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Abstract

The Border Gateway Protocol (BGP) is the default Internet routing protocol that manages

connectivity among Autonomous Systems (ASes). Although BGP disruptions are rare

when they occur the consequences can be very damaging. Consequently, there has been a

considerable effort aimed at understanding what is normal and abnormal BGP traffic and,

in so doing, enable potentially disruptive anomalous traffic to be identified quickly. Even

though there is an extensive research on anomaly detection, there are two major gaps in

current literature: the scarcity of public datasets for all types of events and the lack of a

BGP anomaly classification framework that differentiates anomaly classes. Since that there

are no public datasets of labeled BGP anomalous events, each model was validated using

different datasets, which had to be individually generated for each approach. The absence of

common groundwork dataset increases the difficulty in comparing different approaches. The

lack of a classification framework hinders the deployment of specific mitigation measures

to each anomaly class in an automated fashion. In the current work, we address both

problems: 1) We provide a BGP dataset generation tool and publicly available datasets

for different anomaly classes. These datasets contain the most used features by previous

research efforts and additional novel features; 2) We address the BGP anomaly classification

problem by developing a framework that uses deep learning as the core engine of an anomaly

detection and classification mechanism. We built a model that exploits different neural

network architectures advantages. Both novel features and the BGP anomaly detector and

classifier were evaluated and it was demonstrated that they can be used to react to anomalies

in real-time and leverage the deployment of different mitigation and coordination strategies

to different anomaly classes in an autonomous fashion.



Chapter 1

Introduction

The Internet is a structural part of the lives of almost two billion users worldwide and

critical to many services, such as financial transactions, business operations, and many other

applications [22, 132]. The Internet is also highly dynamic, extremely heterogeneous, has a

planetary-scale, and a largely opaque ecosystem of networks [25].

The de facto Internet routing protocol is the BGP [126], which is responsible for the

exchange of reachability information among computers and routers of different domains. A

number of works [129, 98, 10] explored the possibilities that a logically centralized control

plane brings to accomplish BGP’s purpose of furthering the business goals of an organization

in providing its routing information to other organizations.

There has been a considerable effort aimed at understanding what is normal and abnormal

BGP behavior and enabling potentially disruptive anomalous traffic to be identified quickly.

Many efforts with the goal of detecting BGP anomalies were proposed throughout recent

years [4], varying with respect to the used approach, level of automation achievable, type of

detected anomaly, and many other factors. In the current work, we provide a BGP dataset

generation tool, publicly available datasets for different anomaly classes and a framework

that uses machine learning as the core engine of an anomaly detection and classification

mechanism. This mechanism can be used to react to anomalies in real-time and leverage the

deployment of different mitigation and coordination strategies to different anomaly classes

in an autonomous fashion.
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This chapter is organized as follows. In Section 1.1, we discuss the challenges of detecting

BGP anomalies and introduce our definitions of unstable BGP traffic and anomalous BGP

traffic. In Section 1.2, we enunciate the thesis statement of this work. In section 1.3,

we formulate the research questions that guided the current work. In Section 1.4, we list

the objectives that were derived from our research questions. In Section 1.5, we list the

contributions produced throughout the development of this work. Finally, we present the

organization of this thesis in Section 1.6.

1.1 Motivation

Along with the increasing necessity of ubiquitous Internet connectivity, it is possible to

observe the growing complexity of management of networked environments due to a number

of factors (e.g. the need to configure a large number of devices, the inherent complexity of

policies themselves [11]). Nonetheless, simplified management is a key enabler to realize

current network applications’ requirements.

Among proposals that aimed to simplify network management and facilitate innovation,

software-defined networking (SDN) has emerged as one of most important networking

paradigms in the recent years [43]. SDN aims to simplify management and provide flex-

ibility to the network through a clear separation of control plane from data plane. The

control plane is composed by high-level functionality, such as network policies and intrusion

detection, whereas the data plane comprises low-level forwarding capabilities at network-

device-level. In SDN, the control plane is moved to a logically centralized controller which

provides a northbound interface, allowing the construction of high-level network manage-

ment applications, and a southbound interface, which manages network devices through a

vendor-independent protocol.

SDN was initially aimed for enterprise networks [108], however, many approaches that

integrate and leverage current Internet infrastructure with SDN [129, 61] were proposed.

Such solutions have demonstrated that bringing SDN to inter-domain routing can improve

the convergence performance of routing mechanisms [81], offer new routing capabilities [61],
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or lay the groundwork for new services and markets [82, 53]. Lin et al. [98] proposed the

SDN-IP architecture, depicted in Figure 1.1, which integrates the SDN control plane with

BGP speakers in order to access external legacy networks. In such architecture, BGP policies

may be implemented as high-level intents in the control plane, which translates them to BGP

announcements and withdrawals.

Fig. 1.1 Integration of SDN and BGP

Any BGP activity that does not contribute to the business goals or undermines them can

be considered anomalous. Unfortunately, it can be very difficult to determine whether a

particular activity is furthering those goals. For example, BGP updates that do not reflect

underlying topology changes may be a legitimate policy changes or they might be the

consequence of route flapping, where the same path is repeatedly announced and quickly

withdrawn [37].

A number of studies [86, 93, 44, 142] showed that many of these events are short-lived

and do not disrupt Internet connectivity. However, larger scale events may be able to cause

Internet outages and instabilities that affect quality of service for hours [28]. These large scale

events may have a number of causes: (i) natural disasters, such as earthquakes and hurricanes;

(ii) software attacks, such as worms or prefix hijacking; (iii) physical attacks, such as military
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attacks, terrorism, or electromagnetic pulse attacks; (iv) accidental misconfiguration; (v)

certain forms of censorship such as the one adopted during the Arab spring; (vi) software

bugs (e.g., in the routers); (vii) network equipment hardware failures, and many other factors.

An autonomous system with a logically centralized control plane provides as an advantage

the complete view of the routing information of multiple BGP routers and the possibility of

mitigation strategies that affect traffic of specific applications, allowing network management

to achieve a greater level of automation. Feamster and Rexford [42] argue that networking

research must move towards the realization of self-driving networks [80], empowered by

machine-learning-based models. In these networks, applications must be developed using

high-level policy goals and a holistic view of the underlying components. For example,

anomaly classification and detection mechanisms must be able to make real-time, closed-loop

decisions, rather than only detect anomalies through offline analysis of network traces.

One of the key enablers of self-driving networks is deep learning [89], a trend that has

gained a lot of attention in recent years. Numerous efforts showed its effectiveness to tackle

a wide range of problems [67, 134, 157]. In the last decade, networking research has applied

neural networks to areas such as traffic prediction [95, 122], congestion control [40, 62] and

fault management [84, 114]. During our research, we identified that SDN and deep learning

methods have the potential to overcome the limitations of previous approaches, automating

the process of detection and classification through systematic extraction of BGP features

with a high accuracy rate, and supporting models that are able to capture complex behavior

and differentiate anomaly classes.

A major challenge in applying deep learning methods is to obtain training data that is

representative of the real distribution and in large volume, in order to train models that

generalize better for future occurrences and fit to complex behavior. There is a number of

public BGP data sources [128][130] that contain control plane information from anomalous

events, however the raw BGP data is not suited for machine learning methods. Pre-processing

of raw data includes the definition and extraction of relevant features and transformation into

tabular data, which is used as input to machine learning models.
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As previously discussed, there is an extensive research on BGP anomaly detection [4],

however, we identified that a major gap in current literature is that there is a scarcity of public

datasets of labeled BGP anomalous events, thus, each model was validated using different

datasets, which had to be individually generated for each approach. The absence of common

groundwork dataset increases the difficulty in comparing different approaches.

Another gap is the lack of a classification framework that systematically differentiates

between different types of anomalies, allowing specific mitigation measures to each anomaly

class. Few efforts [138, 88] towards this goal are specialized to identify only one type of

anomaly.

Besides, most efforts are based on approaches that depend mostly on human interaction in

order to either analyze the suspicious identified behaviors (e.g. time series analysis methods)

or to fine tune the parameters of a model or define a "magic number" that defines the threshold

to detect anomalies (e.g. statistical pattern recognition), which hinders the possibility of

network automation without network operator intervention.

This work discusses which features may be extracted from BGP control plane messages

in order to detect and classify anomalies, as well as proposes novel features that yield better

detection results than features available in the literature. I constructed datasets of BGP

anomaly events by extracting these features and made them publicly available [45]. Then, I

developed a deep learning framework for detection and classification of BGP anomalies that

achieved good performance in a significant subset of such datasets.

1.2 Thesis Statement

Considering the presented motivation, our thesis statement is as follows:

Deep learning approaches are able to effectively detect and classify large scale anomalous

events in BGP traffic, overcoming current limitations that lead to lack of generalization, in

order to make closed-loop decisions.
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1.3 Research Questions

We enumerate the research questions of investigation in this thesis as follows:

RQ1 Which features can be extracted from BGP traffic that better represent the difference

between anomalous and normal behavior?

RQ2 Which features can be extracted from BGP traffic that better represent the difference

between different types of anomaly?

RQ3 Which deep learning architecture can capture the relevant behavior in order to effec-

tively detect and classify a wide range of anomalies?

1.4 Objectives

The main objective of this work is to develop a framework that detects and classifies

anomalous behavior in the BGP traffic in a timely fashion through the use of deep learning

models, enabling the application of different mitigation techniques suited to each anomaly

class. The specific objectives of this work are as follow:

1. Identify which features can be used to detect and classify anomalous behavior

2. Develop a mechanism that extract time series of features from BGP messages

3. Label anomaly datasets of different classes through the use of public data

1.5 Contributions

The main contributions of this work are as follows:

1. Novel features that capture the relationship of complementary messages and allows

easier detection and classification of anomalous behavior.

2. Publicly available BGP feature extraction tool [117] that allows easy integration of

new network features.
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3. Publicly available datasets of network features [45] during BGP anomalies of different

classes, which can be used to train customized machine learning models.

4. Novel deep learning framework capable of detecting a wide range of BGP anomalies.

5. Classification mechanism capable of categorizing different types of anomalies.

Publications:

1. Due to the denial of access to data centers to collect data about failures the subject of

this research had to be changed from fault management in software-defined networking

to the current line of work. During this former phase, we developed a comprehensive

survey [30] which identified main gaps in current research and guided our future steps.

2. A paper based on the developed dataset generation tool, along with the generated

datasets and trend analysis. This paper [46] was presented at the IEEE Symposium on

Computers and Communications 2019 and it is the base material of Chapter 4.

3. Final results of the current work will be submitted to the Journal of Networks and

Computer Applications.

1.6 Thesis Organization

Chapter 2 presents a general overview on the main topics of this work, elaborating concepts

that will be used throughout this thesis, namely: Border Gateway Protocol, BGP anomalies,

Machine Learning and Software defined networking.

Chapter 3 provides a summarized review on anomaly detection and classification efforts,

which are categorized in four main areas: Time series analysis, comparison with historical

data, statistical pattern recognition and machine learning. We also identify the main gaps in

current research, such as, lack of anomaly classification and high difficulty to reproduce and

compare approaches.

Chapter 4 discusses which features may be extracted from BGP messages in order

to detect and classify anomalies, as well as proposes novel features. It also presents a
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framework for BGP anomaly dataset generation and generated datasets, both of which are

publicly available.

Chapter 5 discusses which properties are present in BGP message dynamics and which

neural network models are capable of capturing such properties. Then, we present our

proposed deep neural network architectures for anomaly detection and classification. Finally,

we propose a SDN architecture with a anomaly detection and classification modules. This

chapter also presents the evaluation of the proposed method and describes advantages of

different metrics and which are adequate to the BGP anomaly detection problem. Then, we

elaborate on how the machine learning models were trained, which hyperparameters were

used and the achieved results.

Chapter 6 provides a discussion on how our BGP dataset generation tool can be used as a

benchmark for future anomaly detection and classification methods. It also discuss the deep

learning model results and how it can be improved. On future directions, we also discuss how

the current work may leverage self-driving networks and be improved by explainable AI.



Chapter 2

Background

This chapter presents a general overview on the main topics and concepts that will be used

throughout this work. Section 2.1 provides an overview of Border Gateway Protocol func-

tioning, describing the organization of the Routing Information Base, types of BGP messages

and its respective attributes. Section 2.2 describes different types and sub-types of BGP

anomalous behavior, varying with respect to granularity, size, root causes and effects. Section

2.3 describes the events which originated our datasets. Section 2.4 provides an overview

of the Software-Defined Networking architecture and an explanation of OpenFlow [108],

the SDN de facto protocol. Section 2.5 introduces the core concept of machine learning

approaches and deep learning, focusing on neural networks architectures that were used in

this work.

2.1 Border Gateway Protocol

The Internet is a global network composed by tens of thousands of interconnected admin-

istrative domains, called autonomous systems (ASes). An AS comprises a collection of

routers, which are responsible for the distribution of a set of IP routing prefixes. These routers

exchange information through two classes of routing protocols, Internal Gateway Protocol

(IGP), responsible for communication inside a single AS, and Exterior Gateway Protocol
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(a) BGP architecture [85]

(b) BGP speaker internal tables

Fig. 2.1 BGP speaker internal organization and inter-AS architecture

(EGP), which allows routers from different ASes to exchange data. IGP is used to propagate

the best paths inside an AS, whereas EGP computes the best routes across different ASes.

The Border Gateway Protocol (BGP) [126] is the de-facto Internet EGP, responsible for

the maintenance of updated information among routers about selected paths to any given

routing prefix. Each BGP router (hereafter interchangeably called BGP speaker) keeps its

own Routing Information Base (RIB), which consists of three tables: Adj-RIB-In, Adj-RIB-

Out and Loc-RIB. The Adj-RIB-In stores unedited routing information sent by neighboring

routers, Loc-RIB keeps the best routes available, derived from the routes stored in Adj-

RIB-In and internal routing policies, and Adj-RIB-Out stores the routes that will be sent to

neighboring routers. Figure 2.1 depicts an example of intra and inter-domain topology.

BGP routers exchange four types of messages: OPEN, KEEPALIVE, UPDATE and

NOTIFICATION. BGP speakers at the borders of two adjacents ASes establish a peering

session by sending an OPEN message containing AS number and IP. The session is main-

tained as long as BGP speakers reply to KEEPALIVE messages and NOTIFICATION

messages, used in case of error or graceful disconnection, are not sent. At first, the routers

communicate their full routing table (Adj-RIB-Out). Then, upon modifications, an UPDATE

message is sent to announce a new route, withdraw a route that was advertised previously, or

update an existing route with new parameters. These parameters include the AS path to a

prefix, the next hop, prefix aggregation information and other extensions [17] [8] [7]. Figure

2.2 exemplifies the propagation of a BGP update message.
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The main UPDATE attributes are AS-PATH, ORIGIN, LOCAL-PREF, AGGREGA-

TOR and MULTI EXIT DISCRIMINATOR (MED).

• AS-PATH is a list of ASes that must be traversed to reach a prefix. Before a BGP

speaker propagates a path to its peers, it appends its own AS number to the AS-PATH

attribute.

• ORIGIN refers to whether the message was originated from IGP, EGP or another

routing protocol (e.g. static route).

• LOCAL-PREF is an integer value that represents a preference of a network operator

for a route and can be used to express business policies (e.g. prioritize routes from

peers over providers).

• A BGP speaker can aggregate multiple prefixes in a single update message, in this

case, the AGGREGATOR attribute contains information about the BGP speaker that

aggregated the route.

• In case there are multiple entry points to an AS, the MED attribute indicates a metric

that is used by the external decision process to choose the route with lower MED

value.

Fig. 2.2 BGP update message propagation example [4]
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Considering these attributes, the BGP speaker selects the best advertised route. Table 2.1

summarizes the order of criteria used during the BGP path selection process.

Table 2.1 BGP path selection process

Priority Attribute

1 Highest LOCAL-PREF value

2 Lowest AS-PATH length

3 Lowest Origin Type

4 Lowest MED value

5 EBGP learned over IBGP learned

6 Lowest IGP cost

7 Lowest Router ID

2.2 BGP Anomalies

Ideally, during its normal operation, BGP would only be used by ASes in order to exchange

information that represented real changes in inter-domain infrastructure and enforce policies

of network administrators. Therefore, as long as both of them remained the same, BGP traffic

volume should remain low. However, a number of studies [93, 86] on BGP behavior through

the years showed that BGP traffic has plenty of dynamics, for instance:

• Forwarding instabilities: Transmission of information due to forwarding plane

changes. For example, an AS outage forces its peers to send a backup route to

their respective peers.

• Policy fluctuations: Transmission of information due to policy changes. For example,

an AS announces the same AS-path to reach a given prefix but with different policy

attributes, e.g. MED, communities, localpref.
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• Pathological updates: Transmission of redundant or inconsistent information due

to network device malfunctioning, misconfiguration, or other pathological behavior.

Identify the root cause of pathological updates may be hard, or even not possible.

Also, there are some assumptions about BGP operation, such as destination-based routing

and valley-free routing, however, studies showed that the following anomalous states are

observable in the Internet:

• Violations of destination-based routing: Ideally, a router forwards all packets with

the same destination address to the same next hop. However, Flach et al. [44] found

that, from a set of approximately 40k routers probed, 29% of them forward traffic going

to a single destination via different next hops, and in some cases, even to different

ASes.

• Detoured routes: The BGP specification defines that, in the absence of any policy

that enforces the contrary, the route selection process must choose the shortest-path.

However, ASes’ policies and configuration errors may lead to non-optimal routes being

selected, even though there exists other policy-compliants routes available [102]. In an

early study [142], Tangmunarunkit et al. showed that about 20% of Internet paths are

inflated by 50%

• Violations of valley-free routing: AS-paths are assumed to be valley-free, i.e. con-

sidering provider-to-customer as downward communication, siblings and peers at the

same level, once a route goes downwards, it never goes up again. However, Giotsas

et al. [55] inferred through the COMMUNITY attribute of BGP messages that, from

the set of routers analyzed, 4% and 22% of IPv4 and IPv6 routes are valley paths,

respectively.

Large scale anomalous behavior refers to a set of BGP updates that represent a significant

deviation from the normal BGP dynamics distribution, that affects multiple ASes for a

determined period of time, after which the BGP returns to its normal previous state. Al-

Musawi et al. [4] classifies BGP anomalies in four main categories: direct intended, direct

unintended, indirect and network failures.



2.2 BGP Anomalies 15

• Direct intended: The most common type of direct intended anomaly are BGP hijack-

ing attacks. This anomaly occurs when an attacker claims to own a prefix or sub-prefix

that belongs to another AS in order to redirect routes from the AS to the attacker, as

illustrated in figure 2.3. The attacker may have the goal to intercept the traffic to the AS

victim, or black hole and discard traffic. This category classifies further considering

the following events.

Prefix hijack: A BGP router announces the exact prefix already announced by

another AS. This is likely to cause the attacker’s neighbors to adopt this new route,

thus raising a Multiple Origin AS conflict (MOAS). There are many cases in which

MOAS conflict are caused by non-malicious BGP operation, making it more difficult

to detect this kind of hijacking.

Prefix and AS hijack: In order to avoid a MOAS conflict, the attacker announces

the targeted prefix and a (fake) direct connection between its AS and the victim AS.

This may cause the peers to adopts the fake route and redirect traffic to the hijacker.

Sub-prefix hijack: Exploiting the fact that BGP prefers more specific addresses

over more general addresses, an attacker may announce sub-prefix(es) of prefix(es)

announced by the victim AS. If the announced sub-prefix is not advertised by other

legitimate ASes, the attacker’s announcement can be propagated globally.

Sub-prefix and AS hijack: Similar to prefix and AS hijacking, in this type of

hijacking the attacker announces a fake path between its AS and the victim AS and

further increases the difficult of detection.

Hijacking a legitimate path: The attacker manipulates received updates by om-

miting some intermediate ASes from the AS-path, in order to increase the likelihood

of being chosen as the best route.
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Fig. 2.3 Example of a direct intended anomaly (prefix hijacking) [4]

• Direct unintended: Due to misconfigurations, BGP routers might announce anoma-

lous prefixes and/or sub-prefixes, either because they are already being announced by

legitimate ASes or because they are private and/or unused. Even though the effect of

these anomalies are similar to hijacking, these events usually are short-lived, since all

parties (AS origin and affected peers) are interested in interrupting the malfunctioning

as soon as possible.

Origin misconfiguration: An origin misconfiguration is the unintentional inser-

tion of a route into the global BGP tables.

Export misconfiguration: An export misconfiguration is an inadvertent export of

a route to a BGP peer in violation of the exporter’s policy.

• Indirect anomalies: There are events which are not related to BGP or Internet routing

directly but might greatly affect BGP dynamics and AS reachability. The most common

cause of an indirect anomaly are attacks that generate a high volume of traffic, thus

causing the congestion and unresponsiveness of AS routers. Failure to respond to

KEEPALIVE messages for short periods will cause flapping routes. In order to
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alleviate the impact of this problem, most providers yield higher priority to BGP traffic.

Two common types of indirect anomalies are:

Worm events: Malicious software which goal is to infect as many computers

as possible, propagating itself through the network. Depending on the severity of

an worm attack, massive traffic may be generated leading to critical instability, such

as experienced during Nimda [104], Code Red II [112] and Slammer [111] attacks.

Current implementations of BGP protocol prevent an overload by a massive amount of

data traffic through the separation of BGP control traffic from data traffic.

(Distributed) Denial-of-Service: Traffic incoming from DDoS attacks may also

lead to overload of network edge routers and their subsequent unresponsiveness.

Another type of overload occurs when DDoS attackers aim an address of a network

device of an IXP. Usually, these addresses are not globally reachable but it may

be case if a misconfiguration happens. This was observed in the Spamhaus DDos

attack [145, 73]. The latter example is an instance of direct intended anomaly.

• Network failures: The Internet is composed by many types of network entities and

devices, ranging from links and routers to ASes and operators, each one of them may

fail and affect the Internet in a different way [2].

Link and router outages: The impact of a link/router outage depends on whether

they are single-points of failure for a given prefix or AS [101]. If they are not, the

underlying routing protocols will handle the failure and a BGP UPDATE message

with the same AS_PATH and a different NEXT_HOP will be sent to its neighbors.

AS outage: The impact of an AS outage is proportional to how many ASes use the

AS in its preferred route to a set of prefixes and the size of such set. Even the outage

of a relatively small AS for a short period of time may lead to a high volume of BGP

update messages and have a lasting effect in BGP convergence.

Operator-level: Often, an operator administers multiple sibling ASes sharing the

same infrastructure [14], leading to a high correlation during outages related to these

infrastructures.
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Peering infrastructure outage: The trend towards the flattening of the Internet

have increased the number of ASes that relies on peering infrastructures, such as IXPs

and colocation facilities. A recent study [54] showed that outages involving theses

infrastructures may have unexpected consequences in ASes at diverse locations, due to

interconnection strategies such as remote peering.

The table 2.2 summarizes the characteristics of anomaly categories.

Table 2.2 BGP anomalous events

Event Type Direct Intended Malicious

Prefix hijack Hijacking Yes Yes Yes

Prefix and AS hijack Hijacking Yes Yes Yes

Sub-prefix hijack Hijacking Yes Yes Yes

Sub-prefix and AS hijack Hijacking Yes Yes Yes

Hijacking a legitimate path Hijacking Yes Yes Yes

Origin misconfiguration Misconfiguration Yes No No

Export misconfiguration Misconfiguration Yes No No

Prefix outage Outage Yes No No

Link and router outage Outage Yes No No

AS outage Outage Yes No No

Operator outage Outage Yes No No

Peering infrastructure outage Outage Yes No No

Worm events Attack No Yes Yes

(Distributed) Denial-of-Service Attack Possible Yes Yes

Violations of destination-based
routing

Property violation Yes Yes No

Detoured routes Property violation Yes Yes No

Violations of valley-free routing Property violation Yes Yes No

2.3 BGP Anomaly Events

Next, we present the events that we used to build our datasets.
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2.3.1 Direct

AS9121 Routing Table Leak

On December 24, 2004, the AS9121 announced to new paths through BGP sessions that

were used to reach almost 70% of all prefixes, which amounted to 106k prefixes [121]. This

misconfiguration resulted in a loss for tens of thousands of networks, which traffic was either

lost or diverted. AS9121 started to announce the leaked prefixes to its neighbors around 9:20

GMT, and the event lasted until just after 10:00 GMT. AS9121 continued announcing the

prefixes for the rest of the day and reached a second peak of announcement rate at 19:47

UTC.

AWS Leak

The AWS Route Leak started at 17:10 UTC on April 22, 2016 and resulted in loss of traffic

and connectivity for a number of networks with high traffic prefixes, such as Google, Amazon,

and Twitter. The event occurred due to maintenance issues on Innofield AG (AS 200759)

that is connected to Swiss Internet eXchange (SwissIX). During maintenance reactivation of

BGP sessions, AS 200759 distributed prefixes belonging to Amazon as belonging to private

AS 65021. Prefix announcements were propagated through AS 6939 Hurricane Electric (HE)

that peers at SwissIX.

Malaysian Telecom Leak

The Malaysian Telecom (AS 4788) leaked one third of all IP prefixes in the global routing

table to the backbone provider Level3 (AS 3549), starting on June 12, 2015 at 8:43 UTC

and lasted until 11:45 UTC. The event was triggered by routers misconfiguration at Telecom

Malaysia. Level3 (AS 3549) propagated traffic from its peers and customers via Telecom

Malaysia, which was overwhelmed by the massive volume of data, resulting in major packet

loss and performance degradation.
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Indosat Telecom Leak

On April 2, 2014, AS4761 (Indosat) leaked around 320,000 routes, which happened during

scheduled maintenance starting at 18:25 UTC. Due to a misconfiguration, BGP was redis-

tributed with bad upstream filtering which caused Indosat originate prefixes that were not

assigned to it. Several hundreds of those prefixes were widely accepted, and services of

some networks such as Akamai, a leading content delivery network (CDN) and cloud service

provider, were disrupted.

2.3.2 Indirect

Indirect anomalies studied have a similar context: malicious worm propagating themselves

through the network cause a large surge in Internet traffic. The following episodes were

analysed and collected.

Code Red II

On 19 July, the Code Red II worm started its spreading across the global network. Since the

beginning of the anomaly it was observed an exponentially growing eight-fold increase in

the BGP advertisement rate, over a period of about eight hours. This surge faded over the

same time scale as it arrived.

Nimda

On Tuesday, 18 September, as the Nimda worm started its propagation, it was observed

another BGP storm. Over a period of roughly two hours, starting at about 13:00 UTC, the

rrc00 collector perceived BGP advertisement rates exponentially ramped up by a factor of 25,

from 400 per minute to 10,000 per minute, with sustained spikes to more than 200,000 per

minute. The advertisement rate then decayed gradually over several days, reaching regular

levels by September 24.
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Slammer

The Slammer worm was released on Jan 25th, 2003 5:31 UTC, infected at least 75,000 hosts

in just over 30 minutes and it was reported that a number of critical AS-AS peering links

were operating above critical load thresholds during the attack period. Besides, anomalous

behavior was observed in specific ASes, as with two small edges ASes, which announced

less than 0.25% of BGP routing table entries, but, during the worm attack, contributed to

over 6% of total update messages observed at monitoring points.

2.3.3 Outages

Japan Earthquake

The 2011 earthquake off the Pacific coast of Tōhoku was a magnitude 9.0–9.1 undersea

megathrust earthquake off the coast of Japan that occurred at 05:46 UTC on Friday 11 of

March, 2011. Fiber optic network of undersea cables that connect Japan to the rest of the

world was damaged when the earthquake struck beneath the Pacific seafloor. As a result,

the Internet relying on this underlying infrastructure to deliver data traffic was affected

by this disaster [99]. Many telecommunication operators reported service disruptions and

performance degradations in the communications with either Japan or other places around

the world.

Moscow Blackout

The Moscow Power Blackout occurred on May 25, 2005 and lasted several hours. Moscow

Internet exchange was shut down during the power outage. Routing instabilities were

observed due to loss in connectivity of some ISPs peering at this exchange. This effect was

apparent at the RIS remote route collector in Vienna (rrc05) through a surge in announcement

messages arriving from peer AS 12793.
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2.4 Software defined networks

In traditional networks, control plane and data plane are tightly coupled in network devices.

Conversely, SDN keeps only data forwarding functionality in network devices, whereas

it delegates control plane functionality to a physically separate layer, composed of one or

more network entities called controllers, which provide the interface between the high-

level network applications and the network devices. As depicted in Figure 2.4 [50], SDN

architecture comprises three layers (in the course of this work, we use the terms layer and

plane interchangeably):

• Infrastructure layer: Also known as the data plane, it is responsible for data forwarding

and statistics storage; it may include physical and virtual switches. Network devices

must comply with a standard interface (e.g. OpenFlow protocol [49]) that is used by

the control plane to manage the devices.

• Control layer: The control layer consists of one or more SDN controllers. The main

function of the control layer is to maintain a logically centralized network view that

allows network applications reason about network properties and behavior. The control

layer observes network state through the open interface with the devices, and provides

an application programming interface (API) to construct network applications using

high-level terms (e.g. host names instead of IP addresses).

• Application layer: Uses the API provided by the control layer to implement network

business applications (e.g. firewall, load balancer), enforcing networking policies and

requirements.

Even though first proposals of control and data plane separation are not recent [146, 154],

discussions about its implications and real deployments have not gained traction until about

the past few years [137, 135, 19, 148] with the proposal and the subsequent large adoption of

the OpenFlow protocol [109], a southbound protocol that provides a communication interface

which can be used to configure switches’ forwarding policies. The OpenFlow matching

process is depicted in Figure 2.5: When a switch receives a packet, (1) it checks if the
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Fig. 2.4 Software defined networking architecture [50].

packet’s header fields matches with one or more rules; (2) If no match occurs, the packet is

forwarded to the network controller, (3) which will handle the packet and generate a new flow

rule; (4) otherwise, if there is a matching rule, (5) a list of actions is applied to the packet.

Figure 2.6 lists which header fields are available for matching in OpenFlow 1.1.0. Actions

that can be applied to flows include basic forwarding, packet modification, and QoS support.

The set of possible actions and fields that can be used for rule matching increases with newer

specifications of OpenFlow protocol. Although there are alternatives to OpenFlow, such as

ForCES [36] and OpFlex [140], most of SDN solutions are implemented using OpenFlow,

including those related to fault management.

Flow table

#1 priority Flow rule 1 Action list 1

#2 priority Flow rule 2 Action list 2

…

#n priority Flow rule n Action list n

Apply 
action list

If rule 
matches

Check if packet 
matches rule

Ethernet 
packet

If no rule 
matches

Controller

Ethernet 
packet

1
2

4

5

Install 
new rule

3

Fig. 2.5 Overview of OpenFlow rule-matching process



2.4 Software defined networks 24

Fig. 2.6 Match fields of a flow table entry in
OpenFlow 1.1.0 [72]

SDN offers three main features to network administrators: centralized management,

flexibility, and programmability. Centralized control simplifies the management because it

allows the construction of control logic from a complete view of the network. A designated

controller to which all network devices must report their states decreases convergence time

and coordination complexity. The southbound API gives flexibility to network operators

by allowing them to separately handle each type of traffic, according to network needs.

Since network devices from different vendors must agree on a standardized specification,

network operators can build network applications on a well-defined common ground. At

last, programmability is achieved through a northbound API that provides a set of abstrac-

tions. Network services and business applications are programmed using these high-level

abstractions, which may implement entities from network resources to business policies and

more. Also, programmability allows network applications to change its behavior at run-time,

reacting to network events.

These features open possibilities for addressing network requirements and challenges

in novel ways. A complete view of the network facilitates routing decisions, traffic en-

gineering, and fault localization because it delegates the handling of partial information

and communication asynchrony to the network controller. Centralized management also

allows network applications to detect complex network behavior, such as periodic traffic

patterns and distributed denial-of-service attacks [13]. The ability to handle traffic using

fine-grained criteria helps traffic slicing and management of multi-tenant environments [136].

Taking advantage of programmability, it is much more simple to manage virtual networks

using high-level terms and abstracting the details of the underlying infrastructure. Also,
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applications that require frequent reconfigurations, such as big data processing [149], can

take advantage of SDN’s ability to program the network at runtime.

To further discussion, a number of works provide detailed investigation on SDN archi-

tecture [152, 115, 72], on how SDN may help the realization of current network require-

ments [71, 94, 29, 153, 125].

2.5 Machine Learning

Given a specific task and input data, a machine learning method seeks to improve its

performance on the task based on knowledge extracted from its previous experiences with

similar data [110]. There is a number of different machine learning algorithms and techniques

that can be used to tackle tasks that differ with respect to many factors, including the type of

available data, expected output and computational constraints. There are three main classes

of learning paradigms:

• Supervised learning algorithms learn from labeled data that includes the expected

output (e.g., class in classification problems, value in regression problems) and its

performance is evaluated based on how well it can approximate to the expected value.

• Unsupervised learning methods extract commonalities from unlabeled data in order

to identify an underlying structure or distribution. The goal is to devise the correct

placement of new data amongst the known data, for example, clustering of user

personas according to navigation patterns.

Machine learning methods can be used to solve many kinds of tasks. The most common

examples are listed below [56]:

Classification: The model must specify which of k categories some input belongs to.

To solve this task, the learning algorithm is usually asked to produce a function

f : Rn → 1, ...,k. When y = f (x), the model assigns an input described by vector x to

a category identified by numeric code y. For example, in an object recognition[83],
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where the input is an image and the output is a numeric code identifying the object in

the image.

Classification with missing inputs: In some cases, there is no guarantee that every mea-

surement in the input vector will always be provided. When some of the inputs may be

missing, the learning algorithm must learn a set of functions rather than providing a sin-

gle classification function. Each function corresponds to classifying x with a different

subset of its inputs missing. This challenge is common in medical diagnosis, because

many types of medical tests are expensive or invasive. For instance, Goodfellow et

al. [57] proposed an robust method to deal with missing data.

Regression: The task is to predict a numerical value given some input, through an output

function f : Rn → R. This type of task is similar to classification, except that the format

of output is different. An example of a regression task is to predict the selling price of

a house given features such as location, number of rooms and built area.

Transcription: The task is to observe an unstructured representation of some type of data

and transcribe it into textual form. For instance, in character recognition, the model is

fed with a photograph containing an image of text and returns this text in the form of a

character sequence. Google Street View uses this approach in order to process address

numbers in this way [58].

Machine translation: The task is to convert an input that already consists of a sequence

of symbols in some language into a sequence of symbols in another language. Deep

learning has recently begun to have an important impact on this kind of task [103]

Anomaly detection: The algorithm process a sequence of events or objects, and flags some

of them as being anomalous. Examples of anomaly detection tasks include credit card

fraud detection and distributed Denial-of-Service attack detection [16];

Most machine learning algorithms perform some kind of optimization, aiming to mini-

mize the output value of a cost function f (x) by altering x. The most popular optimization

method in machine learning is the gradient descent technique [15].
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Given a function y = f (x), the derivative f (x) gives the slope of f (x) at the point x, which

can be used to specify how to scale a change in the input that gives a corresponding change

in the output: f (x+ ε) ≈ f (x)+ ε f ′(x). Thus, the derivative can assist the minimizing of

a function because it indicates how to change x in order to make a small improvement in y.

Figure 2.7 depicts an example of this technique. The gradient descent technique exploits

this property of derivatives in order to find the model that better fits to the training data.

Fig. 2.7 A depiction of how the derivatives of a function can be used to minimize its
output [56].

Two central concepts in machine learning are bias and variance. Bias is the dichotomy

between the average prediction of a model and the target value. When a model has high

bias, it means that it is not learning the representative behavior from the training data and

oversimplifies the model. It always leads to high error on training and test data. Variance

is the variability of model prediction for a given data point or a value. A model with high

variance learns the behavior of the training data flawlessly but does not generalize on the

data which it has not seen before. Such models perform very well on training data but has

high error rates on test data. When a model have a high bias, it means that is suffering

from underfitting, whereas high variance means overfitting. Figure 2.5 depicts the trade-off

between bias and variance and Figure 2.5 shows how the model complexity usually affects
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Fig. 2.8 Visualization of bias and variance trade-off using a bulls-eye diagram [59]

Fig. 2.9 Model complexity is proportional to the chances of overfitting [51]

bias and variance. The main goal during model tuning is to find the sweet spot that balances

bias and variance.

2.5.1 Support Vector Machine (SVM)

Support Vector Machine (SVM) [147] is a well-known machine learning approach widely

used for classification and time-series prediction [133]. SVMs are learning systems of

machines trained with a Mathematical Organization algorithm which implements a limit



2.5 Machine Learning 29

derived from the Statistical Learning Theory. SVM is noteworthy for its solid theoretical

basis and it can reach a high performance in practical applications. A SVM model projects

the input data into a linear space and tries to find a hyperplane which best separates a set of

sample vectors with the minimum error and maximum distance between the vectors (opposite

classes). Figure 2.10 depicts different separating hyperplanes.

Fig. 2.10 Examples of separating hyperplanes

An advantage of SVM is that most of the data is ignored, because the relevant data is

only the points that end up exactly on the margin of the optimal classifier and these are

often a very small fraction of the sample dataset. Initially proposed to linearly separable

problems, SVM can be used for problems not separable in a 2D space through the use of a

kernel function. First, the input data is mapped to a higher dimensional space which have a

separating hyperplane, then a kernel function maps the higher dimensional data to a linear

space and finds a separating hyperplane with maximal margin. The kernel function of the

form K(xi,x j) = φ(xi)
T φ(x j) may be of four basic types:

• Linear: K(xi,x j) = xT
i x j;

• Polynomial: K(xi,x j) = (γxT
i x j + r)d,γ > 0;

• Radial basis function (RBF): K(xi,x j) = exp(−γ
∥∥xi −x j

∥∥2
),γ > 0;

• Sigmoid: K(xi,x j) = tanh(γxT
i x j + r);

The γ hyperparameter is used to control the radius of influence that a single training

example reaches. Another important hyperparameter for SVM is the penalty parameter
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C > 0. It adjusts how much a hyperplane must be corrected in order to correctly classify an

incorrect prediction. Both parameters are related to the bias-variance trade-off: A value of C

or γ too large might lead to overfitting, whereas a small value might cause underfitting.

2.5.2 Neural Networks and Deep learning

Neural networks have gained a lot of attention in recent years and its variations encompass

all three learning paradigms. A neural network is composed by weighted interconnections of

data structures called neurons, as depicted in Figure 2.11. Neurons receive an input signal,

apply a function on its value and, then, output a transformed value. The output value of

a neuron is forwarded to adjacent neurons through connections that transform the value

by multiplying it by a adjustable parameter. As depicted in Figure 2.11, a neural network

is composed by three types of layers: an input layer, which receives sample data; hidden

layer(s), which may comprise multiple layers of interconnected neurons that are not visible

outside of the model; and an output layer, which presents the result of the neural network

processing. When this process occurs from the input layer to the hidden layers to the output

layer, without any cycles, the network is a feedforward neural network.

Fig. 2.11 Neural network example
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The connection weights of a neural network are randomly initialized and during the

training they are adjusted in order to generate a network that better fits the training data.

Neural networks architectures vary with respect to their internal organization, how the
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neurons interconnect and transform the values, and has proven to be an effective approach

to model a wide range of problems [67, 134, 157]. A neural network architecture might

be designed to capture a specific behavior. For instance, neurons might be endowed with

memory capabilities in order to capture temporal properties of input data. In the last decade,

networking research has applied neural networks to areas such as traffic prediction [95, 122],

congestion control [40, 62] and fault management [84, 114].

Most of deep learning methods relies on a variation of gradient descent called stochastic

gradient descent (SGD) [12]. SGD was designed to work well with large datasets. In this

approach, only a subset of the whole training dataset is used, allowing that a model receives a

training set with billions of examples and only uses hundred of examples. Besides SGD, there

are other gradient descent variants [144, 38] that are used to adjust neural network parameters

in order to minimize the cost function. Besides the model parameters that are adjusted through

an optimizer model, it is also necessary to tune the neural network hyperparameters, which

include the number of neurons of each hidden layer, number of hidden layers, optimization

approach, and optimizer learning rate. The fine tuning of hyperparameters requires the

empirical experimentation of different values.

Next, we describe neural network architectures that are relevant to our work:

Wavelet networks:

Whereas, most of neural networks use the sigmoid function as the activation function to be

applied to the input of a neuron, wavelet networks (WN) [159] use wavelet transforms. This

type of network might be used as a signal denoising layer [160]. In WN, the learning process

searches for the optimal weights for the input values, as well as for the scaling and translation

parameters of the wavelet function. Figure 2.12 depicts how a wavelet neural network may

adjust its parameters in order to extract a denoised version ofthe input signal.

Convolutional networks:

Convolutional neural networks (CNN) [90] are composed by a conjunction of convolutional

layers and pooling layers. Convolutional layers are divided into local units that are connected
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Fig. 2.12 Wavelet neural network as a denoising layer. The blue line represents a noisy input
signal and the red line is the attenuated output signal. [106]

only to a set of neurons in the previous layer, through a set of weights called kernel. This

organization allows these local units to learn behaviors that are spatially correlated in the

signal. Pooling layers merge the values of the local units of a convolutional layer through a

pooling function (e.g. average and max pooling [91]). Pooling reduces the dimension of the

representation and creates an invariance to small shifts and distortions. Figure 2.13 depicts a

CNN architecture example.

Although convolutional neural networks (CNNs) are mainly used for the processing of

2-dimensional data (e.g. images) it is possible to use it for the classification of 1-dimensional

time series [41]. The kernel moves in one direction from the beginning of a time series

towards its end, performing convolution and pooling operations explained in Section 5.1,

instead of moving to the left, right and down as it does when the usual 2D convolution is

applied to images. When a CNN is applied to a time series it can extract shorter features of

the overall data, regardless their position in the sequence.

In multivariate time series classification [161], each feature is mapped to a channel of an

independent convolution and pooling layers in order to learn features individually. Then, the
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Fig. 2.13 Convolutional network architecture example

learnt features of each channel are passed into a Multilayer Perceptron (MLP) to perform

classification. The tuning of a CNN includes the kernel width, stride and pooling function.

The kernel width indicates the size of the sliding window that will traverse the time series,

whereas the stride controls how many steps the sliding window will take while it moves on

the time series. Both parameters influences the size of the network, as a large kernel width

and stride will encompass and merge a larger number of values in a time series. The pooling

function performs an operation over the values on the sliding window, the more popular being

average pooling, which takes the average of the sliding window values, and max pooling,

which extracts the maximum value from the sliding window.

Long Short-Term Memory Networks:

Recurrent neural networks (RNNs) are specialized in processing sequential data and may

consider the current sample, as well as past samples. Long Short-Term Memory (LSTM)

networks [65] add the capability of memory persistence to the network, by utilizing a

modified neuron called LSTM cell, depicted in figure 2.14. A LSTM cell have additional

weights that control how much from previous examples must be forgotten, the forget gate,

and how much must be considered in the processing of the current example, the output gate.

A LSTM network is composed by multiple LSTM cells, as depicted in Figure 2.15.

An additional hyperparameter in LSTM networks is the lag value, which indicates how

many steps in the past each sample contains, i.e., each feature of input sample of a LSTM
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layer with lag = 1 will include the feature value at the current t instant and at the last t −1

instant.

Fig. 2.14 LSTM cell structure
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Fig. 2.15 Long Short-Term Memory network example



Chapter 3

Related Work

Since earlier discussions of BGP instabilities by Labovitz et al. [86, 87], many works have

expanded their analysis [93], larger scale anomalies have occurred [150] and mechanisms

to detect and classify anomalies were proposed [4]. This chapter discusses selected works

focused on detection and classification of BGP abnormal events. We seek to identify general

trends that these works develop, which types of anomalies they detect and/or classify, and

their limitations.

There are four main approaches to BGP anomaly detection and classification: Time-series

analysis, machine learning, statistical pattern recognition and comparison with historical

data. We provide a brief description of representative works from each class.

3.1 Time series analysis

Approaches based on time series analysis observe the evolution of BGP dynamics through

time and associate specific changes of traffic behavior with anomalous events. For example,

the number of BGP update messages exchanged among peers may increase drastically during

an anomaly.

Zhang et al. [158] propose the use of wavelet transforms (WT) [31] as tool to observe

BGP features across different time scales and frequencies. Wavelet transforms decompose a

signal into subsequences at different resolution scales, transforming a given time series into
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high and low-frequency components. At high frequency (shorter time intervals), the wavelet

can capture discontinuities, ruptures and singularities in BGP data. At low frequency (longer

time intervals), the wavelet reveals the coarse structure of the data to identify the long-term

trends. Wavelet transforms can be used as a denoising tool and the extracted subsequences

used as a smoothed version of fine-grained BGP dynamics, as depicted in figure 3.1.

Fig. 3.1 Signal denoising using wavelet transform

In this work, Zhang et al. construct time series daily episodes of the number of BGP

updates for each prefix and for each peer, then a wavelet transform is used to extract peaks

at different time scales and frequencies. These episodes are grouped using the k-means

clustering algorithm [63]. Zhang et al. observed that the largest cluster dominates over the

others, as depicted in Figure 3.2 for different number of clusters, validating the idea that

BGP dynamics are consistent at prefix- and peer-level. However, due to a high number of

false positives, it is required that small clusters are manually inspected in order to investigate

possible anomalies.

Mai et al. [105] proposed an anomaly detection framework called BAlet, which extended

previous work by increasing the robustness of the time series analysis, automating detection

and providing anomaly localization. BAlet uses Maximal Overlap Discrete WT [120], a

type of WT that is translation-invariant and yields the same results for anomalies that start

at different points. Traffic episodes are clustered using a k-means variation that detects

and generates new clusters automatically. When a new cluster is generated, the mechanism
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Fig. 3.2 Episode clusters distribution for different k values. [158]

raises an alert indicating a possible anomaly. BAlet also groups updates according to their

originating AS and uses this information to suggest possible origins of the anomaly. Similarly

to Zhang et al. [158], BAlet still requires human intervention due to a high number of false

positives.

Prakash et at. [123] further investigated BGP dynamics temporal properties and demon-

strated that regular BGP traffic shows self-similarity, and leverages this fact in its anomaly

detection mechanism, called BGP-lens. They observed two types of anomalies, prolonged

spikes, anomalies that last for hours, and clothesline anomalies, low-frequency trends that

may last for days or weeks, both of which are depicted in Figure 3.1. Similarly to previous

time series analysis methods, BGP-lens is rather focused on providing a number of GUI tools

in order to help network administrators to analyze BGP traffic and trends than focused on

automate BGP anomaly detection and mitigation.

Summary: These methods have the advantage to inherently detect anomalies at different

scales, but require that the network administrator takes action and further investigate whether

the anomaly corresponds harmful anomalous event. Besides, they were not tested against

direct anomalies or outages, nor are specialized to classify different anomaly classes.
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Fig. 3.3 BGP clothesline pattern and spike patterns [123]

3.2 Comparison with historical data

These methods improve time-series approaches by incorporating expert knowledge into the

detection mechanism. The following mechanisms assume that the Internet topology does

not change frequently and anomalies may be detected by validating new updates against the

history of BGP messages.

Lad et al. [88] presented a prefix hijacking system that uses the history of BGP updates

to detect suspicious behavior and warn the original prefix owner. The mechanism monitors

BGP messages in public repositories and detect changes announced for a set of preconfigured

prefixes, through the architecture depicted in Figure 3.4. The system uses an adaptive window

scheme, which increases the window size when there are many changes in the origin of

a prefix and decreases it in case of a small number of changes. This system requires that

network administrators register their prefixes manually, in order to use it as a base point and

only provides notifications of possible hijacks.
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Fig. 3.4 PHAS hijack detection architecture. [88]

Shi et al. [138] extends previous work by adding data plane and Internet Route Registry

(IRR) [69] information a distributed routing database development effort constructed with

public collaboration, to its hijacking detection system. Their method, called Argus, keeps

track of control plane messages and stores the normal origin AS of each prefix. When a

change occurs, Argus retrieve live IPs within the prefix range using available traceroute

information [47] and uses ping to check their reachability. They also use the IRR data, in

order to improve the false positive rate.

Summary: These methods automate part of the decision process of the network adminis-

trator when troubleshooting anomalies and may be used with time series analysis methods,

but they still may suffer from false positives due to unexpected changes and inconsistent

information in IRR. Besides, the proposed methods only detect hijackings (direct anomalies).

3.3 Statistical pattern recognition

The following methods handle some of the limitations of previous methods by increasing

the generalization provided through the use of statistical models. In these methods, an

expert builds a model that is adjusted according to real data from the problem domain. An

expert must analyze the resulting model and observe how it fits to the data, in order to adjust

parameters and thresholds to detect future anomalies.

Deshpande et al. [33] developed an anomaly detection mechanism that leverages both

traffic volume and historical data. The mechanism extracts BGP volume, AS-PATH length,

and edit distance between paths from BGP update messages every 5 minutes. They also
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Fig. 3.5 Autoregressive order parameter selection [33]

evaluate the significance of features using the Fisher score [39]. The detection method is

deployed at router-level and is based on the Generalized Likelihood Ratio Test (GLRT), a

statistical technique used in hypothesis testing. GLRT helps to detect and locate change in

time series data, based on threshold values parameterized by an expert. They trained the

model using data from all three types of events: direct, indirect and outages. However, they

do not differentiate among the classes of anomalies and the system may take hours to detect

anomalies, not being suitable for real-time detection. Besides, the model is highly sensitive to

parameter tuning, Figure 3.5 shows the variation of false alarms and missed anomalies with

respect to different values of AR order [68], a parameter that must be tuned in autoregressive

models.

Huang et al. [66] used information from different data sources to perform detection and

classification of BGP outages. They observed that not all anomalies caused changes in BGP

volume data and explored two additional data source: operational mailing list and router

configuration. As with other methods, Huang et al. construct a time series using the number

of BGP messages, then use a Principal Component Analysis (PCA) [74] to build traffic

subspace. The subspace that contains the largest fraction of traffic is the normal subspace and
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others are regarded as anomalous subspaces. They use the network configuration files to infer

the topology and relationships among network devices. From this information, the method

extracts a decision tree that identifies different network disruption types, as depicted in figure

3.6. The outages identified were manually validated against reports in the mailing list. This

method only detects network outages and also may take an hour to detect an anomaly.

Fig. 3.6 Decision tree for classifying outage type [66]

Summary: Approaches based on statistical models have the disadvantage of requiring an

expert to tune the model parameters. As time passes, the model may need to be readjusted in

order to cope with network changes. Huang et al. also require human operators to extract

information from router configuration and mailing lists. Furthermore, they are slow and not

well suited for online detection.

3.4 Machine learning

Machine learning methods are similar to statistical pattern recognition approaches, but have

the advantage of not requiring an expert to tune the learning model, which can be done

by a generalist through adjustment of hyper-parameters and training/test error observation.

Besides, deep learning may be used to define complex models that can capture behaviors that

statistical pattern recognition models can not fit, due to being more shallow.

Li et al. [92] presented early efforts in integrating machine learning and BGP anomaly

detection. They proposed a framework that extracted 35 features from control plane mes-
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Fig. 3.7 Classification rules generated by data mining in Li et al. [92]

sages, including volume of traffic and graph properties from topology, and applied the C4.5

algorithm [151], which automatically calculates thresholds for each feature that define an

anomaly. They used outages and indirect anomalies datasets to train the model. A sample of

generated rules is depicted in Figure 3.7.

Multiple works [34, 162, 26, 96, 107] investigated different machine learning methods

through a similar workflow. They extract BGP features, based on message volume and AS

paths announced, and a classifier that learns how to detect anomalies. These works use a

wide range of machine learning algorithms: naive Bayes, decision trees, hidden Markov

models (HMM), support vector machine (SVM) and neural networks. For feature selection,

they used Fisher score and minimum Redundancy Maximum Relevance (mRMR) [119], a

scoring algorithm that maximizes variance among features. These mechanisms were trained

and tested using direct and indirect anomalies, but their detection models do not differentiate

anomaly classes. Besides, each approach is trained with a different subset, for example,

Cosovic et al. [26] only uses routing table leak events (direct anomalies). It is noteworthy that

these approaches used vanilla methods, without any customization, focusing on the feature

engineering and selection in order to achieve good performance.

Other efforts proposed customized deep learning model architecture, in order to endow

the model with characteristics that matched with the anomaly detection characteristics.

Cheng et al. [20] argued that BGP anomaly detection has temporal features that might be

decomposed in different frequencies. They proposed MS-LSTM, a detection mechanism that

integrates wavelet transforms and neural networks. Initially, the mechanism extracts time
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Fig. 3.8 MS-LSTM network architecture

series for 33 features using control plane data, then wavelet transforms are applied to the

time series in order to obtain sequences from multiple resolutions. Transformed sequences

are fed into a Long Short Term Memory (LSTM) network [65], a recurrent neural network

used for sequence classification and capable of detecting long range dependencies. The

proposed architecture is depicted in Figure 3.8. The model was trained and tested only with

indirect anomaly events, thus, it is not possible to assess whether the MS-LSTM model may

generalize and perform well on different classes.

Kim et al. [78] proposed a neural network architecture that integrates convolutional neural

networks and LSTM networks in order to extract spatial and temporal features from the

training data. This model is aimed to anomaly detection in web servers, rather than BGP

anomalous events and it uses a univariate time series of traffic volume as its training data. The

proposed architecture, depicted in Figure 3.9, is composed by convolution layers followed

by pooling layers, which are responsible for detecting spatial properties in the web traffic

volume, such as short spikes, then it is integrated to a LSTM layer which detects long-term

dependency features. This approach was capable of achieving an accuracy higher than 98%,

but it was not applied to classification or BGP anomaly detection.
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Fig. 3.9 C-LSTM architecture [78]

3.4.1 Datasets

Besides the model architecture, another important aspect of deep learning is the training data

used to fit the proposed model. When different neural networks architectures are trained with

different datasets, any comparison between them is hampered because there is no guarantee

that their results were not influenced by the training data distribution. Therefore, a current

concern in deep learning is to provide common datasets for different domains.

In handwritten digit recognition, the MNIST database [32] is a widely used dataset

which consists of a set of images of digits written by high school students and employees

of the United States Census Bureau. The MNIST database contains 60,000 training images

and 10,000 testing images, where the digits have been size-normalized and centered in a

fixed-size image. A large number of efforts were evaluated using the MNIST database, based

on a wide range of methods, such as linear classifiers, k-nearest neighbors, SVMs and neural

networks.

In intrusion detection, mechanisms are trained in order to detect anomalous behavior

and/or malicious attack in the network. The KDD Cup 1999 dataset [143, 139] includes

a wide variety of network data and contains intrusions simulated in a military network

environment. Nine weeks of raw TCP dump data were collected from a network simulating a

U.S. Air Force LAN, with fabricated attacks. The KDD training dataset consists of 494,020

labeled samples each of which contains 41 features, being split in 19.69% normal traffic and

80.31% attack connections. KDD CUP 99 has been widely used for evaluation of intrusion

detection systems [18, 5, 48].
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Nimda Slammer Code
Red

Moscow
Black-
out

Japan
Earth-
quake

AWS
Leak

Malaysian
Telecom

AS9121
Leak

Li et
al. [123]

✓ ✓ ✓ ✓

Lad et
al. [88]

✓ ✓ ✓

Deshpande
et al. [33]

✓ ✓ ✓ ✓ ✓

Cheng et
al. [20]

✓ ✓ ✓

Cosovic et
al. [26]

✓ ✓ ✓

Current
work

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 3.1 Comparison of events used to evaluate the proposed efforts

These datasets play an important role in research efforts because they allow comparison

when a novel method is proposed. In BGP anomaly detection, there is a scarcity of public

datasets with most used features. To the best of our knowledge, the only dataset publicly

available was provided by Cheng et al. [21]. However, the provided datasets only comprises 3

events: Slammer, Nimda and Code Red II, all of which belong to the indirect class. Table 3.1

compares which events were used to evaluate some of the discussed efforts, we can observe

that different approaches used different datasets than those provided by Cheng et al. Thus, it

is necessary to have a common view of all event classes in order to consistently compare the

previously proposed approaches and allow future methods to assess their own performance

without the need to re-implement feature extraction and dataset generation.

Summary: Machine learning detection mechanisms available in the literature achieved

acceptable detection accuracy, precision and recall for the evaluated datasets and, once trained,

the detection models have potential to provide results in real-time. However, few works

explored temporal and spatial properties of BGP data, only performed anomaly detection,

without exploring anomaly classification and location. Additionally, few data sources were

explored and only shallow models were used.
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3.5 Summary

Table 3.2 BGP anomaly detection and classification efforts events

Method Detec. Classif. Online Direct Indirect Outage Approach Data Source

Zhang et al. [158] ✓ ✓ Time series analysis Control plane

Mai et al. [105] ✓ ✓ Time series analysis Control plane

Prakash et
al. [123]

✓ ✓ Time series analysis Control plane

Deshpande et
al. [33]

✓ ✓ ✓ ✓ Statistical pattern
recognition

Control plane

Huang et al. [66] ✓ ✓ Statistical pattern
recognition

Control plane

Router configuration

Lad et al. [88] ✓ ✓ Historical data Control plane

Shi et al. [138] ✓ ✓ ✓ Historical data

Control plane

Data plane

IRR

Li et al. [92] ✓ ✓ ✓ ✓ Machine Learning Control plane

Ding et al. [34] ✓ ✓ ✓ ✓ Machine Learning Control plane

Li et al. [96] ✓ ✓ ✓ ✓ Machine Learning Control plane

Ćosović et
al. [162]

✓ ✓ ✓ ✓ Machine Learning Control plane

Cheng et al. [20] ✓ ✓ ✓ Machine Learning Control plane

⋆ Current work ✓ ✓ ✓ ✓ ✓ ✓ Machine Learning Control plane

The discussed efforts differ with respect to many aspects, next we summarize the main

gaps and characteristics. Time-series analysis and methods based on historical behavior

analysis only filter events that are possible candidate anomalies, have a higher false positive

rate than others, thus they require that a network administrator takes further investigation.

Statistical models make this process more transparent and have higher precision and recall,

however, they still need a domain-specific knowledge in order to correctly fine tune the

models. Machine learning approaches require less human intervention, since their hyper-

parameters can be adjusted without, necessarily, domain-specific knowledge, although, most
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of discussed efforts use vanilla models without customizations that are suited for BGP

anomaly detection main characteristics, such as spatial and temporal properties.

In our literature survey, we identified two major gaps in previously proposed efforts.

These open issues were used to guide the development of this work. First, an important gap

is the lack of a classification framework that systematically differentiates between direct,

indirect and outage anomalies. Different types of anomalies require specific mitigation

measures. For example, when a network administrator identify a routing table leak (direct

anomaly), it may localize which routes were inadvertently announced and modify them in

order to stop their propagation. There are few efforts [138, 88] that perform classification

of anomalies, but they are specialized in only one type of anomaly and also suffer from

previously cited disadvantages.

Another major gap in previous efforts is that each model was validated using different

datasets, which had to be generated for each approach. The absence of common groundwork

dataset increases the difficulty in comparing different approaches. For example, a model

trained and validated against a small amount of datasets might perform better than a model

trained with a larger amount of datasets, but it does not guarantee that the former model is

better than the latter, because it might not have the generalization necessary to perform well

on a bigger dataset pool.

In the current work, our main contribution is two-fold: a BGP dataset generation tool and

anomaly classifier. We provide a tool which generates tabular data containing time series of

features from raw BGP messages. These features encompass metrics used by other efforts

and novel metrics introduced in this work. The extracted features are capable of capturing

relevant behavior in the context of anomaly detection, and possibly in other areas as well.

Using this tool, we generated datasets of the most used anomaly events, which comprises

all different anomaly classes. The generated datasets were made publicly available and are

suited to be used by most of machine learning models [20][34]. The feature extraction and

dataset generation tools were also made publicly available in an open-source platform and

can be extended in order to support more features. Since there are no similar BGP datasets,

nor feature extraction tools, publicly available, we believe that this contribution will assist
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future research in BGP behavior and support the growing trend of applying machine learning

methods to networking problems.

We also provided a anomaly classifier, through two-layered anomaly categorization.

Such classification is the first step towards specialized mitigation techniques, endowing

networks with the ability to perform closed-loop decisions in a timely manner. Our classifier

also has a low number of false positives, decreasing the need of operator intervention. We

propose an integration of our detection and classification mechanisms in a SDN ecosystem,

where a logically centralized layer will process and reply to BGP messages from different

peer ASes, in a seamless manner to the external observer, at the same time it exploits the

abstractions provided by SDN to reason about network behavior and enforce its policies.

Another advantage of the proposed architecture is that the use of SDN may leverage the

realization of self-driving networks [6, 70].

Table 3.2 compares current work and previous efforts with respect to the task performed

(detection and classification), the types of anomalies handled, the approach and data sources

used. Table 3.1 compares which datasets where used by different approaches, even though

this table does not include all discussed efforts, it lists one method from each discussed

general approach (time series analysis, comparison with historical data, statistical pattern

recognition and machine learning). To the best of our knowledge, none of the previously

proposed methods used anomalous events from all of the anomaly classes to evaluate the

accuracy of their detection.



Chapter 4

Feature Extraction and Dataset

Generation

This chapter is organized as follows: Section 4.1 describes the process of feature extraction

and describes volume, AS path features, as well as our proposed distribution features.

Section 4.2 describes the workflow that we use to generate and label the datasets. Section 4.3

describes the general trends in anomalous behavior in comparison with regular traffic and

among different anomalies classes.

4.1 Feature Extraction

BGP control plane messages are the most used to perform anomaly detection [4], due to its

fine temporal granularity, high-level of detail and availability from multiple points-of-view

across the Internet. BGP public data relies mainly on route collectors. A route collector runs

a process, which emulates a router and establishes BGP peering sessions with one or more

real routers. Each router sends to the collector update messages each time the Adj-RIB-out

changes, reflecting changes to its Loc-RIB. The collector periodically dumps a snapshot

of the Adj-RIB-Out tables and update messages received since last dump. These dumps

offer a complete view of the routing dynamics. The most popular projects operating route
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collectors and making their dumps available in public archives are RouteViews [130] and

RIPE RIS [128]. This architecture is depicted in Figure 4.1.

Fig. 4.1 BGP collection process [116].

BGP messages only represent incremental changes, not providing information about past

states and large-scale behavior changes across different ASes. In order to extract meaningful

information from control plane messages, a feature extraction process must be applied upon

BGP updates.

Most of the BGP anomaly detection methods extract features as time series and observe

deviation patterns that indicate anomalous behavior. In current literature [4], features ex-

tracted from BGP messages are mainly classified in two classes: Volume and AS path features.

Volume features provides information about the absolute quantity of each type of mes-

sage with respect to that kind of information that it communicates (e.g. re-announcements,

withdrawals). AS path features give insight into behavior of announced AS paths (e.g.,

longer paths, rare ASes in paths). Some works use BGP attributes (such as communities

attributes [54]) in order to extract information that do not fit in these two classes (volume and

AS path), but these extracted features are not represented as time series, thus, they are out of

the scope of this discussion.

4.1.1 Volume features

Our BGP update message classification is depicted in figure 4.2, based on the taxonomy

proposed by Wang et al. [150]. Given a time window w, the mechanism counts the number

of occurrences of each message type of each node from the classification tree (Figure 4.2).
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Fig. 4.2 BGP update message classification

For example, given w = 5 minutes, in the most general level, we count the number of

announcements and withdrawals in the period. Upon a deeper analysis on announcements,

we also count the number of new announcements, duplicate announcements and implicit

withdrawals.

• Number of announcements: General number of messages received that contains a

request to include a BGP AS path in the RIB.

t+w

∑
t

BGP Messageannouncement (4.1)

• Number of withdrawals: General number of messages received that contains a

request to remove a BGP AS path in the RIB.

t+w

∑
t

BGP Messagewithdrawal (4.2)

• Number of duplicate announcements: Our mechanism keeps track of previously

announced paths and marks consecutive announcements with the same attributes as

duplicates.
t+w

∑
t

BGP Messageduplicateann. (4.3)
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• Number of duplicate withdrawals: Consecutive announcements/withdrawals with

the same attributes.
t+w

∑
t

BGP Messageduplicatewd (4.4)

• Number of non-duplicate announcements: Announcements that contains informa-

tion different from the stored in the RIB.

t+w

∑
t

unique(BGP Messageannouncement) (4.5)

• Number of flaps: When a path is announced, succeeded by a withdrawal message

that removes it from the RIB and, then, the same path is announced again with the

same attributes.
t+w

∑
t

BGP Message f lap (4.6)

• Number of new announcements after withdraw: When a path to a prefix is an-

nounced, then removed from the RIB and then a path to the same prefix is announced

with different attributes.

t+w

∑
t

BGP Messageannouncement a f ter withdrawal (4.7)

• Number of plain new announcements: Announcements for a prefix that was never

stored in the RIB.
t+w

∑
t

BGP Messageplain new (4.8)

• Number of implicit withdrawals with same path: Consecutive announcements for

the same prefix with the same path but with at least one different attribute (e.g. MED,

LOCAL PREF, ORIGIN)

t+w

∑
t

BGP Messageimplicit withdrawal1 (4.9)
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• Number of implicit withdrawals with different path: Consecutive announcements

for the same prefix with a different path.

t+w

∑
t

BGP Messageimplicit withdrawal2 (4.10)

• Number of IGP/EGP/INCOMPLETE messages: The ORIGIN attribute indicates

which protocol generated the BGP message, our mechanism keeps a counter for each

ORIGIN type.

t+w

∑
t

BGP MessageIGP,
t+w

∑
t

BGP MessageEGP,
t+w

∑
t

BGP MessageINCOMPLET E (4.11)

• Number of ORIGIN changes: Counts when a re-announcement changes the ORIGIN

attribute previously announced.

t+w

∑
t

BGP Announcementdi f f origin (4.12)

• Number of announced prefixes: Number of different prefixes announced in time

window w.
t+w

∑
t

unique(Pre f ix) (4.13)

• Average announcements per prefix: Average number of BGP messages across all

prefixes.
∑

t+w
t BGP Message

Number o f pre f ixes
(4.14)

• Maximum announcements per prefix: Maximum number of BGP messages related

to a prefix during a time window w.

max(
t+w

∑
t

BGP Messagep,where p ∈ prefixes (4.15)
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• Average announcements per peer: Average number of BGP messages across all

peers of a BGP router.
∑

t+w
t BGP Message

Number o f peers
(4.16)

• Maximum announcements per AS: Maximum number of BGP messages related to

a BGP router peer during a time window w.

max(
t+w

∑
t

BGP Messageas,where as ∈ ASes (4.17)

4.1.2 AS path features

Considering the AS-PATH attribute and announcement history, we extract the following

features, based on the classification proposed by Wang et al. [150].

• Announcements to longer/shorter paths: Our extractor identifies when a new path

is announced to a prefix that already exists in the RIB. This features tracks whether

this new path is longer or shorter than the path previously stored.

t+w

∑
t

BGP Msgt
pre f ix,

where path_length(BGP Msgt
pre f ix)> path_length(BGP Msgt−1

pre f ix)

(4.18)

t+w

∑
t

BGP Msgt
pre f ix,

where path_length(BGP Msgt
pre f ix)< path_length(BGP Msgt−1

pre f ix)

(4.19)

• Average AS path length: Average AS path considering the path announced in all

BGP messages during a time window w.

∑
t+w
t path_length(BGP Message)

∑
t+w
t BGP messages

(4.20)
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• Maximum AS path length: Maximum AS path length found in received BGP mes-

sages during a time window w.

max(path_length(BGP Messagei), where t < i < t +w (4.21)

• Average AS path length: Some ASes artificially inflate the path length of an an-

nounced path by including redundant hops in a path (e.g., path = (A B B B C)). This

strategy is widely used in order to decrease the chances of route being chosen by a peer

(e.g. backup path). Our extractor keeps metrics that ignore prepending in order to focus

on the underlying infrastructure rather than network policies. This metric calculates

the average AS path ignoring prepending and considering the paths announced in all

BGP messages during a time window w.

∑
t+w
t path_length(BGP Messageunique)

∑
t+w
t BGP messageunique

(4.22)

• Maximum AS path length: Maximum AS path length, ignoring prepending, found

in received BGP messages during a time window w.

max(path_length(BGP Messagei
unique), where t < i < t +w (4.23)

• Average edit distance: When a AS path is announced to a prefix, we measure its

difference in comparison with the previously stored path by calculating the edit distance.

This metric, which is also called Levenshtein distance, is a sequence comparison

method that indicates the minimum number of single-character edits (i.e. insertions

and deletions) required in order to turn a sequence into the other. The average edit

distance is calculated over all path changes.

∑
t+w
t edit_distance(BGP msgt

pathchange,BGP msgt+1
pathchange)

∑
t+w
t BGP messagepathchange

(4.24)
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• Maximum edit distance: This feature stores the highest edit distance in a given time

window w.

max(edit_distance(BGP msgi
pathchange,BGP msgi+1

pathchange)), where t < i < t +w

(4.25)

• Edit distance with k value: Counts the number of message updates with a given k

distance with respect to the previous known route.

edit_distance(BGP msgi
pathchange,BGP msgi+1

pathchange) = k, where t < i < t +w

(4.26)

• Edit distance with k value (unique): Similar to the previous feature, but removes

duplicate ASes in the path.

• Number of rare ASes: We keep track of how many times each AS appear in all

the announced paths. Usually an AS appear multiple times in a given time window,

we classify an AS as rare if its number of appearances is below a given percentage

threshold of ASes appearances (we set the default at 95th percentile).

• Average number of rare ASes: The average number of ASes that appear in a given

time window w.
∑

t+w
t rare_paths(BGP Message)

∑
t+w
t BGP messages

(4.27)

• Maximum number of rare ASes: The maximum number of ASes that appear in a

message during a given time window w.

max(rare_paths(BGP Messagei)), where t < i < t +w (4.28)

4.1.3 New features

During the analysis of the behavior of volume and AS path features, we observed that

the distribution of update types may change significantly when anomalies occur, e.g. the
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proportion of announcements to shorter and longer paths. Leveraging this observation, we

propose novel features that represent the distribution of message types, which may be used

to distinguish different anomaly classes, as will be discussed in Section 4.3. In the next

subsections, we provide more detail on the extracted features.

We group the feature extraction of complementary message types, for instance, all BGP

messages might be separated into announcements and withdrawals, thus we keep track of

two complementary distribution features that represent the percentage of each type at a given

time (e.g. 90% announcements and 10% withdrawals).

Usually, during a large-scale anomaly, we observe a massive increase in the updates, thus,

all features increase accordingly. However, this trend makes it harder to isolate the effect

upon the distribution of a given type of message and compare with the previous values. Using

these distribution features allow us to infer whether the proportion of a type of message (e.g.

shorter paths) increased or decreased by looking to a single variable.

We propose the following distribution features:

• Announcements vs withdrawals: General proportion between announcements and

withdrawals.

• Origin types: Distribution among IGP, EGP and INCOMPLETE messages.

• Announcements types: Distribution among flaps, re-announcements with new paths,

new announcements and implicit withdrawals.

• Longer vs Shorter: Proportion between changes to paths with longer and shorter

paths. We generate a pair of features considering the proportion with respect to the

total number of announcements, and other pair considering only the announcements

that changed the path length.

• Implicit withdrawals vs explicit withdrawals: Distribution between the withdrawal

types.

• Withdrawals w/ same path vs withdrawals w/ different path: Distribution between

the implicit withdrawal types.
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New features evaluation

We evaluate how the new features correlate with the output classes by applying two methods:

univariate selection and feature importance. Univariate feature selection examines each

feature in order to determine the strength of the relationship of the feature with the target

variable. There is a lot of different options for univariate. We used the chi-squared statistical

test for non-negative features to select 15 of the best features from the extracted datasets,

which are listed in Table 4.1. We can observe that volume features rank in the first positions

due to the high spike in data that occurs during anomalies. Distribution features comprise

almost half of the top 15 features, which indicates that they are relevant to the classification

task, given that volume features are not enough to detect and classify anomalies.

Another way to assist the task of feature selection is by extracting the feature importance

from a trained model. Feature importance gives the score for each feature of the dataset, the

higher the score more important or relevant is the feature towards the target variable. We

trained models of a Decision Tree Classifier and extracted 10 top features for the dataset.

Figure 4.3 shows the results of the extracted feature importances. Similar to the univariate

selection, we identified that volume features (nlri_ann and announcements are the number

of announced prefixes and number of announcements, respectively) are the most important,

due to the large increase in the number of BGP messages during anomalies. However, it also

possible to observe that distribution features (features that have ratio_ prefix in the vertical

label) occupy a large part of the the top 10 most important features.

Summary: Our framework connects to a BGP collector, which is selected according to

empirical observations, and generates a time series for each feature described in this section,

in given a period of time. First, we initialize the RIB state by downloading the RIB dump

that is closer to the beginning of the desired period. Then, each message is processed and

classified according to its type, its attributes are extracted and related features are updated

accordingly. As an example, Figure 4.4 shows a time series for the number of announcements

during the Slammer event, from January, 23, 2003 to January, 27, 2003. We proposed novel

features that extract the distribution of volume among complementary BGP message types
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Fig. 4.3 Feature importance extracted from trained models.

and evaluated their importance to the classification task, which showed that they rank close

to significant volume features.

4.2 Dataset generation

Even though there are many data sources of BGP control plane messages that encompasses

periods of anomaly, there are no public datasets that are in a format that is suited to feed

machine learning models, e.g. labeled time series of BGP features. Therefore, each anomaly

detection method must re-implement a feature extraction and generate its own dataset.

Besides, the process of generating datasets may be laborious because there is not a consensus

of when an anomaly starts and ends, from which BGP collectors the anomaly can be observed

and the duration of an anomaly can differ among different collectors.

Below, list the steps necessary to build a dataset.

1. Search for event reports that indicated approximate times of start and end of the

anomaly, as well as which ASes were involved in the anomaly event.

2. Make a list of point-of-view candidates considering ASes and collectors that are close

to the anomaly origin.
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Rank Feature
1 Announcements
2 Number of prefixes
3 Withdrawals
4 Origin changes
5 Number of rare ASes
6 Maximum length of AS path
7 (Distr.) Implicit withdrawal
8 Maximum number of rare ASes
9 (Distr.) Explicit withdrawal
10 (Unique) Average length of AS path
11 (Distr.) Withdrawal
12 (Distr.) New announcement after withdr.
13 (Distr.) Flaps
14 (Distr.) Duplicates
15 (Distr.) New announcements

Table 4.1 Ranking of features with the strongest relationship with the output class

Table 4.2 BGP volume features

Features Type Subtype

Number of duplicate annoucements/withdrawals Volume Stateful

Number of new annoucements Volume Stateful

Number of re-announcements after a withdrawal Volume Stateful

Number of withdrawals after announcing the same path Volume Stateful

Total number of annoucements/withdrawals/updates per AS Volume Stateless

Total number of annoucements/withdrawals/updates per prefix Volume Stateless

Number of IGP, EGP and INCOMPLETE in the Origin attribute Volume Stateless

Maximum/average announcements per prefix Volume Stateless

3. Download BGP raw data from public repositories [130, 128] of the collectors identified

in the last step.

4. Implement a feature extraction mechanism and generate time series features from all

candidates considering a period that comprises the anomaly, as well as regular traffic

before and after the anomaly.
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Table 4.3 BGP AS-path features

Features Type

Maximum/Average AS-PATH length AS path

Maximum/Average unique AS-PATH length AS path

AS-Path length AS path

Maximum/Average of rare ASes in the path AS path

Observation of rare ASes in the path AS path

Announcement to longer/shorter path AS path

Prefix origin change AS path

Number of new paths announced after
withdrawing an old path

AS path

Number of new-path announcements AS path

Maximum/Average edit distance AS path

Maximum edit distance equals n (n = 1,2, ...) AS path

Maximum AS-path edit distance equals n
(n = 1,2, ...)

AS path

Table 4.4 BGP distribution features

Features Type

Announcements vs Withdrawals Distribution

ORIGIN types Distribution

Announcement classes Distribution

Longer vs Shorter Distribution

Exp. Withdrawals vs Imp. Withdrawals Distribution

5. Analyze the extracted series in order to observe trends that matched those reported

(e.g. increase in number of announcements around a specific time of day).

6. Label the identified period as an anomaly event.

Figure 4.5 illustrates the described workflow. During the generation of datasets, we

developed a set of tools that aid the visual identification and labeling of anomalies. Since we

assume that large-scale BGP anomaly events change the normal volume of features, our tool
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Fig. 4.4 Number of announcements timeseries during an anomaly

Fig. 4.5 BGP dataset generation framework

performs peak detection in the time series of each feature, applying the method used by Lo

et al. [100]. We provide a plot of each feature along with detected peaks. It also accepts as

input a period of time, which were collected in step 1, and plot it along with the peaks in

order to analyze which peaks match to the proposed anomaly period. Figure 4.6 depicts an

example, where the black line is the number of announcements, the dotted blue line is the

proposed anomaly period and the diagonal cross marks are the detected peaks. It is possible

to observe that the number of peaks increases inside the proposed window, which can be

adjusted in order to avoid mislabeling of samples.

Considering that there are 45 features, as described in Section 4.1, (plus the edit distance

with k-value, which is configurable and will add k more features), the process of analyzing
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Fig. 4.6 Example of peak detection

each feature time series may be time consuming. In order to assist this task, we applied

feature importance methods in order to prioritize the most relevant features and discard

features with low variance.

Using this workflow, we generated labeled datasets for the events described in section

2.3 and found the collectors, peers, start and end time described in table 4.5. In order to

add diversity to the data, we augmented our datasets by generating them with different

timescales, considering time bins of 1, 5 and 10 minutes. At the end of this process, 9 events

were considered, 27 collectors and ASes were capable of observing the anomalies, which

generated 81 datasets with different timescales and 86400 samples.

4.3 Trend Analysis in Traffic Behavior

In this section we describe the general trends that we observed in anomalous behavior in

comparison with regular traffic and among different classes of anomalies.
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4.3.1 Anomaly and regular traffic

We compared the mean and median of each feature before, during and after an anomaly. Next,

we list the features that showed significant changes in their behavior during the anomalies in

most of generated datasets, along with our observations:

• Announcements: All datasets showed a significant increase in the number of an-

nouncements during anomalies, however, other features are necessary to detect an

anomaly, since there are non-anomalous events that may cause a surge in this feature

(e.g., after a switch re-connection, the full RIB is sent).

• Withdrawals: The number of withdrawals increases along with the number of an-

nouncements.

• Origin changes: We did not observe a dominance of a specific ORIGIN type during

anomalies, but most of dataset showed an increase in the number of origin changes

indicating that during anomalies the distribution of origin types often changes.

• Rare ASes average: Normally, an anomaly involves a large volume of BGP updates

involving a limited number of ASes, which causes decrease in the rare ASes average.

• Distribution - New announcements: The proportion of plain new announcements

tends to decrease, suggesting that most message updates are flaps, re-announcements

or implicit withdrawals.

4.3.2 Direct, indirect and outage anomalies

We applied the same method described in the last subsection to analyze which trends could

be observed among the anomaly classes listed in section 2. These observations can be used to

leverage anomaly classification and enforce mitigation techniques to each type of anomaly.

Outages

• Number of rare ASes: During outages, the quantity of rare ASes increases, possibly

because BGP speakers start to announce rarely used backup paths.
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• Distribution - Announcements vs Withdrawals: During outages, a surge of an-

nouncements to backup routes decreases the proportion of withdrawals.

• Distribution - Explicit Withdrawals and Flaps: Besides explicit withdrawals, the

proportion of flaps also decreases because the paths affected by the outage remains

unavailable during the anomaly period.

• Distribution - Longer paths and Shorter paths: We observed that during outages,

the proportion of longer and shorter paths decreases, while the number of paths with

the same length increased. This is possibly because the high volume of backup paths

announced have the same length of primary paths.

Direct

• Distribution - Shorter paths: During direct anomalies, the proportion of shorter paths

increases. Possibly, this occurs because in this type of anomaly (e.g., hijacking and

misconfiguration) bogus routes are propagated inadvertently, which can be achieved

only if the new routes are more attractive than the current ones.

Indirect

• Distribution - Implicit Withdrawals: The only trend that could be observed only in

indirect anomalies is that the distribution of implicit withdrawals remained the same in

most of datasets, whereas most of datasets from other types of anomalies increase the

proportion of implicit withdrawals and a minority where it decreases.

Summary: In this chapter, we described an implementation of the dataset generation

tool that converts raw BGP control plane messages to timeseries of features. These features

are capable of capturing relevant behavior in the context of anomaly detection, and possibly

in other areas as well. The generated datasets were made publicly available and are suited to

be used by most of machine learning models [20][34]. The feature extraction and dataset

generation tools were also made publicly available in an open-source platform and can be

extended in order to support more features.
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Table 4.5 Anomalies datasets

Anomaly Class Collec. Peers Start End

AS9121 RTL Direct rrc05 13237, 12793,
1853

9:20 UTC
24/12/2004

10:03 UTC
24/12/2004

AWS Route Leak Direct rrc04 6939 17:10 UTC
22/04/2016

20:00 UTC
22/04/2016

Malaysian Telecom Direct rrc04 513, 2509,
20932

8:42 UTC
12/06/2015

10:24 UTC
12/06/2015

Code Red v2 Indirect rrc04 513, 559, 6893 10:00 UTC
19/07/2001

20:00 UTC
19/07/2001

Nimda Indirect rrc04 513, 559, 6893 13:00 UTC
18/07/2001

12:00 UTC
21/07/2001

Slammer Indirect rrc04 513, 5596, 893 5:31 UTC
25/01/2003

19:59 UTC
25/01/2003

Moscow Blackout Outage rrc05 1853, 12793,
13237

4:40 UTC
25/05/2005

7:40 UTC
25/05/2005

Japan Earthquake Outage rrc06 10026, 2497 9:13 UTC
11/03/2011

15:39 UTC
11/03/2011

This is a major contribution of the current work, given that there are no comprehensive

BGP anomaly datasets, nor feature extraction tools, publicly available. We believe that

this contribution will assist future research in BGP behavior and support the growing trend

of applying machine learning methods to networking problems. We also proposed novel

features that allows intuitive observation of BGP behavior trends, as depicted in section 4.3.

These observations can be used to leverage anomaly detection and classification mechanisms

and insights that can be used in the mitigation of each type of anomaly.



Chapter 5

Anomaly Detection and Classification

In this chapter we present our proposed deep neural network architectures for anomaly

detection and classification. We decided to develop two separate models for detection and

classification, rather than a single model that performed both tasks end-to-end. This decision

was made in order to alleviate the complexity of both tasks, as early experiments and data

analysis showed that each problem have different characteristics and relevant features. We

also present an evaluation of the proposed methods and comparison with different baselines.

5.1 Anomaly Detector

During our research and analysis of BGP data collected, we identified three desirable features

for an effective anomaly detection architecture: 1) It must be able to detect traffic trends

of different scales, high- and low-frequency components; 2) detect spatial correlations in

a given time series without considering its location in the sequence, 3) detect short- and

long-term dependence in sequential data.

Our proposal is to compose a deep learning model using different neural network archi-

tectures, extracting the desirable features from the input data by exploiting the advantages

specific to each architecture. Previous works obtained effective results from the integration of

different neural network architectures, such as recurrent neural networks and convolutional

networks [97] for object recognition and wavelets and convolutional networks [9, 52].
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We compose a neural network with layers based on the neural networks architectures

discussed in Chapter 2 because their properties match with the desired features. Namely, we

compose our architecture by the following layers:

Wavelet deconvolution layer:

This layer serve as a signal denoising layer. In the forward pass, this layer calculates the

wavelet transform on the input signal and pass the transformed signal to the next layers. In

the backward pass, it computes the gradients of the loss function with respect to the scale

parameters, adjusting the parameters to values that best fit the target data. Adding a wavelet

layer as the first layer in our model allows the model to learn the relevant spectral content in

the input with backpropagation, leading to a reduction of the number of hyperparameters

to be optimized. As Figure 5.1 depicts, each feature is processed separately by a wavelet

neuron and produces a denoised version of the signal.

Fig. 5.1 Wavelet transform layer
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Convolutional neural networks (CNN):

We based our CNN model in the approach used by Zheng et al. [161], each feature is mapped

to a channel of an independent convolution and pooling layers in order to learn features

individually, as depicted in Figure 5.2. Then, the learnt features of each channel are passed to

the next layer. A deep CNN will comprise repetitions of the convolutional layer and pooling

layer combination. In each pooling layer, the data dimension is reduced, enabling the model

to learn more general properties of the data. This type of characteristic is suited to the BGP

anomaly detection problem because anomalous data have spatial features (e.g. sudden spikes,

prolonged peaks) of different scale.

In our model, we must tune a set of hyperparameters, such as the number of layers,

number of neurons, kernel width, stride and pooling function, which were explained in

Chapter 2.

Fig. 5.2 Convolutional neural network for 1D classification
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Long Short-Term Memory Networks:

Whereas the CNN layer is capable of detecting spatial features of the data, the Long Short-

Term Memory (LSTM) layer add the capability of detecting long-term temporal dependence.

The last layer of the CNN layer serves as the input layer to the LSTM layer(s). Similarly

to the CNN, increasing the number of LSTM layers allow the capturing of more complex

behavior. Figure 5.3 depicts an example of the LSTM network of our model with two hidden

layers.

Fig. 5.3 Long-Short Term Memory network with multiple layers

Our architecture combines these layers in order to take advantage of their discussed

features. Figure 5.4 depicts the proposed neural network architecture. We also enable a

dropout parameter[141] in our model, which is a regularization method, where each neuron

has a p probability to turn off inputs from a layer. This method prevents the network from

overfitting to training data during the network learning process and not generalizing well for

test data.
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Fig. 5.4 Possible configuration of the proposed architecture

5.2 Anomaly Classifier

Once an anomaly is detected, the task of anomaly classification takes place. We observed

that in this task the most dominant factor is the distribution of types of BGP updates in a time

span, for example, during outages the proportion of announcements for paths that are longer

or with same distance increases, whereas during hijacking anomalies (i.e. direct anomalies)

the proportion of shorter paths tends to increase. For anomaly classification we propose a

stacked LSTM network.

A simple LSTM network is proposed because we observed that anomalies from the same

class may have different spatial features, which may cause a convolutional layer to classify

two datasets from the same type of anomaly as different. We used the following architecture,

depicted in figure 5.5.

Even though this model is simpler than the model used for BGP anomaly detection,

experiments showed that it was capable of achieving good results, most likely due to the

importance of the distribution features, which were proposed in this work. These results are

also important because, to the best of our knowledge, this is the first method that differentiate

BGP anomaly classes, addressing a major gap in current BGP anomaly research.
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Fig. 5.5 LSTM network for BGP anomaly classification

5.3 Results and Discussion

This section is organized as follows. In Subsection 5.3.1, we describe the metrics chosen

to evaluate the models and our reasoning. In Subsection 5.3.2, we describe the techniques

used during training and validation of the developed models, such as grid search and early

stopping [113]. In Subsections 5.3.3 and 5.3.4, we describe the neural network architectures

used, the best hyper-parameters found, the training process and results found for anomaly

detection and classification.

5.3.1 Metrics

The predicted values of a classifier are categorized as true positives, true negatives, false

positives and false negatives. A true positive is an outcome where the model correctly predicts

the positive class. Similarly, a true negative is an outcome where the model correctly predicts
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the negative class. Conversely, a false positive is an outcome where the model incorrectly

predicts the positive class and a false negative is an outcome where the model incorrectly

predicts the negative class. Hereafter, these metrics will be referred as TP, TN, FP and FN,

respectively.

Accuracy is a metric that summarizes the performance of a classifier against all classes

and is defined as:

Accuracy =
T P+T N

T P+T N +FP+FN
(5.1)

In unbalanced datasets, the accuracy may be deceiving because a high accuracy does not

necessarily mean that the number of true positives and false negatives is acceptable for a

given purpose. For example, anomalous behavior seldom occurs, thus a model that always

classifies traffic as not-anomalous will be correct for the most part of time, leading to a high

accuracy, but it will have no use since an actual anomaly will never be detected. Precision,

recall and F1-score aim to cope with this bias. Precision and recall increase when the number

of true positives gets higher, but precision (equation 5.2) is affected when the number of false

positives decreases, whereas recall (equation 5.3) is affected by the number of false negatives.

Therefore, precision indicates whether a model hits only the right positive cases and recall

evaluates whether a model hits all the right positive cases. Unfortunately, precision and recall

are often in tension. Improving precision frequently reduces recall and vice-versa. To fully

evaluate the effectiveness of a model, it is necessary to examine both precision and recall.

F1-measure (equation 5.4) is a metric that aims to summarize both measures by calculating

the harmonic mean of recall and precision.

Precision =
T P

T P+FP
(5.2)

Recall =
T P

T P+FN
(5.3)

F1 = 2× Precision×Recall
Precision+Recall

(5.4)
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When we have multiple classes, computing the precision, recall and F1-score is not

so straightforward as in binary classification. There are two approaches to compute these

metrics, F1-micro and F1-macro, defined as follows:

In micro-averaging, precision, recall and F1-score are computed globally over all category

decisions. Micro-averaged F-measure gives equal weight to each class and, therefore, it

calculates an average over all the classes. It tends to be dominated by the classifier’s

performance on common categories. Below we present the formula of micro-averaged recall,

given that l = number o f classes (precision and F1-score might be derived using the same

reasoning):

Recallmacro =
∑

l
i=1 T Pi

∑
l
i=1 T Pi +FNi

(5.5)

Conversely, in macro-averaging, precision, recall and F1-score are computed locally

over each category first and then the average over all categories is taken. Macro-averaged

F-measure gives equal weight to each category, regardless of its frequency. It is influenced

more by the classifier’s performance on rare categories. The macro-averaged recall formula

is:

Recallmicro =
∑

l
i=1

T Pi
T Pi+FNi

l
(5.6)

For example, given a multi-class classification model with the following results: Class 1

have 1 TP, 1 FP, precision = 0.5; class 2 have 1 TP, 1 FP and precision = 0.5; class 3 have 10

TP, 90 FP and precision = 0.1.

A macro-average precision will then compute 0.5+0.5+0.1
3 = 0.367, whereas the micro-

average will compute 1+1+10
2+2+100 = 0.115

Summary: Given that anomaly detection is a intrinsically unbalanced problem, because

anomalies are deviations of a regular, much more frequent, behavior, we include precision,

recall and F1 in our evaluation and analysis. Although F1 is useful to summarize the

performance of a model, during our experiments we faced scenarios where models with

similar F1-score had significantly different precision and recall values. Thus, a complete
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analysis must include all metrics. Macro and micro measures might greatly differ if the

classes are unbalanced, if it is important to perform well on all classes, regardless the size of

each class, or if the classes are balanced, macro is preferred. If the classifier must perform

better on bigger classes, micro average must be used.

5.3.2 Methodology

During our experiments we used a set of techniques to optimize the models and to understand

their behavior and dataset trends.

When evaluating a model, we split our datasets in train, validation and test sets then we

feed the model with the training set and evaluate its performance on validation and test sets.

The training set is used to train the model initially. Once the model is trained, its prediction

is evaluated using the validation set. If the model performs poorly, the model is adjusted until

its accuracy, precision and recall achieve an acceptable level. At last, in order to guarantee

that the model is not biased towars the training and validation sets, the model is evaluated

using data that was not used before through a test set. The obtained results in each set were

used to decide whether a following action must be taken.

If a model does not perform well on training data, it means that the model was not able to

capture the data behavior, leading to underfitting. If a model performs well on training and

poorly on validation set, it means that it may have a variance problem, being too complex and

suffering from overfitting. If a model achieves good results in train and validation sets but

does not perform well on test set, it means that train, validation and test sets have a different

data distributions, which indicates that the model may not perform well on real data.

When those behaviors are found, the following actions must be taken:

• High training error may be mitigated by using a more sophisticated model (e.g. adding

layers, adding neurons), capable of capturing more complex behavior, or by training

the model longer.
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• High validation error indicates overfitting, thus, we use regularization methods (e.g.

adding dropout layers), simplify the architecture, and generate more datasets and

events.

• In order to cope with high test error, we add more data and make sure that train, dev

and test sets have the same distribution, which is representative of real-world data.

Figure 5.6 depicts a flowchart of these actions in a time sequential order.

Fig. 5.6 Machine learning training flowchart [156]

5.3.3 Anomaly Detection

We performed experiments with different models and observed their behavior during training

and validation for different combinations of features, hyperparameters and datasets. Even

though previous machine-learning-based efforts suffered from problems previously discussed

in Chapter 3, initially, we assumed that a result for a model would be acceptable if it achieved

similar values to those previously found.
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Hyperparameter Values
C (Penalty parameter) 0.0001, 0.001, 0.01, 0.1, 1, 10
γ (gamma) 0.0001, 0.001, 0.01, 0.1, 1
Kernel Linear, Polynomial, RBF, Sigmoid

Table 5.1 SVM hyperparameters

Precision Recall F1-score
Code Red II 8.80% 26.55% 13.22%
Nimda 10.03% 9.65% 9.83%
Slammer 27.21% 23.19% 25.04%
Japan Earthquake 19.01% 44.25% 26.60%
Moscow Blackout 27.02% 29.82% 28.36%
AS 9121 Route Leak 16.19% 37.61% 22.64%
Malaysian Telecom 4.30% 14.21% 6.60%
AWS Leak 3.17% 19.48% 5.45%

Table 5.2 SVM results

Support Vector Machine (SVM)

As a baseline, we used a SVM model [147], replicating experiments performed by Cosovic

et al. [27]. Because SVM was not designed for handling sequential data, each training

sample is processed individually. Experiments used the SVM implementation from scikit-

learn toolbox [118] and all combinations of the hyperparameters listed in table 5.1 were

performed:

We have chosen this initial set of hyperparameters values empirically, considering the

functioning of the model (e.g. a penalty value too large will likely lead to overfitting because

outliers will greatly affect the model training) and most commonly used values. We trained

the models with all available datasets, with the exception of the validation dataset. For each

scenario, the model processed 86,400 samples (a sample contains the features calculated

during a given time bin, e.g. 1 minute or 5 minutes) minus the samples from validation and

test datasets, and took approximately 130 minutes to converge for each set of hyperparameters.

The best parameters found were C = 0.1, γ = 0.1, kernel = RBF and the results are listed in

table 5.2.
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These results are inferior to those previously reported by Ding et al. [34]. As discussed

in Chapter 3, Ding et al. does not consider a comprehensive range of dataset events, it just

considers Slammer, Nimda and Code Red II, which belong to the indirect class. Besides,

SVM, as well as many classic machine learning approaches, handles each training sample

independently and ignores sequential dependency among feature values. The results show

that the SVM model is not able to consistently detect anomalies, with the precision and recall

for all datasets indicating that the model produces a high number of false positives and false

negatives. This behavior might be observed in figure 5.7, which depicts the prediction of a

model that was tested against the Slammer dataset. The black lines and dots represent the

predicted anomalies and the red line is the real anomaly. We can observe that the model was

capable of detecting the majority of the anomaly (increases recall), however, it also produced

a large number of false positives (decreases recall).

Fig. 5.7 SVM prediction with Slammer event as the testing dataset



5.3 Results and Discussion 79

Deep Learning

The training of deep learning models is time-consuming and the amount of time to train

a network is directly proportional to the network size. Thus, we used increasingly bigger

models, in order to assess whether such complexity is necessary to achieve good results.

We used Long-Short Term Memory (LSTM), Convolutional Neural Networks (CNN) and

a Wavelet Layer (WL). We implemented our models using the Keras Library [23, 60] with

the TensorFlow [1] backend. The wavelet layer was adapted from the implementation of the

WaveletDeconv library [76], which was also built on top of Keras.

Long-Short Term Memory

We performed experiments with a simple LSTM network in order to replicate the approach

used by Ding et al. [34]. Differently from SVM, LSTM models can receive data sequentially

and detect temporal properties of a feature. In order to exploit this LSTM characteristic,

we feed the model with the whole sequence of one event once, the model adjust its weights

through backpropagation, then another event is passed to the model, and so on. One training

epoch is the time necessary for a model processing all samples from all events once. In early

experiments, we observed that if a fixed sequence of events is passed to the model, the last

events have greater impact than the first events. We handled this by shuffling the order of

events in each round of training. We also parameterized our LSTM layers to be stateful [127],

so the last state of a LSTM cell for each sample in a batch will be used as initial state for the

sample of the following batch.

As previously discussed, the fine tuning of hyperparameters requires the empirical

experimentation of different values. The hyperparameters include the number of neurons of

each hidden layer, number of hidden layers, learning rate, lag, gradient descent optimizer

and features used.

We selected the possible number of neurons using a rule of thumb that the number

of hidden neurons should be between the size of the input layer and the size of the output

layer [64]. Many problems can be efficiently modeled using up to two layers, because they are

sufficient to represent an arbitrary decision boundary with rational activation functions [64].
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Considering this, up to three layers were used, in order to evaluate whether a higher number

of layers yields better results. Many approaches to optimize the gradient descent were

proposed [131] and the type of optimizer chosen by the network is also a hyperparameter of

the network. For many classification problems, the current state-of-the-art are optimizers

that consider the momentum and context of the gradient descent, in order to converge more

quickly. Two optimizers with these properties were used RMSProp [144] and Adam [79]

and their parameters were set o their default values [24].

We used early stopping to control the duration of training, i.e., we evaluated the F1-

score for the validation set during the training and as long as it enters in a downward trend,

training is interrupted. This strategy led to different durations depending on the models and

training/validation/test datasets, ranging from 100 to 200 epochs. We performed experiments

with the parameters listed in table 5.3 and each round of training took from 9 hours for the

smallest models to 18 hours for the large models (3 layers, 40 neurons, lag = 15).

Hyperparameter Values

Number of neurons 10, 20, 40

Hidden layers 1, 2, 3

Learning rate 0.001, 0.01, 0.1, 1

Lag 0, 5, 10, 15

Optimizer
RMSProp

Adam

Features

AS path and volume

Distribution

Distribution and volume

AS path, volume and distribution
Table 5.3 LSTM hyperparameters

The best hyperparameters found were learning rate = 0.01, lag = 10, Adam optimizer

and volume + distribution features. The number of neurons and number of hidden layers

yielded similar results, however, in order to secure the ability of the network to generalize is
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preferable that the number of nodes and layers is minimized. If the network is too large, it

increases the chances that the network will overfit, becoming a memory bank that can recall

the training set to perfection, but does not perform well on samples that were not part of the

training set. The increase in performance considering only distribution and volume features

shows that these novel features are able to capture the anomaly behavior as well as it reduces

the input size from 42 to 27 features, reducing the network complexity. Table 5.4 lists the

results of the LSTM model after fine-tuning, a network with 1 hidden layer with 20 neurons.

Table 5.4 Results from LSTM after hyperparameter fine-tuning

Precision Recall F1-score
Code Red 74.8% 97.7% 84.7%
Nimda 94.2% 43.4% 59.4%
Slammer 87.7% 89.2% 88.5%
Moscow Blackout 74.1% 89.5% 81.1%
Japan Earthquake 87.1% 97.4% 92.0%
AS9121 Leak 37.9% 100.0% 55.0%
Malaysian Telecom 21.3% 100.0% 35.1%
AWS Leak 34.1% 98.6% 50.7%

Summary: In order to compare with SVM, we plot the prediction of the LSTM that was

tested against the Slammer dataset, after hyperparameter tuning, in Figure 5.8 of a model.

We can observe that the model was capable of detecting the majority of the anomaly with a

low number of false positives and negatives. The results of test datasets are comparable to

those found on the literature with a F1 > 80% for half of the datasets.

Even though the precision for the Nimda dataset is high, the recall is low, which also

yields a F1-score lower than others results found. Upon further analysis, we found that most

of anomalous data points that are close to the end of the anomaly event were predicted as

regular traffic, leading to a high number of false negatives, thus the low recall. Since the

Nimda event is the longest anomaly in our datasets, lasting 3 days whereas other events

lasted less than 3 hours, we hypothesize that a) the end of the dataset might contain regular

traffic when the BGP volume slowly returns to its previous regular state, or b) the LSTM

network have difficulty in detecting dependencies . In case of a) further refinement of the
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dataset might be necessary and in case of b) anomaly events with duration of days must be

added to our dataset pool.

AS9121 leak, Malaysian Telecom leak and AWS leak have high recall and low precision,

thus, the model can predict correctly all anomalies but also yields a high number of false

positives. These events belong to the direct class, indicating that the LSTM is not able to

effectively capture all characteristics of such class. Further discussion will be provided in

next subsections.

Fig. 5.8 LSTM prediction with Slammer event as the testing dataset

Convolutional Neural Networks

Similarly to LSTM, we feed the CNN model with one event at a time, the model adjust its

weights through backpropagation, then another event is passed to the model, and so on. We

also consider one training epoch as the time necessary for a model process all events once.

Besides the hyperparameters listed for LSTM (i.e. learning rate, optimizer, number of

neurons, hidden layers, and features), the tuning of a CNN also includes the kernel width,

stride and pooling function. We also used early stopping during the training of the CNN
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model, which led to different durations, ranging from 150 to 200 epochs. We performed

experiments with the parameters listed in table 5.5 and each round of training took from 6

hours for the smallest models to 16 hours for the largest models.

Hyperparameter Values
Convolutional + pooling layers 1, 2, 3
Learning rate 0.001, 0.01, 0.1, 1
Kernel size 3, 5, 9, 11
Stride 1, 2, 3

Pooling
Average pooling
Max pooling

Optimizer
RMSProp
Adam

Features
AS path and volume
Distribution
AS path, volume and distribution

Table 5.5 CNN hyperparameters

The best hyperparameters found were learning rate= 0.01, stride= 1, kernel width= 5,

Adam optimizer, max pooling and volume + distribution features. We achieved best results

with one convolutional layer and pooling layer. Table 5.6 lists the results of the CNN model

after fine-tuning.

Table 5.6 CNN results after hyperparameter fine-tuning

Precision Recall F1-score
Code Red 69.1% 83.3% 75.5%
Nimda 66.2% 68.3% 67.2%
Slammer 78.7% 71.2% 74.8%
Moscow Blackout 81.3% 76.3% 78.7%
Japan Earthquake 68.7% 74.9% 71.7%
AS9121 Leak 45.7% 48.6% 47.1%
Malaysian Telecom 31.5% 100.0% 47.9%
AWS Leak 41.2% 47.6% 44.2%

Summary: With respect to F1-score, the CNN model produced similar results to those of

LSTM for most part of the datasets, however further analysis of precision and recall showed

noteworthy differences. In CNN results it is possible to observe an increase in precision
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Precision Recall F1-score
Code Red 80,3% 82,1% 81,2%
Nimda 75,4% 85,8% 80,3%
Slammer 90,1% 87,4% 88,7%
Moscow Blackout 65,8% 75,2% 70,2%
Japan Earthquake 81,8% 78,2% 79,9%
AS9121 Leak 45,1% 40,1% 42,5%
Malaysian Telecom 34,1% 100,0% 50,9%
AWS Leak 31,9% 97,9% 48,1%

Table 5.7 MS-LSTM results

in comparison with the LSTM results with respect to the AS9121 and AWS leak datasets.

We hypothesize that this indicates that model can capture spatial properties, such as sudden

spikes and prolonged large volumes of messages, that the LSTM model is not able to detect.

Given the nature of CNN, the model might achieve a higher results if it could learn an optimal

time scale decomposition of the input signal, or if more layers were added. Our results also

indicates that it may be necessary a larger training set and time in order to improve accuracy,

precision and recall.

MS-LSTM

The related work that most closely relates to our model is the Multi-Scale LSTM (MSLSTM)

proposed by Cheng et al. [20]. The authors implemented [21] a detection mechanism that

integrates wavelet transforms and neural networks. Differently from our model, MS-LSTM

apply wavelet transforms before feeding the data to the LSTM network. Instead of learning

the best time resolution, MS-LSTM extract generates multiple time resolutions. The MS-

LSTM architecture is depicted in Figure 3.8. The model was trained and tested only with

indirect anomaly events, and with volume and AS path features, thus, it was not possible to

compare it directly with our model. We performed adaptations on the original code in order

to support the distribution features and trained for our generated datasets.

The best hyperparameters found were learning rate = 0.01, lag = 40, Adam optimizer

and volume + distribution features. The results found are presented in the Table 5.7.
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Summary: The MS-LSTM approach yielded better results than using LSTM layers

with raw input data without preprocessing. This improvement in results shows that include

different time resolutions may help the model to detect temporal pattern with optimal time

scale. Zheng et al. argue that the selection of time scale has great impact on the model

performance. One disadvantage of this method is that it still requires the operator to use

fixed time scales, which increase the model complexity and may cause the optimal scale to

be missed if it is not in the fixed set of time scales.

Our model

Our CNN results indicate that a CNN model can capture behaviors that a single LSTM

network is not able, but more data may be necessary in order to extract a robust time

resolution. This might be achieved through the use of wavelet transforms. As previously

discussed, the integration of wavelet transforms and LSTM is capable of improving the

anomaly detection model performance [20]. However, such model require a preprocessing

of the input data using fixed translation and scaling parameters of wavelet transform. The

tuning of these hyperparameters would increase the complexity of the model. Instead, in our

proposed model, we added a Wavelet deconvolution layer, based on the implementation of

Khan et al. [77], which is capable of automatically finding the best scaling and translation

parameters through backpropagation.

Considering the desired properties of Section 5.1, we propose a deep learning model that

integrates a wavelet deconvolution layer with CNN and LSTM. We connect these models

in a linear fashion. Previous work [78] indicate that the integration of CNN and LSTM can

yield robust performance for anomaly detection.

The wavelet deconvolutional layer does not require any additional hyperparameter. For

the already discussed parameters, we have used the optimal values used for LSTM and CNN

that achieved best results. We also used early stopping during the training and duration ranged

from 200 to 250 epochs. Each round of training ranged from 14 to 16 hours, depending on

the size of the training datasets. The results are listed in Table 5.7.
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Table 5.8 WD + CNN + LSTM results

Precision Recall F1-score
Code Red 81.1% 89.5% 85.1%
Nimda 73.3% 87.6% 79.8%
Slammer 88.1% 90.3% 89.2%
Moscow Blackout 74.3% 81.4% 77.7%
Japan Earthquake 91.7% 87.9% 89.8%
AS9121 Leak 60.1% 65.3% 62.6%
Malaysian Telecom 33.9% 100.0% 50.6%
AWS Leak 65.8% 91.0% 76.4%

Table 5.9 Comparison of BGP anomaly detection methods

LSTM CNN MS-LSTM Our model
Code Red 84,74% 75,54% 81,19% 85,09%
Nimda 59,44% 67,22% 80,28% 79,79%
Slammer 88,46% 74,76% 88,71% 89,19%
Moscow Blackout 81,06% 78,72% 70,16% 77,69%
Japan Earthquake 91,96% 71,67% 79,94% 89,76%
AS9121 Leak 54,97% 47,09% 42,49% 62,59%
Malaysian Telecom 35,12% 47,91% 50,86% 50,62%
AWS Leak 50,67% 44,17% 48,12% 76,37%

Summary: With respect to F1-score, we can observe an increase in the majority of

datasets, indicating that the model was capable of retaining, at least, part of the advantages

from both CNN and LSTM. However, results for part of the datasets indicate that improve-

ment is still needed. Upon closer analysis of the datasets with bad results (F1 < 70%), we

identified two problems: the duration of some direct anomalies is short and some collectors

produce noisy data. The AS9121 Route Leak lasted for less than an hour, which might lead

to confusion with BGP messages surge caused by peers reconnecting and sending their full

RIB. During the labeling of some datasets, we also observed that traffic spikes are present

for the most part of the observed time period, differing from the behavior of other collectors

for the same time period, indicating the possible influence of unknown factors. Since both of

these problems are observed in real-world data, a possible mitigation is the dataset generation

for more events and collectors. We compare the F1-measure of all neural network models

trained in Table 5.9.
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5.3.4 Classification

Initially, in order to have a baseline performance we trained a SVM model for classification,

however, the model was not able to converge. After multiple runs, in all cases, we observed

that the model was dominated by the larger class, predicting all samples to the most populated

class. We experimented with the hyperparameters 5.1 and higher values of the penalty

parameter in order to enforce a correct classification for the underrepresented classes but no

significant result was achieved. Considering more complex models, a LSTM network was

Hyperparameter Values
Number of neurons 10, 20, 40
Hidden layers 1, 2, 3
Learning rate 0.001, 0.01, 0.1, 1
Lag 0, 5, 10, 15, 20, 25

Optimizer
RMSProp
Adam

Features

AS path and volume
Distribution
Distribution and volume
AS path, volume and distribution

Table 5.10 LSTM hyperparameters

trained and capable of yielding better results. The model was trained with the combination of

the hyperparameters in table 5.3. The best hyperparameters found were learning rate = 0.01,

lag = 20, Adam optimizer and volume + distribution features. As in the LSTM detection,

the number of neurons and number of hidden layers achieved similar results, using the same

reasoning, the chosen model was composed by 1 hidden layer with 20 neurons.

The increase in performance considering only distribution and volume features indi-

cates that the network was capable of finding the trends discussed in Section 4.3.2. For

classification, the optimal lag hyperparameter value (lag = 20) is higher than for detection

(lag = 15), indicating that it is necessary to consider a wider window to detect the trends that

differentiate anomaly classes. Table 5.11 lists the results obtained. The validation sets were

split in the following tuples, containing one dataset from each class: Code Red, Moscow
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Blackout, AS9121 Leak; Nimda, Japan Earthquake, Malaysian Telecom Leak; Slammer,

Japan Earthquake, AWS leak.

Summary: F1-micro indicates that even though larger datasets performs better than

smaller datasets (e.g. AS9121 has the lowest F1-score), almost all datasets have F1-scores

higher than 80%. Given that for classification, we assume that the input samples are anoma-

lies, we must improve our detection mechanism. Surprisingly, classification of direct classes

performed better than detection of the same classes, we hypothesize that the model is able

to detect differences among samples of different classes when it knows they are anomalies,

because it does not need to consider the noisy data, or this might be a gap in our model that

ends up mixing properties of regular traffic with misclassified direct classes. For classifica-

tion, Nimda dataset also showed the behavior where samples towards the end of the dataset

are misclassified, indicating that further refinement of the dataset might be necessary and

more anomaly events must be added to our dataset pool.

Table 5.11 LSTM classification results

F1-micro F1-macro
Code Red – Indirect 96.4% 88.2%
Nimda – Indirect 67.2% 89.1%
Slammer – Indirect 97.1% 90.7%
Moscow Blackout – Outage 87.8% 88.2%
Japan Earthquake – Outage 90.2% 89.1%
AS9121 Leak – Direct 79.0% 88.2%
Malaysian Telecom – Direct 83.6% 89.1%
AWS Leak – Direct 84.0% 90.7%

5.4 Use Case: SDN architecture

Even though the initial training of our models are performed offline, we propose an integration

of these methods in a SDN ecosystem. Figure 5.9 depicts the external view of this architecture,

where a logically centralized layer will process and reply to BGP messages from different

peer ASes, in a seamless manner to the external observer, at the same time it leverages the

abstractions provided by SDN to reason about network behavior and enforce its policies.
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Fig. 5.9 Proposed solution data extraction and anomaly classification

Figure 5.10 expands the internal workflow of this model. After the receipt of the BGP raw

messages from the BGP speaker, the BGP parser module is used to convert the messages to

MRT format to enable feature extraction. After extracting the features, the data is normalized

in a data cleaning step. Then, the anomaly detection module is responsible for detecting the

anomaly. If an anomaly is found, the anomaly classification model identifies the type of

anomaly.

The proposed SDN framework, due to its modularization, can be used with any machine

learning model that is parameterized to a matching input and output.

Fig. 5.10 Global view of the SDN scenario with anomaly detection



Chapter 6

Conclusion

This chapter concludes the thesis and present future work. The contributions are reinforced

in section 6.1, future directions are discussed in section 6.2.

6.1 Conclusion

With almost two decades of research, BGP anomaly detection is an active and important area,

with new approaches showing that there still room for improvement [124, 3]. However, the

developed research lacks reproducibility as well as a way to compare different approaches

directly, because each work uses its own anomaly dataset which can lead to significant

disparities caused by different labeling and training. A public common dataset is important

in areas such as handwritten digit recognition [32] and illegitimate traffic classification [143].

To the best of our knowledge, this work is the first to provide public labeled datasets

of time series for the most used features and events for BGP anomaly detection. We

expect that these datasets will allow researchers to focus on the BGP anomaly detection and

classification models, instead of spending time extracting features and labeling data. We

also made available our feature extraction tool, thus it can be extended with new features

and events. Besides, the datasets are built in a format friendly for machine learning and

deep learning approaches, which are increasingly popular in networking research, thus, such

framework is timely and useful for the research community.
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Based on the analysis of volume and AS path features behavior, we proposed novel

features that represent the distribution of message types. These fields are useful to analyze

BGP trends in a straight-forward manner. Our results also indicated that use of these features

yields precision and recall equivalent or better than those found with volume and AS path

features. For neural networks, an additional benefit of using distribution features is the

reduction in network complexity, because there are less features than in the traditional

Volume + AS path features.

For anomaly detection, the results indicate that our proposed customized neural network

architecture demonstrated improvement in comparison with out-of-the-box methods, indicat-

ing that our model successfully exploited temporal and spatial properties of BGP anomalies.

Since, the other methods [4] were not trained with the same datasets, it is hard to compare

the approaches directly. We expect that our public datasets will allow such comparison in the

future. The results obtained so far are encouraging and indicate to us that the addition of new

events and point-of-views will improve the proposed model performance.

To the best of our knowledge, this is the first work to perform anomaly classification

in an automated manner. Whereas previous methods only detected either a general class

of anomalies or a specific class, our model performs a two-layered anomaly categorization.

Such classification is the first step towards specialized mitigation techniques, endowing

networks with the ability to perform closed-loop decisions in a timely manner.

As pointed in section 1.5, in the first part of this work, we developed a comprehensive

survey [30] which identified main gaps in current research of fault management in SDN.

However, due to the denial of access to data centers to collect data about failures the subject

of this research had to be changed from fault management in software-defined networking to

the current line of work. During this former phase, it was possible to realize the potential of

SDN to simplify network management and to leverage the self-driving networks [42, 155, 75].

Our proposed SDN framework is a step towards the realization of this goal, with respect to

BGP anomalous behaviors efforts.
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6.2 Future Work

With the anomaly detection mechanism presented in this thesis and from knowledge obtained

from the state-of-the-art review on BGP anomaly detection and classification, we open up

new directions to be explored.

Regarding the BGP anomaly detection and classification learning models, we believe a

myriad of new applications can be created. After classify the type of an detected anomaly,

another step could be to extend the presented mechanism by inserting a new module to

investigate the collected data and identify the root cause of the anomaly. This would be

a natural direction for the BGP anomaly classifier, since the network operator or manager

would obtain deeper understanding on the anomaly sources and reason about the correlation

between the identified type of anomaly, the root cause and the observed effect on its network.

Fig. 6.1 SDN architecture with anomaly detection and mitigation

After the deployment of a BGP anomaly detection, classification and root cause analyzer,

another layer of automation could be added to the mechanism by creating and adding an

Anomaly Mitigation module. This module would free the network managers and operators

from the responsibility to create actions to try to mitigate the cause of the anomaly. An

interesting challenge happens when the identified cause of the anomaly originates from anther

location outside the managed AS. This opens up further possibilities, such as cooperative
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multi-agent systems could be proposed between different ASes, which could be supported by

a Policy Manager module, since the policy interests and expressiveness from each AS must

be preserved. A possible architecture including all these modules is depicted in Figure 6.1.

Another interesting and challenging future work is in the explainable AI research field.

With the increasing in the datasets’ size and with more complex deep-learning architectures,

the output results from the models become every time more difficult to interpret and challenger

to be improved. This lead us to the importance of two concepts: interpretability and

explainability. The first give us a better understanding on the obtained results, and the latter

helps to comprehend the mapping between the input and the output from the model [35].
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