

Federal University of Amazonas
Institute of Computing

Graduate Program in Computer Science

Functionality-Based Mobile Application Recommendation System

with Security and Privacy Awareness

THIAGO DE SOUZA ROCHA

Functionality-Based Mobile Application Recommendation System

with Security and Privacy Awareness

ADVISOR: PhD. EDUARDO JAMES PEREIRA SOUTO

Manaus-AM

February 2020

Thesis submitted to the Graduate

Program of the Institute of Computing of

the Federal University of Amazonas to

obtain the title of Doctor in Informatics

Acknowledgement

First to God, for being responsible for my existence and for giving me strength throughout

my path.

To my parentes José Francisco and Mirlene Rocha and to my brother Arnaldo Rocha, for

the support.

To my supervisor, Prof. Eduardo Souto, mainly for the patience, and for believe in me.

To professor Khalil El-Khatib from University of Ontario (UOIT) for contributing to the

thesis.

To the teachers, friends and all the staff from ICOMP, who contributed to the conclusion

of this work.

To FPF Tech for giving me structure and time for the development of the work.

To my grandfather Arnaldo Felisberto Imbiriba da Rocha, for being the greatest motivator

of my master's and PhD degrees.

To my girlfriend Tatiane Ribeiro for supporting me all the time.

To all my other family members for always encouraging me.

And to all my friends! Thanks!

“Be the change you want to see in the world”

vii

Abstract

Nowadays, with the advent of mobile devices, there are a variety of mobile applications

to execute daily tasks, such as paying bills, watching movies and ordering food. That

popularity caught the attention of malicious developers that started creating malicious

applications for mobile devices instead of desktop computers. Some malicious

applications claim that they can perform a certain common task, such as paying bills, just

to lure users to install the application to damage their devices and/or execute malicious

activities such as sending premium SMS messages or leaking users personal sensitive

information. Because of that, users need a way to choose an app that is considered safe

and meets their needs. For instance, if a user wants to change the application that he uses

to order food, the list of suggestions must have only applications classified as benign that

are capable of ordering food. Recommendation systems are currently being used to

choose applications inside the Android environment, but most approaches do not

evaluate security and privacy, and when they do, only the applications permissions

configuration are considered. However, recent studies demonstrate that this approach is

not enough. In addition, some approaches rely on user’s knowledge about the

permissions, which studies have also shown that is error prone because most of users do

not understand how the permissions system work. In this context, this work presents a

novel functionality-based recommendation system with security and privacy awareness

to evaluate and suggest apps. The system consists of a machine learning security layer

that evaluates the applications to make sure that only apps classified as benign can be

suggested. The proposed system also has an application scoring system that is based on

functionality to ensure that only the applications with similar purposes can be suggested.

In addition, users will be able to see popularity, usability and privacy metrics and add

weights so that suggestions are made according to the user's preferences. Furthermore, a

mapping between the permissions, application method calls, and descriptions is made to

create phrases so that users can understand what the application being evaluated can do

on the mobile device. The goal is to provide comprehensible information so users will be

able to check if the application is executing any suspicious behavior and/or if it is

requesting too much permissions. A prototype was developed and compared with works

from the literature and the experiments demonstrated that the system had better results

because it was able to suggest only applications classified as benign that have similar

behaviors. The prototype was also compared with the official Google Play Store in order

to verify if the list of suggestion has only apps with similar goals. The results demonstrate

that, in terms of functionality, the prototype suggestion list had only apps that share

similar goals and that Google Play categories needs to be better defined. The main

contributions are the recommendation system with the advent of a security layer, the app

scoring system inside a functionality context and the mapping between permissions and

API calls raising user confidence and understanding.

Keywords: Security, Privacy, Recommendation, Malware, Android.

viii

Figures List

Figure 2-1: Android Framework Architecture.. 19

Figure 2-2: Android Application Package Kit Content. ... 23

Figure 2-3: Explicit and Implicit Flow Example in a Code Snippet. 25

Figure 2-4: Static Analysis Example. ... 25

Figure 2-5: CuckooDroid Architecture. .. 26

Figure 2-6: Machine Learning Process Steps... 27

Figure 2-7: LDA Topic Distribution and Assignment in Instagram. 30

Figura 2-8: LDA Graphical Model. ... 311

Figure 3-1: RecDroid Service Overview. .. 35

Figure 3-2: APRec Framework. ... 36

Figure 3-3: TruBeRepec Architecture. ... 38

Figure 3-4: Buggy Apps Overview. ... 39

Figure 3-5: User Rating and Permissions Architecture. 41

Figure 3-6: SPAR Framework... 42

Figure 4-1: Proposed System Overview. ... 48

Figure 4-2: Features Extracted from an App. .. 48

Figure 4-3: LPM Predicate Example About a Possible Data Leakage

with Location and SMS. .. 56

Figure 5-1: Percent of Apps and Average Number of Requested

Permissions by Category. ... 61

Figure 5-2: Percent of Apps and Average Number of API Calls by

Category. .. 61

Figure 5-3: Coherence Score Values by Number of Topics. 62

Figure 5-4: Email Spam Filter Results. ... 64

Figure 5-5: Topics Distance Mapping. .. 70

Figure 5-6: Top 10 Most Frequent Words in Some Topics. 70

Figure 5-7: Top 10 Most used Features in Benign Apps. 71

Figure 5-8: Top 10 Most Used Features in Malign Applications. 71

ix

Tables List

Table 3-1: Related Works Overview. .. 44

Table 4-1: Examples of Features Extracted from App Store. 48

Table 4-2: Examples of Sensitive Method Calls. ... 51

Table 4-3: Normal Permissions Names.. 51

Table 4-4: Dangerous Permissions Names and its Groups. 51

Table 4-5: Applications Features Vector Representation. 53

Table 4-6: List with Examples of Sensitive Information Sources That Are

Used in LPM. ... 57

Table 4-7:List with Examples of Sinks That Are Used in LPM. 57

Table 5-1: Machine Learning Model Evaluation. ... 62

Table 5-2: Malicious Apps Selected to Compare RSPSA and the

Prototype Created Results. .. 62

Table 5-3: Spam Guard Results. .. 63

Table 5-4: Malicious Applications Evaluation. .. 65

Table 5-5: Prototype vs DroidVisor Results with MobonoGram. 67

Table 5-6: Prototype Versus Google Play Results with Viber. 68

x

Sumário

Acknowledgement vii

Abstract Xi

Figures List xiii

Tables List xiv

 Introduction .. 12

1.1. Objectives ... 14

1.2. Contributions.. 15

1.3. Document Structure .. 16

 Background.. 18

2.1. Android OS and Application Structure ... 18

2.1.1. Android Framework Architecture .. 18

2.1.2. Applications Security Mechanism ... 21

2.1.3. Application Structure ... 22

2.1.4. Application Components .. 23

2.2. Information Flow and Taint Analysis ... 24

2.3. Machine Learning ... 27

2.4. Probabilistic Topic Models .. 29

2.5. Final Considerations .. 33

 Related Works .. 34

3.1. Approaches that recommend permissions configuration .. 34

3.2. Approaches that recommend applications installation ... 38

3.3. Discussion .. 42

 Mobile Application Recommendation System Overview .. 45

4.1. Mobile Application Recommendation System ... 46

4.2. Features Extraction .. 48

4.3. Classification Model ... 52

4.4. Recommendation .. 53

4.4.1. App Scoring System .. 53

4.5. Logical Predicate Mapping (LPM) .. 56

4.6. Final Considerations .. 58

xi

 Experimental Results ... 59

5.1. Experimental Data .. 59

5.2. Prototype vs RSPSA ... 63

5.3. Prototype vs DroidVisor... 66

5.4. Prototype vs Google Play ... 68

5.5. Features Analysis .. 70

5.6. Final Considerations .. 72

 Conclusions .. 73

6.1. Limitations And Future Works .. 74

 References .. 76

12

Chapter

 1

 Introduction

 Introdução

The number and usage of mobile devices has increased dramatically over the last decade

and has changed the way users execute their daily tasks and do business and will continue

to do so. The number of global smartphone users has already exceeded 2 billions and is

expected to reach 3 billions by 2020 [1]. As a result, the number of applications developed

to help users perform a large number of tasks has also grown considerably. In 2018, the

official Android store (Google Play) contained 2.1 billion apps [2] and the number of

downloads was forecasted to reach 258.2 billion by 2020 [3]. Such applications are used

daily and provide various functionalities such as phone calls, e-mail sending, GPS service,

and camera to list a few.

 Due to the large number of apps, recommendation systems have been used by users to

find applications that suit their needs and interests. For example, Google Play

recommends applications based on aspects of the app being searched, such as store

category and the name of the app developer(s). However, security and privacy aspects are

not satisfactorily considered by the recommendation systems, both in official stores and

in recommendation systems in general [4].This is a concern since applications frequently

request users sensitive or private data such as logins, passwords, location and financial

information to accomplish their objectives. Therefore, these applications became

potential targets for malicious developers.

 According to IDC [5], Google Android platform owns 86% of the global smartphone

market and, therefore, is the preferred target for malicious applications developers. The

Symantec Internet Security Threat Report [6] shows that one in every five Android

applications (or apps) were actually malicious. Since Play Store was released malicious

applications have been discovered within the store. Recently, Google removed 17,000

Android apps that were carrying the Joker malware [7]. These malicious Android

applications were sending fraudulent text messages and charging people for fake services

or were using Wireless Application Protocol (WAP) billing fraud. Other examples can be

found in [8], [9], [10].

CHAPTER 1

INTRODUCTION

13

 Even the applications that come preinstalled inside mobile devices can be malicious

and pose risks. For instance, security experts found a weather application that is

preinstalled on Alcatel smartphones that was subscribing device owners phone numbers

to premium SMS services without user consent and was also accessing private user

information such as phone IMEI, location, email address, which it was sending to a third-

party server [11]. As an attempt to minimize these problems, Google released Google Play

Protect in 2017 [12], an application that scans apps automatically, even after installation

to ensure they remain safe. However, several issues regarding Play Protect have been

reported.

 First, sometimes it blocks legitimate developer apps and/or allows malwares [13],

[14]. Second, it sometimes blocks private business apps and device manufactures apps

that are not installed from the official store [15]. Third, it keeps running from time to time,

consuming the device battery. Fourth, Google Play Protect was ranked as the worst

antivirus of twenty mobile antivirus applications in an AV-Test software evaluation test

in May 2019 [16]. Finally, Play Protect does not recommend an alternative application if

it flags an app as potentially malicious. Mobile users need an alternative app that is safe

and provides similar functionalities to those which the user desires from the app being

evaluated. All these examples show the need for a system that is able to evaluate mobile

applications with security and privacy awareness and also can suggest other apps with

similar functionalities if the app being evaluated is malicious or has any suspicious

behavior.

 There are some recent studies about recommendation systems that consider some

security and privacy aspects. However, these works also have several problems and

limitations. First, most of them only check app permissions configuration. Permission use

is an important feature for calculating application security risks. However, they are not

sufficient to guarantee that an application is safe [17],[18]. Some papers and security

forums have already demonstrated attacks that can happen without any Android

permission usage [19],[20]. Besides that, most users cannot understand how permissions

work, what they do or do not pay attention when permissions are requested [21]. Such

fact creates a gap between user expectations and application behavior [22]. Moreover,

there is also a problem with over permission [4],[23] when an app requests more

permissions than necessary. This situation can lead to the appearance of attacks from

permissions that are not even necessary by the apps.

 Another limitation is related to the way application recommendations are made. Most

of the time, these recommendations are based on a set of applications that belong to the

same category as the official store. This may not satisfy the needs of a user who is looking

for a specific functionality. For instance, when a user is searching for an application that

is similar to WhatsApp, if the recommendation system returns Facebook application, as it

happens in the Play Store, it would be unsatisfactory, although both belong to the same

category. In mobile app recommendation, metrics should be calculated inside a

functionality context and not by category. For instance, if a user wants to change the app

CHAPTER 1

INTRODUCTION

14

that is used to order food, the recommendation system should consider only safe

applications that can also order food.

 Privacy must also be calculated inside a functionality context to detect the leak of

sensitive information. In some cases, the permissions and API calls to access sensitive

information that may be considered malicious in one app could be a feature in another

app [24]. For instance, calculating the privacy score using location permissions and API

calls from an app that tracks current user location may be considered if it is an app with

bank functionalities but should not be considered if it is a navigation app, because in this

case the request is benign and the location information is necessary for the correct

execution of tis service.. Moreover, most users are not aware of the data collected by apps

[25].

 To overcome these problems, we propose a system to evaluate and recommend mobile

applications, inside Android operational system environment, with security and privacy

awareness. The proposed system has a security layer that evaluates an application and

classifies it as being malign or benign. Thus, only applications classified as benign (safe)

are considered in the recommendation phase. Also, we employ a technique, called Logical

Predicate Mapping (LPM), which allows users to understand the permissions and API

calls requested by the app, as well as privacy risks. This way users can decide what to do

and understand what can happen.

1.1. Objectives

This thesis provides a functionality-based mobile application recommendation system

with security and privacy awareness. The first challenge is the capability to create a

method that can evaluate a target application and classify it as being malign or benign

before a recommendation is made. Second, the possibility to apply topic extraction

techniques on applications descriptions to suggest only apps with the same functionality.

Moreover, the system analyzes the information gathered from the target application and

calculates metrics such as privacy, usability, popularity and checks the permissions and

API calls to map all possible behaviour that could cause privacy and security risks or any

behavior that is not aligned with the application description. Finally, the system presents

a summary to the users that groups up all the risk and privacy related information. This

way, users can decide what to do and understand what could possibly happen in their

mobile devices. To reach these goals this thesis presents the following specific objectives:

1. Creation of a method to download apps from an application store;

2. Creation of a mechanism that extracts the features from the applications to create

and train a model that classifies applications into benign or malign;

3. Development of a functionality-based recommendation engine that is able to

suggest apps that share similar goals;

CHAPTER 1

INTRODUCTION

15

4. Development of functionality-based algorithms that can calculate usability,

privacy and popularity metrics to build a ranking of applications to be suggested

to the users;

5. Creation of an understandable summary with the information gathered during the

evaluation in a way that it is possible for technical and non-technical users to

understand.

1.2. Contributions

From the objectives defined in the previous section, this work offers the following

contributions:

• A mobile application recommendation system with a machine learning security

layer that evaluates apps and only suggests the ones classified as benign;

• A functionality-based app scoring system that was created to obtain functionality,

privacy, usability and popularity metrics to later rank the apps that are suggested

to the users. Since the scoring system is based on the purpose of the apps, all the

metrics are calculated inside a functionality context. With that it is possible to only

recommend applications that perform similar functionalities as the application

being evaluated and also check the privacy, popularity and usability in different

conditions. For instance, in relation to privacy, in some cases the permissions and

API calls that may be considered malicious in one application could be a feature in

another app [28];

• Creation of a novel Logical Predicate Mapping (LPM) that aims to clarify the

behavior that a given application can execute inside mobile devices so mitigation

actions can be taken and problems such as overpermission can be detected and

faced.

The results obtained from this work originated the following scientific productions

written so far:

• Rocha, T., El-Khatib, K. & Souto, E. (2019), “Techniques to Detect Data Leakage in

Mobile Applications”, International Journal of Security and Networks (IJSN),

february;

• Rocha, T., & Souto, E. (2019), "Avaliação e Recomendação de Aplicativos para

Dispositivos Móveis com Foco em Segurança e Privacidade.", XIX Simpósio

Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg 2019

- Artigos Completos / Full Papers), São Paulo (SP), september;

• Rocha, T., El-Khatib, K. & Souto, E. (2020), “Functionality-Based Mobile Application

Recommendation System with Security and Privacy Awareness”, Computers &

Security (COSE). (Under review).

CHAPTER 1

INTRODUCTION

16

In addition to these publications, the author of this research had the opportunity to

contribute to other publications using the knowledge obtained during the execution of

this work:

• Sousa, W., Souto, E., Rocha, T., Pazzi, R., Pramudianto, F. (2015) “User activity

recognition for energy saving in smart home environment”, IEEE Symposium on

Computers and Communication (ISCC), Larnaca (CY), july;

• Rocha, T., & Souto, E. (2016), “Automatização de teste de software com

ferramentas de software livre”, Elsevier Editora LTDA (Book Chapter);

• Sousa, W., Souto, E., Rocha, T., Pereira, N., Kool, P., Rosengren, P. (2016),

“Prediction of electrical energy consumption for Internet of Things in

disaggregated databases”, IEEE Symposium on Computers and Communication

(ISCC), Messina (IT), june;

• Rocha, T., Monteiro, A., Cassio, B., Minatel, P., Silva, B., Boeira, F., Azulay, D., & Souto,

E. (2016), “Data leakage detection in Tizen Web applications”, Annual Conference

on Privacy, Security and Trust (PST), Auckland (NZ), December;

• Rocha, T., Damasceno, A., & Souto, E. (2018), " TaintJSec: Um Método de Análise

Estática de Marcação em Código Javascript para Detecção de Vazamento de Dados

Sensíveis.", XVIII Simpósio Brasileiro de Segurança da Informação e de Sistemas

Computacionais (SBSeg 2018 - Artigos Completos / Full Papers), Natal (RN),

october.

1.3. Document Structure

The rest of this thesis is organized as follows:

 Chapter 2 presents the main concepts related to the understanding of this work.

Initially Android is explained with details on its framework, architecture, main

components, applications and security and privacy tips for developers. Next, the

techniques and algorithms that are used to build the system such as Taint Analysis,

Machine Learning and Probabilistic Topic Models are explained by informing how they

work, their types, strengths and weaknesses and how they are used in the proposed

system.

 Chapter 3 presents some works that were developed to recommend applications to

users in Android environment and also evaluates security and privacy aspects. Each

application is explained in terms of objectives, process, strengths and limitations. To

better describe the approaches a table is shown at the end of the chapter showing some

information from each work such as the features used and the technique employed.

Finally, a discussion is made about the works focusing on the limitations and looking for

improvements.

CHAPTER 1

INTRODUCTION

17

 Chapter 4 presents the proposed system showing its architecture and explaining with

details on how each phase works. Chapter 5 explains the details of the experiments

carried out, depicts the dataset and describes the several test cases were created to

evaluate the system comparing it with the most recent works and also with the official

Google Play Store. Finally, Chapter 6 provides the final conclusions and directions for

future work.

18

Chapter

 2

 Background

 Reconhecimento de atividades humanas em smartphones

This chapter explains the basic concepts for the understanding of this thesis. It starts with

an explanation about Android with its architecture and its applications security model.

After, it presents taint analysis, that is one of the main techniques that are used to extract

features from applications and finishes with an explanation about machine learning and

probabilistic topic models.

2.1. Android OS and Application Structure

The architecture of the Android OS and its application. Android is an open source

operating system maintained by Google, and is today the main open source platform for

mobile devices, its source code can be found in [29] with information and instructions

needed to create custom variants of Android and also to port acessories and devices to

the Android platform.

2.1.1. Android Framework Architecture

Android platform is a stack of components, which is divided into five layers and six main

sections as shown in Figure 2-1. It includes the operating system, a middleware,

applications frameworks and some applications that provide basic functions to mobile

devices [30].

 Starting from the bottom, is a Linux Kernel section customized for embedded

environments that has limited resources and its goal is to cover system functionality such

as low-level memory management, power management, alarm, binder to handle Inter

Process Communication (IPC) and runtime environment. Besides that, Linux Kernel deals

with device drivers and networking. Using a Linux Kernel also allows Android to use Linux

key security features.

 Second layer contains the Hardware Abstraction Layer (HAL) section and consists of a

set of libraries that provides an interface for a specific type of hardware component such

as Bluetooth and Audio. When a Framework API tries to access any device hardware the

CHAPTER 2

BACKGROUND

19

HAL is responsible to load the hardware modules. Thus, HAL works as a communication

layer between the Kernel and the upper layers.

 Figure 2-1: Android Framework Architecture.

 The Third layer is composed by the Android runtime, core Java libraries and some

Native C/C++ libraries. Devices with Android version above 5.0 use ART runtime while

devices with a version below 5.0 use Dalvik, apps that work well on ART should also work

on Dalvik but the reverse may be a problem. ART is an application runtime environment

created to execute multiple virtual machines using limited device memory and executing

.dex files, a more compressed bytecode format designed only for the Android platform

that is optimized for minimal memory footprint. ART also has some other features such

as optimized garbage collection, better debugging support and executes each application

with its own process so the app cannot interfere with the operational system or other

applications.

CHAPTER 2

BACKGROUND

20

 The Core Java libraries are used to provide functionalities about Java programming

language so that Android applications developers can write programs for mobile devices

using Java. Many Android platform components, such as the runtime, are built from native

code using libraries written in C and C++. The Android platform provides Java framework

APIs to make available the functionality of these native libraries to apps. For instance,

OpenGL can be accessed through Java OpenGL API to manipulate graphics in an app using

2D and 3D objects. In addition, if someone is developing an app that requires C or C++

code, Android Native Development Kit (NDK) can be used to access these native platform

libraries directly from the application native code.

 In fourth layer the Java API Framework is composed of a set of services and Application

programming interfaces (APIs) as Java classes that provide abstractions to access the

underlying native libraries and runtime capabilities to applications, these services are

available for developers to create their own Android applications. These APIs and services

were created to implement the concept that Android applications are constructed from

interchangeable, reusable and replaceable components, through this concept application

developers have access to the same framework APIs that Android system apps use. Some

key managers are:

• Activity Manager: Used to manage all the aspects of the applications including its

lifecycle and a navigation back stack.

• Content Provider: Enables applications to access data from other apps, such as the

contacts list and to share its own data between applications.

• Notification Manager: Used to display custom alerts and notifications to the users

in the status bar. It is also used to notify users about services running in

background.

• View System: An extensible and rich system used to build applications User

Interface (UI), including buttons, lists, grids, text boxes, buttons, web browsers and

other components.

• Resource Manager: Enables access to a set of non-code embedded resources such

as strings, user interface apps layouts, graphics, figures, icons and color settings.

• Telephony Manager: Provides information about the telephony status, services

available and handles settings of network connections.

• Package Manager: Used to provide information about the applications installed on

device.

• Location Manager: Provides information about the location services.

 The last layer is the system applications. By default Android comes with a couple of

built-in applications that are used to execute basic services such as e-mail sending, SMS

messaging, calendar, contacts, internet browsing and more. However, programmers may

develop their own applications to execute these services and replace the Android system

applications. Developers can also access these built-in apps from the app that they are

CHAPTER 2

BACKGROUND

21

developing. For instance, if a developer would like an app to deliver an SMS message, its

not necessary for him to develop the functionality, instead the developer could invoke the

SMS built-in app that is already installed on the mobile device to deliver a message to the

recipient.

2.1.2. Applications Security Mechanism

Following its architecture Android has some concepts and principles designed for

application security. When talking about application security, development best practices

have been created in an attempt to prevent or deny system exploitation, a security

checklist can be found in [31] with the following tips:

1. Store data safely: Minimize the use of APIs to access sensitive data, do not expose

sensitive data to third-party components if the goal of requesting this data is

unclear. If data has to be accessed try to avoid sending it through the network or

use a hash to protect it and verify external storage when it is used.

2. Enforce secure communication: Use Transport Layer Security (TLS) as an aditional

layer for encrypted communication between clients and servers when

transporting data through the network.

3. Update security provider: Use Google Play Services to automatically check and

update the device security provider to avoid exploitation when vulnerabilities are

found.

4. Pay attention to permissions: Permissions requests protect user sensitive data by

limiting the applications access to information that is considered sensitive such as

phone contacts and location information [32] and should be used only when the

information is necessary for the application to execute or work. Android 6.0

Marshmallow, which was released in 2015, changed the way that application

permissions are treated. With this new model, the users can add and revoke

permissions at any time, which theoretically improves the user visibility and

control over permissions but most of the users still do not understand the purpose

of the permission they are being asked to allow or deny and that is why developers

should pay attention and request permissions only when necessary. Besides that,

the permissions requested from third-party libraries should also be verified

because when a library is used it carries out all the permissions requested.

 Android also has an application sandbox that executes each application separately as

if it were a single user. Thus, each application has its own exclusive user id (UID) and a

private and restricted directory to save data that are added during the installation

process. The sandbox basically denies all requests that the app performs unless the

permissions are granted. For instance, an app can share files by configuring its file mode

to be world writable or readable. This model can be broken only by applications that have

CHAPTER 2

BACKGROUND

22

the same digital certificate and that explicitly ask for the same UID at Android app

configuration file.

 Android components of an application such as activities, services and broadcasts can

also be restricted to ensure that only certain allowed sources can execute a particular task,

the permissions are added to the manifest file. For instance, an activity permission is

added using the android:permission attribute inside the <activity> tag and checked

during Context.startActivity() and Activity.startActivityForResult() methods, if the caller

does not have the required permission a SecurityException is thrown. Content providers

can also grant permissions and restrict who can have access to read and write data, more

information about security in Android can be found in [33] and [34].

2.1.3. Application Structure

An Android Application is a zip format archive that contains several files and folders

compressed into a package with the .apk (Android Package Kit) extension [35]. Figure 2-

2 has an APK content example with the main files that make up an APK, each file is

described below:

• AndroidManifest.xml: Android configuration file containing predefined elements

such as application name, permissions, application components, libraries, icons

and filters. The file is in binary format and can be converted into human-readable

XML using tools such as apktool and Androguard.

• classes.dex: Application code compiled in the DEX format to be understandable by

the Android runtime.

• resources.arsc: File with pre-compiled resources, such as binary XML files.

• res/: Folder that has the resources that are not pre-compiled such as layouts,

strings, colors, drawables and icons. The R class contains the identifiers from all

the resources.

• META-INF/: Folder that contains meta information to the signature of the

application such as CERT.RSA, CERT.SF and Manifest.MF.

• lib/: Folder that contains compiled code specifically for a processor. The folder is

divided into more folders to organize the code. For instance, x86 has compiled code

for x86 processors only while armeabi-v7a has compiled code for ARMv7 and

above based processors.

https://developer.android.com/reference/android/content/Context.html#startActivity(android.content.Intent)
https://developer.android.com/reference/android/app/Activity.html#startActivityForResult(android.content.Intent,%20int)
https://developer.android.com/reference/java/lang/SecurityException.html

CHAPTER 2

BACKGROUND

23

 Figure 2-2: Android Application Package Kit Content.

2.1.4. Application Components

Android has four different types of application components [36]. Each one has different

lifecycles and executes a different task with a specific purpose. An app does not

necessarily need all these components, but to present a User Interface (UI) it has to

contain at least an Activity, the components are listed below:

• Activities: Activities represents a single screen with a user interface in an Android

application. They have its own lifecycle controlled by inherited methods and also

groups up the visual elements (called views) of an app and allows users interaction

with the screen. Each application is formed by multiple activities and the transition

between them is made with Intents that is an asynchronous message that answers

to system and applications requests and also binds multiple components.

• Services: Services are components with no graphical interface that run in

background. They were created to execute tasks that take a large amount of time

without disrupting the interaction of the user with the application. For instance,

download a large amount of data such as musics, movies, or books from a

webservice without compromising user experience.

• Content Providers: Content Providers are responsible for data storage and

retrieval in Android applications. They can also be used to share data between

multiple applications if the correct permissions are given. Android already has

default content providers for some data such as contacts, images, videos and

others. They can be accessed through an URI that determines the provider, a field

name and the data type of the field.

CHAPTER 2

BACKGROUND

24

• Broadcast Receivers: Just like a service, Broadcast Receivers are components that

have no graphical interface and run in background. However, they are used for

short term tasks. Broadcast Receivers are used to answer to intents that are sent

from the operational system or from other applications. For instance, when an

Android phone starts or the phone battery is low a broadcast is sent to all the

applications in the phone and a broadcast receiver can be created to intercept this

message and execute a task. Although Broadcast Receivers have no interface they

can exhibit notifications in the status bar to alert users.

2.2. Information Flow and Taint Analysis

One way to verify applications security and privacy is to track sensitive data. In Android,

Information Flow is the transfer of information from an information source such as

accessing contacts list to an information sink such as sending a SMS message [37]. In a

mobile environment, this is information being acquired by an application and being

transferred to other app or to the internet, if this is done insecurely with sensitive data a

data leakage may occur.

 Taint analysis is the technique used to track information flow through a program

analysis which adds labels or tags to a variable within the application under test. This

variable is considered tainted while the rest are untainted. In general, taint analysis is

defined as the process of tracing how tainted data propagates through a program as it

executes [38]. In other words, if an information flows from an object y to an object x,

denoted y -> x and y is tainted the analysis will have the ability to track the information.

Taint Analysis has some concepts that are listed below:

• Tag: Act to add a label in each object that needs to be traced. For instance, user

location.

• Source: It is where the application can get the sensitive information. It is the

starting point to add the tags and create the tainted objects to be tracked. An

example of a taint source is a function that reads data from an untrusted data

source, for instance, the Android Location manager is the source to get information

about the GPS.

• Propagation: Is the process of executing the propagation of the tag while the

program is executed. For example, when an untainted variable in the code receives

information about location coordinates, then its status changes to tainted and will

be tracked during the execution of the application.

• Sink: Places where an application can send information to other applications or to

the internet, such as SMS sending or HTTP connection.

 Information flow can be tracked in two ways [38]: implicit and explicit. On explicit the

information is passed directly from one tainted variable to another. Whereas implicit

CHAPTER 2

BACKGROUND

25

information flow, the value from a tainted variable affects the value of another variable

indirectly. Figure 2-3 shows an example with implicit and explicit flows in a code snippet.

Line 2 is an example of explicit flow because variable x receives the value from y directly

while lines 4 and 6 are examples of implicit flow because the value that the variable send

receives depends on the if statement.

 Figure 2-3: Explicit and Implicit Flow Example in a Code Snippet.

 Taint Tracking can be static or dynamic. In static analysis the tracking works by

simulating the execution of an application, usually creating a Control Flow Graph (CFG)

that attempts to find possible paths from sources to sinks by simulating the execution flow

of the application, it tracks at each instruction which taints are influencing the variables

of the app. Figure 2-4 provides an example of a code snippet and a representation of this

code as a graph.

 Figure 2-4: Static Analysis Example.

CHAPTER 2

BACKGROUND

26

 The goal of the graph is to cover all the possible paths that the code snippet can go

through. For example, from line 4 the code can go to line 5 or line 7 and the graph is

covering both situations and the variable value is going to be tainted only if the first if

statement of the code is true. Among the Static Taint Tracking benefits are the capability

of analyze all possible executions paths of the program, point the code where issues occur,

detect problems in the early stage of development and works well with explicit flow [39].

In contrast, it is challenging to apply Static Taint Tracking for implicit flows because the

values of the variables are affected indirectly. For example, Android applications can be

built using reflection, i.e. it is possible to instantiate new objects, invoke methods and

get/set field value at runtime. Besides that, Static Taint Tracking can have overtainting

problems.

 Dynamic Taint Tracking is the process of executing an information flow tracing while

a program is being executed. This type of tracking learns the properties of the application

by executing it in a controlled environment and examining the program state during and

after execution. CuckooDroid [40] is an example of Dynamic Taint Tracking environments

for Android apps. Figure 2-5 shows Cuckoo architecture.

 Figure 2-5: CuckooDroid Architecture.

 Cuckoo is composed of a host machine and a couple of Virtual Machines (VMs), called

guests, that execute the applications that are being analyzed. Each app analysis is

launched in an isolated and new VM that contains a Linux virtual machine to run an

Android emulator. Among Dynamic Taint Tracking benefits are the capability to analyze

the state of the applications during runtime, be sure that a problem exists if it is found and

also validate Static Taint Tracking results. However, Dynamic Taint Tracking is too

expensive to run, it is input dependent and most of the time cannot explore all the paths

that an app can execute. This thesis applies Static Analysis to choose the sensitive static

API calls that could lead to a data leakage. These API calls are used in a Machine Learning

model that classifies applications into malign or benign. Besides that, the sources and

sinks collected are used to create reports with the possible behaviours inside the Logical

Predicate Mapping (LPM), more information about the development in Chapter 4.

CHAPTER 2

BACKGROUND

27

2.3. Machine Learning

Another computer science field used in this thesis is Machine Learning, that is defined as

the science of programming computers so they can learn from data [42]. For instance, a

Machine Learning program can learn how to flag malwares. To do that it needs a previous

set, called the training set, with samples of malign and benign applications flagged by

users to train the algorithm and create a model that will later be used for classification.

Figure 2-6 shows the Machine Learning process that can be divided into five steps.

Problem Definition is the first step, here some questions need to be answered such as:

What business problem are we trying to solve? and How can this problem be modeled as

a machine learning problem? if it is not possible to answer these question then it is not a

Machine Learning problem. To model the Machine Learning problem, a Machine Learning

system type needs to be chosen, these types can be classified in categories based on [42]:

 Figure 2-6: Machine Learning Process Steps.

1. Whether the model was trained with human supervision or not (supervised,

unsupervised, semisupervised and Reinforcement types).

2. Whether the model can learn incrementally (online and batch types).

3. Whether the model detects patterns or works by comparing data points in the

training data (model-based and instance-based types).

 This thesis focuses on the first category and on supervised learning, that is when the

training data added to the algorithm has the desired solutions, called labels, the algorithm

tries to learn the patterns that can lead to the labels. Typical supervised learning tasks are

classification and regression. Spam filters are good examples for classification tasks

where the model is trained with as much as possible examples of emails (spam or not)

and it must learn how to classify new samples.

 On regression tasks the model tries to predict a numeric value. For instance, it could

try to predict the value of a house given a set of features (size, location, and others). In

this case the system should be trained with as much as possible examples of houses,

CHAPTER 2

BACKGROUND

28

including their predictors and the labels. Examples of supervised learning algorithms are

K-Nearest Neighbors (KNN), Linear Regression, Logistic Regression, Decision Trees,

Random Forest, Support Vector Machines (SVMs), and others. This thesis focuses on

classification. The second step of the Machine Learning process from Figure 2-6 is Data

Modelling, the data collected is important because the quantity and quality of the data is

determinant to get a good Machine Learning model. If the data is insufficient,

nonrepresentative, polluted, noisy or has irrelevant features the model may not have good

results.

 There is also a problem with overfitting and underfitting. Overfitting is when the model

performs well during training but it does not generalize well and underfitting is the

opposite and occurs when the model is too simple [42]. Therefore, the data really needs

to be good enough to build the machine learning model.

 The data format can be structured or unstructured and can contain static or streaming

data types. Structured data format can be represented as columns and rows. For instance,

patients records, movies database and so on while unstructured data can be images and

audios. Static data is information that does not change such us customers purchase

history while streaming data is information that is constantly being updated such as users’

location. This thesis focuses on structured and static data. After the data is collected, the

features need to be chosen and the dataset prepared to be used, most algorithms require

a specific data format to be used. With the problem defined and the data prepared the next

step is to choose the model and start the training, the best model choice depends on the

problem and on the data collected.

 Bad performance on training data means the model has not learned anything and it

needs to be improved, changed or more data needs to be collected while poor

performance on test data means the model did not generalize well and probably had an

overfitting. Some metrics were created to evaluate classification problems, they are listed

below:

1. False negatives (FN): Considering a malware detection machine learning model.

False negatives correspond to the number of malicious applications that were

incorrectly classified.

2. False positives (FP): This metric is the opposite of false negatives. For instance, a

benign application that is classified as malware by the model.

3. True negative (TN): Number of benign apps that were successfully classified.

4. True positive (TP): Number of malware apps that were successfully classified.

5. Precision (P): This metric is the division between the number of true positives

divided by the sum of true positives and false positives so it is related to the

relevancy of the results, a model that has no FP has a precision of 1. Formally it is

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃

6. Recall (R): This metric is the division between the number of true positives divided

by the sum of true positives and false negatives so it is related to how many

CHAPTER 2

BACKGROUND

29

applicable results are returned, a model that has no FP has a recall of 1. Formally

it is 𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁

7. F1-Score (F1): This metric is the harmonic mean between Precision and Recall, the

closer to 1 is better. Formally it is 𝐹1 = 2 ×
𝑃 ×𝑅

𝑃+𝑅

8. Receiver Operating Characteristic (ROC) curve: The ROC curve is a plot comparing

TP and FP rates.

9. Mean Absolute Error (MAE): Average difference between the model results and

the actual values.

10. Root Mean Square Error (RMSE): This metric is the value of the square root of the

average of squared differences between the model results and the actual values.

 The last step is the deployment, the act to upload the model inside an application to

use. A malware detection machine learning model was trained and deployed to be used in

this thesis, more information about the development is in Chapter 4.

2.4. Probabilistic Topic Models

Induced by the need of new techniques for efficient text information extraction a new area

of research emerged in 2003, called probabilistic topic models [43] with the goal to

discover hidden thematic structures in a large collections of documents and find out

similar topics, how they change over time and how they are connected. Initially, these

models were proposed to be applied to textual documents only, but since it had good

results the applicability was also explored in other data types with discrete attributes,

such as images, graphs and others.

 The idea behind topic models is to discover latent patterns that are meaningful in the

relationship between documents and terms (words) [43]. For instance, a model can be

used to rank a set of terms or documents as important for a particular theme. Probabilistic

models simplify the exploration of large number of data through topics discovery, topics

are structures with semantic values that form sets of words that often occur together.

When these sets are analyzed they give clues about a theme or subject that occurs in a

subset of the documents. For instance, movie synopses can be organized and grouped up

by applying topic modeling to discover theme-based subsets such as comedy, horror,

adventure, and others. This thesis uses Topic Models to group up the applications with

similar goals.

 Some techniques have been proposed to evaluate probabilistic topic models. Most of

them use human intervention such as topics interpretability that requests a person to

verify the top-k probability words from the topics to check if they are meaningful and

topic/words evaluation when a random word is added to a single topic and a person has

to look at the topic and discover the world. Other techniques do not use human

CHAPTER 2

BACKGROUND

30

intervention such as Perplexity and Topic Coherence. Perplexity measures the log-

likelihood of a held-out test set, in other words it measures how well the model represents

unseen data [44]. For a test set of M documents the Perplexity is obtained through the

formula:

𝑝(𝐷𝑡𝑒𝑠𝑡) = exp−
∑ log 𝑝(𝑊𝑑)

𝑀
𝑑=1

∑ 𝑁𝑑
𝑀
𝑑=1

Equation 2-1

where, 𝑊𝑑 represents the worlds from each document d and 𝑁𝑑 is the number of words

in each document d.

 However, Perplexity does not always correlate with semantically human interpretable

topics and often it is totally not correlated. This limitation served as motivation for studies

to model the human judgment, with that other techniques such as Topic Coherence

emerged. Topic Coherence measures score a single topic by obtaining the degree of

semantic similarity between the words with the highest score in the topic [45]. These

measurements help distinguish between topics that are semantically interpretable and

topics that are only artifacts for statistical inference.

 Latent Dirichlet Allocation (LDA) is a popular probabilistic topic model technique and

it is based on the generation of topics as Dirichlet distributions. In LDA a collection of

composites is made up of parts where the composites are documents and the parts are

words and/or phrases, through this an LDA model can classify unknown documents using

a priori information.

 Figure 2-7: LDA Topic Distribution and Assignment in Instagram.

 LDA model reflects the idea that documents are made up of various topics that are

displayed in different proportions, each word in a document is obtained from one of the

topics, where the chosen topic is selected from the per-document distribution over topics.

This is the most distinctive characteristic of LDA, the documents share the same topics.

However, each document exhibits them in different proportions. Figure 2-7 shows an

CHAPTER 2

BACKGROUND

31

example with Instagram description, highlighting four topics, with blue being the one with

the highest proportion. The generative process can be represented graphically through a

Bayesian network as illustrated in Figure 2-8. On the network the vertices represent the

variables while the edges represent the dependency relations. At the graphic model

notation, a rectangle means that the variables are grouped up into a subgraph that

repeats. The number of repetitions is represented at the bottom of each rectangle. Each

element from the notation are described below:

 Figura 2-8: LDA Graphical Model.

• K – Number of topics.

• n – Number of words on the vocabulary.

• m – Number of documents.

• ndj – Number of words in a document dj, where 1<=j<=m.

• Ɵ – Topics distribution per document.

• ɸ – Topics distribution over all the words in the vocabulary.

• Ɵj – Vector with the topics proportion for a document dj, where 1<=j<=m.

• ɸk – Vector with the words from the vocabulary proportion for a topic k, where

1<=k<=K.

• α – Priori from Dirichlet distribution, related to the document-term distribution.

• β – Priori from Dirichlet distribution, related to the topic-word distribution.

CHAPTER 2

BACKGROUND

32

• wi – Word from the vocabular where 1<=i<=n.

• wj,i – Word wi observed on document dj, where 1<=j<=m and 1<=i<=n.

• zj,i – Topics distribution associated to the word wj,i on document dj, where

1<=j<=m and 1<=i<=n.

 The model is organized hierarchically in 3 levels. First level represents the topics

distribution in the set of documents. Second level represents the topic distribution for

each document and last level makes possible the representation of a document as a

mixture of topics. The hyperparameters α and β are used to calculate the topics and the

words inside the topics. For instance, a higher value for α means that each document will

have a higher mixture of topics and a lower value indicates a higher probability of

documents with the mixture of few topics. In the same way, a higher value for β means

that each topic will have a higher probability of containing a mixture of multiple words.

While a lower value indicates that the topic will contain few words.

 The variable ɸk is located at the second level for each topic k. Each vector ɸk forms a

matrix ɸ of size n x K, where each line represents the words from the vocabulary and the

columns represents the topics. The value from ɸk,i is the proportion of a topic k to a word

wi. The distribution of documents per topic is represented as a matrix Ɵ of size m x K,

where the lines are documents and the columns are topics, one line from this matrix

matches the topics proportion for a document dj of the list. The worlds level contains the

variables zj,i and wj,i. These variables are shown for each word wi in each document dj. The

variable zj,i is the assignment of a topic k (1<=k<=K) for a word wi of a document dj. In

summary and following the description LDA generative process executes the steps

described below:

1. Shows K multinomials ɸk ∼ Dir(ɸk;β), for each topic k.

2. Shows m multinomials Ɵj ∼ Dir(Ɵj;α), for each document dj.

3. For each document dj:

i. Assign a topic for each zj,i from the Ɵj Dirilecht distribution.

ii. Shows a word wi from the distribution ɸzj,i.

 Based on the generative process and looking at the relationship of dependence

between the variables of the model, it is possible to describe the probability of all the

latent variables of the model given the information a priori [46].Transcribing these

probabilities the following joint distribution is created:

𝑝(𝑧, 𝑤, ∅, 𝜃|𝛼, 𝛽) = ∏𝑝(

𝐾

𝑘=1

∅𝑘|𝛽)∏𝑝(

𝑀

𝑗=1

𝜃𝑗|𝛼)(∏𝑝 (𝑧𝑗,𝑖|𝜃𝑗
⃗⃗⃗⃗)𝑝 (𝑤𝑖,𝑗|𝑧𝑖,𝑗,∅𝑧𝑗,𝑖

)

𝑉

𝑖=1

).

Equation 2-2

 Taking into account the observed and unobserved variables and their dependencies,

the goal is to discover topic assignments for the documents, topics distributions per topics

and topics by terms. So, the biggest computational problem for LDA is to infer

CHAPTER 2

BACKGROUND

33

p(z,ɸ,Ɵ,|w,α,β), where w is all the words observed in the list of documents. From Bayes

theorem, it is possible to formulate the probability of p(z,ɸ,Ɵ,|w,α,β) as the calculation of

the a posteriori of LDA like it is shown below:

 𝑝(𝑧, ∅, 𝜃|𝑤, 𝛼, 𝛽) =
𝑝(𝑧, 𝑤, ∅, 𝜃|𝛼, 𝛽)

𝑝(𝑤)
. Equation 2-3

 The joint distribution (Equation 2-2) is the numerator and the denominator is the

probability of the observed data. Therefore, the central computational problem can be

solved by inferring the posteriori probability of the whole model, described in Equation

2-3. This thesis uses LDA to get the set of descriptions from the applications that belong

to the same store category, discover their latent topics and find out the topics

distributions that are more similar to the description of the application being evaluated

in terms of functionality. Chapter 4 has more information about the development of the

algorithm.

2.5. Final Considerations

This chapter presented the concepts necessary for the understanding of this thesis

starting with the Android operational system, its architecture, application structure and

security features describing how the technology works and how developers could apply

best practices to avoid security and privacy issues such as data leakage and system

exploitation. After, the techniques and algorithms used and integrated in the development

of this thesis prototype were explained. Starting with Taint Analysis, a technique that is

used to track information, explaining the types, how they work, their benefits as well as

its limitations.

 The second technique explained is Machine Learning, a field from computer science

that is used to solve problems through knowledge acquired from data, explaining what it

is, the steps of a Machine Learning process as well as some challenges that needs to be

addressed to use Machine Learning. Finally, Probabilistic Topic Models, a technique that

is used to discover hidden topics inside a set of documents, is explained with focus on

Latent Dirichlet Allocation (LDA).

 This thesis used LDA with the goal to receive a description from a target application.

The topic distribution from the application description is obtained and later compared

with the topic distribution from the set of benign applications descriptions from the same

category as the target application to find out the ones that are most similar to the target

app in terms of application functionality. Next Chapter presents some research about

Android mobile application recommendation works that suggest applications and/or

permissions configuration to users but also verifies some security or privacy aspect.

34

Chapter

 3

 Related Works

 As diferentes abordagens para reconhecimento de atividades humanas

This chapter presents works related to recommendation systems usage inside the

Android environment that also focus on security and privacy. To better organize this

Chapter the works are divided into approaches that recommend permissions

configuration and approaches that recommend Android applications installation.

3.1. Approaches that recommend permissions configuration

This category contains works that analyze some aspects of a group of applications to

recommend which permission configurations are most suitable for the app being

evaluated.

 Figure 3-1: RecDroid Service Overview.

CHAPTER 3

RELATED WORKS

35

 For instance, Rashidi et al. [47] created RecDroid with the goal to control Android

applications permissions in real time through recommendations of permissions

configuration from expert users (crowdsourcing) who use similar apps. With this

approach, regular users will be able to make correct permission granting decisions based

on the choices made from the expert users avoiding security issues. Figure 3-1 shows an

overview of RecDroid which is composed of a patch at the Android operational system

and a service to report permissions suggestions. RecDroid users can choose between two

types of modes during the application installation: trusted mode and probation mode. In

probation mode the application has to request permission to access the sensitive

resources during runtime (e.g. Location, contacts). In trusted mode, all the requested

permissions are granted whereas during probation mode RecDroid queries it services to

compare the requested permission with a list of predefined dangerous perms to suggest

if the permission should be allowed or denied.

 RecDroid also recommends if an application should be accepted during installation

based on its collected data. For instance, if an application was rejected a lot of times

RecDroid recommends that this app should not be installed. However, the process of

installing RecDroid inside a mobile device may be hard for regular users because the

Android operational system needs to be modified. Also, since its recommendation system

is based on user suggestions, some malicious users could give the system misleading

answers to benefit a particular app.

 Bao el at. [48] present APRec, a permissions configuration recommender based on the

perception that the applications that execute the same Application Programming

Interface (API) share similar features and also use similar permissions configuration.

Figure 3-2 shows APRec framework.

 APRec starts gathering applications APIs to create representative feature vectors.

After, the distance between the vectors is calculated using a cosine similarity approach.

Finally, a recommendation score for each permission using a collaborative filtering

approach is calculated and the permissions with the highest scores are suggested to the

users. APRec is entirely focused on API calls and there are certain features in Android that

can be accessed through more than one resource. In addition, there are API calls that have

been deprecated in newer versions of Android and have been replaced by new methods.

For instance, the Android Lollipop BluetoothAdapter had some deprecated methods that

were changed by BluetoothLeScanner, which may influence the results of the approach.

 Rashidi et al. [49], same authors from RecDroid, proposed another framework called

DroidNet, that also uses decisions made from expert users to provide recommendations

on whether to reject or accept an application permission configuration. DroidNet runs the

applications in probation mode to request recommendations on whether to allow or deny

the requested permissions configuration based on decisions from expert users. The main

difference from DroidNet and RecDroid is the addition of a rating algorithm to seek expert

users based on transitional Bayesian inference. However, DroidNet shares the same

CHAPTER 3

RELATED WORKS

36

restrictions as RecDroid, since installing the approach inside the phone may be difficult

for regular users as the Android operational system needs to be modified.

 Figure 3-2: APRec Framework.

 Latifa et al. [50] present PermisSecure, which works by executing static and dynamic

analysis of an application before installation to detect applications that request dangerous

or unnecessary permission configurations. The analysis is divided into two levels: First

level checks the permissions and warns the user if they are dangerous. If necessary, it goes

to the second level that checks the application code and shows a warning if there is

anything suspicious. PermisSecure may present performance overhead mainly caused by

the dynamic analysis. Moreover, Android operational system modification is needed.

 Shukla et al. [51] present PermissionChecker, an approach that uses the categories

from Google Play to inform when an application that belongs to a determined category

should receive certain permission configuration similar to most applications in that

particular category. PermissionChecker is divided into three steps: data collection, data

analysis and recommender. The data collection uses the apps category from Google Play

to divide the applications into clusters.

 The data analysis step applies a recommendation technique that determines the

permission configuration that should not be given to an application. Then, the

recommender accesses the apps/permission matrix to show the users which permission

configuration should or should not be granted. However, PermissionChecker can

sometimes cause runtime errors if it revokes a permission configuration related to the

app normal operation.

CHAPTER 3

RELATED WORKS

37

 Liu et al. [52] present PriVs, a permission configuration recommender based on a

crowdsourcing approach. PriVs works by collecting permission configuration from

applications and learning similarities based on privacy preferences on the applications.

In addition, PriVs gathers user opinions about the permission configuration when the

information is required. These opinions can be: agree, reject or agree only this time. PriVs

does this in an attempt to improve its model. PriVs is composed of two components: a

mobile application installed on the user device that is responsible for scanning all the

other applications installed and to provide an interface to configure permissions

configuration and receive recommendations. Second, a recommendation server is used to

process data collected from the users and generates the suggestions. One restriction of

PriVs is the need to install the app with root access.

 Liu et al. [21] present PriWe, a system that also uses crowdsourcing to suggest privacy

permissions configuration based on users that previously used the apps on their mobile

devices. PriWe has two components: An application located inside the mobile device that

gathers privacy settings and a recommendation server that analyzes the crowdsourced

data to generate suggestions. PriWe mobile device application has some functionalities

such as scanning installed apps, browsing permissions configuration and applying

permission suggestions from the recommendation server. Just like PriVs, PriWe requires

that its mobile device application runs at the system level to gather all the privacy settings,

for which it needs root privilege.

 Do et al. [53] propose a work that studies social network applications and removes the

permissions that may cause privacy issues. Their approach works decompiling the APK

file to access the app source code to remove the permissions that may cause a privacy

problem. Then, the app is recompiled to be used inside the mobile device. However,

applications may not have their full functionalities and/or crash after the permission

removal. Also, repackaging an app may be considered a malicious behavior by app stores.

 Ali et al. [54] present Auto Android, a framework that enables users to customize

permissions configuration at install time and during runtime. Auto Android has a machine

learning layer that checks applications categories and permissions to suggest which

permission should be configured to avoid data leakage. As in previous works, Auto

Android requires Android operational system modifications, this is a hard task for regular

users.

 Oglaza et al. [55] propose Kapuer, a system that uses machine learning to understand

user preferences and create rules that permit or deny a permission configuration request.

Kapuer can also create high-level permission configuration rules such as “Applications

from Social category can have local access to user data” which is a global rule for all the

applications from the social category. A drawback is that Kapuer has to be installed on

rooted mobile devices.

CHAPTER 3

RELATED WORKS

38

3.2. Approaches that recommend applications installation

This is the category most related to this thesis. It consists of works that analyze some

aspects of a group of applications to recommend if the application being evaluated should

or should not be installed on the mobile device.

 Dang et al. [56] present TruBeRepec, a mobile recommendation system that generates

application trust and reputation scores according to individual collected information.

Figure 3-3 shows TruBeRepec architecture that corresponds to a mobile application and

reputation service provider (RSP) running as a server. The information collected can be

from three different categories related to: normal application usage (Using Behavior - UB)

such as usage time and frequency; usage after application problems/errors occur

(Reflection Behavior - RB) and Correlation Behavior (CB), which is information taken

from similar apps.

 The collected information is used to calculate an individual trust value between 0 and

1. After that, the reputation score value is obtained by aggregating each trust value.

Finally, a list with installed applications and their scores can be seen in the mobile

application. TruBeRepec runs continuously to monitor application use on the mobile

device, increasing battery consumption. In addition, it tries to find similar applications

only by comparing application permissions. This can raise false positives as two

applications that are completely different may use the same permissions.

 Figure 3-3: TruBeRepec Architecture.

 Su et al. [57] propose a network traffic analyzer from Android applications that have

similar functionalities to suggest Android apps installation. The top 100 Android

applications from each of Google Play most popular categories, such as communication

and entertainment were downloaded, executed and had their traffic cost extracted to

create a dataset. From such information, a traffic-cost based recommendation algorithm

CHAPTER 3

RELATED WORKS

39

is used to suggest applications based on the traffic cost rate, percentage of required app

traffic and some regular metrics that are also used in other works such as user ratings,

number of downloads. However, one restriction for this approach is that to ensure that

the network traffic generated for each single application is good enough, each app has to

be individually installed and executed on the mobile device and, in reality, this scenario is

infeasible and does not occur.

 Rustgi et al. [58] present DroidVisor, a system that provides custom application

recommendations to users based on security, similarity, popularity and ratings. To

compute these scores, DroidVisor first selects apps that belong to the same category of

the app being evaluated. After that, a keyword filtration approach is applied to select only

the most similar applications. Finally, the final set of applications is used to calculate

security, popularity and usability points (scores) based on the features extracted. The

results are listed to the users so they can decide if the application should be installed or

not. A restriction of DroidVisor is related to the security risk analysis of the apps that is

based only on the permissions set.

 Gomez et al. [59] propose a mobile application recommendation system for store

administrators that suggests the removal of buggy (error-suspicious) applications

through the investigation of the correlation between permissions configuration and

errors reported from users in applications reviews made in the stores. Figure 3-4 depicts

the system overview. The system begins extracting the Android application metadata and

users reviews from Google Play Store. Then, a generative statistical model is used to group

up only the applications that are error suspicious. Finally, error-suspicious applications

and permissions are correlated to build a model that is used to suggest the apps that

should be removed.

 Figure 3-4: Buggy Apps Overview.

 Since the system is based on user application reviews a malicious user may provide

false information to harm the app popularity. In addition, applications can crash for other

reasons that are unrelated to permissions configuration, such as an out of memory error.

 Jisha et al. [60] propose a mobile recommendation system that evaluates popularity

and security metrics based on user apps ratings (stars assigned to the applications) in the

CHAPTER 3

RELATED WORKS

40

Play Store and applications permissions configuration so that a user can choose which

application to install on their mobile device. Figure 3-5 has the system architecture.

 Figure 3-5: User Rating and Permissions Architecture.

 The system works by crawling applications from the official store and extracting user

ratings to create clusters based on rating values with high and low scores. Next,

permissions are extracted, and a security risk is calculated. This data is integrated into a

user interface that shows the clusters with the overall rating score of each application,

thus users can choose which application they do or do not want to install on their mobile

device. The authors claim that applications with the lowest permission configuration

scores are safer. However, this is not true since certain applications need permission

configuration to perform functions, such as location, Internet access, and others.

Therefore, an app with more permissions will not necessarily be a less secure or malicious

app.

 Zhu et al. [61] present a mobile recommendation system called SPAR that considers

the applications popularity and permissions to suggest a list of safe applications to install.

SPAR recommendations are done in three types: Security, Popularity and Hybrid.

 For the security type, applications are ranked based on their risk scores and then

ranked by popularity. For popularity, the applications are ranked based on popularity

scores and after by risk. The hybrid principle considers both risk and popularity scores to

find a middle ground between popularity and safety. Figure 3-6 shows the system

architecture.

CHAPTER 3

RELATED WORKS

41

 Figure 3-6: SPAR Framework.

 SPAR is divided into two stages: The offline stage is used to calculate the apps risk

scores and build a hash tree to perform faster searches, while the online stage is used to

calculate popularity and applies a portfolio optimization technique to make

recommendations.

 Liu et al. [62] propose a work that recommends applications by calculating a trade-off

between applications functionality and users privacy configuration. Their system starts

modelling two vectors. One with user interest and another with application functionality,

after it applies a function to calculate the functionality match score. After, other latent

factor model is created to calculate the privacy respect using the users’ privacy

preferences and the apps private information (permission). Finally, the trade-off is

obtained through a weighted sum between the match score and the respect score. Since

their approach is based only on permissions configurations it has to assume that all the

users completely understand the permissions system, which is untrue [21] so the privacy

respect calculation may be difficult to get. Also, use the applications store ratings as a

measure may also present problems since users may try to manipulate the rating system

by using bots or by giving high ratings just to increase the application punctuation.

 Zhu et al. [63] present a recommendation system that combines users preferences,

privacy risks and apps functionality called AppURank. Their system starts calculating a

Danger Coefficient (DC) based on privacy risk and application usage pattern. The first is

obtained through applications permissions configuration and the second through

application execution time. Larger DC indicates a bigger change for a privacy violation.

After, user preference is obtained by representing each user’s choices as a distribution of

common preferences. This distribution suggests the preferences of users for each

application category. After that, a topic model is used to create clusters between the apps

and split them by functionality and usage context. Finally, AppURank is calculated by

combining DC and users preferences. A possible drawback is that AppURank considers

that the probability that an application has to access sensitive information is proportional

to the time the application is used in foreground, ignoring one of the strongest features of

CHAPTER 3

RELATED WORKS

42

Android apps, which is the use of services in background for the execution of heavy tasks

such as downloading a large amount of data. Also, AppURank privacy focus is fully based

on permissions configurations.

3.3. Discussion

Table 3-1 summarizes the characteristics of each research. First column lists the

approaches name. Second column lists from where the features were obtained that can

be:

• Collaborative filtering: Category set when the approach uses features that are

provided from other users. For instance, permissions configuration sugested from

security experts.

• Network traffic: Category set if the approach uses the information from the

network packages such as HTTP requests information.

• Store features: Category set if the work uses any feature extracted from the store

such as application description, number of downloads, ratings, developer name,

and more.

• Permissions: Category set when the related work uses the permissions

configuration as features.

• Device features: Category set when the features are extracted from the device, such

as application execution time.

• Static features: Category set when the source code from an Android application is

analysed to extract features.

• Dynamic features: Category set when the approach uses a sandbox to execute the

applications in a virtual environment to extract features.

Third column is related to the features that are used to focus any security aspect, these

features can be:

• User voting: This category is set when the security evaluation is done through user

voting. For instance, users can vote if an application that is being used is secure or

not and when a new user tries to use the same application he will receive the votes

from previous users and decide if he wants to run the app, creating a collaborative

environment.

• Network traffic: This category is set when the features related to security are

extracted from network traffic analysis. For instance, the traffic cost of the

applications.

• Permissions: This category is set when the related work uses only the permissions

to check if an application is safe or not. For instance, Android applications are

divided into categories and most of the works use the permissions of the

dangerous category to execute their evaluation.

CHAPTER 3

RELATED WORKS

43

 Table 3-1: Related Works Overview.

Name Features Security Feature Recommendation Focus

TruBeRepec Collaborative Filtering User voting Applications Apps on the

device

Network traffic Network Traffic

Store features

Network Traffic Applications Apps on the

store

RecDroid Collaborative Filtering Permissions Permissions Apps on the

device

DroidVisor Store features

Permissions

Permissions Applications Apps on the

store

APRec Permissions Permissions Permissions Apps on the

device

DroidNet Collaborative Filtering Permissions Permissions Apps on the

device

Buggy apps checker Store features

Permissions

Permissions Applications Apps on the

store

PermisSecure Static features

Dynamic features

Static features Permissions Apps on the

device

PermissionChecker Permissions Permissions Permissions Apps on the

store

PriVs Collaborative Filtering Permissions Permissions Apps on the

device

User Rating and

Permissions

Permissions

Store features

Permissions Applications Apps on the

store

SPAR Permissions

Store features

Permissions Applications Apps on the

store

PriWe Collaborative Filtering Permissions Permissions Apps on the

device

Permission Removal Permissions Permissions Permissions Apps on the

device

Auto Android Permissions Permissions Permissions Apps on the

device

Kapuer Permissions Permissions Permissions Apps on the

device

Personalized Mobile

App

Recommendation

Store features Permissions Applications Apps on the

store

AppURank Permissions

Device features

Permissions Applications Apps on the

device

Proposed System Static features

Store features

Static features

Store features

Applications Both

• Static features: This category is set when any feature extracted from the

applications through static analysis is used to apply any evaluation about security.

For instance, API method calls are extracted from the source code through static

analysis.

CHAPTER 3

RELATED WORKS

44

• Store features: This category is set when any feature extracted from an application

store is used to apply any evaluation about security. For instance, developer name,

number of downloads and android version are good features to evaluate security.

 The fourth column shows if the works recommends mobile applications or permissions

configuration. To finish, fifth and last column depicts the approach focus that can be

applications that are on the mobile device, applications on the store or both.

 In general, the only aspect verified to check security or privacy in recommendation

works that suggest Android applications is the permission configuration analysis. Most of

the approaches do that because permissions can easily be retrieved from the Play store.

Permissions are an important metric to validate the security of Android applications,

however they are not enough, as shown in Section 1. Other features, such as static API

calls and store features should be used to improve the result of the security evaluation

inside the recommendation approaches and provide more reliable results to users.

Moreover, most of the works listed do not seem to be concerned about the functionality

of apps and produce recommendations considering different aspects such as Play Store

category, popularity, usability and developers name. However, users need suggestions of

apps with similar functionalities to perform their daily tasks.

 Finally, privacy risk should also be calculated inside a functionality context as certain

permission and/or API call may be considered dangerous in one context but benign in

others. The bibliographic study carried out in this thesis demonstrates that although there

are some methodologies proposed to evaluate security and privacy aspects in Android

recommendation systems, much work is still needed to address all the problems that were

found. Next Chapter presents a functionality-based recommendation system that aims to

mitigate these issues.

45

Chapter

 4

 Mobile Application Recommendation

System Overview

 Reconhecimento de atividades baseado em representação simbólica

As previously mentioned, the increased use of mobile devices made users change the way

they usually execute their daily tasks. Previously, when performing tasks such as a bank

payment or an email sending users preferred using personal computers (PC), nowadays

these tasks can be done with mobile devices. However, the success of mobile devices

usage has led malicious software developers that used to create programs for personal

computers to switch to creating applications with malicious intentions for mobile devices.

 Due to the damage caused by malicious mobile applications, tools have been created to

evaluate the applications and determine if they are malicious or not in an attempt to

protect users and apps store. However, most of these tools only warn the users if the

application being evaluated is malicious. Simply detecting that an application is malicious

is not enough, more information about the threat, the application, and the mobile device

state is needed so users can prioritize mitigation actions [64]. Furthermore, if an

application is malicious users would need suggestions of substitute applications with

similar functionalities as the evaluated app to execute their daily tasks. This objective is

achieved through recommendation systems. However, as highlighted in Chapter 3,

current recommendation systems have some limitations.

 The rest of this Chapter is organized as follows. Section 4.1 has an overview of the

proposed system. Section 4.2 explains the features extraction process, elucidating how

the features were chosen, from where and how they are extracted and how they are

represented. Section 4.3 explains how the classification is made through the training and

creation of models through machine learning algorithms execution. Section 4.4 depicts

how to recommend Android applications that are classified as secure and have similar

functionalities as the app that is being evaluated. Finally, Section 4.5 describes how LPM

is created.

CHAPTER 4

MOBILE APPLICATION RECOMMENDATION SYSTEM OVERVIEW

46

4.1. Mobile Application Recommendation System

 This section describes the stages of the functionality-based system architecture

proposed to evaluate and recommend mobile applications in Android environments

considering security, privacy, functionality, popularity, and usability metrics obtained

through information extracted from the applications. The system can be formally defined

as:

 Definition 1 (System Statement). Given an application app from category c, and a set of

apps S = {s}, which contains a set of store features {fi}, app permissions {p1}, static API

calls {mi} and descriptions {di} the goal of the system is to evaluate app based on security,

privacy, popularity and usability metrics to build a list of recommendations with

applications classified as benign from S that are from the same category c and have similar

functionalities based on their descriptions.

 To reach this definition some issues should be considered as:

1. How to extract features from the store?

2. How to extract permissions and static API calls from the application files?

3. How to properly evaluate security to make recommendations?

4. How to build the machine learning model?

5. How to recommend applications based on their description?

6. How to evaluate privacy?

7. How to obtain popularity measures?

8. How to obtain usability measures?

 Figure 4-1 provides an overview of the proposed system, which consists of three stages

(Feature Extraction, Classification and Recommendation). The system data entry can be

done in two ways: Uploading the application itself (.apk file) or by providing the URL of

the official Google Play store. Evaluating an .apk file is necessary because not all apks are

directly installed from the official store, there are several Android application stores such

as [65], [66], [67]. In addition, there are manufacturers and companies that directly send

their application apks to costumers to be installed directly without being uploaded in any

store.

CHAPTER 4

MOBILE APPLICATION RECOMMENDATION SYSTEM OVERVIEW

47

 Figure 4-1: Proposed System Overview.

 For the feature extraction stage, an APK is unzipped to get its main files (Android

Manifest and .dex files). These files are used to extract the permissions and static

Application Programming Interface (API) calls. All this data is grouped to create a relevant

feature vector that represents the app. The feature vectors are then used to create a

classification model (classification stage) that can predict if an app is either malicious or

benign.

 After classification, the recommendation process starts with only applications

classified as benign and proceeds as follows: If the app being evaluated exists in the official

Play Store, a list of suggested apps is obtained along with a features set to calculate

privacy, usability and popularity scores. Otherwise, the user provides the category and

description from the app being evaluated and an algorithm is used to retrieve the

descriptions from each application that belong to the category of the app being evaluated.

These descriptions go through a topic analysis process that determines which description

is most similar to the description of the application being evaluated, to calculate a

functionality score and decide which application is going to be suggested. Such score is

later listed among the usability, popularity and functionality-based privacy scores and

ranked through weights that are provided from users inside the system interface.

 In addition, the proposed system employs an analysis summarization called Logical

Predicate Mapping (LPM), which is the process of distilling the most important

information from the descriptions, permissions configuration and API calls analysis to

produce an understandable and abridged version for a particular user.

CHAPTER 4

MOBILE APPLICATION RECOMMENDATION SYSTEM OVERVIEW

48

4.2. Features Extraction

Features extraction is an essential task in the proposed recommendation system since the

features are the main factor ensuring the proper operation of a machine learning model.

By studying the Android operational system security model to understand the

permissions system, reading several works related to recommendation and malware

classification such as [17], [58], [68] and studying the main methods (API calls) used to

access user sensitive information, three types of features were chosen, as shown in Figure

4-2.

 Figure 4-2: Features Extracted from an App.

 The store features are obtained through a crawler that visits a store, i.e., Google Play.

Table 4-1 lists the store features with a description of the feature.

 Table 4-1: Examples of Features Extracted from App Store.

Feature Purpose Description

Category Similarity Category of the app such as education,
finance, events and others.

Android version Security Version of the Android operational system.

Developer name Security Name of the company or person that
created the app.

Number of downloads Popularity Number of times that the app was
downloaded.

Rating Usability Score assigned by users to the app, can be
from 1 to 5 stars in case of the Play Store.

Size Security Size of the app inside the mobile device.

Description Similarity Description of the app functionalities.

 Static API calls were chosen based on a set of operations executed in Android

applications such as sending and receiving files, database operations, advertisement

libraries, command execution, access to private information and others. In addition, to

enrich the choices, an algorithm was developed to group up the most used API calls, as

shown in Algorithm 4-1.

CHAPTER 4

MOBILE APPLICATION RECOMMENDATION SYSTEM OVERVIEW

49

Algorithm 4.1: APICallsSelection

Input: listAPK;

Output: listChosen

1: contIMEI=0, contSMS=0;

2: for j -> 1 to listAPK do

3: listAPI = extractCalls(listAPK[j]);

4: for I -> 1 to listAPI do

5: if (listAPI[i] == ‘getImei’) then

6: contIMEI++;

7: end if

8: if (listAPI[i] == ‘sendSMS’) then

9: contSMS++;

10: end if

11: end for

12: end for

13: listChosen = sortConts(contIMEI,…,contSMS);

14: return listChosen;

 The input for Algorithm 1 is the list of applications listAPK = {app1,…,appx} that are

stored in the database. For each application listAPK[j] (line 2), the algorithm extracts all

the Static API calls and adds them to a list called listAPI (line 3). Next, each API call is

compared with sensitive API calls and a counter is incremented if positive. For simplicity,

only two cases are shown in the algorithm (lines 5-10). Finally, a list with the most used

sensitive API calls is filled (line 13) and returned (line 14). Table 4-2 lists 35 API calls that

were chosen based on the criteria explained along with a description of their purpose.

 Other static features extracted from the system are the permissions. Permissions in

Android applications have the goal of protecting the privacy of the user [32]. For instance,

to access sensitive data (i.e., contacts or SMS) Android apps must request permission, as

well as some system features like Internet. Depending on the type of feature, the system

might automatically grant permission or ask the user to allow the request. Two primary

protection levels defined by the Android operational system [32] are considered: Normal

and Dangerous permissions. Normal permissions are used when an application needs to

access data outside its sandbox, but the risk to the user privacy is considered very low

[69]. For instance, if an application requires information from Bluetooth, Wi-Fi, Internet,

wallpapers, and others. Table 4-3 presents a list of the normal permissions.

CHAPTER 4

MOBILE APPLICATION RECOMMENDATION SYSTEM OVERVIEW

50

 Table 4-2: Examples of Sensitive Method Calls.

Method Description

1 WriteObject Used to write an object to a stream.

2 getLine1Number Returns the phone number.

3 getContentResolver May be used to retrieve a list of contacts.

4 loadUrl Used to load a webpage.

5 Connect Gets an HTTP connection and opens a communication

link.

6 getDeviceId Returns the device IMEI.

7 getSharedPreferences Returns and object that represents a preferences file.

8 getExternalStorageDirectory Return a shared/external storage directory.

9 openConnection Return an HttpURLConnection.

10 getResourceAsStream Returns an input stream.

11 sendTextMessage Sends an SMS.

12 sendMultipartTextMessage Send a multi-part text SMS.

13 getSignature Gets the signature value from a certificate.

14 Decode Decodes a string.

15 openFileOutput Opens a file for writing.

16 getUrl Returns an URL value.

17 sendSms Sends a SMS.

18 getNetworkOperator Returns the registered operator.

19 checkBluetooth Verifies if bluetooth is enabled.

20 getLongitude Returns the longitude.

21 getLatitude Returns the latitude.

21 getImei Returns the IMEI.

22 getVersion Returns Android version.

23 getAccounts Returns all accounts.

24 getLastKnownLocation Returns a location.

25 getSystemId Returns an id.

26 getAltitude Returns the altitude.

27 getConnectionManager Returns a connection manager.

28 getUserInfo Retrieves user info.

29 getLocation Returns location.

30 getEmailAddress Returns the email.

31 getLocalIPAddress Returns an IP address.

32 getApplicationInfo Returns info about a package.

33 getSensorList Retrieves a list of available sensors of a type.

34 Inmob Advertisement library.

35 Admob Advertisement library.

 On the other hand, dangerous permissions are used when an application needs to

access sensitive data or resources that pose risks to private user information [69]. For

instance, if an application requires accessing information from the contacts. In order to

https://developer.android.com/reference/android/accounts/AccountManager.html#getAccounts()

CHAPTER 4

MOBILE APPLICATION RECOMMENDATION SYSTEM OVERVIEW

51

add access to a dangerous permission, a user has to explicitly approve the request to the

application.

 Table 4-3: Normal Permissions Names.

Normal Permissions
ACCESS_LOCATION_EXTRA_COMMANDS ACCESS_NETWORK_STATE

ACCESS_WIFI_STATE BLUETOOTH

BROADCAST_STICKY CHANGE_NETWORK_STATE

CHANGE_WIFI_STATE DISABLE_KEYGUARD

GET_PACKAGE_SIZE INSTALL_SHORTCUT

KILL_BACKGROUND_PROCESSES MODIFY_AUDIO_SETTINGS

READ_SYNC_SETTINGS READ_SYNC_STATS

REORDER_TASKS REQUEST_INSTALL_PACKAGES

SET_ALARM SET_TIME_ZONE

SET_WALLPAPER_HINTS TRANSMIT_IR

USE_FINGERPRINT VIBRATE

WRITE_SYNC_SETTINGS SET_WALLPAPER

ACCESS_NOTIFICATION_POLICY UNINSTALL_SHORTCUT

BLUETOOTH_ADMIN WAKE_LOCK

CHANGE_WIFI_MULTICAST_STATE RECEIVE_BOOT_COMPLETED

EXPAND_STATUS_BAR REQUEST_IGNORE_BATTERY_OPTIMIZATIONS

INTERNET

 Table 4-4: Dangerous Permissions Names and its Groups.

 Groups Permissions

CALENDAR • READ_CALENDAR
• WRITE_CALENDAR

CAMERA • CAMERA

CONTACTS • READ_CONTACTS
• WRITE_CONTACTS
• GET_ACCOUNTS

LOCATION • ACCESS_FINE_LOCATION
• ACCESS_COARSE_LOCATION

MICROPHONE • RECORD_AUDIO

PHONE • READ_PHONE_STATE
• CALL_PHONE
• READ_CALL_LOG
• WRITE_CALL_LOG
• ADD_VOICEMAIL
• USE_SIP
• PROCESS_OUTGOING_CALLS

SENSORS • BODY_SENSORS

SMS • SEND_SMS
• RECEIVE_SMS
• READ_SMS
• RECEIVE_WAP_PUSH
• RECEIVE_MMS

STORAGE • READ_EXTERNAL_STORAGE
• WRITE_EXTERNAL_STORAGE

https://developer.android.com/reference/android/Manifest.permission.html#ACCESS_LOCATION_EXTRA_COMMANDS
https://developer.android.com/reference/android/Manifest.permission.html#ACCESS_NETWORK_STATE
https://developer.android.com/reference/android/Manifest.permission.html#ACCESS_WIFI_STATE
https://developer.android.com/reference/android/Manifest.permission.html#BLUETOOTH
https://developer.android.com/reference/android/Manifest.permission.html#BROADCAST_STICKY
https://developer.android.com/reference/android/Manifest.permission.html#CHANGE_NETWORK_STATE
https://developer.android.com/reference/android/Manifest.permission.html#CHANGE_WIFI_STATE
https://developer.android.com/reference/android/Manifest.permission.html#DISABLE_KEYGUARD
https://developer.android.com/reference/android/Manifest.permission.html#GET_PACKAGE_SIZE
https://developer.android.com/reference/android/Manifest.permission.html#INSTALL_SHORTCUT
https://developer.android.com/reference/android/Manifest.permission.html#KILL_BACKGROUND_PROCESSES
https://developer.android.com/reference/android/Manifest.permission.html#MODIFY_AUDIO_SETTINGS
https://developer.android.com/reference/android/Manifest.permission.html#READ_SYNC_SETTINGS
https://developer.android.com/reference/android/Manifest.permission.html#READ_SYNC_STATS
https://developer.android.com/reference/android/Manifest.permission.html#REORDER_TASKS
https://developer.android.com/reference/android/Manifest.permission.html#REQUEST_INSTALL_PACKAGES
https://developer.android.com/reference/android/Manifest.permission.html#SET_ALARM
https://developer.android.com/reference/android/Manifest.permission.html#ACCESS_NOTIFICATION_POLICY
https://developer.android.com/reference/android/Manifest.permission.html#BLUETOOTH_ADMIN
https://developer.android.com/reference/android/Manifest.permission.html#CHANGE_WIFI_MULTICAST_STATE
https://developer.android.com/reference/android/Manifest.permission.html#RECEIVE_BOOT_COMPLETED
https://developer.android.com/reference/android/Manifest.permission.html#EXPAND_STATUS_BAR
https://developer.android.com/reference/android/Manifest.permission.html#REQUEST_IGNORE_BATTERY_OPTIMIZATIONS
https://developer.android.com/reference/android/Manifest.permission.html#INTERNET

CHAPTER 4

MOBILE APPLICATION RECOMMENDATION SYSTEM OVERVIEW

52

 In addition, dangerous permissions are organized into groups related to the device

capability or features. For instance, if an application requests access to the group

permission called CALENDAR, the application will be able to read and write information

on the phone calendar. Table 4-4 lists the dangerous permission groups with each of their

permissions.

4.3. Classification Model

The classification model is responsible for evaluating security in applications. Unlike

previous recommendation works that do not use machine learning and only evaluate

permission configurations, the proposed system adds a security layer before

recommendations are made so only applications classified as benign can be suggested to

users.

 The features obtained in the previous phase can be used to train and create the

machine learning classification model. Each application is represented as a feature vector

where 1 means that the feature occurred and 0 means that it did not occur, except for the

features obtained from the store since they can have multi-valued information. For

instance, multiple values are needed to represent Android operational system versions.

The model is created through a training set with labeled data {𝐹𝑗 , 𝑣𝑗}
𝑁𝑡𝑟

𝑗 = 1
, where 𝑣𝑗 € {0,1}

and 𝐹𝑗 is a vector containing the features values. Therefore, the label 𝑣 shows if the

appplications are malicious or benign and the vectors 𝐹𝑗 represents the applications

features.

 Table 4-5: Applications Features Vector Representation.

Application Features Feature Vector Class

A1 F1,F3,F5 <1,0,1,0,1> Lm

A2 F3,F4 <0,0,1,1,0> Lb

 To clarify the representation, a single application Ai is formally mounted in the form

(Fai, Lai) where Fai is the feature vector of an application Ai and Lai is the class label that

can be (LM, LB). Table 4-5 shows examples where two applications (A1 and A2) are listed

with their feature vectors composed of five features. Application A1 is a malware (Lm

class) that has three features (F1,F3,F5) so its feature vector is <1,0,1,0,1>, while

application A2 is a benign application (Lb class) that has only two (F3,F4) features and its

feature vector is <0,0,1,1,0>. With the feature vectors, any machine learning algorithm

can be used to train and generate the classification model. State-of-the-art works that

focus on malicious applications classification use from traditional algorithms such as

Naive Bayes [70] and SVM [71] to deep learning algorithms like Deep Belief Networks [68]

and Autoencoders [72].

CHAPTER 4

MOBILE APPLICATION RECOMMENDATION SYSTEM OVERVIEW

53

4.4. Recommendation

Although it is interesting to provide secure application recommendations, it is important

to establish a ranking for applications that consider user expectations related to

functionality, privacy, usability, and popularity. To deal with this problem, this work

defines scores to generate the recommendation ranking. Specifically, we define numerical

measurements (scores) for functionality, privacy, usability and popularity. These scores

can be used to provide an ordered classification (ranking) according to a given criteria.

For instance, to recommend applications that only perform similar tasks, a higher priority

is given to functionality score herein, the other scores (privacy, usability and popularity)

are ranked based on weights provided by users at the system interface through a seek bar,

the values can go from 0 to 1. However, when the evaluated app does not exist or is not

found in the official store, only its functionality and privacy scores are calculated.

4.4.1. App Scoring System

Popularity score is calculated by retrieving the highest number of downloads from the list

of most similar applications to that being evaluated, with the application that has the

highest number of downloads being considered the most popular. Therefore, popularity

score can be obtained from the following equation:

 𝑝 =
𝑁𝑒𝑎∗100

𝑁𝑚𝑝
 . Equation 4-1

where, p is the popularity of the application being evaluated. Nea is the number of

downloads of the application being evaluated and Nmp is the number of downloads of the

most popular application.

 In the official Play Store, users evaluate applications with stars, ranging from 1 to 5,

with 5 being the highest. Thus, to help achieve a usability score, it is necessary to calculate

the average of the revisions made by the users for each app inside the official store. The

highest rated app is considered the easiest to use because the reviews are usually based

on the graphical interface of the app. The average revisions of an app are given by:

 𝑎𝑟 = ∑
𝑖∗𝑡𝑜𝑡𝑖

𝑡𝑜𝑡𝑎𝑙

5
𝑖=𝑖 . Equation 4-2

where, ar is the average rating ranging from 1 to 5, toti is the total number of star rating

votes with the index i and total is the total number of users that rated the app. After this

calculation, usability score can be obtained from the following equation:

 𝑢 =
𝐴𝑒𝑎∗100

𝐴ℎ𝑟
 . Equation 4-3

CHAPTER 4

MOBILE APPLICATION RECOMMENDATION SYSTEM OVERVIEW

54

where, u is the usability of the application being evaluated. Aea is the ratings average of

the application being evaluated and Ahr is the ratings average of the highest rated similar

application.

 Moreover, the functionality score is obtained through a topic extraction technique. Like

explained before, a topic is characterized by a collection of words belonging to a fixed

vocabulary [43]. For instance, a soccer scores application would have a topic consisting of

words related to matches such as {scorecard, table, teams, league, goals, goalkeeper,

lineup}, while a stock exchange application would have a topic consisting of words related

to stock market such as {shares, market, brokers, bid, trading, arbitrage, dividend}.

 To execute the Topic Extraction, the descriptions of applications that belong to the

same category of the application being evaluated are acquired and put through a data

preparation step to remove stopwords, punctuation, words with small size,

lemmatization and other strategies. Afterwards, the topics are extracted from the

applications descriptions and a probability distribution over the topics is estimated. For

instance, an app description can have a probability of 0.9 to be related to a specific topic

and 0.1 to be related to another topic. The sum of the probabilities will always be 1.0.

Basically, this is a clustering approach that groups the applications with a high probability

of belonging to a certain topic.

 The algorithm chosen to execute this task is the Latent Dirichlet Allocation (LDA) that

is a generative probabilistic topic model of a collection of composites made up of parts

where the composites are documents and the parts are words and/or phrases [46]. LDA

was chosen because it does not need any information from users to suggest applications,

it uses only the applications descriptions (treated as documents), preserving user’s

personal data. To determine the most similar apps related to the app being evaluated, the

topic distribution from the evaluated app description is compared to the topic

distribution of the other app descriptions that belong to the same category using the

Jensen-Shannon distance metric, which is the square root of the Jensen-Shannon

divergence (JSD). Equation 4-4 describes the Jensen-Shannon divergence.

 𝐽𝑆𝐷 (𝑃||𝑄) =
1

2
𝐷(𝑃||𝑀) +

1

2
𝐷 (𝑄||𝑀) Equation 4-4

where, P and Q are discrete distributions (topics distribution in this case), M =
1

2
(𝑃 + 𝑄)

and D is the Kullback-Leibler divergence described in equation 4-5.

 𝐷 (𝑃||𝑄) = ∑ 𝑃(𝑖)𝑙𝑜𝑔𝑋
𝑖 (

𝑃(𝑖)

𝑄(𝑖)
) Equation 4-5

where, X is the total number of distributions and i is the index of an event. The square root

of the divergence is the Jensen-Shannon Distance, the smaller the distance is the more

similar the two distributions are. Besides that, a functionality-based privacy score is

calculated only considering the applications within the same category that have similar

functionalities. In this work, an application is considered similar if it presents a

CHAPTER 4

MOBILE APPLICATION RECOMMENDATION SYSTEM OVERVIEW

55

functionality score higher than 70%, this percentage was chosen through preliminary

tests performed in the proposed algorithm.

 Applications that execute the same functionalities tend to require the same

permissions and access the same API calls because they execute the same task. For

instance, consider applications that requires GPS permissions and belong to the set off

apps related to location functionalities. In this case, GPS permission settings are not

included in the privacy score calculation. Thus, for the calculation of the privacy score,

only the unusual normal and dangerous features of the applications are used. Equation 4-

6 describes how the privacy score is obtained:

 𝑝𝑟 = ∑ [(𝑑𝑖
𝑁
𝑖=1 ∗ 𝑤𝑑𝑖) + (𝑛𝑖 ∗ 𝑤𝑛𝑖)] + ∑ [(𝑐𝑛𝑗 ∗ 𝑤𝑐𝑛𝑗)

𝑀
𝑗=1 + (𝑐𝑑𝐽 ∗ 𝑤𝑐𝑑𝑗)] Equation 4-6

where, pr is the privacy score of an app, N is the total number of permissions, di represents

a dangerous permission with index i, wdi is the dangerous permission weight, ni

represents a normal permission with index i, wni is the normal permission weight, M is

the total number of APi Calls, cnj represents an API call related to a normal permission

with index j, wcnj is the API call weight, cdj represents an API call related to a dangerous

permission with index j and wcdj is the API call weight. In our approach, unlike other

solutions, weights are not calculated considering the categorization made by Google

(Normal and Dangerous), this information is used only for feature selection. Instead,

weights are calculated based on the probability of the feature being requested on the apps

that belong to the same functionality set. For instance, if a set with thirty apps has ten

applications that use the GPS permission, the weight will be 0.33. However, if only 5 apps

have the permission the weight will be 0.16. Weights are calculated this way because the

more apps that use an unusual permission the greater the likelihood that the app can be

installed by users and cause possible privacy issues.

 After the privacy score from all the applications inside the list of similar applications is

calculated, the app with the highest score is considered the most dangerous app and used

in Equation 4-7 to normalize the results and calculate the score of the app being evaluated.

 𝑝𝑟 =
𝑃𝑒𝑎∗100

𝑃𝑚𝑑
 Equation 4-7

where, pr is the privacy score, pea represents the privacy score of the application being

evaluated, while pmd is the privacy score of the most dangerous similar app.

 Based on the scores, a rank is made to show users which applications are

recommended for installation and use. As mentioned before, functionality score has the

priority at the calculation to show only apps that have the same functionality and the

other scores (privacy, usability and popularity) are ordered by weights based on values

chosen by users, such weights have values between 0 and 1 that are assigned in the

framework interface.

CHAPTER 4

MOBILE APPLICATION RECOMMENDATION SYSTEM OVERVIEW

56

4.5. Logical Predicate Mapping (LPM)

LPM is created using the permissions and API calls that are correlated, this is done by

mapping the words to create a sentence or clause containing verbs and statements about

the permissions and API calls (defined herein as predicate).

 The idea behind the LPM is that the user can better understand what the applications

can do with their mobile device by requesting certain permission or accessing certain

sensitive information and take mitigation actions. Figure 4-3 has an example with location

data that may be leaked through SMS sending. The predicates are created through a pre-

defined dictionary with sources and sinks following the pattern “App {A} accesses

sensitive information {SO} and may be leaking data through {SI}”, where A is the name of

the app, SO is the list of sensitive sources that the app accesses and SI is the list of accessed

sinks that could lead to a data leakage. As stated in Chapter 2, sources are places where

an application can get the sensitive information and sinks are places where an application

can send information to other applications or to the internet.

 Figure 4-3: LPM Predicate Example About a Possible Data Leakage with Location and SMS.

 The sources and sinks were chosen based on an analysis of the apps by [73] and also

by reading works related to data leakage [74], [75], [76]. Table 4-6 shows examples of

sources, while Table 4-7 has examples of sinks.

CHAPTER 4

MOBILE APPLICATION RECOMMENDATION SYSTEM OVERVIEW

57

 Table 4-6: List with Examples of Sensitive Information Sources That Are Used in LPM.

Sources Permissions API Calls

Location ACCESS_FINE_LOCATION

ACCESS_COARSE_LOCATION

getLongitude

getLatitude

getLastKnownLocation

getAltitude

getLocation

Contacts READ_CONTACTS

WRITE_CONTACTS

GET_ACCOUNTS

getAccounts

Camera CAMERA -

IMEI READ_PHONE_STATE getDeviceId

getImei

Calendar READ_CALENDAR

WRITE_CALENDAR

-

Audio RECORD_AUDIO -

Email - getEmailAddress

Phone Number READ_PHONE_STATE getLine1Number

 Table 4-7:List with Examples of Sinks That Are Used in LPM.

Sinks Permissions API Calls

SD card WRITE_EXTERNAL_STORAGE

READ_EXTERNAL_STORAGE

getExternalStorageDirectory

SMS SEND_SMS

RECEIVE_SMS

READ_SMS

RECEIVE_WAP_PUSH

RECEIVE_MMS

sendTextMessage

sendMultipartTextMessage

sendSms

Sharedprefs - getSharedPreferences

HTTPConnection INTERNET

ACCESS_NETWORK_STATE

Connect

openConnection

loadUrl

Bluetooth BLUETOOTH checkBluetooth

 Moreover, the clusters with similar applications that were created through the

descriptions to calculate the functionality score are used to discover the relation between

the applications and the predicates, any behavior (predicates) that is not common may be

considered as an outlier that may be leaking sensitive information. For instance, if an

application requests location and user contacts info but other applications from the

CHAPTER 4

MOBILE APPLICATION RECOMMENDATION SYSTEM OVERVIEW

58

cluster requests only location, in this case the user contacts request info is highlighted as

it can be an unnecessary or dangerous behavior and also an overpermission problem.

 One-Class Support Vector Machine (OC-SVM) is used to identify the outliers, this kind

of machine learning algorithm is used to learn the features of one class of elements and it

is commonly used when there exists a lot of examples of one class of instances, in our case

the similar apps so everything else will be considered as an outlier.

 With the Permissions and API calls as features vector an OC-SVM model is created and

trained and can later be used to identify the outliers and retrieve the uncommon

predicates that are later shown to the user in a report.

4.6. Final Considerations

Through the evaluation of the architecture it is possible to observe that it has some

characteristics that do not exist in previous works, such as the security layer used before

the recommendation phase to suggest only apps classified as benign, the calculation of

metrics within a context of functionality to create a rank only with apps that have similar

goals and the mapping between the apps features and descriptions so users will be able

to understand all possible behaviors that the app can take and also check any behavior

that is suspicious.

 Next Chapter presents an evaluation of the developed prototype through a

comparative analysis in different test scenarios with other tools chosen from the related

works and with the official store.

59

CHAPTER

 5

 Experimental Results

 Experimentos e resultados

This Chapter presents the results obtained by evaluating the prototype. Quantitative and

qualitative experiments were carried out to verify the approach. In quantitative

experiments it is verified which classification model is more efficient in the identification

of malicious applications and which parameters are best for the recommendation model.

In qualitative experiments some malicious applications were chosen to be evaluated

inside the prototype and in other frameworks to compare the results. RSPSA [60] and

DroidVisor [58] were the frameworks selected, these works were described in Section 2

and were chosen because they have characteristics that are similar to the proposed

system. Google Play was also compared to check how the official store makes its

recommendations. Finally, an analysis of the features was made to find out the ones that

best characterize malicious apps in the dataset used.

5.1. Experimental Data

A machine learning classification model was created to evaluate the prototype, J48

Decision Tree algorithm was executed with its default parameters. In total, 35 sensitive

API calls and 60 permissions were defined from the analysis of 1954 applications

obtained from [73]. Some selected features have also been used in other works related to

malware detection in Android [74], [75], [76]. The training set has 1648 benign apps and

307 malicious apps, representing 47 official store app categories such as sports (43),

productivity (49), communication (46), finance (49) and business (62).

 Figure 5-1 and Figure 5-2 show some statistical data from the applications that are in

the dataset that also are in the Google Play Store. Specifically, Figure 5-1 shows the

percent number of applications by category along with the requested permissions

average. The chart shows that the dataset has more applications in the Tools, Education

and Business categories and the apps from the Communication category request more

permissions.

CHAPTER 5

EXPERIMENTAL RESULTS

60

 Figure 5-1: Percent of Apps and Average Number of Requested Permissions by Category.

 Figure 5-2 shows the percent number of applications by category along with the API

method Calls request average. In this chart, the category that most executes API Calls is

Weather followed by Travel & Local and House & Home.

 Figure 5-2: Percent of Apps and Average Number of API Calls by Category.

CHAPTER 5

EXPERIMENTAL RESULTS

61

 Moreover, 100 apps were crawled from Google Play and added to the database to

enrich the suggestions. Finally, the model is always incremented and retrained with the

apps that are evaluated. The metrics used for the quantitative experiments were

Precision, Recall and F1-Score for classification while coherence score is used to evaluate

the recommendation model. Table 5-1 shows the classification model evaluation results

with four algorithms.

 Table 5-1: Machine Learning Model Evaluation.

Algorithm Precision Recall F1-Score

J48 96,50% 96,50% 96,50%
Logistic 95,60% 95,70% 95,70%
SMO 94,20% 94,40% 94,42%

Naïve Bayes 90,60% 84,60% 84,55%

 From the table, Precision is related to the question “of all applications labelled as

malware, how many applications actually were malware?” while Recall is related to “of all

the applications that are really malware, how many did we label?” and F1-Score combines

Recall and Precision to reach a ratio that measures the overall quality of the model. Since

we need a model with a good Precision and with a good Recall, J48 was chosen because it

has the highest F1-Score.

 Figure 5-3: Coherence Score Values by Number of Topics.

CHAPTER 5

EXPERIMENTAL RESULTS

62

 The recommendation model was developed in Python using libraries such as Pandas

and NLTK for preprocessing to remove stop words, punctuation, words with small size,

lemmatization and other strategies. Gensim for LDA and pyLDAvis and WordCloud for

visualization. Coherence score was chosen because it takes a topic and measures the

degree of semantic similarity between the words with the highest score in the topic [77].

These calculations help differentiate between topics that are semantically interpretable

and topics that are only artifacts for statistical inference.

 The evaluation was made with the list of descriptions from the Play Store

communication category, Figure 5-3 shows an average of coherence values. To reach

these values a different number of generated topics were used.

 Since LDA training is non-deterministic each coherence value was obtained through an

average of executions and the best model was the one with 10 topics with an average

coherence score value of 0.49. Next section presents the qualitative experiments with the

baselines.

 Table 5-2: Malicious Apps Selected to Compare RSPSA and the Prototype Created Results.

Name Category Possible Behaviors

Spam Guard Productivity Steal information from the compromised
device.

Cut The Rope Unlock Puzzle Install packages, uninstall packages, run
packages, check version information, open a
URL, download and install additional files.

Deal&Be Millionaire Trivia Copy bookmarks, push notifications,

shortcuts, identify the last executed

command and steal information.

Fish Aquarium Live Lock Personalization Steal information from the compromised
device.

Voice SMS Communication Steal information from the compromised device
and sends SMS messages.

Where is My Water? Puzzle Steal information from the compromised device.

ClockPlus Tools Sends SMS to premium services.

Banco do Brasil Finance Shows adds and steals information.

Sberbank Finance Requests administrator rights and then make
themselves invisible in the list of installed apps
to intercept user’s personal data, such as SMS.

Opera Mini 6.5 Communication Steal information from the compromised device.

CHAPTER 5

EXPERIMENTAL RESULTS

63

5.2. Prototype vs RSPSA

In order to compare the created Prototype results with RSPSA, 10 malicious applications

from different categories and with different objectives were selected. Table 5-2 lists the

apps.

 The applications were downloaded from Koodous [78] website and were chosen

because they perform tasks that are usually executed by the users in benign apps. For

instance, Voice SMS is an application that transforms speech to text and writes SMS

messages through voice. ClockPlus is a stopwatch to measure the time of an activity such

as games, cooking and education, while Banco do Brasil and Sberbank are bank

applications. Some applications are also repackaged versions (modified version with

malicious code) of well-known applications such as Opera Mini 6.5, which is a modified

version of the Opera web browser, and Cut the Rope, which is a modified version of a

famous puzzle game.

 Spam Guard was the first malware application evaluated, which is from the

productivity category and its goals are described as an application that automatically

detects and moves spam emails from the user inbox to the spam folder. However, the

application accesses users’ sensitive information such as contacts and sends it through

SMS messages.

 The recommendation strategy used in RSPSA receives a list of applications from the

same category (productivity in this case) and calculates user ratings and security scores

based on permissions configuration. Then, these results are used in a clustering algorithm

to perform the suggestions. Table 5-3 shows the top 3 applications related to Spam Guard

after RSPSA evaluation and the top 3 applications suggested from the proposed prototype.

 Table 5-3: Spam Guard Results.

Approach Application
User Rating

Score

Permission

Score

 Xodo PDF Reader & Editor 4.72 7.0

RSPSA Business Calendar 2 4.61 28.0

 Password Safe - Secure Password Manager 4.61 4.0

 Email Spam Filter 2.60 11.0

Proposed

System

Email - Fast & Secure mail for Gmail Outlook &

more

4.60 18.0

 Microsoft Outlook 4.33 16.0

CHAPTER 5

EXPERIMENTAL RESULTS

64

 None of the applications from RSPSA results have the same goal as Spam Guard. For

instance, Xodo PDF is a PDF reader and editor while Business Calendar 2 is a calendar.

Meanwhile, the proposed prototype recommendation strategy discards the malicious app

and suggests applications with similar functionalities. The Email Spam Filter application

stands out as it is used to control and restrict which emails are added to a user inbox.

 Email Spam Filter had a 2.6 user rating score and 11.0 privacy score. A low user rating

score shows that the application is poorly accepted by users regarding features related to

usability, such as user interface. However, the application has few revisions (193) and can

improve this score over time through new user reviews and application updates. The

privacy score shows that the app does not require many permissions, with seven normal

permissions out of a total of 33 and three dangerous permissions (READ_PHONE_STATE,

WRITE_EXTERNAL_STORAGE and READ_EXTERNAL_STORAGE) out of 27.

 Figure 5-4: Email Spam Filter Results.

 The first dangerous permission setting allows the application to retrieve information

about the mobile device, such as network information and device number, while the other

two permissions configuration allow the reading and writing to external storage. The

privacy score value is not normalized because RSPSA has not done any normalization.

Thus, the higher the privacy score is, the greater the risk of data leakage is. Figure 5-4

provides a screenshot from the proposed prototype with results referring to Email Spam

Filter showing the application name, category, developer, and scores. Regarding the LPM,

access to IMEI and writing to external storage behaviors were found and mapped, which

CHAPTER 5

EXPERIMENTAL RESULTS

65

is important as the IMEI access is an uncommon behavior in the in the Email Spam Filter

similar apps cluster. This information is grouped and passed on to users so they are aware

that the app can access this confidential information and may cause potential data

leakage.

 Table 5-4 shows the results with the other 9 malicious applications. Banco do Brasil

application is a repackaged version of the legitimate bank application with the goals to

steal information and show adds. RSPSA top application recommendation was Canadian

Mortgage App, while the prototype recommended the real version of Banco do Brasil

application. The description provided from the malicious application caused the real and

secure version of Banco do Brasil to be suggested because of the functionality score.

 Table 5-4: Malicious Applications Evaluation.

Malicious Apps Category RSPSA Proposed Prototype

Cut The Rope

Banco do Brasil

Puzzle

Finance

I love Hue

Canadian Mortgage App

Cut The Rope (Benign)

Banco do Brasil (Benign)

Deal&Be Millionaire Trivia Millionaire Trivia: Who

Wants To Be a

Millionaire?

Millionaire 2019 - Trivia

Quis

Fish Aquarium Live

Lock

Personalization New Year 2019

countdown

Fish Live Wallpaper 2018

Voice SMS Communication Pleymojis Write Voice SMS

Where is My Water? Puzzle I Love Hue Where's My Water? 2

ClockPlus Tools Post Multi Timer StopWatch

Sberbank Finance Canadian Mortgage App Sberbank Mobile Bank

Opera Mini 6.5 Communication Pleymojis Opera Mini - fast web

browser

 Deal&Be Millionaire is a game from the Trivia category. It is a malware that steals

information and its description says that it is a game to become the next millionaire

through intense deals and risky decisions. RSPSA suggested the app Millionaire Trivia:

Who Wants To Be a Millionaire? while the prototype suggested Millionaire 2019 - Trivia

Quiz. This is the only case that RSPSA suggested an application that has the same goal of

the application being evaluated. Since RSPSA gets the applications from a category and

calculates the overall user rating and permission scores, it always returns the same top

suggested application. For instance, for the Communication category it always returns

Pleymojis application, while for the Finance category it always returns Canadian

Mortgage App.

CHAPTER 5

EXPERIMENTAL RESULTS

66

 On the other hand, the prototype considers the apps descriptions to check its

functionalities. Therefore, it returns different results depending on the app being

evaluated. For instance, in Table 10, inside the Communication category two different

apps were suggested: Write Voice SMS: write SMS by voice for Voice SMS and the real

Opera mini browser for Opera Mini 6.5.

5.3. Prototype vs DroidVisor

Another comparison is made with DroidVisor. A tool that claims to recommend secure

apps based on requested permission configurations. DroidVisor also uses similarity,

usability and popularity as metrics, users can specify weights to the metric that they

consider more important, since the focus of this work is on security, this metric received

the highest weight.

 In this case study, we chose MobonoGram application, a malicious app that was

available in 2019 inside Google Play Store and was recently removed. A recent study

showed that the average time a malicious application spends inside the Google Play Store

is about 51 days and can stay up to 138 days [79]. MobonoGram was developed from

RamKal, has a 18M size, requires Android 4.1 and up and its publish date was

22/05/2019. During its time inside the store, there were 100,000 downloads and an

average user rating of 3.8. MobonoGram claims to be an unofficial version of Telegram

with much more functionalities and other unofficial features. However, when executed

MobonoGram runs services on background without user consent and also loads and

browses malicious websites [80]. Table 5-5 shows the Top 3 results with no normalization

to compare the results.

 For DroidVisor results, MobonoGram and Telegram had the same privacy score since

MobonoGram is based on Telegram. They almost had the same number of permission

configurations (Telegram 47 and MobonoGram 52), with service-related permissions

such as BIND_JOB_SERVICE and activity recognition permissions such as ACTIVITY_

RECOGNITION being included among the uncommon permissions between the apps.

DroidVisor ended up recommending MobonoGram as the first application (same score as

Telegram), even though it is a malicious app. This is because DroidVisor does not classify

applications, it only analyzes app permission configurations and assumes that the

application with the highest privacy score (GO SMS Pro) is the most dangerous. However,

CHAPTER 5

EXPERIMENTAL RESULTS

67

there are insecure apps that request few permissions configuration as shown in Chapter

1.

 Table 5-5: Prototype vs DroidVisor Results with MobonoGram.

Approach Application
Privacy

 Score

DroidVisor

MobonoGram 16.96

Telegram 16.96

GO SMS Pro - Messenger, Free Themes, Emoji 23.62

Proposed

System

MobonoGram Discarded

Telegram 6.59

JusTalk - Free Video Calls and Fun Video Chat 7.99

 Unlike DroidVisor, the proposed prototype discarded MobonoGram because it was

detected as a malicious application at the security layer, confirming the importance of the

classification machine learning model inside a recommendation system with security and

privacy awareness. Lastly, the difference between the privacy scores (Telegram had a

privacy score of 16.96 in DroidVisor and 6.59 at the proposed prototype) happened for

two reasons: First, DroidVisor permission weights are divided into low, medium and high

with the values being 0.33, 0.66 and 1.0, respectively, and the authors do not explain how

these values were designated. On the other hand, the proposed system calculates the

weights in a more sophisticated way based on the probability of the feature being

requested in the apps from the same category, with that the weights are fairer and more

varied.

 Second, DroidVisor evaluates all the permissions that are being requested from the

application, while the proposed approach considers only the permissions that are not

common between the apps being recommended with a technique called functionality-

based privacy score. This means that apps with the same functionality, i.e., applications

that send SMS, will not have permissions related to SMS included in their privacy score

formula because the applications really need to request these permissions configuration.

Therefore, the prototype privacy score is fairer and more accurate. This is important

because the privacy score may change the order of suggestions and recommend different

apps in other scenarios.

CHAPTER 5

EXPERIMENTAL RESULTS

68

5.4. Prototype vs Google Play

The last applications comparison is made with Google Play Store since it is the official

Android store and most of the users download their applications or get suggestions from

it. Table 5-6 shows the related apps that are returned if a user searches for Viber, a famous

messaging application, inside the store and also the results with the proposed system.

 For Viber, Google Play suggests IMO free video call and IMO beta free call that are

applications created from the same developer, as well a Mail.ru that is an email

application. Meanwhile, the proposed system suggests Telegram, Messenger and GO SMS

Pro - Messenger, Free Themes, Emoji, which are all messaging apps with similar

functionalities as Viber.

 Table 5-6: Prototype Versus Google Play Results with Viber.

Approach Application Recommended

Google Play

IMO free video call

IMO beta free call

Mail.ru - Email App

Proposed System
Telegram

Messenger

GO SMS Pro - Messenger, Free

Themes, Emoji

 Besides not considering any security aspects, Google Play apparently makes its

recommendations by prioritizing the app developers over functionality. An improvement

in the store would be adding filters for the users to choose how they want their

recommendations.

 In addition, Google Play categories could be broken down into more specific categories

to prevent apps with different functionalities from falling into the same category. To

prove that fact, the topics distribution generated from the communication Google Play

category are show in Figure 5-5, each bubble represents a topic and the size of it measures

how prevalent the topic is relative to the data.

CHAPTER 5

EXPERIMENTAL RESULTS

69

 Figure 5-5: Topics Distance Mapping.

 There are certain topics such as 2, 4 and 9 that are far away from the position that

concentrates most bubbles and could be a new category in Google Play Store while the

overlapping bubbles could be analyzed and merged into a category that covers them.

Figure 5-6 shows the world clouds with the top 10 most frequent words in topics 5,6,7

and 1,8,3 because these topics are overlapping and share worlds and from topics 4 and 9.

 Topic 4 has words such as ‘imap’, ‘account’, ‘email’, ‘client’ and ‘mail’, Topic 1 has

‘phone’, ‘number’, ‘sms’, ‘message’ and ‘text’. While, Topic 6 has words such as ‘blacklist’,

‘dialer’, ‘voip’, ‘identity’, ‘call’ and Topic 9 has ‘encryption’, ‘email’, ‘privacy’, ‘protonmail’

and ‘customer’.

 All these topics suggest that the communication category could be broken into other

smaller categories that could be more specific. For instance, Topic 1 suggests the creation

of a category related to applications that send SMS text messages while Topic 4 suggests

the creation of a category with applications related to email services such as Gmail and

Outlook.

CHAPTER 5

EXPERIMENTAL RESULTS

70

 Figure 5-6: Top 10 Most Frequent Words in Some Topics.

5.5. Features Analysis

The features were also analyzed to verify the impact of the permissions and the API call

in the detection of malicious applications. Figure 5-7 shows a chart with the top 10 most

used features in benign apps, while Figure 5-8 lists the top 10 features from malicious

apps.

 The experiment shows that 8 of the 10 most used features are method calls for benign

applications, while five are permissions and the other five are method calls for malicious

applications. This result shows how important it is to use other features, besides

permissions, when evaluating mobile applications security.

 There are four features from the list of most used features in malicious applications

that do not appear in the list of the benign applications features (READ_PHONE_STATE,

WRITE_EXTERNAL_STORAGE, RECEIVE_BOOT_COMPLETE, getDeviceId).

 READ_PHONE_STATE allows the application to retrieve some information from the

mobile device such as the mobile device number and network information. WRITE

_EXTERNAL_STORAGE allows the app to write data to an external storage such as a sdcard.

getDeviceId is a method call that returns the phone IMEI and RECEIVE _BOOT_COMPLETE

allows the app to receive a message when the operational system finishes booting.

CHAPTER 5

EXPERIMENTAL RESULTS

71

 Figure 5-7: Top 10 Most used Features in Benign Apps.

 In addition, there are three features that are widely used in malicious applications and

almost never appear in benign applications (SEND_SMS, RECEIVE_SMS and

getLine1Number) with ratios of 33%, 31% and 30%, respectively. The first two are

related to SMS messages sending and are related to malicious applications that send

sensitive information to third-party servers and/or subscribe to premium SMS messages

services, while getLine1Number is an API method call that returns the mobile device

number.

 Figure 5-8: Top 10 Most Used Features in Malign Applications.

CHAPTER 5

EXPERIMENTAL RESULTS

72

 These features, along with the features from Figure 5.7 that do not appear in Figure 5.8,

can be considered good choices for classifying malicious mobile applications due to the

high ratio usage difference.

5.6. Final Considerations

The experiments conducted in the Chapter showed that the proposed system added new

features that improved the assessment of security and privacy aspects for mobile

applications recommendation and achieved a classification model that has 96,5% F1-

Score in Android malware classification.

 In addition, the system incorporated algorithms and techniques that are used to

recommend applications that have the same goal of the application being evaluated in

order to allow the users to still execute their tasks avoiding the recommendation of

applications that do not satisfy users and also preventing users from abandoning the use

of mobile devices because of the lack of trust related to security and/or privacy aspects.

 Finally, the final experiments showed that the permissions are features that can be

used in the security evaluations of the applications. However, they can be combined with

other types of features to increase the quality and accuracy of the detection model.

73

CHAPTER

 6

 Conclusions

 Conclusões e direções futuras

This thesis presented a system architecture that is divided into three stages (Feature

Extraction, Classification and Recommendation). The first stage, called Feature

Extraction, was created to obtain the content from a target application, identify the

features and create a vector that represents the features that the application uses.

 Second stage (Classification) tests the features vector created in a machine learning

classification model that was previously trained with a set of features vector from malign

and benign applications. The model goal is to classify the target application into malign or

benign. The last stage (Recommendation) calculates metrics such as privacy, popularity

and usability through the information obtained from the target application inside a

functionality context and applies a probabilistic topic model technique to create clusters

that arrange the applications in a more fine grained way according to the apps

functionality. Finally, all the information from the target app are grouped in a summary

that shows users if any sensitive information is being accessed, if there is any

overpermission problem, if there is any behavior outside its functionality dictated in its

description and app suggestions with the same goal for the user to decide which app is

the best for their convenience.

 The architecture presented offered contributions to the security and privacy

assessment process in a recommendation system and to the suggestion of most suitable

applications for mobile devices users. In addition, it proposes a report model that was

created through the features and the app description so that technical and non-technical

users can understand the behaviors of the application being evaluated and also strike

overpermission.

 Regarding contributions to security and privacy assessment, existing works use only

the apps permissions configuration to evaluate security aspects. Nevertheless, it has

already been proven that this approach is not enough to get satisfactory results. To obtain

better results this work made a detailed study on Android environment and selected new

CHAPTER 6

CONCLUSIONS

74

features to create a machine learning model that is able to classify mobile Android

applications into malign or benign before any recommendation is made.

 Concerning the contributions related to the suggestion of most suitable applications,

existing related works and the Play Store consider different aspects to do the suggestions

such as Play Store category, developer’s names and popularity over functionality. This

approach is not enough for mobile device users since an app with similar functionalities

is necessary. Beyond that, Play Store has categories that are not fine grained enough and

have several completely different apps. To obtain better results this work calculates all

the metrics inside a functionality-based environment. In relation to the report model,

existing works outlines only the applications names, some metrics such as popularity,

usability and permissions that is inappropriate because most users do not understand

how permissions work. To increase user understanding this thesis presented the Logical

Predicate Mapping (LPM).

6.1. Limitations And Future Works

The architecture proposed has some limitations. The first one is related to the APK

reverse engineering process, because the feature extraction depends on the success of the

code conversion from .DEX to Java. Common know limitations from static analysis can also

impact the architecture, such as obfuscation and reflection. Fortunately, in our tests we

did not have that kind of problem.

 Another limitation is related to the extraction of features from the official Play Store. If

the store changes its user interface, removes or adds some information, the system may

be impacted. During the prototype development this happened once. The last limitation

is related to LDA since it does not work well with short documents. In order to mitigate

that small descriptions have been removed in the data preparation phase and also the

prototype user interface asks users to enter descriptions with at least 250 characters.

 Despite the limitations, the experiments showed good and promising results and

pointed to an improvement in security and privacy awareness, app recommendation and

user understanding. For future works it is intended to identify other features that can

characterize malicious and benign apps, with that the machine learning classification

model can be improved and accomplish better results. To achieve this goal other

techniques to analyze mobile applications could be used such as dynamic taint tracking

to obtain features during runtime and minimize some of the static analysis limitations.

Besides that, we aim to crawl more applications from different stores to increase the

recommendation database to improve the suggestions and the Logical Predicate Mapping.

Finally, we aim to test Natural Language Processing techniques at LPM to check the

relation between the apps descriptions and the permissions to improve the detection of

outliers.

CHAPTER 6

CONCLUSIONS

75

Acknowledgement

This research, according for in Article 48 of Decree nº 6.008/2006, was funded by

Samsung Electronics of Amazonia Ltda, under the terms of Federal Law nº 8.387/1991,

through agreement nº 003, signed with ICOMP/UFAM.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de

Nível Superior - Brasil (CAPES) - Finance Code 001.

Part of the results presented in this paper were obtained through research on a project

titled "A System to Detect and Prevent Data Leakage in Android Environment", sponsored

by Samsung Electronics of Amazonia Ltda, under the terms of Brazilian federal law No.

8.387/91. (SUFRAMA).

76

 References

[1] Elizabeth Edwards, Joanna Lumsden, Julian Rivas Gonzalo, et al. (2016)

“Gamification for health promotion: systematic review of behaviour change

techniques in smartphone apps” BMJ Open, vol. 6, pages 1-9.

[2] Statista, “Number of smartphone users worldwide” Available in: https://

www.statista.com/statistics/ 330695/number-of-smartphone-users-worldwide/.

[Accessed September 12, 2018].

[3] Statista, “Annual number of mobile apps downloads.” Available in: https://

www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-

store-downloads/. [Accessed: 06-May-2019].

[4] Kun Xu, Weidong Zhang and Zheng Yan (2018) “A privacy-preserving mobile

application recommender system based on trust evaluation” Journal of

Computational Science, vol. 26, pp. 87–107.

[5] IDC, “Smartphone Market Share.” Available in: https://www.idc.com/ promo

/smartphone-market-share/os. [Accessed June 20, 2019].

[6] Symantec, “Internet Security Threat Report” Available in: https://www .symantec

.com/content/dam/symantec/docs/reports/istr-22-2017-en.pdf. [Accessed April

10, 2017].

[7] ThreatPost, “Joker Android Malware Snowballs on Google Play” Available in:

https://threatpost.com/joker-androids-malware-ramps-volume/151785/.

[Accessed January 13, 2020].

[8] Lookout, “New adware found hidden with popular applications in app store”

Available in: https://blog.lookout.com/beitaplugin-adware. [Accessed June 5,

2019].

[9] CheckPoint, “ExpensiveWall: A Dangerous packed malware on Google Play”

Available in: https://blog.checkpoint.com/2017/09/14/expensivewall-

dangerous-packed-malware-google-play-will-hit-wallet/. [Accessed July 28, 2018].

77

[10] Forbes, “New Google Android Malware Warning Issued To 8 Million Play Store

Users” Available in: https://www.forbes.com/sites/kateoflahertyuk/2019/10/24

/new-google-android-malware-warning-issued-to-8-million-play-store-users/#

51b93baa1235 [Accessed November 28, 2019].

[11] ZDNet, “Malware found preinstalled on some Alcatel smartphones.” Available

in: https://www.zdnet.com/article/malware-found-preinstalled-on-some-alcatel-

smartphones/. [Accessed January 20, 2019].

[12] Google, “Android Google Play Protect.” Available in: https://www.android.

com/play-protect/. [Accessed March 12, 2019].

[13] Soti Central, “Google Play Protect Stopping App Install.” Available in: https://

 discussions.soti.net/ thread/google-play-protect-is-suddenly-stopping-my-app-

 install/. [Accessed July 20 2018].

[14] Symantec, “Malicious Apps Persistently Appearing in Google Play.” Available in:

 https://www.symantec.com/blogs/threat-intelligence/persistent-malicious-apps-

 google-play. [Accessed February 20 2018].

[15] Lenovo, “Google Play Protect Destroyed Bluetooth.” Available: https://forums

.lenovo.com/t5/Moto-G4-Moto-G4-Plus-Moto-G4/Google-Play-Protect-destroyed-

Bluetooth-deleted-APP-bluetooth/td-p/3799669. [Accessed October 10 2019].

[16] AV-Test, “Test Antivirus Software for Android.”. Available: https://www.av-test

.org/en/antivirus/mobile-devices/. [Accessed September 10 2019].

[17] Nuray Baltaci Akhuseyinoglu and Kamil Akhuseyinoglu (2016) “AntiWare: An

Automated Android Malware Detection Tool based on Machine Learning Approach

and Official Market Metadata” Annual Ubiquitous Computing, Electronics & Mobile

Communication Conference (UEMCON), pages 1-7.

[18] Ignácio Martín, José Alberto Hernández, Alfonso Muñoz and Antonio Guzmán

(2018) “Android Malware Characterization Using Metadata and Machine Learning

Techniques”, Security and Communication Networks, pages 1-11.

78

[19] Su Mon Kywe, Yingiju Li, Kunal Petal and Michael Grace (2016) “Attacking Android

Smartphone Systems without Permissions”, Conference on Privacy, Security and

Trust (PST).

[20] Paloalto, “Cloak and Dagger attack with no permission.”. Available in:

https://unit42.paloaltonetworks.com/unit42-android-toast-overlay-attack-cloak-

and-dagger-with-no-permissions/. [Accessed in November 10 2017].

[21] Rui Liu, Junbin Liang, Jiannong Cao, Kehuan Zhang, et al. (2016) “ Understa nding

Mobile Users ’ Privacy Expectations : A Recommendation-based Method through

Crowdsourcing”, IEEE Transactions on Services Computing, vol. 12, pages 304–318.

[22] Haoyu Wang, Jason Hong and Yao Guo (2015) “Using Text Mining to Infer the

Purpose of Permission Use in Mobile Apps”, ACM International Joint Conferen ce on

Pervasive and Ubiquitous Computing, pages 1107–1118.

[23] Jiayu Wang and Qigeng Chen (2014) “ASPG : Generating Android Semantic

Permissions”, International Conference on Computational Science and Engineering,

pages 591-598.

[24] Alessandra Gorla, Ilaria Tavecchia, Florian Gross and Andreas Zeller (2014)

“Checking App Behavior Against App Descriptions”, International Conference on

Software Engineering, pages 1025-1035.

[25] Irina Shklovski, Scott Mainwaring, Halla Skúladóttir and Hóskuldur Borgtho rsson

(2014) “Leakiness and Creepiness in App Space : Perceptions of Privacy and Mobile

App Use”, Conference on Human Factors in Computing Systems, pages 2347-2356.

[26] Zdnet, “Malicious Android Photography and Gaming Apps Downloaded 8 Million

Times from Google Play.” Available in: https://www.zdnet.com/ article/malicious-

android-photography-gaming-apps-downloaded-8-million-times-from-google-

play/. [Acessed October 24 2019].

[27] Forbes, “New Android Threat: Google Confirms Malicious Apps Removed.”

Available in: https://www.forbes.com/sites/zakdoffman/2019/11/06/new-

google-android-threat-these-7-malicious-apps-may-be-downloading-malware-

onto-your-phone/#4f5bce3275af. [Accessed October 24 2019].

79

[28] Alessandra Gorla, Ilaria Tavecchia, Florian Gross and Andreas Zeller (2014)

“Checking App Behavior Against App Descriptions”, International Conference on

Software Engineering, pages 1025-1035.

[29] Google, “Android Open Source Project.” Available in: https://source.android .com

[Accessed January 24 2019].

[30] Nisarg Gandhewar and Rahila Sheikh (2010) “Google Android: An Emerging

Software Platform For Mobile Devices” International Journal on Computer Science

and Engineering, vol. 1, page 6.

[31] Google, “Security for Android Developers.” Available in: https://developer

.android.com/topic/security [Accessed March 20 2019].

[32] Google, “Manifest.permission | Android Developers” Available in: http:

//developer.android.com/reference/android/Manifest.permission.html.

[Accessed March 20 2019].

[33] Google, “Android Security Best Practices” Available in: https://source.android

.com/security/best-practices. [Accessed March 20 2019].

[34] Google, “Secure an Android Device” Available in: https://source.android

.com/security. [Accessed March 20 2019].

[35] Ryantzj, “Android Application Package Structure” Available in: http://www

.ryantzj.com/android-applicationpackage-apk-structure-part-1.html. [Accessed

March 20 2019].

[36] Google, “Application Fundamentals” Available in: https://developer.android

.com/guide/components/fundamentals?hl=en. [Accessed March 20 2019].

[37] Dan Boxler and Kristen Walcott (2018) “Static Taint Analysis Tools to Detect

Information Flows”, International Conference on Software Engineering Research

and Practice, pages 46–52.

[38] Edgar Barbosa, “Taint Analysis” Available in: http://web.cs.iastate.edu/~weile

/cs513x/2018spring/taintanalysis.pdf. [Accessed February 25 2019].

80

[39] Miguel Velez, “Taint Analysis lecture” Available in: https://www.cs.cmu.edu/

~ckaestne/17313/2018/20181023-taint-analysis.pdf. [Accessed February 25

2019].

[40] CuckooDroid, “CuckooDroid.” Available in: https://github.com/idanr1986/

cuckoo-droid. [Accessed February 25 2019].

[41] CuckooDroid, “Guest Machine Architecture - CuckooDroid v1.0 Book.” Available

in:https://cuckoo-droid.readthedocs.io/en/latest/installation/guest_android_on

_linux/architecture/. [Accessed February 25 2019].

[42] Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn & TensorFlow" ,

O'Reilly Media, 2017.

[43] David Blei (2012) “Probabilistic Topic Models”, Communications of the ACM, vol.

55, pages 77–84.

[44] David Blei, Andew Ng and Michael Jordan (2003) “Latent Dirichlet Allocation”,

Journal of Machine Learning Research, vol. 3, pages 993–1022.

[45] Keith Stevens, Philip Kegelmeyer, David Andrzejewski and David Buttler

(2012) “Exploring Topic Coherence over many models and many topics”, Joint

Conference on Empirical Methods in Natural Language Processing and

Computational Natural Language Learning, pages 952–961.

[46] Medium, “Your Easy Guide to LDA.”. Available in: https://medium.com/@

lettier/how-does-lda-work-ill-explain-using-emoji-108abf40fa7d. [Accessed April

10 2019].

[47] Bahman Rashidi, Carol Fung and Tam Vu (2014) “RecDroid: A resource access

permission control portal and recommendation service for smartphone users”,

ACM MobiCom Workshop on Security and Privacy Aspects of Mobile Environments

(SPME), pages 13–17.

[48] Lingfeng Bao, David Lo, Xin Xia and Shanping Li (2016) “What Permissions Should

This Android App Request ?”, International Conference on Software Analysis,

Testing and Evolution, pages 36–41.

81

[49] Bahman Rashidi, Carol Fung, Anh Nguyen and Tam Vu (2016) "Android Permission

Recommendation using Transitive Bayesian Inference Model" European

Symposium on Research in Computer Security, pages 477–497.

[50] Er-Rajy Latifa and My Ahmed (2016) “A New Protection for Android Applications”,

International Journal of Interactive Multimedia and Artificial Intelligence, vol. 3,

pages 15–19.

[51] Ankur Shukla, Divya Vikash, Bharavi Mishra and Poonam Gera (2017) “Permission

Recommender System for Android”, International Conference on Security of

Information and Networks, pages 311–314.

[52] Rui Liu, Jiannong Cao, Kehuan Zhang, Wenyu Gao, Junbin Liang and Lei Yang (2016)

“When Privacy Meets Usability : Unobtrusive Privacy Permission Recommendation

System for Mobile Apps based on Crowdsourcing” IEEE Transactions on Services

Computing, vol. 11, pages 864-878.

[53] Quang Do, Ben Martini and Kim Choo (2014) “Enhancing User Privacy on Android

Mobile Devices via Permissions Removal”, Hawaii International Conference on

System Sciences, pages 6–9.

[54] Toqeer Ali, Yasar Khan, Tamleek Ali, Safiullah Faizullah, Turki Alghamdi and Sajid

Anwar (2018) “An Automated Permission Selection Framework for Android

Platform”, Journal of Grid Computing, pages 1-15.

[55] Arnaud Oglaza, Romain Laborde, Pascale Zaraté, Abdelmalek Benzekri and François

Barrere (2017) “A new approach for managing Android permissions : learning

users preferences”, EURASIP Journal of Information Security, vol. 1, page 13.

[56] Tianli Dang, Zheng Yan, Fei Tong, Weidong Zhang and Peng Zhang (2014)

“Implementation of a trust-behavior based reputation system for mobile

applications”,International Conference on Broadband and Wireless Computing,

Communication and Applications, pages 221–228.

[57] Xin Su, Dafang Zhang, Wenjia Li and Wenwei Li (2015) “Android App

Recommendation Approach Based on Network Traffic Measurement and Analysis”,

IEEE Symposium on Computers and Communication (ISCC), pages 112–118.

82

[58] Pulkit Rustgi, Carol Fung, Bahman Rashidi and Bridget McInnes (2017)

“DroidVisor: An Android secure application recommendation system” IEEE

Symposium on Integrated Network and Service Management (IM), pages 1071–

1076.

[59] Maria Gómez, Romain Rouvoy, Martin Monperrus, and Lionel Seinturier (2015) “A

Recommender System of Buggy App Checkers for App Store Moderators”, ACM

International Conference on Mobile Software Engineering and Systems, pages 1–

11.

[60] R. C. Jisha, Ram Krishnan and Varun Vikraman (2018) “Mobile Applications

Recommendation Based on User Ratings and Permissions” International

Conference on Advances in Computing, Communications and Informatics (ICACCI),

pages 1000–1005, 2018.

[61] Hengshu Zhu, Hui Xiong, Yong Ge and Enhong Chen (2014) “Mobile App

Recommendations with Security and Privacy Awareness” ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 951-960.

[62] Bin Liu, Deguang Kong, Lei Cen, Neil Zhengiang Gong, Hongxia Jin and Hui Xiong

(2015) “Personalized Mobile App Recommendation : Reconciling App

Functionality and User Privacy Preference”, ACM International Conference on Web

Search and Data Mining, pages 315–324.

 [63] Konglin Zhu, Xiaoman He, Bia Xiang, Lin Zhang and Achille Pattavina (2016) “How

Dangerous Are Your Smartphones ? App Usage Recommendation with Privacy

Preserving”, Mobile Information Systems, vol. 2016, 10 pages.

 [64] ElMouatez Karbab, Mourad Debbabi, Abdelouahid Derhab and Djedjiga Mouheb

(2017) “Android Malware Detection using Deep Learning on API Method

Sequences”, Cryptography and Security.

 [65] AppBrain, “AppBrain.com.” Available in: https://www.appbrain.com/. [Accessed

July 18 2018].

 [66] SlideME, “SlideME.” Available in: http://slideme.org/. [Accessed July 18 2018].

 [67] Samsung, “Galaxy Store.” Available in: https://www.samsung.com/global/galaxy/

apps/galaxy-store/. [Accessed July 18 2018].

83

[68] Zhenlong Yuan, Yongqiang Lu and Yibo Xue (2016) “Droiddetector: android

malware characterization and detection using deep learning”, Tsinghua Science and

Technology, vol. 21, pages 114–123.

 [69] Android, “Requesting Permissions,” Available in: https://developer.android.

com/guide/topics/permissions/requesting.html. [Accessed July 30 2019].

 [70] Feng Dong, Yanhui Guo, Chengze Li, Guoai Xu and Fang Wei (2016) “ClassifyDroid:

Large scale Android applications classification using semi-supervised Multinomial

Naive Bayes”, International Conference on Cloud Computing and Intelligence

Systems (CCIS), vol. 6, pages 1-5.

[71] Rohit Goyal, Angelo Spognardi, Nicola Dragoni and Marios Argyriou (2016)

“SafeDroid: A distributed malware detection service for android”, International

Conference on Service-Oriented Computing and Applications (SOCA), pages 59–66.

 [72] Shifu Hou, Aaron Saas, Lifei Chen and Yanfang Ye (2017) “Deep4MalDroid: A deep

learning framework for android malware detection based on Linux kernel system

call graphs, International Conference on Web Intelligence Workshops (WIW),

pages 104–111.

 [73] Arashi Lashkari, Andi Kadir, Laya Taheri and Ali Ghorbani (2018) “Toward

Developing a Systematic Approach to Generate Benchmark Android Malware

Datasets and Classification”, International Carnahan Conference on Security

Technology (ICCST), pages 1–7.

 [74] William Enck, Peter Gilbert, Byung Chun, Landon Cox, et al. (2010) “TaintDroid:

An Information-Flow Tracking System for Realtime Privacy Monitoring on

Smartphones”, USENIX conference on Operating systems design and

implementation, pages 393-407.

 [75] Omar Tripp and Julia Rubin (2014) “A Bayesian Approach to Privacy Enforcement

in Smartphones”, USENIX conference on Security Symposium, pages 175–190.

 [76] Yuhao Luo, Dawu Gu and Juanru Li (2013) “Toward Active and Efficient Privacy

Protection for Android”, International Conference on Information Science and

Technology (ICIST), pages 924-929.

84

 [77] Stefan Jansen, "Hands-On Machine Learning for Algorithmic Trading " , O'Reilly

Media, 2018.

 [78] Koodous, “Koodous.” Available in: https://koodous.com/. [Accessed April 4 2019].

 [79] ElevenPath, “ElevenPath CyberSecurity Report.” Available in:https://www.

slideshare.net/elevenpaths/201907151600-foxit. [Acessed February 15, 2019].

 [80] Symantec, “Unofficial Telegram App Secretly Loads Infinite Malicious Sites.”

Available in: https://www.symantec.com/blogs/threat-intelligence/ unofficial-

telegram-app-malicious-sites. [Accessed August 8 2019].

