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Resumo

Nesta tese nós mostramos como construir sólitons de Ricci gradientes que são realiza-

dos como submersões Riemannianas com espaço total tendo fibras totalmente umb́ılicas

e distribuição horizontal integrável. Esta construção é baseada em uma generalização

de produtos deformados para fibrados, bem como, em uma construção de sólitons de

Ricci gradiente produtos deformados a partir do qual nós sabemos que os espaços base

de tais produtos deformados são necessariamente variedades tipo Ricci-Hessiano. Ao

estudar esta última classe de variedades Riemannianas nós também obtemos resultados

de trivialidade e inexistência de sólitons de Ricci gradiente produtos deformados. Estes

resultados decorrem de um teorema tipo Liouville e da validade de um prinćıpio do

máximo fraco no infinito para um operador de difusão espećıfico sobre uma variedade

tipo Ricci-Hessiano.

Palavras-chave: Sóliton de Ricci; Submersão Riemanniana; Métrica tipo Einstein;

Produto deformado.



Abstract

In this thesis we show how to construct gradient Ricci solitons that are realized as

Riemannian submersions with total space having totally umbilical fibers and integrable

horizontal distribution. This construction is based on a generalization of warped prod-

ucts to bundles as well as a construction of gradient Ricci soliton warped products,

from which we know that the base spaces of such warped products are necessarily Ricci-

Hessian type manifolds. By studying this latter class of Riemannian manifolds we also

obtain triviality and nonexistence results for gradient Ricci soliton warped products.

These results stem from a Liouville type theorem and the validity of a weak maximum

principle at infinity for a specific diffusion operator on a Ricci-Hessian type manifold.

Keywords: Ricci soliton; Riemannian submersion; Einstein type metric; Warped prod-

uct.
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Introduction

This thesis is divided in two chapters. Chapter 1 is about a construction of gradient

Ricci solitons on the total spaceM of a Riemannian submersion. A complete Riemannian

metric g on a smooth manifold M is a gradient Ricci soliton if there exists a smooth

function Ψ on M such that the Ricci tensor of g is given by

Ric +∇2Ψ = λg, (1)

for some constant λ ∈ R. Note that the parameters in Eq. (1) are g and Ψ , while the

constant λ is obtained by taking trace of this equation. A gradient Ricci soliton is called

expanding, steady or shrinking if λ < 0, λ = 0 or λ > 0, respectively. When Ψ is a

constant function (M, g) is an Einstein manifold and it is called a trivial Ricci soliton.

Our purpose is to establish the necessary and sufficient conditions for a complete

Riemannian metric g on M be a gradient Ricci soliton with potential function Ψ = ϕ̃

so that π : (M, g) → (B, gB) be a Riemannian submersion on a Riemannian manifold

(B, gB) for some smooth function ϕ on B. This choice of potentials functions as hori-

zontal lifts is motivated by the warped product case, as will be seen in Chapter 2. For

simplicity, we write (π, g, ϕ̃) to denote a gradient Ricci soliton on the total space of π

with potential function ϕ̃ = π ◦ ϕ.

We show how to construct a gradient Ricci soliton (π, g, ϕ̃) with totally umbilical

fibers and integrable horizontal distribution. This construction stems from two known

works. The first one is based on the construction of gradient Ricci soliton warped

products by Feitosa et al. [4]. Authors proved that if f > 0 and ϕ are smooth functions

on a Riemannian manifold (B, gB) such that

Ric +∇2ϕ = λgB +
m

f
∇2f and 2λϕ− |∇ϕ|2 + ∆ϕ+

m

f
∇ϕ(f) = c, (2)
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for some constants λ,m, c ∈ R, with m 6= 0, then they must satisfy

λf 2 + f∆f + (m− 1)|∇f |2 − f∇ϕ(f) = µ, (3)

for some constant µ ∈ R, see [4, Proposition 3]. Equations (2) and (3) will be studied

in Chapter 2 in more detail. The second work is based on the generalization of warped

products to bundles due to Bishop and O’Neill [14]. They considered two Riemannian

manifolds (B, gB) and (F, gF ) and they showed how to construct a fiber bundle structure

F → M
π→ B whose structural group is π1(B) and total space M = B̃ ×π1(B) F having

integrable horizontal distribution and totally geodesic fibers. Moreover, by use of a

smooth function f > 0 on B they further warped the standard quotient metric g on M .

Making use of the previous construction and with the aforementioned notations we

show how to construct a gradient Ricci soliton Riemannian submersion as follows.

Theorem 1 Let (B, gB) be a complete Riemannian manifold with two smooth functions

f and ϕ satisfying Eq. (2), for any λ ∈ R. Take the constant µ given by Eq. (3) and

a complete Riemannian manifold (F, gF ) of dimension m and Ricci tensor RicF = µgF .

Then, we can construct a gradient Ricci soliton (π, ḡ, ϕ̃) with total space B̃ ×π1(B) F

having totally umbilical fibers and integrable horizontal distribution, where ḡ is a warped

metric which is obtained from the standard quotient metric g.

A trivial example agreeing with Theorem 1 is well known in the literature and has

been explored in a context of rigidity, see Fernández-López and Garćıa-Ŕıo [10] as well

as Petersen and Wylie [12]. A gradient Ricci soliton satisfying (1) is said to be rigid if

it is isometric to a quotient Rn ×Γ F
m, where F is an Einstein manifold with Einstein

constant λ, the potential function is ψ(x) = λ
2
|x|2 on Rn and Γ is a group acting freely

on F and by orthogonal transformations on Rn. A nontrivial example in the setting of

Theorem 1 has been explicitly constructed for the case of Kähler metrics by Huai-Dong

Cao [7].

In Chapter 2 we study gradient Ricci solitons that are realized as warped products

M = Bn×f Fm. We assume without loss of generality that the potential function of such

a soliton is the lift ϕ̃ of a smooth function ϕ on B to M , see Lemma 2.1. Throughout

the chapter ψ stands for the smooth function ψ = ϕ−m ln f on B.

We describe now the main theorems of the second chapter. We begin with the

following triviality result for the steady case.

2



Theorem 2 Let B×f F be a gradient steady Ricci soliton with fiber having nonnegative

scalar curvature. Then, it must be a standard Riemannian product provided the warping

function satisfies f ∈ Lp(B, e−ψdvol) for some 1 < p < +∞.

We also prove a nonexistence theorem for the expanding case.

Theorem 3 It is not possible to construct a gradient expanding Ricci soliton warped

product Bn ×f Fm with fiber having nonnegative scalar curvature and warping function

satisfying either of the following conditions: f ∈ L∞(B) or f ∈ Lp(Bn, e−ψdvol) for

some 1 < p < +∞.

The next result establishes conditions on the potential function for a gradient ex-

panding Ricci soliton to be trivial.

Theorem 4 Let Bn×f Fm be a gradient expanding Ricci soltion with potential function

ϕ̃. Then, Bn ×f Fm is a trivial Ricci soliton provided that ϕ satisfies either of the

following conditions: |∇ϕ| ∈ L∞(B) or |∇ϕ| ∈ Lp(B, e−ψdvol) for some 1 < p < +∞.

We also prove a nonexistence result in the shrinking case.

Theorem 5 It is not possible to construct a gradient shrinking Ricci soliton Bn×f Fm

with fiber having nonpositive scalar curvature and warping function satisfying either

of the following conditions: |∇ ln f | ∈ L∞(B) or |∇ ln f | ∈ Lp(B, e−ψdvol) for some

1 < p < +∞.

We point out that a class of gradient expanding Ricci soliton warped products with

fiber having nonpositive scalar curvature has been constructed by Feitosa et al. [4, Corol-

lary 2]. It is also known that Robert Bryant constructed a gradient steady Ricci soliton

warped product with fiber having positive scalar curvature, see Chow et al. [3]. Thus,

some assumption on the warping function is necessary to obtain triviality or nonexis-

tence results in the class of gradient steady or expanding Ricci soliton warped products.

Theorems 2 and 3 are analogous results to the Einstein warped product case proven by

Rimoldi, see [11, Theorems 1, 9 and 11].

We begin in Section 2.1 with some comments and results on Ricci-Hessian type

manifolds, which show us that this class of Riemannian manifolds is interesting in its

own right, see Section 2.1. By studying such manifolds we use methods from weighted
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manifold theory to prove the validity of a weak maximum principle at infinity for a

specific diffusion operator, see Proposition 2.4. In particular, such a principle is valid in

the setting of gradient Ricci solitons as well as of m-quasi-Einstein manifolds as proven

before by Pigola et al. [15] and by Rimoldi [11], respectively. To prove the main theorems

we restrict ourselves to Ricci-Hessian type manifolds as being the base spaces of gradient

Ricci soliton warped products, see Section 2.2. We finalize this thesis in Section 2.3 by

computing scalar curvature estimates for Ricci-Hessian type manifolds. Furthermore,

results of triviality and rigidity at the extreme values of the scalar curvature have been

addressed.
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Chapter 1

Gradient Ricci Soliton Riemannian

Submersions

In this chapter we construct gradient Ricci solitons that are realized as a Riemannian

submersion with total space having totally umbilical fibers and integrable horizontal

distribution. We start by establishing the following preliminaries.

1.1 Preliminaries

Let (M, g) and (B, gB) be Riemannian manifolds. Let π : M → B denote a smooth

submersion, i.e., each derivative map π∗ of π is surjective. Hence, for all b ∈ B, Fb =

π−1(b) is a closed embedded submanifold of M which is called a fiber. For each p ∈
M , with π(p) = b, we denote by Vp the tangent space to Fb, by Hp the orthogonal

complement of TpFb in TpM and by gFb the restriction of g to Fb. We call V and H
the vertical and horizontal distributions, respectively. The same letters will serve to

denote the corresponding vertical and horizontal projections on the tangent bundle of

M . Since V coincides with the tangential distribution defined by the fibers, the vertical

distribution is integrable. But it is not necessarily true that the horizontal distribution

H is integrable.

A vector field E ∈ X(M) is vertical if Ep ∈ Vp, and horizontal if Ep ∈ Hp, for all

p ∈M . In this thesis U, V,W,W ′ stand for vertical fields, X, Y, Z, Z ′ for horizontal fields,

and D stands for the Riemannian connection of g. It will be sufficient for our purposes
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to restrict our attention to Riemannian submersions, that is, to smooth submersions

such that π∗ preserves length of horizontal vector fields.

To understand the geometry of a Riemannian submersion in more detail we need to

work with the following two tensors. The first one is the (1, 2)-tensor T on X(M) given

by

TE1E2 = H(DVE1VE2) + V(DVE1HE2).

This tensor satisfies the following properties:

1. TXU = TXY = 0;

2. TUV = H(DUV ) and TUX = V(DUX);

3. TUV = TVU ;

4. TU is alternating, that is, g(TUV,X) = −g(TUX, V ).

Notice that TUV is the second fundamental form of Fb, and therefore the tensor T

vanishes identically if and only if each fiber Fb is totally geodesic.

The second tensor is the (1, 2)-tensor A on X(M) given by

AE1E2 = H(DHE1VE2) + V(DHE1HE2).

The properties of A that we need are:

1. AUX = AUV = 0;

2. AXU = H(DXU) and AXY = V(DXY );

3. AXY = −AYX;

4. AX is alternating, that is, g(AXY, U) = −g(AXU, Y );

5. AXY = 1
2
V ([X, Y ]).

The tensor A is related to the obstruction to integrability of H. Indeed, it is identi-

cally zero if and only if H is integrable. We easily see that if A ≡ 0 then, at least locally,

the total space M is isometric to B × F with a Riemannian metric gB + ḡb, where ḡb is

a smooth family of Riemannian metrics on F indexed by B.

6



A vector field E ∈ X(M) is basic if it is horizontal and if there exists a vector field

Ē in B which is π-related to E, i.e., π∗(E) = Ē. If π is surjective, then for every vector

field Ē ∈ X(B), there exists one and only one basic vector field E ∈ X(M) which is

π-related to Ē. In particular, if X and Y are basic vector fields, then H([X, Y ]) is the

basic vector field π-related to [X̄, Ȳ ], and H(DXY ) is the basic vector field π-related

to BDX̄ Ȳ , where BD is the Riemannian connection of gB. Observe that if X and Y are

basic vector fields, then g(X, Y ) = gB(X̄, Ȳ ) is constant on the fibers. A vector field U

is vertical if and only if it is π-related to 0 in X(B). Also, if X is a basic vector field

and U is a vertical vector field, then [X,U ] is a vertical vector field.

We denote by FbD the family of Riemannian connections of the metrics gFb . It follows

from the uniqueness of FbD that FbDUV = V(DUV ).

We now summarize the relationships between T , A and D as follows:

1. DUV = FbDUV + TUV ;

2. DUX = TUX +H(DUX);

3. DXU = V(DXU) + AXU ;

4. DXY = AXY +H(DXY ).

We denote by R the curvature tensor of g, by RFb the collection of all curvature ten-

sors of the Riemannian metrics gFb in the fibers and by BR(X, Y )Z the horizontal vector

field such that BR(X, Y )Z = RB(π∗X, π∗Y )π∗Z, where RB is the curvature tensor of gB.

We recall at this juncture the following equations which will be exploited henceforth

1. g(R(U, V )W,W ′) = g(RFb(U,W )W,W ′)− g(TUW,TVW
′) + g(TVW,TUW

′);

2. g(R(U, V )W,X) = g((DV T )UW,X)− g((DUT )VW,X);

3. g(R(X,U)Y, V ) = g((DXT )UV,X)− g(TUX,TV Y ) + g((DUA)XY, V )

+ g(AXU,AY V );

4. g(R(U, V )X, Y ) = g((DUA)XY, V )− g((DVA)UX, Y ) + g(AXU,AY V )

− g(AXV,AYU)− g(TUX,TV Y ) + g(TVX,TUY );

5. g(R(X, Y )Z,U) = g((DZA)XY, U) + g(AXY, TZU)− g(AYZ, TUX)

− g(AZX,TUY );
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6. g(R(X, Y )Z,Z ′) = g(BR(X, Y )Z,Z ′)− 2g(AXY,AZZ
′) + g(AYZ,AXZ

′)

− g(AXZ,AYZ
′).

To compute the Ricci curvature of (M, g,D), we take p ∈ M , an orthonormal basis

{Xi}i for Hp and an orthonormal basis {Uj}j for Vp, in such a way that we have the

following special notations

(AX , AY ) =
∑
i

g(AXXi, AYXi) =
∑
j

g(AXUj, AYUj);

(AX , TU) =
∑
i

g(AXXi, TUXi) =
∑
j

g(AXUj, TUUj);

(AU,AV ) =
∑
i

g(AXiU,AXiV );

(TX, TY ) =
∑
j

g(TUjX,TUjY ).

Moreover, for any tensor S on X(M), one has

δ̌S = −
∑
i

(DXiS)Xi , δ̂S = −
∑
j

(DUjS)Uj and δS = δ̌S + δ̂S.

Associated with T , one has a symmetric (0, 2)-tensor δ̃T given by

(δ̃T )(U, V ) =
∑
i

g((DXiT )UV,Xi).

The mean curvature vector along each fiber is the horizontal vector field N =
∑

j TUjUj.

Notice that N vanishes identically if and only if each fiber is a minimal submanifold of

M .

The Yang-Mills condition for H is defined by

g((δ̌A)X,U) = (AX , TU), for X ∈ H, and U ∈ V . (1.1)

Introduced by Yang and Mills in physics, this condition was thoroughly studied in

both mathematical physics and in pure mathematics. It is also important in the study

of Einstein Riemannian submersions as we will see later. We also note that, since the

tensor V(DXA)YZ − TAY ZX depends only on H and BD, Eq. (1.1) depends only on H
and gB and does not depend on the family of the metrics gFb on the fibers.
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Writing Ric, RicB and RicFb for the Ricci curvatures of the metrics g, gB and gFb ,

respectively, we have the expressions of the Ricci curvatures of a submersion which can

be found in Besse [1]:

Ric(U, V ) = RicFb(U, V )− g(N, TUV ) + (AU,AV ) + (δ̃T )(U, V );

Ric(X,U) = g((δ̂T )U,X) + g(DUN,X) + g((δ̌A)X,U)− 2(AX , TU);

Ric(X, Y ) =BRic(X, Y )− 2(AX , AY )− (TX , TY ) +
1

2
(g(DXN, Y ) + g(DYN,X)) .

Given a Riemannian submersion π : (M, g) → (B, gB) and a smooth function f on

B, we denote by ∇f̃ and ∇2f̃ the gradient and the Hessian of f̃ = π∗f in (M, g) as

well as by B∇f and B∇2f the gradient and the Hessian of f in (B, gB), respectively.

Direct computation shows that the vector field ∇f̃ is horizontal and π-related to B∇f .

Furthermore, the following properties hold: (∇2f̃)(U, V ) = −(TUV )f̃ and ∇2f̃(X, Y ) =

B∇2f(X̄, Ȳ ). As a consequence we have ∆f̃ = π∗∆Bf − Nf̃ . Given a function f as

described as above, we denote by Hf the horizontal lift of its Hessian tensor.

1.2 Submersions with totally geodesic fibers

Let M and B be connected Riemannian manifolds, and let π : M → B be a surjective

Riemannian submersion not necessarily with connected fibers. Given a path γ in B, a

horizontal lift of γ is any horizontal path c in M such that π ◦ c = γ. Such lifts always

exist, at least locally. To understand the global case we recall the following definition.

Let D be a distribution on M which is a complement to the vertical distribution V =

ker(π∗). We say that D is (Ehresmann-)complete if for any path γ in B starting from

b ∈ B, and for any p ∈ Fb there exists a horizontal lift c of γ starting from p.

It will be sufficient to work with surjective submersions having complete total space.

It is worth mentioning that if M is complete, then both H and B are complete, see [2,

Proposition 2.1]. Moreover, if H is complete, then given any path γ : [0, l] → B and

any p ∈ Fγ(0), there exists a unique horizontal lift c of γ starting from p, which allows

us to consider the diffeomorphism τγ : Fγ(0) → Fγ(l) defined by setting τγ(p) = c(l), see

[1, Proposition 9.30] and [2, Eq. (2.2)]. The holonomy group Gb of the connection H at

b ∈ B is the group of all diffeomorphisms τσ of Fb corresponding to the closed paths σ

in B starting from b.
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By the previous section we know that the fibers of a Riemannian submersion are

totally geodesic if and only if T = 0. To give some motivation of where this study comes

from, let us look back at the following result, in which the completeness of H implies

that fibers become geometrically indistinguishable from one another.

Proposition 1.1 (R. Hermann [13]) Let π : M → B be a Riemannian submersion

with totally geodesic fibers. If H is complete, then for any path γ : [0, l] → B the

diffeomorphism τγ is an isometry and for all b ∈ B the holonomy group Gb is a subgroup

of the isometry group of (Fb, gFb).

In this latter setting, Vilms showed how to construct a Riemannian submersion with

totally geodesic fibers.

Proposition 1.2 (J. Vilms [8]) Let G be a Lie group, p : P → B a principal G-

bundle, F any manifold on which G acts. Let π : M → B be the associated bundle

with fiber F , i.e., M = P ×G F . Given a Riemannian metric gB on B, a G-invariant

Riemannian metric gF on F and a principal connection θ on P , there exists one and only

one Riemannian metric g on M such that π is a Riemannian submersion from (M, g)

to (B, gB) with totally geodesic fibers and isometric to (F, gF ) and complete horizontal

distribution associated with θ. Moreover, if (B, gB) and (F, gF ) are complete, then (M, g)

is complete.

The necessary conditions for constructing a gradient Ricci soliton (π, g, ϕ̃) with to-

tally geodesic fibers are given by the following equations

BRic(X, Y )− 2(AX , AY ) +Hϕ(X, Y ) = λgB(X, Y ) (1.2)

RicFb(U, V ) + (AU,AV ) = λgFb(U, V ) (1.3)

g((δ̌A)X,U) = −(AXU)ϕ̃ (1.4)

Indeed, they follow immediately by combining the submersions equations with the Ricci

soliton Eq. (1).

In [12, Proposition 3.1] Petersen and Wylie proved that a gradient Ricci soliton

Ric +∇2Ψ = λg which is an Einstein manifold, either has ∇2Ψ = 0 or it is the Gaussian

soliton. We prove that the latter case cannot occur in the class submersions with totally

geodesic fibers.
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Proposition 1.3 Let π : (M, g) → (B, gB) be a Riemannian submersion with totally

geodesic fibers, and let ϕ be a smooth function on B. Suppose (π, ϕ̃, g) is a gradient

Ricci soliton. Then (M, g) is an Einstein manifold if and only if ∇2ϕ̃ = 0.

Proof: Let (π, g, ϕ̃) be with totally geodesic fibers. Suppose (M, g) is an Einstein

manifold with Ricci tensor satisfying Ric = ηg, for some smooth function η on B. Since

T = 0, by [1, Proposition 9.61] the following equations hold

BRic(X, Y )− 2(AX , AY ) = ηBg(X, Y ), (1.5)

RicF (U, V ) + (AU,AV ) = η gF (U, V ), (1.6)

δ̌A = 0. (1.7)

On the other hand, by comparing (1.3) and (1.6), we find η = λ. So, from (1.5) and

(1.2) we obtain Hϕ = 0. Since ϕ̃ is constant along each fiber, we have ∇2ϕ̃(U, V ) = 0.

By the Yang-Mills condition (1.7), equation (1.4) yields ∇2ϕ̃(X,U) = 0. This proves

that ∇2ϕ̃ = 0. Conversely, suppose ∇2ϕ̃ = 0. Then Hϕ = 0 and (AXU)ϕ̃ = 0, so

substituting this into (1.4), (1.3) and (1.2) we obtain that (M, g) is an Einstein manifold

with Einstein constant λ. �

1.3 Construction of Gradient Ricci Soliton Rieman-

nian Submersions

In this section, we prove Theorem 1. We begin with three basic lemmas that are

straightforward generalizations of warped product case. For their proofs see Section 1.4.

For our purposes we consider only Riemannian submersions π : (M, g) → (B, gB) with

totally geodesic fibers and integrable horizontal distribution. In this case, since A and

T vanish identically, the total space (M, g) is at least locally a Riemannian product

(B × F, gB + gF ), and π is one of the canonical projections on the factors B or F .

In the spirit of the construction of Bishop and O’Neill [14], if f > 0 is a smooth

function on B, then we can warp the metric of M . Indeed, for p ∈ M , we define the

warped metric ḡ on M , as follows

ḡp(Ep, Gp) = gp(H(Ep),H(Gp)) + (f ◦ π(p))2gp(H(Ep),V(Gp)). (1.8)
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In particular, if X and Y are basic vector fields which are π-related to X and Y ,

respectively, and if U and V are vertical vector fields tangent to the fiber Fb with

b = π(p), then we have

ḡ(X, Y ) = gB(X̄, Ȳ ), ḡ(U, V ) = (f ◦ π(p))2gFb(U, V ) and ḡ(X,U) = 0.

1.3.1 Basic Lemmas

In what follows, we will compute the geometrical features of ḡ that will be designated

by “−”. For the proof of the first two basic lemmas it will be useful to recall the Koszul

formula

2ḡ(D̄EF,G) = E(ḡ(F,G)) + F (ḡ(E,G))−G(ḡ(E,F ))

+ ḡ([E,F ], G)− ḡ([E,G], F )− ḡ([F,G], E). (1.9)

Lemma 1.1 Suppose X and Y are basic vector fields which are π-related to X and Y ,

respectively, and suppose U and V are vertical vector fields. Then

1. D̄XY is the horizontal lift of BDX̄ Ȳ ;

2. D̄XU = X(f̃)

f̃
U +DXU ∈ V and H(D̄XU) = 0;

3. D̄UX = X(f̃)

f̃
U ∈ V and H(D̄UX) = 0;

4. H(D̄UV ) = − ḡ(U,V )

f̃
∇̄f̃ and V(D̄UV ) = FbDUV .

Once we have in possession of the Riemannian connection of the warped metric ḡ,

we obtain its Riemannian curvature tensor.

Lemma 1.2 Suppose X, Y, Z are basic vector fields which are π-related to X̄, Ȳ , Z̄, re-

spectively, and suppose U, V,W are vertical vector fields. Then

1. R̄(X, Y )Z is the horizontal lift of RB(X̄, Ȳ )Z̄;

2. R̄(U,X)Y = −Hf (X,Y )
f

U ∈ V;

3. R̄(X, Y )U = X(f̃)

f̃
DYU − Y (f̃)

f̃
DXU +R(X, Y )U ∈ V;

4. R̄(U, V )X = 0;
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5. R̄(X,U)V = − ḡ(U,V )

f̃
D̄X∇f̃ ∈ H;

6. R̄(U, V )W = RFb(U, V )W + |∇f̃ |2

f̃2
[ḡ(U,W )V − ḡ(V,W )U ] ∈ V.

Next, by direct computations we readily get the Ricci curvature of ḡ.

Lemma 1.3 Suppose X and Y are basic vector fields which are π-related to X and Y ,

respectively, and suppose U and V are vertical vector fields. Then

1. Ric(X, Y ) = BRic(X, Y )− m
f̃
Hf (X, Y );

2. Ric(X,U) = 0;

3. Ric(U, V ) = RicFb(U, V )−
[
f̃∆̃f + (m− 1)|∇f̃ |2

]
gFb(U, V ),

where ∆̃f = (∆f) ◦ π.

1.3.2 Proof of the Main Theorem

As pointed out in the introduction, the first tool to prove our main theorem is a

construction of gradient Ricci soliton warped metrics due to Feitosa et al. [5]. They

considered a Riemannian manifold (B, gB) endowed with two smooth functions f > 0

and ϕ satisfying (2), and they showed that f and ϕ must satisfy (3).

The second tool needed to prove our theorem is the generalization of warped products

to bundles by Bishop and O’Neill [14] in which they considered two Riemannian mani-

folds (B, gB) and (F, gF ), and a group homomorphism h : π1(B)→ I(F ) that gave rise

to a fiber bundle structure F −→M
π−→ B. The Bishop and O’Neill’s construction can

be briefly summarized in two steps. The first step is to identify the fundamental group

π1(B) with the deck transformation group of the simply connected covering β : B̃ → B,

and let π1(B) act on the Riemannian product B̃ × F as follows:

π1(B)× (B̃ × F ) −→ B̃ × F
(δ, (b, p)) 7−→ (δ(b), h(δ)(p)).

This action is free, properly discontinuous and it acts by isometries, so that the quotient

manifold M = B̃×π1(B)F has a unique Riemannian structure with the standard quotient

metric g making the natural map ν : B̃ × F → M a Riemannian covering. The second
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step is to obtain the projection π : M → B induced by the map B̃ × F → B which is

given by (b, p) 7→ β(b). Note that if U ⊂ B is evenly covered by β, then for each lift

Ũ ⊂ B̃ the map ν gives a fiber-preserving isometry of Ũ × F onto π−1(U), so π−1(U) is

identified with the Riemannian product U ×F which is unique up to isometries of F . It

follows that π is a fiber bundle with flat connection (integrable horizontal distribution)

and typical fiber F invariant under the structural group. Now, we can apply a result by

Vilms [8, Theorem 3.6] to conclude that π is a nontrivial totally geodesic Riemannian

submersion. Moreover, the fibers are totally geodesic, see [8, Theorem 3.3].

Now, we are in a position to prove the main result of this chapter.

Theorem 1.1 Let (B, gB) be a complete Riemannian manifold with two smooth func-

tions f and ϕ satisfying Eq. (2), for any λ ∈ R. Take the constant µ given by Eq. (3) and

a complete Riemannian manifold (F, gF ) of dimension m and Ricci tensor RicF = µgF .

Then, we can construct a gradient Ricci soliton (π, ḡ, ϕ̃) with total space B̃ ×π1(B) F

having totally umbilical fibers and integrable horizontal distribution, where ḡ is a warped

metric which is obtained from the standard quotient metric g.

Proof: Let (B, gB) be a Riemannian manifold with two smooth functions f > 0 and ϕ

satisfying (2). Take the constant µ given by (3) and a complete Riemannian manifold

(F, gF ) of dimension m and Ricci tensor satisfying RicF = µgF . The construction

made in [14] gives us the fiber bundle F −→ M
π−→ B with totally geodesic fibers,

integrable horizontal distribution, typical fiber F , structural group π1(B) and total

space (B̃ ×π1(B) F, g), where g is the standard quotient metric. By use of the function

f , we can further warp g to obtain the metric ḡ given by (1.8). We point out that

π : (M, ḡ)→ (B, gB) became a Riemannian submersion with totally umbilical fibers. In

fact, it follows immediately from part (4) of Lemma 1.1. Thus, we verify that (π, ḡ, ϕ̃)

is a gradient Ricci soliton. Indeed, we observe that it follows from Hϕ = ∇2ϕ̃ and

Hf = ∇2f̃ along horizontal vector fields, part (1) of Lemma 1.3 and the first equation

of (2), that the Ricci soliton equation (1) is satisfied on the horizontal distribution.

For X ∈ H and U ∈ V , we use that ∇̄ϕ̃ ∈ H and part (1) of Lemma 1.1 to obtain

∇̄2ϕ̃(X,U) = 0. So, by part (2) of Lemma 1.3, the Ricci soliton equation is trivially

satisfied. To conclude the proof, we take U, V ∈ V , so that by definition of µ and part
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(3) of Lemma 1.3 we get

Ric(U, V ) =

(
λ− 1

f
∇ϕ(f)

)
g(U, V ).

On the other hand, from part (4) of Lemma 1.1 we obtain

∇̄2ϕ̃(U, V ) =
1

f
∇ϕ(f)g(U, V ).

Combining the latter two equations we conclude that the Ricci soliton equation is again

satisfied. This completes the proof of the theorem. �

1.4 Proof of the Technical Lemmas

1.4.1 Proof of Lemma 1.1

Proof: Part (1) is immediate from (1.9) and integrability of H. To prove (2), again

from (1.9) we have 2ḡ(D̄XU,Z) = 0, so D̄XU is vertical. Moreover,

2ḡ(D̄XU, V ) = X(f̃ 2g(U, V )) + f̃ 2 (g([X,U ], V )− g([X, V ], U))

= 2f̃X(f̃)g(U, V ) + f̃ 2
[
X(g(U, V )) + g([X,U ], V )− g([X, V ], U)

]
= 2

(
X(f̃)

f̃
ḡ(U, V ) + ḡ(DXU, V )

)

where in the second equality we have used (1.9) for the metric g. Next, since ḡ(D̄UX, Y ) =

0, we have that D̄UV is vertical. Furthermore,

ḡ(D̄UX, V ) = 2f̃X(f̃)g(U, V ) + f̃ 2
[
X(g(U, V )) + g([U,X], V )− g([X, V ], U)

]
.

Similarly, by applying (1.9) for the metric g, we obtain D̄UX = X(f̃)

f̃
U . To prove (4),

notice that

2ḡ(D̄UV,X) = −2f̃X(f̃)g(U, V ) + f̃ 2
[
X(g(U, V )) + g([U,X], V )− g([V,X], U)

]
.

(1.10)

On the other hand, we have

2g(FbDUV,X) = X(g(U, V ))− g([U,X], V )− g([V,X], U).
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Since FbDUV = DUV ∈ V , substituting this into (1.10) give us H(D̄UV ) = − ḡ(U,V )

f̃
∇f̃ .

Moreover,

2ḡ(D̄UV,W ) = f 2
[
U(g(V,W )) + V (g(U,W ))−W (g(U, V ))

+ g([U, V ],W )− g([U,W ], V )− g([V,W ], U)
]

= 2ḡ(DUV,W ),

which means that V(D̄UV ) = FbDUV . This completes the proof. �

1.4.2 Proof of Lemma 1.2

Proof: We start from (6). From part (4) of Lemma 1.1, we have

R̄(U, V )W = D̄U
FbDVW −DU

(
ḡ(V,W )

f̃
∇f̃
)
− D̄V (FbDUW )

+ D̄V

(
ḡ(U,W )

f̃
∇f̃
)
−FbD[U,V ]W +

ḡ([U, V ],W )

f̃
∇f̃

= V(D̄U
FbDVW ) +H(D̄U

FbDVW )− 1

f̃
U(ḡ(V,W ))∇̄f̃

− V(D̄V
FbDUW )−H(D̄V

FbDUW ) +
1

f̃
ḡ(U,W )∇f̃

− 1

f̃
ḡ(V,W )D̄U∇f̃ − FbD[U,V ]W −

ḡ([U, V ],W )

f̃
∇f̃

+
1

f̃
ḡ(U,W )D̄V∇f̃

= RFb(U, V )W +
|∇f̃ |2

f̃ 2

[
ḡ(U,W )V − ḡ(V,W )U

]
.

To prove part (2), we use parts (1) and (3) of Lemma 1.1, to obtain

R̄(U,X)Y =
(D̄XY )(f)

f
U − D̄X

(
X(f̃)

f̃
U

)
− Y (f̃)

f̃
[U,X]

=
(D̄XY )(f̃)

f̃
U − 1

f̃
X(Y (f̃))U = −H

f (X, Y )

f̃
U.

Next, from part (2) of Lemma 1.1, the following hold

R̄(X, Y )U = D̄X

(
Y (f̃)

f̃
U +DYU

)

− D̄Y

(
X(f̃)

f̃
U +DXU

)
− [X, Y ]f̃

f̃
U −D[X,Y ]U
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=
X(f̃)

f̃
DYU −

Y (f̃)

f̃
DYU +R(X, Y )U,

which proves part (3). To prove part (4), notice that part (3) of Lemma 1.1 give us that

R̄(U, V )X = D̄U

(
X(f̃)

f̃
V

)
− D̄

(
X(f̃)

f̃
U

)
− X(f̃)

f̃
[U, V ]

=
1

f̃

[
U(X(f̃))V − V (X(f̃))U

]
+
X(f̃)

f̃

[
D̄UV − D̄VU − [U, V ]

]
= 0

where in the latter equality we have used (1.9) for the metric g and the fact that f̃

is constant along the fibers. Part (5) follows from parts (1) and (2) of Lemma 1.1 as

follows

R̄(X,U)V = D̄X

(
H(D̄UV ) + V(D̄UV )

)
− D̄U

(
X(f̃)

f̃
V +DXV

)
−H(D̄[X,U ]V )− V(D̄X,UV )

= D̄X

(
− ḡ(U, V )

f̃
∇f̃
)

+ D̄X
FbDUV − D̄U

(
X(f̃)

f̃
V

)
− D̄UDXV

+
ḡ([X,U ], V )

f̃
∇f̃ − FbD[X,U ]V

= − ḡ(U, V )

f̃
D̄X∇f̃

where in the latter equality we have used the fact that R(X,U)V = 0 when the fibers

are totally geodesic submanifolds of the total space and the horizontal distribution is

integrable. Moreover, part (1) follows immediately from part (1) of Lemma 1.1, which

concludes this proof. �

1.4.3 Proof of Lemma 1.3

Proof: We take p ∈M , and orthonormal basis {Xi} and Uj of the distributions Hp and

Vp, respectively. Taking traces of equations (1) and (2) of Lemma 1.2, we have

R̄ic(X, Y ) = BRic(X, Y )− m

f̃
Hf (X, Y ).

This latter proves part (1). Next, to prove part (2), we take trace of parts (5) and (6)

of Lemma 1.2, to obtain

R̄ic(U, V ) =
n∑
i=1

ḡ

(
− ḡ(U, V )

f̃
D̄Xi∇f̃ , Xi

)
+

m∑
j=1

ḡ(R̄Fb(Uj, U)V, Uj)
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+
|∇f̃ |2

f̃

m∑
j=1

[ḡ(Uj, V )ḡ(U,Uj)− ḡ(Uj, Uj)ḡ(U, V )]

= RicFb(U, V )−
[
f̃∆̃f̃(m− 1)|∇f̃ |2

]
gFb(U, V ).

To prove part (3), by using parts (3) and (4) of Lemma 1.2, we easily verify that

Ric(X,U) = 0, so we conclude the proof. �
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Chapter 2

Gradient Ricci Soliton Warped

Products

In this chapter we prove triviality and nonexistence results for gradient Ricci solitons

that are realized as warped products. We start this chapter by studying the Ricci Hessian

type manifolds as the main tool to prove our theorems.

2.1 Ricci-Hessian type manifolds

Let (Bn, e−hdvol) be an n-dimensional weighted Riemannian manifold, h be a smooth

function on B and dvol be the Riemannian volume density on (Bn, gB). A natural

extension of the Ricci tensor to weighted manifolds is the m-Bakry-Emery Ricci tensor

Ricmh = Ric +∇2h− 1

m
dh⊗ dh, for some 0 < m ≤ +∞.

We consider (Bn, gB) endowed with two smooth functions ϕ and f > 0. We can

further consider the weighted Riemannian manifold (Bn, e−ψdvol), where ψ is the smooth

function on B given by ψ = ϕ −m ln f , for 0 < m < +∞. For our purposes, we will

work with the following modification of the Ricci tensor:

Ricmϕ,f = Ric +∇2ϕ− m

f
∇2f. (2.1)

This tensor can also be viewed in the following way:

Ricmϕ,f = Ric +∇2ϕ+∇2ξ − 1

m
dξ ⊗ dξ,
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where ξ = −m ln f . So, when ϕ is constant we recover the m-Bakry-Emery Ricci tensor

Ricmξ . An interesting case occurs when the metric gB satisfies

Ricmϕ,f = λgB, (2.2)

for some smooth function λ on B. A motivation to study this equation comes from

Maschler’s work [6] in which he was interested in conformal changes of Kähler-Ricci

solitons in order to obtain new Kähler-metrics. To do this, he introduced the notion of

Ricci-Hessian equation, namely

Ric +α∇2ψ = βg, (2.3)

where α and β are smooth functions. Feitosa et al. [5, Remark 1] showed how Eq. (2.2)

can be reduced to a Ricci-Hessian equation. Example 1 in [4] shows that the standard

sphere and the hyperbolic space both satisfy Eq. (2.2).

We recapitulate from Chapter 1 that another motivation to study Eq. (2.2) is that

the base spaces of gradient Ricci soliton warped products satisfy the referred equation for

a positive integer m and a constant λ. To see this, we briefly describe the construction

by Feitosa et al. [4]. They considered a complete Riemannian manifold (Bn, gB) with

two smooth functions f > 0 and ϕ satisfying

Ric +∇2ϕ− m

f
∇2f = λgB (2.4)

and

2λϕ+ |∇ϕ|2 + ∆ϕ+
m

f
∇ϕ(f) = c, (2.5)

for some constants λ,m, c ∈ R, with m 6= 0. By [4, Proposition 3], the functions f and

ϕ satisfy

λf 2 + f∆f + (m− 1)|∇f |2 − f∇ϕ(f) = µ, (2.6)

for some constant µ ∈ R. In summary, we will need the following result (see Proposition 2

and Theorem 3 in [4]).

Proposition 2.1 (Feitosa et al. [4]) Let M = Bn ×f Fm be a gradient Ricci soliton

warped product with potential function ϕ̃. Then, Eqs. (2.4) and (2.5) hold on B and the

fiber F is an Einstein manifold with Ricci tensor RicF = µgF , where µ is given by (2.6).

Conversely, let B be a complete Riemannian manifold with two smooth functions ϕ and
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f > 0 satisfying (2.4) and (2.5), for any λ ∈ R. Take the constant µ given by (2.6)

and a complete Riemannian manifold F of dimension m and Ricci tensor RicF = µgF .

Then, (Bn ×f Fm, g, ϕ̃) is a gradient Ricci soliton warped product.

We point out that the potential function used in Proposition 2.1 is justified by the

next result.

Lemma 2.1 (Borges and Tenenblat [16]) Let M = Bn ×f Fm be a warped product

with metric g = gB + f 2gF , where f > 0 is a smooth function on B. If (M, g) is a

gradient Ricci soliton, then the potential function depends only on the base.

Proof: The proof follows the same argument as the more general case in [16]. Suppose

(M, g) is a gradient Ricci soliton warped product with potential function Ψ on M . Then,

the metric g satisfies

Ric +∇2Ψ = λg, (2.7)

for some constant λ ∈ R. By the standard expressions for the Ricci curvature and for

the Hessian of such a function Ψ on M (see Bishop and O’Neill [14]), we obtain

0 = (∇2Ψ)(X,U) = X(U(Ψ))− (∇XU)(Ψ) = X(U(Ψ))− X(f)

f
U(Ψ),

for all X,U horizontal and vertical vector fields, respectively. Next, we compute

X(U(Ψf−1)) = X(U(Ψ)f−1) =
1

f

[
X(U(Ψ))− X(f)

f
U(Ψ)

]
= 0.

Hence, the function U(Ψf−1) depends only on the fiber F . Thus, without loss of gener-

ality, we can assume that Ψ = ϕ+ fφ, for some functions ϕ on B and φ on F . Now we

take a unitary geodesic γ on B, so that equation (2.7) reads along γ as

RicB(γ′, γ′) + ϕ′′ − m

f
f ′′ + φf ′′ = λ.

Thus, for any vertical vector field V , one has f ′′V (φ) = 0. Since we are considering f

positive and nonconstant, there exists a point (p, q) ∈ M such that f ′′(p) 6= 0, for all

q ∈ F . Then, φ must be constant on F , i.e., Ψ depends only on B. �

We now define precisely the main object of study in this chapter. A Ricci-Hessian

type manifold is a complete Riemannian manifold (Bn, gB) endowed with two smooth

functions f > 0 and ϕ satisfying Eq. (2.2) for a positive integer m and a constant
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λ. For simplicity, we will say that (Bn, gB, ψ) is a Ricci-Hessian type manifold, where

ψ = ϕ−m ln f . Moreover, we will use the weighted Riemannian volume density e−ψdvol

on (Bn, gB, ψ) whenever it is needed.

With these notations in mind we prove now the following formulas, which are derived

in the same way as in Petersen and Wylie [12, Lemma 2.5].

Lemma 2.2 Let (Bn, gB, ψ) be a Ricci-Hessian type manifold with scalar curvature S.

Then, the following hold:

1. R̊ic = −∇̊2ϕ+ m
f
∇̊2f .

2. 1
2
dS = Ric(∇ψ, ·)− m

f2
(∆fdf − 1

2
d|∇f |2).

3. R(X, Y )(∇ψ) = (∇Y Ric)(X)− (∇X Ric)(Y )− m
f2

(df ∧∇2f)(X, Y ), for all vector

fields X, Y in X(B).

4. 1
2
∆ψS = S

n
(λn− S)− |R̊ic|2 +m (2 Ric(∇ ln f,∇ ln f) + |∇2 ln f |2 − (∆ ln f)2).

Proof: From Eq. (2.2), we have

R̊ic := Ric−S
n
g = −∇2ϕ+

(
λ− S

n

)
g +

m

f
∇2f.

Taking trace of Eq. (2.2) we also get

S + ∆ϕ = nλ+
m

f
∆f.

Combining the latter two equations we obtain part (1). For part (2) recall that for any

smooth function v on B the following holds

div Ric =
1

2
dS and ∆dv = d∆v + Ric(∇v, ·),

Hence, by Eq. (2.2) we obtain

dS

2
= div(λg −∇2ϕ+

m

f
∇2f)

= −d∆ϕ− Ric(∇ϕ, ·) +
m

f
(d∆f + Ric(∇f, ·)) +∇2f(∇(

m

f
), ·)

=
m

f 2
∆fdf + dS − Ric(∇(ϕ−m ln f), ·)− m

f 2
∇2f(∇f, ·).

Since d|∇f |2 = 2(∇2f)(∇f), then we get part (2).
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Next, recall that for any smooth function v on B and X, Y in X(B), the Riemann

curvature tensor satisfies

R(X, Y )∇v = (∇X∇2v)(Y )− (∇Y∇2v)(X). (2.8)

We take v = ϕ and by using of Eq. (2.2) again, we have

(∇X∇2ϕ)(Y ) =

(
∇X

(
λI +

m

f
∇2f − Ric

))
(Y )

= −(∇X Ric)(Y ) +

(
∇X

(
m

f
∇2f

))
(Y )

= −(∇X Ric)(Y ) +
m

f
(∇X∇2f)(Y )− m

f 2
(df ⊗∇2f)(X, Y ).

Combining the previous equality with (2.8) we get

R(X, Y )∇ϕ = (∇Y Ric)(X)− (∇X Ric)(Y ) +
m

f
R(X, Y )∇f − m

f 2
(df ∧∇2f)(X, Y ).

This proves part (3). Moreover, by using part (2), we get

(∇X Ric)(∇ψ) = ∇X (Ric(∇ψ))− Ric

(
∇X

(
∇ϕ− m

f
∇f
))

= ∇X

(
1

2
∇S +

m

f 2

(
∆f∇f − 1

2
∇|∇f |2

))
− Ric

((
∇2ϕ− m

f
∇2f

)
(X) +

m

f 2
X(f)∇f

)
=

1

2
∇2S(X) +∇X

(
m

f 2

(
∆f∇f − 1

2
∇|∇f |2

))
− (Ric ◦(λI − Ric))(X)− m

f 2
X(f) Ric(∇f).

Substituting this into part (3) we have

R(X,∇ψ)∇ψ = (∇∇ψ Ric)(X)− 1

2
∇2S(X)−∇X

(
m

f 2

(
∆f∇f − 1

2
∇|∇f |2

))
+ (Ric ◦(λI − Ric))(X) +

m

f 2
X(f) Ric(∇f)− m

f 2
(df ∧∇2f)(X,∇ψ).

Taking the trace of the latter equation we obtain

1

2
∆ψS = tr (Ric ◦(λI − Ric)) +

m

f 2
Ric(∇f,∇f)

− div

(
m

f 2

(
∆f∇f − 1

2
∇|∇f |2

))
. (2.9)
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For any smooth function v > 0 on B it is true that

∇2(ln v) =
1

v
∇2v − 1

v2
dv ⊗ dv. (2.10)

So,

m

f 2

(
∆f∇f − 1

2
∇|∇f |2

)
= m

(
∆f

f
∇(ln f)− 1

2f 2
∇(f 2|∇(ln f)|2)

)
=
m

f
∆f∇(ln f)− m

f
|∇(ln f)|2∇f − m

2
∇|∇(ln f)|2

= m∆(ln f)∇(ln f)− m

2
∇|∇(ln f)|2.

Whence,

div

(
m

f 2

(
∆f∇f − 1

2
∇|∇f |2

))
=m(∆(ln f))2 +m〈∇(ln f),∇∆(ln f)〉

− m

2
∆|∇(ln f)|2.

By (2.9), we get

1

2
∆ψS = tr(Ric ◦(λI − Ric)) +

m

f 2
Ric(∇f,∇f)−m(∆(ln f))2

−m 〈∇(ln f),∇∆(ln f)〉+
m

2
∆|∇(ln f)|2.

By using the Bochner formula for the function ln f we rewrite the equation above as

follows

1

2
∆ψS = tr(Ric ◦(λI − Ric)) +m

(
2 Ric(∇ ln f,∇ ln f) + |∇2 ln f |2 − (∆ ln f)2

)
.

Noting that tr(Ric ◦(λI−Ric)) = λS−|Ric |2 and |R̊ic|2 = |Ric |2− S2

n
we conclude the

proof. �

Now we continue by fixing notation and making comments about facts that will be

used henceforth. Let h be a smooth function on a Riemannian manifold (B, gB), and let

Rich = Ric +∇2h (2.11)

denote the Bakry-Emery Ricci tensor of the weighted Riemannian manifold (B, e−hdvol).

Thus, (B, gB,∇h) is a gradient Ricci soliton provided the corresponding complete

weighted Riemannian manifold has constant Rich-curvature, that is, Rich ≡ λ, for some

λ ∈ R.
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Associated to Rich we have the following Bochner type formula

1

2
∆h|∇u|2 = |∇2u|2 + 〈∇u,∇∆hu〉+ Rich(∇u,∇u), (2.12)

for u ∈ C∞(B). Recall that the second order operator h-Laplacian ∆hu = ehdiv(e−h∇u)

is formally self-adjoint in L2(B, e−hdvol) space, and that the weak maximum principle

at infinity for ∆h on (B, gB) holds if given a C2 function u : B → R satisfying supB u =

u∗ < +∞, there exists a sequence {xk} ⊂ B along which

(i) u(xk) ≥ u∗ − 1

k
and (ii) (∆hu)(xk) ≤

1

k
, for all k ∈ N.

Since the class of Ricci-Hessian type manifolds contains both m-quasi Einstein man-

ifolds and gradient Ricci solitons, the weak maximum principle at infinity is very useful

in order to study such manifolds. In this setting, for a Ricci-Hessian type manifold

(B, gB, ψ) we take h = ψ in Eq. (2.11) and v = f in Eq. (2.10) to obtain the very

convenient identity

Ricψ = Ricmϕ,f +
m

f 2
df ⊗ df. (2.13)

We point out that Eq. (2.13) has two important immediate consequences. The first

one is the following Bochner type formula for the modified Ricci tensor Ricmϕ,f .

Lemma 2.3 Let (Bn, gB, ψ) be a Ricci-Hessian type manifold. Then, for a smooth

function u on B the following holds

1

2
∆ψ|∇u|2 = |∇2u|2 + 〈∇u,∇∆ψu〉+ Ricmϕ,f (∇u,∇u) +

m

f 2
〈∇f,∇u〉2. (2.14)

Proof: It is an immediate consequence of equations (2.12) and (2.13). �

The second consequence of Eq. (2.13) is the validity of the weak maximum principle

at infinity for ∆ψ on a Ricci-Hessian type manifold (B, gB, ψ). In view of this, we

shall refer to the following two results. First, we recall a weighted-volume comparison

established in [17, Theorem 4.1] as follows.

Proposition 2.2 (Wei and Wylie [17]) Let (B, e−hdvol) be a complete weighted Rie-

mannian manifold. Suppose that

Rich ≥ λ,

for some λ ∈ R. Then, having fixed R0 > 0, there are constants A,B,C > 0 such that,

for every r ≥ R0,

volh(Br) ≤ A+B

∫ r

R0

e−λt
2+Ctdt.
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The next result states the validity of a weak form of the maximum principle at

infinity for the h-Laplacian, under weighted-volume growth conditions obtained in [15,

Theorem 9]. In what follows, L1(+∞) stands for the space of the integrable functions

at infinity, that is, a function v belongs to L1(+∞) if there exists R ∈ R such that

v ∈ L1([R,+∞)).

Proposition 2.3 (Pigola et al. [15]) Let (B, e−hdvol) be a complete weighted Rie-

mannian manifold satisfying the volume growth condition

r

ln volh(Br)
/∈ L1(+∞). (2.15)

Then, the weak maximum principle at infinity for the h-Laplacian holds on B.

In summary, one readily has the following proposition.

Proposition 2.4 The weak maximum principle at infinity for the ψ-Laplacian holds on

a Ricci-Hessian type manifold (Bn, gB, ψ).

Proof: Since Ricmϕ,f = λ, by Eq. (2.13) we have Ricψ ≥ λ. Moreover, this lower bound

on Ricψ implies the volume growth condition (2.15), see [9, pg. 107]. Thus, we apply

Propositions 2.2 and 2.3 to the weighted manifold (B, e−ψdvol) to obtain the validity of

the weak maximum principle at infinity for the ψ-Laplacian on B. �

We point out that Proposition 2.4 is crucial to prove our results under L∞ conditions.

We also note that more generally this weak maximum principle at infinity holds if the

weighted Riemannian manifold (B, e−ψdvol) satisfies Ricmϕ,f ≥ λ.

2.2 Ricci-Hessian type manifolds as base spaces of

gradient Ricci soliton warped products

In this section, we elaborate the proofs of the main theorems of this chapter. First of

all we restrict ourselves to Ricci-Hessian type manifolds as base spaces of gradient Ricci

soliton warped products, which means that they must satisfy the additional Eq. 2.5 as

well as Eq. 2.6. We start by using equations (2.4), (2.5) and (2.6) to obtain the following

lemma.
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Lemma 2.4 Let (Bn, gB, ψ) be a Ricci-Hessian type manifold satisfying the additional

Eq. (2.5). Then,

∆ψ = nλ− S +m|∇(ln f)|2,

∆ψϕ = c− 2λϕ,

∆ψ(ln f) =
1

f 2
(µ− λf 2).

Proof: The first equation is immediately obtained by taking the trace of Eq. (2.4). The

second and third equations follow from equations (2.5) and (2.6), respectively. �

We state now the following version of a Lp-Liouville-type theorem for the h-Laplacian

on a complete weighted Riemannian manifold (B, e−hdvol) established in [15, Theo-

rem 14]. This result will be important to prove our theorems under Lp conditions.

Proposition 2.5 (Pigola et al. [15]) Let (B, gB, e
−hdvol) be a complete weighted

manifold. Assume that u ∈ Liploc(B) satisfy

u∆hu ≥ 0, weakly on (B, e−hdvol).

If, for some p > 1,
1∫

∂Br
|u|pe−hdvoln−1

/∈ L1(+∞), (2.16)

then u is constant.

Remark 2.1 By [15, Remark 15], if u ∈ Lp(B, e−hdvol) then the condition (2.16) is

satisfied. Note also, that no sign condition is required on u. Moreover, if the locally

Lipschitz function u satisfies both ∆hu ≥ 0 and the non-integrability (2.16), then applying

Proposition 2.5 to u+ = max{u, 0} gives that either u is constant, or u ≤ 0. In a similar

way, we can apply Theorem 2.5 to u− = max{−u, 0}.

As a consequence of Proposition 2.5 and Remark 2.1 we have a Lp-Liouville type

result for Ricci-Hessian type manifolds.

Corollary 2.1 Let (B, gB, ψ) be a Ricci-Hessian type manifold. If 0 ≤ u ∈ Liploc(B)

satisfies ∆ψu ≥ 0 and u ∈ Lp(B, e−ψdvol) for some 1 < p < +∞, then u is constant.
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2.2.1 Results under L1<p≤+∞ conditions

In what follows we will prepare the ground for the proof of the main theorems in this

chapter. We star with the following proposition.

Proposition 2.6 Let (Bn, gB, ψ) be a Ricci-Hessian type manifold satisfying the addi-

tional Eq. (2.5). Suppose λ ≤ 0. Then,

a) If ϕ ∈ Lp(B, e−ψdvol), for some 1 < p < +∞, then either ϕ is constant and

(Bn, gB) is an m-quasi-Einstein manifold or ϕ has a sign on B.

b) For λ = 0, if µ ≥ 0 and f ∈ Lp(B, e−ψdvol) for some 1 < p < +∞, then f is

constant, µ = 0 and (Bn, gB,∇ϕ) is a gradient steady Ricci soliton.

c) For λ < 0, there is no such a Ricci-Hessian type manifold provided that µ ≥ 0 and

f satisfies either of the following conditions: f ∈ L∞(B) or f ∈ Lp(B, eψdvol) for

some 1 < p < +∞.

Proof: To prove part a), suppose ϕ ∈ Lp(B, e−ψdvol), for some 1 < p < +∞. By

Lemma 2.4 we obtain that

∆ψϕ = c− 2λϕ.

For c ≥ 0, we consider ϕ+ = max{ϕ, 0}. Since λ ≤ 0, we get ∆ψϕ+ = c − 2λϕ+ ≥ 0.

Applying Corollary 2.1 to ϕ+ ∈ Lp(B, e−ψdvol), gives us that ϕ+ is constant. Hence,

if there exists a point x0 ∈ B such that ϕ(x0) ≥ 0, then ϕ ≡ ϕ(x0) ≥ 0 and B is a

m-quasi-Einstein manifold with potential function ξ = −m ln f . Otherwise, we have

ϕ < 0 on B. In a similar way, for c ≤ 0 we apply Corollary 2.1 to ϕ− ∈ Lp(B, e−ψdvol)

to obtain that either B is an m-quasi-Einstein manifold or ϕ > 0 on B.

Now we prove part b). By Lemma 2.4, we have

f∆ψf = µ− λf 2 + |∇f |2. (2.17)

For λ = 0, we suppose that µ ≥ 0 and f ∈ Lp(B, e−ψdvol) for some 1 < p < +∞.

From Eq. (2.17) we have f∆ψf ≥ 0. Then we apply Corollary 2.1 to obtain that f is a

constant. So, (Bn, gB,∇ϕ) is a gradient steady Ricci soliton with potential function ϕ

and from Eq. (2.17) we conclude that µ = 0.

28



We prove now part c). Since λ < 0 and µ ≥ 0, the nonexistence result for the

standard Riemannian case is trivial by the third equation of Lemma 2.4. We suppose

now that f is nonconstant, so that we can use Eq. (2.17) to obtain

∆ψf ≥ −λf ≥ 0. (2.18)

Assume that f ∈ L∞(B), i.e., f ∗ = supB f < +∞. By the weak maximum principle at

infinity for the ψ-Laplacian, there exists a sequence {xk} ⊂ B along which

lim
k→+∞

f(xk) = f ∗ and lim sup
k→+∞

(∆ψf)(xk) ≤ 0.

Thus, evaluating (2.18) along {xk} and taking lim sup as k → +∞, we obtain that

−λf ∗ = 0, which is a contradiction, because λ < 0 and f ∗ > 0.

Next, we assume that f ∈ Lp(B, e−ψdvol) for some 1 < p < +∞. Since λ < 0, we

obtain that ∆ψf ≥ 0. So, we apply Corollary 2.1 to conclude that f must be constant,

which is again a contradiction. �

We now combine Lemmas 2.3 and 2.4 to obtain the following Bochner type formulas

for Ricci-Hessian type manifolds.

Lemma 2.5 Let (Bn, gB, ψ) be a Ricci-Hessian type manifold satisfying the additional

Eq. (2.5). Then, for a smooth function u on B the following holds:

a) 1
2
∆ψ|∇ϕ|2 = |∇2ϕ|2 − λ|∇ϕ|2 + m

f2
〈∇ϕ,∇f〉2.

b) 1
2
∆ψ|∇ ln f |2 = |∇2 ln f |2 − 2µ

f2
|∇ ln f |2 + λ|∇ ln f |2 + m

f2
〈∇ ln f,∇f〉2.

Proof: It is immediate by taking u = ϕ and ln f in Lemma 2.3, respectively, and by

using the equations of Lemma 2.4. �

In addition to Propositions 2.4 and 2.5 we will also use the following Bochner type

inequalities to prove our results.

Lemma 2.6 Let (Bn, gB, ψ) be a Ricci-Hessian type manifold satisfying the additional

Eq. (2.5). Then, the following inequalities hold:

|∇ϕ|∆ψ|∇ϕ| ≥ −λ|∇ϕ|2 +
m

f 2
〈∇ϕ,∇f〉2 (2.19)

and

|∇ ln f |∆ψ|∇ ln f | ≥ λ|∇ ln f |2 − 2µ

f 2
|∇ ln f |2 +

m

f 2
〈∇ ln f,∇f〉2. (2.20)
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Proof: For a smooth function u on B we have

1

2
∆ψ|∇u|2 = |∇u|∆ψ|∇u|+ |∇|∇u||2.

Now, combining this latter equality with the Kato inequality, namely

|∇2u|2 ≥ |∇|∇u||2, u ∈ C∞(B), (2.21)

one has

|∇u|∆ψ|∇u| ≥
1

2
∆ψ|∇u|2 − |∇|∇u||2.

Taking u = ϕ into the latter inequality and using part a) of Lemma 2.5 we have

|∇ϕ|∆ψ|∇ϕ| =
1

2
∆ψ|∇ϕ|2 − |∇|∇ϕ||2 ≥ −λ|∇ϕ|2 +

m

f 2
〈∇ϕ,∇f〉2.

The second required inequality is analogously obtained. �

We continue to prove some triviality and nonnexistence results for Ricci-Hessian type

manifolds satisfying the additional Eq. (2.5) as follows.

Proposition 2.7 Let (Bn, gB, ψ) be a Ricci-Hessian type manifold with λ < 0 satisfying

the additional Eq. (2.5) . Then, the parameter function ϕ is a constant provided that it

satisfies either of the following conditions: |∇ϕ| ∈ L∞(B) or |∇ϕ| ∈ Lp(B, e−ψdvol) for

some 1 < p < +∞. In this case B must be an m-quasi-Einstein manifold.

Proof: Since λ < 0, from part a) of Lemma 2.5 we have

∆ψ|∇ϕ|2 ≥ −2λ|∇ϕ|2 ≥ 0. (2.22)

Assuming that |∇ϕ| ∈ L∞(B), by the weak maximum principle at infinity for the ψ-

Laplacian there exists a sequence {xk} ⊂ B such that

lim sup
k→+∞

(∆ψ|∇ϕ|2)(xk) ≤ 0 and lim
k→+∞

|∇ϕ|2(xk) = sup
B
|∇ϕ|2.

Thus, evaluating (2.22) along {xk} and taking lim sup as k → +∞, we get

λ sup
B
|∇ϕ|2 = 0.

Then, we must have |∇ϕ| = 0, that is, ϕ is a constant.

Assume now that |∇ϕ| ∈ Lp(B, e−ψdvol) for some 1 < p < +∞. Since λ < 0, from

(2.19) we obtain that |∇ϕ|∆ψ|∇ϕ| ≥ 0. We apply Corollary 2.1 to obtain that |∇ϕ| is
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a constant. Substituting this latter fact into (2.19), ϕ must be constant. This concludes

the proof. �

Next, we prove the following nonnexistence result.

Proposition 2.8 There is no Ricci-Hessian type manifold (B, gB, ψ) satisfying the ad-

ditional Eq. (2.5) with λ > 0 and µ ≤ 0 provided that the parameter function f satisfies

either of the following conditions: |∇ ln f | ∈ L∞(B) or |∇ ln f | ∈ Lp(B, e−ψdvol) for

some 1 < p < +∞.

Proof: Since λ > 0 and µ ≤ 0, the constant case is trivial by the third equation of

Lemma 2.4. So that, we suppose now f is nonconstant. From part b) of Lemma 2.5 we

have

∆ψ|∇ ln f |2 ≥ 2λ|∇ ln f |2 ≥ 0. (2.23)

Assuming that |∇ ln f | ∈ L∞(B), by the weak maximum principle at infinity for the

ψ-Laplacian there exists a sequence {xk} ⊂ B such that

lim sup
k→+∞

(∆ψ|∇ ln f |2)(xk) ≤ 0 and lim
k→+∞

|∇ ln f |2(xk) = sup
B
|∇ ln f |2.

Thus, evaluating (2.23) along {xk} and taking lim sup as k → +∞, we get

λ sup
B
|∇ ln f |2 = 0,

which is a contradiction because λ > 0 and f is nonconstant.

Assume now that |∇ ln f | ∈ Lp(B, e−ψdvol) for some 1 < p < +∞. Since λ > 0

and µ ≥ 0, from (2.20) we obtain that |∇ ln f |∆ψ|∇ ln f | ≥ 0. Applying Corollary 2.1,

|∇ ln f | must be a constant. Using this latter fact into (2.20) we obtain that f is a

constant, which is again a contradiction. �

2.2.2 Proof of the Main Results

Let M = B ×f F be a gradient Ricci soliton warped product with warping function

f . By Lemma 2.1, we can assume without loss of generality that the potential function

is the lift ϕ̃ = ϕ ◦ π of a smooth function ϕ on B to M . By Proposition 2.1, the base

space B is a Ricci-Hessian type manifold satisfying (2.4) and (2.5), while the fiber F is

an Einstein manifold with Ricci tensor RicF = µgF , where µ is given by (2.6). Now,
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we are in a position to give the proof of the main results of this chapter. We start by

proving a triviality result in the steady case.

Theorem 2.1 Let B×fF be a gradient steady Ricci soliton with fiber having nonnegative

scalar curvature. Then, it must be a standard Riemannian product provided the warping

function satisfies f ∈ Lp(B, e−ψdvol) for some 1 < p < +∞.

Proof: Since λ = 0 and µ ≥ 0, we use part b) of Proposition 2.6 to conclude that f

must be a constant and µ = 0. This completes our proof. �

Theorem 2.2 It is not possible to construct a gradient expanding Ricci soliton warped

product Bn ×f Fm with fiber having nonnegative scalar curvature and warping function

satisfying either of the following conditions: f ∈ L∞(B) or f ∈ Lp(Bn, e−ψdvol) for

some 1 < p < +∞.

Proof: Since λ < 0 and µ ≥ 0, part c) of Proposition 2.6 shows that there is no a

Ricci-Hessian type manifold B satisfying the additional Eq. (2.5) with the parameter

function f satisfying one of the following conditions: f ∈ L∞(B) or f ∈ Lp(B, e−ψdvol)

for some 1 < p < +∞. This concludes the proof. �

As an application of Propositions 2.7 and 2.8 we have the following results for gradient

Ricci soliton warped products.

Theorem 2.3 Let M = Bn ×f Fm be a gradient expanding Ricci soltion with potential

function ϕ̃. Then, M is a trivial soliton provided that ϕ satisfies either of the following

conditions: |∇ϕ| ∈ L∞(B) or |∇ϕ| ∈ Lp(B, e−ψdvol) for some 1 < p < +∞.

Proof: Since λ < 0, we use Proposition 2.7 to conclude that ϕ is constant if it satisfies

either |∇ϕ| ∈ L∞(B) or |∇ϕ| ∈ Lp(B, e−ψdvol) for some 1 < p < +∞. Thus, M must

be a trivial soliton, that is, an Einstein manifold. �

Theorem 2.4 It is not possible to construct a gradient shrinking Ricci soliton Bn×fFm

with fiber having nonpositive scalar curvature and warping function satisfying either

of the following conditions: |∇ ln f | ∈ L∞(B) or |∇ ln f | ∈ Lp(B, e−ψdvol) for some

1 < p < +∞.

32



Proof: Since λ > 0, Proposition 2.8 shows that there is no Ricci-Hessian type manifold

satisfying the additional Eq. (2.5) with the parameter function f satisfying either of the

following conditions : |∇ ln f | ∈ L∞(B) or |∇ ln f | ∈ Lp(B, e−ψdvol) for some 1 < p <

+∞. This concludes the proof. �

2.3 Concluding Remarks

We also prove, under some additional condition, scalar curvature estimates for Ricci-

Hessian type manifolds. They follow by combining Proposition 2.4 with following “a-

priori” estimate for weak solutions of semi-linear elliptic inequalities under volume as-

sumptions.

Proposition 2.9 (Pigola et al. [15]) Let (B, gB, e
−hdvol) be a complete weighted man-

ifold. Let a(x), b(x) ∈ C0(B), set a−(x) = max{−a(x), 0} and assume that

sup
B
a−(x) < +∞

and

b(x) ≥ 1

Q(r(x))
on B,

for some positive, non decreasing function Q(t) such that Q(t) = o(t2), as t → +∞.

Assume furthermore that, for some H > 0,

a−(x)

b(x)
≤ H on B.

Let u ∈ Liploc(B) be a nonnegative solution of

∆hu ≥ a(x)u+ b(x)uσ,

weakly on (B, e−hdvol), with σ > 1. If

lim inf
r→+∞

Q(r) ln volh(Br)

r2
< +∞,

then, u(x) ≤ H
1

σ−1 on B.

By using Proposition 2.9 we have the validity of the next corollary.
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Corollary 2.2 Let (B, gB, ψ) be a Ricci-type manifold and let u ∈ Liploc(B) be a non-

negative weak solution of

∆ψu ≥ au+ buσ,

for some constants a ∈ R, b > 0 and σ > 1. Then,

u(x)σ−1 ≤ max{−a, 0}
b

on B.

As an application of Proposition 2.4, we prove the required result that is similar to

known theorems in the setting of gradient Ricci solitons proved by Pigola et al. [15,

Theorem 3] as well as of m-quasi-Einstein metrics proved by Rimoldi [11, Theorem 3].

Theorem 2.5 Let (Bn, gB, ψ) be a Ricci-Hessian type manifold with scalar curvature

S. Let us define S∗ = infB S and we assume that

Ric(∇ ln f,∇ ln f) ≤ −|∇
2 ln f |2

2
. (2.24)

a) For λ > 0, one has 0 ≤ S∗ ≤ nλ.

b) For λ = 0, we have S∗ = 0. Moreover, either S > 0 or S ≡ 0. In the latter

case, either both f and ϕ are constant, or (Bn, gB) is isometric to the Riemannian

product R×Σn−1, where Σ is a Ricci-flat totally geodesic hypersurface of (Bn, gB).

c) For λ < 0, we have nλ ≤ S∗ ≤ 0, and S > nλ unless B is an Einstein manifold.

Proof: We start by showing that S∗ = infB S > −∞. By part (4) of Lemma 2.2 and

by equation (2.24), we have
1

2
∆ψS ≤ −

1

n
S2 + λS. (2.25)

Let S−(x) = max{−S(x), 0}. Then, S− solves weakly the following

1

2
∆ψS− = −1

2
∆ψS ≥

1

n
(S−)2 + λS−.

We apply Corollary 2.2 to obtain that S− is bounded from above, or equivalently, S∗ =

infB S > −∞. By the weak maximum principle at infinity for the ψ-Laplacian there

exists a sequence {xk} ⊂ B such that

lim
k→+∞

S(xk) = S∗ and lim inf
k→+∞

(∆ψS)(xk) ≥ 0.
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Taking lim inf of (2.25) at the points of {xk} shows that

S∗
n

(λn− S∗) ≥ 0. (2.26)

Now, we distinguish three cases. For λ > 0, it is immediate from (2.26), that

0 ≤ S∗ ≤ nλ.

This proves part a). To prove part (b), assume λ = 0. From (2.26) we conclude that

S∗ = 0. According to (2.25), we note that ∆ψS ≤ 0. Therefore, by the minimum

principle either S > 0 on B or S ≡ 0. If S ≡ 0, substituting it into part (4) of

Lemma 2.2 we obtain that B is Ricci-flat, and (2.24) yields ∇2(ln f) = 0. So, if f is

nontrivial then by the Cheeger-Gromoll’s argument B is isometric to R×Σn−1, where Σ

is a Ricci-flat totally geodesic hypersurface of (Bn, gB). Otherwise, when f is constant,

if ϕ is nontrivial we apply the same argument to conclude that B is isometric to R×Σ.

Next, assume λ < 0. From (2.26) we deduce that nλ ≤ S∗ ≤ 0. Suppose S(x0) = nλ

for some x0 ∈ B. Since the nonnegative function w(x) = S(x)− nλ satisfies

1

2
∆ψw ≤ −

1

n
w2 − λw ≤ −λw,

and w attains its minimum w(x0) = 0, it follows from the minimum principle that w

vanishes identically. Hence, S ≡ nλ is a constant, and substituting this into part (4) of

Lemma 2.2, we get that B is an Einstein manifold. �
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