy algorithm and a recursive

exact algorithm were summarized.

61

Algorithm 10: CSP-R, exact recursive pseudo-code.
Input: S, k,m: CSP instance, number and length of strings

Output: x: optimal solution such that maxi dH(x, si) ≤ dopt

1 Function CSP-R(S, k,m, x):

2 if k = 2 then

/* base case: pre-processing method */

3 for j ← 1, . . . ,m do

4 if S[1][j] = S[2][j] then x[j] = S[1][j];

/* greedy algorithm */

5 x← minimizeMaximumValue(S, k,m, x)

6 else

/* pre-processing method */

7 for i← 1, . . . , k do

8 iCount ← 1

9 for j ← 1, . . . , k do

10 if i 6= j then

/* S ′ is a set of k − 1 strings of size m */

11 copy(S ′[iCount], S[j]);

12 iCount ← iCount+1

/* S ′′ is a set of k partial solutions of size m */

13 S ′′[i]← CSP-R(S ′, k − 1,m,S ′′[i])

14 for j ← 1, . . . ,m do

15 Q← ∅

16 for i← 1, . . . , k do Q← Q ∪ S ′′[i][j] ;

17 if |Q| = 1 then x[i] = Q[1] ;

/* greedy algorithm */

18 x← minimizeMaximumValue(S, k,m, x)

19 return x[.]

62

Chapter 5

COMPUTATIONAL

EXPERIMENTS

This chapter presents in comparison tables the results of computational experiments using

the linear time algorithms for three and four strings, and also for the general case the

heuristic greedy algorithm and the recursive exact algorithm.

5.1 Test environment

All the programs were developed in C++ and used the compiler Gnu C++ with optimiza-

tions. All tests were executed on a desktop computer with the following configuration: Dell

processor Intel Core I7 with speed of 3.4 Ghz and 7.7 GB of RAM under Linux Ubuntu

18.04 LTS work on 64 bits. The solver IBM ILOG CPLEX version 12.7[CPLEX, 2014] was

used to solve the IP-formulation.

The algorithm used for random-number generation is an implementation of the Well

equidistributed long-period linear, a random number generator [Panneton et al., 2006]; this

algorithm has been preferred because of its very long period of 244497 − 1.

Three classes of instances were tested. The first class is a binary alphabet (that is,

{0, 1}). The second class is a DNA alphabet (that is, {A,C,G, T}), while the third class

is a protein alphabet (that is, {A,B, . . . , S, T}).

63

5.2 Results for linear-time algorithm with up to three

strings

We now present the computational experiments carried out with the algorithms described

in Sections 4.1.1 (An IP formulation for 3-CSP) and 4.1.3 (Efficient linear-time algorithm

for three sequences).

MFA was executed over a set of 420 instances, with 14 instances for each of the al-

phabets. Ten instances were generated for each entry. In Tables 5.1 and 5.2 the results

represent the average of the obtained values.

The headers on Tables 5.1 and 5.2 have the following meanings: the first column

indicates the tested instance, indicating the parameter (m) size of string; the columns

(2,4, and 20 Characters) indicates the (Min, Avg, Max) minimum, average, and maximum

values of optimal solutions to 3-sequences for binary, DNA, and protein types. The columns

labeled ”IP-3” give the average running time (in milliseconds) for the IP-formulation with

three strings. The columns labeled ”MFA” give the average running time (in milliseconds)

for the proposed algorithm.

In Table 5.3, we see that on average MFA yields solution values within 100% of the

solution values obtained by IP-formulation for instances with alphabets of sizes two, four

and twenty, respectively. The average CPU time for protein instances using MFA: 0.010

(milliseconds) which is less than that of IP-formulation: 1.047 (milliseconds).

Figure 5.1 presents in logarithmic scale the run-times obtained by IP-3 and MFA. It

shows that the IP-3 has a monotonic increasing along the time for 2, 4 and 20 characters.

Meanwhile, MFA has a less monotonic increasing. Because it traverses the column-positions

once to get the optimal solution value.

5.3 Results for linear-time algorithm for four binary

strings

We now present the computational experiments with three different methods, the first

is an IP-formulation for 4-CSP with a binary alphabet presented in Section 4.2.1, the

second is MSA described in Section 4.2.2, and the third was posed by Boucher et al. 2009

[Boucher et al., 2009].

Some computational experiments was done involving 140 instances, using the instance

generator described in the literature [Meneses et al., 2004]. These instances consider bi-

64

Table 5.1: Summary of Results for 3-CSP with 2, and 4 characters.

Instance 2 Characters 4 Characters

m Min Avg Max IP-3 MFA Min Avg Max IP-3 MFA

1000 250 258.9 264 0.009 0.001 429 441.1 451 0.065 0.003

2500 628 637.2 653 0.017 0.002 1080 1095.0 1113 0.048 0.002

5000 1252 1266.0 1285 0.031 0.003 2175 2190.3 2213 0.094 0.003

7500 1876 1900.7 1927 0.044 0.004 3252 3277.9 3308 0.143 0.004

10000 2456 2523.6 2575 0.059 0.005 4324 4382.9 4436 0.191 0.006

12500 3126 3150.8 3204 0.075 0.006 5429 5465.1 5509 0.252 0.007

15000 3740 3780.8 3818 0.089 0.007 6522 6562.9 6597 0.297 0.008

17500 4371 4406.3 4470 0.104 0.008 7615 7658.6 7719 0.347 0.009

20000 5006 5038.6 5086 0.119 0.009 8701 8749.1 8794 0.399 0.010

22500 5642 5660.8 5681 0.134 0.010 9820 9846.5 9893 0.450 0.012

25000 6239 6281.1 6329 0.149 0.011 10894 10943.9 10979 0.503 0.013

27500 6879 6917.9 6972 0.165 0.013 12007 12047.0 12100 0.551 0.014

30000 7504 7545.2 7586 0.180 0.013 13079 13143.7 13206 0.604 0.015

50000 12479 12526.1 12595 0.306 0.022 21803 21866.2 21928 1.129 0.024

Table 5.2: Summary of Results for 3-CSP with 20 characters.

Instance 20 Characters

m Min Avg Max IP-3 MFA

1000 611 616.9 622 0.051 0.002

2500 1537 1545.1 1555 0.125 0.002

5000 3071 3088.1 3100 0.253 0.003

7500 4608 4629.1 4645 0.389 0.005

10000 6169 6183.1 6193 0.536 0.006

12500 7698 7716.5 7746 0.674 0.007

15000 9234 9261.5 9282 0.818 0.008

17500 10791 10808.9 10828 0.971 0.009

20000 12280 12347.3 12394 1.177 0.011

22500 13863 13888.0 13921 1.357 0.012

25000 15414 15440.8 15462 1.520 0.013

27500 16935 16981.4 17006 1.694 0.014

30000 18495 18535.9 18567 1.860 0.016

50000 30819 30859.3 30900 3.227 0.025

Table 5.3: Number of instances for which the optimal value is provided.

Value IP-3 MFA

Binary instances (140) 4421.00 0.106 0.008

DNA instances (140) 7690.73 0.362 0.009

Protein instances (140) 10850.14 1.047 0.010

nary alphabet that is, {0, 1} with a set of four strings. The headers on Table 5.4 have

the following meanings: The first block (Instance) is the tested instances indicating the

65

Figure 5.1: Run-time depending on different methods in logarithmic scale, Length of

strings (x-axis), Time in logarithmic scale (y-axis), IP3-Char2 means IP-formulation for

three strings applied to binary alphabet, MFA-Char4 means Minimization First algorithm

applied to DNA alphabets. Source: the authors.

parameters (m) size of string. In the second block (IP) the columns (Min, Avg, and Max)

present the minimum, average, and maximum optimal solution values obtained by the IP-

formulation, the column (Time) indicates their execution time in milliseconds. The third

block (MSA) the column (Time) presents its execution time in milliseconds generated by

MSA. Finally, in the fourth block (Boucher) the columns (Min, Avg, and Max) show the

minimum, average, and maximum values calculated by the Boucher’s method, the column

(Time) presents their execution time in milliseconds.

The Boucher’s method posed a formal proof for the existence of a linear-time al-

gorithm for the CSP with four binary strings, we implemented it, then we compare

the optimal solution value in comparison tables, for example, the 4-CSP instances with

m = {2500, . . . , 30000} have a gap of 1 unit compared to the IP-formulation, in these

same instances our proposed algorithm got the optimal solution values. Consequently, our

proposed algorithm demonstrates better results compared with Boucher’s one.

In the Table 5.4, the Boucher’s method posed a formal proof for the existence of a

linear-time algorithm for CSP with four binary strings, we implemented it, then we compare

the optimal solution value in comparison tables, for example, the 4-CSP instances with

m = {2500, . . . , 30000} have a gap of 1 unit compared with the IP-formulation, in these

same instances our proposed algorithm got the optimal solution value. Consequently, our

66

proposed algorithm demonstrates better results compared with Boucher’s one.

In the Table 5.5, the algorithm embedded in the Boucher’s method was easy to imple-

ment, so it not likely that we just have a buggy implementation of her algorithm, besides

that for 80% of the tested instances got optimal solution value while for 20% always off by

at most 1 unit.

Figure 5.2 shows the optimal solution values in logarithmic scale for the three algo-

rithms. Table 5.4 presents the gap for optimal solution values between IP-4 and Boucher’s

methods, the worst gap value was for 5000 length of strings 0.0002% (error). On the other

hand, MSA always got an exact solution value.

Finally, the IP-formulation presents less performance in its running time, also it leads

to huge running time even for moderate number of variables. Thus, our proposed algorithm

demonstrates to be a better algorithm in performance and effectiveness.

Table 5.4: Summary of results, for 4-sequences with 2 Characters.

Instance IP-4 MSA Boucher

m Min Avg Max Time Time Min Avg Max Time Gap

1000 300 313.7 322 0.004 0.001 300 313.7 322 0.001 1.0000

2500 768 778.3 791 0.004 0.001 768 778.4 791 0.002 1.0001

5000 1547 1565.7 1579 0.004 0.002 1548 1565.8 1579 0.002 1.0002

7500 2324 2343.2 2364 0.004 0.002 2325 2343.7 2365 0.003 1.0001

10000 3108 3130.0 3154 0.004 0.003 3108 3130.2 3155 0.004 1.0001

12500 3892 3914.2 3944 0.004 0.003 3892 3914.3 3944 0.005 1.0000

15000 4637 4670.3 4695 0.004 0.004 4637 4670.5 4695 0.005 1.0000

17500 5453 5471.9 5496 0.005 0.004 5453 5472.1 5496 0.006 1.0000

20000 6226 6249.6 6292 0.005 0.005 6227 6250.2 6293 0.007 1.0001

22500 6978 7031.2 7052 0.005 0.005 6979 7031.6 7052 0.007 1.0001

25000 7773 7808.3 7832 0.005 0.005 7773 7808.4 7832 0.008 1.0000

27500 8552 8597.8 8636 0.005 0.006 8553 8597.9 8636 0.009 1.0000

30000 9313 9363.4 9390 0.006 0.006 9314 9363.5 9390 0.009 1.0000

50000 15582 15635.0 15698 0.008 0.010 15582 15635.0 15698 0.015 1.0000

Table 5.5: Number of instances for which the optimal value is provided.

Instances IP-4 MSA Boucher

Minimum (140) 5460.929 5460.929 5461.357

Average (140) 5490.900 5490.900 5491.093

Maximum (140) 5517.500 5517.500 5517.714

Time (140) 0.005 (140) 0.004 (140) 0.006 (113)

67

Figure 5.2: Optimal solution values depending on different methods in logarithmic scale,

Length of strings (x-axis), Optimal Solution values in logarithmic scale (y-axis), Boucher

means Boucher’s method, IP-4 means IP-formulation for four binary strings, MSA means

Minimization Second algorithm applied to binary alphabet. Source: the authors.

5.4 Results for recursive exact algorithm for the

general case

We now present the computational experiments with three different methods. The first is

an IP-formulation presented in Section 3.2. The second is the recursive algorithm (CSP-R)

posed in Section 4.3.2. The third is GREEDY described in Section 4.3.1.

The computational experiments involving 900 instances with 30 instances for each of

the alphabets. Ten instances were generated for each entry. The headers on Tables 5.6-5.8

have the following meanings: The first block (Instance) is the tested instance indicating

the parameters: (k) number of strings, (m) size of string. The columns (Min, Avg, Max)

present the minimum, average and maximum optimal solution values. The column (Time)

indicates their execution time in milliseconds. The column (Gap) gives the relative gap

between the heuristic solution and the IP solution, calculated as h/i, where h is the average

heuristic value and i is the average IP solution value. The second block (IP) presents the

optimal solution values generated by the IP-formulation. The third block (CSP-R) shows

their execution time calculated by the recursive algorithm (CSP-R). Finally, in the fourth

block (GREEDY) there is a good approximation for optimal solution values generated by

GREEDY.

68

On Tables 5.6-5.8, the CSP-R algorithm got optimal solution values for 100% of the

instances comparing to IP-formulation. Meanwhile, the CSP-R algorithm got a better

performance for small instances, that is, in less than 6-strings its execution time got less

than a one second. The boxplots in logarithmic scale for the three methods one for the

lenght of string (Figure 5.3) and the other for the number of strings (Figure 5.4) show that

the CSP-R has the worst running time.

On Tables 5.6-5.8, GREEDY got optimal solution values for 85% of the instances

while for 15% (see Tables 5.6 and 5.7, the Greedy:average feasible solution values in bold)

they were always off by at most 1 unit comparing to IP-formulation. Its CPU time got

reasonable time, less than 38 milliseconds. Besides that, its running time increases slowly

for large instances for the two, four, and twenty alphabets.

Figure 5.3: Boxplot in logarithmic scale of the running times for GREEDY and exact

methods: The length of the strings (x-axis) and Time in logarithmic scale (y-axis), legend:

G-Char2 means GREEDY method applied for binary characters, IP-Char4 means Integer

Programming formulation applied for DNA alphabet, R-Char20 means exact recursive

approach applied for protein alphabet. Source: the authors.

5.5 Results for GREEDY algorithm for the general

case

Optimal solution values of IP against GREEDY algorithm, for the McClure Instances, over

the Alphabet with 20 Characters. The experiments show that the greedy algorithm was

69

Table 5.6: Summary of Results for the Alphabet with Two Characters.

Instance IP CSP-R GREEDY

k m Min Avg Max Time Time Min Avg Max Time Gap

3

300 73 79.9 86 0.01 0.00 73 79.9 86 0.00 1.000

400 104 106.6 110 0.01 0.01 104 106.6 110 0.00 1.000

500 125 128.9 136 0.01 0.01 125 128.9 136 0.00 1.000

600 145 154.9 162 0.01 0.01 145 154.9 162 0.01 1.000

700 172 182.7 190 0.01 0.02 172 182.7 190 0.01 1.000

800 197 206.6 213 0.01 0.02 197 206.6 213 0.01 1.000

4

300 89 94.1 100 0.01 0.01 89 94.1 100 0.00 1.000

400 118 124.1 130 0.01 0.02 118 124.1 130 0.00 1.000

500 151 158.0 167 0.01 0.03 151 158.0 167 0.01 1.000

600 177 184.6 191 0.01 0.04 177 184.6 191 0.01 1.000

700 215 220.0 224 0.01 0.06 215 220.0 224 0.01 1.000

800 239 248.0 259 0.01 0.08 239 248.0 259 0.01 1.000

5

300 94 97.6 100 0.01 0.06 94 97.6 100 0.00 1.000

400 126 128.8 133 0.01 0.10 126 128.8 133 0.00 1.000

500 155 161.1 169 0.01 0.15 155 161.1 169 0.01 1.000

600 184 188.9 195 0.01 0.22 184 188.9 195 0.01 1.000

700 218 224.8 230 0.01 0.30 218 224.8 230 0.01 1.000

800 246 255.1 263 0.01 0.39 246 255.1 263 0.01 1.000

6

300 100 103.9 107 0.01 0.32 100 104.0 108 0.00 1.001

400 135 137.6 141 0.01 0.58 135 137.6 141 0.00 1.000

500 169 172.1 175 0.01 0.91 169 172.1 175 0.01 1.000

600 203 208.1 211 0.01 1.33 203 208.1 211 0.01 1.000

700 238 243.3 250 0.01 1.81 238 243.3 250 0.01 1.000

800 269 275.9 284 0.01 2.33 269 276.0 284 0.01 1.000

7

300 104 106.7 110 0.01 2.24 105 106.9 110 0.00 1.002

400 138 142.0 147 0.01 4.10 138 142.2 147 0.01 1.001

500 171 174.6 178 0.01 6.29 171 174.7 178 0.01 1.001

600 205 209.8 217 0.01 9.22 205 210.2 217 0.01 1.002

700 241 244.4 249 0.01 12.64 242 244.8 250 0.01 1.002

800 275 279.6 285 0.01 16.21 275 279.7 285 0.02 1.000

70

Table 5.7: Summary of Results for the Alphabet with Four Characters.

Instance IP CSP-R GREEDY

k m Min Avg Max Time Time Min Avg Max Time Gap

3

300 124 130.3 134 0.01 0.01 124 130.3 134 0.00 1.000

400 169 174.9 181 0.01 0.02 169 174.9 181 0.00 1.000

500 213 219.0 228 0.01 0.02 213 219.0 228 0.01 1.000

600 254 263.4 273 0.01 0.03 254 263.4 273 0.01 1.000

700 292 304.6 315 0.02 0.04 292 304.6 315 0.01 1.000

800 341 351.1 361 0.02 0.05 341 351.1 361 0.01 1.000

4

300 137 140.0 143 0.01 0.03 137 140.2 143 0.00 1.001

400 183 186.9 191 0.02 0.06 183 186.9 191 0.00 1.000

500 231 235.3 241 0.02 0.09 231 235.3 241 0.01 1.000

600 275 280.7 285 0.02 0.12 275 280.7 285 0.01 1.000

700 323 328.2 336 0.03 0.17 323 328.2 336 0.01 1.000

800 367 372.5 378 0.03 0.21 367 372.5 378 0.01 1.000

5

300 149 152.3 157 0.02 0.16 150 152.5 157 0.00 1.001

400 199 202.9 206 0.02 0.27 199 203.4 207 0.01 1.002

500 250 252.9 256 0.03 0.43 250 253.3 256 0.01 1.002

600 296 300.7 305 0.03 0.61 297 300.9 305 0.01 1.001

700 353 355.3 360 0.03 0.84 354 355.6 360 0.01 1.001

800 397 403.2 409 0.04 1.08 397 403.3 409 0.02 1.000

6

300 156 158.9 163 0.02 0.91 157 159.3 163 0.00 1.003

400 207 212.2 217 0.03 1.63 208 212.4 218 0.01 1.001

500 262 266.2 270 0.03 2.56 262 266.3 270 0.01 1.000

600 314 317.8 320 0.04 3.66 314 318.3 321 0.01 1.002

700 368 372.7 376 0.05 5.00 368 372.8 376 0.02 1.000

800 421 424.8 427 0.05 6.51 421 424.9 428 0.02 1.000

7

300 163 164.5 166 0.03 6.45 164 164.9 166 0.00 1.002

400 216 219.6 222 0.03 11.68 216 219.6 222 0.01 1.000

500 268 272.6 278 0.03 17.90 268 272.7 278 0.01 1.000

600 322 327.1 334 0.05 25.59 323 327.4 334 0.01 1.001

700 375 382.8 388 0.06 34.93 376 383.0 388 0.02 1.001

800 434 436.7 442 0.05 45.58 434 436.8 443 0.02 1.000

71

Table 5.8: Summary of Results for the Alphabet with Twenty Characters.

Instance IP CSP-R GREEDY

k m Min Avg Max Time Time Min Avg Max Time Gap

3

300 183 185.5 188 0.02 0.02 183 185.5 188 0.00 1.000

400 244 247.1 250 0.02 0.02 244 247.1 250 0.00 1.000

500 305 308.9 315 0.03 0.03 305 308.9 315 0.01 1.000

600 365 370.7 375 0.03 0.04 365 370.7 375 0.01 1.000

700 426 431.6 435 0.04 0.06 426 431.6 435 0.01 1.000

800 489 494.8 499 0.04 0.07 489 494.8 499 0.01 1.000

4

300 199 203.6 207 0.02 0.05 199 203.6 207 0.00 1.000

400 268 271.5 276 0.03 0.08 268 271.5 276 0.01 1.000

500 337 340.1 343 0.03 0.12 337 340.1 343 0.01 1.000

600 401 407.0 412 0.04 0.18 401 407.0 412 0.01 1.000

700 472 474.7 481 0.05 0.24 472 474.7 481 0.02 1.000

800 539 542.8 547 0.05 0.32 539 542.8 547 0.02 1.000

5

300 211 213.4 218 0.02 0.23 211 213.4 218 0.01 1.000

400 281 284.7 290 0.03 0.41 281 284.7 290 0.01 1.000

500 353 356.4 359 0.04 0.63 353 356.4 359 0.01 1.000

600 419 426.3 433 0.04 0.91 419 426.3 433 0.02 1.000

700 493 498.9 503 0.05 1.23 493 498.9 503 0.02 1.000

800 568 571.2 575 0.06 1.62 568 571.2 575 0.03 1.000

6

300 216 218.6 222 0.03 1.37 216 218.6 222 0.01 1.000

400 289 293.5 297 0.03 2.44 289 293.5 297 0.01 1.000

500 363 365.7 368 0.04 3.81 363 365.7 368 0.01 1.000

600 435 438.5 442 0.05 5.43 435 438.5 442 0.02 1.000

700 512 513.8 515 0.06 7.45 512 513.8 515 0.03 1.000

800 582 585.8 589 0.07 9.69 582 585.8 589 0.03 1.000

7

300 223 224.7 227 0.03 9.65 223 224.7 227 0.01 1.000

400 296 300.1 303 0.04 17.15 296 300.1 303 0.01 1.000

500 372 373.9 376 0.05 26.60 372 373.9 376 0.02 1.000

600 447 448.6 451 0.06 38.16 447 448.6 451 0.02 1.000

700 520 522.7 526 0.07 51.91 520 522.7 526 0.03 1.000

800 594 597.5 603 0.07 67.72 594 597.5 603 0.04 1.000

72

Figure 5.4: Boxplot in logarithmic scale of the running times for GREEDY and exact

methods: The number of strings (x-axis) and Time in logarithmic scale (y-axis), legend:

G-Char2 means GREEDY method applied for binary characters, IP-Char4 means Integer

Programming formulation applied for DNA alphabet, R-Char20 means exact recursive

approach applied for protein alphabet. Source: the authors.

able to find solutions within 50% of the optimal value in less than one second for instances

with the protein alphabet.

In Table 5.9, GREEDY for 50% got the optimal solution value, that is, the worst Gap

1.013 was by the instances for 10-strings with 98 length of strings, and 12-strings with 98

length of strings, in those cases the algorithm gives a good approximation for an optimal

solution value with 0.013% (error). Furthermore the running time for all real instances was

less than one second for 20 characters. Because the greedy algorithm, for each iteration,

traverses through the column-characters, after that, it makes a greedy-choice (minimizing

the longest Hamming distance) among the best candidates, in this last step a bottleneck

is created, the algorithm meets this problem by doing a depth search in three levels, thus

increasing the potential of the proposed method.

73

Table 5.9: Summary of Results for the McClure Instances, over the Alphabet with 20

Characters.

Instance IP GREEDY

Name n m Val Time Val Time Gap

mc586.6.seq 6 100 72 0.011 72 0.187 1.000

mc582.6.seq 6 141 88 0.013 89 0.203 1.011

mc586.10.seq 10 98 75 0.023 76 0.345 1.013

mc582.10.seq 10 141 97 0.033 97 0.451 1.000

mc586.12.seq 12 98 77 0.016 78 0.987 1.013

mc582.12.seq 12 141 97 0.024 97 0.988 1.000

74

Chapter 6

CONCLUSION

The CSP is a problem widely explored in the literature, since 1997 when it was shown

to be in NP-complete still for binary alphabet. Since that, different techniques have been

used to solve the CSP. From its empirical side there are meta-heuristics and formulations

in integer linear programming, to its theoretical side we have the approximation algorithms

and the exact methods such as the fixed-parameter tractability.

In this work, we reviewed basic definitions for string selection problems related to

Closest String Problem whose decision versions belong to NP-complete, furthermore, we

showed a hierarchy of complexities with those problems. Thus the optimal solution for

one of them will be a model to solve other, so find a method to solve can contribute to all

those problems. Additionally we described the most important issues in this area, several

methods, and algorithms derived from the literature review.

One of the first attempts to solve CSP was to use meta-heuristics in order to analyze

its inherent parameters to the problem. In addition to the parameters (k) number of

strings, (m) length of strings, (Γ) the alphabet, and (d) the Hamming distance; there is

the structure of the character matrix associated to its complexity. Beside, other unknown

properties. One of our limitations was to get the state-of-the-art instances to make proper

comparisons with our proposed algorithm (GREEDY).

Our goal is to solve the problem accurately by using a direct combinatorial algorithmic

technique parameterized by k (number of the input strings), with that objective, we de-

signed and implemented exact methods for a few strings namely 3-CSP (for three strings)

and 4-CSP (with four strings), linear-time algorithms, they are mainly a column-position

type characterization. Additionally. For the general case, we proposed a greedy heuristic

algorithm (GREEDY) and a recursive exact method.

The exact recursive algorithm repeatedly calls the greedy algorithm to build its partial

75

solutions from its base case (2-strings) until k (number of input strings). A possible

improvement to this strategy would be to use a formulation in integer linear programming

to build partial solutions for k− 1 strings. We worked on this idea, unfortunately it didn’t

work out, so we couldn’t report it.

Furthermore, our hypothesis was positive answered since there is a fixed parameter

algorithm, our proposed method, called exact recursive algorithm for the general case with

running time of O(kk+1.m2).

6.1 Future Works

In the present work we deal with the CSP specifically with the Hamming distance as a

parameter, in the literature we can find the CSP with other metrics such as edit distance,

Levenshtein distance, and ranking distance, the proposed methods could be used to solve

such similar problems.

Since we have an exact combinatorial method and in the literature there are many

formulations in integer programming. We can use a hybrid approach to merge the best

of two techniques, so we can build a matheuristic using an integer linear programming

formulation plus the exact recursive method for solving the CSP.

The exact recursive method builds its optimal solution value using partial solutions

of smaller instances, these solutions are calculated on repeated occasions, so we could

save those partial solutions to reuse them, thus avoiding the unnecessary construction of

the same partial solutions over and over again. Based on this analysis, as a future work

we intend to improve the performance of the exact recursive algorithm using a dynamic

programming approach.

76

References

[Amir et al., 2009] Amir, A., Landau, G. M., Na, J. C., Park, H., Park, K., and Sim, J. S.

(2009). Consensus Optimizing Both Distance Sum and Radius, pages 234–242.

Springer Berlin Heidelberg, Berlin, Heidelberg.

[Amir et al., 2016] Amir, A., Paryenty, H., and Roditty, L. (2016). Configurations and

minority in the string consensus problem. Algorithmica, 74(4):1267–1292.

[Andoni et al., 2006] Andoni, A., Indyk, P., and Patrascu, M. (2006). On the optimality

of the dimensionality reduction method. In 2006 47th Annual IEEE Symposium

on Foundations of Computer Science (FOCS’06), pages 449–458. IEEE.

[Arbib et al., 2017] Arbib, C., Servilio, M., and Ventura, P. (2017). An improved integer

linear programming formulation for the closest 0-1 string problem. Computers

& Operations Research, 80:94 – 100.

[Babaie and Mousavi, 2010] Babaie, M. and Mousavi, S. R. (2010). A memetic algorithm

for closest string problem and farthest string problem. In 18th Iranian Conference

on Electrical Engineering (ICEE), 2010, pages 570–575. IEEE.

[Basavaraju et al., 2014] Basavaraju, M., Panolan, F., Rai, A., Ramanujan, M., and

Saurabh, S. (2014). On the kernelization complexity of string problems. In In-

ternational Computing and Combinatorics Conference, pages 141–153. Springer.

[Ben-Dor et al., 1997] Ben-Dor, A., Lancia, G., Perone, J., and Ravi, R. (1997). Banishing

bias from consensus sequences. In Apostolico, A. and Hein, J., editors, Proceed-

ings of the 8th Annual Symposium on Combinatorial Pattern Matching, number

1264 in Lecture notes in computer science, pages 247–261, Aarhus, Denmark.

Springer-Verlag.

[Berman et al., 1997] Berman, P., Gumucio, D., Hardison, R., Miller, W., and Stojanovic,

N. (1997). A linear-time algorithm for the 1-mismatch problem. In WADS’97.

77

[Bixby, 1987] Bixby, R. E. (1987). Notes on combinatorial optimization. Technical report,

Rice University, Department of Computational and Applied Mathematics.

[Boucher et al., 2009] Boucher, C., Brown, D. G., and Durocher, S. (2009). On the Struc-

ture of Small Motif Recognition Instances, pages 269–281. Springer Berlin Hei-

delberg, Berlin, Heidelberg.

[Boucher et al., 2012] Boucher, C., Landau, G. M., Levy, A., Pritchard, D., and Weimann,

O. (2012). On approximating string selection problems with outliers. CoRR,

abs/1202.2820:427–438.

[Boucher et al., 2015] Boucher, C., Lo, C., and Lokshantov, D. (2015). Consensus patterns

(probably) has no eptas. In Algorithms-ESA 2015, pages 239–250. Springer.

[Bulteau et al., 2014] Bulteau, L., Hüffner, F., Komusiewicz, C., and Niedermeier, R.

(2014). Multivariate algorithmics for np-hard string problems. Bulletin of

EATCS, 3(114).

[Chen, 2007] Chen, J.-C. (2007). Iterative rounding for the closest string problem. arXiv

preprint arXiv:0705.0561.

[Chimani et al., 2011] Chimani, M., Woste, M., and Böcker, S. (2011). A closer look at

the closest string and closest substring problem. In Proceedings of the Meeting

on Algorithm Engineering & Expermiments, pages 13–24. Society for Industrial

and Applied Mathematics.

[Cormen et al., 2009] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009).

Introduction to Algorithms. third edition.

[Cornell, 2016] Cornell, B. (2016).

[CPLEX, 2014] CPLEX (2014). CPLEX 12.6.1 Reference manual. IBM ILOG CPLEX.

[Croce and Garraffa, 2014] Croce, F. D. and Garraffa, M. (2014). The selective fixing

algorithm for the closest string problem. Computers & Operations Research,

41:24 – 30.

[Dalpasso and Lancia, 2018] Dalpasso, M. and Lancia, G. (2018). New modeling ideas

for the exact solution of the closest string problem. In Elloumi, M., Granitzer,

M., Hameurlain, A., Seifert, C., Stein, B., Tjoa, A. M., and Wagner, R., edi-

tors, Database and Expert Systems Applications, pages 105–114, Cham. Springer

International Publishing.

78

[Della Croce and Salassa, 2012] Della Croce, F. and Salassa, F. (2012). Improved lp-based

algorithms for the closest string problem. Computers & Operations Research,

39(3):746–749.

[Deng et al., 2002] Deng, X., Li, G., and Wang, L. (2002). Center and distinguisher

for strings with unbounded alphabet. Journal of Combinatorial Optimization,

6(4):383–400.

[Downey and Fellows, 1999] Downey, R. G. and Fellows, M. R. (1999). Parameterized

Complexity. Springer-Verlag.

[Faro and Pappalardo, 2010] Faro, S. and Pappalardo, E. (2010). Ant-csp: An ant colony

optimization algorithm for the closest string problem. In SOFSEM, volume 5901,

pages 370–381. Springer.

[Fellows, 2002] Fellows, M. (2002). Parameterized complexity: the main ideas and con-

nections to practical computing. In Experimental algorithmics, number 2547 in

Lecture notes of computer science, pages 51–77. Springer-Verlag.

[Ferrer et al., 2010] Ferrer, M., Valveny, E., Serratosa, F., Riesen, K., and Bunke, H.

(2010). Generalized median graph computation by means of graph embedding

in vector spaces. Pattern Recogn., 43(4):1642–1655.

[Frances and Litman, 1997] Frances, M. and Litman, A. (1997). On covering problems of

codes. Theor. Comput. Syst., 30:113–119.

[Gasieniec et al., 1999] Gasieniec, L., Jansson, J., and Lingas, A. (1999). Efficient approx-

imation algorithms for the hamming center problem. pages 905–906.

[Gomes et al., 2008] Gomes, F. C., Meneses, C. N., Pardalos, P. M., and Viana, G. V. R.

(2008). A parallel multistart algorithm for the closest string problem. Computers

& Operations Research, 35(11):3636–3643.

[Gramm et al., 2001] Gramm, J., Niedermeier, R., and Rossmanith, P. (2001). Exact solu-

tions for closest string and related problems. In In Proceedings of the 12th Annual

International Symposium on Algorithms and Computation (ISAAC 2001), vol-

ume 2223 of Lecture Notes in Computer Science, pages 441–452. Springer Verlag.

[Gramm et al., 2003] Gramm, J., Niedermeier, R., and Rossmanith, P. (2003). Fixed-

parameter algorithms for closest string and related problems. Algorithmica,

37:25–42.

79

[Hill, 1986] Hill, R. (1986). A First Course in Coding Theory. Oxford Applied Linguistics.

Clarendon Press.

[Hufsky et al., 2011] Hufsky, F., Kuchenbecker, L., Jahn, K., Stoye, J., and Böcker, S.

(2011). Swiftly computing center strings. BMC Bioinformatics, 12(1):106.

[Julstrom, 2009] Julstrom, B. A. (2009). A data-based coding of candidate strings in the

closest string problem. In Proceedings of the 11th Annual Conference Companion

on Genetic and Evolutionary Computation Conference: Late Breaking Papers,

pages 2053–2058. ACM.

[Keith et al., 2002] Keith, J. M., Adams, P., Bryant, D. E., Kroese, D. P., Mitchelson,

K. R., Cochran, D. A. E., and Lala, G. H. (2002). A simulated annealing

algorithm for finding consensus sequences. Bioinformatics, 18(11):1494âĂŞ1499.

[Lance and Williams, 1967] Lance, G. N. and Williams, W. T. (1967). A general theory of

classificatory sorting strategies: 1. hierarchical systems. Computer J., 9:373–380.

[Lanctot et al., 2003] Lanctot, K., Li, M., Ma, B., Wang, S., and Zhang, L. (2003). Distin-

guishing string selection problems. Information and Computation, 185(1):41–55.

[Latorre and de Freitas, 2016] Latorre, O. and de Freitas, R. (2016). An efficient algorithm

for the closest string problem. XXXVI Congresso da Sociedade Brasileira de

Computação, I ETC, pages 281–284.

[Latorre and de Freitas, 2018] Latorre, O. and de Freitas, R. (2018). An efficient com-

binatorial algorithm for closest string problem with four strings. XIX Latin-

Iberoamerican conference on operations research, pages 171–178.

[Latorre and Salvatierra, 2019] Latorre, O. and Salvatierra, M. (2019). A recursive exact

algorithm for the closest string problem. Journal of Combinatorial Mathematics

and Combinatorial Computing, pages 171–185.

[Lenstra, 1983] Lenstra, H. W. (1983). Integer programming with a fixed number of vari-

ables. Mathematics of Operations Research, 8(4):538–548.

[Li et al., 1999] Li, M., Ma, B., and Wang, L. (1999). Finding similar regions in many

strings. Proceedings of the Thirty First Annual ACM Symposium on Theory of

Computing, Atlanta, pages 473–482.

80

[Li et al., 2002] Li, M., Ma, B., and Wang, L. (2002). On the closest string and substring

problems. Journal of the ACM, 49(2):157–171.

[Liu et al., 2005] Liu, X., He, H., and Sỳkora, O. (2005). Parallel genetic algorithm and

parallel simulated annealing algorithm for the closest string problem. In Ad-

vanced Data Mining and Applications, pages 591–597. Springer.

[Liu et al., 2008] Liu, X., Holger, M., Hao, Z., and Wu, G. (2008). A compounded genetic

and simulated annealing algorithm for the closest string problem. In The 2nd

International Conference on Bioinformatics and Biomedical Engineering, 2008.

ICBBE 2008., pages 702–705. IEEE.

[Liu et al., 2011] Liu, X., Liu, S., Hao, Z., and Mauch, H. (2011). Exact algorithm and

heuristic for the closest string problem. Computers & Operations Research,

38(11):1513–1520.

[Ma and Sun, 2008] Ma, B. and Sun, X. (2008). More Efficient Algorithms for Clos-

est String and Substring Problems, pages 396–409. Springer Berlin Heidelberg,

Berlin, Heidelberg.

[Mauch et al., 2003] Mauch, H., Melzer, M. J., and Hu, J. S. (2003). Genetic algorithm

approach for the closest string problem. In Proceedings of the 2003 IEEE Bioin-

formatics Conference, 2003. CSB 2003., pages 560–561. IEEE.

[McClure et al., 1994] McClure, M., Vasi, T., and Fitch, W. (1994). Comparative analysis

of multiple protein-sequence alignment methods. Mol. Biol. Evol., 11:571–592.

[Meneses et al., 2004] Meneses, C., Lu, Z., Oliveira, C., and Pardalos, P. (2004). Optimal

solutions for the closest string problem via integer programming. INFORMS

Journal on Computing, 16(4):419–429.

[Metropolis and Ulam, 1949] Metropolis, N. and Ulam, S. (1949). The monte carlo

method. Journal of the American statistical association, 44(247):335–341.

[Mousavi and Esfahani, 2012] Mousavi, S. R. and Esfahani, N. N. (2012). A grasp algo-

rithm for the closest string problem using a probability-based heuristic. Com-

puters & Operations Research, 39(2):238–248.

[Nienkötter and Jiang, 2016] Nienkötter, A. and Jiang, X. (2016). Distance-preserving

vector space embedding for the closest string problem. In 2016 23rd International

Conference on Pattern Recognition (ICPR), pages 1530–1535.

81

[Panneton et al., 2006] Panneton, F., L’Ecuyer, P., and Matsumoto, M. (2006). Improved

long-period generators based on linear recurrences modulo 2. ACM Trans. Math.

Softw., 32(1):1–16.

[Pappalardo et al., 2014] Pappalardo, E., Cantone, D., and Pardalos, P. M. (2014). A

combined greedy-walk heuristic and simulated annealing approach for the closest

string problem. Optimization Methods and Software, 29(4):673–702.

[Roman, 1992] Roman, S. (1992). Coding and Information Theory, volume 134 of Graduate

Texts in Mathematics. Springer-Verlag.

[Shaik et al., 2019] Shaik, N., Hakeem, K., Banaganapalli, B., and Elango, R. (2019).

Essentials of Bioinformatics, Volume I: Understanding Bioinformatics: Genes to

Proteins. Number v. 1 in Lecture notes in Bioinformatics. Springer International

Publishing.

[Sze et al., 2004] Sze, S.-H., Lu, S., and Chen, J. (2004). Integrating sample-driven and

pattern-driven approaches in motif finding. In International Workshop on Algo-

rithms in Bioinformatics, pages 438–449. Springer.

[Tanaka, 2012] Tanaka, S. (2012). A heuristic algorithm based on lagrangian relaxation for

the closest string problem. Computers & Operations Research, 39(3):709–717.

[Vilca and Meneses, 2012] Vilca, O. L. and Meneses, C. N. (2012). Planos de corte e

heurísticas para o closest string problem. CLAIO & SBPO.

[Wolsey, 1998] Wolsey, L. (1998). Integer Programming. Wiley Series in Discrete Mathe-

matics and Optimization. Wiley.

82

Appendix A

Step-by-step examples

A.1 MSA step-by-step example

Minimization Second Algorithm (MSA) is an iterative algorithm to solve the 4-CSP, that is,

four strings with a binary alphabet. In the following we explain step-by-step example, let

S be a 4-CSP instance with a binary alphabet, that is, S = {01011, 01000, 10011, 10110}.

Input instance

S1 =



01011

01000

10011

10110

Normalized instance

S2 =



1 2 3 4 5

0 0 1 1 0

0 0 1 0 1

1 1 1 1 0

1 1 0 1 1

n0 n1 n2 n3 n4

0 0 1 0 1

u :
3 4

4 2

Algorithm: MSA step-by-step iteration 1
if |S| = 4 and |Γ| = 2 then

for j ← 1, . . . ,m do
u[j]← −∞;

for i← 0, . . . , 4 such that (S[.][j])t = vi do
ni ← ni + 1; u[j]← i;

η1, Iη1 , η2 ← twoFirstGreatestNumber(n1, . . . , n4);

count← b(η1 − η2 − b(m− (n0 + · · ·+ n4))/2c)/2c;

for j ← 1, . . . ,m such that u[j] ≥ 0 do
x[j]← majority(S[.][j]);

for j ← 1, . . . ,m such that u[j] = Iη1 and count > 0 do
x[j]← minority(S[.][j]); count← count− 1;

d[.]← dH(x,S[.]);

for j ← 1, . . . ,m such that x[j] is unfixed do
i← indexMaximum(d);

k ← indexMinimum(d);

switch frequencyOfNumber(d[i], d) do

case 1 or 4 do
x[j]← S[i][j];

case 2 or 3 do

if S[i][j] 6= S[k][j] then x[j]← S[i][j];

else
r ← index(S[.][j], i, k);

x[j]← S[r][j];
updateHammingDistance(S[.][j], x[j], d[.]);

83

S2 =



1 2 3 4 5

0 0 1 1 0

0 0 1 0 1

1 1 1 1 0

1 1 0 1 1

n0 n1 n2 n3 n4

0 0 1 0 1

u :
3 4

4 2

η1 Iη1 η2 count

1 2 1 0

Algorithm: MSA step-by-step iteration 2
if |S| = 4 and |Γ| = 2 then

for j ← 1, . . . ,m do
u[j]← −∞;

for i← 0, . . . , 4 such that (S[.][j])t = vi do
ni ← ni + 1; u[j]← i;

η1, Iη1 , η2 ← twoFirstGreatestNumber(n1, . . . , n4);

count← b(η1 − η2 − b(m− (n0 + · · ·+ n4))/2c)/2c;

for j ← 1, . . . ,m such that u[j] ≥ 0 do
x[j]← majority(S[.][j]);

for j ← 1, . . . ,m such that u[j] = Iη1 and count > 0 do
x[j]← minority(S[.][j]); count← count− 1;

d[.]← dH(x,S[.]);

for j ← 1, . . . ,m such that x[j] is unfixed do
i← indexMaximum(d);

k ← indexMinimum(d);

switch frequencyOfNumber(d[i], d) do

case 1 or 4 do
x[j]← S[i][j];

case 2 or 3 do

if S[i][j] 6= S[k][j] then x[j]← S[i][j];

else
r ← index(S[.][j], i, k);

x[j]← S[r][j];
updateHammingDistance(S[.][j], x[j], d[.]);

S2 =



1 2 3 4 5

0 0 1 1 0

0 0 1 0 1

1 1 1 1 0

1 1 0 1 1

x : ␣␣11␣

n0 n1 n2 n3 n4

0 0 1 0 1

u :
3 4

4 2

η1 Iη1 η2 count

1 2 1 0

Algorithm: MSA step-by-step iteration 3
if |S| = 4 and |Γ| = 2 then

for j ← 1, . . . ,m do
u[j]← −∞;

for i← 0, . . . , 4 such that (S[.][j])t = vi do
ni ← ni + 1; u[j]← i;

η1, Iη1 , η2 ← twoFirstGreatestNumber(n1, . . . , n4);

count← b(η1 − η2 − b(m− (n0 + · · ·+ n4))/2c)/2c;

for j ← 1, . . . ,m such that u[j] ≥ 0 do
x[j]← majority(S[.][j]);

for j ← 1, . . . ,m such that u[j] = Iη1 and count > 0 do
x[j]← minority(S[.][j]); count← count− 1;

d[.]← dH(x,S[.]);

for j ← 1, . . . ,m such that x[j] is unfixed do
i← indexMaximum(d);

k ← indexMinimum(d);

switch frequencyOfNumber(d[i], d) do

case 1 or 4 do
x[j]← S[i][j];

case 2 or 3 do

if S[i][j] 6= S[k][j] then x[j]← S[i][j];

else
r ← index(S[.][j], i, k);

x[j]← S[r][j];
updateHammingDistance(S[.][j], x[j], d[.]);

84

S2 =



1 2 3 4 5

0 0 1 1 0

0 0 1 0 1

1 1 1 1 0

1 1 0 1 1

x : ␣␣11␣

n0 n1 n2 n3 n4

0 0 1 0 1

u :
3 4

4 2

η1 Iη1 η2 count

1 2 1 0

Algorithm: MSA step-by-step iteration 4
if |S| = 4 and |Γ| = 2 then

for j ← 1, . . . ,m do
u[j]← −∞;

for i← 0, . . . , 4 such that (S[.][j])t = vi do
ni ← ni + 1; u[j]← i;

η1, Iη1 , η2 ← twoFirstGreatestNumber(n1, . . . , n4);

count← b(η1 − η2 − b(m− (n0 + · · ·+ n4))/2c)/2c;

for j ← 1, . . . ,m such that u[j] ≥ 0 do
x[j]← majority(S[.][j]);

for j ← 1, . . . ,m such that u[j] = Iη1 and count > 0 do
x[j]← minority(S[.][j]); count← count− 1;

d[.]← dH(x,S[.]);

for j ← 1, . . . ,m such that x[j] is unfixed do
i← indexMaximum(d);

k ← indexMinimum(d);

switch frequencyOfNumber(d[i], d) do

case 1 or 4 do
x[j]← S[i][j];

case 2 or 3 do

if S[i][j] 6= S[k][j] then x[j]← S[i][j];

else
r ← index(S[.][j], i, k);

x[j]← S[r][j];
updateHammingDistance(S[.][j], x[j], d[.]);

S2 =



1 2 3 4 5

0 0 1 1 0

0 0 1 0 1

1 1 1 1 0

1 1 0 1 1

x : ␣␣11␣

d :
[

3 4 3 4
]

Algorithm: MSA step-by-step iteration 5
if |S| = 4 and |Γ| = 2 then

for j ← 1, . . . ,m do
u[j]← −∞;

for i← 0, . . . , 4 such that (S[.][j])t = vi do
ni ← ni + 1; u[j]← i;

η1, Iη1 , η2 ← twoFirstGreatestNumber(n1, . . . , n4);

count← b(η1 − η2 − b(m− (n0 + · · ·+ n4))/2c)/2c;

for j ← 1, . . . ,m such that u[j] ≥ 0 do
x[j]← majority(S[.][j]);

for j ← 1, . . . ,m such that u[j] = Iη1 and count > 0 do
x[j]← minority(S[.][j]); count← count− 1;

d[.]← dH(x,S[.]);

for j ← 1, . . . ,m such that x[j] is unfixed do
i← indexMaximum(d);

k ← indexMinimum(d);

switch frequencyOfNumber(d[i], d) do

case 1 or 4 do
x[j]← S[i][j];

case 2 or 3 do

if S[i][j] 6= S[k][j] then x[j]← S[i][j];

else
r ← index(S[.][j], i, k);

x[j]← S[r][j];
updateHammingDistance(S[.][j], x[j], d[.]);

85

S2 =



1 2 3 4 5

0 0 1 1 0

0 0 1 0 1

1 1 1 1 0

1 1 0 1 1

x : ␣␣11␣

d :
[

3 4 3 4
]

j = 1, i = 2, k = 1

Algorithm: MSA step-by-step iteration 6
if |S| = 4 and |Γ| = 2 then

for j ← 1, . . . ,m do
u[j]← −∞;

for i← 0, . . . , 4 such that (S[.][j])t = vi do
ni ← ni + 1; u[j]← i;

η1, Iη1 , η2 ← twoFirstGreatestNumber(n1, . . . , n4);

count← b(η1 − η2 − b(m− (n0 + · · ·+ n4))/2c)/2c;

for j ← 1, . . . ,m such that u[j] ≥ 0 do
x[j]← majority(S[.][j]);

for j ← 1, . . . ,m such that u[j] = Iη1 and count > 0 do
x[j]← minority(S[.][j]); count← count− 1;

d[.]← dH(x,S[.]);

for j ← 1, . . . ,m such that x[j] is unfixed do
i← indexMaximum(d);

k ← indexMinimum(d);

switch frequencyOfNumber(d[i], d) do

case 1 or 4 do
x[j]← S[i][j];

case 2 or 3 do

if S[i][j] 6= S[k][j] then x[j]← S[i][j];

else
r ← index(S[.][j], i, k);

x[j]← S[r][j];
updateHammingDistance(S[.][j], x[j], d[.]);

S2 =



1 2 3 4 5

0 0 1 1 0

0 0 1 0 1

1 1 1 1 0

1 1 0 1 1

x : 1␣11␣

d :
[

3 4 3 4
]

j = 1, i = 2, k = 1, r = 3

Algorithm: MSA step-by-step iteration 7
if |S| = 4 and |Γ| = 2 then

for j ← 1, . . . ,m do
u[j]← −∞;

for i← 0, . . . , 4 such that (S[.][j])t = vi do
ni ← ni + 1; u[j]← i;

η1, Iη1 , η2 ← twoFirstGreatestNumber(n1, . . . , n4);

count← b(η1 − η2 − b(m− (n0 + · · ·+ n4))/2c)/2c;

for j ← 1, . . . ,m such that u[j] ≥ 0 do
x[j]← majority(S[.][j]);

for j ← 1, . . . ,m such that u[j] = Iη1 and count > 0 do
x[j]← minority(S[.][j]); count← count− 1;

d[.]← dH(x,S[.]);

for j ← 1, . . . ,m such that x[j] is unfixed do
i← indexMaximum(d);

k ← indexMinimum(d);

switch frequencyOfNumber(d[i], d) do

case 1 or 4 do
x[j]← S[i][j];

case 2 or 3 do

if S[i][j] 6= S[k][j] then x[j]← S[i][j];

else
r ← index(S[.][j], i, k);

x[j]← S[r][j];
updateHammingDistance(S[.][j], x[j], d[.]);

86

S2 =



1 2 3 4 5

0 0 1 1 0

0 0 1 0 1

1 1 1 1 0

1 1 0 1 1

x : 1␣11␣

d :
[

3 4 2 3
]

j = 1, i = 2, k = 1, r = 3

Algorithm: MSA step-by-step iteration 8
if |S| = 4 and |Γ| = 2 then

for j ← 1, . . . ,m do
u[j]← −∞;

for i← 0, . . . , 4 such that (S[.][j])t = vi do
ni ← ni + 1; u[j]← i;

η1, Iη1 , η2 ← twoFirstGreatestNumber(n1, . . . , n4);

count← b(η1 − η2 − b(m− (n0 + · · ·+ n4))/2c)/2c;

for j ← 1, . . . ,m such that u[j] ≥ 0 do
x[j]← majority(S[.][j]);

for j ← 1, . . . ,m such that u[j] = Iη1 and count > 0 do
x[j]← minority(S[.][j]); count← count− 1;

d[.]← dH(x,S[.]);

for j ← 1, . . . ,m such that x[j] is unfixed do
i← indexMaximum(d);

k ← indexMinimum(d);

switch frequencyOfNumber(d[i], d) do

case 1 or 4 do
x[j]← S[i][j];

case 2 or 3 do

if S[i][j] 6= S[k][j] then x[j]← S[i][j];

else
r ← index(S[.][j], i, k);

x[j]← S[r][j];

updateHammingDistance(S[.][j], x[j], d[.]);

S2 =



1 2 3 4 5

0 0 1 1 0

0 0 1 0 1

1 1 1 1 0

1 1 0 1 1

x : 1␣11␣

d :
[

3 4 2 3
]

j = 2, i = 2, k = 3

Algorithm: MSA step-by-step iteration 9
if |S| = 4 and |Γ| = 2 then

for j ← 1, . . . ,m do
u[j]← −∞;

for i← 0, . . . , 4 such that (S[.][j])t = vi do
ni ← ni + 1; u[j]← i;

η1, Iη1 , η2 ← twoFirstGreatestNumber(n1, . . . , n4);

count← b(η1 − η2 − b(m− (n0 + · · ·+ n4))/2c)/2c;

for j ← 1, . . . ,m such that u[j] ≥ 0 do
x[j]← majority(S[.][j]);

for j ← 1, . . . ,m such that u[j] = Iη1 and count > 0 do
x[j]← minority(S[.][j]); count← count− 1;

d[.]← dH(x,S[.]);

for j ← 1, . . . ,m such that x[j] is unfixed do
i← indexMaximum(d);

k ← indexMinimum(d);

switch frequencyOfNumber(d[i], d) do

case 1 or 4 do
x[j]← S[i][j];

case 2 or 3 do

if S[i][j] 6= S[k][j] then x[j]← S[i][j];

else
r ← index(S[.][j], i, k);

x[j]← S[r][j];
updateHammingDistance(S[.][j], x[j], d[.]);

87

S2 =



1 2 3 4 5

0 0 1 1 0

0 0 1 0 1

1 1 1 1 0

1 1 0 1 1

x : 1011␣

d :
[

3 4 2 3
]

j = 2, i = 2, k = 3

Algorithm: MSA step-by-step iteration 10
if |S| = 4 and |Γ| = 2 then

for j ← 1, . . . ,m do
u[j]← −∞;

for i← 0, . . . , 4 such that (S[.][j])t = vi do
ni ← ni + 1; u[j]← i;

η1, Iη1 , η2 ← twoFirstGreatestNumber(n1, . . . , n4);

count← b(η1 − η2 − b(m− (n0 + · · ·+ n4))/2c)/2c;

for j ← 1, . . . ,m such that u[j] ≥ 0 do
x[j]← majority(S[.][j]);

for j ← 1, . . . ,m such that u[j] = Iη1 and count > 0 do
x[j]← minority(S[.][j]); count← count− 1;

d[.]← dH(x,S[.]);

for j ← 1, . . . ,m such that x[j] is unfixed do
i← indexMaximum(d);

k ← indexMinimum(d);

switch frequencyOfNumber(d[i], d) do

case 1 or 4 do
x[j]← S[i][j];

case 2 or 3 do

if S[i][j] 6= S[k][j] then x[j]← S[i][j];

else
r ← index(S[.][j], i, k);

x[j]← S[r][j];
updateHammingDistance(S[.][j], x[j], d[.]);

S2 =



1 2 3 4 5

0 0 1 1 0

0 0 1 0 1

1 1 1 1 0

1 1 0 1 1

x : 1011␣

d :
[

2 3 2 3
]

j = 2, i = 2, k = 3

Algorithm: MSA step-by-step iteration 11
if |S| = 4 and |Γ| = 2 then

for j ← 1, . . . ,m do
u[j]← −∞;

for i← 0, . . . , 4 such that (S[.][j])t = vi do
ni ← ni + 1; u[j]← i;

η1, Iη1 , η2 ← twoFirstGreatestNumber(n1, . . . , n4);

count← b(η1 − η2 − b(m− (n0 + · · ·+ n4))/2c)/2c;

for j ← 1, . . . ,m such that u[j] ≥ 0 do
x[j]← majority(S[.][j]);

for j ← 1, . . . ,m such that u[j] = Iη1 and count > 0 do
x[j]← minority(S[.][j]); count← count− 1;

d[.]← dH(x,S[.]);

for j ← 1, . . . ,m such that x[j] is unfixed do
i← indexMaximum(d);

k ← indexMinimum(d);

switch frequencyOfNumber(d[i], d) do

case 1 or 4 do
x[j]← S[i][j];

case 2 or 3 do

if S[i][j] 6= S[k][j] then x[j]← S[i][j];

else
r ← index(S[.][j], i, k);

x[j]← S[r][j];

updateHammingDistance(S[.][j], x[j], d[.]);

88

S2 =



1 2 3 4 5

0 0 1 1 0

0 0 1 0 1

1 1 1 1 0

1 1 0 1 1

x : 1011␣

d :
[

2 3 2 3
]

j = 5, i = 2, k = 1

Algorithm: MSA step-by-step iteration 12
if |S| = 4 and |Γ| = 2 then

for j ← 1, . . . ,m do
u[j]← −∞;

for i← 0, . . . , 4 such that (S[.][j])t = vi do
ni ← ni + 1; u[j]← i;

η1, Iη1 , η2 ← twoFirstGreatestNumber(n1, . . . , n4);

count← b(η1 − η2 − b(m− (n0 + · · ·+ n4))/2c)/2c;

for j ← 1, . . . ,m such that u[j] ≥ 0 do
x[j]← majority(S[.][j]);

for j ← 1, . . . ,m such that u[j] = Iη1 and count > 0 do
x[j]← minority(S[.][j]); count← count− 1;

d[.]← dH(x,S[.]);

for j ← 1, . . . ,m such that x[j] is unfixed do
i← indexMaximum(d);

k ← indexMinimum(d);

switch frequencyOfNumber(d[i], d) do

case 1 or 4 do
x[j]← S[i][j];

case 2 or 3 do

if S[i][j] 6= S[k][j] then x[j]← S[i][j];

else
r ← index(S[.][j], i, k);

x[j]← S[r][j];
updateHammingDistance(S[.][j], x[j], d[.]);

S2 =



1 2 3 4 5

0 0 1 1 0

0 0 1 0 1

1 1 1 1 0

1 1 0 1 1

x : 10111

d :
[

2 3 2 3
]

j = 5, i = 2, k = 1

Algorithm: MSA step-by-step iteration 13
if |S| = 4 and |Γ| = 2 then

for j ← 1, . . . ,m do
u[j]← −∞;

for i← 0, . . . , 4 such that (S[.][j])t = vi do
ni ← ni + 1; u[j]← i;

η1, Iη1 , η2 ← twoFirstGreatestNumber(n1, . . . , n4);

count← b(η1 − η2 − b(m− (n0 + · · ·+ n4))/2c)/2c;

for j ← 1, . . . ,m such that u[j] ≥ 0 do
x[j]← majority(S[.][j]);

for j ← 1, . . . ,m such that u[j] = Iη1 and count > 0 do
x[j]← minority(S[.][j]); count← count− 1;

d[.]← dH(x,S[.]);

for j ← 1, . . . ,m such that x[j] is unfixed do
i← indexMaximum(d);

k ← indexMinimum(d);

switch frequencyOfNumber(d[i], d) do

case 1 or 4 do
x[j]← S[i][j];

case 2 or 3 do

if S[i][j] 6= S[k][j] then x[j]← S[i][j];

else
r ← index(S[.][j], i, k);

x[j]← S[r][j];
updateHammingDistance(S[.][j], x[j], d[.]);

89

S2 =



1 2 3 4 5

0 0 1 1 0

0 0 1 0 1

1 1 1 1 0

1 1 0 1 1

x : 10111

d :
[

2 2 2 2
]

j = 5, i = 2, k = 1

Algorithm: MSA step-by-step iteration 14
if |S| = 4 and |Γ| = 2 then

for j ← 1, . . . ,m do
u[j]← −∞;

for i← 0, . . . , 4 such that (S[.][j])t = vi do
ni ← ni + 1; u[j]← i;

η1, Iη1 , η2 ← twoFirstGreatestNumber(n1, . . . , n4);

count← b(η1 − η2 − b(m− (n0 + · · ·+ n4))/2c)/2c;

for j ← 1, . . . ,m such that u[j] ≥ 0 do
x[j]← majority(S[.][j]);

for j ← 1, . . . ,m such that u[j] = Iη1 and count > 0 do
x[j]← minority(S[.][j]); count← count− 1;

d[.]← dH(x,S[.]);

for j ← 1, . . . ,m such that x[j] is unfixed do
i← indexMaximum(d);

k ← indexMinimum(d);

switch frequencyOfNumber(d[i], d) do

case 1 or 4 do
x[j]← S[i][j];

case 2 or 3 do

if S[i][j] 6= S[k][j] then x[j]← S[i][j];

else
r ← index(S[.][j], i, k);

x[j]← S[r][j];

updateHammingDistance(S[.][j], x[j], d[.]);

90

A.2 GREEDY step-by-step example

Polynomial Heuristic Greedy algorithm (GREEDY) is an iterative algorithm to solve the

CSP for the general case. In the following we explain a step-by-step example, let S be a

3-CSP instance with a DNA alphabet, that is, S = {GTCC,AGAG,CGAG}.

Input instance

S1 =


GTCC

AGAG

CGAG

x : ␣␣␣␣ d : 4 4 4

3-Dimensional matrix H

1 2 3 4

A C G G T A C C G

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

3-Dimensional matrix T

1 2 3 4

A C G G T A C C G

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Algorithm: GREEDY step-by-step iter. 1
d[.]← dH(x,S[.])

H ← ∅, T ← ∅

/* Construction phase */

for j ← 1, . . . ,m such that x[j] is unfixed do

foreach σ ∈ S[.][j] do

for i← 1, . . . , k do

if σ = S[i][j] then H[j][σ][i]← 1 ;

else H[j][σ][i]← 0;

H[j][σ][k + 1]←H[j][σ][k + 1] +H[j][σ][i]

/* Improve-solution */

while #unfixed > 0 do
T ← updateTable(H, d[.], x, T)

(T ′, d′, x′)← (T , d, x)

if #unfixed > 3 then

(j, σ)← depthSearch3Levels(H, T ′, d′, x′);

else (j, σ)← chooseBestValue(H, T , x);

x[j]← σ

d[.]← updateHammingDistance(S[.][j], x[j], d[.])

#unfixed ← #unfixed −1

91

Input instance

S1 =


GTCC

AGAG

CGAG

x : ␣␣␣␣ d : 4 4 4

3-Dimensional matrix H

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

3-Dimensional matrix T

1 2 3 4

A C G G T A C C G

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Algorithm: GREEDY step-by-step iter. 2
d[.]← dH(x,S[.])

H ← ∅, T ← ∅

/* Construction phase */

for j ← 1, . . . ,m such that x[j] is unfixed do

foreach σ ∈ S[.][j] do

for i← 1, . . . , k do

if σ = S[i][j] then H[j][σ][i]← 1 ;

else H[j][σ][i]← 0;

H[j][σ][k + 1]←H[j][σ][k + 1] +H[j][σ][i]

/* Improve-solution */

while #unfixed > 0 do
T ← updateTable(H, d[.], x, T)

(T ′, d′, x′)← (T , d, x)

if #unfixed > 3 then

(j, σ)← depthSearch3Levels(H, T ′, d′, x′);

else (j, σ)← chooseBestValue(H, T , x);

x[j]← σ

d[.]← updateHammingDistance(S[.][j], x[j], d[.])

#unfixed ← #unfixed −1

Input instance

S1 =


GTCC

AGAG

CGAG

x : ␣␣␣␣ d : 4 4 4

3-Dimensional matrix H

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

3-Dimensional matrix T

1 2 3 4

A C G G T A C C G

4 4 3 4 3 4 3 3 4

3 4 4 3 4 3 4 4 3

4 3 4 3 4 3 4 4 3

4 4 4 4 4 4 4 4 4

2 2 2 1 2 1 2 2 1

Algorithm: GREEDY step-by-step iter. 3
d[.]← dH(x,S[.])

H ← ∅, T ← ∅

/* Construction phase */

for j ← 1, . . . ,m such that x[j] is unfixed do

foreach σ ∈ S[.][j] do

for i← 1, . . . , k do

if σ = S[i][j] then H[j][σ][i]← 1 ;

else H[j][σ][i]← 0;

H[j][σ][k + 1]←H[j][σ][k + 1] +H[j][σ][i]

/* Improve-solution */

while #unfixed > 0 do
T ← updateTable(H, d[.], x, T)

(T ′, d′, x′)← (T , d, x)

if #unfixed > 3 then

(j, σ)← depthSearch3Levels(H, T ′, d′, x′);

else (j, σ)← chooseBestValue(H, T , x);

x[j]← σ

d[.]← updateHammingDistance(S[.][j], x[j], d[.])

#unfixed ← #unfixed −1

92

Input instance

S1 =


GTCC

AGAG

CGAG

x : ␣␣␣␣ d : 4 4 4

3-Dimensional matrix H and T

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

1 2 3 4

A C G G T A C C G

4 4 3 4 3 4 3 3 4

3 4 4 3 4 3 4 4 3

4 3 4 3 4 3 4 4 3

4 4 4 4 4 4 4 4 4

2 2 2 1 2 1 2 2 1

Algorithm: GREEDY step-by-step iter. 4
d[.]← dH(x,S[.])

H ← ∅, T ← ∅

/* Construction phase */

for j ← 1, . . . ,m such that x[j] is unfixed do

foreach σ ∈ S[.][j] do

for i← 1, . . . , k do

if σ = S[i][j] then H[j][σ][i]← 1 ;

else H[j][σ][i]← 0;

H[j][σ][k + 1]←H[j][σ][k + 1] +H[j][σ][i]

/* Improve-solution */

while #unfixed > 0 do
T ← updateTable(H, d[.], x, T)

(T ′, d′, x′)← (T , d, x)

if #unfixed > 3 then

(j, σ)← depthSearch3Levels(H, T ′, d′, x′);

else (j, σ)← chooseBestValue(H, T , x);

x[j]← σ

d[.]← updateHammingDistance(S[.][j], x[j], d[.])

#unfixed ← #unfixed −1

x : ␣␣␣␣ d : 4 4 4

3-Dimensional matrix H

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

3-Dimensional matrix T

1 2 3 4

A C G G T A C C G

4 4 3 4 3 4 3 3 4

3 4 4 3 4 3 4 4 3

4 3 4 3 4 3 4 4 3

4 4 4 4 4 4 4 4 4

2 2 2 1 2 1 2 2 1

Q : {(2, G), (3, A), (4, G)}

Algorithm: GREEDY step-by-step iter. 5
d[.]← dH(x,S[.])

H ← ∅, T ← ∅

/* Construction phase */

for j ← 1, . . . ,m such that x[j] is unfixed do

foreach σ ∈ S[.][j] do

for i← 1, . . . , k do

if σ = S[i][j] then H[j][σ][i]← 1 ;

else H[j][σ][i]← 0;

H[j][σ][k + 1]←H[j][σ][k + 1] +H[j][σ][i]

/* Improve-solution */

while #unfixed > 0 do
T ← updateTable(H, d[.], x, T)

(T ′, d′, x′)← (T , d, x)

if #unfixed > 3 then
(j, σ)← depthSearch3Levels(H, T ′, d′, x′)

else (j, σ)← chooseBestValue(H, T , x);

x[j]← σ

d[.]← updateHammingDistance(S[.][j], x[j], d[.])

#unfixed ← #unfixed −1

93

x : ␣␣␣␣ d : 4 4 4

3-Dimensional matrix H

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

Q :{(2, G), (3, A), (4, G)}

(2, G) x′ : ␣G␣␣ d : 4 3 3

3-Dimensional matrix T’

1 2 3 4

A C G G T A C C G

4 4 3 0 0 4 3 3 4

2 3 3 0 0 2 3 3 2

3 2 3 0 0 2 3 3 2

4 4 3 0 0 4 3 3 2

1 1 3 0 0 1 3 3 1

Algorithm: GREEDY step-by-step iter. 6
Function depthSearch3Levels(H, T ′, d′[.], x′)

Q ← chooseBestValues(H, T ′, x′)

foreach (j, σ) ∈ Q do
x′′ ← x′

d′′[.]← d′[.]

for i← 1, . . . , 3 do
x′′[j]← σ

d′′[.]←

updateHammingDistance(S[.][j], x′′[j], d′′[.])

T ′ ← updateTable(H, d′′[.], x′′, T ′)

T ′′ ← T ′′ ∪ chooseBestValue(H, T ′′, x′)
return chooseBestValue(H, T ′′, x′)

x : ␣␣␣␣ d : 4 4 4

3-Dimensional matrix H

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

Q :{(2, G), (3, A), (4, G)}

(2, G) x′ : GG␣␣ d : 3 3 3

3-Dimensional matrix T’

1 2 3 4

A C G G T A C C G

0 0 0 0 0 3 2 2 3

0 0 0 0 0 2 3 3 2

0 0 0 0 0 2 3 3 2

0 0 0 0 0 3 3 3 3

0 0 0 0 0 1 2 2 1

Algorithm: GREEDY step-by-step iter. 7
Function depthSearch3Levels(H, T ′, d′[.], x′)

Q ← chooseBestValues(H, T ′, x′)

foreach (j, σ) ∈ Q do
x′′ ← x′

d′′[.]← d′[.]

for i← 1, . . . , 3 do
x′′[j]← σ

d′′[.]←

updateHammingDistance(S[.][j], x′′[j], d′′[.])

T ′ ← updateTable(H, d′′[.], x′′, T ′)

T ′′ ← T ′′ ∪ chooseBestValue(H, T ′′, x′)
return chooseBestValue(H, T ′′, x′)

94

x : ␣␣␣␣ d : 4 4 4

3-Dimensional matrix H

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

Q :{(2, G), (3, A), (4, G)}

(2, G) x′ : GGA␣ d : 3 2 2

3-Dimensional matrix T’

1 2 3 4

A C G G T A C C G

0 0 0 0 0 0 0 2 3

0 0 0 0 0 0 0 2 1

0 0 0 0 0 0 0 2 1

0 0 0 0 0 0 0 2 3

0 0 0 0 0 0 0 3 1

Algorithm: GREEDY step-by-step iter. 8
Function depthSearch3Levels(H, T ′, d′[.], x′)

Q ← chooseBestValues(H, T ′, x′)

foreach (j, σ) ∈ Q do
x′′ ← x′

d′′[.]← d′[.]

for i← 1, . . . , 3 do
x′′[j]← σ

d′′[.]←

updateHammingDistance(S[.][j], x′′[j], d′′[.])

T ′ ← updateTable(H, d′′[.], x′′, T ′)

T ′′ ← T ′′ ∪ chooseBestValue(H, T ′′, x′)
return chooseBestValue(H, T ′′, x′)

x : ␣␣␣␣ d : 4 4 4

3-Dimensional matrix H

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

Q :{(2, G), (3, A), (4, G)}

(2, G) x′ : GGAC d : 2 2 2

3-Dimensional matrix T’

1 2 3 4

A C G G T A C C G

0 0 0 0 0 0 0 2 3

0 0 0 0 0 0 0 2 1

0 0 0 0 0 0 0 2 1

0 0 0 0 0 0 0 2 3

0 0 0 0 0 0 0 3 1

Algorithm: GREEDY step-by-step iter. 9
Function depthSearch3Levels(H, T ′, d′[.], x′)

Q ← chooseBestValues(H, T ′, x′)

foreach (j, σ) ∈ Q do
x′′ ← x′

d′′[.]← d′[.]

for i← 1, . . . , 3 do
x′′[j]← σ

d′′[.]←

updateHammingDistance(S[.][j], x′′[j], d′′[.])

T ′ ← updateTable(H, d′′[.], x′′, T ′)

T ′′ ← T ′′ ∪ chooseBestValue(H, T ′′, x′)
return chooseBestValue(H, T ′′, x′)

95

x : ␣␣␣␣ d : 4 4 4

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

Q :{(2, G), (3, A), (4, G)}

(2, G) x′ : GGAC d : 2 2 2

(3, A) x′ : ␣␣A␣ d : 4 3 3

1 2 3 4

A C G G T A C C G

4 4 3 4 3 0 0 3 4

2 3 3 2 3 0 0 3 2

3 2 3 2 3 0 0 3 2

4 4 3 4 3 0 0 3 4

1 1 3 1 3 0 0 3 1

Algorithm: GREEDY step-by-step iter. 10
Function depthSearch3Levels(H, T ′, d′[.], x′)

Q ← chooseBestValues(H, T ′, x′)

foreach (j, σ) ∈ Q do
x′′ ← x′

d′′[.]← d′[.]

for i← 1, . . . , 3 do
x′′[j]← σ

d′′[.]←

updateHammingDistance(S[.][j], x′′[j], d′′[.])

T ′ ← updateTable(H, d′′[.], x′′, T ′)

T ′′ ← T ′′ ∪ chooseBestValue(H, T ′′, x′)
return chooseBestValue(H, T ′′, x′)

x : ␣␣␣␣ d : 4 4 4

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

Q :{(2, G), (3, A), (4, G)}

(2, G) x′ : GGAC d : 2 2 2

(3, A) x′ : G␣A␣ d : 3 3 3

1 2 3 4

A C G G T A C C G

0 0 0 3 2 0 0 2 3

0 0 0 2 3 0 0 3 2

0 0 0 2 3 0 0 3 2

0 0 0 3 3 0 0 3 3

0 0 0 1 2 0 0 2 1

Algorithm: GREEDY step-by-step iter. 11
Function depthSearch3Levels(H, T ′, d′[.], x′)

Q ← chooseBestValues(H, T ′, x′)

foreach (j, σ) ∈ Q do
x′′ ← x′

d′′[.]← d′[.]

for i← 1, . . . , 3 do
x′′[j]← σ

d′′[.]←

updateHammingDistance(S[.][j], x′′[j], d′′[.])

T ′ ← updateTable(H, d′′[.], x′′, T ′)

T ′′ ← T ′′ ∪ chooseBestValue(H, T ′′, x′)
return chooseBestValue(H, T ′′, x′)

96

x : ␣␣␣␣ d : 4 4 4

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

Q :{(2, G), (3, A), (4, G)}

(2, G) x′ : GGAC d : 2 2 2

(3, A) x′ : GGA␣ d : 3 2 2

1 2 3 4

A C G G T A C C G

0 0 0 0 0 0 0 2 3

0 0 0 0 0 0 0 2 1

0 0 0 0 0 0 0 2 1

0 0 0 0 0 0 0 2 3

0 0 0 0 0 0 0 3 1

Algorithm: GREEDY step-by-step iter. 12
Function depthSearch3Levels(H, T ′, d′[.], x′)

Q ← chooseBestValues(H, T ′, x′)

foreach (j, σ) ∈ Q do
x′′ ← x′

d′′[.]← d′[.]

for i← 1, . . . , 3 do
x′′[j]← σ

d′′[.]←

updateHammingDistance(S[.][j], x′′[j], d′′[.])

T ′ ← updateTable(H, d′′[.], x′′, T ′)

T ′′ ← T ′′ ∪ chooseBestValue(H, T ′′, x′)
return chooseBestValue(H, T ′′, x′)

x : ␣␣␣␣ d : 4 4 4

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

Q :{(2, G), (3, A), (4, G)}

(2, G) x′ : GGAC d : 2 2 2

(3, A) x′ : GGAC d : 2 2 2

1 2 3 4

A C G G T A C C G

0 0 0 0 0 0 0 2 3

0 0 0 0 0 0 0 2 1

0 0 0 0 0 0 0 2 1

0 0 0 0 0 0 0 2 3

0 0 0 0 0 0 0 3 1

Algorithm: GREEDY step-by-step iter. 13
Function depthSearch3Levels(H, T ′, d′[.], x′)

Q ← chooseBestValues(H, T ′, x′)

foreach (j, σ) ∈ Q do
x′′ ← x′

d′′[.]← d′[.]

for i← 1, . . . , 3 do
x′′[j]← σ

d′′[.]←

updateHammingDistance(S[.][j], x′′[j], d′′[.])

T ′ ← updateTable(H, d′′[.], x′′, T ′)

T ′′ ← T ′′ ∪ chooseBestValue(H, T ′′, x′)
return chooseBestValue(H, T ′′, x′)

97

x : ␣␣␣␣ d : 4 4 4

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

Q :{(2, G), (3, A), (4, G)}

(2, G) x′ : GGAC d : 2 2 2

(3, A) x′ : GGAC d : 2 2 2

(4, G) x′ : ␣␣␣G d : 4 3 3

1 2 3 4

A C G G T A C C G

4 4 3 4 3 4 3 0 0

2 3 3 2 3 2 3 0 0

3 2 3 2 3 2 3 0 0

4 4 3 4 3 4 3 0 0

1 1 3 1 3 1 3 0 0

Algorithm: GREEDY step-by-step iter. 14
Function depthSearch3Levels(H, T ′, d′[.], x′)

Q ← chooseBestValues(H, T ′, x′)

foreach (j, σ) ∈ Q do
x′′ ← x′

d′′[.]← d′[.]

for i← 1, . . . , 3 do
x′′[j]← σ

d′′[.]←

updateHammingDistance(S[.][j], x′′[j], d′′[.])

T ′ ← updateTable(H, d′′[.], x′′, T ′)

T ′′ ← T ′′ ∪ chooseBestValue(H, T ′′, x′)
return chooseBestValue(H, T ′′, x′)

x : ␣␣␣␣ d : 4 4 4

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

Q :{(2, G), (3, A), (4, G)}

(2, G) x′ : GGAC d : 2 2 2

(3, A) x′ : GGAC d : 2 2 2

(4, G) x′ : G␣␣G d : 3 3 3

1 2 3 4

A C G G T A C C G

0 0 0 3 2 3 2 0 0

0 0 0 2 3 2 3 0 0

0 0 0 2 3 2 3 0 0

0 0 0 3 3 3 3 0 0

0 0 0 1 2 1 2 0 0

Algorithm: GREEDY step-by-step iter. 15
Function depthSearch3Levels(H, T ′, d′[.], x′)

Q ← chooseBestValues(H, T ′, x′)

foreach (j, σ) ∈ Q do
x′′ ← x′

d′′[.]← d′[.]

for i← 1, . . . , 3 do
x′′[j]← σ

d′′[.]←

updateHammingDistance(S[.][j], x′′[j], d′′[.])

T ′ ← updateTable(H, d′′[.], x′′, T ′)

T ′′ ← T ′′ ∪ chooseBestValue(H, T ′′, x′)
return chooseBestValue(H, T ′′, x′)

98

x : ␣␣␣␣ d : 4 4 4

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

Q :{(2, G), (3, A), (4, G)}

(2, G) x′ : GGAC d : 2 2 2

(3, A) x′ : GGAC d : 2 2 2

(4, G) x′ : GG␣G d : 3 2 2

1 2 3 4

A C G G T A C C G

0 0 0 0 0 3 2 0 0

0 0 0 0 0 1 2 0 0

0 0 0 0 0 1 2 0 0

0 0 0 0 0 3 2 0 0

0 0 0 0 0 1 3 0 0

Algorithm: GREEDY step-by-step iter. 16
Function depthSearch3Levels(H, T ′, d′[.], x′)

Q ← chooseBestValues(H, T ′, x′)

foreach (j, σ) ∈ Q do
x′′ ← x′

d′′[.]← d′[.]

for i← 1, . . . , 3 do
x′′[j]← σ

d′′[.]←

updateHammingDistance(S[.][j], x′′[j], d′′[.])

T ′ ← updateTable(H, d′′[.], x′′, T ′)

T ′′ ← T ′′ ∪ chooseBestValue(H, T ′′, x′)
return chooseBestValue(H, T ′′, x′)

x : ␣␣␣␣ d : 4 4 4

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

Q :{(2, G), (3, A), (4, G)}

(2, G) x′ : GGAC d : 2 2 2

(3, A) x′ : GGAC d : 2 2 2

(4, G) x′ : GGCG d : 2 2 2

1 2 3 4

A C G G T A C C G

0 0 0 0 0 3 2 0 0

0 0 0 0 0 1 2 0 0

0 0 0 0 0 1 2 0 0

0 0 0 0 0 3 2 0 0

0 0 0 0 0 1 3 0 0

Algorithm: GREEDY step-by-step iter. 17
Function depthSearch3Levels(H, T ′, d′[.], x′)

Q ← chooseBestValues(H, T ′, x′)

foreach (j, σ) ∈ Q do
x′′ ← x′

d′′[.]← d′[.]

for i← 1, . . . , 3 do
x′′[j]← σ

d′′[.]←

updateHammingDistance(S[.][j], x′′[j], d′′[.])

T ′ ← updateTable(H, d′′[.], x′′, T ′)

T ′′ ← T ′′ ∪ chooseBestValue(H, T ′′, x′)
return chooseBestValue(H, T ′′, x′)

99

x : ␣␣␣␣ d : 4 4 4

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

Q :{(2, G), (3, A), (4, G)}

(2,G) x′ : GGAC d : 2 2 2

(3, A) x′ : GGAC d : 2 2 2

(4, G) x′ : GGCG d : 2 2 2

1 2 3 4

A C G G T A C C G

0 0 0 0 0 3 2 0 0

0 0 0 0 0 1 2 0 0

0 0 0 0 0 1 2 0 0

0 0 0 0 0 3 2 0 0

0 0 0 0 0 1 3 0 0

Algorithm: GREEDY step-by-step iter. 18
Function depthSearch3Levels(H, T ′, d′[.], x′)

Q ← chooseBestValues(H, T ′, x′)

foreach (j, σ) ∈ Q do
x′′ ← x′

d′′[.]← d′[.]

for i← 1, . . . , 3 do
x′′[j]← σ

d′′[.]←

updateHammingDistance(S[.][j], x′′[j], d′′[.])

T ′ ← updateTable(H, d′′[.], x′′, T ′)

T ′′ ← T ′′ ∪ chooseBestValue(H, T ′′, x′)
return chooseBestValue(H, T ′′, x′)

x : ␣G␣␣ d : 4 3 3

3-Dimensional matrix H

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

3-Dimensional matrix T

1 2 3 4

A C G G T A C C G

4 4 3 4 3 4 3 3 4

3 4 4 3 4 3 4 4 3

4 3 4 3 4 3 4 4 3

4 4 4 4 4 4 4 4 4

2 2 2 1 2 1 2 2 1

Algorithm: GREEDY step-by-step iter. 19
d[.]← dH(x,S[.])

H ← ∅, T ← ∅

/* Construction phase */

for j ← 1, . . . ,m such that x[j] is unfixed do

foreach σ ∈ S[.][j] do

for i← 1, . . . , k do

if σ = S[i][j] then H[j][σ][i]← 1 ;

else H[j][σ][i]← 0;

H[j][σ][k + 1]←H[j][σ][k + 1] +H[j][σ][i]

/* Improve-solution */

while #unfixed > 0 do
T ← updateTable(H, d[.], x, T)

(T ′, d′, x′)← (T , d, x)

if #unfixed > 3 then

(j, σ)← depthSearch3Levels(H, T ′, d′, x′);

else (j, σ)← chooseBestValue(H, T , x);

x[j]← σ

d[.]← updateHammingDistance(S[.][j], x[j], d[.])

#unfixed ← #unfixed −1

100

x : ␣G␣␣ d : 4 3 3

3-Dimensional matrix H

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

3-Dimensional matrix T

1 2 3 4

A C G G T A C C G

4 4 3 0 0 4 3 3 4

2 3 3 0 0 2 3 3 2

3 2 3 0 0 2 3 3 2

4 4 3 0 0 4 3 3 4

1 1 3 0 0 1 3 3 1

Algorithm: GREEDY step-by-step iter. 20
d[.]← dH(x,S[.])

H ← ∅, T ← ∅

/* Construction phase */

for j ← 1, . . . ,m such that x[j] is unfixed do

foreach σ ∈ S[.][j] do

for i← 1, . . . , k do

if σ = S[i][j] then H[j][σ][i]← 1 ;

else H[j][σ][i]← 0;

H[j][σ][k + 1]←H[j][σ][k + 1] +H[j][σ][i]

/* Improve-solution */

while #unfixed > 0 do
T ← updateTable(H, d[.], x, T)

(T ′, d′, x′)← (T , d, x)

if #unfixed > 3 then

(j, σ)← depthSearch3Levels(H, T ′, d′, x′);

else (j, σ)← chooseBestValue(H, T , x);

x[j]← σ

d[.]← updateHammingDistance(S[.][j], x[j], d[.])

#unfixed ← #unfixed −1

x : ␣G␣␣ d : 4 3 3

3-Dimensional matrix H

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

3-Dimensional matrix T

1 2 3 4

A C G G T A C C G

4 4 3 0 0 4 3 3 4

2 3 3 0 0 2 3 3 2

3 2 3 0 0 2 3 3 2

4 4 3 0 0 4 3 3 4

1 1 3 0 0 1 3 3 1

Algorithm: GREEDY step-by-step iter. 21
d[.]← dH(x,S[.])

H ← ∅, T ← ∅

/* Construction phase */

for j ← 1, . . . ,m such that x[j] is unfixed do

foreach σ ∈ S[.][j] do

for i← 1, . . . , k do

if σ = S[i][j] then H[j][σ][i]← 1 ;

else H[j][σ][i]← 0;

H[j][σ][k + 1]←H[j][σ][k + 1] +H[j][σ][i]

/* Improve-solution */

while #unfixed > 0 do
T ← updateTable(H, d[.], x, T)

(T ′, d′, x′)← (T , d, x)

if #unfixed > 3 then

(j, σ)← depthSearch3Levels(H, T ′, d′, x′);

else (j, σ)← chooseBestValue(H, T , x);

x[j]← σ

d[.]← updateHammingDistance(S[.][j], x[j], d[.])

#unfixed ← #unfixed −1

101

x : GG␣␣ d : 3 3 3

3-Dimensional matrix H

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

3-Dimensional matrix T

1 2 3 4

A C G G T A C C G

4 4 3 0 0 4 3 3 4

2 3 3 0 0 2 3 3 2

3 2 3 0 0 2 3 3 2

4 4 3 0 0 4 3 3 4

1 1 3 0 0 1 3 3 1

Algorithm: GREEDY step-by-step iter. 22
d[.]← dH(x,S[.])

H ← ∅, T ← ∅

/* Construction phase */

for j ← 1, . . . ,m such that x[j] is unfixed do

foreach σ ∈ S[.][j] do

for i← 1, . . . , k do

if σ = S[i][j] then H[j][σ][i]← 1 ;

else H[j][σ][i]← 0;

H[j][σ][k + 1]←H[j][σ][k + 1] +H[j][σ][i]

/* Improve-solution */

while #unfixed > 0 do
T ← updateTable(H, d[.], x, T)

(T ′, d′, x′)← (T , d, x)

if #unfixed > 3 then

(j, σ)← depthSearch3Levels(H, T ′, d′, x′);

else (j, σ)← chooseBestValue(H, T , x);

x[j]← σ

d[.]← updateHammingDistance(S[.][j], x[j], d[.])

#unfixed ← #unfixed −1

x : GG␣␣ d : 3 3 3

3-Dimensional matrix H

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

3-Dimensional matrix T

1 2 3 4

A C G G T A C C G

0 0 0 0 0 3 2 2 3

0 0 0 0 0 2 3 3 2

0 0 0 0 0 2 3 3 2

0 0 0 0 0 3 3 3 3

0 0 0 0 0 1 2 2 1

Algorithm: GREEDY step-by-step iter. 23
d[.]← dH(x,S[.])

H ← ∅, T ← ∅

/* Construction phase */

for j ← 1, . . . ,m such that x[j] is unfixed do

foreach σ ∈ S[.][j] do

for i← 1, . . . , k do

if σ = S[i][j] then H[j][σ][i]← 1 ;

else H[j][σ][i]← 0;

H[j][σ][k + 1]←H[j][σ][k + 1] +H[j][σ][i]

/* Improve-solution */

while #unfixed > 0 do
T ← updateTable(H, d[.], x, T)

(T ′, d′, x′)← (T , d, x)

if #unfixed > 3 then

(j, σ)← depthSearch3Levels(H, T ′, d′, x′);

else (j, σ)← chooseBestValue(H, T , x);

x[j]← σ

d[.]← updateHammingDistance(S[.][j], x[j], d[.])

#unfixed ← #unfixed −1

102

x : GG␣␣ d : 3 3 3

3-Dimensional matrix H

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

3-Dimensional matrix T

1 2 3 4

A C G G T A C C G

0 0 0 0 0 3 2 2 3

0 0 0 0 0 2 3 3 2

0 0 0 0 0 2 3 3 2

0 0 0 0 0 3 3 3 3

0 0 0 0 0 1 2 2 1

Algorithm: GREEDY step-by-step iter. 24
d[.]← dH(x,S[.])

H ← ∅, T ← ∅

/* Construction phase */

for j ← 1, . . . ,m such that x[j] is unfixed do

foreach σ ∈ S[.][j] do

for i← 1, . . . , k do

if σ = S[i][j] then H[j][σ][i]← 1 ;

else H[j][σ][i]← 0;

H[j][σ][k + 1]←H[j][σ][k + 1] +H[j][σ][i]

/* Improve-solution */

while #unfixed > 0 do
T ← updateTable(H, d[.], x, T)

(T ′, d′, x′)← (T , d, x)

if #unfixed > 3 then

(j, σ)← depthSearch3Levels(H, T ′, d′, x′);

else (j, σ)← chooseBestValue(H, T , x);

x[j]← σ

d[.]← updateHammingDistance(S[.][j], x[j], d[.])

#unfixed ← #unfixed −1

x : GGA␣ d : 3 2 2

3-Dimensional matrix H

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

3-Dimensional matrix T

1 2 3 4

A C G G T A C C G

0 0 0 0 0 3 2 2 3

0 0 0 0 0 2 3 3 2

0 0 0 0 0 2 3 3 2

0 0 0 0 0 3 3 3 3

0 0 0 0 0 1 2 2 1

Algorithm: GREEDY step-by-step iter. 25
d[.]← dH(x,S[.])

H ← ∅, T ← ∅

/* Construction phase */

for j ← 1, . . . ,m such that x[j] is unfixed do

foreach σ ∈ S[.][j] do

for i← 1, . . . , k do

if σ = S[i][j] then H[j][σ][i]← 1 ;

else H[j][σ][i]← 0;

H[j][σ][k + 1]←H[j][σ][k + 1] +H[j][σ][i]

/* Improve-solution */

while #unfixed > 0 do
T ← updateTable(H, d[.], x, T)

(T ′, d′, x′)← (T , d, x)

if #unfixed > 3 then

(j, σ)← depthSearch3Levels(H, T ′, d′, x′);

else (j, σ)← chooseBestValue(H, T , x);

x[j]← σ

d[.]← updateHammingDistance(S[.][j], x[j], d[.])

#unfixed ← #unfixed −1

103

x : GGA␣ d : 3 2 2

3-Dimensional matrix H

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

3-Dimensional matrix T

1 2 3 4

A C G G T A C C G

0 0 0 0 0 0 0 2 3

0 0 0 0 0 0 0 2 1

0 0 0 0 0 0 0 2 1

0 0 0 0 0 0 0 2 3

0 0 0 0 0 0 0 3 1

Algorithm: GREEDY step-by-step iter. 26
d[.]← dH(x,S[.])

H ← ∅, T ← ∅

/* Construction phase */

for j ← 1, . . . ,m such that x[j] is unfixed do

foreach σ ∈ S[.][j] do

for i← 1, . . . , k do

if σ = S[i][j] then H[j][σ][i]← 1 ;

else H[j][σ][i]← 0;

H[j][σ][k + 1]←H[j][σ][k + 1] +H[j][σ][i]

/* Improve-solution */

while #unfixed > 0 do
T ← updateTable(H, d[.], x, T)

(T ′, d′, x′)← (T , d, x)

if #unfixed > 3 then

(j, σ)← depthSearch3Levels(H, T ′, d′, x′);

else (j, σ)← chooseBestValue(H, T , x);

x[j]← σ

d[.]← updateHammingDistance(S[.][j], x[j], d[.])

#unfixed ← #unfixed −1

x : GGA␣ d : 3 2 2

3-Dimensional matrix H

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

3-Dimensional matrix T

1 2 3 4

A C G G T A C C G

0 0 0 0 0 0 0 2 3

0 0 0 0 0 0 0 2 1

0 0 0 0 0 0 0 2 1

0 0 0 0 0 0 0 2 3

0 0 0 0 0 0 0 3 1

Algorithm: GREEDY step-by-step iter. 27
d[.]← dH(x,S[.])

H ← ∅, T ← ∅

/* Construction phase */

for j ← 1, . . . ,m such that x[j] is unfixed do

foreach σ ∈ S[.][j] do

for i← 1, . . . , k do

if σ = S[i][j] then H[j][σ][i]← 1 ;

else H[j][σ][i]← 0;

H[j][σ][k + 1]←H[j][σ][k + 1] +H[j][σ][i]

/* Improve-solution */

while #unfixed > 0 do
T ← updateTable(H, d[.], x, T)

(T ′, d′, x′)← (T , d, x)

if #unfixed > 3 then

(j, σ)← depthSearch3Levels(H, T ′, d′, x′);

else (j, σ)← chooseBestValue(H, T , x);

x[j]← σ

d[.]← updateHammingDistance(S[.][j], x[j], d[.])

#unfixed ← #unfixed −1

104

x : GGAC d : 2 2 2

3-Dimensional matrix H

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

3-Dimensional matrix T

1 2 3 4

A C G G T A C C G

0 0 0 0 0 0 0 2 3

0 0 0 0 0 0 0 2 1

0 0 0 0 0 0 0 2 1

0 0 0 0 0 0 0 2 3

0 0 0 0 0 0 0 3 1

Algorithm: GREEDY step-by-step iter. 28
d[.]← dH(x,S[.])

H ← ∅, T ← ∅

/* Construction phase */

for j ← 1, . . . ,m such that x[j] is unfixed do

foreach σ ∈ S[.][j] do

for i← 1, . . . , k do

if σ = S[i][j] then H[j][σ][i]← 1 ;

else H[j][σ][i]← 0;

H[j][σ][k + 1]←H[j][σ][k + 1] +H[j][σ][i]

/* Improve-solution */

while #unfixed > 0 do
T ← updateTable(H, d[.], x, T)

(T ′, d′, x′)← (T , d, x)

if #unfixed > 3 then

(j, σ)← depthSearch3Levels(H, T ′, d′, x′);

else (j, σ)← chooseBestValue(H, T , x);

x[j]← σ

d[.]← updateHammingDistance(S[.][j], x[j], d[.])

#unfixed ← #unfixed −1

105

A.3 CSP-R step-by-step example

Recursive exact method (CSP-R) is recursive algorithm to solve the CSP for the general

case. In the following we explain a step-by-step example, let S be a 3-CSP instance with

a DNA alphabet, that is, S = {GTCC,AGAG,CGAG}.

Input instance

S =


s1 : GTCC

s2 : AGAG

s3 : CGAG

Algorithm: CSP-R step-by-step iter. 1
Function CSP-R(S, k,m, x)

if k = 2 then

for j ← 1, . . . ,m do

if S[1][j] = S[2][j] then x[j] = S[1][j];

x← minimizeMaximumValue(S, k,m, x)

else

for i← 1, . . . , k do
iCount ← 1

for j ← 1, . . . , k do

if i 6= j then
copy(S′[iCount], S[j]);

iCount ← iCount+1
S′′[i]← CSP-R(S′, k − 1,m,S′′[i])

for j ← 1, . . . ,m do
Q← ∅

for i← 1, . . . , k do Q← Q ∪ S′′[i][j] ;

if |Q| = 1 then x[i] = Q[1] ;
x← minimizeMaximumValue(S, k,m, x)

return x[.]

Input instance

S =


s1 : GTCC

s2 : AGAG

s3 : CGAG

S′ =

 s2 : AGAG

s3 : CGAG

Algorithm: CSP-R step-by-step iter. 2
Function CSP-R(S, k,m, x)

if k = 2 then

for j ← 1, . . . ,m do

if S[1][j] = S[2][j] then x[j] = S[1][j];

x← minimizeMaximumValue(S, k,m, x)

else

for i← 1, . . . , k do
iCount ← 1

for j ← 1, . . . , k do

if i 6= j then
copy(S′[iCount], S[j]);

iCount ← iCount+1

S′′[i]← CSP-R(S′, k − 1,m,S′′[i])
for j ← 1, . . . ,m do

Q← ∅

for i← 1, . . . , k do Q← Q ∪ S′′[i][j] ;

if |Q| = 1 then x[i] = Q[1] ;
x← minimizeMaximumValue(S, k,m, x)

return x[.]

106

Input instance

S =


s1 : GTCC

s2 : AGAG

s3 : CGAG

S′ =

 s2 : AGAG

s3 : CGAG

Algorithm: CSP-R step-by-step iter. 3
Function CSP-R(S, k,m, x)

if k = 2 then

for j ← 1, . . . ,m do

if S[1][j] = S[2][j] then x[j] = S[1][j];

x← minimizeMaximumValue(S, k,m, x)

else

for i← 1, . . . , k do
iCount ← 1

for j ← 1, . . . , k do

if i 6= j then
copy(S′[iCount], S[j]);

iCount ← iCount+1
S′′[i]← CSP-R(S′, k − 1,m,S′′[i])

for j ← 1, . . . ,m do
Q← ∅

for i← 1, . . . , k do Q← Q ∪ S′′[i][j] ;

if |Q| = 1 then x[i] = Q[1] ;
x← minimizeMaximumValue(S, k,m, x)

return x[.]

Input instance

S =


s1 : GTCC

s2 : AGAG

s3 : CGAG

S′ =

 s2 : AGAG

s3 : CGAG

x : AGAG

Algorithm: CSP-R step-by-step iter. 4
Function CSP-R(S, k,m, x)

if k = 2 then

for j ← 1, . . . ,m do

if S[1][j] = S[2][j] then x[j] = S[1][j];

x← minimizeMaximumValue(S, k,m, x)

else

for i← 1, . . . , k do
iCount ← 1

for j ← 1, . . . , k do

if i 6= j then
copy(S′[iCount], S[j]);

iCount ← iCount+1
S′′[i]← CSP-R(S′, k − 1,m,S′′[i])

for j ← 1, . . . ,m do
Q← ∅

for i← 1, . . . , k do Q← Q ∪ S′′[i][j] ;

if |Q| = 1 then x[i] = Q[1] ;
x← minimizeMaximumValue(S, k,m, x)

return x[.]

107

Input instance

S =


s1 : GTCC

s2 : AGAG

s3 : CGAG

S′ =

 s2 : AGAG

s3 : CGAG

x : AGAG

S′′ =


x1 : AGAG

x2 :

x3 :

Algorithm: CSP-R step-by-step iter. 5
Function CSP-R(S, k,m, x)

if k = 2 then

for j ← 1, . . . ,m do

if S[1][j] = S[2][j] then x[j] = S[1][j];

x← minimizeMaximumValue(S, k,m, x)

else

for i← 1, . . . , k do
iCount ← 1

for j ← 1, . . . , k do

if i 6= j then
copy(S′[iCount], S[j]);

iCount ← iCount+1
S′′[i]← CSP-R(S′, k − 1,m,S′′[i])

for j ← 1, . . . ,m do
Q← ∅

for i← 1, . . . , k do Q← Q ∪ S′′[i][j] ;

if |Q| = 1 then x[i] = Q[1] ;
x← minimizeMaximumValue(S, k,m, x)

return x[.]

Input instance

S =


s1 : GTCC

s2 : AGAG

s3 : CGAG

S′ =

 s1 : GTCC

s3 : CGAG

x :

S′′ =


x1 : AGAG

x2 :

x3 :

Algorithm: CSP-R step-by-step iter. 6
Function CSP-R(S, k,m, x)

if k = 2 then

for j ← 1, . . . ,m do

if S[1][j] = S[2][j] then x[j] = S[1][j];

x← minimizeMaximumValue(S, k,m, x)

else

for i← 1, . . . , k do
iCount ← 1

for j ← 1, . . . , k do

if i 6= j then
copy(S′[iCount], S[j]);

iCount ← iCount+1

S′′[i]← CSP-R(S′, k − 1,m,S′′[i])
for j ← 1, . . . ,m do

Q← ∅

for i← 1, . . . , k do Q← Q ∪ S′′[i][j] ;

if |Q| = 1 then x[i] = Q[1] ;
x← minimizeMaximumValue(S, k,m, x)

return x[.]

108

Input instance

S =


s1 : GTCC

s2 : AGAG

s3 : CGAG

S′ =

 s1 : GTCC

s3 : CGAG

x : GGCG

S′′ =


x1 : AGAG

x2 :

x3 :

Algorithm: CSP-R step-by-step iter. 7
Function CSP-R(S, k,m, x)

if k = 2 then

for j ← 1, . . . ,m do

if S[1][j] = S[2][j] then x[j] = S[1][j];

x← minimizeMaximumValue(S, k,m, x)

else

for i← 1, . . . , k do
iCount ← 1

for j ← 1, . . . , k do

if i 6= j then
copy(S′[iCount], S[j]);

iCount ← iCount+1
S′′[i]← CSP-R(S′, k − 1,m,S′′[i])

for j ← 1, . . . ,m do
Q← ∅

for i← 1, . . . , k do Q← Q ∪ S′′[i][j] ;

if |Q| = 1 then x[i] = Q[1] ;
x← minimizeMaximumValue(S, k,m, x)

return x[.]

Input instance

S =


s1 : GTCC

s2 : AGAG

s3 : CGAG

S′ =

 s1 : GTCC

s3 : CGAG

x : GGCG

S′′ =


x1 : AGAG

x2 : GGCG

x3 :

Algorithm: CSP-R step-by-step iter. 8
Function CSP-R(S, k,m, x)

if k = 2 then

for j ← 1, . . . ,m do

if S[1][j] = S[2][j] then x[j] = S[1][j];

x← minimizeMaximumValue(S, k,m, x)

else

for i← 1, . . . , k do
iCount ← 1

for j ← 1, . . . , k do

if i 6= j then
copy(S′[iCount], S[j]);

iCount ← iCount+1
S′′[i]← CSP-R(S′, k − 1,m,S′′[i])

for j ← 1, . . . ,m do
Q← ∅

for i← 1, . . . , k do Q← Q ∪ S′′[i][j] ;

if |Q| = 1 then x[i] = Q[1] ;
x← minimizeMaximumValue(S, k,m, x)

return x[.]

109

Input instance

S =


s1 : GTCC

s2 : AGAG

s3 : CGAG

S′ =

 s1 : GTCC

s2 : AGAG

x :

S′′ =


x1 : AGAG

x2 : GGCG

x3 :

Algorithm: CSP-R step-by-step iter. 9
Function CSP-R(S, k,m, x)

if k = 2 then

for j ← 1, . . . ,m do

if S[1][j] = S[2][j] then x[j] = S[1][j];

x← minimizeMaximumValue(S, k,m, x)

else

for i← 1, . . . , k do
iCount ← 1

for j ← 1, . . . , k do

if i 6= j then
copy(S′[iCount], S[j]);

iCount ← iCount+1

S′′[i]← CSP-R(S′, k − 1,m,S′′[i])
for j ← 1, . . . ,m do

Q← ∅

for i← 1, . . . , k do Q← Q ∪ S′′[i][j] ;

if |Q| = 1 then x[i] = Q[1] ;
x← minimizeMaximumValue(S, k,m, x)

return x[.]

Input instance

S =


s1 : GTCC

s2 : AGAG

s3 : CGAG

S′ =

 s1 : GTCC

s2 : AGAG

x : GGCG

S′′ =


x1 : AGAG

x2 : GGCG

x3 :

Algorithm: CSP-R step-by-step iter. 10
Function CSP-R(S, k,m, x)

if k = 2 then

for j ← 1, . . . ,m do

if S[1][j] = S[2][j] then x[j] = S[1][j];

x← minimizeMaximumValue(S, k,m, x)

else

for i← 1, . . . , k do
iCount ← 1

for j ← 1, . . . , k do

if i 6= j then
copy(S′[iCount], S[j]);

iCount ← iCount+1
S′′[i]← CSP-R(S′, k − 1,m,S′′[i])

for j ← 1, . . . ,m do
Q← ∅

for i← 1, . . . , k do Q← Q ∪ S′′[i][j] ;

if |Q| = 1 then x[i] = Q[1] ;
x← minimizeMaximumValue(S, k,m, x)

return x[.]

110

Input instance

S =


s1 : GTCC

s2 : AGAG

s3 : CGAG

S′ =

 s1 : GTCC

s2 : AGAG

x : GGCG

S′′ =


x1 : AGAG

x2 : GGCG

x3 : GGCG

Algorithm: CSP-R step-by-step iter. 11
Function CSP-R(S, k,m, x)

if k = 2 then

for j ← 1, . . . ,m do

if S[1][j] = S[2][j] then x[j] = S[1][j];

x← minimizeMaximumValue(S, k,m, x)

else

for i← 1, . . . , k do
iCount ← 1

for j ← 1, . . . , k do

if i 6= j then
copy(S′[iCount], S[j]);

iCount ← iCount+1
S′′[i]← CSP-R(S′, k − 1,m,S′′[i])

for j ← 1, . . . ,m do
Q← ∅

for i← 1, . . . , k do Q← Q ∪ S′′[i][j] ;

if |Q| = 1 then x[i] = Q[1] ;
x← minimizeMaximumValue(S, k,m, x)

return x[.]

Input instance

S =


s1 : GTCC

s2 : AGAG

s3 : CGAG

S′′ =


x1 : AGAG

x2 : GGCG

x3 : GGCG

x : ␣G␣G d : 4 2 2

Algorithm: CSP-R step-by-step iter. 12
Function CSP-R(S, k,m, x)

if k = 2 then

for j ← 1, . . . ,m do

if S[1][j] = S[2][j] then x[j] = S[1][j];

x← minimizeMaximumValue(S, k,m, x)

else

for i← 1, . . . , k do
iCount ← 1

for j ← 1, . . . , k do

if i 6= j then
copy(S′[iCount], S[j]);

iCount ← iCount+1
S′′[i]← CSP-R(S′, k − 1,m,S′′[i])

for j ← 1, . . . ,m do
Q← ∅

for i← 1, . . . , k do Q← Q ∪ S′′[i][j] ;

if |Q| = 1 then x[i] = Q[1] ;

x← minimizeMaximumValue(S, k,m, x)
return x[.]

111

Input instance

S =


s1 : GTCC

s2 : AGAG

s3 : CGAG

x : ␣G␣G d : 4 2 2

3-Dimensional matrix H

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

3-Dimensional matrix T

1 2 3 4

A C G G T A C C G

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Algorithm: CSP-R step-by-step iter. 13
Function CSP-R(S, k,m, x)

if k = 2 then

for j ← 1, . . . ,m do

if S[1][j] = S[2][j] then x[j] = S[1][j];

x← minimizeMaximumValue(S, k,m, x)

else

for i← 1, . . . , k do
iCount ← 1

for j ← 1, . . . , k do

if i 6= j then
copy(S′[iCount], S[j]);

iCount ← iCount+1
S′′[i]← CSP-R(S′, k − 1,m,S′′[i])

for j ← 1, . . . ,m do
Q← ∅

for i← 1, . . . , k do Q← Q ∪ S′′[i][j] ;

if |Q| = 1 then x[i] = Q[1] ;
x← minimizeMaximumValue(S, k,m, x)

return x[.]

Input instance

S =


s1 : GTCC

s2 : AGAG

s3 : CGAG

x : ␣G␣G d : 4 2 2

3-Dimensional matrix H

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

3-Dimensional matrix T

1 2 3 4

A C G G T A C C G

4 4 3 0 0 4 3 0 0

1 2 2 0 0 1 2 0 0

2 1 2 0 0 1 2 0 0

4 4 3 0 0 4 3 0 0

1 1 1 0 0 1 1 0 0

Algorithm: CSP-R step-by-step iter. 14
Function CSP-R(S, k,m, x)

if k = 2 then

for j ← 1, . . . ,m do

if S[1][j] = S[2][j] then x[j] = S[1][j];

x← minimizeMaximumValue(S, k,m, x)

else

for i← 1, . . . , k do
iCount ← 1

for j ← 1, . . . , k do

if i 6= j then
copy(S′[iCount], S[j]);

iCount ← iCount+1
S′′[i]← CSP-R(S′, k − 1,m,S′′[i])

for j ← 1, . . . ,m do
Q← ∅

for i← 1, . . . , k do Q← Q ∪ S′′[i][j] ;

if |Q| = 1 then x[i] = Q[1] ;
x← minimizeMaximumValue(S, k,m, x)

return x[.]

112

Input instance

S =


s1 : GTCC

s2 : AGAG

s3 : CGAG

x : ␣G␣G d : 4 2 2

3-Dimensional matrix H

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

3-Dimensional matrix T

1 2 3 4

A C G G T A C C G

4 4 3 0 0 4 3 0 0

1 2 2 0 0 1 2 0 0

2 1 2 0 0 1 2 0 0

4 4 3 0 0 4 3 0 0

1 1 1 0 0 1 1 0 0

Algorithm: CSP-R step-by-step iter. 15
Function CSP-R(S, k,m, x)

if k = 2 then

for j ← 1, . . . ,m do

if S[1][j] = S[2][j] then x[j] = S[1][j];

x← minimizeMaximumValue(S, k,m, x)

else

for i← 1, . . . , k do
iCount ← 1

for j ← 1, . . . , k do

if i 6= j then
copy(S′[iCount], S[j]);

iCount ← iCount+1
S′′[i]← CSP-R(S′, k − 1,m,S′′[i])

for j ← 1, . . . ,m do
Q← ∅

for i← 1, . . . , k do Q← Q ∪ S′′[i][j] ;

if |Q| = 1 then x[i] = Q[1] ;
x← minimizeMaximumValue(S, k,m, x)

return x[.]

Input instance

S =


s1 : GTCC

s2 : AGAG

s3 : CGAG

x : GG␣G d : 3 2 2

3-Dimensional matrix H

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

3-Dimensional matrix T

1 2 3 4

A C G G T A C C G

4 4 3 0 0 4 3 0 0

1 2 2 0 0 1 2 0 0

2 1 2 0 0 1 2 0 0

4 4 3 0 0 4 3 0 0

1 1 1 0 0 1 1 0 0

Algorithm: CSP-R step-by-step iter. 16
Function CSP-R(S, k,m, x)

if k = 2 then

for j ← 1, . . . ,m do

if S[1][j] = S[2][j] then x[j] = S[1][j];

x← minimizeMaximumValue(S, k,m, x)

else

for i← 1, . . . , k do
iCount ← 1

for j ← 1, . . . , k do

if i 6= j then
copy(S′[iCount], S[j]);

iCount ← iCount+1
S′′[i]← CSP-R(S′, k − 1,m,S′′[i])

for j ← 1, . . . ,m do
Q← ∅

for i← 1, . . . , k do Q← Q ∪ S′′[i][j] ;

if |Q| = 1 then x[i] = Q[1] ;
x← minimizeMaximumValue(S, k,m, x)

return x[.]

113

Input instance

S =


s1 : GTCC

s2 : AGAG

s3 : CGAG

x : GG␣G d : 3 2 2

3-Dimensional matrix H

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

3-Dimensional matrix T

1 2 3 4

A C G G T A C C G

0 0 0 0 0 3 2 0 0

0 0 0 0 0 1 2 0 0

0 0 0 0 0 1 2 0 0

0 0 0 0 0 3 2 0 0

0 0 0 0 0 1 3 0 0

Algorithm: CSP-R step-by-step iter. 17
Function CSP-R(S, k,m, x)

if k = 2 then

for j ← 1, . . . ,m do

if S[1][j] = S[2][j] then x[j] = S[1][j];

x← minimizeMaximumValue(S, k,m, x)

else

for i← 1, . . . , k do
iCount ← 1

for j ← 1, . . . , k do

if i 6= j then
copy(S′[iCount], S[j]);

iCount ← iCount+1
S′′[i]← CSP-R(S′, k − 1,m,S′′[i])

for j ← 1, . . . ,m do
Q← ∅

for i← 1, . . . , k do Q← Q ∪ S′′[i][j] ;

if |Q| = 1 then x[i] = Q[1] ;
x← minimizeMaximumValue(S, k,m, x)

return x[.]

Input instance

S =


s1 : GTCC

s2 : AGAG

s3 : CGAG

x : GGCG d : 2 2 2

3-Dimensional matrix H

1 2 3 4

A C G G T A C C G

0 0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0 1

1 1 1 2 1 2 1 1 2

3-Dimensional matrix T

1 2 3 4

A C G G T A C C G

0 0 0 0 0 3 2 0 0

0 0 0 0 0 1 2 0 0

0 0 0 0 0 1 2 0 0

0 0 0 0 0 3 2 0 0

0 0 0 0 0 1 3 0 0

Algorithm: CSP-R step-by-step iter. 18
Function CSP-R(S, k,m, x)

if k = 2 then

for j ← 1, . . . ,m do

if S[1][j] = S[2][j] then x[j] = S[1][j];

x← minimizeMaximumValue(S, k,m, x)

else

for i← 1, . . . , k do
iCount ← 1

for j ← 1, . . . , k do

if i 6= j then
copy(S′[iCount], S[j]);

iCount ← iCount+1
S′′[i]← CSP-R(S′, k − 1,m,S′′[i])

for j ← 1, . . . ,m do
Q← ∅

for i← 1, . . . , k do Q← Q ∪ S′′[i][j] ;

if |Q| = 1 then x[i] = Q[1] ;
x← minimizeMaximumValue(S, k,m, x)

return x[.]

114

