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Resumo

Nesta tese nds mostramos como construir sélitons de Ricci gradientes que sao realiza-
dos como submersoes Riemannianas com espaco total tendo fibras totalmente umbilicas
e distribuicao horizontal integravel. Esta construcao é baseada em uma generalizacao
de produtos deformados para fibrados, bem como, em uma construcao de sélitons de
Ricci gradiente produtos deformados a partir do qual nés sabemos que os espagos base
de tais produtos deformados sao necessariamente variedades tipo Ricci-Hessiano. Ao
estudar esta ltima classe de variedades Riemannianas nés também obtemos resultados
de trivialidade e inexisténcia de sdlitons de Ricci gradiente produtos deformados. Estes
resultados decorrem de um teorema tipo Liouville e da validade de um principio do
maximo fraco no infinito para um operador de difusao especifico sobre uma variedade

tipo Ricci-Hessiano.

Palavras-chave: Soéliton de Ricci; Submersao Riemanniana; Métrica tipo Einstein;

Produto deformado.



Abstract

In this thesis we show how to construct gradient Ricci solitons that are realized as
Riemannian submersions with total space having totally umbilical fibers and integrable
horizontal distribution. This construction is based on a generalization of warped prod-
ucts to bundles as well as a construction of gradient Ricci soliton warped products,
from which we know that the base spaces of such warped products are necessarily Ricci-
Hessian type manifolds. By studying this latter class of Riemannian manifolds we also
obtain triviality and nonexistence results for gradient Ricci soliton warped products.
These results stem from a Liouville type theorem and the validity of a weak maximum

principle at infinity for a specific diffusion operator on a Ricci-Hessian type manifold.

Keywords: Ricci soliton; Riemannian submersion; Einstein type metric; Warped prod-

uct.
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Introduction

This thesis is divided in two chapters. Chapter 1 is about a construction of gradient
Ricci solitons on the total space M of a Riemannian submersion. A complete Riemannian
metric g on a smooth manifold M is a gradient Ricci soliton if there exists a smooth

function ¥ on M such that the Ricci tensor of g is given by
Ric +V2¥ = )\g, (1)

for some constant A € R. Note that the parameters in Eq. are g and ¥, while the
constant \ is obtained by taking trace of this equation. A gradient Ricci soliton is called
expanding, steady or shrinking if A < 0, A = 0 or A > 0, respectively. When ¥ is a

constant function (M, g) is an Einstein manifold and it is called a trivial Ricci soliton.

Our purpose is to establish the necessary and sufficient conditions for a complete
Riemannian metric ¢ on M be a gradient Ricci soliton with potential function ¥ = ¢
so that 7w : (M,g) — (B, gp) be a Riemannian submersion on a Riemannian manifold
(B, gp) for some smooth function ¢ on B. This choice of potentials functions as hori-
zontal lifts is motivated by the warped product case, as will be seen in Chapter 2. For
simplicity, we write (7, g, ®) to denote a gradient Ricci soliton on the total space of 7
with potential function ¢ = 7 o .

We show how to construct a gradient Ricci soliton (7, g, @) with totally umbilical
fibers and integrable horizontal distribution. This construction stems from two known
works. The first one is based on the construction of gradient Ricci soliton warped
products by Feitosa et al. [4]. Authors proved that if f > 0 and ¢ are smooth functions
on a Riemannian manifold (B, gg) such that
m

f

Ric + V20 = \gp + 2V2f and 2\p — |V|? + Ay + ?w(f) —¢ (2



for some constants A\, m,c € R, with m # 0, then they must satisfy

M2+ FAS + (m =1V = [Ve(f) =, (3)

for some constant p € R, see [4, Proposition 3]. Equations and will be studied
in Chapter |2/ in more detail. The second work is based on the generalization of warped
products to bundles due to Bishop and O’Neill [14]. They considered two Riemannian
manifolds (B, gg) and (F, gr) and they showed how to construct a fiber bundle structure
F — M % B whose structural group is 7;(B) and total space M = B X (B) I having
integrable horizontal distribution and totally geodesic fibers. Moreover, by use of a

smooth function f > 0 on B they further warped the standard quotient metric g on M.

Making use of the previous construction and with the aforementioned notations we

show how to construct a gradient Ricci soliton Riemannian submersion as follows.

Theorem 1 Let (B, gg) be a complete Riemannian manifold with two smooth functions
f and ¢ satisfying Eq. , for any A € R. Take the constant i given by Eq. and
a complete Riemannian manifold (F,gr) of dimension m and Ricci tensor Ricy = ugr.
Then, we can construct a gradient Ricci soliton (m,g, ) with total space B X B F
having totally umbilical fibers and integrable horizontal distribution, where g is a warped

metric which is obtained from the standard quotient metric g.

A trivial example agreeing with Theorem [I| is well known in the literature and has
been explored in a context of rigidity, see Ferndndez-Lépez and Garcia-Rio [10] as well
as Petersen and Wylie [12]. A gradient Ricci soliton satisfying is said to be rigid if
it is isometric to a quotient R™ xp F™, where F' is an Einstein manifold with Einstein
constant A, the potential function is ¢ (x) = %]1:\2 on R™ and T" is a group acting freely
on F' and by orthogonal transformations on R”. A nontrivial example in the setting of
Theorem (1| has been explicitly constructed for the case of Kéhler metrics by Huai-Dong
Cao [7].

In Chapter 2 we study gradient Ricci solitons that are realized as warped products
M = B" x; F™. We assume without loss of generality that the potential function of such
a soliton is the lift ¢ of a smooth function ¢ on B to M, see Lemma [2.1, Throughout
the chapter ¢ stands for the smooth function ¢y = ¢ —mIn f on B.

We describe now the main theorems of the second chapter. We begin with the

following triviality result for the steady case.



Theorem 2 Let B x ¢ F' be a gradient steady Ricci soliton with fiber having nonnegative
scalar curvature. Then, it must be a standard Riemannian product provided the warping

function satisfies f € LP(B,e~¥dvol) for some 1 < p < +o0.
We also prove a nonexistence theorem for the expanding case.

Theorem 3 [t is not possible to construct a gradient expanding Ricci soliton warped
product B"™ x ¢ F™ with fiber having nonnegative scalar curvature and warping function
satisfying either of the following conditions: f € L>®(B) or f € LP(B", e ¥dvol) for

some 1 < p < 4o00.

The next result establishes conditions on the potential function for a gradient ex-

panding Ricci soliton to be trivial.

Theorem 4 Let B" x ¢ '™ be a gradient expanding Ricci soltion with potential function
@. Then, B™ x; F™ s a trivial Ricci soliton provided that ¢ satisfies either of the
following conditions: |V| € L®(B) or |Ve| € LP(B, e ¥dvol) for some 1 < p < +00.

We also prove a nonexistence result in the shrinking case.

Theorem 5 [t is not possible to construct a gradient shrinking Ricci soliton B™ X F'™
with fiber having nonpositive scalar curvature and warping function satisfying either
of the following conditions: |Vin f| € L>(B) or |VIn f| € LP(B,e Ydvol) for some

1 <p<4o0.

We point out that a class of gradient expanding Ricci soliton warped products with
fiber having nonpositive scalar curvature has been constructed by Feitosa et al. [4, Corol-
lary 2|. It is also known that Robert Bryant constructed a gradient steady Ricci soliton
warped product with fiber having positive scalar curvature, see Chow et al. [3]. Thus,
some assumption on the warping function is necessary to obtain triviality or nonexis-
tence results in the class of gradient steady or expanding Ricci soliton warped products.
Theorems [2| and [3| are analogous results to the Einstein warped product case proven by
Rimoldi, see [11l, Theorems 1, 9 and 11].

We begin in Section [2.1| with some comments and results on Ricci-Hessian type

manifolds, which show us that this class of Riemannian manifolds is interesting in its

own right, see Section [2.1} By studying such manifolds we use methods from weighted



manifold theory to prove the validity of a weak maximum principle at infinity for a
specific diffusion operator, see Proposition 2.4 In particular, such a principle is valid in
the setting of gradient Ricci solitons as well as of m-quasi-Einstein manifolds as proven
before by Pigola et al. [15] and by Rimoldi [11], respectively. To prove the main theorems
we restrict ourselves to Ricci-Hessian type manifolds as being the base spaces of gradient
Ricei soliton warped products, see Section [2.2] We finalize this thesis in Section by
computing scalar curvature estimates for Ricci-Hessian type manifolds. Furthermore,
results of triviality and rigidity at the extreme values of the scalar curvature have been

addressed.



Chapter 1

Gradient Ricci Soliton Riemannian

Submersions

In this chapter we construct gradient Ricci solitons that are realized as a Riemannian
submersion with total space having totally umbilical fibers and integrable horizontal

distribution. We start by establishing the following preliminaries.

1.1 Preliminaries

Let (M, g) and (B, gp) be Riemannian manifolds. Let 7 : M — B denote a smooth
submersion, i.e., each derivative map m, of 7 is surjective. Hence, for all b € B, F}, =
771(b) is a closed embedded submanifold of M which is called a fiber. For each p €
M, with w(p) = b, we denote by V, the tangent space to Fy, by H, the orthogonal
complement of T,Fy, in T,M and by gg, the restriction of g to Fj. We call V and H
the vertical and horizontal distributions, respectively. The same letters will serve to
denote the corresponding vertical and horizontal projections on the tangent bundle of
M. Since V coincides with the tangential distribution defined by the fibers, the vertical
distribution is integrable. But it is not necessarily true that the horizontal distribution
‘H is integrable.

A vector field E € X(M) is vertical if E, € V,, and horizontal if E, € H,, for all
p € M. In this thesis U, V, W, W’ stand for vertical fields, X,Y, Z, Z' for horizontal fields,

and D stands for the Riemannian connection of g. It will be sufficient for our purposes



to restrict our attention to Riemannian submersions, that is, to smooth submersions

such that 7, preserves length of horizontal vector fields.

To understand the geometry of a Riemannian submersion in more detail we need to
work with the following two tensors. The first one is the (1,2)-tensor 7" on X(M) given
by

Ty, Ey = H(Dyg, VE;) + V(Dyg, HE>).

This tensor satisfies the following properties:
1. TxU =TxY = 0;
2. TyV =H(DyV) and Ty X = V(DyX);
3. TyV =TyU,
4. Ty is alternating, that is, g(TyV, X) = —g(Ty X, V).

Notice that Ty V' is the second fundamental form of Fj, and therefore the tensor T

vanishes identically if and only if each fiber F; is totally geodesic.

The second tensor is the (1,2)-tensor A on X(M) given by
Ap By = H(Dyp, VEs) + V(Dyp, HE:).

The properties of A that we need are:

1. Ay X = AyV =0;

2. AxU=H(DxU) and AxY =V(DxY);

3. AxY = —Ay X;

4. Ay is alternating, that is, g(AxY,U) = —g(AxU,Y);

5. AxY =3V ([X,Y]).

The tensor A is related to the obstruction to integrability of H. Indeed, it is identi-
cally zero if and only if H is integrable. We easily see that if A = 0 then, at least locally,
the total space M is isometric to B x F' with a Riemannian metric g + g5, where g, is

a smooth family of Riemannian metrics on F' indexed by B.



A vector field E € X(M) is basic if it is horizontal and if there exists a vector field
E in B which is m-related to E, i.e., m,(E) = E. If 7 is surjective, then for every vector
field £ € X(B), there exists one and only one basic vector field E € X(M) which is
m-related to E. In particular, if X and Y are basic vector fields, then H([X,Y]) is the
basic vector field m-related to [X,Y], and H(DxY) is the basic vector field 7-related
to BDY, where ZD is the Riemannian connection of gg. Observe that if X and Y are
basic vector fields, then g(X,Y) = gg(X,Y) is constant on the fibers. A vector field U
is vertical if and only if it is m-related to 0 in X(B). Also, if X is a basic vector field

and U is a vertical vector field, then [X, U] is a vertical vector field.

We denote by #¢D the family of Riemannian connections of the metrics gr,. It follows

from the uniqueness of 2D that 7Dy V = V(DyV).

We now summarize the relationships between T, A and D as follows:
1. DyV =BDyV + Ty V;

2. DyX =Ty X + H(DyX);

3. DxU =V(DxU) + AxU,

4. DxY = AxY + H(DxY).

We denote by R the curvature tensor of g, by Rp, the collection of all curvature ten-
sors of the Riemannian metrics gg, in the fibers and by PR(X,Y')Z the horizontal vector
field such that PR(X,Y)Z = Rp(m. X, m.Y)n.Z, where Rp is the curvature tensor of gg.

We recall at this juncture the following equations which will be exploited henceforth

L g(RU V)W, W') = g(Rp, (U W)W, W') — g(Tu W, Ty W') + g(Tv W, Ty W’);

2. g(R(U, V)W, X) = g((DyT)uW, X) — g((DuT)vW, X);

3. g(RX,U)Y, V) =g(DxT)vV, X) — g(Tu X, TvY) + g((DuA)xY, V)
+9(AxU, AyV);

4. g(R(U,V)X,Y) = g((DuA)xY,V) — g(DvA)uX.,Y) + g(AxU, AyV)
—9(AxV, AyU) — g(Ty X, TvY) + g(Tv X, Ty Y );

5. g(R(X,Y)Z,U) = g(DzA)xY,U) + g(AxY, T7U) — g(Avy Z, Ty X)

—9(AzX, TyY);



6. g(R(X,Y)Z,2") = g("R(X,Y)Z, Z") — 29(AxY, Az Z') + g(Av Z, Ax Z')
— g(AXZ, AyZ/).

To compute the Ricci curvature of (M, g, D), we take p € M, an orthonormal basis
{X.}: for H, and an orthonormal basis {U,}, for V,, in such a way that we have the

following special notations
(Ax, Ay) =Y g(AxX;, Ay X;) = > g(AxU;, AyUy);
i J

(Ax, Tv) = Y g(Ax X, Ty Xi) = > g(AxU;, TuUy);

J

(AU, AV) =Y " g(Ax,U, Ax,V);

(TX,TY) =Y g(Ty, X, Ti,Y).

J

Moreover, for any tensor S on X(M), one has

08 == (Dx,8)x,, 08=-Y (Dy,S)y, and &5 =045+08.

? J

Associated with T, one has a symmetric (0, 2)-tensor 6T given by
(6T)(U,V) = g((Dx,T)uV, Xy).

The mean curvature vector along each fiber is the horizontal vector field N = 3" 1o, Uj.

Notice that N vanishes identically if and only if each fiber is a minimal submanifold of

M.
The Yang-Mills condition for ‘H is defined by

g(0AX,U) = (Ax,Ty), for X € H, and U € V. (1.1)

Introduced by Yang and Mills in physics, this condition was thoroughly studied in
both mathematical physics and in pure mathematics. It is also important in the study
of Einstein Riemannian submersions as we will see later. We also note that, since the
tensor V(DxA)yZ — Ta, zX depends only on H and ZD, Eq. depends only on H

and gp and does not depend on the family of the metrics gp, on the fibers.



Writing Ric, Ricp and Ricp, for the Ricci curvatures of the metrics g, gp and gp,,
respectively, we have the expressions of the Ricci curvatures of a submersion which can

be found in Besse [I]:

Ric(U, V) = Ricg, (U, V) — g(N, Ty V) + (AU, AV) + (6T)(U,V);
Ric(X,U) = g((0T)U, X) + g(DuN, X) + g((0A) X, U) — 2(Ax, Ty);

Ric(X,Y) =PRic(X,Y) — 2(Ax, Ay) — (T, Ty) + % (9(DxN,Y) + g(DyN, X)).

Given a Riemannian submersion 7 : (M, g) — (B, gg) and a smooth function f on
B, we denote by Vf and V2f the gradient and the Hessian of f = 7*f in (M, g) as
well as by PV f and BV?f the gradient and the Hessian of f in (B, gp), respectively.
Direct computation shows that the vector field V f is horizontal and 7-related to BV f.
Furthermore, the following properties hold: (V2f)(U,V) = —(TyV)f and V2f(X,Y) =
BY2f(X,Y). As a consequence we have Af = m*Apf — Nf. Given a function f as

described as above, we denote by H/ the horizontal lift of its Hessian tensor.

1.2 Submersions with totally geodesic fibers

Let M and B be connected Riemannian manifolds, and let 7 : M — B be a surjective
Riemannian submersion not necessarily with connected fibers. Given a path v in B, a
horizontal lift of ~ is any horizontal path ¢ in M such that 7 o ¢ = . Such lifts always
exist, at least locally. To understand the global case we recall the following definition.
Let D be a distribution on M which is a complement to the vertical distribution V =
ker(m,). We say that D is (Ehresmann-)complete if for any path + in B starting from
b € B, and for any p € F}, there exists a horizontal lift ¢ of v starting from p.

It will be sufficient to work with surjective submersions having complete total space.
It is worth mentioning that if M is complete, then both H and B are complete, see [2]
Proposition 2.1]. Moreover, if H is complete, then given any path ~ : [0,l]] — B and
any p € F, ), there exists a unique horizontal lift ¢ of  starting from p, which allows
us to consider the diffeomorphism 7, : F, ) — F,q) defined by setting 7,(p) = c(I), see
[T, Proposition 9.30] and [2, Eq. (2.2)]. The holonomy group Gy of the connection H at
b € B is the group of all diffeomorphisms 7, of Fj corresponding to the closed paths o

in B starting from b.



By the previous section we know that the fibers of a Riemannian submersion are
totally geodesic if and only if T'= 0. To give some motivation of where this study comes
from, let us look back at the following result, in which the completeness of H implies

that fibers become geometrically indistinguishable from one another.

Proposition 1.1 (R. Hermann [I13]) Let 7 : M — B be a Riemannian submersion
with totally geodesic fibers. If H is complete, then for any path ~ : [0, — B the
diffeomorphism 7, is an isometry and for all b € B the holonomy group Gy is a subgroup

of the isometry group of (Fy, gr,)-

In this latter setting, Vilms showed how to construct a Riemannian submersion with

totally geodesic fibers.

Proposition 1.2 (J. Vilms [8]) Let G be a Lie group, p : P — B a principal G-
bundle, F' any manifold on which G acts. Let m : M — B be the associated bundle
with fiber F, i.e., M = P xg F. Given a Riemannian metric gg on B, a G-invariant
Riemannian metric gr on F' and a principal connection 8 on P, there exists one and only
one Riemannian metric g on M such that w is a Riemannian submersion from (M, g)
to (B, gg) with totally geodesic fibers and isometric to (F,gr) and complete horizontal
distribution associated with 0. Moreover, if (B, gg) and (F, gr) are complete, then (M, g)

18 complete.

The necessary conditions for constructing a gradient Ricci soliton (m, g, $) with to-

tally geodesic fibers are given by the following equations

BRic(X,Y) — 2(Ax, Ay) + H?(X,Y) = Agp(X,Y) (1.2)
RiCFb<U, V) + (AU, AV) = )\ng(U, V) (13)
9(BA)X,U) = —(AxU)¢ (1.4)

Indeed, they follow immediately by combining the submersions equations with the Ricci
soliton Eq. ().

In [12, Proposition 3.1] Petersen and Wylie proved that a gradient Ricci soliton
Ric +V2¥ = \g which is an Einstein manifold, either has V2@ = 0 or it is the Gaussian
soliton. We prove that the latter case cannot occur in the class submersions with totally

geodesic fibers.
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Proposition 1.3 Let 7 : (M, g) — (B,gg) be a Riemannian submersion with totally
geodesic fibers, and let ¢ be a smooth function on B. Suppose (w,p,q) is a gradient

Ricci soliton. Then (M, g) is an Einstein manifold if and only if V@ = 0.

Proof: Let (7, g,9) be with totally geodesic fibers. Suppose (M, g) is an Einstein
manifold with Ricci tensor satisfying Ric = ng, for some smooth function  on B. Since

T =0, by [1, Proposition 9.61] the following equations hold

BRic(X,Y) — 2(Ax, Ay) = n%(X,Y), (1.5)
Ricp (U, V) + (AU, AV) =n gr(U,V), (1.6)
SA=0. (1.7)

On the other hand, by comparing (1.3) and (1.6), we find n = A. So, from (1.5) and
(1.2) we obtain H¥ = (0. Since ¢ is constant along each fiber, we have V*@(U, V) = 0.

By the Yang-Mills condition ([1.7)), equation (1.4]) yields V2@(X,U) = 0. This proves
that V2p = 0. Conversely, suppose V2@ = 0. Then H¥ = 0 and (AxU)® = 0, so
substituting this into ((1.4)), (1.3)) and (1.2)) we obtain that (M, g) is an Einstein manifold

with Einstein constant \. O

1.3 Construction of Gradient Ricci Soliton Rieman-

nian Submersions

In this section, we prove Theorem [II We begin with three basic lemmas that are
straightforward generalizations of warped product case. For their proofs see Section [1.4]
For our purposes we consider only Riemannian submersions 7 : (M, g) — (B, gg) with
totally geodesic fibers and integrable horizontal distribution. In this case, since A and
T vanish identically, the total space (M, g) is at least locally a Riemannian product
(B x F,g5 + gr), and 7 is one of the canonical projections on the factors B or F.

In the spirit of the construction of Bishop and O’Neill [14], if f > 0 is a smooth
function on B, then we can warp the metric of M. Indeed, for p € M, we define the

warped metric g on M, as follows

Gp(Ep, Gp) = gp(H(E,), H(Gp)) + (f o W(p))2gp(7—[(Ep), V(Gy)). (1.8)
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In particular, if X and Y are basic vector fields which are m-related to X and Y,
respectively, and if U and V are vertical vector fields tangent to the fiber F, with
b= 7(p), then we have

9(X,Y)=gp(X,Y), g(UV)=(forn(p)’gr(U,V) and g(X,U)=0.

1.3.1 Basic Lemmas

In what follows, we will compute the geometrical features of g that will be designated
by “7”. For the proof of the first two basic lemmas it will be useful to recall the Koszul

formula

29(DpF,G) = E(3(F,G)) + F(g(E,G)) — G(3(E, I))
+g([E>F]7G)_ngaG]’F)_g([F?GLE)' (1'9)

Lemma 1.1 Suppose X and Y are basic vector fields which are w-related to X and Y,

respectively, and suppose U and V' are vertical vector fields. Then
1. DxY is the horizontal lift of DY ;
2. DxU=2DU+DxU eV  and H(DxU)=0;
5. DyX =LU eV ad HDyX)=0;

4. H(DyV) = 2DV f  and  V(DyV) ="DyV.

Once we have in possession of the Riemannian connection of the warped metric g,

we obtain its Riemannian curvature tensor.

Lemma 1.2 Suppose X,Y,Z are basic vector fields which are m-related to X,Y ,Z, re-
spectively, and suppose U, V. W are vertical vector fields. Then

1. R(X,Y)Z is the horizontal lift of Rp(X,Y)Z;
2. R(UX)Y = -0Np ey,

3. RX, YU =%Dp,U - %f)DXU FRX,Y)U € V;
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5_MXJDV:—£%DDXVf€H;

6. RUU V)W = R, (U, V)W + % [g(U,W)V —g(V,W)U] € V.
Next, by direct computations we readily get the Ricci curvature of g.

Lemma 1.3 Suppose X and Y are basic vector fields which are w-related to X and Y,

respectively, and suppose U and V' are vertical vector fields. Then
1. Ric(X,Y) = BRic(X,Y) — %Hf(X, Y);
2. Ric(X,U) =0;
3. Rie(U, V) = Ricg,(U.V) = | fAf + (m = [V f[*| g, (U V),

where Af = (Af)om.

1.3.2 Proof of the Main Theorem

As pointed out in the introduction, the first tool to prove our main theorem is a
construction of gradient Ricci soliton warped metrics due to Feitosa et al. [5]. They
considered a Riemannian manifold (B, gp) endowed with two smooth functions f > 0

and ¢ satisfying , and they showed that f and ¢ must satisfy .

The second tool needed to prove our theorem is the generalization of warped products
to bundles by Bishop and O’Neill [I4] in which they considered two Riemannian mani-
folds (B, gg) and (F, gr), and a group homomorphism h : w1(B) — I(F') that gave rise
to a fiber bundle structure F' —s M — B. The Bishop and O’Neill’s construction can
be briefly summarized in two steps. The first step is to identify the fundamental group
m1(B) with the deck transformation group of the simply connected covering £ : B — B,

and let m;(B) act on the Riemannian product B x F as follows:

m(B) x (Bx F) —» BxF
(9, (b, p)) — (6(b), h(5)(p)).
This action is free, properly discontinuous and it acts by isometries, so that the quotient

manifold M = B X (B) I has a unique Riemannian structure with the standard quotient

metric ¢ making the natural map v : B x F — M a Riemannian covering. The second
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step is to obtain the projection 7 : M — B induced by the map B x F — B which is
given by (b,p) — [5(b). Note that if U C B is evenly covered by 3, then for each lift
U C B the map v gives a fiber-preserving isometry of U x F onto 7~ (U), so 7~ *(U) is
identified with the Riemannian product U x F' which is unique up to isometries of F'. It
follows that 7 is a fiber bundle with flat connection (integrable horizontal distribution)
and typical fiber F' invariant under the structural group. Now, we can apply a result by
Vilms [8, Theorem 3.6] to conclude that 7 is a nontrivial totally geodesic Riemannian

submersion. Moreover, the fibers are totally geodesic, see [8, Theorem 3.3].

Now, we are in a position to prove the main result of this chapter.

Theorem 1.1 Let (B,gg) be a complete Riemannian manifold with two smooth func-
tions f and o satisfying Eq. , for any A € R. Take the constant u given by Eq. and
a complete Riemannian manifold (F,gr) of dimension m and Ricci tensor Ricy = ugr.
Then, we can construct a gradient Ricci soliton (r,§,$) with total space B X (B) F
having totally umbilical fibers and integrable horizontal distribution, where g is a warped

metric which is obtained from the standard quotient metric g.

Proof: Let (B, gg) be a Riemannian manifold with two smooth functions f > 0 and ¢
satisfying . Take the constant p given by and a complete Riemannian manifold
(F,gr) of dimension m and Ricci tensor satisfying Ricp = pgrp. The construction
made in [14] gives us the fiber bundle F — M -+ B with totally geodesic fibers,
integrable horizontal distribution, typical fiber F', structural group m(B) and total
space (B X (B) F,g), where g is the standard quotient metric. By use of the function
f, we can further warp g to obtain the metric g given by . We point out that
7 (M,g) — (B, gp) became a Riemannian submersion with totally umbilical fibers. In
fact, it follows immediately from part (4) of Lemma [1.1] Thus, we verify that (7, g, @)
is a gradient Ricci soliton. Indeed, we observe that it follows from HY = V2 and
HI = V? f along horizontal vector fields, part (1) of Lemma and the first equation
of , that the Ricci soliton equation is satisfied on the horizontal distribution.
For X € H and U € V, we use that V¢ € H and part (1) of Lemma to obtain
V2p(X,U) = 0. So, by part (2) of Lemma , the Ricci soliton equation is trivially
satisfied. To conclude the proof, we take U,V € V, so that by definition of p and part
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(3) of Lemma [1.3| we get

Ric(U,V) = (A - %wm) g(U,V).

On the other hand, from part (4) of Lemma [L.1] we obtain

1
f

Combining the latter two equations we conclude that the Ricci soliton equation is again

?QQ(U, V) = v@(f)f](U» V)

satisfied. This completes the proof of the theorem. O

1.4 Proof of the Technical Lemmas

1.4.1 Proof of Lemma 1.1

Proof: Part (1) is immediate from (1.9) and integrability of H. To prove (2), again
from ([1.9) we have 2g(DxU, Z) = 0, so DxU is vertical. Moreover,

25(DxU, V) = X(f2g(U,V)) + f2 (9([X, U], V) — g([X, V], U))
=2fX(Ng(U, V) + [ X (g(U V) + g([X, U], V) = g([X, V], U)]

- (%ﬁg(a V) +g(DxU, V))

where in the second equality we have used ((1.9)) for the metric g. Next, since g(Dy X,Y) =

0, we have that DyV is vertical. Furthermore,
§(DuX, V) = 2fX(Hg(U, V) + F[X(g(U.V)) + g([U, X], V) = g(IX, V], U)].

Similarly, by applying (1.9) for the metric g, we obtain Dy X = XTf)U . To prove (4),

notice that

29(DyV, X) = =2fX(/)g(U, V) + f2[X(g(U, V) + g([U, X], V) — g([V. X], U)].
(1.10)

On the other hand, we have

29(FbDUV7X) = X(g(U> V)) - g([Uv X],V) - g([va]7U)
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Since ' DV = DyV € V, substituting this into (1.10)) give us H(DyV) = —mU—]gWVf.

Moreover,
29(DyV. W) = f2[U(g(V, W) + V(g(U, W)) = W(g(U,V))
= 2g(DyV, W),
which means that V(DyV) = Dy V. This completes the proof. O

1.4.2 Proof of Lemma [1.2|

Proof: We start from (6). From part (4) of Lemma [L.1] we have

RUVYW = Dy™DyW — Dy <9 (V}W) v f) — Dy (P Dy W)

g(U, W)

+DV( 7 vf>_FbD[U7V}W+9([U7—‘f]’W) F

\Y
7 f
1

= V(Dy™Dy W) + H(Dy Dy W) — 7 GV, W)V f

— V(DyPDyW) — H(Dy*Dy W) + %g(U, WV f

+ %g(U, W)DyV f

= Ry, (U, V)W + |VJ£'2 [g(U, W)V — §(V, W)U} .

To prove part (2), we use parts (1) and (3) of Lemma to obtain
RU,X)Y = (DX—}/)(JC)U ~ Dy (#U) - %[U, X]

D), L n HIXY)
= SR - XY ;

U.
Next, from part (2) of Lemma the following hold

_ _ (Y(f
R(X,Y)U = Dx (%U%—DyU)

— Dy (@U—I—DXU) — [X’;/}fU — Dixy)U

16



_ XN p o @pyff LR YU,

f
which proves part (3). To prove part (4), notice that part (3) of Lemma1.1] give us that

R(U.V)X = Dy (&v) 5 (wU) _ Xy
f f f

_ % U (Y =V (DU + # DV = DyU = [U,V]] =0

where in the latter equality we have used ([1.9)) for the metric g and the fact that f
is constant along the fibers. Part (5) follows from parts (1) and (2) of Lemma as

follows

R(X,U)V = Dx(H(DyV) +V(DyV)) = Dy (@v + DXV>

—H(Dixy)V) = V(Dx V)

— Dy (—g(UJ;V)vf) + D™D,V — Dy (@V) — DyDxV
+ g([Xv}J]? V) Vf o FbD[X,U]V

__9UV) DyV

where in the latter equality we have used the fact that R(X,U)V = 0 when the fibers
are totally geodesic submanifolds of the total space and the horizontal distribution is
integrable. Moreover, part (1) follows immediately from part (1) of Lemma which

concludes this proof. O

1.4.3 Proof of Lemma 1.3

Proof: We take p € M, and orthonormal basis {X;} and U; of the distributions #, and
V,, respectively. Taking traces of equations (1) and (2) of Lemma [1.2] we have

Ric(X,Y) = PRic(X,Y) — %Hf (X,Y).

This latter proves part (1). Next, to prove part (2), we take trace of parts (5) and (6)
of Lemma [1.2] to obtain

(V) = Yo (25D TF ) + 3 a0, V)
j=1

=1
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VP
=
— Ricg, (U, V) — [fAf(m - 1)\vf|2] 95, (U, V).

NE

+ [9(U;, V)g(U,Uj) — g(Uy, Uy)g(U, V)]

<.
I

To prove part (3), by using parts (3) and (4) of Lemma [I.2) we easily verify that
Ric(X,U) = 0, so we conclude the proof. O
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Chapter 2

Gradient Ricci Soliton Warped
Products

In this chapter we prove triviality and nonexistence results for gradient Ricci solitons
that are realized as warped products. We start this chapter by studying the Ricci Hessian

type manifolds as the main tool to prove our theorems.

2.1 Ricci-Hessian type manifolds

Let (B", e "dvol) be an n-dimensional weighted Riemannian manifold, i be a smooth
function on B and dvol be the Riemannian volume density on (B",gp). A natural

extension of the Ricci tensor to weighted manifolds is the m-Bakry-Emery Ricci tensor
1
Ric}" = Ric +V?*h — —dh ® dh, for some 0 < m < +o0.
m

We consider (B™, gg) endowed with two smooth functions ¢ and f > 0. We can
further consider the weighted Riemannian manifold (B", e~¥dvol), where v is the smooth
function on B given by ¢ = ¢ — mlIn f, for 0 < m < +oo. For our purposes, we will

work with the following modification of the Ricci tensor:

Ric” ; = Ric +V%p — ?va. (2.1)

This tensor can also be viewed in the following way:

1
Ric)'; = Ric +V?p + V¢ — Edf ® dE,
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where ¢ = —mIn f. So, when ¢ is constant we recover the m-Bakry-Emery Ricci tensor

Ricg". An interesting case occurs when the metric gp satisfies
Ric”; = Ag, (2.2)

for some smooth function A on B. A motivation to study this equation comes from
Maschler’s work [6] in which he was interested in conformal changes of Kéhler-Ricci
solitons in order to obtain new Kéahler-metrics. To do this, he introduced the notion of

Ricci-Hessian equation, namely
Ric +aV?y) = Sy, (2.3)

where a and [ are smooth functions. Feitosa et al. [5, Remark 1] showed how Eq. (2.2)
can be reduced to a Ricci-Hessian equation. Example 1 in [4] shows that the standard

sphere and the hyperbolic space both satisfy Eq. (2.2)).
We recapitulate from Chapter (1| that another motivation to study Eq. (2.2) is that

the base spaces of gradient Ricci soliton warped products satisfy the referred equation for
a positive integer m and a constant \. To see this, we briefly describe the construction
by Feitosa et al. [4]. They considered a complete Riemannian manifold (B", gg) with
two smooth functions f > 0 and ¢ satisfying

m

Ric +VZ%p —
f

V2f = A\gp (2.4)

and

200 + |[Vo|? + Ap + %V(p(f) =c, (2.5)

for some constants A\, m,c € R, with m # 0. By [4, Proposition 3], the functions f and
© satisfy

A2+ FAf A+ (m = DIV = fVe(f) = u, (2.6)
for some constant g € R. In summary, we will need the following result (see Proposition 2

and Theorem 3 in [4]).

Proposition 2.1 (Feitosa et al. [4]) Let M = B™ x; F™ be a gradient Ricci soliton
warped product with potential function . Then, Eqs. (2.4) and (2.5) hold on B and the
fiber F' is an Einstein manifold with Ricci tensor Ricy = ugr, where p is given by (2.6)).

Conversely, let B be a complete Riemannian manifold with two smooth functions ¢ and
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f > 0 satisfying (2.4) and (2.5)), for any A € R. Take the constant u given by (12.6))

and a complete Riemannian manifold F of dimension m and Ricci tensor Ricy = ugp.

Then, (B™ xy F™, g,9) is a gradient Ricci soliton warped product.

We point out that the potential function used in Proposition [2.1] is justified by the

next result.

Lemma 2.1 (Borges and Tenenblat [16]) Let M = B" x¢ F™ be a warped product
with metric g = gp + f?gr, where f > 0 is a smooth function on B. If (M, g) is a

gradient Ricci soliton, then the potential function depends only on the base.

Proof: The proof follows the same argument as the more general case in [16]. Suppose
(M, g) is a gradient Ricci soliton warped product with potential function ¥ on M. Then,
the metric g satisfies

Ric +V*¥ = \g, (2.7)

for some constant A € R. By the standard expressions for the Ricci curvature and for

the Hessian of such a function ¥ on M (see Bishop and O’Neill [14]), we obtain

0= (V¥)(X,U) = X(U(¥)) — (VxU)(¥) = X(U(¥)) — TU@’
for all X, U horizontal and vertical vector fields, respectively. Next, we compute
XS ) = X)) - ;| xew) - =ow) o

Hence, the function U (¥ f~!) depends only on the fiber F'. Thus, without loss of gener-
ality, we can assume that ¥ = ¢ + f¢, for some functions ¢ on B and ¢ on F. Now we
take a unitary geodesic v on B, so that equation ({2.7)) reads along ~ as

. / / I/ m 1! 1!
Ricg(7v,7) + ¢ —7f +of" =M

Thus, for any vertical vector field V', one has f”V(¢) = 0. Since we are considering f
positive and nonconstant, there exists a point (p,q) € M such that f”(p) # 0, for all
q € F. Then, ¢ must be constant on F, i.e., ¥ depends only on B. 0]

We now define precisely the main object of study in this chapter. A Ricci-Hessian
type manifold is a complete Riemannian manifold (B", gg) endowed with two smooth

functions f > 0 and ¢ satisfying Eq. (2.2)) for a positive integer m and a constant
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A. For simplicity, we will say that (B™, gp,%) is a Ricci-Hessian type manifold, where
1) = ¢ —mln f. Moreover, we will use the weighted Riemannian volume density e~%dvol
on (B", gg, 1) whenever it is needed.

With these notations in mind we prove now the following formulas, which are derived

in the same way as in Petersen and Wylie [12, Lemma 2.5].

Lemma 2.2 Let (B", gg,1) be a Ricci-Hessian type manifold with scalar curvature S.

Then, the following hold:
1. Ric = =V?p+ 2V2f.
2. %dS = Ric(V), ) — %(Afdf — %d\Vf|2).

3. R(X,Y)(Vy) = (Vy Ric)(X) — (Vx Ric)(Y) — Z(df A V2NX,Y), for all vector
fields X, Y in X(B).

4. 18,8 =3 —S) — [Ric]2 +m 2Ric(VIn £, VIn f) + [V2In f2 — (Aln f)?).
Proof: From Eq. (2.2), we have
. S S
Ric := Ric——¢g = —V?p + (/\ — —) g+ @V2f.
n n f
Taking trace of Eq. (2.2)) we also get

5+A¢=m+?Af.

Combining the latter two equations we obtain part (1). For part (2) recall that for any

smooth function v on B the following holds

1
div Ric = §dS and Adv = dAv + Ric(Vu, ),

Hence, by Eq. (2.2)) we obtain

g = div(\g — VZp + ?VQJ")
= —dAp — Ric(Ve, ) + ?(dAf +Ric(Vf,-) + vz‘f(v(?)? )
= %Afdf +dS — Ric(V(p —mlIn f),:) — %V%f(Vf’ D).

Since d|V f|* = 2(V2f)(Vf), then we get part (2).

22



Next, recall that for any smooth function v on B and X,Y in X(B), the Riemann

curvature tensor satisfies
R(X,Y)Vv = (VxV?)(Y) — (Vy V) (X). (2.8)
We take v = ¢ and by using of Eq. (2.2)) again, we have

(VxV20)(Y) = (vX ()J + ?W f Ric)) (Y)

—~(wxriom) + (vx (7)) (1)

—(Vx Ric)(Y) + %vxv?f)( ) — ﬁ(df @ V2 f)(X,Y).

Combining the previous equality with (2.8]) we get

R(X, YV = (Vy Rie) (X) = (Vx Rie)(Y) + "RX,Y)Vf - F(df AVE)(X,Y).

This proves part (3). Moreover, by using part (2), we get

(Vx Ric)(Veh) = Vx (Ric(V)) — Ric (VX (w - %v f))

—Vy ( vs+ﬁ <Afo— —V|Vf|2)>

~ Ric ((v% - 7V2f) (X)+ % <f>Vf)
= %VZS(X) +Vy <J7Z <Afo - —V|ny2))
= (Rico(Al = Ric)) (X) — 5 X(f) Ric(V.).
Substituting this into part (3) we have
R(X. V)V = (Ve Rie)(X) — SV?S(X) - Vx ( : (Afo - —V|Vf|2))
X RIC(VS) = 5 A T2))X,TY)

Taking the trace of the latter equation we obtain

+ (Rico(A — Ric))(X) +

%AwS — tr (Rico(M — Ric)) + fﬁ Ric(Vf, Vf)

— div (f2 <Afo — —V|Vf|2)> (2.9)
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For any smooth function v > 0 on B it is true that

V2(Inv) = %v% - %dv ® dv. (2.10)
So,
. (Afo - gvxvﬂ?) =m (%vanf) - %Fvuavanfﬂ?))
= AV f) = FIV I f)PYS = SV (0 )P
= mA(n f)V(In f) = ZVIV(in f)P.
Whence,
v (7 (797 = SUIVFR) ) (@l )+ m(S (0 ), TA(n 1)

— %A|V(lnf)|2.

By , we get
%A¢S — tr(Rico(AT — Ric)) + % Ric(Vf, V) — m(A(In f))?
—m(V(n f), VA(In ) + %AW(ln A2

By using the Bochner formula for the function In f we rewrite the equation above as

follows
%A¢S = tr(Rico(Al — Ric)) + m(2Ric(VIn f,VIn f) 4+ [V?In f|* — (Aln f)?).

Noting that tr(Rico(AI — Ric)) = AS — | Ric |2 and |Ric|* = | Ric|> — £ we conclude the
proof. O

Now we continue by fixing notation and making comments about facts that will be

used henceforth. Let h be a smooth function on a Riemannian manifold (B, gg), and let
Ric;, = Ric+V?h (2.11)

denote the Bakry-Emery Ricci tensor of the weighted Riemannian manifold (B, e~"dvol).
Thus, (B,gp,Vh) is a gradient Ricci soliton provided the corresponding complete
weighted Riemannian manifold has constant Ricj-curvature, that is, Ric, = A, for some

A eR.

24



Associated to Ricy, we have the following Bochner type formula
1
iAh|Vu|2 = |V2ul|? + (Vu, VAyu) + Ric,(Vu, Vu), (2.12)

for u € C*(B). Recall that the second order operator h-Laplacian Apu = e"div(e™"Vu)
is formally self-adjoint in L2(B, e "dvol) space, and that the weak mazimum principle
at infinity for Ay, on (B, gg) holds if given a C? function u : B — R satisfying supg u =
u* < 400, there exists a sequence {x;} C B along which

() ulz) > u' — % and (i) (Apu)(z2) < % for all k € N,

Since the class of Ricci-Hessian type manifolds contains both m-quasi Einstein man-
ifolds and gradient Ricci solitons, the weak maximum principle at infinity is very useful
in order to study such manifolds. In this setting, for a Ricci-Hessian type manifold

(B,gp,v) we take h = ¢ in Eq. (2.11) and v = f in Eq. (2.10) to obtain the very

convenient identity

m
P
We point out that Eq. (2.13]) has two important immediate consequences. The first

Ric, = Ricl'; +—df @ df. (2.13)

one is the following Bochner type formula for the modified Ricci tensor Ricy) ;.

Lemma 2.3 Let (B",gp,v%) be a Ricci-Hessian type manifold. Then, for a smooth
function u on B the following holds

m
7

Proof: It is an immediate consequence of equations (2.12)) and ([2.13]). O

1 .
§A¢|Vu|2 = |V?ul® + (Vu, VAyu) + Ric]) ((Vu, Vu) + —(V f, Vu)?. (2.14)

The second consequence of Eq. (2.13)) is the validity of the weak maximum principle
at infinity for A, on a Ricci-Hessian type manifold (B, g¢p,v). In view of this, we

shall refer to the following two results. First, we recall a weighted-volume comparison

established in [I7, Theorem 4.1] as follows.

Proposition 2.2 (Wei and Wylie [17]) Let (B, e "dvol) be a complete weighted Rie-
mannian manifold. Suppose that

RiCh Z /\,

for some A € R. Then, having fired Ry > 0, there are constants A, B,C' > 0 such that,
for every r > Ry,

T

vol,(B,) < A+ B / e Mg,
Ry
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The next result states the validity of a weak form of the maximum principle at
infinity for the h-Laplacian, under weighted-volume growth conditions obtained in [15]
Theorem 9]. In what follows, L'(+00) stands for the space of the integrable functions
at infinity, that is, a function v belongs to L'(+00) if there exists R € R such that
v € L'([R, +00)).

Proposition 2.3 (Pigola et al. [15]) Let (B,e "dvol) be a complete weighted Rie-

mannian manifold satisfying the volume growth condition

r

Tvol (B ¢ L'(+00). (2.15)

Then, the weak mazimum principle at infinity for the h-Laplacian holds on B.

In summary, one readily has the following proposition.

Proposition 2.4 The weak mazimum principle at infinity for the 1¥-Laplacian holds on

a Ricci-Hessian type manifold (B™, gg, ).

Proof: Since Ric'; = A, by Eq. (2.13) we have Ric, > A. Moreover, this lower bound
on Ricy implies the volume growth condition (2.15)), see [9, pg. 107]. Thus, we apply
Propositions and to the weighted manifold (B, e %dvol) to obtain the validity of

the weak maximum principle at infinity for the v-Laplacian on B. 0

We point out that Proposition [2.4]is crucial to prove our results under L> conditions.
We also note that more generally this weak maximum principle at infinity holds if the

weighted Riemannian manifold (B, e~¥dvol) satisfies Ric]; > A,

2.2 Ricci-Hessian type manifolds as base spaces of

gradient Ricci soliton warped products

In this section, we elaborate the proofs of the main theorems of this chapter. First of
all we restrict ourselves to Ricci-Hessian type manifolds as base spaces of gradient Ricci

soliton warped products, which means that they must satisfy the additional Eq. as
well as Eq. 2.6l We start by using equations (2.4)), (2.5) and (2.6) to obtain the following

lemma.
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Lemma 2.4 Let (B", gp,v) be a Ricci-Hessian type manifold satisfying the additional
Eq. (2.5)). Then,

Ay =nA— S +m|V(n f)%,

Ai/f’gp =C— 2)‘307
1
Ay(In f) = p(u —Af?).
Proof: The first equation is immediately obtained by taking the trace of Eq. (2.4]). The
second and third equations follow from equations (2.5 and (2.6)), respectively. ([l

We state now the following version of a LP-Liouville-type theorem for the h-Laplacian
on a complete weighted Riemannian manifold (B, e "dvol) established in [15, Theo-

rem 14]. This result will be important to prove our theorems under L? conditions.

Proposition 2.5 (Pigola et al. [15]) Let (B, gg,e "dvol) be a complete weighted
manifold. Assume that u € Lipy,.(B) satisfy

ulyu >0,  weakly on (B, e "dvol).

If, for some p > 1,
1

Jop, lulpe="dvol,

¢ L'(+00), (2.16)

then u s constant.

Remark 2.1 By [15, Remark 15], if u € LP(B,e "dvol) then the condition is
satisfied. Note also, that no sign condition is required on w. Moreover, if the locally
Lipschitz function u satisfies both Ayu > 0 and the non-integrability , then applying
Proposition to uy = max{u, 0} gives that either u is constant, oru < 0. In a similar
way, we can apply Theorem to u_ = max{—u,0}.

As a consequence of Proposition 2.5 and Remark we have a LP-Liouville type

result for Ricci-Hessian type manifolds.

Corollary 2.1 Let (B, gg,) be a Ricci-Hessian type manifold. If 0 < u € Lip;.(B)
satisfies Ayu > 0 and w € LP(B, e Vdvol) for some 1 < p < +o0, then u is constant.
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2.2.1 Results under L'<P=*> conditions

In what follows we will prepare the ground for the proof of the main theorems in this

chapter. We star with the following proposition.

Proposition 2.6 Let (B", gg, %) be a Ricci-Hessian type manifold satisfying the addi-
tional Eq. (2.5). Suppose A < 0. Then,

a) If ¢ € LP(B,e ¥dvol), for some 1 < p < +o0, then either ¢ is constant and

(B", gg) is an m-quasi-Einstein manifold or ¢ has a sign on B.

b) For A\ =0, if p > 0 and f € LP(B,e ¥dvol) for some 1 < p < +oo, then f is
constant, . =0 and (B"™, gg, V) is a gradient steady Ricci soliton.

c) For A <0, there is no such a Ricci-Hessian type manifold provided that ;1 > 0 and
[ satisfies either of the following conditions: f € L>°(B) or f € LP(B,e¥dvol) for

some 1 < p < 400.

Proof: To prove part a), suppose ¢ € LP(B,e ¥dvol), for some 1 < p < +o0o. By
Lemma [2.4] we obtain that
Aypp =c—2Xp.

For ¢ > 0, we consider ¢, = max{p,0}. Since A < 0, we get Ay, = c— 2 p; > 0.
Applying Corollary to ¢, € LP(B,e ¥dvol), gives us that o, is constant. Hence,
if there exists a point zo € B such that ¢(zg) > 0, then ¢ = p(z9) > 0 and B is a
m-~quasi-Einstein manifold with potential function & = —m/lIn f. Otherwise, we have
¢ < 0 on B. In a similar way, for ¢ < 0 we apply Corollary to ¢_ € LP(B,e ¥dvol)

to obtain that either B is an m-quasi-Einstein manifold or ¢ > 0 on B.

Now we prove part b). By Lemma , we have
FAGE = 1= Af2 4 [V fI (2.17)

For A = 0, we suppose that u > 0 and f € LP(B,e ¥dvol) for some 1 < p < +oc.
From Eq. (2.17)) we have fA,f > 0. Then we apply Corollary to obtain that f is a
constant. So, (B™, gp, Vi) is a gradient steady Ricci soliton with potential function ¢

and from Eq. (2.17) we conclude that p = 0.
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We prove now part c¢). Since A < 0 and g > 0, the nonexistence result for the
standard Riemannian case is trivial by the third equation of Lemma [2.4. We suppose
now that f is nonconstant, so that we can use Eq. (2.17)) to obtain

Ayf>—=Af>0. (2.18)

Assume that f € L>®(B), i.e., f* =supg f < +00. By the weak maximum principle at

infinity for the ¢-Laplacian, there exists a sequence {x}} C B along which

lim f(xg) = f" and limsup(Ayf)(zg) <0

k—+o00 k—+o00 -

Thus, evaluating (2.18]) along {x;} and taking limsup as & — 400, we obtain that

—Af* =0, which is a contradiction, because A < 0 and f* > 0.

Next, we assume that f € LP(B,e ¥dvol) for some 1 < p < +o00. Since A < 0, we
obtain that A, f > 0. So, we apply Corollary to conclude that f must be constant,

which is again a contradiction. 0

We now combine Lemmas 2.3 and [2.4] to obtain the following Bochner type formulas

for Ricci-Hessian type manifolds.

Lemma 2.5 Let (B", gg,1) be a Ricci-Hessian type manifold satisfying the additional
Eq. (2.5)). Then, for a smooth function w on B the following holds:

a) 584|Vel? = V2o = AVo|* + 5(Ve, V)2
b) 38V fI> = |V2In fI* = %[V fI* + AV In | + 5(VIn £,V f)*.

Proof: It is immediate by taking © = ¢ and In f in Lemma [2.3] respectively, and by
using the equations of Lemma [2.4 O
In addition to Propositions and [2.5] we will also use the following Bochner type

inequalities to prove our results.

Lemma 2.6 Let (B", gg,) be a Ricci-Hessian type manifold satisfying the additional
Eq. (2.5)). Then, the following inequalities hold:

m
IV|Ay |Vl > —AVe|* + FW% Vf)? (2.19)
and
i fIAT I 1> AV In 2 — 249 f12 4 7V i £V )2 2.20
Vin fl|A,|VIn f| > AVin f| _F| n f| +F< nf, V)2 (2.20)
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Proof: For a smooth function v on B we have
1
38|Vl = [Vul Ay [Vul + [V [Vl ]”
Now, combining this latter equality with the Kato inequality, namely
|V2ul? > |V|Vu||?, uweC®(B), (2.21)

one has
1
|Vu|Ay|Vu| > §A¢|Vu|2 —|V|Vul?.
Taking u = ¢ into the latter inequality and using part a) of Lemma we have

m
P

The second required inequality is analogously obtained. 0

1
IVolAy| V| = §Aw|V<pl2 —|VIVe|]* > =A[Ve]* + = (Ve, Vf)*.

We continue to prove some triviality and nonnexistence results for Ricci-Hessian type

manifolds satisfying the additional Eq. (2.5 as follows.

Proposition 2.7 Let (B", gg,¥) be a Ricci-Hessian type manifold with A < 0 satisfying
the additional Eq. (2.5) . Then, the parameter function ¢ is a constant provided that it
satisfies either of the following conditions: V| € L®(B) or |Ve| € LP(B, e ¥dvol) for

some 1 < p < +oo. In this case B must be an m-quasi-Finstein manifold.
Proof: Since A < 0, from part a) of Lemma we have
Ay|Vep|*> > —2X|Ve]* > 0. (2.22)

Assuming that |Vp| € L*°(B), by the weak maximum principle at infinity for the 1)-

Laplacian there exists a sequence {x;} C B such that
limsup (Ay|Ve[*)(z) <0 and  lim |Vep|*(zy) = sup |Ve|*.
k——+o00 k—+o00 B
Thus, evaluating (2.22)) along {x}} and taking lim sup as k — +oo, we get
Asup |Vip|? = 0.
B

Then, we must have |Vy| = 0, that is, ¢ is a constant.

Assume now that |Vp| € LP(B, e ¥dvol) for some 1 < p < 4o00. Since A < 0, from
(2.19) we obtain that |V|A,|Ve| > 0. We apply Corollary [2.1| to obtain that |V| is
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a constant. Substituting this latter fact into (2.19), ¢ must be constant. This concludes

the proof. 0

Next, we prove the following nonnexistence result.

Proposition 2.8 There is no Ricci-Hessian type manifold (B, gp, ) satisfying the ad-
ditional Eq. (2.5) with A > 0 and p < 0 provided that the parameter function f satisfies
either of the following conditions: |V1In f| € L*°(B) or |Vin f| € LP(B,e %dvol) for

some 1 < p < 4o00.

Proof: Since A > 0 and p < 0, the constant case is trivial by the third equation of
Lemma So that, we suppose now f is nonconstant. From part b) of Lemma we
have

Ay|VInf|* > 2\|VIn f|* > 0. (2.23)

Assuming that |Vln f| € L*(B), by the weak maximum principle at infinity for the
y-Laplacian there exists a sequence {z;} C B such that

limsup (Ay|[VInf|*)(zx) <0 and  lim |VIn f|*(x;) = sup |V In f|.

k—+o00 k—+o00 B

Thus, evaluating ([2.23)) along {x} and taking lim sup as k — +oo, we get
Asup |V 1In f|> =0,
B

which is a contradiction because A > 0 and f is nonconstant.

Assume now that |VIn f| € LP(B,e ¥dvol) for some 1 < p < 4o00. Since A > 0
and p > 0, from (2.20) we obtain that |V 1In f|Ay|[VIn f| > 0. Applying Corollary [2.1]
|V 1In f| must be a constant. Using this latter fact into (2.20) we obtain that f is a

constant, which is again a contradiction. ([l

2.2.2 Proof of the Main Results

Let M = B x¢ I be a gradient Ricci soliton warped product with warping function
f. By Lemma [2.1] we can assume without loss of generality that the potential function
is the lift » = ¢ o 7 of a smooth function ¢ on B to M. By Proposition 2.1} the base

space B is a Ricci-Hessian type manifold satisfying (2.4) and ({2.5)), while the fiber F' is
an Einstein manifold with Ricci tensor Ricyp = pgp, where p is given by (2.6). Now,

31



we are in a position to give the proof of the main results of this chapter. We start by

proving a triviality result in the steady case.

Theorem 2.1 Let Bx I be a gradient steady Ricci soliton with fiber having nonnegative
scalar curvature. Then, it must be a standard Riemannian product provided the warping

function satisfies f € LP(B, e ¥dvol) for some 1 < p < +o0.

Proof: Since A = 0 and p > 0, we use part b) of Proposition to conclude that f

must be a constant and g = 0. This completes our proof. 0

Theorem 2.2 [t is not possible to construct a gradient expanding Ricci soliton warped
product B"™ x ¢ F™ with fiber having nonnegative scalar curvature and warping function
satisfying either of the following conditions: f € L>®(B) or f € LP(B",e ¥dvol) for

some 1 < p < 4o00.

Proof: Since A < 0 and p > 0, part c¢) of Proposition shows that there is no a
Ricci-Hessian type manifold B satisfying the additional Eq. with the parameter
function f satisfying one of the following conditions: f € L*>(B) or f € LP(B, e ¥dvol)
for some 1 < p < +o00. This concludes the proof. 0

As an application of Propositions[2.7/and [2.§ we have the following results for gradient

Ricci soliton warped products.

Theorem 2.3 Let M = B" x; F™ be a gradient expanding Ricct soltion with potential
function @. Then, M 1is a trivial soliton provided that ¢ satisfies either of the following
conditions: |V| € L>®(B) or |[Vy| € LP(B,e"%dvol) for some 1 < p < 400.

Proof: Since A < 0, we use Proposition to conclude that ¢ is constant if it satisfies
either V| € L°(B) or |V¢| € LP(B, e ¥dvol) for some 1 < p < +oo. Thus, M must

be a trivial soliton, that is, an Einstein manifold. O

Theorem 2.4 [t is not possible to construct a gradient shrinking Ricci soliton B™ x y F'™
with fiber having nonpositive scalar curvature and warping function satisfying either
of the following conditions: |VIn f| € L>®(B) or |VIn f| € LP(B,e ¥dvol) for some
1 <p<4o0.
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Proof: Since A > 0, Proposition 2.8 shows that there is no Ricci-Hessian type manifold
satisfying the additional Eq. with the parameter function f satisfying either of the
following conditions : |V 1In f| € L®(B) or |VIn f| € LP(B, e ¥dvol) for some 1 < p <
+00. This concludes the proof. [l

2.3 Concluding Remarks

We also prove, under some additional condition, scalar curvature estimates for Ricci-
Hessian type manifolds. They follow by combining Proposition [2.4] with following “a-
priori” estimate for weak solutions of semi-linear elliptic inequalities under volume as-

sumptions.

Proposition 2.9 (Pigola et al. [15]) Let (B, gg, e "dvol) be a complete weighted man-
ifold. Let a(x),b(z) € C°(B), set a_(x) = max{—a(z),0} and assume that

supa_(r) < 400
B

and

1
b(x) > —— on B,

(r(x))
for some positive, non decreasing function Q(t) such that Q(t) = o(t?), as t — +oo.

Assume furthermore that, for some H > 0,

Let u € Lipo.(B) be a nonnegative solution of
Apu > a(z)u + b(z)u’,

weakly on (B, e "dvol), with o > 1. If

N Q(r) Invol,(B,)

T—>+00 T2

< +00,
then, u(x) < H71 on B.

By using Proposition [2.9| we have the validity of the next corollary.
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Corollary 2.2 Let (B, gp,%) be a Ricci-type manifold and let u € Lipi,.(B) be a non-
negative weak solution of

Aypu > au + bu?,
for some constants a € R,b >0 and 0 > 1. Then,

max{—a,0
u(z)’ ' < % on B.
As an application of Proposition [2.4], we prove the required result that is similar to

known theorems in the setting of gradient Ricci solitons proved by Pigola et al. [15]

Theorem 3] as well as of m-quasi-Einstein metrics proved by Rimoldi [IT, Theorem 3].

Theorem 2.5 Let (B", gg, %) be a Ricci-Hessian type manifold with scalar curvature
S. Let us define S, = infg S and we assume that

VI fP?

Ric(Vin f,Vin f) < 5

(2.24)

a) For A\ >0, one has 0 < S, < nA.

b) For A\ = 0, we have S, = 0. Moreover, either S > 0 or S = 0. In the latter
case, either both f and ¢ are constant, or (B™, gg) is isometric to the Riemannian

product R x X"1 where ¥ is a Ricci-flat totally geodesic hypersurface of (B", gg).

c) For A <0, we have nA < S, <0, and S > n\ unless B is an Einstein manifold.

Proof: We start by showing that S, = infgz S > —oo. By part (4) of Lemma and

by equation ([2.24]), we have

1 1
58S < —=5% +\S. (2.25)
n

Let S_(z) = max{—S(x),0}. Then, S_ solves weakly the following
1

1 1
z - _Z > = 2 .
2A¢S_ 2A¢S > n(S_) + AS_

We apply Corollary to obtain that S_ is bounded from above, or equivalently, S, =
infg.S > —oo. By the weak maximum principle at infinity for the i-Laplacian there

exists a sequence {xy} C B such that

lim S(zg) =S, and lminf(AyS)(zg) > 0.

k—+o0 k—+o0
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Taking lim inf of (2.25)) at the points of {x;} shows that

S

=(wn = 8.) >0, (2.26)

Now, we distinguish three cases. For A > 0, it is immediate from ([2.26)), that
0<S, <n.

This proves part a). To prove part (b), assume A = 0. From (2.26) we conclude that
Sy = 0. According to (2.25), we note that A,S < 0. Therefore, by the minimum
principle either S > 0 on B or S = 0. If S = 0, substituting it into part (4) of
Lemma we obtain that B is Ricci-flat, and yields V2(In f) = 0. So, if f is
nontrivial then by the Cheeger-Gromoll’s argument B is isometric to R x "1, where 3
is a Ricci-flat totally geodesic hypersurface of (B", gg). Otherwise, when f is constant,

if ¢ is nontrivial we apply the same argument to conclude that B is isometric to R x X.

Next, assume A < 0. From ([2.26) we deduce that n\ < S, < 0. Suppose S(xy) = nA

for some zy € B. Since the nonnegative function w(z) = S(x) — n satisfies

1 1
§A¢w < —EwQ —Aw < —Aw,

and w attains its minimum w(z¢) = 0, it follows from the minimum principle that w
vanishes identically. Hence, S = nA\ is a constant, and substituting this into part (4) of

Lemma 2.2 we get that B is an Einstein manifold. O
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