Universidade Federal do Amazonas Instituto de Ciência Exata Departamento de Física

Comportamento relaxador da hexaferrita de bário modificadas com í
ons de La^{3+} e Al^{3+}

Manaus-AM Julho de 2019

Apoio:

Universidade Federal do Amazonas Instituto de Ciência Exata Departamento de Física

Comportamento relaxador da hexaferrita de bário modificadas com íons de La^{3+} e Al^{3+}

Dissertação apresentada ao Departamento de Física, Universidade Federal do Amazonas, como parte dos requisitos para obtenção do título de Mestre em Física

Área de concentração: Física da Matéria Condensada.

Orientador: Dr. Fidel Guerrero Zayas Coorientador: Dr. Pedro A. Mariño Castellanos Aluno: Luã Da Costa Catique

> Manaus-AM Julho de 2019

Ficha Catalográfica

Ficha catalográfica elaborada automaticamente de acordo com os dados fornecidos pelo(a) autor(a).

Universidade Federal do Amazonas

Programa de Pós-Graduação em Física

ATA DA 81ª DEFESA DE DISSERTAÇÃO DE

MESTRADO EM FÍSICA DO PPG-FIS/UFAM

MESTRANDO:	Luã da Costa Catique
------------	----------------------

DATA: 31/07/2019

HORÁRIO: 09:00h

LOCAL: Sala 03, Bloco de Estatística

TÍTULO: "Comportamento relaxador de hexaferrita de bário modificadas com íons de La3+ e Al3+"

BANCA EXAMINADORA

Prof. Dr. Fidel Guerrero Zayas	Presidente	- DF/UFAM
Prof. Dr. Ronaldo Santos da Silva	Membro	- DF/UFS
Prof. Dr. José Anglada Rivera	Membro	- IFAM

Reuniu-se a Banca Examinadora acima descrita, nas formas e termos do Regimento Interno do Programa de Pós-Graduação em Física da Universidade Federal do Amazonas, para o *Exame de Defesa de Dissertação de Mestrado* sob o título **"Comportamento relaxador de hexaferrita de bário modificadas com íons de La3+ e Al3+"** do candidato **Luã da Costa Catique**. A sessão foi aberta pelo Presidente da Banca Examinadora – **Prof. Dr. Fidel Guerrero Zayas**. Após a explanação da candidato, o presidente passou a palavra aos componentes da Banca Examinadora. Terminada a arguição, a Banca Examinadora reuniu-se em sessão secreta, tendo como resultado:

(X) APROVADO

 APROVADO COM RESTRIÇÕES (SESSÃO SUSPENSA) – as exigências que constam na folha de modificações devem ser atendidas em prazo fixado pela banca (não superior a 60 dias).

() NÃO APROVADO

Encerrada a sessão, o presidente informou o resultado. Nada mais havendo a tratar, foi encerrada a sessão e, para constar, eu **Fidel Guerrero Zayas,** lavrei a presente ata, que assino com os membros da Banca Examinadora. Manaus, 31 de julho de 2019.

Prof. Dr. Fidel Guerrero Zayas Presidente Prof. Dr. Ronaldo Santos da Silva Membro Prof. Dr. José Anglada Rivera Membro Profa. Dra. Angsula Ghosh Coordenadora do PPG-FIS

Sumário

1 Introdução					
2	Obj	jetivo	14		
	2.1	Objetivos geral	14		
	2.2	Objetivos específicos	14		
	2.3	Organização da dissertação	14		
3	Rev	visão bibliográfica	16		
	3.1	Propriedades físicas das hexaferritas	16		
		3.1.1 Estrutura cristalina	16		
		3.1.2 Caracterização magnética e elétrica	18		
	3.2	Propriedades elétrica	20		
		3.2.1 Impedância e Permissividade	20		
		3.2.2 Condutividade	22		
	3.3	Polarização dielétrica	24		
		3.3.1 Comportamento dielétrico	24		
		3.3.2 Dispersão fenomenológica e Funções de relaxamento	27		
		3.3.3 Processos de relaxação: Interpretação fenomenológica	28		
		3.3.4 Modelos de relaxação	30		
	3.4	Mecanismo de condução em cerâmica	31		
		3.4.1 Flutuações de portadores de carga móvel	33		
4 Procedimentos e métodos experimentais		cedimentos e métodos experimentais	34		
4.1 Preparação das cerâmicas		Preparação das cerâmicas	34		
	4.2	Caracterização estrutural			
	4.3	Caracterização elétrica	35		
	4.4	Procedimento para o ajuste dielétrico	36		
	4.5	Python - Ajuste das curvas	36		
5	Cor	nportamento elétrico do sistema cerâmico de hexaferrita $Ba_{(1-x)}La_x$			
	Fe_{12}	$_{2}O_{19}$	38		
	5.1	Impedância complexa	38		
	5.2	Permissividade elétrica	40		
	5.3	Módulo elétrico	42		
	5.4	Comportamento relaxador no domínio da frequência	44		
	5.5	Comportamento relaxador no domínio do tempo	46		
	5.6	Condutividade elétrica	48		

	5.6.1 Condutividade no modelo de Dyre	49
6	Comportamento elétrico do sistema cerâmico de hexaferrita Ba _{0.9} La _{0.1}	
	$Fe_{12-y}Al_yO_{19}$	52
	6.1 Análise da impedância complexa	52
	6.2 Análise da permissividade complexa	53
	6.3 Análise do módulo elétrico complexo	54
	6.4 Análise da condutividade elétrica complexa	57
7	Conclusão	60
8	Referências	62
A	Appendix	72
В	Appendix	75
С	Appendix	93
D	Appendix 1	L 01
E	Appendix 1	104

Lista de Figuras

3.1	Representação esquemática da estrutura geral das hexaferrita tipo ${\rm M}$ forma	
	$AFe_{12}O_{12}$ (Pullar,2012)	17
3.2	Intervalos de condutividade eletrônica $\Omega^{-1}cm^{-1}$ exibida por cerâmica (Fonte:	
	Barsoum,2003)	22
3.3	Esquema de bandas de energia de elétrons em sólidos. a banda de valência	
	$({\rm B.V})$ e banda de condução $({\rm B.C})$ estão indicadas (Fonte: Carter, 2007)	23
3.4	Ilustração de diferentes mecanismos de polarização: (a) polarização de ori-	
	entação, (b) polarização de deformação; (c) polarização iônica; (d) polari-	
	zação interfacial (Fonte: Raicu, 2015).	25
3.5	Os tipos de mecanismos de polarização se manifesta numa faixa de frequên-	
	cia específica, assim como valores da permissividade elétrica.	26
3.6	Os tipos de mecanismos de polarização se manifesta no intervalo de tempo	
	específica, assim como valores da permissividade elétrica.	27
4.1	Analisador de impedância do tipo Solartron Analytical AMETEK	36
5.1	Dependência da parte(a) real e (b) imaginária da impedância parta sistema	
	$Ba_{(1-x)}La_xFe_{12}O_{19}$ com $x = 0.0; 0.1 \in 0.6$ à temperatura ambiente	38
5.2	Comportamento da (a) parte real e (b) imaginária da permissividade die-	
	létrica com a frequência para sistema $Ba_{1-x}La_xFe_{12}O_{19}$ com $x = 0.0; 0.1$ e	
	0.6 à temperatura ambiente	40
5.3	Variação do M' e M'' com a frequência para o sistema $Ba_{1-x}La_xFe_{12}O_{19}$	
	$\operatorname{com} x = 0.0; 0.1 \mathrm{e} 0.6$ à temperatura ambiente	43
5.4	Variação de Z'' e M'' com a frequência do sistema $Ba_{1-x}La_xFe_{12}O_{19}$ com	
	x = 0.0; 0.1 e 0.6 à temperatura ambiente.	44
5.5	Ajuste de curva do M'' para o sistema $Ba_{(1-x)}La_xFe_{12}O_{19}$ com $x = 0.0; 0.1$	
	e 0.6 à temperatura ambiente.	45
5.6	Ajuste das funções de relaxamento no domínio do tempo obtidas para o	
	sistema $Ba_{1-x}La_xFe_{12}O_{19}$ com $x = 0.0; 0.1 e 0.6$ à temperatura ambiente.	47
5.7	Variação da (a) parte real e (b) parte imaginária do condutividade elétrico	
	com a frequência do sistema $Ba_{1-x}La_xFe_{12}O_{19}$ com $x=0.0;0.1$ e 0.6 à	
	temperatura ambiente.	49
5.8	Valores da condutividade d c $,\sigma_{dc},{\rm tempo}$ de relaxação, $\tau,{\rm e}$ desvio quadrá-	
	tico, D , no modelo de Dyre para $\sigma' e \sigma''$ para o sistema $Ba_{(1-y)}La_yFe_{(12-x)}Al_xG$	O_{19}
	à temperatura ambiente.	50

6.1	Variação da impedância real e imaginária, $Z' \in Z''$, para o sistema cerâmico	
	$Ba_{0.9}La_{0.1} Fe_{(12-y)}Al_yO_{19}, y = 0.1; 0.3; 0.6; 0.8; 1.0 e 1.3$ à temperatura	
	ambiente	52
6.2	Dependência da permissividade, $\varepsilon^*(\omega)$, para o sistema cerâmico $Ba_{0.9}La_{0.1}$	
	$Fe_{(12-y)}Al_yO_{19}$, com $y = 0, 1; 0, 3; 0, 6; 0, 8; 1, 0 \in 1, 3$ à temperatura ambiente.	54
6.3	Dependência do módulo elétrico com a frequência para o sistema cerâmico	
	cerâmico $Ba_{0.9}La_{0.1}$ $Fe_{12-y}Al_yO_{19}, y = 0, 1; 0, 3; 0, 6; 0, 8; 1, 0 \in 1, 3$ à tem-	
	peratura ambiente.	55
6.4	Ajuste de curva da função distribuição temporal KWW para o sistema	
	cerâmico $Ba_{0.9}La_{0.1}Fe_{12-y}Al_yO_{19}$, com $y=0.0;0.1;0.3;0.6;0.8;1.0,$ e 1.3 à	
	temperatura ambiente.	56
6.5	Valores de σ_{dc} , τ , e desvio quadrático, D , determinados usando o modelo de	
	Dyre para o sistema $Ba_{(0.9)}La_{0.1} Fe_{(12-y)}Al_yO_{19} \text{ com } y = 0, 1; 0, 3; 0, 6; 0, 8; 1, 0$	
	e 1,3 à temperatura ambiente	58

Nomenclature

Constante Física

ε_o	Permissividade no vácuo	$8,854.10^{-12}F/m$
μ_B	Magneton de Bohr	Am^2
Unid	ades	
Å	Angstrom	$1 \times 10^{-10} m$
Gran	ndeza física	
V	Tensão	Voltagem (V)
ν	frequência	hertz (Hz)
Z^*	Impedância complexa	
Z^{\prime}	Impedância real	ohms (Ω)
$Z^{\prime\prime}$	Impedância imaginária	ohms (Ω)
$arepsilon^*$	Permissividade complexa	
$\varepsilon^{'}$	Permissividade real	Farads por centímetros $({\cal F}/cm)$
$\varepsilon^{''}$	Permissividade imaginária	Farads por centímetros (F/cm)

 M^* Módulo elétrico complexa F^{-1} M^{\prime} Módulo elétrico real Y^* Admitância complexa Condutividade complexa σ^* Siemens (Ω^{-1}) por centímetros S/cm ou $(\Omega cm)^{-1}$ $\sigma^{'}$ Condutividade real Siemens (Ω^{-1}) por centímetros S/cm ou $(\Omega cm)^{-1}$ $\sigma^{''}$ Condutividade imaginária α,β e $\gamma\,$ Parâmetros de relaxação Tempo de relaxação segundo \boldsymbol{s} au

Agradecimentos

Agradeço a minha família pela apoio durante toda jornada acadêmica e que ajudaram em todos os sentidos.

Ao meu orientador pela discussões e orientações tornaram possível a realização desse trabalho.

Ao professores pela introdução na base do conhecimento em física.

Aos funcionários da Universidade Federal do Amazonas por fornecer as condições adequadas para a realização esta dissertação.

Aos amigos e colegas do PPGFis pela incentivações com discussões sobre o trabalho.

À Capes pela apoio financeiros em que compreende a bolsa de mestrado.

Ao Departamento de Física por fornecer infra-instrutura adequada para desenvolvimento de minha dissertação e a oportunidade de realizar este mestrado.

À Universidade Federal do Amazonas que vem investindo na minha formação acadêmica desde da graduação.

Resumo

As hexaferritas $Ba_{0.9}La_{0.1}Fe_{12-y}O_{19}$ modificadas com Al^{3+} e La^{3+} foram sintetizadas pelo método cerâmico convencional. Em temperatura ambiente o refinamento Rietveld e difração de raios X confirmaram a formação de estrutura hexaferrita tipo M. O comportamento das propriedades elétricas; impedância, permissividade, módulo elétrico e condutividade foram analisadas através do modelo de relaxação dielétrica obtidos mediante a técnica de espectroscopia de impedância. Os parâmetros da relaxação; tempo de relaxação e parâmetros de correlação são obtido usando o ajuste das curvas do módulo elétrico e a condutividade usando o modelo de Havrialiak-Negami e de domínios aleatório de Dyre, respectivamente. Comparação destes parâmetros são feitos através da análise no domínio da frequência e do tempo. Os resultados obtidos indicam a aparição de um processo de relaxação dipolar na hexaferrita de bário pura, e um processo de relaxação interfacial devido à acumulação de portadores de cargas em interface entre grãos e contornos de grãos do tipo Maxwell-Wagner-Sillar na hexaferrita de bário modificadas com íons de La^{3+} na concentrações de 0.1 e 0.6 à temperatura ambiente. Para o caso do sistema cerâmico $Ba_{0.9}La_{0.1}Fe_{12-y}O_{19}$ aparece só o processo de relaxação interfacial a temperatura ambiente. O pico de relaxação, assim como os parâmetros dependem da concentração do íons de Al^{3+} . A condutividade aumenta para as menores concentrações, inferior a 0.6 do íon Al^{3+} , para valores entre 0.6 e 0.8 a condutividade diminui e para concentrações superiores a 0.8 a condutividade é próxima à obtida para a cerâmica $BaMLa_{0.1}$. O modelo de Dyre apresenta um bom ajuste sobre o comportamento da condutividade, com valor do desvio quadrático médio superior a 0.99, quando existe condutividade por hopping dos elétrons. Em todos os casos existe aumento da condutividade com relação à hexaferrita pura o qual indica a potencialidade destes sistemas como absorvedores de radiação eletromagnética. As hexaferritas são visadas pelas pesquisas devidas as suas propriedades multiferróicas e como materiais absorvedores de radiações eletromagnéticas na faixa das micro-ondas, pesquisas desenvolvida atualmente em nosso grupo.

Palavras chaves— Propriedades elétricas; Mecanismo de polarização; Mecanismo de condutividade; Modelo de Havrialiak-Negami; Função de Kohlrausch-Williams-Watts; Modelo de Dyre; Hopping dos elétrons; Relaxação dielétrica; Ajustes das curvas.

Abstract

The $Ba_{0,9}La_{0,1}Fe_{12-y}O_{19}$ hexaferrites modified with Al^{3+} and La^{3+} were synthesized by the conventional ceramic method. At room temperature Rietveld refinement and X-ray diffraction confirmed the formation of type M hexaferrite structure. The behavior of electrical properties; Impedance, permittivity, electrical modulus and conductivity were analyzed through the dielectric relaxation model obtained by the impedance spectroscopy technique. The parameters of relaxation; Relaxation time and correlation parameters are obtained using the fitting of the electrical module curves and conductivity using the Havrialiak-Negami model and Dyre random domain model, respectively. Comparison of these parameters are made by frequency and time domain analysis. The results indicate the appearance of a dipolar relaxation process in pure barium hexaferrite, and an interfacial relaxation process due to the accumulation of charge carriers at the interface between grain and Maxwell-Wagner-Sillar grain contours in barium hexaferrite. modified with La^{3+} ions at concentrations of 0.1 and 0.6 at room temperature. In the case of the ceramic system $Ba_{0,9}La_{0,1}Fe_{12-u}O_{19}$ appears only the process of interfacial relaxation at room temperature. The relaxation peak as well as the parameters depend on the concentration of the Al^{3+} ions. Conductivity increases for lower concentrations, less than 0.6 of Al^{3+} , for values between 0.6 and 0.8 conductivity decreases, and for concentrations greater than 0.8 conductivity is close to that obtained for ceramics $BaMLa_{0.1}$. The Dyre model presents a good fit on conductivity behavior, with mean square deviation value greater than 0.99, when there is electron hopping conductivity. In all cases there is an increase in conductivity with respect to pure hexaferrite which indicates the potential of these systems as electromagnetic radiation absorbers. Hexaferrites are targeted by research due to their multiferroic properties and as absorbing materials for electromagnetic radiation in the microwave range, research currently developed in our group.

Keywords— Electrical properties; Polarization mechanism; Conductivity mechanism; Havri aliak-Negami model; Kohlrausch-Williams-Watts Function; Dyre model; Electron hopping; Dielectric relaxation; Curve adjustments.

1 Introdução

As ferritas são materiais cerâmicos magnéticos cuja fórmula química pode variar significativamente, podendo ter estrutura cristalina cúbica ou hexagonal. A estrutura espinélica tem a fórmula MFe_2O_4 , onde ferro é trivalente e M denota um metal divalente da série Mg^{2+} , Fe^{2+} , Co^{2+} , Ni^{2+} , Cu^{2+} , Zn^{2+} , ou Cd^{2+} . A estrutura granada possuem fórmula química $M_3Fe_5O_{12}$, onde M é um metal trivalente da série dos lantanídeos, como ítrio. A estrutura hexagonal correspondem à fórmula $MFe_{12}O_{19}$, onde M é Ba ou Sr, que são metais divalentes e o Fe é trivalente [1,2].

As ferritas hexagonais, também chamadas hexaferritas, são materiais cerâmicos descobertos na década de 1950. E caracterizam-se por ter propriedades magnéticas com alta temperatura de Curie, anisotropia magneto-cristalina e coercividade [3]. Por estas propriedades as hexaferritas são usadas como ímãs permanentes, em dispositivos elétricos e de micro-onda, armazenamento e gravação de informação, indutores multicamada de alta frequência entre outras [3–8].

Na atualidade uma propriedade muito interessante nas hexaferritas é a multiferroicidade magnetoelétrica [9]. Os materiais ferroelétricos apresentam uma polarização diferente de zero na ausência de um campo elétrico aplicado e esta polarização pode ser modificada e invertida aplicando um campo elétrico. Analogamente, os materiais ferromagnéticos apresentam um alinhamento preferencial gerando uma magnetização diferente de zero em ausência de campo magnético aplicado e pode modificar-se com um campo magnético. Os materiais ferroelásticos são os análogos mecânicos aos materiais ferróicos mencionados, e possuem uma tensão espontânea. Os materiais multiferróicos exibem acoplamento entre pelo menos duas das propriedades ferróicas, no caso da hexaferritas apresenta um acoplamento dipolar elétrico e magnético [10]. A multi-ferroicidade em hexaferritas é um campo aberto na investigação já que até o momento não se conhecem materiais que tenham uma temperatura de Curie, tanto magnética quanto elétrica, acima da temperatura ambiente. As hexaferritas exibem comportamento magneto-elétrico à temperatura próxima da ambiente [9, 11–13]

Outra importante aplicação na última década da hexaferrita é como Materiais Absorvedores de Radiação Eletromagnética (MARE), em inglês tradicionalmente conhecido como RAM -Radar Absorbing Materials. Estes materiais proporcionam perdas de energia da radiação eletromagnética em determinadas faixas de frequências; atenuam a radiação da onda eletromagnética incidente e dissipam a energia absorvida sob a forma de calor, por meio de mecanismos internos, magnéticos e/ou dielétricos [14,15].Uma característica importantes desses compostos, e de constante pesquisa na atualidade, é a possibilidade de ajustar as propriedades elétricas e magnéticas desses materiais, de tal forma a otimizar a atenuação das micro-ondas incidentes, em frequências específicas ou em um amplo espectro de frequências. Também são características relevantes e continuamente investigadas na área de MARE: a durabilidade, baixa densidade, baixo custo, o desempenho em uma ampla faixa de frequências e a facilidade de aplicação [16,17].

Em as ambas as aplicações é importante a variações das propriedades elétricas e magnéticas.

Estas variações podem ser obtidas através de modificações dos procedimentos experimentais na obtenção do composto. No entanto, tais variações devem-se principalmente à qualidade e pureza da hexaferrita produzida e ao tamanho e morfologia das partículas do pó [18]. As modificações das propriedades das hexaferritas também podem ser obtida por substituição catiônica que resulta em uma modificação das propriedades intrínseca, como a anisotropia magnetocristalina [19, 20].

A substituição catiônica na hexaferrita do tipo M pode envolver os íons divalentes M^{2+} e trivalente Fe^{3+} . Normalmente, os íons Sr^{2+} , Pb^{2+} , Ca^{2+} têm sido usados para substituir o íon Ba^{2+} na hexaferrita do tipo BaM [3, 21–23]. Variações nas propriedades magnéticas foram reportadas para todas estas substituições. Também em varias pesquisas têm-se relatado a substituição dos íons metálicos divalentes por íons de terras raras. Dentro de estas substituições podemos mencionar íons de Eu^{3+} [24], La^{3+} [25–27], Gd^{3+} [28], Pr^{3+} [29], Y^{3+} , Ce^{3+} , Nd^{3+} , e Sm^{3+} [30]. No caso específico do La^{3+} , verificou-se que apenas 0.1 de substituição de Ba^{2+} por La^{3+} em hexaferrita de BaM aumenta os valores das propriedades magnéticas [25]. Os resultados deste estudo também revelaram um aumento das propriedades de absorção de micro-ondas com a substituição de La^{3+} por Ba^{2+} . As hexaferritas dopadas com La^{3+} foram relatados como grande potencial para aplicações de absorção de micro-ondas [27].

A substituição de Fe^{3+} por um metal trivalente, ou por combinações de metais divalentes e tetravalentes foi extensivamente investigada com o propósito de modificar as propriedades magnéticas nas ferritas. Em geral, a substituição de Fe^{3+} por um metal trivalente como Al^{3+} , Cr^{3+} ou Ga^{3+} resulta no aumento da coercividade, sendo o Al o mais efetivo [31–35]. É conhecido que a coercividade é influenciada pelo tamanho da partícula, uma redução na coercividade é normalmente observada em temperaturas de sinterização elevadas devido ao crescimento de partículas além do tamanho do domínio crítico [36].

As propriedades elétricas da hexaferrita do tipo M e em particular a BaM não têm sido estudadas com a mesma intensidade que as propriedades magnéticas. Iwauchi e Ikeda [37] estudando ferritas hexagonais mostraram que as do tipo M apresentam baixas constantes dielétrica e condutividade em contraste com a ferrita espinélica $BaTi_2Fe_4O_{11}$. Krishna [38] relatou as propriedades dielétrica da hexaferrita de bário em nanopartículas com tamanho de 90nm, preparada por sol-gel e comparadas com hexaferritas comerciais. As propriedades dielétricas dependentes da temperatura e a frequência de nanopartículas exibiram múltiplos processos de relaxação e uma alta perda dielétrica. A análise de impedância revelou um grande valor de permissividade dielétrica que pode ser atribuído à relaxação de Maxwell-Wagner originário nos contornos de grãos [38, 39]. Também foram relatadas as propriedades elétricas (permissividade e condutividade) da hexaferritas de bário substituída com Sr^{2+} , com $Ti^{4+} - Mg^{2+}$, La^{3+} , Sb_2O_3 , $Ca^{2+} - Sr^{2+}$. Nestas pesquisas foram analisadas a influência do bulk e dos contornos de grão sobre a resposta elétrica [40-44]. El-Sayed et al., [34] relataram os parâmetros dielétricos e medidas de condutividade no sistema $BaFe_{12-x}Al_xO_{19}$ na faixa de temperatura de 293 a 493K. A condutividade AC mostrou uma relação linear com a frequência para $BaFe_{12}O_{19}$, diminuindo com o aumento da temperatura, indicando que as estruturas heterogêneas aumentam a constante

dielétrica (ε') e as perdas dielétricas (ε'') diminuem com o aumento da composição de Al^{3+} .

Geralmente, a caracterização dos processos de relaxação requer o uso de uma variedade de técnicas a fim de abranger os intervalos relevantes em frequência. Nesta abordagem, a Espectroscopia Dielétrica (ED) tem suas próprias vantagens. Como por exemplo, a moderna técnica de ED pode se sobrepor a uma frequência extremamente ampla $(10^{-6} \text{ a } 10^{12}Hz)$ e temperatura $(-170^{\circ}C \text{ a } +500^{\circ}C)$ [45, 46]. A ED é especialmente sensível a interações intermoleculares e é capaz de monitorar processos cooperativos em nível molecular. Portanto, este método é mais apropriado do que qualquer outro para monitorar tais escalas diferentes de movimentos moleculares. Ele fornece uma ligação entre a investigação das propriedades dos constituintes individuais do material complexo e a caracterização de suas propriedades de volume [45].

Como se pode perceber o crescente grau de interesse na pesquisa das hexaferritas é devido às suas interessantes propriedades magnéticas, ferroelétricas e multiferróicas que determinam o alto potencial de aplicação desses compostos. A substituição de diferentes cátions; mono, di, tri, tetra e pentavalente traz consigo a variações das propriedades magnéticas e elétricas das hexaferritas modificadas. Em nosso grupo de pesquisa são investigados materiais multiferróicos a temperatura ambiente e materiais com potencialidades para ser usados como materiais absorvedores de radiações eletromagnéticas. A hexaferrita modificada com La^{3+} são boas candidatas para esta última aplicação. Por um lado, aumentam a magnetização de saturação e mantém a coercividade e por outro lado incrementam os defeitos pontuais na estrutura cristalina pela diferença de valência com relação ao íon do Ba. As hexaferritas modificadas com Al^{3+} nos sítios do Fe^{3+} aumentam a coercividade e deterioram a magnetização sem a criação de defeitos na rede cristalina. A combinação destes dos íons modificando simultaneamente a hexaferrita de bário tem sido pouca estudada, tanto nas propriedades magnéticas quanto nas propriedades elétricas. Nesta dissertação se avaliam as variações das propriedades elétricas usando o método de espectroscopia dielétrica da hexaferrita de bário quando esta é substituída com cátions de La^{3+} no sítio do Ba^{2+} e de Al^{3+} nos sítios do Fe^{3+} .

2 Objetivo

2.1 Objetivos geral

Avaliar o comportamento relaxador dos sistemas cerâmicos $Ba_{(1-x)}La_xFe_{12}O_{19}$ com x = 0,0;0,1;0,6 e $Ba_{0.9}La_{0.1}Fe_{12-y}Al_yO_{19}$ com y = 0,0;0,1;0,3;0,6;0,8;1,0 e 1,3 na faixa de frequência de 1Hz e 1MHz à temperatura ambiente usando a impedância complexa

2.2 Objetivos específicos

- Avaliar o comportamento das propriedades elétricas (Permissividade, Módulo elétrico, Condutividade) a partir de medições de impedâncias nos sistemas cerâmicos Ba_(1-x)La_xFe_(12-y)O₁₉ com x = 0,0;0,1;0,6 e Ba_{0.9}La_{0.1}Fe_{12-y}Al_yO₁₉ com y = 0,0;0,1;0,3;0,6;0,8;1,0 e 1,3 na faixa de frequência de 1Hz e 1MHz à temperatura ambiente.
- Determinar os parâmetros de relaxação dielétrica; tempo de relaxação e parâmetros das funções dielétricas nos diferentes mecanismos de polarização no domínio da frequência e do tempo nos sistemas cerâmicos Ba_(1-x)La_xFe_(12-y)O₁₉ com x = 0,0;0,1;0,6 e Ba_{0.9}La_{0.1}Fe_{12-y}Al_yO₁₉ com y = 0,0;0,1;0,3;0,6;0,8;1,0 e 1,3 na faixa de frequência de 1Hz e 1MHz à temperatura ambiente.
- Determinar os parâmetros da relaxação de condutividade; tempo de relaxação e condutividade dc usando o modelo de condutividade elétrica complexa de Dyre nos sistemas cerâmicos Ba_(1-x)La_xFe_(12-y)O₁₉ com x = 0,0;0,1;0,6 e Ba_{0.9}La_{0.1}Fe_{12-y}Al_yO₁₉ com y = 0,0;0,1;0,3;0,6;0,8;1,0 e 1,3 na faixa de frequência de 1Hz e 1MHz à temperatura ambiente.

2.3 Organização da dissertação

Esta dissertação foi estruturada em uma introdução, objetivos, revisão bibliográfica, metodologia e procedimentos experimentais, dois capítulos de resultados, conclusões e perspectivas futuras e referência bibliográfica. No capítulo 3, se apresentam a revisão bibliográfica fazendo ênfases em as propriedades físicas das hexaferritas tais como; estrutura cristalina, propriedades elétricas e magnéticas. Também se faz uma breve descrição da teoria das propriedades elétricas e a relaxação dielétrica e de condutividade. Por último neste capítulo, por sua importância, se apresenta a técnica de impedância complexa com seus diferentes formalismos.

No capítulo 4 se apresenta a metodologia e os procedimentos experimentais usados. O método de preparação das amostras é mostrado, na qual desenvolvido pelo professor Dr. Pedro Mariño que nos facilitou o conjunto de amostras. Os procedimentos para as medidas usando a técnica de espectroscopia de impedância, assim como os métodos de determinação das diferentes propriedades elétricas são expostos junto aos procedimentos do método de espectroscopia dielétrica. Por último a apresentação dos *módulos* em Python para realizar o processamento dos dados experimentais.

No capítulo 5 e 6 são apresentados os resultados e discussão do comportamento relaxador. No capítulo 5 para o sistema cerâmico $Ba_{1-x}La_xFe_{12}O_{19}$ com x = 0,0;0,1; e 0,6 do cátion La^{3+} . No capítulo 6 para o sistema cerâmico $(Ba_{0,90}La_{0,1})Fe_{(12-y)}Al_yO_{19}$ com y = 0,0;0,1;0,3;0,6;0,8;1,0 e 1,3, ambos na faixa de frequência de 1Hz a 1MHz à temperatura ambiente.

3 Revisão bibliográfica

3.1 Propriedades físicas das hexaferritas

Nesta secção serão discutidas as propriedades das hexaferritas do tipo M, suas estruturais, elétricas e magnéticas. Estas são descritas brevemente para a hexaferrita de bário pura e modificada com diferentes cátions.

3.1.1 Estrutura cristalina

Existem 6 tipos de hexaferritas, que se diferenciam por sua estrutura cristalina como se mostra a continuação. Em cada fórmula, Me representa um íon pequeno com valência +2:

- Ferritas tipo M: com a estrutura de $BaFe_{12}O_{19}(BaM$ ferrite de Bário).
- Ferritas tipo Z: com a estrutura de $Ba_3Me_2Fe_{24}O_{41}$.
- Ferritas tipo Y: com a estrutura de $BaMe_2Fe_{12}O_{22}$.
- Ferritas tipo W: com a estrutura de $BaMe_2Fe_{16}O_{27}$.
- Ferritas tipo X: com a estrutura de $Ba_2Me_2Fe_{28}O_{46}$
- Ferritas tipo U: com estrutura de $Ba_4Me_2Fe_{36}O_{60}$

Além disso, as estruturas das hexaferritas podem ser descritas como empilhamentos em sequencia de 3 blocos básicos:

- 1. Bloco S $(Me^{2+}Fe_4O_8)$.
- 2. Bloco R ($[(Ba; Sr)Fe_6O_{11}]^2$).
- 3. Bloco T ($[(Ba; Sr)_2 Fe_8 O_{14}]$).

No presente trabalho se estuda as hexaferritas tipo M, as quais tem a estrutura geral de $AFe_{12}O_{19}$, onde A é um íon divalente como Ba^{2+} , Sr^{2+} , Pb^{2+} , Ca^{2+} , etc. A família de materiais cristaliza com simetria hexagonal com grupo espacial P63/mmc e está constituída por 4 blocos denotados como S, S^* , $R \in R^*$. Na Figura 3.1 é ilustrada a representação esquemática da estrutura cristalina da hexaferrita de bário, as setas nos íons Fe representam a direção de spin. Os sítios 2a, 12k, e 4f2 são octaédricos, 4f1 são tetraédricos e 2b são hexaedros (bipiramidal trigonal), ver Tabela 1 [47,48]. A célula unitária contem um total de 38 íons de O^{2-} , 2 cátions Ba^{2+} , e 24 íons de Fe^{3+} . As subunidades R e S que se mostram têm fórmulas químicas $R = (Ba^{2+}Fe_6^{3+}O_{11}^{2-})^{2-}$ e $S = (Fe_6^{3+}O_8^{2-})^{2+}$. O asterisco (*) indica que a subunidade correspondente no gira 180° em torno do eixo hexagonal. As hexaferritas de bário (BaM), apresentam estrutura cristalina similar à do mineral magnetoplumbita e tem uma célula unidade hexagonal formada por 10 camadas de oxigênio; parâmetros da rede cristalina aproximados; a (6Å) e c (23Å) [1,49,50].

Nesta estrutura os cátions metálicos estão distribuídos em cinco sítios diferentes (subredes), os quais têm números de coordenação diferentes e designam-se como: bipiramidal (subrede 2b), tetraédrico (subrede 4f1) e três octaédricos (subredes 2a, 4f2, 12k) [51].

Tabela 1: Classificação de sítios de por blocos, tipos de coordenação e direção dos spins em hexaferrita de bário.

Sites de Fe^{3+}	Blocos	Sítios cristalográficos	Tipos de coordenação	Direção do spin	Número de coordenação
Fe1	S	2a	Octaédrico	¢	6
Fe2	R	2b	Bipiramidal	\uparrow	5
Fe3	S^*	$4f_1$	Tetraédrico	\downarrow	4
Fe4	R^*	$4f_2$	Octaédrico	\downarrow	6
Fe5	R-S	12k	Octaédrico	\uparrow	6

Os átomos de oxigênio empacotam aos íons $Ba \in Fe$ nos sítios intersticiais. Há dez camadas de átomos de oxigênio ao longo do eixo c e os átomos de Fe ocupam em cinco sítios cristalográficos diferentes. Os blocos S (Fe_6O_8) e S^* são espinélios com 2 camadas de oxigênio e seis íons. Quatro destes íons de Fe^{3+} encontram-se nos sítios octaédricos com seus spins alinhados paralelos entre si. Os dois íons de Fe^{3+} restantes se encontram nos sítios tetraédricos e tem seus spins antiparalelos aos que estão nos sítios octaédricos [1].

Figura 3.1: Representação esquemática da estrutura geral das hexaferrita tipo M forma $AFe_{12}O_{12}$ (Pullar,2012).

Nos blocos hexagonais R (AFe_6O_{11}) e R^* , constam de três camadas de oxigênio com um dos ânions de oxigênio substituído por um íon A, como se mostra na Figura 3.1. Cada bloco R contem seis íons Fe^{3+} , dos quais cinco se encontram nos sítios octaédricos, três com spin para cima e dois spin para abaixo. Além disso, um dos íons de Fe^{3+} está coordenado com cinco ânions de O^{2-} e tem polarização de spin para cima. Os átomos de Fe no sítio 2a estão coordenados de forma octaédrica com distâncias iguais Fe - O, entretanto que os íons de Fedos sítios 4f2 e 12k têm diferentes distâncias interatômicas Fe - O, de aproximadamente 1,85 a 2,37Å respectivamente [1,52].

Dos doze íons Fe^{3+} da fórmula, os átomos de Fe nos sítios 4f1 estão tetraedriticamente coordenados com um oxigênio, entretanto que os átomos de Fe nos sítios 2b estão coordenados com cinco íons de oxigênio. Também há distâncias curtas Fe - Fe na estrutura, e nos sítios 4f2 esta distância é de aproximadamente 2,7Å. Os iones de Fe nos sítios 12k formam uma rede com todos os Fe conectados a outros quatro íons de Fe na mesma camada [52]. Em termo de spin, no bloco R um íon na camada 2b está em estado de spin up e dois íons octaédricos estão com spin down, e no bloco S sete íons octaédricos tem spin up e dois íons tetraédricos spin down. Devido a que cada íon Fe^{3+} contribui com $5\mu B$ para o momento magnético no zero absoluto, a magnetização total a temperatura zero pode ser calculada sabendo que oito íons Fe^{3+} estão no estado de spin cima, e quatro tem spin abaixo, o que resulta em um estado neto de quatro íons Fe^{3+} com spin cima. Portanto, a magnetização neta por unidade molecular é $(1-2+7-2)5\mu_B = 20\mu_B$ [52,53]. Como se pode observar a célula unitária está conformada por duas moléculas unitárias, é dizer que para a célula unitária, a magnetização é $40\mu_B$ [53].

3.1.2 Caracterização magnética e elétrica

As ferritas hexagonais são materiais ferrimagnéticos e suas propriedades magnéticas estão intrinsecamente a sua estrutura cristalina. Todas elas têm uma anisotropia magnetocristalina com magnetização induzida com orientação preferencial dentro da estrutura cristalina. As hexaferritas são magneticamente dura, com coercividade de 160 - 255KA/m. A resistividade apresenta ordem de $10^8\Omega/cm$ [1,54]e a densidade máxima é $5,295g/cm^3$ [1]. As ferritas hexagonais absorvem energia de micro-ondas devido à alta permeabilidade e alta magnetização de saturação planar anisotrópico em altas frequências [55,56].

A grande coercividade da (Ba - Sr)M é, uma das propriedades fundamentais para seu uso com fins industriais o científicos. Além de possuir uma relativa baixa saturação magnética, o que permite a construção de ímãs de pouca espessura sem que ocorra auto-desmagnetização. A curva de magnetização é praticamente linear e se aproxima ou coincide com a curva de permeabilidade reversível [17, 18, 30, 31, 34, 35].

As ferritas podem classificados de duas formas: considerado de seu grau de coercividade, seu comportamento magnético, e dependendo de sua estrutura cristalina. Segundo seu grau de coercividade, se classificam em ferritas moles (soft ferrites) e ferritas duras (hard ferrites). Ferritas moles são fáceis de magnetizar e desmagnetizar. Caracterizam-se por ter uma baixa coercividade, o que significa que a magnetização do material pode ser facilmente revertida sem a necessidade de um gasto excessivo de energia, em outras palavras, aplicando um campo magnético fraco. Entretanto, as ferritas duras possuem uma alta coercividade, o que significa que depois de que são submetidas a um campo magnético, sua magnetização tem uma remanência prolongada, tem uma alta permeabilidade magnética e por esta razão são utilizadas geralmente como ímãs permanentes, meios magnéticos de gravação, dispositivos magnéticos, sensores de umidade, sensores de gás, catálises, produção fotocatalítica de hidrogênio e pigmentos [57,58]

A substituição de Fe^{3+} e Ba^{3+} é um efetivo método para variar as propriedades magnéticas e elétricas da hexaferrita de bário [59]. Muitos trabalhos têm sido feitos para modificar estas propriedades baseadas na substituição de Fe^{3+} com outros cátions ou combinações de cátions como: Cr^{3+} , Al^{3+} , Co^{2+} , Ti^{4+} , Zn^{2+} , Zr^{4+} entre outros [9,35,60]. A ferrita BaM tem sido substituída totalmente com íon de La^{3+} no sítios de Fe^{3+} com formula $BaLa_{12}O_{19}$ [61]. Também tem sido adicionado com igual quantidade de íon divalente para dar o composto $Ba_{1-x}La_xFe_{12}Me_xO_{19}(Me = Zn \text{ ou } Mg)$ [1]. Este composto aumenta tanto a magnetização de saturação (M_s) quanto a coercividade (H_c) comparado com a ferrita não dopada.

As ferritas eletricamente podem ser classificadas como semicondutores ou isolantes. O método de espectroscopia dielétrica foi usado para a caracterização elétrica das ferritas. Apesar de que as hexaferritas hexagonais serem isolantes, pode acontecer troca do íon de Fe^{3+} por Fe^{2+} em pequena quantidade devido a vacâncias de oxigênios criadas no próprio processo de sinterização surgindo uma assimetria de carga e portanto, aparecem dipolos induzidos. Também podem aparecer defeitos pontuais devido à substituição de íons com valências diferentes aos íons de Ba^{2+} e Fe^{3+} , ocorrendo uma compensação de portadores de carga pela rede cristalina. Neste caso, a resistência diminui devido ao hopping de elétrons e à aparição de uma corrente elétrica [1]. Em sentido geral podem existir dois mecanismos de condução; condução de elétron tipo n e condução de buraco tipo p [1]. Em ferritas com excesso de ferro ou deficiência de oxigênio durante a sinterização a altas temperaturas se promove a formação de condução de tipo n. Por outro lado, a deficiência de ferro promove a condução do tipo p [1]. Em cerâmicas policristalinas a baixa resistência dos grãos separado por contornos de grãos altamente resistivos criando uma polarização interfacial que traz uma condutividade [1]

A maioria das pesquisas atuais neste tema tratam sobre o melhoramento das propriedades destes materiais em dependência de seu uso potencial, modificando os diferentes métodos de obtenção (sínteses hidrotermal [62], método do precursor, cristalização de precursores vítreos, co-precipitação [63], técnicas de sol-gel [64], sínteses por técnicas de auto-combustão, moagem às altas energias [65] e método cerâmico tradicional), ou atuando diretamente em sua estrutura mediante o uso de dopantes, sobre o qual se tem realizado inúmeros trabalhos usado (Co, Ti) [66] (Zn, Ti) [67], (Mg, Ti) [41], (Ga, Cr) [68], (Co, Si) [69], (Mg, Sn) [68], etc., para substituir os cátions Fe^{3+} na estrutura da hexaferrita de bário tipo M.

Em resumo se pode caracterizar à hexaferrita de bário como um material magnético duro com elevada saturação de magnetização, alta coercividade, campo anisotrópico magnético elevado e excelente estabilidade química. Neste sentido, a substituição do Ba^{2+} por La^{3+} tem apresentado bons resultados por promover o amolecimento da hexaferrita e manter a estabilidade da mesma.

3.2 Propriedades elétrica

A medida usualmente para investigar os comportamentos cerâmico são normalmente feita com amostras que possuem dois eletrodos idênticos aplicados às faces da amostra na forma de um cilindro, em geral é aplicado um estímulo elétrico (uma tensão ou corrente) aos eletrodos e observa-se a resposta (corrente ou tensão resultante). Processos microscópicos ocorrem em toda a amostra quando é eletricamente estimulada, e por consequência, leva à resposta elétrica geral, por exemplo: transporte de elétrons através dos condutores eletrônicos, transferência de elétrons nas interfaces eletrodo-eletrólito e fluxo de átomos ou aglomerados átomos via defeitos no eletrólito [70].

3.2.1 Impedância e Permissividade

A espectroscopia de Impedância (Impedance Spectroscopy - IS) é uma ferramenta de caracterização elétrica que investiga a dependência entre a impedância do material e a frequência do estimulo e, assim adquiri informações sobre as propriedades elétricas do sistema. Esses resultados estão relacionados com efeitos de polarização, microestrutura elétrica e processos de condutividade. As medidas de impedância são realizadas nas amostras aplicando um campo elétrico alternado e analisando resposta [46, 70, 71].

Ao aplicar uma tensão $V(t) = V_m \sin(\omega t)$, envolvendo a frequência $\nu = \omega/2\pi$, a um material, é medida uma corrente elétrica $i(t) = I_m \sin(\omega t + \theta)$. No domínio da frequência as relações tensão/corrente podem associar à *Lei de Ohm*: $I(j\omega) = V(i\omega)/Z(j\omega)$, sendo capacitância a quantidade complexa $Z(j\omega)$ é $1/(C\omega j)$ e para a indutância $Z(j\omega)$ é $L\omega j$. A quantidade complexa $Z(j\omega)$ depende da frequência, sua unidade no Sistema Internacional (SI) é dado em , Ω [ohms] , e por simplicidade representa-se a impedância complexa por Z^* . A impedância, Z^* , descreve uma grandeza de oposição a corrente alternativa, mas a impedância é um conceito mais geral do que a resistência porque leva em consideração as diferenças de fase. A Z^* contém uma parte real, Z' e imaginária Z': $Z^* = Z' + jZ''$. A Z' é associado a resistência e Z'' associada com a defasagem entre a tensão e corrente elétrica. A IS consiste em submeter a cerâmica ao um campo elétrico alternado com frequência variável, f(Hz), então temos $Z(\omega)$, de modo que as propriedades elétricas dependerá da frequência [46, 70]..

Ao aplicar um campo elétrico a um sólido dielétrico podem aparecer dois efeitos: a polarização e/ou condução. No caso da polarização existem diferentes mecanismos: eletrônica, iônica, ou pela orientação local de defeitos que possuem momentos de dipolo ou interfacial. Em relação à condução, ocorre o movimento de portadores de cargas que estão ligados a rede cristalina (íons, elétrons localizados) [72, 73].

Quando um campo alternado é aplicado ao material, os dipolos não acompanham a oscilação do campo instantemente, ou seja, o campo oscilante e a reorientação dos dipolos ficam defasados, causando dissipação de energia, e esse fenômeno é chamado de *relaxação dielétrica*, e a permissividade é a grandeza que expressa esse fenômeno, denominada de *permissividade complexa*.

$$\varepsilon^* = \varepsilon'(\omega) + i\varepsilon''(\omega), \qquad (3.2.1)$$

sendo que ε' é a parte real, e a ε'' é a parte imaginária da permissividade relativa, que mede o dissipação dielétrica do material. A dissipação de energia na forma de calor assumir um papel importante para avaliar o potencial de aplicação tecnológica e é dada por

$$tg(\delta) = \frac{\varepsilon''}{\varepsilon'},\tag{3.2.2}$$

esta relação também é denominada figura de mérito (perda dielétrica).

A permissividade relativa (ε') é uma medida da polarização do meio, é está relacionado com a natureza capacitiva do material, capacidade de armazenar energia. A contribuição de dipolos eletrônico e íons para a medida da permissividade relativa depende do número dos portadores e da capacidade de orientação com o campo elétrico. Quando se aplica entre placas de um capacitor separadas por um dielétrico, a polarização máxima do material corresponde ao seu maior alinhamento de cargas induzidas ou orientadas, originando um campo interno oposto e maior do que o campo externo aplicado, ou seja, quanto maior a ε' do material maior será a sua polarização sob ação de um campo externo, e maior o número de portadores ativos no material.

A dissipação de energia (ε'') é a energia dissipada por movimento dos portadores de cargas na presença de um campo elétrico, na qual tem duas contribuições: A energia dissipada devido a orientação de dipolos e devido à migração portadores de cargas. Em geral a parte real da permissividade está associado com o armazenamento dielétrico e a parte imaginária relacionada com a dissipação dielétrica (perda energia devido ao movimento de portadores e causando o aquecimento por Efeito Joule).

A ε^* pode-se obtida por meio da impedância complexa (Z^{*}) através das equações:

$$\varepsilon' = -\frac{Z'}{\omega C \left[(Z')^2 + (Z'')^2 \right]},\tag{3.2.3}$$

$$\varepsilon'' = -\frac{Z''}{\omega C \left[(Z')^2 + (Z'')^2 \right]},\tag{3.2.4}$$

onde $C = \frac{\varepsilon_o A}{d}$ é a capacitância da amostra, A é a área e d é a espessura da amostra, a permissividade dielétrica do vácuo (ε_o), 8,854.10⁻¹²F/m.

Há grandezas que em determinadas situações expressam melhor o comportamento elétrico, por exemplo, o módulo dielétrico (M^*) , que é o inverso da permissividade complexa

$$M^* = \frac{1}{\varepsilon^*},\tag{3.2.5}$$

E usando a Eq 3.2.1, se obtém:

$$M' = \frac{\varepsilon'}{(\varepsilon')^2 + (\varepsilon'')^2},\tag{3.2.6}$$

$$M'' = \frac{\varepsilon''}{(\varepsilon')^2 + (\varepsilon'')^2},\tag{3.2.7}$$

sendo o M^* uma grandeza complexa, ou seja, a parte real M' está relacionada com o inverso da capacidade de armazenamento de energia do dielétrico, a parte imaginária M'', relacionada com o inverso da dissipação de energia por meio do *Efeito Joule*.

Grandezas que são derivadas da impedância são conhecidas como formalismo complexos ou imitações: Módulo Elétrico M^* e Admitância Y^* , estão correlacionados com a Z^* pelas seguintes relações:

$$M^*(\omega) = i\omega CZ^*(\omega), \qquad (3.2.8)$$

$$Y^{*}(\omega) = \frac{1}{Z^{*}(\omega)},$$
(3.2.9)

3.2.2 Condutividade

Historicamente, as cerâmicas eram exploradas por suas propriedades de isolamento elétrico, que, juntamente com sua estabilidade química e térmica, as transformavam em materiais isolantes ideais em aplicações que variavam de linhas de energia a cores que continham resistências de fio enrolado. Hoje, seu uso é muito mais ampla, além de seu papel tradicional, os isolantes, são usados como eletrodos, catalisadores, células de combustível, fotoeletrodos, varistores, sensores e substratos, entre muitas outras aplicações [74].

Nos metais, os elétrons são responsáveis pela condução. Em semicondutores, as espécies condutoras são elétrons e/ou buracos. Em cerâmicas a condução é devido aos íons, então deve considerar as contribuições iônicas e eletrônicas. Uma revisão sobre o conceito de condutividade faremos para entender os mecanismos da condutividade em cerâmicas.

A faixa de condutividade eletrônica (Figura 3.2) em materiais cerâmicos é bastante é ampla, varia em mais de 24 ordem de magnitude, e isso não inclui a supercondutividade, poucas propriedades físicas variam em um intervalo tão amplo. Afim de compreender a razão por trás desses fenômenos e por que algumas cerâmicas são condutoras iônicos, enquanto outras são condutoras eletrônicos, é necessário mergulhar no domínio microscópico e relacionar os parâmetros macroscopicamente mensuráveis e parâmetros mais fundamentais, como mobilidade e concentração de portadores [74].

Figura 3.2: Intervalos de condutividade eletrônica $\Omega^{-1}cm^{-1}$ exibida por cerâmica (Fonte: Barsoum,2003).

Uma das teorias mais bem sucedidas desenvolvidas para explicar a ampla variedade de propriedades elétricas é a teoria da banda de sólidos. Neste modelo, os elétrons são consignados à bandas separadas umas das outras por intervalos de energia. Bandas incompletamente preenchidas (Figura 3.3) são chamadas bandas de condução, enquanto aquelas que estão cheias são chamadas bandas de valência. Os elétrons que ocupam a maior energia em uma faixa de condução podem se ajustar rapidamente a um campo elétrico ou eletromagnético aplicado e dar origem às propriedades características dos metais, como alta condutividade elétrica e térmica, ductilidade e refletividade. Sólidos onde as bandas de valência estão completamente preenchidas (Figura 3.3), por outro lado, são maus condutores de eletricidade e no 0K são isoladores perfeitos. Segue a compreensão deste modelo do estado sólido é de suma importância para investigações das propriedades elétricas [74].

Figura 3.3: Esquema de bandas de energia de elétrons em sólidos. a banda de valência (B.V) e banda de condução (B.C) estão indicadas (Fonte: Carter, 2007)

As bandas de energia são usadas para representar as propriedades eletrônicas importantes de muitos materiais. Quando E_g (Energia de gap) é zero, caso dos metais, existem elétrons livres presente em qualquer temperaturas acima de 0K. O número total de elétrons livres é igual ao número de elétrons de valência por átomo multiplicado pelo número de átomos no metal. Sendo que um cristal de metal que consiste em 10^{23} átomos na largura da banda de energia é 1eVentão a separação entre os níveis de energia seria apenas $10^{-23}eV(1, 6.10^{-42}J)$ este seria o valor mínimo de energia necessária para excitar um elétron em um nível desocupado [75].

Um intervalo de banda estreito é geralmente definido entre o intervalo de 0,02 a cerca de 2, 5eV. Quando E_g está na extremidade mais baixa deste intervalo, há uma fração significativa de elétrons na banda de condução. Materiais com gap de banda estreita são geralmente referidos como semicondutores [75].

- Silício : $E_g = 1, 12eV$
- Arseneto de gálio : $E_g = 1,42eV$

Materiais que possuem um gap de banda largo (> 2, 5eV) são classificados como isolantes elétricos porque a probabilidade de um elétron passar para a banda de condução à temperatura ambiente é extremamente pequena, mas a probabilidade não é zero, e portanto, podemos pensar nesses materiais como semicondutor de banda larga, por exemplo, SiC(Eg = 2, 6 - 3.0)eV, esses semicondutores de banga largo são usando em sensores em aviões e células de combustível que podem operar em ambiente com temperatura de $600^{\circ}C$, temperatura esta que eletrônicos baseado em silício não funcionam [75]. Nos metais, os elétrons livres são os únicos responsáveis pela condução. Em semicondutores, os portadores de cargas são elétrons e/ou buracos. Em cerâmicas, no entanto, devido à presença de íons, a aplicação de um campo elétrico pode induzir a migração desses portadores de cargas. Portanto, ao lidar com a condução em cerâmicas, deve-se considerar tanto as contribuições iônicas quanto as eletrônicas para a condutividade geral [70].

3.3 Polarização dielétrica

3.3.1 Comportamento dielétrico

Dielétrico é um material isolante elétrico e exibe ou pode ser efeito para exibir uma estrutura de dipolo elétrico, ou seja, uma separação das entidades eletricamente carregadas positivas e negativas devido aplicação de um campo elétrico, esses materiais dielétricos são usados em capacitores, sendo a capacitância dado por:

$$C = \frac{Q}{V},\tag{3.3.1}$$

onde V é a voltagem aplicada no capacitor. As unidades para a capacitância são Coulomb por volt, ou farad (F). Considerando um capacitor de placas paralelas no vácuo, a capacitância pode ser dada por:

$$C = \varepsilon_o \frac{A}{I},\tag{3.3.2}$$

onde A representa a área das placas, l é a distância entre elas e ε_o é a permissividade do vácuo (8,85.10⁻¹² F/m). Seja um material dielétrico inserido na região entre as placas a Eq-3.3.2 torne-se:

$$C = \varepsilon \frac{A}{l},\tag{3.3.3}$$

sendo ε é a permissividade do material dielétrico. A permissividade relativa, ε_r , ou, constante dielétrica, é igual à razão

$$\varepsilon_r = \frac{\varepsilon}{\varepsilon_o},\tag{3.3.4}$$

e representa o aumento da capacitância de armazenamento de cargas pela inserção do meio dielétrico entre as placas. A constante dielétrica é considerada de maior relevância nos projetos de capacitores.

Quando se aplicar um campo elétrico ao dielétrico, ocorre redistribuição de cargas devido a formação e movimento de dipolos elétricos. Há um momento dipolar associado, μ , com mesmo

magnitude e direção [76] dado por:

$$\mu = qd, \tag{3.3.5}$$

onde d é a separação das extremidade positiva e negativas do dipolo. A direção do dipolo é, por convenção, levada a apontar do polo negativo para o positivo. Assim quando um material dielétrico é colocado em um campo elétrico, os dipolos ficam alinhados, então o material é polarizado e a polarização (ou momento dipolar por unidade de volume) é dado por

$$P = Nqd, \tag{3.3.6}$$

onde N é o número de dipolos. Há quatro mecanismo de polarização possíveis no dielétrico [76]:

- eletrônica
- Iônica
- Dipolar (molecular ou orientação)
- Interfacil (ou Carga espacial)

Os mecanismo são mostrados na Figura 3.4.

Figura 3.4: Ilustração de diferentes mecanismos de polarização: (a) polarização de orientação, (b) polarização de deformação; (c) polarização iônica; (d) polarização interfacial (Fonte: Raicu, 2015).

A polarização dipolar é encontrada em materiais que possuem momentos de dipolos permanentes (Figura 3.4a), essa polarização resulta alinhamento dos momentos permanentes na direção do campo aplicado [75].

A polarização eletrônica é quando um campo elétrico é aplicado a um átomo. Há um descolamento dos elétrons em relação ao núcleo como mostra a Figura 3.4b. Os elétrons se

concentram no lado do núcleo próximo do campo, então o átomo atua como um dipolo induzido [76].

Na polarização iônica os íons positivos são alinhados com o deslocamento em direçã ao campo aplicado enquanto os íons negativos são deslocados na direção oposta, o centro de cargas dos íons positivos não coincide com o centro das cargas negativas, esse deslocamento é equivalente a induzir um momento de dipolo macroscópico(ou polarização) a todo material como mostra na Figura 3.4c; [72].

Polarização interfacial na (Figura 3.4d) mostra a polarização interfacial, essa polarização é causado pelo acúmulo de cargas nas interfaces (nos limites de grãos) como resultado da presença de impurezas, as cargas se movem pela grãos e nos limites de grãos apresentam uma resistência assim detendo as cargas, gerando a polarização interfacial [77].

Os portadores de cargas responsável por um mecanismo de polarização respondem ao campo elétrico numa determinada faixa de frequência. Da mesma forma, se aplicarmos um campo elétrico que se alterna rapidamente, alguns mecanismos de polarização podem ser incapazes de induzir a polarização na cerâmica. Na Figura 3.5 [78] é mostrado os mecanismos de polarização que apresentam características como faixas de frequência e valores da permissividade, essas informações são essenciais para possíveis aplicações.

Figura 3.5: Os tipos de mecanismos de polarização se manifesta numa faixa de frequência específica, assim como valores da permissividade elétrica.

Devido ao campo elétrico aplicado, os mecanismos de polarizações apresentam relaxações, que são caracterizado por um tempo de relaxação. Na Figura 3.6 [79] mostra tempo de relaxação para cada mecanismo de polarização.

Figura 3.6: Os tipos de mecanismos de polarização se manifesta no intervalo de tempo específica, assim como valores da permissividade elétrica.

3.3.2 Dispersão fenomenológica e Funções de relaxamento

Em muitos casos, o espectro dielétrico não-Debye foi descrito pela chamada função de dispersão Havriliak-Negami (HN) [80]:

$$\varepsilon^*(\omega) = \varepsilon_h + \frac{\varepsilon_s - \varepsilon_h}{\left[1 + (i\omega\tau)^{\alpha}\right]^{\beta}},\tag{3.3.7}$$

assumindo valores de $0 \le \alpha, \beta \le 1$, e τ é o tempo de relaxação, com α e β possuindo significados físicos estabelecidos. O caso específico de $\alpha = 1$ e $\beta = 1$ representa a função de dispersão de Debye, para $\beta, \alpha \ne 1$ corresponde a função Cole-Cole (CC) e $\alpha = 1, \beta \ne 1$ corresponde a função Cole-Davidson [81]. A vasta experiência no estudo de propriedades elétricas em materiais dielétricos mostrou que o modelo de Debye é aplicável a um pequeno número de materiais [82].

No ajuste dos espectros dielétricos experimentais, algumas expressões empíricas foram propostas a partir da expressão de Debye, são elas [82]:

Havriliak - Negami (HN):

$$F_{HN}^*(\omega) = \frac{1}{(1 + (i\omega\tau_{HN})^{\alpha})^{\gamma}}$$
(3.3.8)

Davidson-Cole (DC):

$$F_{DC}^{*}(\omega) = \frac{1}{(1 + i\omega\tau_{DC})^{\beta_{DC}}}$$
(3.3.9)

Cole-Cole (CC):

$$F_{CC}^{*}(\omega) = \frac{1}{1 + (i\omega\tau_{CC})^{\alpha}}$$
(3.3.10)

As equações Eq 3.3.8, 3.3.9 e 3.3.10 apesar de apresentarem bons resultados, mas ainda necessitam de um modelo mais geral que possa expressar todo o comportamento das propriedades nos materiais dielétricos. Esses modelos consistem em ajustar os dados experimentais usando a parte real e imaginária da grandeza complexa por meio de equações que relacionam os parâmetros empíricos característicos com uma função de distribuição do tempo de relaxamento.

Quando um campo aplicado numa cerâmica é desligado, a polarização atinge seu valor de equilíbrio não instantaneamente, mas depois de um tempo característico, ou seja, quando o campo é removido, a função de relaxamento ou decaimento da polarização $\Phi(t)$ descreve o decaimento da polarização P(t) [83]

$$\Phi(t) = \frac{P(t)}{P(0)}.$$
(3.3.11)

onde P(0) é a polarização em t = 0. E conhecido na literatura o uso da transformada de Fourier para descrever a função relaxação correspondente a distribuição de Debye para no domínio do tempo. Essa expressão (3.3.12) é puramente exponencial e raramente encontrado na natureza. Além disso, a transformada inversa das distribuições CC, DC e HN não fornecem função de relaxação na forma analítica [84].

$$\Phi(t) = \exp\left(-\frac{t}{\tau}\right). \tag{3.3.12}$$

O relaxamento que não obedece a Eq3.3.12 pode ser descrito pela *Lei exponencial esticada* proposto por Kohlrausch–Williams–Watts [85]

$$\Phi(t) = \exp\left(-\frac{t}{\tau}\right)^{\gamma},\tag{3.3.13}$$

onde τ é o tempo de relaxação característico e γ é um expoente empírico $(1 \ge \gamma > 0)$. No processo de relaxamento γ descreve uma distribuição do tempo de relaxamento, $\gamma = 1$ corresponde a uma relaxação ideal de Debye [86].

O mais geral desses comportamentos que caracteriza o relaxamento é descrito pela função de relaxamento

$$\Phi(t) \propto \left(\frac{t}{\tau}\right)^{-\alpha},$$
(3.3.14)

com $0 < \alpha < 2$, e se conhece como a lei de Curie-von Schweidlder (CvS). Este segundo comportamento não é tão frequente, mas ambas as leis são frequentemente usados para descrever o comportamento real em muitos modelos físicos [87].

A base mais frequente para explicar a não-exponencialidade do relaxamento é a interação mútua entre as diferentes unidades elementares do sistema, o que torna o relaxamento um problema de muitos corpos. Os modelos formulados até agora são geralmente baseados em efeitos cooperativos ou de correlação [88], [89], [90].

Em resumo, até onde sabemos, não há uma explicação geralmente aceita sobre a origem da resposta dielétrica não-Debye. No entanto, existe um número significativo de diferentes modelos, que foram propostos para descrever o relaxamento não-Debye em alguns casos particulares [72].

3.3.3 Processos de relaxação: Interpretação fenomenológica

O relaxamento é interpretado como o processo físico que caracteriza a evolução temporal de um sistema que transita de um estado atingido pela aplicação de uma perturbação externa a um estado de equilíbrio após a eliminação da perturbação. O tempo de transição do novo estado de equilíbrio é denominado tempo de relaxação τ e constitui um importante parâmetro físico a ser determinado em estudos dielétricos.

Sendo o campo elétrico alternado aplicado, os dipolos são removidos de seu estado de equilíbrio, como as cargas livres no material, algumas dessas espécies retornam ao seu estado de equilíbrio original, este processo é chamado de relaxamento. O termo portadores de cargas livres, ou simplesmente cargas livres, refere-se a partículas que não estão ligadas a qualquer local ou região do material durante seu movimento causado pelo campo elétrico [91]. Essas partículas específicas, também chamadas de cargas móveis, são definidas como aquelas espécies eletricamente ativas, cujo movimento traz consigo uma corrente contínua (dc) [92].

Considera-se dipolos todas as espécies eletricamente ativas que não são livres. Os processos de polarização de um material podem surgir a partir de dipolos criados pela natureza da ligações química no material *(dipolos permanentes)*, ou pela separação dos centros de cargas positivas e negativas *(dipolos induzidos)* causados pela aplicação do estímulo externo [82].

Os dipolos podem ser caraterizados por cargas fortemente ligados e separadas por um distância constante que possuem movimentos reduzidos em torno das posições de equilíbrios. Em geral esses dipolos têm um grau de liberdade rotacional dado pelo salto de pelo menos uma das cargas de integração em um poço de potencial duplo com paredes teoricamente infinitas. Os dipolos dinâmicos são classificados como cargas fracamente ligadas que sob certas condições, como uma certa quantidade de energia, podem permitir que tais cargas saiam do seu potencial e se movam longas distâncias antes de finalmente serem bloqueadas, o processo de polarização associado a essas cargas quase móveis pode ser visto como polarização de portadores de carga [82]. Os movimentos dessas cargas desempenham papel importante nas propriedades dos materiais, ou seja, nas respostas características que os sistemas apresentam quando é aplicado um campo elétrico.

Para explicar essas características, vários modelos foram propostos baseados em desordens posicionais e interação ou correlação entre os íons móveis como a origem dessas propriedades [91], [93], [94], [95], [96], [97]. As propriedades apresentam comportamentos que por experimentos mostram que são independentes da estrutura concreta do material ou das possíveis diferenças na interação entre íons, levando os pesquisadores a concluir que a origem dos referidos comportamentos deve ter uma base muito geral [82].

Os resultados experimentais que apontam para a existência de saltos não aleatórios dos portadores de carga são as potenciais dependências observadas nas respostas de frequência, por exemplo, a condutividade elétrica e o módulo elétrico e as funções puras não exponenciais que descrevem o relaxamento temporal das magnitudes físicas. De acordo com a concepção de movimento iônico em que apenas saltos de origem aleatória interferem, a condutividade elétrica não deve apresentar qualquer dispersão na frequência, enquanto os relaxamentos no domínio do tempo devem ser exponenciais puros [82].

É frequente observar nas respostas de frequência de muitos materiais sólidos dependências potenciais. No caso do módulo elétrico imaginário, quando ele é representado em uma escala dupla logarítmica, linhas retas aparecem em ambos os lados do máximo, evidenciando as dependências potenciais [82]. Entre todas as formas utilizadas, talvez seja na condutividade elétrica onde a chamada "resposta dielétrica universal" é melhor observada. Quando a condutividade de frequência é plotada em uma escala dupla logarítmica, uma região dispersiva aparece, caracterizada por uma inclinação constante n, que corresponde a uma lei da forma $\sigma' \propto \omega^n$ onde o exponente n entre zero e um [82].

As tentativas de explicar esse tipo de comportamento baseiam-se na superposição de exponenciais com diferentes tempos de relaxamento. A existência desses tempos tende a estar relacionada à existência de diferentes energias de ativação para o movimento dos íons. No entanto, essa descrição, na maioria dos casos, não fornece nenhum significado físico novo e requer argumentos adicionais para explicar a característica desaceleração do relaxamento [82].

3.3.4 Modelos de relaxação

Os modelos propostos tem como objetivo de descrever a fenomenologia dos processos de relaxamentos como por exemplo; "Modelo de acoplamento" (CM) de Ngai [98] [88] e "Modelo relaxação de salto" (JRM) por Funke [98], [99]

O modelo "modelo de acoplamento" (CM) de Ngai considera que cada íon vibra no poço de seu próprio potencial, sendo que a frequência de vibração associada, ν_{∞} , é determinada pelas forças de interação, em geral, com o restante dos átomos da rede. O potencial determina a barreira de energia E_a que o íon deve ter para se mover. Desta forma, a razão de saltos de um íon entre dois locais é dada por [82]:

$$W_0 = \tau_0^{-1} = \nu_\infty e^{-\frac{E_a}{KT}},\tag{3.3.15}$$

quando a interação entre os íons é considerada, esta razão de salto é modificada e depende do tempo (??):

$$W_0 = \begin{cases} W_0 & para & t < t_c \\ W_0 \left(\frac{t}{t_c}\right)^{-n} & para & t > t_c \end{cases}, \qquad (3.3.16)$$

onde 0 < n < 1 e o t_c é o tempo na qual começa a frenagem do processo de relaxamento. Este tempo é tipicamente da ordem de $10^{-11} - 10^{-12}s$. A função de relaxação $\Phi(t)$ pode ser determinado a partir da equação:

$$\frac{d\Phi(t)}{dt} = -W(t)\Phi(t) \tag{3.3.17}$$

Observa-se que:

$$\Phi(t) = \exp\left[-\left(\frac{t}{\tau*}\right)^{1-n}\right] \quad para \quad t > t_c, \qquad (3.3.18)$$

$$\Phi(t) = \exp\left[-\left(\frac{t}{\tau_0}\right)\right] \quad para \quad t < t_c, \tag{3.3.19}$$

onde a condição de continuidade necessita da função relaxamento,

$$\tau^* = \left[(1-n)t_c^{-n}\tau_0 \right]^{1/(1-n)}.$$
(3.3.20)

Geralmente, define-se a energia de ativação E_{σ} da condutividade de corrente contínua, como a energia que representa o potencial dos íons no processo de condução. No entanto, de acordo com o modelo CM, a energia associada à barreira de potencial para o salto iônico de um local para outro é E_a enquanto E_{σ} descreve o processo de acionamento de longo alcance e é uma consequência do movimento correlacionado dos íons. Ambas as energias estão relacionadas de acordo com [82]:

$$E_a = \beta E_\sigma, \tag{3.3.21}$$

O modelo proposto por K. Funke [99], explica a característica frenagem do processo de relaxamento considerando um íon em seu potencial e cercado por outros íons móveis, "vizinhança". Se o íon faz um salto e se move, dois diferentes processos de relaxamento podem aparecer depois do salto: o íon que saltou pode fazer um salto para trás e tudo seria como antes; Por outro lado, a "vizinhança" do íon pode relaxar em relação ao novo local ocupado, reorganizando-se para obter um mínimo de potencial no referido local. Portanto, a barreira de energia que o íon precisa voltar aumenta com o tempo e dá a impressão de que há uma distribuição dos tempos de relaxamento.

A dispersão na condutividade elétrica, por exemplo, pode ser interpretada como uma consequência de uma sequência de saltos para frente e para trás. Esses saltos para a frente, nos quais o íon retorna à sua posição anterior dentro de um intervalo de tempo τ , não contribuirão para a condutividade para frequências menores que $1/\tau$. No entanto, aqueles saltos que são bem-sucedidos e conseguem que sua "vizinhança"seja rearranjada contribuirão para a condutividade [82].

Assim, dependendo da probabilidade de salto para frente e para trás do íon após cada salto, o fato de que a condutividade diminui diminuindo a frequência pode ser explicado quantitativamente ($\sigma' \propto \omega^n$).

O modelo JRM, como o CM, prevê uma função de relaxamento exponencial para tempos curtos, que mudam para uma função KWW por tempos maiores que t_c . Entretanto, o modelo JRM prevê uma mudança adicional da função de relaxamento para uma função exponencial com um tempo de relaxamento característico diferente por tempos suficientemente longos, de modo que somente por longos períodos há uma pequena diferença entre as respostas de ambos os modelos [98,99].

3.4 Mecanismo de condução em cerâmica

O mecanismo de condutividade em cerâmica pode ser muito complexo e pode envolver diferentes portadores como o movimento de elétrons, buracos e íons. Em alguns casos, a condutividade pode ser resultante das contribuições de diferentes tipos de portadores de cargas [76].

Condução iônica

Algumas cerâmicas são importante por que são condutores iônicos. A energia de gap é grande (> 5eV), e o único mecanismo para a condução de carga é pelo movimento de íons. Em alguns

casos, a taxa de movimento de íons é muito rápido e grande condutividade são possíveis [76]. Fatores podem contribuir para a condutividade iônica [76]:

- Tamanho: Quanto menor for o íon mais rápido irá se mover.
- Carga : Íon altamente carregado polarizará e será polarizado por íons de cargas opostas à medida que se move.
- Geometria da rede: Algumas estruturas contém canais que facilitam o movimento de íons. Um grande número de vacâncias podem ajudar.

Condução eletrônica

A condutividade elétrica é dada por

$$\sigma = nq\mu, \tag{3.4.1}$$

onde n é o número de portadores de cargas, q é a carga elétrica, e μ é a mobilidade. Considerando o efeito de variáveis como composição, estrutura e temperatura em σ , estamos interessados com nos efeitos em $n \in \mu$.

Na cerâmica condutora elétrica tem três situações que são apresentadas na Figura-?? o, quando o gap é zero, estreito ou largo [76].

A condutividade numa cerâmica pode apresenta contribuições tanto iônica (σ_{inica}) e eletrônica ($\sigma_{eletrnica}$) resultando numa condutividade total, σ_{total} [74, 76] dado por:

$$\sigma_{total} = \sigma_{i\hat{o}nica} + \sigma_{eletr\hat{o}nica}.$$
(3.4.2)

A análise do comportamento da condutividade consiste em compreender o mecanismo de condução presente na cerâmica hexaferrita, uma vez que aplicado um campo elétrico, a propriedade condutiva possui informações para possíveis aplicações tecnológicas.

A condutividade elétrica complexa ($\sigma^*(\omega)$) pode ser obtida a partir dos dados experimentais da permissividade elétrica complexa, ($\varepsilon^*(\omega)$). De acordo com a eletrodinâmica a relação entre $\sigma^*(\omega) \in \varepsilon^*(\omega)$ é dada por [73]

$$\sigma^*(\omega) = i\omega\varepsilon_o\varepsilon^*(\omega), \tag{3.4.3}$$

$$\sigma^*(\omega) = \sigma'(\omega) + i\sigma''(\omega), \qquad (3.4.4)$$

das relações acima temos

$$\sigma'(\omega) = \omega \varepsilon_o \varepsilon'', \qquad (3.4.5)$$

$$\sigma^{\prime\prime}(\omega) = \omega \varepsilon_o \varepsilon^{\prime}, \tag{3.4.6}$$

sendo a parte real ($\sigma'(\omega)$) da $\sigma^*(\omega)$ representa a condutividade em fase, que significa a corrente capaz de seguir o campo, e a parte imaginária $\sigma''(\omega)$ representa a condutividade fora de fase ($2/\pi$ atrasada em relação ao campo) [83, 100].

3.4.1 Flutuações de portadores de carga móvel

Em sistemas desordenados, o transporte de carga ocorre devido à condução em saltos [101]. O movimento de uma carga nesses sistemas é acompanhando por um relaxamento elétrico: uma carga iônica ou eletrônica é cercada por cargas contrárias negativas ou positivas.

Um salto de um transportador de carga para um novo site só pode levar a um transporte de carga bem-sucedido se a nuvem de polarização se seguir. Caso contrário, a transportadora de carga retornará com alta probabilidade. Este movimento mútuo do transportador de carga e da nuvem de polarização circular requer um tempo de relaxamento elétrico τ_{σ} . Se a frequência do campo elétrico externo for maior que $\frac{1}{\tau_{\sigma}}$, seu efeito no transporte de carga será menor. Para frequências inferiores a $\frac{1}{\tau_{\sigma}}$, o relaxamento da nuvem de polarização está em fase com o campo elétrico externo. Para essa caso, o campo suporta as propagações das cargas. Por tanto, este relaxamento elétrico dá origem a uma contribuição na funcão dielétrica complexa que aumenta com a diminuição da frequência [46,72]

Para parte real $\sigma'(\omega)$ em baixa frequência obtém-se um valor que pode ser extrapolado para a condutividade d.c σ_0 para $\omega \longrightarrow 0$, e em uma frequência crítica $\omega_c = 2\pi\nu_c$ a dispersão de σ' se estabelece. A parte imaginária da condutividade complexa diminui com a diminuição da frequência. Aumento nas frequência baixas indica novamente a polarização do eletrodo [102].

$$\omega_c \sim \sigma \tag{3.4.7}$$

mantém.

Funções de modelo como KWW ou a função Cole/Davidson transformada na representação de condutividade foram usadas para analisar a condutividade ou módulo dielétrico complexo independência da frequência. Uma discussão crítica deste procedimento pode ser encontrada em [103–106]. Nem a função KWW e nem Cole/Davidson podem descrever os dados em toda faixa da frequência [106]. Jonsher [93], [107] propôs a seguinte equação (modificada mais tarde [108])

$$\sigma'(\omega) = \sigma_0 + A\omega^s = \sigma_0[1 + (\omega\tau)^s], \qquad (3.4.8)$$

para a condutividade complexa da parte real na dependência da frequência . Na Eq3.4.8, τ é uma constante de tempo para relaxamento de condutividade relacionado a ω_c . Para $\omega \gg 1/\tau$ Eq3.4.8 dá uma lei de potência caracterizado por s $0 < s \leq 1$ enquanto que para $\omega \ll 1/\tau$ a condutividade d.c σ_0 é recuperada. A equação Eq-3.4.8 ajuste-se bem aos dados, especialmente para $\omega \gg 1/\tau$ [102, 104, 106], mas falta qualquer fundamentação teórica.

O modelo de barreira de energia livre desenvolvida por Dyre [109], que assume que a condução ocorre por saltos de portadores de carga numa vista energética espacialmente variável aleatoriamente, fornece uma base para analisar fenômenos de condução em um nível teórico. Dentro da aproximação por Percurso Contínuo de Tempo (CTRW) [110] a seguinte expressão para a condutividade complexa $\sigma^*(\omega)$ é obtida [109]

$$\sigma^*(\omega) = \sigma_0 \left[\frac{i\omega\tau_e}{\ln(1+i\omega\tau_e)} \right], \qquad (3.4.9)$$

em que τ_e é a frequência de tentativas para ultrapassara a barreira que determina a condutividade dc. As partes reais e imaginárias da Eq3.4.9 é:

$$\sigma' = \frac{\sigma_0 \omega \tau_e \arctan(\omega \tau_e)}{\frac{1}{4} \ln^2 (1 + \omega^2 \tau_e^2) + 2(\arctan \omega \tau_e)^2}$$
(3.4.10)

$$\sigma''(\omega) = \frac{\sigma_0 \omega \tau_e \ln(1 + \omega^2 \tau 2)}{\frac{1}{2} \ln^2 (1 + \omega^2 \tau_e^2) + 2(\arctan \omega \tau_e)^2}.$$
(3.4.11)

Equação 3.4.9 é usada para ajustar os dados experimentais, os valores da condutividade d.c σ_0 e o tempo de relaxação elétrica τ_e são obtidos por meio do ajuste de curvas, uma vez que seja bem ajustada pode-se dizer que a condução DC e AC se baseiam no mesmo mecanismo de transporte de carga [73].

4 Procedimentos e métodos experimentais

4.1 Preparação das cerâmicas

As amostras de hexaferritas foram obtidas pelo método cerâmico convencional. Os materiais de partida usados foram $BaCO_3$, Fe_2O_3 , Al_2O_3 e La_2O_3 , todos com pureza química superior ao 99%. Estes pós foram misturados a partir de sua razão estequiométrica segundo as fórmulas químicas; $Ba_{(1-x)}La_xFe_{12}O_{19}$ e $(Ba_{0.9}La_{0.1})Fe_{12-y}AlyO_{19}$ com $x = 0,0;0,1 \in 0,6$ e $y = 0,0;0,1;0,3;0,6;0,8;1,0 \in 1,3$. A moagem dos pós de partida foi realizada com um moino de bolas em um meio úmido de etanol durante 8h. Os valores de temperatura e tempo de calcinação selecionados foram de $1000^{\circ}C$ e 8h, respectivamente, e a velocidade de aquecimento de $20^{\circ}C/min$. O pó calcinado foi moído em um meio úmido de etanol durante 4h em um moino de bolas, e secado durante 24h. Posteriormente foi peneirado a 80mesh e se adicionaram 3 gotas por gramo de peso de álcool polivinílico (PVA) como aglutinante. Após se prensou em uma matriz cilíndrica de 9mm de diâmetro a uma pressão de $2, 6t/cm^2$. Finalmente, as pastilhas obtidas foram sinterizada a $1200^{\circ}C$ durante 60min com um velocidade de aquecimento de $10^{\circ}C/min$. As cerâmicas foram preparadas por o professor Dr. Pedro Mariño na Universidade Federal de Rio de Janeiro e as mesmas foram fornecidas a nosso laboratório para a caracterização elétrica.

As amostras foram denominadas segundo a descrição na Tabela2

Tabela 2: Denominações das amostras que será estudada nesse trabalho

Razão estequiométrica				
Denominação	Sistema	Composição		
$BaMLa_x$	$BaMLa_{0.1}Al_x$	x=0.0;0.1;0.3;		
$BaMLAl_x$	$(Ba_{0.90}La_{0.1})Fe_{12-x}Al_xO_{19}$	0.0; 0.1; 0.3; 0.6; 0.8; 1.0 e 1.3		

As dimensões das hexaferritas em forma de disco estão disponíveis na Tabela 3
Tabela 3: Espessuras, diâmetros e área dos sistemas cerâmicos $Ba_{(1-x)}La_xFe_{12}O_{19}$ e $(Ba_{0.9}La_{0.1})Fe_{12-y}AlyO_{19}$ com x = 0,0;0,1 e 0,6 e y = 0,0;0,1;0,3;0,6;0,8;1,0 e 1,3.

Amostra	Espessura (cm)	Diâmetro(cm)	Área (cm)
BaM	2.6×10^{-3}	1.275×10^{-2}	2.554×10^{-4}
$BaMLa_{0.1}$	3.0×10^{-3}	1.285×10^{-2}	2.594×10^{-4}
$BaMLa_{0.6}$	2.0×10^{-3}	1.295×10^{-2}	2.634×10^{-4}
$BaMLa_{0.1}Al_{0.1}$	2.85×10^{-3}	1.255×10^{-2}	2.474×10^{-4}
$BaMLa_{0.1}Al_{0.3}$	2.95×10^{-3}	1.29×10^{-2}	2.614×10^{-4}
$BaMLa_{0.1}Al_{0.6}$	2.4×10^{-3}	1.27×10^{-2}	2.534×10^{-4}
$BaMLa_{0.1}Al_{0.8}$	1.6×10^{-3}	$1.2 imes 10^{-2}$	2.262×10^{-4}
$BaMLa_{0.1}Al_{1.0}$	1.6×10^{-3}	1.215×10^{-2}	2.319×10^{-4}
$BaMLa_{0.1}Al_{1.3}$	1.55×10^{-3}	1.195×10^{-2}	2.243×10^{-4}

4.2 Caracterização estrutural

A caracterização estrutural, tanto das mostras em pó como das cerâmicas, foi realizada fundamentalmente a partir dos padrões de difração de raios X obtidos em um difratômetro do tipo HZG-4-1, pertencente ao Departamento de Física da Universidade Federal de Pernambuco. Os parâmetros principais de trabalho foram: radiação: $Cu(\lambda(k_{\alpha 1})) = 1.5418$ Å; intensidade fixada por fenda: V = 30kV, I = 30mA, ponto a ponto com passo de $0, 02^{o}$; e enduras de entrada e saída de 0,52 mm e 0,44 mm, respectivamente. O refinamento Rietveld foi desenvolvido pelo Dr. Yonny Romaguera usando o software GSAS. Os principais resultados alcançados mostram composto isso-estrutural com a hexaferrita de bário em todas as amostras. Também foi reveladas uma segunda fase (Fe_2O_3) para as composições de 0, 1 e 0, 6 do íon La^{3+} de 9 e 42% respectivamente. Este fato motivou, neste trabalho, fazer um estudo da variação das propriedades elétricas para estas duas cerâmicas com diferentes composições de hematita (segunda fase) e sua correspondente comparação com a hexaferrita pura. No caso da hexaferrita modificada simultaneamente com La^{3+} ao 1%(mol) e diferentes composições de alumínio a segunda fase foi em todos os casos inferior ao 5%(mol). Ditos resultados aparecem em um artigo enviado para sua publicação no periódico *Ceramics International*.

4.3 Caracterização elétrica

As medições elétricas foram executadas em um analisador de impedância do tipo Solartron Analitycal AMETEK à temperatura ambiente, pertencente ao laboratório de Materiais e Compósitos da UFAM. Para as medidas, as amostras foram pintadas sobre duas faces das cerâmicas, paara conseguir um capacitor plano de faces paralelas e a hexaferrita foi usada como o meio dielétrico. A impedância (real e imaginaria) foi medida em função da frequência desde 1Hz a 1MHz e a amplitude do campo elétrico alternado aplicado foi de 0, 5V/mm. Na Figura 4.1 é mostrada o equipamento de trabalho onde foram executadas as medidas de impedância elétrica.

Figura 4.1: Analisador de impedância do tipo Solartron Analytical AMETEK

4.4 Procedimento para o ajuste dielétrico

O espectro dielétrico foi analisado seguindo o seguinte procedimento:

- A partir das medições de impedância, realizada no analisador de impedância Analytical Ametek, foram calculados os valores da permissividade, módulo dielétrico e condutividade elétrica.
- Os gráficos das propriedades elétricas foram gerados em Python.
- Os comportamento do módulo elétrico foram ajustadas com a função dielétrica de H-N. Gerando-se quatro parâmetros; tempo de relaxação, alfa, beta e gama.
- A partir da equação analítica obtida no domínio do tempo foram calculadas as funções de relaxação temporal e ajustada usando a função de KWW. Os parâmetros de relaxação foram determinados.
- O comportamento da parte real e imaginaria da condutividade elétrica foram ajustadas usando a equação de Dyre, obtendo-se os parâmetros de relaxação (condutividade DC e tempo de relaxação).

4.5 Python - Ajuste das curvas

O uso do Python consistiu em calcular os valores grandezas das física, no caso propriedades elétricas a partir dos valores experimentas da impedância real (Z') e imaginária (Z''). A versão utilizada foi Python 3.5.

Devido aos cálculos valores ε^* , M^* , σ^* ser numérico, foi usando o módulo Numpy [111] (import numpy as np). Para plotar os gráficos usamos o módulo Matplotlib (import matplotlib.pyplot as plt). As tabelas foram geradas no Python nas extensões txt e csv, sendo tabelas csv exportados para LaTex.

Os ajustes das curvas experimentais foram calculados usando o módulo Scipy [112] (from scipy import optimize), declarados parâmetros de entrada do ajuste, de modo que a função *optimize.curve_it* calcular os melhores parâmetros dos ajustes. O desvio quadrático, D, é calculado com função (*np.corrcoef(AjusteFunc, MiA)[0, 1]*)**2 [113], na qual compoara a qualidade do ajuste de curva teórica aos valores experimentais, D varia de 0 a 1. Valores próximos de zero não indica correlação entre as curvas teorias e experimentais, e valores próximos de 1.0 indicam boas correlações.

Com algoritmos feitos no Python foi possível calcular as propriedades elétricas e os ajustes das curva apresentadas nesse trabalho. A vantagem de usar Python é pelo fato de ser uma linguagem gratuita disponível na internet, e vários manuais estão disponíveis em livros, sites e cursos no YouTube.

5 Comportamento elétrico do sistema cerâmico de hexaferrita $Ba_{(1-x)}La_x Fe_{12}O_{19}$

A caracterização elétrica do sistema $Ba_{(1-x)}La_xFe_{12}O_{19}$ com x = 0.0; 0.1 e 0.6 foi feita através da medição da parte real e imaginária da impedância com a frequência. A partir desta impedância foram determinadas as propriedades elétricas; permissividade, módulo elétrico e condutividade elétrica para todas as cerâmicas sob estudo. A relaxação elétrica foi analisada usando as funções dielétricas de Debye, Cole-Cole, Cole-Davidson e Havrialiak Negami. O ajuste das curvas experimentais mostraram a função mais adequada no domínio da frequência para caracterizar o pico de relaxação em cada concentração. Valores de tempo de relaxação no domínio da frequência e do tempo e sua dependência com a composição de La^{3+} foram determinados. O modelo Dyre foram usados para ajustar as curvas de condutividade elétrica versus frequência.

5.1 Impedância complexa

A Figura-5.1 mostra a dependência da parte real (Figura 5.1(a)) e imaginaria da impedância (Figura 5.1(b)) com a frequência para o sistema $Ba_{(1-x)}La_xFe_{12}O_{19}$ à temperatura ambiente. A parte real da impedância, $Z'(\omega)$ para a amostra BaM (pura) atinge ao valor de 7.23 × 10⁹ Ω em 1*Hz* e diminui rapidamente, mostrando uma dispersão, Figura-5.1(a). Os valores de $Z'(\omega)$ atingem $1.75 \times 10^6 \Omega$ e $2.44 \times 10^8 \Omega$ a 1*Hz*, para as amostras $BaMLa_{0.1}$ e $BaMLa_{0.6}$, respectivamente. Estes valores de $Z'(\omega)$ permanecem constante até frequências próximas a $10^5 Hz$ e $10^2 Hz$, respectivamente. Nas frequências superiores existe rápida dispersão de $Z'(\omega)$ para as ambas amostras.

Figura 5.1: Dependência da parte(a) real e (b) imaginária da impedância parta sistema $Ba_{(1-x)}La_xFe_{12}O_{19}$ com x = 0.0; 0.1 e 0.6 à temperatura ambiente.

Na parte imaginaria da impedância, $Z''(\Omega)$ é observada para a cerâmica BaM um comportamento linear que diminui com o aumento da frequência (Figura 5.1(b)). Por outro lado, um pico de relaxação é observado para as amostras $BaML_{0.1}$ e $BaML_{0.6}$, com frequência máxima característica (frequência de relaxação, f_{max}) de 2.51×10^4 e 250Hz, respectivamente. A largura média altura destes picos é superior à relaxação tipo Debye (1,14 décadas) [114]. Na Tabela 4 são mostrados os valores de $Z''(\Omega)$ para as frequências 1Hz,1kHz e 1MHz, além dos valores de Z''_{max} e sua correspondente frequência; f_{max} . A dispersão vista na hexaferrita pura, BaM, indica que existem portadores de cargas que se movimentam a temperatura ambiente com o qual se consegue diminuir a resistividade da cerâmica. Este comportamento pode ser explicado pelo salto de elétrons (hopping), que traz consigo uma condutividade elétrica, que aparecem como produto das vacâncias de oxigênio que normalmente se criam no próprio processo de sinterização [115] e que são ativados com o campo elétrico. A dependência de $Z''(\Omega)$ não mostra um pico a temperatura ambiente na faixa de frequência sob estudo.

Tabela 4: Valores de Z' para as frequência 1Hz, 1kHz e 1MHz e de Z''_{max} na frequência correspondente ao pico, f_{max} .

	$Z^{'}$	(Ω)		$Z^{\prime\prime}$ ((Ω)	
Amostras	1Hz	$10^6 Hz$	1Hz	$10^6 Hz$	$f_p(HZ)$	Z_p
BaM	7.23×10^9	1.79×10^3	2.83×10^{11}	1.33×10^5	-	-
$BaMLa_{0.1}$	1.75×10^6	5.38×10^3	3.81×10^1	4.28×10^4	2.51×10^4	8.60×10^5
$BaMLa_{0.6}$	2.44×10^8	2.70×10^3	2.40×10^6	6.62×10^4	2.50×10^2	1.04×10^8

A introdução de La^{3+} no site de Ba^{2+} traz a não compensação das cargas elétricas na rede cristalina aparecendo defeitos pontuais. Um possível mecanismo desta reação de defeito pode ser o intercambio de Fe^{3+} para Fe^{2+} e, portanto, a aparição de uma condutividade de elétrons localizados quando se aplica o campo elétrico. Por outra parte, é conhecido que na baixa temperatura, a condutividade dominante nas ferritas deve-se aos saltos (hopping) de portadores de carga de curto alcance. Estes picos são notados quando a frequência de salto dos elétrons localizados é aproximadamente igual à frequência do campo elétrico alternado aplicado. O deslocamento para frequências superiores indica um incremento na taxa de saltos dos portadores de cargas. Portanto, quando se introduz o íon La^{3+} , também se deve considerar um incremento dos defeitos pontuais pela não compensação de carga nos sítios de Ba^{2+} que provoca o intercâmbio de íons Fe^{3+} por Fe^{2+} e aparecer um excesso de elétrons que causa uma condutividade e uma diminuição da resistividade. No caso da cerâmica BaMLa0.6 são observados valores maiores de resistividade e menores da frequência máxima do pico de relaxação, mas este fato deve estar associado com a segunda fase, Fe_2O_3 , que aparece em uma proporção alta (42%), a qual é conhecida como uma fase isolante e não ferromagnética. Por um lado, a quantidade de lantânio substituída na estrutura cristalina da hexaferrita de bário pode ser menor que a correspondente à cerâmica $BaMLa_{0.1}$ e por outro lado, um fato importante é que as duas fases eletricamente diferentes podem influenciar a resposta elétrica do bulk.

5.2 Permissividade elétrica

Os diferentes mecanismos de polarização que aparecem em um material podem ser identificados através de seu espectro dielétrico. Para fazer esta identificação foi calculada a permissividade dielétrica, parte real e imaginária a partir das equações Eq 3.2.3, Eq 3.2.4. A dependência da parte real e imaginaria da permissividade dielétrica com a frequência são mostradas nas Figura 5.2 (a) e (b) para o sistema cerâmico $Ba_{(1-x)}La_xFe_{19}O_{19}$ à temperatura ambiente na faixa de frequência de 1Hz a 1MHz. A parte real da permissividade para as amostras BaM, $BaML_{0.1}$ e $BaML_{0.6}$ mostra uma diminuição da constante dielétrica para as baixas frequências e atinge a um valor constante, independente da frequência, para frequências superiores. Os valores menores da constante dielétrica são observados para a hexaferrita pura e os maiores para a cerâmica $BaML_{0.1}$ em toda a faixa de frequência.

Figura 5.2: Comportamento da (a) parte real e (b) imaginária da permissividade dielétrica com a frequência para sistema $Ba_{1-x}La_xFe_{12}O_{19}$ com $x = 0.0; 0.1 \in 0.6$ à temperatura ambiente.

A parte imaginaria da permissividade, (Figura 5.2(b)), mostra um pequeno pico de relaxação dielétrica para a cerâmica BaM (hexaferrita pura), o qual deve estar associado a um mecanismo de polarização dipolar. As cerâmicas $BaMLa_{0.1}$ e $BaMLa_{0.6}$ mostram diminuição quase linear de ε'' com aumento da frequência. A ε'' diminui linearmente com f para ambas as amostras em quase toda a faixa de frequência e nas mais altas frequências se percebe uma pequena anomalia, a qual precisaria de maior faixa de frequências e outras técnicas para sua caracterização. Os menores valores de ε'' correspondem à amostra BaM (hexaferrita pura) e os maiores valores das perdas dielétricas a amostra $BaMLa_{0.1}$. O incremento de ε'' com a diminuição da frequência, chamado dispersão a frequências baixas (LFD no inglês).

Este mecanismo de polarização dipolar que aparece na hexaferrita pura (BaM) pode ser explicado em caso da hexaferrita de bário porque no próprio processo de sinterização aparecem vacâncias de oxigênio e, portanto aparece uma assimetria de carga entre os cátions e os ânions na estrutura cristalina, surgindo um dipolo elétrico. Quando se aplica um campo elétrico alternado estes dipolos elétricos se orientam atendendo à direção do campo elétrico e assim aparece um processo de relaxação dipolar.

O processo de dispersão de frequências baixas surge como consequência de; 1) uma polarização interfacial, também é conhecida como polarização de Maxwell-Wagner-Sillar, que aparece em materiais heterogêneos (entre diferentes fases, grão e seus contornos, superfície e eletrodo) e 2) condução dc pura [70], [100]. Várias características estabelecem as diferenças entre estes dois mecanismos. Primeiro, se for uma condução dc, esta só vai ter influência sobre a parte imaginária da permissividade e não sobre a parte real [70], [73], [72], [100]. Segundo o coeficiente angular da linha reta que aparece deve ser igual a -1 no caso de uma condução dc e maior que um em uma polarização interfacial [73].

As retas para as amostras $BaMLa_{0.1}$ e $BaMLa_{0.6}$ são paralelas, ou seja, ambas as amostra têm o mesmo coeficiente angular, neste caso 1,001 e, portanto, apresentam um mecanismo de polarização por movimento de portadores de cargas, condução dc, devido à contribuição da condução de elétrons por saltos. Na dependência de $\varepsilon'(\omega)$ se observa uma contribuição só da polarização interfacial [73, 86, 116, 117] . Esta diminuição se pode explicar considerando a estrutura do dielétrico como um meio não homogêneo de duas camadas do tipo Maxwell-Wagner sendo o grão se considera condutor e o contorno um mal condutor [73, 86, 100, 102, 116, 118, 119].

Por outro lado, é conhecido que em sistemas desordenados (defeitos pontuais), o transporte de carga ocorre devido à condução por hopping [46, 72, 101]. Além disso, o movimento de um portador de carga nesses sistemas é acompanhado por um relaxamento elétrico: uma carga iônica ou eletrônica (no caso de um poln aron) é cercada por íons negativos ou positivos. O hopping de um portador de carga para um novo sítio cristalográfico só pode levar a um transporte de carga bem-sucedido se a vizinhança consegue-se acomodar a este movimento (nuvens de polarização). Caso contrário, o portador de carga retornará com alta probabilidade a seu sítio de partida. Este movimento mútuo de carga e da nuvem de polarização circundante requer um tempo de relaxamento elétrico, τ_{σ} . Se a frequência do campo elétrico exterior for superior a $\frac{1}{\tau_{\sigma}}$ o seu efeito no transporte de carga é médio. Para frequências inferiores a $\frac{1}{\tau_{\sigma}}$ o relaxamento da nuvem de polarização está em fase com o campo elétrico externo. Nesse caso, o campo suporta a propagação das cargas. Assim, este relaxamento elétrico dá origem a uma contribuição na função dielétrica complexa que aumenta com a diminuição da frequência [73]. Esta é a essência da teoria de Debye/Hückel/Falkenhagen que explica a observação experimental que a parte real ε' aumenta com a diminuição da frequência. Dentro desse quadro fenomenológico, não há necessidade de tratar a condutividade dc e ac em sistemas desordenados como processos separados [73].

No caso da amostra de hexaferrita substituída com íon de La^{3+} acontece uma compensação da rede cristalina por intercâmbio de Fe^{3+} por Fe^{2+} dentro do grão, quando colocado um campo elétrico os elétrons através do mecanismo de condução por saltos (hopping) passam de um íon de Fe^{3+} a outro Fe^{2+} . Este movimento se realiza até que os elétrons chegam à fronteira dos grãos onde são detidos, formando uma região de carga espacial. Este processo de condução de hopping de elétrons a temperatura ambiente é similar ao processo de condução por saltos de íons que se manifesta nas altas temperaturas. A parte imaginária ε'' aumenta com a diminuição da frequência devido à condução (Figura 5.2(b)). Também a parte real aumenta devido a fenômenos de relaxamento elétrico e polarização interfacial (Figura 5.2(a)). Em frequências mais baixas essa contribuição relaxante para ε' pode ser sobreposta pelos efeitos da polarização do eletrodo.

A parte real de $\varepsilon^*(\omega)$ é a componente em fase com o campo elétrico aplicado, e parte imaginária é a componente fora de fase com o campo [102]. Sugere-se que a independência da permissividade, ε' , com a frequência é devido aos elétrons que seguem a mundança da frequência do campo elétrico externo, manifestando em alta frequência. Para a cerâmica $BaMLa_{0.6}$, apesar de que, o cátion La^{3+} se incorpora à estrutura cristalina da hexaferrita de bário, segundo os resultados de raio-X fornecidos, a concentração deve ser menor à da cerâmica $BaMLa_{0.1}$, mas como existe também a fase de hematita, composto isolante, então a resposta dielétrica será a combinação de ambas as fases Este justifica porque nesta concentração a constante dielétrica é menor que para a cerâmica $BaMLa_{0.1}$. Na Tabela 5 são mostrados os valores da ε' nas frequência $1Hz \in 10^6Hz$.

Tabela 5: Valores da permissividades real, a frequência de 1 Hz e 1MHz, e a imaginária no pico de relaxação e sua respectiva frequência para o sistema cerâmico de hexaferrita $Ba_{1-x}La_xFe_{12}O_9$.

arepsilon'			$\varepsilon^{''}$			
Amostras	1Hz	$10^6 Hz$	1Hz	$10^6 Hz$	$f_p(HZ)$	ε_p
BaM	6.49×10^1	1.38×10^2	1.66	1.87	6.31×10^1	3.85×10^1
$BaMLa_{0.1}$	2.60×10^2	4.78×10^2	1.19×10^{7}	6.00×10^1	_	_
$BaMLa_{0.6}$	6.30×10^2	2.37×10^2	6.42×10^4	9.65	_	_

Os valores da ε'' nas nas frequência 1Hz e 10^6Hz são representados na Tabela 5. Note-se o pico de relaxação na *BaM* devido ao mecanismo de polarização dipolar. Não há picos nas demais amostras pelo fato que a condução por salto domina praticamente a resposta dielétrica para a faixa de frequência $(1 - 10^5)Hz$.

5.3 Módulo elétrico

O formalismo do módulo elétrico é uma importante teoria formulada por Macedo [70] a qual permite estudar mecanismos de relaxação dipolar, processos de transporte de carga (tais como mecanismos de transporte elétrico, relaxação de condutividade e dinâmica iônica como função da temperatura e da frequência). Também é usado para saber se o mecanismo de polarização de interface nos limites de grãos está presente na resposta elétrica. O módulo elétrico complexo (M^*) foi calculado usando as Eq 3.2.6 e Eq 3.2.7, sendo M' e M'' são a parte real e imaginaria do módulo elétrico complexo. Na Figura 5.3 são representadas as variações da parte real (M') e imaginaria (M'') do módulo elétrico com a frequência para o sistema cerâmico $Ba_{(1-x)}La_xFe_{12}O_{19}$ à temperatura ambiente. Os valores de $M'(\omega)$ para a amostra BaM aumentam com o aumento da frequência e se aproximam a uma saturação para as altas frequência (valor constante) (Figura 5.3(a)). Nas cerâmicas $BaMLa_{0.1}$ e $BaML_{0.6}$ os valores de M' começam próximo a zero com valores constantes em baixas frequências, indicando a presença de uma forte polarização iônica, logo aumentam com o incremento da frequência com a tendência à saturação, figura-5.3(a). O aumento de M' deve-se à presença da condução de longo alcance devido a mobilidade dos portadores de cargas [119, 120] (hopping de elétrons).

Figura 5.3: Variação do $M' \in M''$ com a frequência para o sistema $Ba_{1-x}La_xFe_{12}O_{19}$ com $x = 0.0; 0.1 \in 0.6$ à temperatura ambiente.

A dependência de M'' com a frequência para as amostras BaM pura e substituída com íon La^{3+} mostra a aparição de um pico de relaxação, figura 5.3(b). Na amostra BaM foi obtido o menor valor de f_{max} , porém este pico devido aos dipolos segundo foi discutido se deve a um processo de relaxação dipolar. Para a cerâmica $BaMLa_{0.6}$ a frequência máxima (f_{max}) do pico aparece em $2.51 \times 10^2 Hz$ e para a cerâmica $BaMLa_{0.1}$ em $2.51 \times 10^4 Hz$. Ambas as cerâmicas apresentaram um aumento da polarização devido a condução por hopping de elétrons que são detidos nos contornos dos grãos. A diferença da f_{max} pode ser explicada se consideramos qua a cerâmica $BaMLa_{0.1}$ tem um aumento da taxa de saltos dos portadores de cargas e, portanto, maior quantidade de portadores de carga que seguem a mudança do campo elétrico externo, o qual reafirma a hipótese de que existe uma maior substituição de La^{3+} na cerâmica $BaMLa_{0.1}$ e $BaMLa_{0.6}$. A diferença dos valores do M'' entre as cerâmicas $BaM e BaMLa_{0.1}$ e $BaMLa_{0.6}$ se pode explicar pelo fato que são mecanismos de polarização diferentes.

Para conhecer se o movimento de portadores de carga é de curto ou longo alcance, normalmente se plotam juntas os picos de relaxação da impedância e do módulo elétrico [121, 122]. A coincidência dos máximos indica condução de longo alcance [121, 122]. Na figura 5.4 mostra a dependência de $Z''(\omega)$ e $M''(\omega)$ com a frequência para o sistema cerâmico $Ba_{1-x}La_xFe_{19}O_{19}$ com x = 0.0; 0.1 e 0.6 à temperatura ambiente. Para um processo de relaxação tipo Debye ambos os picos devem coincidir. Qualquer afastamento destes indica uma relaxação do tipo não-Debye [123]. Nesta figura observamos que os picos de Z'' e M'' coincidem para a amostra $BaMLa_{0.1}$, indicando uma condução de longo alcance. Na cerâmica $BaMLa_{0.6}$ os picos estão muito próximos, mas existe uma ligeira diferença no valor de f_{max} , sugerindo que a condução é local [122]. A não aparição de um pico de relaxação na impedância na hexaferrita de bário pura mostra que o processo que aparece no módulo elétrico é um processo de relaxação dipolar anteriormente mencionado.

Figura 5.4: Variação de Z'' e M'' com a frequência do sistema $Ba_{1-x}La_xFe_{12}O_{19}$ com $x = 0.0; 0.1 \in 0.6$ à temperatura ambiente.

Na tabela 6 apresenta os valores das frequências inciais, de picos e finais e seus respectivos valores de M''. Verifica-se que f_p depende a concentração de La^{3+} .

Tabela 6: Valores da M'', a frequência de 1 Hz e 1MHz, e a imaginária no pico de relaxação e sua respectiva frequência para o sistema cerâmico de hexaferrita $Ba_{1-x}La_xFe_{12}O_9$ com x = 0.0; 0.1 e 0.6.

	M	-'	$M^{\prime\prime}$	
Amostras	1Hz	$10^6 Hz$	$f_p(HZ)$	$M_p^{\prime\prime}$
BaM	0.166	0.702	20	0.211
$BaMLa_{0.1}$	9.15×10^{-11}	0.103	25118	0.046
$BaMLa_{0.6}$	1.32×10^{-5}	4.22×10^{-1}	250	0.124

5.4 Comportamento relaxador no domínio da frequência

Para estudar os processos de relaxação dos diferentes mecanismos encontrados foi escolhido o formalismo do módulo elétrico que no modelo de *Havriliak-Negami* é expressa por [98]:

$$M^* = M_{\infty} \left(1 - F_{HN}(\omega) \right), \tag{5.4.1}$$

onde

$$F_{HN} = \frac{1}{(1 + (i\omega\tau_{HN})^{\alpha})^{\gamma}},$$
(5.4.2)

onde M_{∞} é o módulo relaxado, τ_{HN} é o tempo de relaxação, $\alpha \in \gamma$ são os parâmetros de relaxação que estão entre 0 e 1. O modelo consiste em ajustar os dados experimentais usando a parte real e imaginária da grandeza complexa por meio de equações que relacionam os parâmetros empíricos característicos com uma função de distribuição do tempo de relaxamento. Os valores das constantes estão relacionados com correlação de movimento entre os elétrons que saltam e suas vizinhanças.

Usando os valores do módulo elétrico imaginário M'', do sistema $Ba_{(1-x)}La_xFe_{12}O_{19}$ aplicamos o modelo de Havriliak-Negami e usando a Eq 5.4.1 para obter por meio de ajuste de curva os parâmetros como tempo de relação e os coeficientes $\alpha \in \gamma$. Na Figura 5.5 mostrado a curva dos dados experimentais com e a curva do ajuste de curva.

Figura 5.5: Ajuste de curva do M'' para o sistema $Ba_{(1-x)}La_xFe_{12}O_{19}$ com $x = 0.0; 0.1 \in 0.6$ à temperatura ambiente.

O modelo Havriliak-Negami fornecem parâmetros que informam como se comporta o relaxamento nas amostras, os valores dos parâmetro estão na Tabela 7. Note-se que a amostra $BaMLa_{0.1}$ apresenta $\alpha = \gamma = 1$ correspondendo ao modelo de Debye, isso significa que o tempo de relaxação, na ordem de $10^{-6}s$, é único para a relaxação nessa amostra. Para BaM, $\alpha = 0.924$, $\gamma = 0.771$ e $BaMLa_{0.6}$, $\alpha = 0.964$, $\gamma = 0.619$ são caracterizadas pela modelo Havriliak-Negami, isso indica uma distribuição no tempo de relaxação em toda a amostra. O maior tempo de relaxação é na BaM na ordem de $10^{-2}s$, seguindo da $BaMLa_{0.6}$, na ordem de $10^{-4}s$, e $BaMLa_{0.1}$, na ordem de $10^{-6}s$. Observa-se que α para BaM e $BaMLa_{0.6}$ possuem valores próximos, mas γ pode-se considerada o parâmetro diferencial, para amostra $BaMLa_{0.6}$ com $\gamma = 0.619$ indicando uma menor correlação dos movimento dos portadores que saltam de suas vizinhanças em relação a BaM.

Tabela 7: Os parâmetros de relaxação obtido mediante o ajuste com a função dielétrica H-N: tempo de relaxação, τ , coeficientes α , γ e desvios quadráticos, D.

Amostras	au(s)	α	γ	D
BaM	1.127×10^{-2}	0.924	0.771	0.985
$BaMLa_{0.1}$	7.293×10^{-6}	1.000	1.000	0.998
$BaMLa_{0.6}$	9.727×10^{-4}	0.964	0.619	0.999

5.5 Comportamento relaxador no domínio do tempo

Para obter a resposta temporal, usa-se a função distribuição analítica dos tempos de relaxação no Modelo Havriliak-Negami [98]:

$$\rho(t) = \frac{1}{\pi} \frac{\left(\frac{\tau}{\tau_{HN}}\right)^{\alpha\gamma} \sin(\gamma\theta)}{\left[\left(\frac{\tau}{\tau_{HN}}\right)^{2\alpha} + 2\left(\frac{\tau}{\tau_{HN}}\right)^{\alpha} \cos(\alpha\pi) + 1\right]^{\frac{\gamma}{2}}}$$
(5.5.1)

onde θ é

$$\theta = \arctan \left| \frac{\sin(\alpha \pi)}{\left(\frac{\tau}{\tau_{HN}}\right)^{\alpha} + \cos(\alpha \pi)} \right|, \qquad (5.5.2)$$

onde τ_{HN} é o tempo de relaxação calculado a partir do ajuste com a função de distribuição de Havriliak-Negami assim como os parâmetros α , γ , onde τ é o tempo que corresponde ao intervalo da frequência. Para domínio do tempo a função de relaxação temporal é dada [98]:

$$\Phi(t) = \int_0^\infty \rho(t) e^{-t/\tau} d\tau.$$
 (5.5.3)

Dessa forma pode se calcular a função de relaxação $\Phi(t)$, Eq 5.5.3, a partir da função de distribuição analítica dos tempos de relaxações (Eq 5.5.1), onde t é o tempo que corresponde ao intervalo da frequência.

Em geral $\Phi(t)$ pode ser escrita a partir da função de Kohlrausch-Williams-Watts (KWW) que tem a forma [98]:

$$f(t) = e^{\left(-\frac{t}{\tau^*}\right)\beta},\tag{5.5.4}$$

esta função é conhecida como uma exponencial esticada ou deformada onde o expoente β caracteriza a deformação ou alongamento e τ^* é o tempo de relaxamento característico [98]. O valor de β é interpretado como o resultado da correlação de movimento entre os portadores de cargas, e é uma medida que o salto de um portador de carga móvel no material não pode ser tratado como um evento isolado. Pequenos valores de β fornecem o maior desvio em relação ao tipo de relaxamento de Debye, indicando que a cooperação entre portadores de carga é maior [98].

As funções $\Phi(t)$ para as composições $Ba_{(1-x)}La_xFe_{12}O_{19}$ foram obtida resolvendo a Eq 5.5.3 e com seus respectivos valores de t. O comportamento $\Phi(t)$ são mostradas por meio das curvas coloridas na Figura 5.6, as curvas possuem comportamentos semelhantes.

Figura 5.6: Ajuste das funções de relaxamento no domínio do tempo obtidas para o sistema $Ba_{1-x}La_xFe_{12}O_{19}$ com x = 0.0; 0.1 e 0.6 à temperatura ambiente.

Observa-se o comportamento $\Phi(t)$ na BaM é praticamente constante para tempos menores que $10^{-2}s$, expressão uma independência temporal. Para tempos maiores, $\Phi(t)$ decai suavemente no intervalo de $(10^{-2}-10^0)s$ e o mesmo comportamento é observado em $BaMLa_{0.6}$ e $BaMLa_{0.1}$, mas a regiões de independência temporal em ambos os casos são maiores.Para caracterizar o comportamento da $\Phi(t)$ analisou se a correlação do movimento entre os elétrons e o tempo de relaxação por meio de ajuste da curva de $\Phi(t)$ com a função KWW (Eq 5.5.4). O ajuste de curva é representa pela curva vermelha, Figura 5.6, os valores os obtido β e τ são mostrado na Tabela 8, D mostra um ajuste satisfatório.

Nota-se que $BaMLa_{0.1}$ apresenta o menor τ ($\tau = 4.27 \times 10^{-3}$) e nas demais amostras τ é da ordem de $10^{-1}s$. O aumento na concentração de Al^{3+} aumento β indicando diminuição na correlação entre os elétrons.

Amostras	au(s)	eta	D
BaM	4.12×10^{-1}	0.747	0.999
$BaMLa_{0.1}$	4.27×10^{-3}	0.76	0.999
$BaMLa_{0.6}$	4.30×10^{-1}	0.77	0.999

Tabela 8: Parâmetros de relaxação determinados mediante o ajuste da função KWW; $\tau \in \beta$ e os desvios quadráticos, D para o sistema cerâmico $Ba_{1-x}La_xFe_{12}O_{19}$ com $x = 0.0; 0.1 \in 0.6$ à temperatura ambiente.

5.6 Condutividade elétrica

Para entender o mecanismo de condução e o tipo de portador de carga responsável por pela condução, na Figura 5.7, onde é apresentado o comportamento da condutividade elétrica com a frequência para o sistema cerâmico $Ba_{(1-x)}La_xFe_{12}O_{19}$. O comportamento da condutividade real ($\sigma'(\omega)$) na cerâmica BaM tem a menor condutividade e possuem um comportamento similar à de um dielétrico (Figura 5.7(a)). Para baixas frequências se observa um aumento quase linear da condutividade que atinge um platô em frequências intermediarias e um novo incremento para altas frequências. Este comportamento em baixa frequência indica um processo misto de condutividade.No caso da cerâmica $BaMLa_{0.1}$ e $BaMLa_{0.6}$ a condutividade tornou-se independente da frequência abaixo de 10^5Hz e 10^4Hz , respectivamente. Esta região da condutividade corresponde à condutividade de corrente continua, σ_{dc} . O valor de para a cerâmica $BaMLa_{0.1}$ é superior em duas ordens a da cerâmica $BaMLa_{0.6}$, isso deve ao fato da adição de La^{3+} que aumenta a segunda da fase hematita tornando a mostra mais resistiva. O comportamento na cerâmica indica movimento de portadores de longo alcance na faixa de frequência analisada.

Em altas frequências a condutividade aumenta com o incremento da frequência para ambas as amostras ($BaMLa_{0.1} \in BaMLa_{0.6}$), segundo a relação , conhecido como lei universal de Jonscher [92]. Este comportamento é normal de materiais semicondutores à temperatura ambiente. Quando n é zero, a condutividade elétrica é independente da frequência, mas quando n > 0 a condutividade elétrica depende da frequência. Isto pode ser explicado considerando uma microestrutura constituída por espessas camadas condutoras, os grãos (com condutividade σ_g , permissividade ε_g e espessura d_g), separadas por finas camadas resistivas, contornos de grãos (σ_{cg} , $\varepsilon_{cg} \in d_{cg}$) [73]. Em baixa frequência, os contorno dos grãos atuam com altas resistência dando uma condutividade constante. Em alta frequência, o aumento da condutividade é devido ao efeito do grãos e também o aumento da taxa de elétrons por saltos [117, 122].

Figura 5.7: Variação da (a) parte real e (b) parte imaginária do condutividade elétrico com a frequência do sistema $Ba_{1-x}La_xFe_{12}O_{19}$ com x = 0.0; 0.1 e 0.6 à temperatura ambiente.

Por outro lado, como a condutividade elétrica na ferrita se deve ao hopping dos elétrons nos íons Fe^{2+} para Fe^{3+} [117]. O hopping dos elétrons na condutividade real, $\sigma'(\omega)$, estão em fase com o campo elétrico. O comportamento das curvas $\sigma''(\omega)$ representa o hopping dos elétrons que não conseguem seguir o campo elétrico, indicando uma corrente fora de fase com o campo aplicado, o aumento linear em $\sigma''(\omega)$ indica aumento da taxa de hopping e tal comportamento é visto praticamente em todo faixa da frequência Figura 5.7(b).

A maior condutividade alcançada na cerâmica $BaMLa_{0.1}$ deve estar associada ao aumento do número de portadores de carga, neste caso elétrons à temperatura ambiente. Os valores da frequência com seus valores da condutividade real e imaginária são apresentados na Tabela 9.

Tabela 9: Valores da condutividade de, σ_{dc} , tempo de relaxação, τ , e desvio quadrático, D, determinado através do comportamento da condutividade real e imaginária usando o modelo de Dyre para o sistema $Ba_{(1-x)}La_xFe_{12}O_{19}$ com x = 0.0; 0.1 e 0.6 à temperatura ambiente

	$\sigma^{'}(\Omega cm)$	-1	$\sigma^{''}(\Omega cm)^{-1}$		
Amostras	1Hz	$10^6 Hz$	1Hz	$10^6 Hz$	
BaM	9.22×10^{-13}	1.04×10^{-6}	3.61×10^{-11}	7.70×10^{-5}	
$BaMLa_{0.1}$	6.62×10^{-6}	3.34×10^{-5}	1.45×10^{-10}	2.66×10^{-4}	
$BaMLa_{0.6}$	3.57×10^{-8}	5.37×10^{-6}	3.51×10^{-10}	1.32×10^{-4}	

5.6.1 Condutividade no modelo de Dyre

Sabe-se que a σ_{DC} é devido aos hopping dos elétrons nos íons $Fe^{2+} \longrightarrow Fe^{3+}$, e caso o hopping for bem sucedido produz uma relaxação que é caracterizada por um tempo de relaxação,

 τ . Por meio do ajuste da curva de condutividade elétrica, usando o Modelo de Dyre, segundo as Eq 3.4.10 e Eq 3.4.11 foram obtidos os parâmetros da relaxação da condutividade; σ_{dc} , τ para as hexaferritas $Ba_{(1-x)}La_xFe_{12}O_{19}$.

Na Figura 5.8(a) observa-se que o modelo de Dyre é bem ajustado somente na região de alta frequência para a amostra BaM. iIndicando uma deficiência no modelo para condução mista. Para a condução por hopping dos elétrons, como acontece nas cerâmicas $BaMLa_{0.1}$ e $BaMLa_{0.e}$, o modelo ajusta melhor. Na amostra BaM a $\sigma_{dc}(\omega)$ é da ordem de $10^{-9}(\Omega cm)^{-1}$, sendo então um isolante e com o tempo de relaxação de $10^{-3}s$ no intervalo de $(10^2 - 10^5)Hz$. O maior valor de τ é encontrado na amostra BaM ($\tau \sim 10^{-3}$), com $\sigma_{DC} \sim 10^{-9}(\Omega cm)^{-1}$. O menor τ é na $BaMLa_{0.1}$ ($\tau \sim 10^{-6}s$) com $\sigma_{DC} \sim 10^{-6}(\Omega cm)^{-1}$.

(a) Condutividade elétrico real.

(b) Condutividade elétrico imaginária.

Figura 5.8: Valores da condutividade de , σ_{dc} , tempo de relaxação, τ , e desvio quadrático, D, no modelo de Dyre para σ' e σ'' para o sistema $Ba_{(1-y)}La_yFe_{(12-x)}Al_xO_{19}$ à temperatura ambiente.

A Figura 5.8(b) mostra o ajuste da curva de $\sigma''(\omega)$ e Tabela 10 os valores de ajustes. Note que os ajustes dos dados experimentais são satisfatórios como mostram os desvios quadráticos, D. Os valores de σ_{dc} são próximos em torno de 10^{-7} , e bem como o τ , isso significa que processo de condução é o mesmo. Atribuímos τ aos hopping dos elétrons fora de fase em relaxação ao campo elétrico aplicado.

Tabela 10: Os valores da condutividade real inicial e final para o sistema hexaferrita $Ba_{(1-y)}La_yFe_{(12-x)}Al_xO_{19}$ com $x = 0, 1 \in y = 0, 1; 0, 3; 0, 6; 0, 8; 1, 0$ e 1,3 à temperatura ambiente.

	$\sigma^{'}(\Omega cm$	$(n)^{-1}$	$\sigma^{''}(\Omega cm)^{-1}$		
Amostras	au(s)	σ_{DC}	au(s)	σ_{DC}	
BaM	3.168×10^{-3}	1.823×10^{-9}	4.695×10^{-7}	6.744×10^{-5}	
$BaMLa_{0.1}$	8.675×10^{-6}	6.62×10^{-6}	3.419×10^{-7}	2.983×10^{-4}	
$BaMLa_{0.6}$	4.781×10^{-4}	3.947×10^{-8}	3.069×10^{-7}	1.615×10^{-4}	

A Figura 5.8(b) mostra o ajuste de curva da $\sigma''(\omega)$ e os valores ajustados são apresentados na Tabela 10. Os ajustes dos dados experimentais são satisfatórios como desvios quadráticos, D = 0.999. E os valores de σ_{dc} são próximos, na ordem de 10^{-7} , e assim com o tempo de relaxação, τ , isso significa que processo de condução é o mesmo. Atribuímos τ aos saltos de elétrons fora de fase em relaxação ao campo elétrico aplicado.

6 Comportamento elétrico do sistema cerâmico de hexaferrita $Ba_{0.9}La_{0.1}$ $Fe_{12-y}Al_yO_{19}$

A partir dos resultados obtidos no capítulo 5, onde a cerâmica BaM La 0.1 apresenta a maior condutividade foram preparadas amostras cerâmicas com a formula estequiométrica $Ba_{0.9}La_{0.1}Fe_{12-y}Al_yO_{19}$, com y = 0.0; 0, 1; 0, 3; 0, 6; 0, 8; 1, 0, e 1, 3, dopadas simultaneamente nos sítios do Ba com La^{3+} e nos sítios do Fe com Al^{3+} . O comportamento das propriedades elétricas de este sistema cerâmicos foram estudados seguindo o mesmo procedimento apresentado no capítulo 5. Os parâmetros da relaxação foram determinados e uma análise de sua variação com a concentração de Al^{3+} foi feita visando sua possível avaliação futura como material multiferróico e absorvedor de radiação eletromagnética.

6.1 Análise da impedância complexa

O comportamento da parte real da impedância das amostras $Ba_{0.9}La_{0.1}Fe_{12-y}Al_yO_{19}$ são mostradas na Figura 6.1(a) e a parte imaginária na Figura 6.1(b) à temperatura ambiente na faixa de frequência de 1Hz a 1MHz. O comportamento observado na parte real da impedância para todas as concentrações de Al^{3+} é similar ao visto para a cerâmcica $BaMLa_{0.1}$. Existe um platô na faixas de baixa frequência e uma dispersão para alta frequência. Este comportamento indica uma resistividade constante em baixa frequência e um movimento de hopping de elétrons. Os valores da resistividade variam com a concentração de Al^{3+} na faixa de baixa frequência. A cerâmica $BaMLAl_{0.6}$ apresenta o maior valor de resistividade $3.05 \times 10^6 \Omega cm$ e a cerâmica $BaMLAl_{0.3}$ o menor valor de resistividade $(2.64 \times 10^5 \Omega cm)$.

Figura 6.1: Variação da impedância real e imaginária, $Z' \in Z''$, para o sistema cerâmico $Ba_{0.9}La_{0.1}$ $Fe_{(12-y)}Al_yO_{19}$, $y = 0.1; 0.3; 0.6; 0.8; 1.0 \in 1.3$ à temperatura ambiente.

Na Tabela 11 mostra um resumo dos valores de impedância real e imaginária a frequência de 1Hz e 1 MHz para o sistema cerâmico $Ba_{0.9}La_{0.1}Fe_{12-y}Al_yO_{19}$.

Tabela 11: Valores da impedância real e imaginária a frequência de 1Hz e 1 MHz para o sistema cerâmico $Ba_{0.9}La_{0.1}Fe_{12-y}Al_yO_{19}$, com y = 0, 0; 0, 1; 0, 3; 0, 6; 0, 8; 1, 0, e 1, 3.

$Z'(\Omega)$			$Z''(\Omega)$			
Amostras	1Hz	$10^6 Hz$	1Hz	$10^6 Hz$	$f_p(HZ)$	Z_p''
$BaMLAl_{0.1}$	6.85×10^5	4.68×10^3	2.12×10^{1}	2.67×10^5	7.94×10^3	2.67×10^5
$BaMLAl_{0.3}$	2.64×10^5	7.12×10^3	7.79	1.00×10^5	5.01×10^4	1.00×10^5
$BaMLAl_{0.6}$	3.05×10^6	8.12×10^3	1.42×10^3	1.44×10^6	7.94×10^3	1.44×10^6
$BaMLAl_{0.8}$	2.07×10^6	$4.06 imes 10^3$	2.68×10^2	$1.04 imes 10^6$	2.51×10^4	1.04×10^6
$BaMLAl_{1.0}$	6.06×10^5	7.73×10^3	1.17×10^2	2.82×10^5	$5.01 imes 10^4$	2.82×10^5
$BaMLAl_{1.3}$	4.13×10^5	6.44×10^3	6.01×10^1	1.81×10^5	3.98×10^4	1.81×10^5

As curvas de $Z''(\omega)$ exibem picos que indicam processos de relaxação. Nota-se um deslocamento nos picos indicando a dependência da frequência máxima do pico com concentrações de Al^{3+} . Fisicamente o deslocamento para maiores frequências significa o aumento da taxa de hopping dos elétrons. Os valores Z'' e suas respectivas frequências são mostrada na Tabela 11 note que a cerâmica $BaMLAl_{0.6}$ apresenta o maior valor e $BaMLAl_{0.3}$ apresenta o menor valor de Z''. Também se percebe que os valores maiores f_p correspondem as cerâmicas $BaMLAl_{1.0}$ e $BaMLAl_{0.2}$ e o menores valores as cerâmicas $BaMLA_{0.6}$ e $BaMLAl_{0.1}$.

6.2 Análise da permissividade complexa

Para identificar o mecanismo de polarização foi determinada $\varepsilon^*(\omega)$. Na Figura 6.2(a) é mostrado a parte real ε' e imaginária ε'' para o sistema cerâmico $Ba_{0.9}La_{0.1}Fe_{12-y}Al_yO_{19}$. A $\varepsilon'(\omega)$ na Figura 6.2(a) apresenta um platô para as baixa frequência, seguida por uma dispersão e logo um segundo platô. A presença de Al^{3+} muda os valores de $\varepsilon'(\omega)$ nas amostras, o menor valor de $\varepsilon'(\omega)$ é registrado na cerâmica $BaMLAl_{0.1}$, e o maior valor é observado na cerâmica $BaMLAl_{1.0}$, Não foi observado um padrão em $\varepsilon'(\omega)$ com a concentração de Al^{3+} , sugerindo talvez um depedndência com os parâmetros de sínteses e sinterização das amostras. O afastamento dos parâmetros ótimos de obtenção da cerâmica pode favorecer a formação da fase de hematita.

A $\varepsilon''(\omega)$ na Figura 6.2(b) apresenta um comportamento similar para todas as cerâmicas. Um aumento linear de $\varepsilon''(\omega)$ é observado com a diminuição da frequência. Nas altas frequências é vista uma pequena anomalia referida já para o anterior sistema estudado. Para identificar o tipo de polarização usa-se o coeficiente angular das retas, em todos os casos, o coeficiente angular resultou ser 1.00, o qual significa que a polarização aumenta devido aos movimentos dos elétrons através dos grãos que são detidos nos contornos de grão. Na Tabela 12 pode-se visualizar os valores da permissividade real $\varepsilon'(\omega)$ e imaginária $\varepsilon''(\omega)$ para a frequência de 1Hz e 1MHz e seus respectivos.

Figura 6.2: Dependência da permissividade, $\varepsilon^*(\omega)$, para o sistema cerâmico $Ba_{0.9}La_{0.1} Fe_{(12-y)}Al_yO_{19}$, com $y = 0, 1; 0, 3; 0, 6; 0, 8; 1, 0 \in 1, 3$ à temperatura ambiente.

Tabela 12: Valores da permissividade $\varepsilon' \in \varepsilon''$ para as frequências de $1Hz \in 1MHz$ para o sistema cerâmico de hexaferrita $Ba_{0.9}La_{0.1} Fe_{(12-y)}Al_yO_{19}$, com $y = 0, 1; 0, 3; 0, 6; 0, 8; 1, 0 \in 1, 3$ à temperatura ambiente

	$\varepsilon^{'}$		ε	,,
Amostras	1Hz	$10^{6}Hz$	1Hz	$10^6 Hz$
$BaMLAl_{0.1}$	$7.10 imes 10^2$	1.06×10^3	2.29×10^7	3.75×10^2
$BaMLAl_{0.3}$	2.43×10^3	1.00×10^3	8.26×10^7	3.71×10^2
$BaMLAl_{0.6}$	2.56×10^3	3.73×10^2	5.50×10^6	6.95×10^1
$BaMLAl_{0.8}$	9.93×10^2	2.42×10^2	7.67×10^6	1.51×10^1
$BaMLAl_{1.0}$	5.04×10^3	3.91×10^2	2.62×10^7	7.73×10^1
$BaMLAl_{1.3}$	4.39×10^3	5.15×10^2	3.01×10^7	1.49×10^2

6.3 Análise do módulo elétrico complexo

O comportamento do $M'(\omega)$ em função da frequência é mostrado na Figura 6.3(a) para o sistema hexaferrita $Ba_{0.9}La_{0.1}Fe_{12-y}Al_yO_{19}$. O M' apresenta um comportamento linear que aumenta com o incremento da frequência e atinge a saturação em altas frequências, onde M'faz-se independente da frequência. Os maiores valores são obtidos nas cerâmicas $BaMLAl_{0.6}$ e $BaMLAl_{0.8}$, enquanto que o menor valor é visto na cerâmica $BaMLAl_{0.3}$. Na Figura 6.3(b) observa que todas as cerâmicas sopb estudo apresentam picos de relaxação que variam sua f_{max} e M'_{max} com a composição de do íon Al^{3+} . Maior valor de f_{max} corresponde à cerâmica $BaMLAl_{0.8}$ e o menor valor corresponde à cerâmica $BaMLAl_{0.3}$. Este resultado indica que existe uma variação de taxa de saltos de elétrons com a composição de Al^{3+} .

As curvas de M'' com a frequência para todas as cerâmicas sob estudo foram ajustada segundo a equação Eq 5.4.1. As curvas da ajuste estão representada em cor vermelha na Figura 6.3(b). Os valores dos parâmetros de relaxação; τ , $\alpha \in \beta$ e o desvio quedrático estão mostrado na Tabela 14. Note que $BaMLAl_{0.8}$, $\alpha = \beta = 1.0$, indica que a relaxação é descrita pelo Modelo de Debye, com $\tau \sim 10^{-6}s$. Para $BaMLAl_{0.6}$, $\alpha = 1.0 \in \beta = 0.309$, o qual corresponde ao Modelo de Cole-Davidson com tempo de relaxação $\tau \sim 10^{-5}s$. As outras cerâmicas $BaMLAl_{0.1}, BaMLAl_{0.3}, BaMLAl_{1.0} \in BaMLAl_{1.3}$ tem valores de $\alpha \in \beta$ que correspondem ao Modelo de Havriliak-Negami.

(a) Módulo elétrico real.

(b) Módulo elétrico imaginária.

Figura 6.3: Dependência do módulo elétrico com a frequência para o sistema cerâmico cerâmico $Ba_{0.9}La_{0.1} Fe_{12-y}Al_yO_{19}, y = 0, 1; 0, 3; 0, 6; 0, 8; 1, 0 e 1, 3$ à temperatura ambiente.

Tabela 13: Valores de $M'(\omega)$ e $M''(\omega)$ para as frequências de 1Hz e 1MHz para o sistema hexaferrita $Ba_{0.9}La_{0.1}$ $Fe_{12-y}Al_yO_{19}$, y = 0, 1; 0, 3; 0, 6; 0, 8; 1, 0 e 1, 3 à temperatura ambiente.

<i>M</i> ′			<i>M</i> ″			
Amostras	1Hz	$10^6 Hz$	1Hz	$10^6 Hz$	$f_p(HZ)$	$M_p^{\prime\prime}$
$BaMLAl_{0.1}$	1.35×10^{-12}	8.41×10^{-4}	4.36×10^{-8}	3.41×10^{-4}	3.41×10^{-4}	3.41×10^{-4}
$BaMLAl_{0.3}$	3.57×10^{-13}	8.79×10^{-4}	1.21×10^{-8}	3.35×10^{-4}	3.35×10^{-4}	3.35×10^{-4}
$BaMLAl_{0.6}$	8.45×10^{-11}	2.59×10^{-3}	1.82×10^{-7}	7.57×10^{-4}	7.57×10^{-4}	7.57×10^{-4}
$BaMLAl_{0.8}$	1.69×10^{-11}	4.11×10^{-3}	1.30×10^{-7}	1.79×10^{-3}	1.79×10^{-3}	1.79×10^{-3}
$BaMLAl_{1.0}$	7.33×10^{-12}	2.46×10^{-3}	3.81×10^{-8}	9.68×10^{-4}	9.68×10^{-4}	9.68×10^{-4}
$BaMLAl_{1.3}$	4.84×10^{-12}	1.79×10^{-3}	3.32×10^{-8}	$6.53 imes 10^{-4}$	6.53×10^{-4}	6.53×10^{-4}

Tabela 14: Valores de ajuste de curva do módulo imaginário, M'', do tempo de relaxação e dos coeficientes da função Havriliak-Negami para o sistema $Ba_{0.9}La_{0.1}Fe_{12-y}Al_yO_{19}$, com y = 0, 1; 0, 3; 0, 6; 0, 8; 1, 0, e 1, 3 à temperatura ambiente.

Amostras	au(s)	α	β	D
$BaMLAl_{0.1}$	3.208×10^{-5}	0.959	0.115	0.999 98
$BaMLAl_{0.3}$	2.273×10^{-6}	0.881	0.656	0.99968
$BaMLAl_{0.6}$	3.630×10^{-5}	1.0	0.309	0.99861
$BaMLAl_{0.8}$	5.883×10^{-6}	1.000	1.000	0.99819
$BaMLAl_{1.0}$	3.083×10^{-6}	0.961	0.818	0.99966
$BaMLAl_{1.3}$	4.934×10^{-6}	0.964	0.539	0.99984

O comportamento da função distribuição temporal do sistema cerâmico $Ba_{0.9}La_{0.1}$ $Fe_{12-y}Al_yO_{19}$ é representado na Figura 6.4. A cerâmica $BaMLAl_{0.1}$ apresenta o menor de tempo $10^{-4}s$. $\Phi(t)$ é independente do tempo e diminui exponencialmente no intervalo $(10^{-5} - 10^2)s$. Para maiores concentrações de Al^{3+} : $BaMLAl_{0.8}$, $BaMLAl_{1.0}$, $BaMLAl_{1.3}$, $\Phi(t)$ é independente do tempo para $t < 10^{-2}s$, e diminui exponencialmente no interios para 10s. Nas $BaMLAl_{0.3}$ e $BaMLAl_{0.6}$, $\Phi(t)$ é independente do tempo para $t < 10^{-3}s$, e diminui exponencialmente no intervalo de $10^{-1}s$.

Figura 6.4: Ajuste de curva da função distribuição temporal KWW para o sistema cerâmico $Ba_{0.9}La_{0.1}Fe_{12-y}Al_yO_{19}$, com y = 0.0; 0.1; 0.3; 0.6; 0.8; 1.0, e 1.3 à temperatura ambiente.

As curvas de $\Phi(t)$ ajustada com a função KWW mostraram ajustes bons com D = 0.999, Tabela 15. O τ aumenta para maiores concentrações os íons Al^{3+} , e β praticamente permanece Tabela 15: Valores de ajuste de curva da função temporal, $\Phi(t)$, do tempo de relaxação e dos coeficientes da função KWW para o sistema $Ba_{0.9}La_{0.1}Fe_{12-y}Al_yO_{19}$, com y = 0, 1; 0, 3; 0, 6; 0, 8; 1, 0, e 1, 3 à temperatura ambiente.

Amostras	au(s)	β	D
BaMLAl _{0.1}	4.29×10^{-3}	0.767	0.999
$BaMLAl_{0.3}$	4.30×10^{-2}	0.77	0.999
$BaMLAl_{0.6}$	4.22×10^{-2}	0.769	0.999
$BaMLAl_{0.8}$	4.15×10^{-2}	0.77	0.999
$BaMLAl_{1.0}$	4.30×10^{-1}	0.771	0.999
$BaMLAl_{1.3}$	4.30×10^{-1}	0.771	0.999

6.4 Análise da condutividade elétrica complexa

Na Figura 6.5 é mostrada a dependência das $\sigma' \in \sigma''$. A σ' apresenta uma região independente da frequência (σ_{DC}) e em alta frequência observado uma dispersão que obedece à lei universal de Jonscher (Figura 6.5(a)). Na Tabela 16 são mostrados os valores da $\sigma' \in \sigma''$ para as frequências de 1*Hz* e 1*MHz*. Os valores de condutividades σ_{AC} variam com a composição do íon de Al^{3+} . A σ'' é mostrada na Figura 6.5(b) que corresponde a condução por hopping de elétrons em defasagem com o campo elétrico aplicado. Comportamentos similares da condutividade são observados para as diferentes concentrações de Al^{2+} . No modelo de Dyre também permite determina os parâmetros da relaxação a partir do ajuste da curva σ''_{AC} . Os valores dos parâmetros de relaxação aparecem relatados na Tabela 17.

(a) Ajuste da condutividade elétrico real.

(b) Ajuste da condutividade elétrico imaginária.

Figura 6.5: Valores de σ_{dc} , τ , e desvio quadrático, D, determinados usando o modelo de Dyre para o sistema $Ba_{(0.9)}La_{0.1}$ $Fe_{(12-y)}Al_yO_{19}$ com $y = 0, 1; 0, 3; 0, 6; 0, 8; 1, 0 \in 1, 3$ à temperatura ambiente.

Tabela 16: Os valores da condutividade real inicial e final para o sistema hexaferrita $Ba_{0.9}La_{0.1}Fe_{12-y}Al_yO_{19}$, com y = 0, 1; 0, 3; 0, 6; 0, 8; 1, 0, e 1, 3 à temperatura ambiente.

	$\sigma'(\Omega cm)^{-1}$		$\sigma^{''}(\Omega cm)^{-1}$	
Amostras	1Hz	$10^6 Hz$	1Hz	$10^6 Hz$
$BaMLAl_{0.1}$	1.28×10^{-5}	2.08×10^{-4}	3.95×10^{-10}	5.88×10^{-4}
$BaMLAl_{0.3}$	4.59×10^{-5}	2.06×10^{-4}	1.35×10^{-9}	$5.56 imes 10^{-4}$
$BaMLAl_{0.6}$	3.06×10^{-6}	3.87×10^{-5}	1.42×10^{-9}	2.07×10^{-4}
$BaMLAl_{0.8}$	4.27×10^{-6}	8.38×10^{-6}	5.53×10^{-10}	1.35×10^{-4}
$BaMLAl_{1.0}$	1.46×10^{-5}	4.30×10^{-5}	2.80×10^{-9}	2.18×10^{-4}
$BaMLAl_{1.3}$	1.67×10^{-5}	8.29×10^{-5}	2.44×10^{-9}	2.87×10^{-4}

Os parâmetros da relaxação; $\sigma_{DC} \in \tau(s)$ foram determinados ajustando as curvas de condutividade usando o modelo de Dyre. Estes parâmetros são mostrados na Tabela 17. Observa-se que os valores σ_{DC} variam com a concentração de Al^{3+} . A cerâmica $BaMLAl_{0,1}$ apresenta maior σ_{DC} da ordem $\sim 10^{-5} (\Omega cm)^{-1}$, superior ao valor da cerâmica $BaMLa_{0,1}$. As cerâmicas $BaMLAl_{0.8} \in BaMLAl_{1.3}$ possuem $\sigma_{DC} \sim 10^{-6} (\Omega cm)^{-1}$. Com relação ao tempo de relaxação, o maior valor ($8.565 \times 10^{-5}s$) é obtido para a cerâmica $BaMLAl_{0,1}$, o seja, a cerâmica de menor concentração de Al^{3+} . Isso significa que relaxamento devido aos saltos de elétrons é mais rápido. Na cerâmica $BaMLAl_{0.8}$ e obtido o menor valor de $\tau(1.078 \times 10^{-6})s$.

Tabela 17: Valores dos ajustes da condutividade no Modelo de Dyre para as concentrações $Ba_{0.9}La_{0.1}Fe_{12-y}Al_yO_{19}$, com y = 0, 1; 0, 3; 0, 6; 0, 8; 1, 0, e 1, 3 à temperatura ambiente.

	$\sigma'(\Omega cm)^{-1}$		$\sigma^{\prime\prime}(\Omega cm)^{-1}$	
Amostras	au(s)	$\sigma_{DC}(\Omega cm)^{-1}$	au(s)	$\sigma_{DC}(\Omega cm)^{-1}$
$BaMLAl_{0.1}$	8.565×10^{-5}	1.04×10^{-5}	3.342×10^{-6}	1.067×10^{-4}
$BaMLAl_{0.3}$	7.112×10^{-6}	4.582×10^{-5}	1.072×10^{-6}	2.52×10^{-4}
$BaMLAl_{0.6}$	4.597×10^{-5}	2.594×10^{-6}	6.553×10^{-7}	1.378×10^{-4}
$BaMLAl_{0.8}$	1.078×10^{-6}	4.167×10^{-6}	3.407×10^{-7}	1.513×10^{-4}
$BaMLAl_{1.0}$	3.165×10^{-6}	1.442×10^{-5}	4.952×10^{-7}	1.798×10^{-4}
$BaMLAl_{1.3}$	8.256×10^{-6}	1.618×10^{-5}	7.504×10^{-7}	1.714×10^{-4}

7 Conclusão

Neste trabalho estudamos o comportamento relaxador das propriedades elétricas na hexaferrita de bário modificadas com íons de La^{3+} e Al^{3+} com diferentes concentrações. Dois sistemas foram estudados; $Ba_{1-x}La_xFe_{12}O_{19}$ com $x = 0,0;0,1 \in 0,6 \in Ba_{(0.9)}La_{0.1}Fe_{(12-y)}$ $Al_yO_{19}, y = 0,1;0,3;0,6;0,8;1,0 \in 1,3$ a temperatura ambiente.

- A hexaferrita pura apresentou a maior resistividade com uma ordem de resistência de 10^9 (Ω) e uma dispersão nas Z''. No espectro dielétrico foi observado um pico de relaxação característico de um processo de relaxação dipolar correspondente a uma função dielétrica de H-N. O tempo de relaxação foi de 1.127×10^{-2} s no domínio da frequência e de 4.12×10^{-1} s. O medelo de Dyre da condutividade não mostrou bom resultado para a análise da condutividade por hopping de elétrons misturada com forte polarização iônica.
- A introdução dos íons de La^{3+} em duas concentrações diferentes (0.1 e 0.6) na hexaferrita de bário influenciou em dois aspectos: no aumento de portadores de cargas, e aumento na quantidade da fase hematita, segundo os raios -x. A impedância complexa mostrou a diminuição da resistividade e um pico de relaxação, indicando um processo condutivo à temperatura ambiente. Através do espectro dielétrico foi identificado um processo de polarização interfacial com forte contribuição de condutividade DC. Na caracterização do processo de relaxação através do módulo elétrico (M') usando o método de ajuste da função dielétrica foi encontrando para a cerâmica $BaMLa_{0,1}$ parâmetros de relaxação seguem uma relaxação do tipo Debye com tempo de relaxação no domínio da frequência de 7, $293x10^{-6}s$ e no domínio do tempo de 4, $27x10^{-3}s$ e para a cerâmica $BaMLa_{0,6}$ uma função de relaxação do tipo de H-N com tempo de relaxação de 9.727 × $10^{-4}s$ no domínio da frequência e $4.30 \times 10^{-1}s$ no domínio do tempo.
- O sistema $Ba_{1-x}La_xFe_{12}O_{19}$ teve uma condutividade descrita por hopping dos elétrons. Através do ajuste de Dyre encontrou-se para a cerâmica $BaMLa_{0,1}$ um tempo de relaxação de $8.657 \times 10^{-6}s$ e uma σ_{Dc} de $6.620 \times 10^{-6}(\Omega - cm)^{-1}$) e para a cerâmica $BaMLa_{0,6}$ um tempo de relaxação de 4.781×10^{-4} s e uma σ_{Dc} de $3.947 \times 10^{-8}(\Omega - cm)^{-1}$). Na parte imaginária da condutividade apresentou superposição de mecanismo hopping dos elétrons fora de fase do campo elétrico aplicado.
- O sistema cerâmico de hexaferrita Ba_(0.9)La_{0.1}Fe_(12-y)Al_yO₁₉, mostrou variação da resistividade com o conteúdo do íons de alumínio e picos de relaxação em todas as concentrações. O espectro dielétrico mostrou um processo de polarização interfacial com contribuição de condução DC à temperatura ambiente. Na caracterização do comportamento de relaxação através do módulo elétrico usando o método de ajuste da função dielétrica foram encontradas, para tempo de relaxação menores que na cerâmica BaMLa_{0,1} uma função dielétrica de H-N e para tempos superiores funções de Debye (cerâmica BaMLa_{0,1}Al_{0,8}) e de Cole-Davidson (cerâmica BaMLa_{0,1}Al_{0,6}).

• O sistema cerâmico de hexaferrita $Ba_{(0.9)}La_{0.1}Fe_{(12-y)}Al_yO_{19}$, mostrou condutividade que variam com a concentração dos íons de Al^{3+} . Longas regiões de condutividades DC que mostra a contribuição do contorno de grão com movimento de longo alcance e pequenas regiões dispersivas que mostram a contribuição dos grãos com condutividade de curto alcance. Por meio do ajuste do modelo de Dyre caracterizou o mecanismo de condutividade hopping dos elétrons.

Perspectivas para futuros trabalhos

- Analisar as propriedades elétricas na ferrita de bário modificadas com os íons de *La* e *Al* variando a temperatura.
- Determinar o comportamentos destes sistemas na região das microondas para avaliar a potencialidade como materiais absorvedores de radiações eletromagnéticas.
- Investigar o comportamento multiferroico na hexaferrita de bário por meio das propriedades magnética e elétrica.

8 Referências

Referências

- Robert C Pullar. Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. *Progress in Materials Science*, 57(7):1191–1334, 2012.
- [2] KH Jürgen Buschow. Concise encyclopedia of magnetic and superconducting materials. Elsevier, 2005.
- [3] Sonal Singhal, Tsering Namgyal, Jagdish Singh, Kailash Chandra, and Sandeep Bansal. A comparative study on the magnetic properties of mfe12o19 and malfe11o19 (m= sr, ba and pb) hexaferrites with different morphologies. *Ceramics International*, 37(6):1833–1837, 2011.
- [4] JF Wang, CB Ponton, and IR Harris. A study of the magnetic properties of hydrothermally synthesised sr hexaferrite with sm substitution. *Journal of magnetism and magnetic materials*, 234(2):233-240, 2001.
- [5] Wandee Onreabroy, Komane Papato, Gobwute Rujijanagul, Kamonpan Pengpat, and Tawee Tunkasiri. Study of strontium ferrites substituted by lanthanum on the structural and magnetic properties. *Ceramics International*, 38:S415–S419, 2012.
- [6] Xin Zhang, Yuping Duan, Hongtao Guan, Shunhua Liu, and Bin Wen. Effect of doping mno2 on magnetic properties for m-type barium ferrite. *Journal of magnetism and magnetic* materials, 311(2):507–511, 2007.
- [7] Jianmin Bai, Xiaoxi Liu, Tian Xie, Fulin Wei, and Zheng Yang. The effects of la-zn substitution on the magnetic properties of sr-magnetoplumbite ferrite nano-particles. *Materials Science and Engineering: B*, 68(3):182–185, 2000.
- [8] Yang Bai, Ji Zhou, Zhilun Gui, Zhenxing Yue, and Longtu Li. Complex y-type hexagonal ferrites: an ideal material for high-frequency chip magnetic components. *Journal of magnetism and magnetic materials*, 264(1):44–49, 2003.
- [9] Teresa Castán, Antoni Planes, and Avadh Saxena. Thermodynamics of multiferroic materials. In *Mesoscopic Phenomena in Multifunctional Materials*, pages 73–108. Springer, 2014.
- [10] Wilma Eerenstein, ND Mathur, and James F Scott. Multiferroic and magnetoelectric materials. *nature*, 442(7104):759, 2006.
- [11] Talwinder Kaur, Jyoti Sharma, Sachin Kumar, and Ajeet K Srivastava. Optical and multiferroic properties of gd-co substituted barium hexaferrite. *Crystal Research and Technology*, 52(9):1700098, 2017.

- [12] Yuji Hiraoka. Exploration for multiferroics in hexaferrites. 2013.
- [13] Y Taguchi, Y Tokunaga, Y Kaneko, D Okuyama, S Ishiwata, T Arima, S Wakimoto, K Kakurai, and Y Tokura. Multiferroic m-type hexaferrites with room-temperature conical spin structure. In APS Meeting Abstracts, 2012.
- [14] Z Mosleh, P Kameli, A Poorbaferani, M Ranjbar, and H Salamati. Structural, magnetic and microwave absorption properties of ce-doped barium hexaferrite. *Journal of Magnetism* and Magnetic Materials, 397:101–107, 2016.
- [15] Hossein Nikmanesh, Sedigheh Hoghoghifard, and Behnaz Hadi-Sichani. Study of the structural, magnetic, and microwave absorption properties of the simultaneous substitution of several cations in the barium hexaferrite structure. *Journal of Alloys and Compounds*, 775:1101–1108, 2019.
- [16] S Shooshtary Veisi, M Yousefi, MM Amini, AR Shakeri, and M Bagherzadeh. Magnetic and microwave absorption properties of cu/zr doped m-type ba/sr hexaferrites prepared via sol-gel auto-combustion method. *Journal of Alloys and Compounds*, 773:1187–1194, 2019.
- [17] Denis Vinnik, Aleksandra Tarasova, Dmitry Zherebtsov, Svetlana Gudkova, Damir Galimov, Vladimir Zhivulin, Evgeny Trofimov, Sandra Nemrava, Nikolai Perov, Ludmila Isaenko, et al. Magnetic and structural properties of barium hexaferrite bafe12019 from various growth techniques. *Materials*, 10(6):578, 2017.
- [18] Sami Mahmood, Ibrahim Bsoul, et al. Tuning the magnetic properties of m-type hexaferrites. arXiv preprint arXiv:1707.07243, 2017.
- [19] Mohammad H Shams, Amir SH Rozatian, Mohammad H Yousefi, Jan Valíček, and Vladimir Šepelák. Effect of mg2+ and ti4+ dopants on the structural, magnetic and highfrequency ferromagnetic properties of barium hexaferrite. *Journal of Magnetism and Magnetic Materials*, 399:10–18, 2016.
- [20] Tayssir Ben Ghzaiel, Wadia Dhaoui, Alexandre Pasko, and Frédéric Mazaleyrat. Effect of non-magnetic and magnetic trivalent ion substitutions on bam-ferrite properties synthesized by hydrothermal method. *Journal of Alloys and Compounds*, 671:245–253, 2016.
- [21] AM Alsmadi, I Bsoul, SH Mahmood, G Alnawashi, FM Al-Dweri, Y Maswadeh, and U Welp. Magnetic study of m-type ru-ti doped strontium hexaferrite nanocrystalline particles. *Journal of Alloys and Compounds*, 648:419–427, 2015.
- [22] RC Pullar and AK Bhattacharya. The magnetic properties of aligned m hexa-ferrite fibres. Journal of magnetism and magnetic materials, 300(2):490–499, 2006.

- [23] Dong-Hyun Kim, Yong-Keun Lee, Kwang-Mahn Kim, Kyoung-Nam Kim, Se-Young Choi, and In-Bo Shim. Synthesis of ba-ferrite microspheres doped with sr for thermoseeds in hyperthermia. *Journal of materials science*, 39(22):6847–6850, 2004.
- [24] F Khademi, A Poorbafrani, P Kameli, and H Salamati. Structural, magnetic and microwave properties of eu-doped barium hexaferrite powders. *Journal of superconductivity and novel* magnetism, 25(2):525–531, 2012.
- [25] Cong-Ju Li, Bin Wang, and Jiao-Na Wang. Magnetic and microwave absorbing properties of electrospun ba (1- x) laxfe12019 nanofibers. *Journal of Magnetism and Magnetic Materials*, 324(7):1305–1311, 2012.
- [26] Young-Min Kang. High saturation magnetization in la-ce-zn-doped m-type sr-hexaferrites. Ceramics International, 41(3):4354–4359, 2015.
- [27] Long Peng, Lezhong Li, Rui Wang, Yun Hu, Xiaoqiang Tu, and Xiaoxi Zhong. Microwave sintered sr1- xlaxfe12- xcoxo19 (x= 0-0.5) ferrites for use in low temperature co-fired ceramics technology. *Journal of Alloys and Compounds*, 656:290–294, 2016.
- [28] G Litsardakis, I Manolakis, C Serletis, and KG Efthimiadis. High coercivity gd-substituted ba hexaferrites, prepared by chemical coprecipitation. *Journal of Applied Physics*, 103(7):07E501, 2008.
- [29] Suriya Ounnunkad. Improving magnetic properties of barium hexaferrites by la or pr substitution. Solid State Communications, 138(9):472–475, 2006.
- [30] BK Rai, SR Mishra, VV Nguyen, and JP Liu. Synthesis and characterization of high coercivity rare-earth ion doped sr0. 9re0. 1fe10al2o19 (re: Y, la, ce, pr, nd, sm, and gd). *Journal of alloys and compounds*, 550:198–203, 2013.
- [31] M Awawdeh, I Bsoul, and SH Mahmood. Magnetic properties and mössbauer spectroscopy on ga, al, and cr substituted hexaferrites. *Journal of Alloys and Compounds*, 585:465–473, 2014.
- [32] S Wang, J Ding, Y Shi, and YJ Chen. High coercivity in mechanically alloyed bafe10al2o19. Journal of magnetism and magnetic materials, 219(2):206–212, 2000.
- [33] I Bsoul and SH Mahmood. Structural and magnetic properties of bafe12-x a1x o19 prepared by milling and calcination. 2009.
- [34] SM El-Sayed, TM Meaz, MA Amer, and HA El Shersaby. Magnetic behavior and dielectric properties of aluminum substituted m-type barium hexaferrite. *Physica B: Condensed Matter*, 426:137–143, 2013.
- [35] JN Dahal, L Wang, SR Mishra, VV Nguyen, and JP Liu. Synthesis and magnetic properties of srfe12- x- yalxcoyo19 nanocomposites prepared via autocombustion technique. *Journal* of Alloys and Compounds, 595:213–220, 2014.

- [36] Joonghoe Dho, EK Lee, JY Park, and NH Hur. Effects of the grain boundary on the coercivity of barium ferrite bafe12019. *Journal of Magnetism and Magnetic Materials*, 285(1-2):164–168, 2005.
- [37] K Iwauchi and Y Ikeda. Dielectric properties of hexagonal ferrites. physica status solidi (a), 93(1):309–313, 1986.
- [38] M Manikandan and C Venkateswaran. Effect of high energy milling on the synthesis temperature, magnetic and electrical properties of barium hexagonal ferrite. *Journal of Magnetism and Magnetic Materials*, 358:82–86, 2014.
- [39] C Mitra, S Ram, A Venimadhav, et al. Temperature dependent magnetic and dielectric properties of m-type hexagonal bafe12019 nanoparticles. *Journal of Alloys and Compounds*, 545:225–230, 2012.
- [40] Basharat Want, Bilal Hamid Bhat, and Bhat Zahoor Ahmad. Effect of lanthanum substitution on dielectric relaxation, impedance response, conducting and magnetic properties of strontium hexaferrite. *Journal of Alloys and Compounds*, 627:78–84, 2015.
- [41] Vaishali V Soman, VM Nanoti, and DK Kulkarni. Dielectric and magnetic properties of mg-ti substituted barium hexaferrite. *Ceramics International*, 39(5):5713–5723, 2013.
- [42] Francisca Maria Martins Pereira, CAR Junior, Manoel Roberval Pimentel Santos, Ricardo Sávio Teixeira Moretz Sohn, Francisco Nivaldo Aguiar Freire, Jose Marcos Sasaki, JAC De Paiva, and Antonio Sergio Bezerra Sombra. Structural and dielectric spectroscopy studies of the m-type barium strontium hexaferrite alloys (ba x sr 1- x fe 12 o 19). Journal of Materials Science: Materials in Electronics, 19(7):627–638, 2008.
- [43] P Brahma, S Banerjee, and D Chakravorty. Dielectric properties of sb 2 o 3-doped ba fe 12 o 19 ferrite. *Journal of applied physics*, 98(6):064103, 2005.
- [44] Naeem Ashiq, Muhammad Javed Iqbal, and Iftikhar Hussain Gul. Effect of al-cr doping on the structural, magnetic and dielectric properties of strontium hexaferrite nanomaterials. *Journal of Magnetism and magnetic materials*, 323(3-4):259–263, 2011.
- [45] MA Vasilyeva, Feldman Yu, et al. Dielectric relaxation phenomena in complex systems: tutorial. 2012.
- [46] Friedrich Kremer and Andreas Schönhals. Broadband dielectric spectroscopy. Springer Science & Business Media, 2012.
- [47] PA Marino-Castellanos, JC Somarriba-Jarque, and J Anglada-Rivera. Magnetic and microstructural properties of the bafe (12-(4/3) x) snxo19 ceramic system. *Physica B: Condensed Matter*, 362(1-4):95–102, 2005.

- [48] PA Mariño-Castellanos, J Anglada-Rivera, A Cruz-Fuentes, and R Lora-Serrano. Magnetic and microstructural properties of the ti4+-doped barium hexaferrite. *Journal of Magnetism* and Magnetic Materials, 280(2-3):214–220, 2004.
- [49] AV Trukhanov, VO Turchenko, IA Bobrikov, SV Trukhanov, IS Kazakevich, and AM Balagurov. Crystal structure and magnetic properties of the bafe12- xalxo19 (x= 0.1–1.2) solid solutions. Journal of Magnetism and Magnetic Materials, 393(2):253–259, 2015.
- [50] S. Bierlich, T. Reimann, H. Bartsch, and J. Töpfer. Co/ti-substituted m-type hexagonal ferrites for high-frequency multilayer inductors. *Journal of Magnetism and Magnetic Materials*, 384(7):1 – 5, 2015.
- [51] Chuanjian Wu, Zhong Yu, Yan Yang, Ke Sun, Rongdi Guo, Xiaona Jiang, and Zhongwen Lan. Brillouin function characteristics for la-co substituted barium hexaferrites. *Journal* of Applied Physics, 118(10):103907, 2015.
- [52] N Parween. Study of barium hexaferrite (BaFe12O19) synthesised by sol gel autocombustion technique. PhD thesis, 2014.
- [53] Alex Goldman. Handbook of modern ferromagnetic materials, volume 505. Springer Science & Business Media, 2012.
- [54] Powder Diffraction File and WF McClune. International centre for diffraction data: Newtown square. PA (USA), 2007.
- [55] MR Meshram, Nawal K Agrawal, Bharoti Sinha, and PS Misra. Characterization of m-type barium hexagonal ferrite-based wide band microwave absorber. *Journal of Magnetism and Magnetic Materials*, 271(2-3):207–214, 2004.
- [56] Y Nie, HH He, ZK Feng, XC Zhang, and XM Cheng. Microwave characterization of (co, zn) 2w barium hexagonal ferrite particles. *Journal of Magnetism and Magnetic Materials*, 303(2):e423–e427, 2006.
- [57] RA Candeia, MAF Souza, MIB Bernardi, SC Maestrelli, IMG Santos, AG Souza, and E Longo. Monoferrite bafe2o4 applied as ceramic pigment. *Ceramics International*, 33(4):521–525, 2007.
- [58] C Valero-Luna, SA Palomares-Sanchéz, and Facundo Ruíz. Catalytic activity of the barium hexaferrite with h2o2/visible light irradiation for degradation of methylene blue. *Catalysis Today*, 266:110–119, 2016.
- [59] A Ghasemi, A Hossienpour, A Morisako, A Saatchi, and M Salehi. Electromagnetic properties and microwave absorbing characteristics of doped barium hexaferrite. *Journal of Magnetism and Magnetic Materials*, 302(2):429–435, 2006.

- [60] Muhammad Naeem Ashiq, Raheela Beenish Qureshi, Muhammad Aslam Malana, and Muhammad Fahad Ehsan. Synthesis, structural, magnetic and dielectric properties of zirconium copper doped m-type calcium strontium hexaferrites. *Journal of Alloys and Compounds*, 617:437–443, 2014.
- [61] A Deschamps and F Bertaut. Sur la substitution de barym par une terre rare dans ihexaferrite bao. 6fe2o3, cr hebd. Seans. Acad. Sci, 244:3069–3072, 1957.
- [62] I Bsoul and SH Mahmood. Magnetic and structural properties of bafe12- xgaxo19 nanoparticles. Journal of Alloys and Compounds, 489(1):110–114, 2010.
- [63] D Mishra, S Anand, RK Panda, and RP Das. Studies on characterization, microstructures and magnetic properties of nano-size barium hexa-ferrite prepared through a hydrothermal precipitation-calcination route. *Materials chemistry and physics*, 86(1):132–136, 2004.
- [64] YY Meng, MH He, Q Zeng, DL Jiao, S Shukla, RV Ramanujan, and ZW Liu. Synthesis of barium ferrite ultrafine powders by a sol–gel combustion method using glycine gels. *Journal of alloys and compounds*, 583:220–225, 2014.
- [65] RB Jotania, RB Khomane, CC Chauhan, SK Menon, and BD Kulkarni. Synthesis and magnetic properties of barium–calcium hexaferrite particles prepared by sol–gel and microemulsion techniques. *Journal of Magnetism and Magnetic Materials*, 320(6):1095–1101, 2008.
- [66] Martha Pardavi-Horvath. Microwave applications of soft ferrites. Journal of Magnetism and Magnetic Materials, 215:171–183, 2000.
- [67] VM Petrov and VV Gagulin. Microwave absorbing materials. Inorganic Materials, 37(2):93–98, 2001.
- [68] Quanyuan Feng and Lang Jen. Microwave properties of znti-substituted m-type barium hexaferrites. *IEEE transactions on magnetics*, 38(2):1391–1394, 2002.
- [69] Zhang Haijun, Liu Zhichao, Ma Chengliang, Yao Xi, Zhang Liangying, and Wu Mingzhong. Complex permittivity, permeability, and microwave absorption of zn-and ti-substituted barium ferrite by citrate sol–gel process. *Materials Science and Engineering: B*, 96(3):289– 295, 2002.
- [70] J Ross Mcdonald. Impedance spectroscopy: emphasizing solid materials and systems. Impedance Spectroscopy Emphasizing Solid Materials and Systems, 1987.
- [71] Mu-qing Qiu, Shui-ying Xiong, Wei-min Zhang, and Gen-xuan Wang. A comparison of bioleaching of chalcopyrite using pure culture or a mixed culture. *Minerals Engineering*, 18(9):987–990, 2005.

- [72] Valerica Raicu and Yuri Feldman. Dielectric relaxation in biological systems: Physical principles, methods, and applications. Oxford University Press, USA, 2015.
- [73] F Kremer and A Schönhals. Broadband dielectric spectroscopy, 2003.
- [74] Michel W Barsoum. Series in materials science and engineering: fundamentals of ceramics. Bristol and Philadelphia: Institute of Physics Publishing Ltd, 2003.
- [75] Callister Júnior. Wd ciência e engenharia de materiais: uma introdução. Rio de Janeiro: LTC, 2002.
- [76] C Barry Carter and M Grant Norton. Ceramic materials: science and engineering. Springer Science & Business Media, 2007.
- [77] Wei Gao and Nigel M Sammes. An introduction to electronic and ionic materials. World Scientific Publishing Company, 1999.
- [78] Jacob N Wilson, Jarvist M Frost, Suzanne K Wallace, and Aron Walsh. Dielectric and ferroic properties of metal halide perovskites. APL Materials, 7(1):010901, 2019.
- [79] Elena Pettinelli, Barbara Cosciotti, Federico Di Paolo, Sebastian Emanuel Lauro, Elisabetta Mattei, Roberto Orosei, and Giuliano Vannaroni. Dielectric properties of jovian satellite ice analogs for subsurface radar exploration: A review. *Reviews of Geophysics*, 53(3):593-641, 2015.
- [80] Kenneth S Cole and Robert H Cole. Dispersion and absorption in dielectrics i. alternating current characteristics. *The Journal of chemical physics*, 9.
- [81] Donald W Davidson and Robert H Cole. Dielectric relaxation in glycerol, propylene glycol, and n-propanol. The Journal of Chemical Physics, 19(12):1484–1490, 1951.
- [82] Robert Luis González Romero e Fidel Guerrero Zayas. Dinámica de la relajación en cerámicas ferroeléctricas con estructura broncetungsteno. Universidad de Oriente Facultad de Ciencias Naturales Departamento de Física, 2006.
- [83] Carl Johan Friedrich Böttcher, Oenes Christoffel van Belle, Paul Bordewijk, and Arie Rip. Theory of electric polarization, volume 2. Elsevier Science Ltd, 1978.
- [84] AA Lukichev. Simple method for the dielectric relaxation function investigation. Journal of Non-Crystalline Solids, 420:43–47, 2015.
- [85] Graham Williams and David C Watts. Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. *Transactions of the Faraday society*, 66:80– 85, 1970.
- [86] Yingbang Yao, Tao Tao, Bo Liang, CL Mak, and SG Lu. Pyroelectric properties and ac impedance study of bismuth ferrite (bifeo3) ceramics. *Ceramics International*, 45(1):1308– 1313, 2019.

- [87] RV Chamberlin. Universalities in the primary response of condensed matter. EPL (Europhysics Letters), 33(7):545, 1996.
- [88] KL Ngai. Analysis of nmr and conductivity-relaxation measurements in glassy li 2 s-sis 2 fast-ion conductors. *Physical Review B*, 48(18):13481, 1993.
- [89] SR Elliott and AP Owens. Nuclear-spin relaxation in ionically conducting glasses: application of the diffusion-controlled relaxation model. *Physical Review B*, 44(1):47, 1991.
- [90] Kwok Yeung Tsang and KL Ngai. Relaxation in interacting arrays of oscillators. *Physical review E*, 54(4):R3067, 1996.
- [91] Charles Kittel. Introduction to solid state physics 6th ed.. 1986.
- [92] AK Jonscher. Dielectric relaxation in solids. 1983. Chelsea Dielectric, London, 1983.
- [93] Andrew K Jonscher. The 'universal'dielectric response. nature, 267(5613):673, 1977.
- [94] A Bunde, DK Chaturvedi, and W Dieterich. Conductivity of a lattice-gas with coulombinteractions. Zeitschrift für Physik B Condensed Matter, 47(3):209–216, 1982.
- [95] A Bunde and W Dieterich. Dynamic correlations in a charged lattice gas. Physical Review B, 31(9):6012, 1985.
- [96] R Hilfer. Correlated hopping in a disordered medium. *Physical Review B*, 44(2):628, 1991.
- [97] R Hilfer. Random walks with short memory in a disordered environment. *Physical Review B*, 44(2):638, 1991.
- [98] C. León. Relajación de la conductividad eléctrica en conductores iónicos cristalinos. Doctorate thesis, Universidad Complutense de Madrid, 1997.
- [99] Odelia Funke. Struggling with integrated environmental policy: the epa experience. *Review* of Policy Research, 12(3-4):137–161, 1993.
- [100] Kwan Chi Kao. Dielectric phenomena in solids. Elsevier, 2004.
- [101] H Böttger and VV Bryksin. Hopping conduction in solids (akademie, berlin, 1985). Google Scholar, pages 169–213, 1973.
- [102] Jeppe C Dyre and Thomas B Schrøder. Universality of ac conduction in disordered solids. *Reviews of Modern Physics*, 72(3):873, 2000.
- [103] JM Hyde. Jm hyde, m. tomozawa, and m. yoshiyagawa, phys. chem. glasses 28, 174 (1987).
 Phys. Chem. Glasses, 28:174, 1987.
- [104] AS Nowick and BS Lim. As nowick, bs lim, and av vaysleyb, j. non-cryst. solids 172/174, 1243 (1994). J. Non-Cryst. Solids, 172:1243, 1994.

- [105] PB Macedo. The role of ionic diffusion in polarisation in vitreous ionic conductors. Phys. Chem. Glasses, 13:171–179, 1972.
- [106] Cornelius T Moynihan. Analysis of electrical relaxation in glasses and melts with large concentrations of mobile ions. *Journal of non-crystalline solids*, 172:1395–1407, 1994.
- [107] AK Jonscher and RM Hill. Physics of thin films. edited by G. Hass, MH Francombe and RW Hoggman, page 169, 1975.
- [108] DP Almond, GK Duncan, and AR West. The determination of hopping rates and carrier concentrations in ionic conductors by a new analysis of ac conductivity. *Solid State Ionics*, 8(2):159–164, 1983.
- [109] Jeppe C Dyre. The random free-energy barrier model for ac conduction in disordered solids. Journal of Applied Physics, 64(5):2456–2468, 1988.
- [110] Elliott W Montroll and George H Weiss. Random walks on lattices. ii. Journal of Mathematical Physics, 6(2):167–181, 1965.
- [111] Robert Johansson. Numerical Python: A Practical Techniques Approach for Industry. Apress, 2015.
- [112] Scipy optimize curve fit, dia de acesso: 5 Julho. 2019. https://docs.scipy.org/doc/scipy/ reference/generated/scipy.optimize.curve fit.html.
- [113] Numpy corrcoef, dia de acesso: 5 Julho. 2019. https://docs.scipy.org/doc/numpy-1.15.0/ reference/generated/numpy.corrcoef.html.
- [114] Antonio Ramos. Electrokinetics and electrohydrodynamics in microsystems, volume 530.
 Springer Science & Business Media, 2011.
- [115] A Haq, Waqar Mahmood, and M Anis-ur Rehman. Comparative analysis of efficient pb dopant in r and r-s blocks of bafe 12 o 19 structure synthesized by co-precipitation method. SN Applied Sciences, 1(3):231, 2019.
- [116] SA Mazen and NI Abu-Elsaad. Structural, magnetic and electrical properties of the lithium ferrite obtained by ball milling and heat treatment. *Applied Nanoscience*, 5(1):105–114, 2015.
- [117] Nazia Yasmin, Maria Zahid, Hasan Mehmood Khan, Muhammad Hashim, Misbah Ul Islam, Sadia Yasmin, Muhammad Altaf, Bushra Nazar, Muhammad Safdar, and Misbah Mirza. Structural and dielectric properties of gd-zn substituted ca0. 5ba0. 5fe12o19 m-type hexa-ferrites synthesized via auto-combustion method. *Journal of Alloys and Compounds*, 774:962–968, 2019.
- [118] M Kanwal, I Ahmad, T Meydan, JA Cuenca, PI Williams, MT Farid, and G Murtaza. Structural, magnetic and microwave properties of gadolinium-substituted ca-ba m-type hexagonal ferrites. *Journal of Electronic Materials*, 47(9):5370–5377, 2018.
- [119] Jianjun Liu, Chun-Gang Duan, Wei-Guo Yin, Wai-Ning Mei, Robert W Smith, and John R Hardy. Large dielectric constant and maxwell-wagner relaxation in bi 2/ 3 cu 3 ti 4 o 12. *Physical review B*, 70(14):144106, 2004.
- [120] Rujun Tang, Chen Jiang, Wenhu Qian, Jie Jian, Xin Zhang, Haiyan Wang, and Hao Yang. Dielectric relaxation, resonance and scaling behaviors in sr 3 co 2 fe 24 o 41 hexaferrite. *Scientific reports*, 5:13645, 2015.
- [121] Merve Coşkun, Özgür Polat, Fatih Mehmet Coşkun, Zehra Durmuş, Müjdat Çağlar, and A Türüt. The electrical modulus and other dielectric properties by the impedance spectroscopy of lacro 3 and lacr 0.90 ir 0.10 o 3 perovskites. *RSC Advances*, 8(9):4634–4648, 2018.
- [122] PMV Almeida, CB Gozzo, EHNS Thaines, AJM Sales, RG Freitas, AJ Terezo, ASB Sombra, and MM Costa. Dielectric relaxation study of the ceramic matrix babi4ti4o15: Bi2o3. *Materials Chemistry and Physics*, 205:72–83, 2018.
- [123] Truptimayee Sahu and Banarji Behera. Relaxation processes and conduction mechanism in bismuth ferrite lead titanate composites. *Journal of Physics and Chemistry of Solids*, 113:186–193, 2018.

A Appendix

Em Python os valores de Z' e Z'' foram lindos usando o comando np.loadtxt() do módulo Numpy e o gráfico foi plotando usando o módulo matplotlib. Em seguinda foi calculado ε^* , M^* e σ^* e plotados os seus gráficos em função da frequência.

```
1 , , , ,
2 Programa: Gerar gr fico da imped ncia complexa e calcular os valores
     da permissividade, m dulo e condutividade
3 , , ,
4 import matplotlib.pyplot as plt
5 import numpy as np
6
7 dados = np.loadtxt('Experiment160.txt')
8 f = dados[:,0]
9 Zr = dados [:,2]
10 Zi = dados[:,3]
11
12 print('Menu dos gr ficos:')
13 print('Imped ncia complexa -- 1\nPermissividade complexa -- 2\nM dulo
      complexo -- 3'
        '\nCondutividade complexa -- 4')
14
16 a = int(input('Digite o n mero:'))
17 # IMPED NCIA COMPLEXA
18 if a == 1 :
      d = 8
19
      plt.plot(f,Zr,label="Z ", marker='h',linestyle='',color='r',
20
     linewidth=0,markersize=d)
     plt.plot(f,Zi,label='Z', marker='v',linestyle='',color='k',
21
     linewidth=0,markersize=d)
22
      plt.xlabel('f($Hz$)')
23
      plt.ylabel('$Z^{\'}$ | $Z^{\'\'}$ ($\Omega$)')
24
      plt.title('')
25
      # Gr fico com escola em log
26
      plt.xscale('log')
27
      plt.yscale('log')
28
      plt.savefig('ZC160.png')
29
      plt.legend(loc='upper center', bbox_to_anchor=(0.90,1.0),
30
              shadow=True, ncol=1)
31
      plt.show()
32
33 # PERMISSIVIDADE COMPLEXA
_{34} if a == 2 :
   Fa = []
35
```

```
Zra = []
36
      Zia = []
37
      Er,Ei=[],[]
38
39
      for i in range(len(f)):
40
           if (np.abs(f[i]) >= 1e1): # M NIMO DA FREQU NCIA
41
               if (np.abs(f[i]) <= 1e6): # M XIMO DA FREQU NCIA</pre>
42
                   Fa.append(f[i])
43
                   Zia.append(Zi[i])
44
                   Zra.append(Zr[i])
45
46
      e = 3.0e - 3
47
      d = 12.85e-3
48
      A = 2.0 * np.pi * ((d / (2.0)) ** 2)
49
      Eo = 8.8541878176e-12/100 # PERMISSIVIDADE NO VACUO
50
51
      for j in range(len(Fa)):
52
           funcaoR = (Zia[j]) / ((2.0 * np.pi * Fa[j]*(Eo*A / e)) * ((Zra[j
53
     ]) ** 2.0 + (Zia[j]) ** 2.0))
          Er.append(funcaoR)
54
          funcaoI = (Zra[j]) / ((2.0 * np.pi * Fa[j]*(Eo*A / e)) * ((Zra[j
55
     ]) ** 2.0 + (Zia[j]) ** 2.0))
           Ei.append(funcaoI)
56
      # SALVAR DADOS Er E Ei EM TXT
57
      dados = open('EC160.txt', 'w')
58
      for i in range(len(Fa)):
59
           dados.write('%s \t %s \t %s \t %s \t %s \t %s \r % [f[i], Zr[i], Zi[
60
     i], Er[i], Ei[i]))
      dados.close()
61
      # CRIAR GR FICO DA PERMISSIVIDADE REAL
62
      plt.plot(Fa,Er,label='$\\varepsilon^{\'}$',marker='0',
63
                linestyle='', color='b', markersize=6)
64
      plt.plot(Fa,Ei,label='$\\varepsilon^{\'}$',marker='0',
65
                linestyle='', color='k', markersize=6)
66
      plt.xlabel('f($Hz$)')
67
      plt.ylabel('$\\varepsilon^{\'}$' '|' '$\\varepsilon^{\'\'}(F/cm)$' '
68
      ,)
      plt.legend(loc='upper center', bbox_to_anchor=(0.90,0.99),
69
          shadow=True, ncol=1)
70
      plt.title('')
71
      plt.xscale('log')
72
      plt.yscale('log')
73
      plt.savefig('EC160.png')
74
      plt.show()
75
```

```
if a == 3:
 76
                 dados = np.loadtxt('EC160.txt')
 77
                 f = dados[:,0]
 78
                 Er = dados[:,3]
 79
                 Ei = dados[:,4]
 80
 81
                 Mr = [] # M dulo real
 82
                 Mi = [] # M dulo imagin rio
 83
                  for k in range(len(f)):
 84
                            moduloR = Er[k] / ((Er[k])**2 + (Ei[k])**2)
 85
                            moduloI = Ei[k] / ((Er[k])**2 + (Ei[k])**2)
 86
                            Mr.append(moduloR)
 87
                            Mi.append(moduloI)
 88
                  # SALVAR DADOS Mr E Mi EM TXT
 89
                  dados = open('MC160.txt','w')
 90
                  for i in range(len(f)):
91
                            dados.write('%s \t %s \t
92
                  Zr[i], Zi[i], Er[i], Ei[i], Mr[i], Mi[i]))
                  dados.close()
93
                  #tamanho da figura
 94
                 fig=plt.figure(figsize=(9,5))
 95
                  fig.subplots_adjust(right=0.94)
 96
                  # GR FICO DO M DULO EL TRICO
97
                 plt.plot(f,Mr,label='M^{\langle \rangle}, marker='v',linestyle='',color='r',
 98
               markersize=6)
                 plt.plot(f,Mi,label='$M^{\'\'}$', marker='v',linestyle='',color='k',
99
               markersize=6)
                  plt.legend(loc='upper center', bbox_to_anchor=(0.10,1.0),
100
                                                           shadow=True, ncol=1)
                 plt.xlabel('f($Hz$)')
                  plt.ylabel('$M^{\'}$' '|' '$M^{\'\'}$')
103
                  plt.title('$BaMLa_{0.1}$')
                 plt.xscale('log')
                  plt.savefig('MC160.png')
106
                 plt.show()
108 # CONDUTIVIDADE COMPLEXA
      if a == 4 :
109
                 dados = np.loadtxt('MC160.txt')
                 f = dados[:,0]
111
                 Er = dados[:,3]
112
                 Ei = dados[:,4]
113
                 Mr = dados[:,5]
114
                 Mi = dados[:,6]
                  # CONSTANTE DA PERMISSIVIDADE NO V CUO
```

```
Eo = 8.8541878176e - 12/100
117
                   # CALCULANDO CONDUTIVIDADE REAL
118
                   def condR(f,Ei,Eo):
119
                              cond = (2.0*np.pi*f)*Eo*Ei
120
                              return cond
                   Func_condR = (condR(f,Ei,Eo))
123
                   # CALCULANDO CONDUTIVIDADE IMAGIN RIA
124
                   def condI(f,Er,Eo):
125
                              cond = (2.0*np.pi*f*Er*Eo)
126
                              return cond
127
                   Func_condI = (condI(f,Er,Eo))
128
                   # SALVAR DADOS Mr E Mi EM TXT
                   dados = open('ConC160.txt', 'w')
130
                   for i in range(len(f)):
131
                              dados.write('%s \t %s \t
                 \n' % (f[i], Zr[i], Zi[i], Er[i],
                                                                                         Ei[i], Mr[i], Mi[i], Func_condR[i],
133
                Func_condI[i]))
                   dados.close()
134
                   # PLOTANDO O GR FICOS DA CONDUTIVIDADE
135
                   # REAL E IMAGIN RIA
136
                   plt.plot(f, Func_condR, label='$\\sigma^{\'}$', marker='0',
137
                linestyle='', color='b', markersize=6)
                   plt.plot(f, Func_condI, label='$\\sigma^{\'\'}$', marker='0',
138
                linestyle='', color='r', markersize=6)
                   plt.legend(loc='upper center', bbox_to_anchor=(0.1,1.0),
139
                                                   shadow=True, ncol=1)
140
                   plt.xlabel('f($Hz$)')
141
                   plt.ylabel('$\\sigma^{\'} | \\sigma^{\'\'}(\\Omega cm)^{-1}$')
142
                   plt.title('$BaMLa_{0.1}$')
143
                   plt.xscale('log')
144
                   plt.yscale('log')
145
                   plt.savefig('Cond_160.png')
146
                   plt.show()
147
```

B Appendix

As grandezas Z^* , ε^* , $M^* \in \sigma^*$ for am plotados em parte real e imaginária para as amostras $BaM, BaMLa_{0.1} \in BaMLa_{0.6}$ (Figuras 5.1, 5.2, 5.3 e 5.7) e as Tabelas 4, 5, 6 e 9 geradas no seguinte códigos:

```
1 # autor Lu da Costa Catique
2 # Mestrado 2019/05/20
```

```
3 # Gerar gr ficos da condutividade
4 , , ,
5 Gerar v rios tipos de gr ficos: Z, E , M , C
6 Gerar gr ficos de picos de Z e M
7 , , , ,
8 import matplotlib.pyplot as plt
9 import numpy as np
10 import sys
11
12 data=np.loadtxt('ConC156.txt')
13 f=data[:,0]
14 Zr=data[:,1]
15 Zi=data[:,2]
16 Er=data[:,3]
17 Ei=data[:,4]
18 Mr=data[:,5]
19 Mi=data[:,6]
20 Cr=data[:,7]
21 Ci=data[:,8]
22
23 data=np.loadtxt('ConC160.txt')
24 f1=data[:,0]
25 Zr1=data[:,1]
26 Zi1=data[:,2]
27 Er1=data[:,3]
28 Ei1=data[:,4]
29 Mr1=data[:,5]
30 Mi1=data[:,6]
31 Cr1=data[:,7]
32 Ci1=data[:,8]
33
34 data=np.loadtxt('ConC163.txt')
35 f2=data[:,0]
36 Zr2=data[:,1]
37 Zi2=data[:,2]
38 Er2=data[:,3]
39 Ei2=data[:,4]
40 Mr2=data[:,5]
41 Mi2=data[:,6]
42 Cr2=data[:,7]
43 Ci2=data[:,8]
44
45 LA = ['BaM', 'BaMLa_{0.1}', 'BaMLa_{0.6}']
46 \text{ LF} = [f, f1, f2]
```

```
_{47} LZ = [Zr, Zr1, Zr2] # real
48 LZi = [Zi, Zi1, Zi2] # imagin ria
49 LE = [Er, Er1, Er2]
50 LEi = [Ei,Ei1,Ei2]
51 \text{ LM} = [\text{Mr, Mr1, Mr2}]
52 LMi = [Mi, Mi1, Mi2]
_{53} LC = [Cr, Cr1, Cr2]
54 LCi = [Ci,Ci1,Ci2]
55
56 while True:
      print('Gr fico : grandezas complexas em fun o da frequ ncia
57
      42')
      print('Gr fico : compara o entre os picos de M'' e Z'' -- 44')
58
      print('Tabelas : Z, E, M, C, Phi -- 45')
59
      print('Sair -- 99')
60
      graf = int(input('Escolhe:'))
61
      if graf == 42:
62
          #tamanho da figura
63
           fig=plt.figure(figsize=(8,6))
64
          fig.subplots_adjust(right=0.99,left=0.16,bottom=0.14,top=0.95)
65
          plt.rcParams['xtick.labelsize'] = 20
66
          plt.rcParams['ytick.labelsize'] = 20
67
          print('Menu dos gr ficos\nGr fico imped ncia complexo\nZr --
68
     1\nZi -- 2')
          print('Gr fico permissividade complexo\nEr -- 3\nEi -- 4 \
69
     nGr fico m dulo complexo\nMr -- 5\nMi -- 6'
                 '\nGr fico da condutividade complexa\nCr -- 7\nCi -- 8')
70
      a = int(input('Digite o n mero:'))
71
      if a == 1:
72
          # Gerar tabela de Z
73
           # Parte real da imped ncia
74
          LZm , LFm = [],[]
75
          LZM , LFM = [],[]
76
          11 = len(LZ) - 1
77
           i = 0
78
          # valor inicial de Imped ncia real e frequ ncia
79
           while i <= ll:
80
               mm = LZ[i]
81
               mmm = mm[0]
82
               mmmm = np.float32('%s'%mmm)
83
               LZm.append(np.format_float_scientific(mmmm,unique=False,
84
     precision=2,exp_digits=1))
               ff = LF[i]
85
               fff = ff[0]
86
```

```
ffff = np.float32('%s'%fff)
 87
                                                          LFm.append(np.format_float_scientific(ffff,unique=False,
 88
                      precision=2,exp_digits=1))
                                                          i = i + 1
 89
 90
                                         # final de valor da imped ncia real e frequ ncia
 91
                                         i = 0
 92
                                         while i <= ll:
 93
                                                          mm = LZ[i]
 94
                                                          mmm = mm[-1] \# ltimo
                                                                                                                                                    elemento da lista
 95
                                                          mmmm = np.float32('%s'%mmm)
 96
                                                          LZM.append(np.format_float_scientific(mmmm,unique=False,
 97
                      precision=2,exp_digits=1))
                                                         ff = LF[i]
 98
                                                          fff = ff[-1]
 99
                                                         ffff = float(np.float32('%s'%fff))
100
                                                         LFM.append((np.format_float_scientific(ffff,unique=False,
101
                      precision=2,exp_digits=1)))
                                                          i = i + 1
                                         print('Amostras ,\t\t Zr_m \t\t f_m \t\t Zr_M \t\t f_M\n')
                                         for i in range(len(LZ)):
104
                                                          print('$%s$ \t %s \t %s \t %s \t %s \t % (LA[i],LZm[i],LFm
                       [i],LZM[i],LFM[i]))
106
                                         dados=open('Tabela_ZR3.txt','w')
107
                                         dados.write('Amostras ,\t\t Zr_m , \t\t f_m ,\t\t Zr_M ,\t\t f_M
108
                      n'
                                         for i in range(len(LZ)):
                                                          dados.write('$%s$ \t %s 
                      i],LFm[i],LZM[i],LFM[i]))
                                         dados.close()
111
                                         dados=open('Tabela_ZR3.csv','w')
112
                                         dados.write('Amostras ,\t\t Zr_m , \t\t f_m ,\t\t Zr_M ,\t\t f_M
113
                      n'
                                         for i in range(len(LZ)):
114
                                                          dados.write('$%s$ \t %s 
115
                      i],LFm[i],LZM[i],LFM[i]))
                                         dados.close()
117
                                         dados=open('/home/catique/Documentos/2019_Mestrado/2019
118
                      Mestr_Imped/Mestrado_V1/Qualidicacao3/Mestrado_Resultado'
                                          '/Tabela_ZR3.csv','w')
119
                                         dados.write('Amostras, \t Zrm, \t fm, \t ZrM, \t fM \n')
120
                                         for i in range(len(LZ)):
```

```
dados.write('\s, \t \\num{\s}, \t \\num{\s}, \t \\num{\s}, \t \\num{\s}, \t \\num{\s},
      \t \\num{%s} \n' % (LA[i],LZm[i],LFm[i],LZM[i],LFM[i]))
           dados.close()
124
           # tamanho dos s mbolos das curvas
           s = 8
126
           plt.plot(f,Zr,label='$BaM$',marker='o',linestyle='',color='k',
127
      markersize=s)
           plt.plot(f1,Zr1,label='$BaMLa_{0.1}$',marker='>',linestyle='',
128
      color='b',markersize=s)
           plt.plot(f2,Zr2,label='$BaMLa_{0.6}$' ,marker='*',linestyle='',
129
      color='r',markersize=s)
           #plt.legend(loc='upper center', bbox_to_anchor=(1.11,1.0),
130
                        shadow=True, ncol=1)
            #
           plt.xlabel('f($Hz$)',fontsize=20)
132
           plt.ylabel('$Z^{ }$($\\Omega$)',fontsize=20)
133
           plt.xscale('log')
134
           plt.yscale('log')
135
           plt.savefig('Prog_3Zr.png')
136
           plt.savefig('/home/catique/Documentos/RelaxacaoVersao2/
137
      PythonMestrado/Prog_GrafGeral/Prog_3Zr.png')
           plt.savefig('/home/catique/Documentos/2019_Mestrado/2019
138
      Mestr_Imped/Mestrado_V1/Qualidicacao3/Mestrado_Resultado'
                        '/Prog_3Zr.png')
139
           plt.show()
140
141
       if a == 2 :
142
           # Gerar tabela de Zi
143
           LZim, LFm = [], []
144
           LZiM, LFM = [], []
145
           ll = len(LZ) - 1
146
           i = 0
147
           # menor valor de Imped ncia real e frequ ncia
148
           while i <= ll:</pre>
149
               mm = LZi[i]
               mmm = mm[0]
151
               mmmm = np.float32('%s' % mmm)
               LZim.append(np.format_float_scientific(mmmm,unique=False,
153
      precision=2,exp_digits=1))
               ff = LF[i]
               fff = ff[0]
               ffff = np.float32('%s' % fff)
156
               LFm.append(np.format_float_scientific(ffff,unique=False,
157
      precision=2,exp_digits=1))
```

```
i = i + 1
158
                                        # maior valor da imped ncia real e frequ ncia
160
                                        i = 0
161
                                        while i <= ll:</pre>
162
                                                       mm = LZi[i]
                                                        mmm = mm[-1] # ltimo elemento da lista
164
                                                        mmmm = np.float32('%s' % mmm)
165
                                                       LZiM.append(np.format_float_scientific(mmmm,unique=False,
                      precision=2, exp_digits=1))
                                                       ff = LF[i]
167
                                                       fff = ff[-1]
168
                                                        ffff = float(np.float32('%s' % fff))
169
                                                       LFM.append((np.format_float_scientific(ffff,unique=False,
170
                      precision=2,exp_digits=1)))
                                                        i = i + 1
171
                                        print('Amostras ,\t\t Zi_m \t\t f_m \t\t Zi_M \t\t f_M\n')
172
                                        for i in range(len(LZ)):
173
                                                        print('$%s$ \t %s 
174
                      LFm[i], LZiM[i], LFM[i]))
175
                                        dados = open('Tabela_ZI3.txt', 'w')
                                        dados.write('Amostras ,\t\t Zi_m , \t\t f_m ,\t\t Zi_M ,\t\t f_M
177
                      n'
                                        for i in range(len(LZ)):
178
                                                        dados.write('$%s$ \t %s \t %s \t %s \t %s \t % \t %s \
179
                     LZim[i], LFm[i], LZiM[i], LFM[i]))
                                        dados.close()
180
                                        dados = open('Tabela_ZI3.csv', 'w')
181
                                        dados.write('Amostras ,\t\t Zi_m , \t\t f_m ,\t\t Zi_M ,\t\t f_M
182
                      n'
                                        for i in range(len(LZ)):
183
                                                        dados.write('$%s$ \t %s \t %s \t %s \t %s \t %s \n' % (LA[i],
184
                      LZim[i], LFm[i], LZiM[i], LFM[i]))
                                        dados.close()
185
186
                                        dados = open('/home/catique/Documentos/2019_Mestrado/2019
187
                      Mestr_Imped/Mestrado_V1/Qualidicacao3/Mestrado_Resultado'
                                                                                                                      '/Tabela_ZI3.csv', 'w')
188
                                        dados.write('Amostras, \t Zim, \t fm, \t ZiM, \t fM \n')
189
                                        for i in range(len(LZ)):
190
                                                        dados.write('$%s$,\t \\num{%s}, \t \\num{%s}, \t \\num{%s},
                      \t \\num{%s} \n' % (LA[i], LZim[i], LFm[i], LZiM[i], LFM[i]))
                                        dados.close()
192
```

```
# tamanho dos s mbolos das curvas
194
           s = 8
195
           plt.plot(f,Zi,label='$BaM$' ,marker='o',linestyle='',color='k',
196
      markersize=s)
           plt.plot(f1,Zi1,label='$BaMLa_{0.1}$',marker='>',linestyle='',
      color='b',markersize=s)
           plt.plot(f2,Zi2,label='$BaMLa_{0.6}$' ,marker='*',linestyle='',
198
      color='r',markersize=s)
           plt.legend(loc='upper center', bbox_to_anchor=(0.8,1.0),
199
                       shadow=True, ncol=1,fontsize=18)
200
           plt.xlabel('f($Hz$)',fontsize=20)
201
           plt.ylabel('$Z^{
                                 }$($\\Omega$)',fontsize=20)
202
           plt.xscale('log')
203
           plt.yscale('log')
204
           plt.savefig('Prog_3Zi.png')
205
           plt.savefig('/home/catique/Documentos/2019_Mestrado/2019
206
      Mestr_Imped/Mestrado_V1/Qualidicacao3/Mestrado_Resultado'
                        '/Prog_3Zi.png')
207
208
           plt.show()
209
210
       if a == 3 :
211
           LEm , LFm = [], []
212
           LEM, LFM = [], []
213
           ll = len(LEi) - 1
214
           i = 0
215
           # valor inicial de condutividade imagin ria e frequ ncia
216
           while i <= ll:</pre>
217
               mm = LE[i]
218
               mmm = mm[0]
219
                mmmm = np.float32('%s'%mmm)
220
                LEm.append(np.format_float_scientific(mmmm,unique=False,
221
      precision=2,exp_digits=1))
               ff = LF[i]
               fff = ff[0]
223
                ffff = np.float32('%s'%fff)
224
               LFm.append(np.format_float_scientific(ffff,unique=False,
      precision=2,exp_digits=1))
                i = i + 1
           # final de valor da condutividade imagin ria e frequ ncia
           i = 0
228
           while i <= ll:</pre>
                mm = LE[i]
230
```

193

mmm = mm[-1] # ltimoelemento da lista 231 mmmm = np.float32('%s'%mmm) 232 LEM.append(np.format_float_scientific(mmmm,unique=False, precision=2,exp_digits=1)) ff = LF[i]fff = ff[-1]235 ffff = float(np.float32('%s'%fff)) 236 LFM.append((np.format_float_scientific(ffff,unique=False, precision=2,exp_digits=1))) i = i + 1238 print('Amostras \t\t f_m \t\t Er_m \t\t F_M \t\t Er_M\n') 239 for i in range(len(LEi)): 240 print('\$%s\$ \t %s \t %s \t %s \t %s \t % (LA[i],LFm[i],LEm 241 [i], LFM[i], LEM[i])) 242 dados=open('Tabela_Er3.txt','w') 243 dados.write('Amostras \t\t f_m \t\t Er_m \t\t F_M \t\t Er_M\n') 244 for i in range(len(LEi)): 245dados.write('\$%s\$ \t %s 246 i],LEm[i],LFM[i],LEM[i])) dados.close() 247 dados=open('Tabela_Er3.csv','w') 248 dados.write('Amostras, $t t f_m$, $t t Er_m$, $t t F_M$, t t, Er_M 249 n'for i in range(len(LEi)): dados.write('\$%s\$ \t %s 251 i],LEm[i],LFM[i],LEM[i])) dados.close() 252 253 dados=open('/home/catique/Documentos/2019_Mestrado/2019 254Mestr_Imped/Mestrado_V1/Qualidicacao3/Mestrado_Resultado' '/Tabela_Er3.csv','w') dados.write('Amostras, \t fm, \t Erm, \t FM, \t ErM\n') 256 for i in range(len(LEi)): 257dados.write('\$%s\$,\t \\num{%s}, \t \\num{%s}, \t \\num{%s}, 258\t \\num{%s} \n' % (LA[i],LFm[i],LEm[i],LFM[i],LEM[i])) dados.close() 259# tamanho dos s mbolos das curvas 260 s = 8 261 plt.plot(f,Er,label='\$BaM\$' ,marker='0',linestyle='',color='k', 262 markersize=s) plt.plot(f1,Er1,label='\$BaMLa_{0.1}\$' ,marker='>',linestyle='', 263 color='b',markersize=s)

```
plt.plot(f2,Er2,label='$BaMLa_{0.6}$' ,marker='*',linestyle='',
264
      color='r',markersize=s)
           #plt.legend(loc='upper center', bbox_to_anchor=(1.11,1.0),
265
            #
                        shadow=True, ncol=1,fontsize=18)
266
           plt.xlabel('f($Hz$)',fontsize=20)
267
           plt.ylabel('$\\varepsilon^{\'}$',fontsize=20)
268
           plt.xscale('log')
269
           plt.yscale('log')
           plt.savefig('Prog_3Er.png')
271
           plt.savefig('/home/catique/Documentos/2019_Mestrado/2019
272
      Mestr_Imped/Mestrado_V1/Qualidicacao3/Mestrado_Resultado'
                         '/Prog_3Er.png')
273
274
           plt.show()
275
276
       if a == 4 :
277
           LEim , LFm = [],[]
278
           LEiM, LFM = [], []
279
           ll = len(LEi) - 1
280
           i = 0
281
           # valor inicial de condutividade imagin ria e frequ ncia
282
           while i <= ll:
283
               mm = LEi[i]
284
                mmm = mm[0]
285
                mmmm = np.float32('%s'%mmm)
286
                LEim.append(np.format_float_scientific(mmmm,unique=False,
287
      precision=2,exp_digits=1))
               ff = LF[i]
288
               fff = ff[0]
289
                ffff = np.float32('%s'%fff)
290
                LFm.append(np.format_float_scientific(ffff,unique=False,
291
      precision=2,exp_digits=1))
                i = i + 1
292
           # final de valor da condutividade imagin ria e frequ ncia
293
           i = 0
           while i <= 11:
295
                mm = LEi[i]
296
                mmm = mm[-1] #
                                ltimo
                                         elemento da lista
297
                mmmm = np.float32('%s'%mmm)
298
                LEiM.append(np.format_float_scientific(mmmm,unique=False,
299
      precision=2,exp_digits=1))
               ff = LF[i]
300
                fff = ff[-1]
301
                ffff = float(np.float32('%s'%fff))
302
```

```
LFM.append((np.format_float_scientific(ffff,unique=False,
303
              precision=2,exp_digits=1)))
                                   i = i + 1
304
                         print('Amostras \t\t f_m \t\t Ei_m \t\t F_M \t\t Ei_M\n')
305
                         for i in range(len(LEi)):
306
                                   print('$%s$ \t %s \t %s \t %s \t %s \t %s \n' % (LA[i], LFm[i],
307
              LEim[i],LFM[i],LEiM[i]))
308
                         dados=open('Tabela_Ei3.txt','w')
309
                         dados.write('Amostras t t f_m t t F_M t t Ei_M n')
310
                         for i in range(len(LEi)):
311
                                   dados.write('$%s$ \t %s \t %s \t %s \t %s \t %s \n' % (LA[i],LFm[
312
              i],LEim[i],LFM[i],LEiM[i]))
                         dados.close()
313
                         dados=open('Tabela_Ei3.csv','w')
314
                         dados.write('Amostras, \t\t f_m, \t\t Ei_m, \t\t F_M, \t\t, Ei_M
315
              n'
                         for i in range(len(LEi)):
316
                                   dados.write('$%s$ \t %s 
317
              i],LEim[i],LFM[i],LEiM[i]))
                         dados.close()
318
                         # valor do frequ ncai e permissividade do pico
319
                         LEp = ['\$-\$', '\$-\$']
320
                         LFp = ['$-$', '$-$']
321
                         E_p = max(Ei)
322
                         E_pp = float(np.float32('%s'%E_p))
323
                         E_ppp = (np.format_float_scientific(E_pp,unique=False, precision
324
              =2,exp_digits=1))
                         E_pppp = (' \setminus num\{\%s\}', \% E_ppp)
325
                         LEp.insert(0,E_pppp)
326
                         for indice , valor in enumerate(Ei):
327
                                   if valor == E_p:
328
                                             f_p = f[indice]
329
                                             f_pp = float(np.float32('%s'%f_p))
330
                                             f_ppp = np.format_float_scientific(f_pp,unique=False,
331
              precision=2,exp_digits=1)
                                             f_pppp = ('\\num{%s}' % f_ppp)
332
                                            LFp.insert(0,f_pppp)
                         dados=open('/home/catique/Documentos/2019_Mestrado/2019
334
              Mestr_Imped/Mestrado_V1/Qualidicacao3/Mestrado_Resultado'
                          '/Tabela_Ei3.csv','w')
335
                         dados.write('Amostras, \t fm, \t Eim, \t fp , \t Ep ,\t FM, \t
336
              EiM\n')
                         for i in range(len(LEi)):
337
```

```
dados.write('$%s$,\t \\num{%s}, \t \\num{%s}, \t %s, \t %s
338
                 \t \\num{%s}, \t \\num{%s} \n' % (LA[i],LFm[i],LEim[i],LFp[i],LEp[i
              ],LFM[i],LEiM[i]))
                          dados.close()
339
                          # tamanho dos s mbolos das curvas
340
                          s = 8
341
                          plt.plot(f,Ei,label='$BaM$', marker='o',linestyle='',color='k',
342
              markersize=s)
                          plt.plot(f1,Ei1,label='$BaMLa_{0.1}$',marker='>',linestyle='',
343
              color='b',markersize=s)
                          plt.plot(f2,Ei2,label='$BaMLa_{0.6}$' ,marker='*',linestyle='',
344
               color='r',markersize=s)
                          plt.legend(loc='upper center', bbox_to_anchor=(0.8,1.0),
345
                                                      shadow=True, ncol=1, fontsize=18)
346
                          plt.xlabel('f($Hz$)',fontsize=20)
347
                          plt.ylabel('$\\varepsilon^{\'\'}$',fontsize=20)
348
                          plt.xscale('log')
349
                          plt.yscale('log')
350
                          plt.savefig('Prog_3Ei.png')
351
                          plt.savefig('/home/catique/Documentos/RelaxacaoVersao2/
352
              PythonMestrado/Prog_GrafGeral/Prog_3Ei.png')
                          plt.savefig('/home/catique/Documentos/2019_Mestrado/2019
353
              Mestr_Imped/Mestrado_V1/Qualidicacao3/Mestrado_Resultado'
                                               '/Prog_3Ei.png')
354
                          plt.show()
355
356
                if a == 5 :
357
                          LMm , LFm = [],[]
358
                          LMM, LFM = [], []
359
                          ll = len(LM) - 1
360
                          i = 0
361
                          # valor inicial de condutividade imagin ria e frequ ncia
362
                          while i <= ll:
363
                                     mm = LM[i]
364
                                     mmm = mm[0]
365
                                     mmmm = np.float32('%s'%mmm)
366
                                     LMm.append(np.format_float_scientific(mmmm,unique=False,
367
              precision=2,exp_digits=1))
                                    ff = LF[i]
368
                                     fff = ff[0]
369
                                     ffff = np.float32('%s'%fff)
370
                                     LFm.append(np.format_float_scientific(ffff,unique=False,
371
              precision=2, exp_digits=1))
                                     i = i + 1
372
```

```
valor da condutividade imagin ria e frequ ncia
                                        # final de
373
                                        i = 0
374
                                        while i <= ll:
375
                                                        mm = LM[i]
376
                                                        mmm = mm[-1] \# ltimo
                                                                                                                                                 elemento da lista
377
                                                        mmmm = np.float32('%s'%mmm)
378
                                                        LMM.append(np.format_float_scientific(mmmm,unique=False,
379
                      precision=2,exp_digits=1))
                                                       ff = LF[i]
380
                                                       fff = ff[-1]
381
                                                        ffff = float(np.float32('%s'%fff))
382
                                                        LFM.append((np.format_float_scientific(ffff,unique=False,
383
                      precision=2,exp_digits=1)))
                                                        i = i + 1
384
                                        print('Amostras \t\t f_m \t\t Mr_m \t\t F_M \t\t Mr_M\n')
385
                                        for i in range(len(LM)):
386
                                                        print('$%s$ \t %s \t %s \t %s \t %s \t % (LA[i],LFm[i],LMm
387
                       [i],LFM[i],LMM[i]))
388
                                        dados=open('Tabela_Mr3.txt','w')
389
                                        dados.write('Amostras \t\t f_m \t\t Mr_m \t\t F_M \t\t Mr_M\n')
390
                                        for i in range(len(LM)):
391
                                                        dados.write('$%s$ \t %s 
392
                      i],LMm[i],LFM[i],LMM[i]))
                                        dados.close()
393
                                        dados=open('Tabela_Mr3.csv','w')
394
                                        dados.write('Amostras, \t\t f_m, \t\t Mr_m, \t\t F_M, \t\t, Mr_M
395
                      n')
                                        for i in range(len(LM)):
396
                                                        dados.write('$%s$ \t %s 
397
                      i],LMm[i],LFM[i],LMM[i]))
                                        dados.close()
398
399
                                        dados=open('/home/catique/Documentos/2019_Mestrado/2019
400
                      Mestr_Imped/Mestrado_V1/Qualidicacao3/Mestrado_Resultado'
                                         '/Tabela_Mr3.csv','w')
401
                                        dados.write('Amostras, \t fm, \t Mrm, \t FM, \t MrM\n')
402
                                        for i in range(len(LM)):
403
                                                        dados.write('$%s$,\t \\num{%s}, \t \\num{%s}, \t \\num{%s},
404
                      \t \\num{%s} \n' % (LA[i], LFm[i], LMm[i], LFM[i], LMM[i]))
                                        dados.close()
405
                                        # tamanho dos s mbolos das curvas
406
                                        s = 8
407
```

```
plt.plot(f,Mr,label='$BaM$' ,marker='0',linestyle='',color='k',
408
      markersize=s)
           plt.plot(f1,Mr1,label='$BaMLa_{0.1}$' ,marker='>',linestyle='',
409
      color='b',markersize=s)
           plt.plot(f2,Mr2,label='$BaMLa_{0.6}$' ,marker='*',linestyle='',
410
      color='r',markersize=s)
           #plt.legend(loc='upper center', bbox_to_anchor=(1.11,1.0),
411
            #
                        shadow=True. ncol=1)
412
           plt.xlabel('f($Hz$)',fontsize=20)
413
           plt.ylabel('$M{\'}$',fontsize=20)
414
           plt.xscale('log')
415
           #plt.yscale('log')
416
           plt.savefig('Prog_3Mr.png')
417
           plt.savefig('/home/catique/Documentos/RelaxacaoVersao2/
418
      PythonMestrado/Prog_GrafGeral/Prog_3Mr.png')
           plt.savefig('/home/catique/Documentos/2019_Mestrado/2019
419
      Mestr_Imped/Mestrado_V1/Qualidicacao3/Mestrado_Resultado'
               '/Prog_3Mr.png')
420
           plt.show()
421
422
       if a == 6 :
423
           LMim, LFm = [], []
424
           LMiM, LFM = [], []
425
           ll = len(LMi) - 1
426
           i = 0
427
           # valor inicial de condutividade imagin ria e frequ ncia
428
           while i <= ll:
429
               mm = LMi[i]
430
               mmm = mm[0]
431
               mmmm = np.float32('%s'%mmm)
432
               LMim.append(np.format_float_scientific(mmmm,unique=False,
433
      precision=2,exp_digits=1))
               ff = LF[i]
434
               fff = ff[0]
435
               ffff = np.float32('%s'%fff)
436
               LFm.append(np.format_float_scientific(ffff,unique=False,
437
      precision=2,exp_digits=1))
               i = i + 1
438
           # final de valor da condutividade imagin ria e frequ ncia
439
           i = 0
440
           while i <= ll:</pre>
441
               mm = LMi[i]
442
               mmm = mm[-1] \# ltimo
                                         elemento da lista
443
               mmmm = np.float32('%s'%mmm)
444
```

```
LMiM.append(np.format_float_scientific(mmmm,unique=False,
445
                      precision=2,exp_digits=1))
                                                        ff = LF[i]
446
                                                         fff = ff[-1]
447
                                                         ffff = float(np.float32('%s'%fff))
448
                                                         LFM.append((np.format_float_scientific(ffff,unique=False,
449
                      precision=2,exp_digits=1)))
                                                         i = i + 1
450
                                         print('Amostras \t\t f_m \t\t Mi_m \t\t F_M \t\t Mi_M\n')
451
                                         for i in range(len(LMi)):
452
                                                         print('$%s$ \t %s \t %s \t %s \t %s \t %s \n' % (LA[i],LFm[i],
453
                      LMim[i], LFM[i], LMiM[i]))
454
                                         dados=open('Tabela_Mi3.txt','w')
455
                                         dados.write('Amostras \t\t f_m \t\t Mi_m \t\t F_M \t\t Mi_M\n')
456
                                         for i in range(len(LMi)):
457
                                                         dados.write('$%s$ \t %s 
458
                      i],LMim[i],LFM[i],LMiM[i]))
                                         dados.close()
459
                                         dados=open('Tabela_Mi3.csv','w')
460
                                         dados.write('Amostras, \t\t f_m, \t\t Mi_m, \t\t F_M, \t\t, Mi_M
461
                      n'
                                         for i in range(len(LMi)):
462
                                                         dados.write('$%s$ \t %s 
463
                      i],LMim[i],LFM[i],LMiM[i]))
                                         dados.close()
464
                                         # valor do frequ ncai e permissividade do pico
465
                                         LMp = []
466
                                         LFp = []
467
                                         for i in range(len(LMi)):
468
                                                         Mp = LMi[i]
469
                                                         M_p = max(Mp)
470
                                                         M_pp = float(np.float32('%s'%M_p))
471
                                                         M_ppp = (np.format_float_scientific(M_pp,unique=False,
472
                      precision=2,exp_digits=1))
                                                         M_pppp = (' \setminus num \{ \%s \}' \% M_ppp)
473
                                                         LMp.append(M_pppp)
474
                                                         for indice , valor in enumerate(Mp):
475
                                                                         if valor == M_p:
476
                                                                                         f_p = f[indice]
477
                                                                                         f_pp = float(np.float32('%s'%f_p))
478
                                                                                         f_ppp = np.format_float_scientific(f_pp,unique=False
479
                           precision=2,exp_digits=1)
                                                                                         f_pppp = ('\\num{%s}', % f_ppp)
480
```

481	LFp.append(f_pppp)
482	<pre>dados=open('/home/catique/Documentos/2019_Mestrado/2019</pre>
	Mestr_Imped/Mestrado_V1/Qualidicacao3/Mestrado_Resultado'
483	'/Tabela_Mi3.csv','w')
484	dados.write('Amostras, \t fm, \t Mim, \t fp , \t Mp ,\t FM, \t
	MiM\n')
485	<pre>for i in range(len(LMi)):</pre>
486	<pre>dados.write('\$%s\$,\t \\num{%s}, \t \\num{%s}, \t %s, \t %s, "</pre>
	\t \\num{%s}, \t \\num{%s} \n' % (LA[i],LFm[i],LMim[i],LFp[i],LMp[i
],LFM[i],LMiM[i]))
487	dados.close()
488	<pre>dados=open('Tabela_Mi3.txt','w')</pre>
489	dados.write('Amostras $t fm t Mim t fp t Mp t FM t MiM/n')$
490	<pre>for i in range(len(LMi)):</pre>
491	dados.write('\$%s\$,\t \\num{%s} \t \\num{%s} \t %s \t %s \t %s \t
	\\num{%s} \t \\num{%s} \n' % (LA[i],LFm[i],LMim[i],LFp[i],LMp[i],LFM
	[i],LMiM[i]))
492	dados.close()
493	s = 8
494	<pre>plt.plot(f,Mi,label='\$BaM\$' ,marker='o',linestyle='',color='k',</pre>
	markersize=s)
495	<pre>plt.plot(f1,Mi1,label='\$BaMLa_{0.1}\$' ,marker='>',linestyle='',</pre>
	<pre>color='b',markersize=s)</pre>
496	<pre>plt.plot(f2,Mi2,label='\$BaMLa_{0.6}\$' ,marker='*',linestyle='',</pre>
	<pre>color='r',markersize=s)</pre>
497	<pre>plt.legend(loc='upper center', bbox_to_anchor=(0.8,1.0),</pre>
498	<pre>shadow=True, ncol=1,fontsize=18)</pre>
499	<pre>plt.xlabel('f(\$Hz\$)',fontsize=20)</pre>
500	plt.ylabel(' $M{\langle \langle \rangle}$, fontsize=20)
501	<pre>plt.xscale('log')</pre>
502	<pre>#plt.yscale('log')</pre>
503	<pre>plt.savefig('Prog_3Mi.png')</pre>
504	plt.savefig(
505	<pre>'/home/catique/Documentos/RelaxacaoVersao2/PythonMestrado/</pre>
	<pre>Prog_GrafGeral/Prog_3Mi.png')</pre>
506	<pre>plt.savefig('/home/catique/Documentos/2019_Mestrado/2019</pre>
	Mestr_Imped/Mestrado_V1/Qualidicacao3/Mestrado_Resultado'
507	<pre>'/Prog_3Mi.png')</pre>
508	plt.show()
509	
510	if a == 7 :
511	LCm , $LFm = [], []$
512	LCM , $LFM = [], []$
513	ll = len(LC) - 1

```
i = 0
514
                            # valor inicial de condutividade real e frequ ncia
515
                            while i <= ll:
                                       mm = LC[i]
517
                                       mmm = mm[0]
518
                                       mmmm = np.float32('%s'%mmm)
                                       LCm.append(np.format_float_scientific(mmmm,unique=False,
520
               precision=2,exp_digits=1))
                                      ff = LF[i]
521
                                      fff = ff[0]
                                       ffff = np.float32('%s'%fff)
                                       LFm.append(np.format_float_scientific(ffff,unique=False,
524
               precision=2,exp_digits=1))
                                       i = i + 1
                            # final de valor da condutividade real e frequ ncia
526
                            i = 0
527
                            while i <= ll:</pre>
528
                                       mm = LC[i]
529
                                       mmm = mm[-1] # ltimo
                                                                                                   elemento da lista
530
                                       mmmm = np.float32('%s'%mmm)
                                       LCM.append(np.format_float_scientific(mmmm,unique=False,
532
               precision=2,exp_digits=1))
                                      ff = LF[i]
                                      fff = ff[-1]
534
                                       ffff = float(np.float32('%s'%fff))
                                      LFM.append((np.format_float_scientific(ffff,unique=False,
536
               precision=2,exp_digits=1)))
                                       i = i + 1
537
                            print('Amostras \t\t f_m \t\t Cr_m \t\t F_M \t\t Cr_M\n')
538
                            for i in range(len(LC)):
                                       print('$%s$ \t %s \t %s \t %s \t %s \t %s \n' % (LA[i],LFm[i],LCm
540
               [i],LFM[i],LCM[i]))
                            dados=open('Tabela_CR3.txt','w')
542
                            dados.write('Amostras \t\t f_m \t\t Cr_m \t\t F_M \t\t Cr_M\n')
                            for i in range(len(LC)):
544
                                       dados.write('$%s$ \t %s 
               i],LCm[i],LFM[i],LCM[i]))
                            dados.close()
546
                            dados=open('Tabela_CR3.csv', 'w')
                            dados.write('Amostras, t t f_m, t t Cr_m, t t F_M, t t, Cr_M
548
               n'
                            for i in range(len(LC)):
549
```

```
dados.write('$%s$ \t %s 
              i],LCm[i],LFM[i],LCM[i]))
                          dados.close()
                          dados=open('/home/catique/Documentos/2019_Mestrado/2019
              Mestr_Imped/Mestrado_V1/Qualidicacao3/Mestrado_Resultado'
                          '/Tabela_CR3.csv','w')
                          dados.write('Amostras, \t fm, \t Crm, \t FM, \t CrM\n')
                          for i in range(len(LC)):
                                    dados.write('$%s$,\t \\num{%s}, \t \\num{%s}, \t \\num{%s},
              \t \\num{%s} \n' % (LA[i],LFm[i],LCm[i],LFM[i],LCM[i]))
                          dados.close()
558
                          # tamanho dos s mbolos das curvas
559
                          s = 8
560
                          plt.plot(f,Cr,label='$BaM$',marker='o',linestyle='',color='k',
561
              markersize=s)
                          plt.plot(f1,Cr1,label='$BaMLa_{0.1}$',marker='>',linestyle='',
562
              color='b',markersize=s)
                          plt.plot(f2,Cr2,label='$BaMLa_{0.6}$',marker='*',linestyle='',
563
              color='r',markersize=s)
                          #plt.legend(loc='upper center', bbox_to_anchor=(1.11,1.0),
564
                                                        shadow=True, ncol=1)
                          #
565
                          plt.xlabel('f($Hz$)',fontsize=20)
566
                          plt.ylabel('$\\sigma{ }(\\Omega cm)^{-1}$',fontsize=20)
567
                          plt.xscale('log')
568
                          plt.yscale('log')
569
                          plt.savefig('Prog_3Cr.png')
                          plt.savefig(
571
                                    '/home/catique/Documentos/RelaxacaoVersao2/PythonMestrado/
572
              Prog_GrafGeral/Prog_3Cr.png')
                          plt.savefig('/home/catique/Documentos/2019_Mestrado/2019
573
              Mestr_Imped/Mestrado_V1/Qualidicacao3/Mestrado_Resultado'
                '/Prog_3Cr.png')
                          plt.show()
                if a == 8 :
577
                          LCm , LFm = [],[]
578
                          LCM, LFM = [], []
579
                          ll = len(LCi) - 1
580
                          i = 0
581
                          # valor inicial de condutividade imagin ria e frequ ncia
582
                          while i <= ll:</pre>
583
                                    mm = LCi[i]
584
                                    mmm = mm[0]
585
```

```
mmmm = np.float32('%s'%mmm)
586
                                                         LCm.append(np.format_float_scientific(mmmm,unique=False,
587
                       precision=2,exp_digits=1))
                                                         ff = LF[i]
588
                                                         fff = ff[0]
589
                                                         ffff = np.float32('%s'%fff)
590
                                                         LFm.append(np.format_float_scientific(ffff,unique=False,
591
                       precision=2,exp_digits=1))
                                                         i = i + 1
                                          # final de valor da condutividade imagin ria e frequ ncia
593
                                          i = 0
594
                                          while i <= ll:</pre>
                                                         mm = LCi[i]
596
                                                         mmm = mm[-1] #
                                                                                                                   ltimo
                                                                                                                                                   elemento da lista
                                                         mmmm = np.float32('%s'%mmm)
598
                                                         LCM.append(np.format_float_scientific(mmmm,unique=False,
599
                       precision=2,exp_digits=1))
                                                         ff = LF[i]
600
                                                         fff = ff[-1]
601
                                                         ffff = float(np.float32('%s'%fff))
                                                         LFM.append((np.format_float_scientific(ffff,unique=False,
603
                       precision=2,exp_digits=1)))
                                                         i = i + 1
604
                                          print('Amostras \t\t f_m \t\t Ci_m \t\t F_M \t\t Ci_M\n')
605
                                          for i in range(len(LCi)):
606
                                                         print('$%s$ \t %s \t %s \t %s \t %s \t %s \n' % (LA[i],LFm[i],LCm
607
                       [i], LFM[i], LCM[i]))
608
                                          dados=open('Tabela_Ci3.txt','w')
                                          dados.write('Amostras \t\t f_m \t\t Ci_m \t\t F_M \t\t Ci_M\n')
610
                                          for i in range(len(LCi)):
611
                                                         dados.write('$%s$ \t %s 
612
                       i],LCm[i],LFM[i],LCM[i]))
                                          dados.close()
613
                                          dados=open('Tabela_Ci3.csv','w')
614
                                          dados.write('Amostras, t t f_m, t t Gi_m, t t F_M, t t, Gi_M
615
                       n'
                                          for i in range(len(LCi)):
616
                                                         dados.write('$%s$ \t %s 
617
                       i],LCm[i],LFM[i],LCM[i]))
                                          dados.close()
618
619
                                          dados=open('/home/catique/Documentos/2019_Mestrado/2019
620
                       Mestr_Imped/Mestrado_V1/Qualidicacao3/Mestrado_Resultado'
```

```
'/Tabela_Ci3.csv','w')
           dados.write('Amostras, \t fm, \t Cim, \t FM, \t CiM\n')
622
           for i in range(len(LCi)):
623
               dados.write('$%s$,\t \\num{%s}, \t \\num{%s}, \t \\num{%s},
624
      \t \\num{%s} \n' % (LA[i],LFm[i],LCm[i],LFM[i],LCM[i]))
           dados.close()
           # tamanho dos s mbolos das curvas
626
           s = 8
627
           plt.plot(f,Ci,label='$BaM$' ,marker='o',linestyle='',color='k',
628
      markersize=s)
           plt.plot(f1,Ci1,label='$BaMLa_{0.1}$' ,marker='>',linestyle='',
629
      color='b',markersize=s)
           plt.plot(f2,Ci2,label='$BaMLa_{0.6}$',marker='*',linestyle='',
630
      color='r',markersize=s)
           plt.legend(loc='upper center', bbox_to_anchor=(0.2,1.0),
631
                      shadow=True, ncol=1, fontsize=18)
           plt.xlabel('f($Hz$)',fontsize=20)
633
           plt.ylabel('$\\sigma{
                                     (\ cm)^{-1};,fontsize=20)
634
           plt.xscale('log')
635
           plt.yscale('log')
636
           plt.savefig('Prog_3Ci.png')
637
           plt.savefig(
638
               '/home/catique/Documentos/RelaxacaoVersao2/PythonMestrado/
639
      Prog_GrafGeral/Prog_3Ci.png')
           plt.savefig('/home/catique/Documentos/2019_Mestrado/2019
640
      Mestr_Imped/Mestrado_V1/Qualidicacao3'
                        '/Mestrado_Resultado/Prog_3Ci.png')
641
           plt.show()
642
           continue
       elif (a == 99):
644
           print('Finaliza o')
           sys.exit(0)
646
```

C Appendix

Os parâmetros dos ajustes das curvas M'', $\sigma' \in \sigma''$ foram obtidos usando a função optimize.curve_fit() do módulo Scipy para amostra $BaMLa_{0.1}$:

```
1
2 from sympy import exp,log,diff,I,pi,oo,re, im
3 import matplotlib.pyplot as plt
4 from numpy import pi,log,arctan
5 import numpy as np
6 from scipy import optimize
```

```
7 import csv
9 data=np.loadtxt('/home/catique/Documentos/RelaxacaoVersao2/
     PythonMestrado/Dados2019/Dados160/ConC160.txt')
10 F=data[:,0]
11 Zr=data[:,1]
12 Zi=data[:,2]
13 Er=data[:,3]
14 Ei=data[:,4]
15 Mr=data[:,5]
16 Mi=data[:,6]
17 Cr=data[:,7]
18 Ci=data[:,8]
19
20 print('Menu Ajuste de Curva:\nAjuste Mi -- 1\nAjuste condutividade real
     -- 2\nAjuste condutividade imagin ria -- 3:')
21 # listas dos valores alterados
22 a = int(input('Digite o n mero:'))
23
24 if a == 1 :
      # GRAVAR OS LISTAS ALTERADAS
25
26
      Fa = []
27
      Mra = []
28
      Mia = []
29
30
      # INTERVALO DA FREQU NCIA
31
      # GERANDO AS LISTAS ALTERADAS
32
33
      for i in range(len(F)):
34
          if (np.abs(F[i]) >= 1e0): # M NIMO DA FREQU NCIA
35
               if (np.abs(F[i]) <= 4e5): # M XIMO DA FREQU NCIA</pre>
36
                   Fa.append(F[i])
37
                   Mia.append(Mi[i])
38
                   Mra.append(Mr[i])
39
40
      # SALVANDO EM TXT
41
      arquivo = open('DadosAlterado.txt', 'w')
42
      for i in range(len(Fa)):
43
          arquivo.write('%s t %s t %s t (r', Ga[i], Mra[i], Mia[i])
44
      arquivo.close()
45
      # ABRINDO EM TXT
46
47
      data = np.loadtxt('DadosAlterado.txt')
48
```

```
FA = data[:, 0]
49
      MiA = data[:, 2]
50
51
               O HAVRIALIAK-NEGAMI
      # FUN
52
      def C(FA, Moo, t, a, b):
53
          f = 1.0 / (1.0 + (1.0j * 2.0 * pi * FA * t) ** a) ** b
54
          FM = Moo * (1.0 - f) # M DULO EL TRICO COMPLEXO
          FMM = FM.imag #
56
          return FMM
57
58
      chute = [0.1, 0.00001, 1.0, 1.0]
59
60
      parametro, parametro_covar = optimize.curve_fit(C, FA, MiA, chute)
61
      print('Ajuste de curvas:')
62
      print('Moo=%s\nt=%s\na=%s\nb=%s' % (parametro[0], parametro[1],
63
     parametro[2], parametro[3]))
64
      AjusteFcc = C(FA, parametro[0], parametro[1], parametro[2],
65
     parametro[3])
      R = (np.corrcoef(AjusteFcc, MiA)[0, 1]) ** 2
66
      print('Desvio quadr tico:')
67
      print('R2: %f' % R)
68
      a1 = []
69
      b1 = []
70
      if parametro[3] > 1.0:
71
          parametro[2] = 1.0
72
          parametro[3] = 1.0
73
      a1.append(parametro[2])
74
      b1.append(parametro[3])
75
      # NOVO AJUSTE DA FUN
                              O COM OS NOVOS COEFICIENTE
76
      # AJUSTE PARA O TEMPO E M DULO NO INFINITO
77
78
      def CN(FA, Moon, tn):
79
          an = a1
80
          bn = b1
81
          f = 1.0 / (1.0 + (1.0j * 2.0 * pi * FA * tn) ** an) ** bn
82
          FM = Moon * (1.0 - f) # M DULO EL TRICO COMPLEXO
83
          FMM = FM.imag
84
          return FMM
85
86
87
      # CHUTE PARA M DULO EL TRICO E TEMPO DE RELAXA
                                                             0
88
      chute = [0.1, 0.00001]
89
90
```

```
parametro, parametro_covar = optimize.curve_fit(CN, FA, MiA, chute)
91
      print('\nNovos ajuste de curvas:\n')
92
      for i in range(len(a1)):
93
           print('Moo=%s\nt=%s\na=%s\nb=%s' % (parametro[0], parametro[1],
94
      a1[i], b1[i]))
      Ajuste_CN = CN(FA, parametro[0], parametro[1])
95
96
      # NOVO DESVIO QUADR TICO
97
      Rn = (np.corrcoef(Ajuste_CN, MiA)[0, 1]) ** 2
98
      print('Novo desvio quadr tico:')
99
      print('R2: %f' % Rn)
100
101
      # SALVANDO OS VALORES DO AJUSTES
      arquivo = open('Aj_M160.txt','w')
      for i in range(len(FA)):
104
           arquivo.write('%s \t %s \t %s \t %s\n' % (FA[i],Mra[i],MiA[i],
      AjusteFcc[i]))
      arquivo.close()
106
107
      arquivo = open('/home/catique/Documentos/RelaxacaoVersao2/
108
      Cal_Permissividade1/ModuloGeral/'
                      'Aj_M160.txt','w')
      for i in range(len(FA)):
           arquivo.write('%s \t %s \t %s \t %s\n' % (FA[i],Mra[i],MiA[i],
111
      AjusteFcc[i]))
      arquivo.close()
112
113
      # Tabelas com valores
114
      temp = np.float32(parametro[1])
      tempo = np.format_float_scientific(temp, precision=3)
116
      dados = open('Aj_Tabela_160.txt', 'w')
117
      dados.write('Amostras \t\t M_{00} \ \t\t \
118
       $\\beta$ '
                   '\t\t $D^{2}$\n')
119
      for i in range(len(a1)):
120
           dados.write('$BaMLa_{0.1}$ \t\t %.3f \t\t %. \t\t %.3f \t\t %.3f
       \t\t %.3f \n' %
                       (parametro[0], tempo, a1[i], b1[i], Rn))
      dados.close()
      plt.plot(FA, MiA, label='$BaMLa_{0.1}$', marker='0', linestyle='',
125
      color='r', markersize=6)
      plt.plot(FA, Ajuste_CN, linestyle='-', color='b', markersize=3)
126
      plt.xlabel('f($Hz$)')
127
```

```
plt.ylabel('M^{\langle \vee \rangle}(F^{\{-1\}})')
128
       plt.title('$BaMLa_{0.1}$')
       plt.xscale('log')
130
       plt.savefig('AjusteCCMi160.jpg')
       plt.show()
132
133 # Ajuste da condutividade real
  if a == 2:
134
       data = np.loadtxt('/home/catique/Documentos/RelaxacaoVersao2/
135
      PythonMestrado/Dados2019/Dados160/ConC160.txt')
       f = data[:, 0]
136
       Zr = data[:, 1]
137
       Zi = data[:, 2]
138
       Er = data[:, 3]
139
       Ei = data[:, 4]
140
       Mr = data[:, 5]
141
       Mi = data[:, 6]
142
       Cr = data[:, 7]
143
       Ci = data[:, 8]
144
145
       fa,Cra = [],[]
146
       for i in range(len(f)):
147
           if (np.abs(f[i]) >= 1e1): # M NIMO DA FREQU NCIA
148
                if (np.abs(f[i]) <= 1e4): # M XIMO DA FREQU NCIA</pre>
149
                    fa.append(f[i])
150
                    Cra.append(Cr[i])
       # SALVANDO EM TXT COND_REAL E IMAGIN RIA
153
       arquivo = open('Conduti_AB.txt','w')
154
       for i in range(len(fa)):
           arquivo.write('s \setminus s \setminus n' (fa[i],Cra[i]))
156
       arquivo.close()
157
158
       # ABRIR ARQUIVO.TXT
159
       data=np.loadtxt('Conduti_AB.txt')
160
       fb=data[:,0]
161
       Crb=data[:,1]
       # FUN
                 O CONDUTIVIDADE NO MODELO DE DYRE
164
        def cond1(fb,a,b):
           u = a*(1.0j*2*pi*fb*b/log(1.0+1.0j*2*pi*fb*b))
           u1 = u.real
167
           return u1
168
169
       # VALORES INICIAS CONDUTIVIDADE DC E TEMPO DE RELA
                                                                    0
170
```

```
chute = [1e-5, 1e-5]
171
       parametro, parametro_covar = optimize.curve_fit(cond1,fb,Crb,chute)
172
       print('Valores dos ajustes no Modelo de Dyre:')
173
       print('condutividade dc=%s\ntempo=%s' % (parametro[0], parametro[1]))
174
       # CALCULANDO CONDUTIVIDADE REAL
176
       cond_ajust=cond1(fb,parametro[0],parametro[1])
177
178
       # DESVIO QUADR TICO
179
      R = (np.corrcoef(cond_ajust,Crb)[0,1])**2
180
       print('Desvio quadr tico:')
181
       print('R2: %f' % R)
182
183
       # GRAVAR OS COEFICIENTES DE AJUSTE
184
       from datetime import datetime
185
       # data e hor rio
186
       data_e_hora_atuais = datetime.now()
187
       data_e_hora_em_texto = data_e_hora_atuais.strftime('%d/%m/%Y %H:%M')
188
189
       dado = open('CoefiDyre.txt','w')
190
       dado.write('Autor: Lu Da Costa Catique\n'
191
                   '\nData e hor rio:%s\n'
192
                   '\n Ajuste de curva no Modelo de Dyre\n'
193
                   '\nCondutividade dc:%s\n'
194
                   '\nTempo de relaxa o:%s\n'
195
                   '\nDesvio quadr tico:%s\n' % (data_e_hora_em_texto,
196
      parametro[0], parametro[1],
                                                   R))
197
       dado.close()
198
199
       arquivo=open('DadosAjusteCond160.txt','w')
200
       for j in range(len(fa)):
201
           arquivo.write('%s\t %s\t %s\t %s\t \n ' % (f[j],Cr[j],Ci[j],
202
      cond_ajust[j]))
       arquivo.close()
203
       # Tabelas
204
       cond=np.float32(parametro[0])
205
       cond_dc = np.format_float_scientific(cond,exp_digits=1, precision=3)
206
       temp=np.float32(parametro[1])
207
       tempo = np.format_float_scientific(temp,exp_digits=1, precision=3)
208
       arquivo = open('tabela_cond_160R.txt','w')
209
       arquivo.write('Amostra \t cond_dc \t tempo \t D \n')
210
       arquivo.write('BaMLa_{0.1} \t %s \t %s \t %.3f \n' % (cond_dc,
211
      tempo,R))
```

```
arquivo.close()
212
213
       # GERANDO GR FICO COND VERSU FREQU NCIA
       plt.plot(fb, Crb, linestyle='', marker='o', color='b', markersize=6)
215
       plt.plot(fb, cond_ajust, label='$BaMLa_{0.1}$', marker='', linestyle
      ='-', color='r', markersize=3)
       plt.legend(['dados','Ajuste Dyre'],
217
                   loc='upper center', bbox_to_anchor=(0.15,1.0),
218
                   shadow=True, ncol=1)
219
220
       plt.xlabel('$f$')
221
       plt.ylabel('$\\sigma^{\'}(\\Omega cm)^{-1}$')
222
       plt.title('Condutividade real $BaMLa_{0.1}$')
       plt.xscale('log')
224
       plt.yscale('log')
225
       plt.ylim(10e-20,10e0)
226
       plt.savefig('AjusCond_160.png')
227
       plt.show()
228
229 # Ajuste da condutividade imagin rio
230 if a == 3:
       data = np.loadtxt('/home/catique/Documentos/RelaxacaoVersao2/
231
      PythonMestrado/Dados2019/Dados160/ConC160.txt')
       f = data[:, 0]
232
       Zr = data[:, 1]
233
       Zi = data[:, 2]
234
235
       Er = data[:, 3]
       Ei = data[:, 4]
236
       Mr = data[:, 5]
237
       Mi = data[:, 6]
238
       Cr = data[:, 7]
239
       Ci = data[:, 8]
240
241
       fa, Cia = [], []
242
       for i in range(len(f)):
243
           if (np.abs(f[i]) >= 1e0): # M NIMO DA FREQU NCIA
244
                if (np.abs(f[i]) <= 1e6): # M XIMO DA FREQU NCIA</pre>
245
                    fa.append(f[i])
246
                    Cia.append(Ci[i])
247
248
       # SALVANDO EM TXT COND_REAL E IMAGIN RIA
       arquivo = open('Conduti_A.txt', 'w')
250
       for i in range(len(fa)):
251
           arquivo.write('s \setminus s \setminus n' % (fa[i], Cia[i]))
252
       arquivo.close()
253
```

```
254
       # ABRIR ARQUIVO.TXT
255
       data = np.loadtxt('Conduti_A.txt')
256
       fb = data[:, 0]
257
       Cib = data[:, 1]
258
259
       # FUN
                O CONDUTIVIDADE NO MODELO DE DYRE
260
       def cond1(fb, a, b):
261
           u = a*(1.0j*2*pi*fb*b/log(1.0+1.0j*2*pi*fb*b))
262
           u1 = u.imag
263
           return u1
264
265
       # VALORES INICIAS CONDUTIVIDADE DC E TEMPO DE RELA
                                                                  0
266
       chute = [1e-5, 1e-6]
267
       parametro, parametro_covar = optimize.curve_fit(cond1, fb, Cib,
268
      chute)
       print('Valores dos ajustes no Modelo de Dyre:')
269
       print('condutividade dc=%s\ntempo=%s' % (parametro[0], parametro[1])
270
      )
271
       # CALCULANDO CONDUTIVIDADE REAL
272
       cond_ajust = cond1(fb, parametro[0], parametro[1])
273
274
       # DESVIO QUADR TICO
275
       # print(AjustePhi)
276
       R = (np.corrcoef(cond_ajust, Cib)[0, 1]) ** 2
277
       print('Desvio quadr tico:')
278
       print('R2: %f' % R)
279
280
       # GRAVAR OS COEFICIENTES DE AJUSTE
281
282
       from datetime import datetime
283
284
       # data e hor rio
285
       data_e_hora_atuais = datetime.now()
286
       data_e_hora_em_texto = data_e_hora_atuais.strftime('%d/%m/%Y %H:%M')
287
288
       dado = open('CoefiDyre.txt', 'w')
289
       dado.write('Autor: Lu Da Costa Catique\n'
290
                   '\nData e hor rio:%s\n'
291
                   '\n Ajuste de curva no Modelo de Dyre\n'
292
                   '\nCondutividade dc:%s\n'
293
                   '\nTempo de relaxa o:%s\n'
294
```

```
'\nDesvio quadr tico:%s\n' % (data_e_hora_em_texto,
295
      parametro[0], parametro[1],
                                                   R))
296
       dado.close()
297
298
       arguivo = open('DadosAjusteCondI160.txt', 'w')
299
       for j in range(len(fa)):
300
           arquivo.write('%s\t %s\t %s \n ' % (f[j],Ci[j], cond_ajust[j]))
301
       arquivo.close()
302
       # Tabelas
303
       cond = np.float32(parametro[0])
304
       cond_dc = np.format_float_scientific(cond, exp_digits=1, precision
305
      =3)
       temp = np.float32(parametro[1])
306
       tempo = np.format_float_scientific(temp, exp_digits=1, precision=3)
307
       arquivo = open('tabela_cond_160I.txt', 'w')
308
       arquivo.write('Amostra \t cond_dc \t tempo \t D \n')
309
       arquivo.write('BaMLa_{0.1} \t %s \t %s \t %.3f \n' % (cond_dc,
310
      tempo, R))
       arquivo.close()
311
312
       # GERANDO GR FICO COND VERSU FREQU NCIA
313
       plt.plot(fb, Cib, linestyle='', marker='o', color='b', markersize=6)
314
       plt.plot(fb, cond_ajust, label='$BaMLa_{0.1}$', marker='', linestyle
315
      ='-', color='r', markersize=3)
316
       plt.legend(['dados', 'Ajuste Dyre'],
317
                  loc='upper center', bbox_to_anchor=(0.15, 1.0),
318
                   shadow=True, ncol=1)
319
320
       plt.xlabel('$f$')
321
       plt.ylabel('$\\sigma^{\'\'}(\\Omega cm)^{-1}$')
322
       plt.title('Condutividade real $BaMLa_{0.1}$')
323
       plt.xscale('log')
324
       plt.yscale('log')
325
       plt.savefig('AjusCond_160I.png')
       plt.show()
327
```

D Appendix

Ajuste da $\Phi(t)$ para a relaxação no domínio do tempo usando a Eq 5.5.1 e 5.5.3 para amostra $BaMLa_{0.1}$ que é mostrada na (Figuras 5.6):

1 # programa para calcular a fun o de distribui o

```
2 #de tempo de relaxa
                          0
3 from numpy import pi,log,sin,cosh,exp,arctan,cos
4 import numpy as np
5 from sympy import symbols, integrate, sqrt, exp, oo
6 import matplotlib.pyplot as plt
7 from scipy import integrate
8 import sympy
9 sympy.init_printing()
10
11 # Par metros de ajuste:
12 a = 1.000 \# Coeficiente
13 b = 1.000 \# Coeficiente
14 tcc =7.293e-06 #Tempo de relaxa o
15 tr=tcc
16 # Intervalo de tempo: Intervalo de integra o no tempo
17 data=np.loadtxt('DadosAlterado160.txt')
18 f=data[:,0]
19 t1=1/f[0]
20 t2=1/f[-1]
21 t = []
22 for x in range(len(f)):
      temp = 1/f[x]
23
      t.append(temp)
24
25
26 # Fun o de distribui o : Cole-Cole
27 Phi = [] # LISTA : OS VALORES DA INTEGRAL DE PHI ARMAZENADOS
_{28} t_max = len(t)
29 i = 0
30 while i < t_max:
      if i == i:
31
          time = t[i]
32
          def f(tau):
33
               y = tau/tr
34
               theta = np.arctan(abs(np.sin(pi*a)/y**a+np.cos(a*pi)))
35
               Num = (y**(a*b))*(np.sin(b*theta))
36
              Dem = y**(2.0*a) + (2.0*y**a)*np.cos(a*pi)+1
37
              p = (1/pi)*(Num/Dem**(b/2.0))
38
               return p*np.exp(-time/tau)
39
          phi,err = integrate.quad(f,t2,t1)
40
          #print(phi)
41
      i = i + 1
42
      Phi.append(phi)
43
44
45 # GRAVANDO OS VALORES DO TEMPO E DE PHI
```

```
46 dados = open('Phi160.txt','w')
47 for j in range(len(t)):
      dados.write('%s \t %s \t \n' % (t[j],Phi[j]))
48
49 dados.close()
50 dados = open('/home/catique/Documentos/RelaxacaoVersao2/Aj_Modulo/
     PhiGeral/Phi160.txt', 'w')
51 for j in range(len(t)):
      dados.write('%s \t %s \t \n' % (t[j],Phi[j]))
52
53 dados.close()
54
55 # tamanho da figura
56 fig=plt.figure(figsize=(8,6))
57 fig.subplots_adjust(right=0.850)
58 plt.plot(t, Phi, label='', marker='o', linestyle='', color='k',
     markersize=3)
59 plt.xlabel('t($s$)')
60 plt.ylabel('$\\Phi(t)$')
61 plt.title('$BMLa_{0.1}$')
62 plt.title('BMLa01Phi.png')
63 plt.show()
```

A valores de $\Phi(t)$ foram ajustada usando a função KWW e seus parâmetros salvos em uma tabela:

```
1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy import optimize
5 data=np.loadtxt('Phi160.txt')
6 t=data[:,0]
7 Phi=data[:,1]
8 #Phi1=data[:,3]
9
10 def f(t,a,tau,b):
     return a*np.exp(-(t/tau)**b)
11
12 # CHUTE DOS VALORES DOS AJUSTES
13 chute = [0.2, 1e-4, 0.4]
14 parametro, parametro_covar = optimize.curve_fit(f,t,Phi,chute)
15 print('Ajuste de curvas:')
16 print('a=%s\ntau=%s\nb=%s' % (parametro[0], parametro[1], parametro[2]))
17 AjustePhi = f(t,parametro[0],parametro[1],parametro[2])
18 R = (np.corrcoef(AjustePhi,Phi)[0,1])**2
20 # SALVAR OS DADOS DOS AJUSTE DA FUNC O KWW
21 arquivo=open('DadosAjuste160.txt','w')
```

```
22 arquivo.write('Amostras \t a \t temp \t b \t D \n')
23 arquivo.write('BMLa_{0.1} \t %s \t %s \t %s \t %s \n ' %(parametro[0],
     parametro[1], parametro[2], R))
24 arquivo.close()
25
26 # SALVAR OS DADOS DOS AJUSTE DA FUNC O KWW
27 arquivo=open('/home/catique/Documentos/2019_Mestrado/2019Mestr_Imped/
     Qualidicacao3/'
               'Mestrado_Resultado/DadosAjuste160.csv','w')
28
29 arquivo.write('Amostras ,\t a ,\t temp ,\t b, \t D \n')
30 arquivo.write('BaM ,\t \%s ,\t \%s ,\t \%s ,\t \%s \t \%s \t \%s \t \%
     parametro[1], parametro[2], R))
31 arquivo.close()
32
33 arquivo = open('/home/catique/Documentos/RelaxacaoVersao2/Aj_Modulo/
     PhiGeral/AjusteDados160.txt', 'w')
34 for i in range(len(Phi)):
      arquivo.write('%s \t %s \t %s \n' % (t[i],Phi[i],AjustePhi[i]))
35
36 arquivo.close()
37
38 plt.plot(t,Phi,label='Dados',marker='o', linestyle='', color='k',
     markersize=3)
39 plt.plot(t,AjustePhi,label='Ajuste KWW',marker='',linestyle='-', color='
     r', markersize=3)
40 plt.legend(loc='upper center', bbox_to_anchor=(0.8,1.0),
            shadow=True, ncol=1)
41
42 plt.xlabel('t($s$)')
43 plt.ylabel('$\\Phi(t)$')
44 plt.title('$FitBM_{0.1}$')
45 plt.xscale('log')
46 plt.savefig('AjustePhi_160.png')
47 plt.show()
```

E Appendix

Os gráficos de ajuste dos M'', $\sigma' \in \sigma''$ (Figuras 5.5, 5.8) e Tabela 7 e 10 dos parâmetros tal foram obtidas usando o código:

```
1 # autor Lu da Costa Catique
2 # Mestrado 2019/05/20
3 # Gerar gr ficos da condutividade
4 ,,,
5 Gerar v rios tipos de gr ficos com ajuste de curvas e tabelas com os
        par metros de ajuste.
```

```
6 , , ,
7 import matplotlib.pyplot as plt
8 import numpy as np
9
11 #tamanho da figura
12 fig=plt.figure(figsize=(8,6))
13 fig.subplots_adjust(right=0.96,left=0.20,bottom=0.14,top=0.98)
14 plt.rcParams['xtick.labelsize'] = 20
15 plt.rcParams['ytick.labelsize'] = 20
16 print('Menu dos ajustes dos gr ficos\nGr fico imped ncia imagin ria
     -- 1 \ \text{nGr} fico da condutividade real -- 2'
17
        '\nGr fico da condutividade imagin ria -- 3')
18
19 a = int(input('Digite o n mero:'))
20 if a == 1:
      # Ajuste do m dulo diel trico
21
      data = np.loadtxt('/home/catique/Documentos/RelaxacaoVersao2/
22
     PythonMestrado/Dados2019/dados156/Aj_M156.txt')
      f = data[:, 0]
23
      Mr = data[:, 1]
24
      Mi = data[:, 2]
25
      AjMi = data[:, 3]
26
27
      data = np.loadtxt('/home/catique/Documentos/RelaxacaoVersao2/
28
     PythonMestrado/Dados2019/Dados160/Aj_M160.txt')
      f1 = data[:, 0]
29
      Mr1 = data[:, 1]
30
      Mi1 = data[:, 2]
31
      AjMi1 = data[:, 3]
32
33
      data = np.loadtxt('/home/catique/Documentos/RelaxacaoVersao2/
34
     PythonMestrado/Dados2019/dados163/Aj_M163.txt')
      f2 = data[:, 0]
35
      Mr2 = data[:, 1]
36
      Mi2 = data[:, 2]
37
      AjMi2 = data[:, 3]
38
39
      # Valores dos coeficientes dos ajustes
40
      data = np.loadtxt('/home/catique/Documentos/RelaxacaoVersao2/
41
     PythonMestrado/Dados2019/dados156/Aj_Tabela_156.txt', dtype=str)
      A = data[:,0]
42
      t = data[:,2]
43
      a = data[:,3]
44
```

```
b = data[:,4]
45
      D = data[:,5]
46
47
      data = np.loadtxt('/home/catique/Documentos/RelaxacaoVersao2/
48
      PythonMestrado/Dados2019/Dados160/Aj_Tabela_160.txt', dtype=str)
       A1 = data[:,0]
49
      t1 = data[:,2]
50
      a1 = data[:,3]
51
       b1 = data[:,4]
52
      D1 = data[:,5]
53
54
      data = np.loadtxt('/home/catique/Documentos/RelaxacaoVersao2/
55
      PythonMestrado/Dados2019/dados163/Aj_Tabela_163.txt', dtype=str)
      A2 = data[:,0]
56
      t2 = data[:,2]
57
      a2 = data[:,3]
58
       b2 = data[:,4]
59
      D2 = data[:,5]
60
61
      LA = [A, A1, A2]
62
      Lt = [t, t1, t2]
63
      La = [a, a1, a2]
64
      Lb = [b, b1, b2]
65
      LD = [D, D1, D2]
66
67
       # novas listas
68
69
      l_A,l_t,l_a,l_b,l_D = [],[],[],[],[]
70
       for i in range(len(LA)):
71
           list_A = LA[i]
72
           vl_A = list_A[1]
73
           l_A.append(vl_A)
74
           list_t = Lt[i]
75
           vl_t = list_t[1]
76
           l_t.append(vl_t)
77
           list_a = La[i]
78
           l_a.append(list_a[1])
79
           list_b = Lb[i]
80
           l_b.append(list_b[1])
81
           list_D = LD[i]
82
           l_D.append(list_D[1])
83
       print('Amostra \t, temp \t, a \t, b \t, D\n')
84
       for i in range(len(LA)):
85
```
```
print('%s \t, %s \t, %s \t, %s \t,%s \n' % (l_A[i], l_t[i],
 86
             l_a[i], l_b[i],l_D[i]))
               dados = open('Aj_Tabela_Mi3.txt', 'w')
 87
               dados.write('Amostra \t, temp \t, a \t, b \t, D\n')
 88
              for i in range(len(LA)):
 89
                        dados.write('%s \t, \\num{%s} \t, \\num{%s} \t, \\num{%s} \t,
 90
             ' \n' % (l_A[i], l_t[i], l_a[i], l_b[i],l_D))
91
               dados.close()
92
03
               dados = open('Aj_Tabela_Mi3.csv', 'w')
94
               dados.write('Amostra \t, temp \t, a \t, b \t, D\n')
95
               for i in range(len(LA)):
96
                        dados.write('%s \t, \\num{%s} \t, \\num{%s} \t, \\num{%s} \t,
97
             ' \n' % (l_A[i], l_t[i], l_a[i], l_b[i],l_D))
98
               dados.close()
99
100
               dados = open('/home/catique/Documentos/2019_Mestrado/2019Mestr_Imped
             /Mestrado_V1/Qualidicacao3'
                                             '/Aj_Tabela_Mi3.csv', 'w')
102
               dados.write('Amostra \t, temp \t, a \t, b \t, D\n')
               for i in range(len(LA)):
                        dados.write('%s t, \mum{%s} 
             ' \n' % (l_A[i], l_t[i], l_a[i], l_b[i],l_D[i]))
106
               dados.close()
107
               # tamanho dos s mbolos das curvas
108
               s = 6
109
              plt.plot(f,Mi,label='$BaM$' ,marker='0',linestyle='',color='k',
110
             markersize=s)
              plt.plot(f1,Mi1,label='$BaMLa_{0.1}$',marker='>',linestyle='',color
111
            ='b', markersize=s)
              plt.plot(f2,Mi2,label='$BaMLa_{0.6}$' ,marker='*',linestyle='',color
            ='g',markersize=s)
              n = 1.0
113
              # ajustes de curvas
114
              plt.plot(f, AjMi, marker='', linestyle='-', color='r', linewidth=n)
              plt.plot(f1, AjMi1, marker='', linestyle='-', color='r', linewidth=n
             )
              plt.plot(f2, AjMi2, marker='', linestyle='-', color='r', linewidth=n
117
               plt.legend(loc='upper center', bbox_to_anchor=(0.83,1.0),
118
                                        shadow=True, ncol=1,fontsize=18)
119
```

```
plt.xlabel('f($Hz$)',fontsize=20)
120
       plt.ylabel('$M^{\'}$',fontsize=20)
       plt.xscale('log')
       #plt.yscale('log')
123
      plt.savefig('Aj_Prog_3M.png')
       plt.savefig('/home/catique/Documentos/RelaxacaoVersao2/
125
      PythonMestrado/Prog_GrafGeral/Aj_Prog_3M.png')
      plt.savefig('/home/catique/Documentos/2019_Mestrado/2019Mestr_Imped/
126
      Mestrado_V1/Qualidicacao3/Aj_Prog_3M.png')
      plt.savefig('/home/catique/Documentos/Disserta o2019Final02/
127
      Apresenta oVers o4/Aj_Prog_3M.png')
      plt.savefig('/home/catique/Documentos/Disserta o2019Final02/
128
      Disserta
                 oVers o4/Aj_Prog_3M.png')
      plt.show()
130
  if a == 2 :
131
       # Ajuste da condutividade real
132
       data = np.loadtxt('/home/catique/Documentos/RelaxacaoVersao2/
133
      PythonMestrado/Dados2019/dados156/DadosAjusteCond156.txt')
       f = data[:, 0]
134
      Cr = data[:, 1]
135
       Ci = data[:, 2]
136
       AjCr = data[:, 3]
137
138
       data = np.loadtxt(
139
           '/home/catique/Documentos/RelaxacaoVersao2/PythonMestrado/
140
      Dados2019/Dados160/DadosAjusteCond160.txt')
       f1 = data[:, 0]
141
      Cr1 = data[:, 1]
142
      Ci1 = data[:, 2]
143
       AjCr1 = data[:, 3]
144
       #163
145
       data = np.loadtxt('/home/catique/Documentos/RelaxacaoVersao2/
146
      PythonMestrado/Dados2019/dados163/ConC163.txt')
      f2c = data[:, 0]
147
       Cr2c = data[:, 7]
148
       Ci = data[:, 8]
149
       data = np.loadtxt(
           '/home/catique/Documentos/RelaxacaoVersao2/PythonMestrado/
151
      Dados2019/dados163/DadosAjusteCond163.txt')
       f2 = data[:, 0]
      Cr2 = data[:, 1]
153
      Ci2 = data[:, 2]
       AjCr2 = data[:, 3]
```

```
# tabela com os ajuste da condutividade real
157
       ajuste = np.loadtxt('/home/catique/Documentos/RelaxacaoVersao2/
158
      PythonMestrado/Dados2019/dados156/tabela_cond_156R.txt', dtype=str)
       La = ajuste[:, 0]
       Lc = ajuste[:, 1]
       Lt = ajuste[:, 2]
161
       Ld = ajuste[:, 3]
162
       ajuste = np.loadtxt('/home/catique/Documentos/RelaxacaoVersao2/
164
      PythonMestrado/Dados2019/Dados160/tabela_cond_160R.txt', dtype=str)
       La1 = ajuste[:, 0]
165
       Lc1 = ajuste[:, 1]
166
       Lt1 = ajuste[:, 2]
167
       Ld1 = ajuste[:, 3]
168
169
       ajuste = np.loadtxt('/home/catique/Documentos/RelaxacaoVersao2/
170
      PythonMestrado/Dados2019/dados163/tabela_cond_163R.txt', dtype=str)
       La2 = ajuste[:, 0]
171
       Lc2 = ajuste[:, 1]
172
       Lt2 = ajuste[:, 2]
173
       Ld2 = ajuste[:, 3]
174
175
       LA = [La, La1, La2]
176
       LC = [Lc, Lc1, Lc2]
177
       LT = [Lt, Lt1, Lt2]
178
       LD = [Ld, Ld1, Ld2]
179
180
       l_a, l_cd, l_t, l_d = [], [], [], []
181
182
       for i in range(len(LA)):
183
           nl = LA[i]
184
           vl = nl[1]
185
           l_a.append(vl)
                             # salvar amostra
186
           nlc = LC[i]
187
           vlc = nlc[1]
188
           l_cd.append(vlc)
189
           nlt = LT[i]
190
           vlt = nlt[1]
           l_t.append(vlt)
192
           nld = LD[i]
193
           vld = nld[1]
194
           l_d.append(vld)
195
       print('Amostra \t, temp \t, c \t, D\n')
196
```

156

```
for i in range(len(LA)):
197
                              print('%s \t, %s \t, %s \t,%s \n'% (l_a[i], l_t[i], l_cd[i],
198
                1 d[i]))
199
                  dados = open('Aj_Tabela_CR3.txt', 'w')
200
                  dados.write('Amostra \t temp \t c \t D\n')
201
                  for i in range(len(LA)):
202
                              dados.write('%s t \in \{x_s\} \ 
203
                l_a[i], l_t[i], l_cd[i], l_d[i]))
                  dados.close()
204
205
                  dados = open('Aj_Tabela_CR3.csv', 'w')
206
                  dados.write('Amostra t, temp t, c t, Dn')
207
                  for i in range(len(LA)):
208
                              dados.write('%s \t, \\num{%s} \t, \\num{%s} \t, \\num{%s} \n'
209
                % (l_a[i], l_t[i], l_cd[i], l_d[i]))
                  dados.close()
210
211
                  dados = open('/home/catique/Documentos/2019_Mestrado/2019Mestr_Imped
212
                /Mestrado_V1/Qualidicacao3/Mestrado_Resultado/Aj_Tabela_CR3.csv', 'w'
                )
                  dados.write('Amostra ,\t temp ,\t c ,\t D\n')
213
                  for i in range(len(LA)):
214
                              dados.write('%s ,\t \\num{%s} , \t \\num{%s} \n'
215
                % (l_a[i], l_t[i], l_cd[i], l_d[i]))
                  dados.close()
216
217
                  import Dados_Experimentais_Cond as dc
218
                  # tamanho dos s mbolos das curvas
219
                  s = 6
220
                  plt.plot(dc.fd, dc.Crd, label='$BaM$', marker='o', linestyle='',
221
                color='k', markersize=s)
                  plt.plot(dc.fd1, dc.Crd1, label='$BaMLa_{0.1}$', marker='>',
222
                linestyle='', color='b', markersize=s)
                  plt.plot(f2c, Cr2c, label='$BaMLa_{0.6}$', marker='*', linestyle='',
                   color='g', markersize=s)
                  n = 1.0
                  # ajustes de curvas
225
                  plt.plot(f, AjCr, marker='', linestyle='-', color='r', linewidth=n)
226
                  plt.plot(f1, AjCr1, marker='', linestyle='-', color='r', linewidth=n
                )
                  plt.plot(f2, AjCr2, marker='', linestyle='-', color='r', linewidth=n
228
                )
```

```
plt.legend(loc='upper center', bbox_to_anchor=(0.8,0.4),shadow=True,
       ncol=1,fontsize=18)
       plt.xlabel('f($Hz$)',fontsize=20)
230
       plt.ylabel('$\\sigma^{\'}$($\\Omega cm)^{-1}$',fontsize=20)
231
       plt.xscale('log')
      plt.yscale('log')
233
       plt.savefig('Aj_Prog_3Cr.png')
234
      plt.savefig('/home/catique/Documentos/2019_Mestrado/2019Mestr_Imped/
      Mestrado_V1/Qualidicacao3/Mestrado_Resultado/Aj_Prog_3Cr.png')
      plt.show()
236
237
  if a == 3 : # Ajuste da condutividade imagin ria
238
       data = np.loadtxt('/home/catique/Documentos/RelaxacaoVersao2/
      PythonMestrado/Dados2019/dados156/DadosAjusteCondI156.txt')
      f = data[:, 0]
240
      Ci = data[:, 1]
241
       AjCi = data[:, 2]
242
243
       data = np.loadtxt('/home/catique/Documentos/RelaxacaoVersao2/
244
      PythonMestrado/Dados2019/Dados160/DadosAjusteCondI160.txt')
       f1 = data[:, 0]
245
      Ci1 = data[:, 1]
246
       AjCi1 = data[:, 2]
247
248
       data = np.loadtxt('/home/catique/Documentos/RelaxacaoVersao2/
      PythonMestrado/Dados2019/dados163/DadosAjusteCondI163.txt')
      f2 = data[:, 0]
250
      Ci2 = data[:, 1]
251
       AjCi2 = data[:, 2]
252
        # tabelas com os par metros da condutividade imagin ria
253
       ajuste = np.loadtxt('/home/catique/Documentos/RelaxacaoVersao2/
254
      PythonMestrado/Dados2019/dados156/tabela_cond_156I.txt', dtype=str)
      La = ajuste[:, 0]
      Lc = ajuste[:, 1]
256
       Lt = ajuste[:, 2]
      Ld = ajuste[:, 3]
258
       ajuste = np.loadtxt('/home/catique/Documentos/RelaxacaoVersao2/
260
      PythonMestrado/Dados2019/Dados160/tabela_cond_160I.txt', dtype=str)
      La1 = ajuste[:, 0]
261
       Lc1 = ajuste[:, 1]
262
      Lt1 = ajuste[:, 2]
263
       Ld1 = ajuste[:, 3]
264
265
```

```
ajuste = np.loadtxt('/home/catique/Documentos/RelaxacaoVersao2/
266
      PythonMestrado/Dados2019/dados163/tabela_cond_163I.txt', dtype=str)
      La2 = ajuste[:, 0]
267
      Lc2 = ajuste[:, 1]
268
      Lt2 = ajuste[:, 2]
269
      Ld2 = ajuste[:, 3]
270
271
      LA = [La, La1, La2]
272
      LC = [Lc, Lc1, Lc2]
273
      LT = [Lt, Lt1, Lt2]
274
      LD = [Ld, Ld1, Ld2]
275
276
      l_a, l_cd, l_t, l_d = [], [], [], []
277
278
      for i in range(len(LA)):
279
           nl = LA[i]
280
           vl = nl[1]
281
           l_a.append(vl)
                           # salvar amostra
282
          nlc = LC[i]
283
          vlc = nlc[1]
284
          l_cd.append(vlc)
285
          nlt = LT[i]
286
          vlt = nlt[1]
287
          l_t.append(vlt)
288
          nld = LD[i]
289
          vld = nld[1]
290
           l_d.append(vld)
291
      print('Amostra \t, temp \t, c \t, D\n')
292
      for i in range(len(LA)):
293
          print('%s \t, %s \t, %s \t, %s \n' % (l_a[i], l_t[i], l_cd[i],
294
       l_d[i]))
      dados = open('Aj_Tabela_CI3.txt', 'w')
295
      dados.write('Amostra \t temp \t c \t D\n')
296
      for i in range(len(LA)):
297
           dados.write('%s \t \\num{%s} \t \\num{%s} \t \\num{%s} \n' %
298
      (l_a[i], l_t[i], l_cd[i], l_d[i]))
      dados.close()
299
300
      dados = open('Aj_Tabela_CI3.csv', 'w')
301
      dados.write('Amostra t, temp t, c t, Dn')
302
      for i in range(len(LA)):
303
           304
      % (l_a[i], l_t[i], l_cd[i], l_d[i]))
      dados.close()
305
```

```
306
      dados = open('/home/catique/Documentos/2019_Mestrado/2019Mestr_Imped
307
      /Qualidicacao3/Mestrado_Resultado/Aj_Tabela_CI3.csv', 'w')
      dados.write('Amostra ,\t temp ,\t c ,\t D\n')
308
      for i in range(len(LA)):
309
           dados.write('%s ,\t \\num{%s} , \t \\num{%.5s} \n
310
      ' % (l_a[i], l_t[i], l_cd[i], l_d[i]))
      dados.close()
311
      dados = open('/home/catique/Documentos/2019_Mestrado/2019Mestr_Imped
312
      /Mestrado_V1/Qualidicacao3/Mestrado_Resultado/Aj_Tabela_CI3.csv', 'w'
     )
      dados.write('Amostra ,\t temp ,\t c ,\t D\n')
313
      for i in range(len(LA)):
314
           dados.write('%s ,\t \\num{%s} , \t \\num{%.5s} \n
315
      ' % (l_a[i], l_t[i], l_cd[i], l_d[i]))
      dados.close()
316
317
      # tamanho dos s mbolos das curvas
318
      s = 6
319
      plt.plot(f, Ci, label='$BaM$', marker='o', linestyle='', color='k',
320
      markersize=s)
      plt.plot(f1, Ci1, label='$BaMLa_{0.1}$', marker='>', linestyle='',
321
      color='b', markersize=s)
      plt.plot(f2, Ci2, label='$BaMLa_{0.6}$', marker='*', linestyle='',
322
      color='g', markersize=s)
      n = 1.0
323
      # ajustes de curvas
324
      plt.plot(f, AjCi, marker='', linestyle='-', color='r', linewidth=n)
325
      plt.plot(f1, AjCi1, marker='', linestyle='-', color='r', linewidth=n
326
     )
      plt.plot(f2, AjCi2, marker='', linestyle='-', color='r', linewidth=n
327
     ),
      plt.legend(loc='upper center', bbox_to_anchor=(0.2, 1.0), shadow=True
328
      , ncol=1,fontsize=18)
      plt.xlabel('f($Hz$)',fontsize=20)
329
      plt.ylabel('$\\sigma{\'\'}(\\Omega cm)^{-1}$',fontsize=20)
330
      plt.xscale('log')
331
      plt.yscale('log')
      plt.savefig('Aj_Prog_3Ci.png')
333
      plt.savefig('/home/catique/Documentos/2019_Mestrado/2019Mestr_Imped/
334
      Mestrado_V1/Qualidicacao3/Mestrado_Resultado/Aj_Prog_3Ci.png')
      plt.show()
335
```