
SUPPORTING SCHEMA REFERENCES IN

KEYWORD QUERIES OVER RELATIONAL

DATABASES

PAULO RODRIGO OLIVEIRA MARTINS

SUPPORTING SCHEMA REFERENCES IN

KEYWORD QUERIES OVER RELATIONAL

DATABASES

Dissertation presented to the Graduate
Program in Informatics of the Federal Uni-
versity of Amazonas in partial fulfillment of
the requirements for the degree of Master in
Informatics.

Advisor: Altigran Soares da Silva

Manaus

March 2020

Ficha Catalográfica

M386s Supporting Schema References in Keyword Queries over
Relational Databases / Paulo Rodrigo Oliveira Martins . 2020
 58 f.: il. color; 31 cm.

 Orientador: Altigran Soares da Silva
 Dissertação (Mestrado em Informática) - Universidade Federal do
Amazonas.

 1. Keyword Search. 2. Relational Databases. 3. Schema
References. 4. Candidate Networks. I. Silva, Altigran Soares da. II.
Universidade Federal do Amazonas III. Título

Ficha catalográfica elaborada automaticamente de acordo com os dados fornecidos pelo(a) autor(a).

Martins, Paulo Rodrigo Oliveira

PODER EXECUTIVO
MINISTÉRIO DA EDUCAÇÃO

INSTITUTO DE COMPUTAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA

FOLHA DE APROVAÇÃO

"6XSSRUWLQJ�6FKHPD�5HIHUHQFHV�LQ�.H\ZRUG�4XHULHV�RYHU�
5HODWLRQDO�'DWDEDVHV"

3$8/2�52'5,*2�2/,9(,5$�0$57,16

Dissertação de Mestrado defendida e aprovada pela banca examinadora constituída pelos

Professores:

3URI��$OWLJUDQ�6RDUHV�GD�6LOYD - PRESIDENTE

Prof��(GOHQR�6LOYD�GH�0RXUD - MEMBRO INTERNO

3URI��-RmR�0DUFRV�%DVWRV�&DYDOFDQWL - MEMBRO EXTERNO

Manaus, �� de 0DUoR de 20��

Av. Rodrigo Otávio, 6.200 - Campus Universitário Senador Arthur Virgílio Filho - CEP 690��-�00 - Manaus, AM, Brasil�
Tel. (092) 3305 1193 E-mail: secretariappgi@icomp.ufam.edu.br www.ppgi.ufam.edu.br

Abstract

Relational Keyword Search (R-KwS) systems enable naive/informal users to retrieve
information from relational databases without any knowledge about schema details or
query languages. Roughly, R-KwS systems must determine which pieces of information
to retrieve from the database and how to connect them to generate a relevant answer for
the user. For instance, the keywords from the query may refer either to instance values
or to database schema elements, such as relations and attributes names. Unfortunately,
most of the R-KwS systems do not support references to the database schema. In this
work, we propose a new method to generate an adequate SQL query from an input
keyword query, taking advantage of references to the content of the database as well as
references to the database schema. Our experiments indicate that schema references
can help to improve the quality of the ranking the answers for the user.

v

List of Figures

3.1 A sample movie database taken from IMDB 9
3.2 SQL queries generated for the keyword query “will smith movies” and their

returned results. 10
3.3 Lathe’s main phases . 11

5.1 Bayesian network corresponding to the query Q = {will, smith, films} . . 25

6.1 A schema graph for the sample movie database of Figure 3.1 32
6.2 Execution of CNKMIter algorithm for generating the candidate networks

for the query match M1 . 36

7.1 Ranking of Candidate Networks . 44
7.2 Time spent for obtaining Candidate Networks 45
7.3 Ranking of Candidate Networks with Instance-based Pruning - IMDb . . . 46
7.4 Ranking of Candidate Networks with Instance-based Pruning - MONDIAL 46
7.5 Ranking of Query Matches . 47

vii

List of Tables

7.1 Datasets we used in our experiments . 42
7.2 Query sets we used in our experiments . 43

ix

Contents

Abstract v

List of Figures vii

List of Tables ix

1 Introduction 1

2 Background and Related Work 5
2.1 Keyword Search Systems over Relational Databases 5
2.2 R-KwS Systems based on Schema Graphs 6
2.3 Support to Schema References in R-KwS Systems 7

3 Lathe Overview 9
3.1 System Architecture . 10

4 Keyword Matching 13
4.1 Value-Keyword Matching . 13
4.2 Schema-Keyword Matching . 16
4.3 Generalization of Keyword Matches . 19

5 Query Matching 21
5.1 Query Matches Generation . 21
5.2 Query Matches Ranking . 23

6 Candidate Networks Generation 31
6.1 Concepts . 31
6.2 Candidate Network Generation . 34
6.3 Candidate Network Ranking . 37
6.4 Candidate Network Pruning . 37

xi

6.4.1 Schema-based Pruning . 38
6.4.2 Instance-based Pruning . 39

7 Experiments 41
7.1 Experimental Setup . 41
7.2 Evaluation of Candidate Network Ranking 43
7.3 Performance Evaluation . 44
7.4 Impact of Instance-based Pruning on CNs 45
7.5 Evaluation of Query Matches Ranking 47

8 Conclusions and Future Work 49
8.1 Main Contributions . 49
8.2 Future Work . 50

Bibliography 53

xii

Chapter 1

Introduction

Relational Keyword Search (R-KwS) enables naive/informal users to retrieve informa-
tion from relational databases without any knowledge about schema details or query
languages. The success of search engines demonstrates that untrained users are com-
fortable using keyword search to find documents of their interest.

However, empowering users to search relational databases using keyword queries
is a challenging task considering that the information sought often spans multiple
relations and attributes, according to the schema design of the underlying database.
Thus, systems that process keyword queries over relational databases face the challenge
of automatically determining which pieces of information to retrieve from the database
and how to connect them to generate a relevant answer to the user.

In general, the keywords from a query may refer to both database values, such as
tuples containing these keywords, and schema elements, such as relation and attribute
names. For instance, consider the query Q1 = “will smith films” over a database on
movies. The keywords “will” and “smith” may refer to values of person names. In
contrast, the keyword “films” is likely to refer to a schema element, the name of the
relation about movies.

Although a significant number of keywords in keyword queries correspond to
schema references (Bergamaschi et al., 2011a), most of the previous work in the liter-
ature on R-KwS systems associate keywords to instance values only, that is, they do
not support references to schema information such as the one in query Q1. Therefore,
given the query Q1, they will look for tuples that contain the keyword “films”, which
is unlikely to produce an useful answer for the user.

In fact, there are only a few work in the literature proposing methods for han-
dling schema references in keywords queries. One of the first systems that support such
queries was BANKS (Bhalotia et al., 2002). However, it only considers schema refer-

1

2 Chapter 1. Introduction

ences in which keywords exactly match with the names of schema elements. Therefore,
it does not support common case such as synonyms. SQAK (Tata e Lohman, 2008) is
capable of handling these cases, however it requires an ontology to be supplied for each
target database domain. Keymantic (Bergamaschi et al., 2011a) and KEYRY (Berga-
maschi et al., 2011b) properly addresses the problem of schema references support.
However, they both require user feedback to select the relevant answers. Also, they do
not consider database instances and, thus, they cannot benefit from valuable instance-
related features exploited by other state-of-the-art R-KwS systems.

In this work we study new techniques for supporting schema references in key-
word queries over relational databases. Specifically, we proposed Lathe, a new method
to generate an adequate SQL query from an input keyword query, considering that key-
words may refer either to instance values or to database schema elements, i.e., relations
and attributes.

Lathe follows the so-called Schema Graph approach for R-KwS. Given a keyword
query Q, this approach consists of first generating relational algebra expressions called
Candidate Networks or CNs, which are likely to express the user intention when for-
mulating the original query Q. Then, the generated CNs are evaluated, that is, they
are translated in SQL queries, which are executed by a DBMS, and the resulting tuples
are collected and supplied to the user. Several systems also propose strategies to rank
the resulting tuples, so that tuples that are more likely to fulfill the user intentions are
ranked higher. In the literature, the most well-known algorithm to generate CNs is CN-
Gen, which was proposed by the pioneer Schema Graph R-KwS systems DISCOVER
(Hristidis e Papakonstantinou, 2002). This algorithm is used as default in most of the
methods proposed in the literature for CN evaluation and ranking of resulting tuples,
such as Efficient (Hristidis et al., 2003), SPARK (Luo et al., 2007), CD (Coffman e
Weaver, 2010b).

As the problem of evaluating CNs is known to be very costly, recent proposals have
appeared in the literature to make it more efficient. KwS-F (Baid et al., 2010) imposed
a time limit for CN evaluation, returning possibly partial results and a summary of the
CNs yet to be evaluated. CNRank (Oliveira et al., 2015) proposed a ranking of CNs,
so that only the top-ranked CNs need to be evaluated. MatCNGen (Oliveira et al.,
2018) proposed a novel method for generating candidate networks, wherein the possible
matches for the query in the database are efficiently enumerated at first. These Query
Matches or QMs are then used to guide the CN generation process, further decreasing
the number of generated CNs.

Our method Lathe is, to the best our knowledge, the first method to address
the problem of generating and ranking Candidate Networks considering queries with

3

keywords that refer to both schema elements and instance values.
Roughly, Lathe matches the keywords from the query to both schema elements

and tuples from the database that contains these keywords. Next, we combine the
keyword-matches in order to gather all the pieces of information that covers the keyword
query. These combinations, which represent query matches, are then ranked. Then, we
generate the candidate networks, which connect all the necessary pieces of information
for the keyword query. After that, the candidate networks are ranked and evaluated.
Finally, the results from the candidate networks evaluation are delivered to the user.

To verify the effectiveness of Lathe we performed several experiments. First, we
evaluated the ranking of Candidate Networks using the Mean Reciprocal Rank (MRR)
and the Precision at position K (P@K). Regarding performance, we evaluate the
average elapsed time to generate the candidate networks. Next, we also evaluate the
impact of instance-based pruning in the generation and ranking of candidate networks
using MMR and P@K. Lastly, we analyzed the ranking of Query Matches using
P@K. The performed experiments indicate our support to schema references can help
to improve the ranking of candidate networks and disambiguate queries.

Our key contributions are as follows: (i) we propose a novel method for generating
and ranking candidate networks with support for schema references. (ii) we propose the
first algorithm for Ranking of Query Matches, which prunes the processing of less likely
answers. (iii) we present several pruning techniques for the generation and ranking
of candidate networks. (iv) we propose a simple but effective ranking of candidate
networks which exploits the ranking of query matches. (v) we defined keyword matches,
query matches and candidate networks which supports schema references.

The remainder of this dissertation is organized as follows: Chapter 2 reviews the
related literature in the field of Relational Keywords Search Systems based on Schema
Graphs and Support to Schema References. Chapter 3 overviews all the phases from
our method, which are detailed in Chapters 4-6. Chapter 7 reports the results of the
experiments we have conducted. Finally, Chapter 8 presents the conclusions we have
reached and outlines our future work.

Chapter 2

Background and Related Work

In this chapter we discuss the background and related work on the problem of Keyword
Search Systems over Relational Databases and the Support to Schema References in
R-KwS systems.

2.1 Keyword Search Systems over Relational

Databases

Current R-KwS systems fall in one of two distinct categories: systems based on Schema
Graphs and systems based on Data Graphs. Systems in the first category are based on
the concept of Candidate Networks (CNs), which are networks of joined relations that
are used to generate SQL queries whose results provide an answer to the input keyword
query. This approach was proposed in DISCOVER (Hristidis e Papakonstantinou,
2002) and DBXplorer (Agrawal et al., 2002) and was later adopted by a number of
other systems, such as Efficient (Hristidis et al., 2003), SPARK (Luo et al., 2007), CD
(Coffman e Weaver, 2010b), KwS-F (Baid et al., 2010), CNRank (Oliveira et al., 2015)
and MatCNGen (Oliveira et al., 2018). Systems in this category take advantage of
the basic functionality of the underlying RDBMS by producing appropriate SQL join
queries to retrieve answers relevant to keyword queries posed by users.

Systems in the second category are based on structures called Data Graphs, whose
nodes represent tuples associated with the keywords they contain, and the edges con-
nect these tuples based on referential integrity constraints. In this approach, adopted
by several systems, including BANKS (Aditya et al., 2002), Bi-directional (Kacholia
et al., 2005), BLINKS (He et al., 2007) and Effective (Liu et al., 2006), results of
keyword queries are computed by finding subtrees in a data graph that minimizes the

5

6 Chapter 2. Background and Related Work

distance between nodes matching the given keywords.

2.2 R-KwS Systems based on Schema Graphs

In our research, we focus on systems based on Schema Graphs, since we assume that
the data we want to query are stored in a relational database and we want to use a
RDBMS capable of processing SQL queries.

The most well-known algorithm to generate candidate networks is CNGen, which
was proposed in DISCOVER (Hristidis e Papakonstantinou, 2002). This algorithm was
later adopted as default in most of the R-KwS systems proposed in the literature.

However, CNGen often too many times generates a large number of CNs, resulting
in a costly process of CN evaluation. Mainly to avoid the multi-query optimization
problem that arises when all CNs are to be evaluated, several work were proposed for
ranking of resulting tuples of CNs, such as Efficient (Hristidis et al., 2003), SPARK
(Luo et al., 2007) and CD (Coffman e Weaver, 2010b).

In contrast, KwS-F Baid et al. (2010) addressed the efficiency and scalability
problems in CN evaluation in a different way. Their approach consists of two steps.
First, a limit is imposed on the time the system spends evaluating CNs. After this limit
is reached, the system must return a (possibly partial) top-K JNTs result. Second, if
there are CNs yet to be evaluated, these CNs are presented to the user by means of
query forms, so the user can select one of the forms and the system evaluates the
corresponding CN.

CNRank (Oliveira et al., 2015) presented an approach to reduce the cost of the
CN evaluation by ranking candidate networks. This ranking is based on the probabil-
ity of CNs to produce relevant answers to the user. Specifically, CNRank presented a
probabilistic ranking model that uses a Bayesian belief network to estimate the rele-
vance of a Candidate Network given the current state of the underlying database. A
score is assigned to each generated candidate networks so that only a few CNs with
the highest scores are evaluated.

MatCNGen (Oliveira et al., 2018) proposed a match-based approach for gener-
ating CNs. MatCNGen enumerates the possible ways that the query keywords can be
matched in the database beforehand, to generate query answers. Thereafter, for each
of these query matches, MatCNGen generates a single CN, which drastically reduces
the time required to generate CNs. In addition, MatCNGen assumes that answers
must contain all the query terms, it follows that every keyword must appear in at least
one element of a candidate network. Thus, as the generation process avoids generating

2.3. Support to Schema References in R-KwS Systems 7

too many combinations of keyword occurrences, a smaller but better set of CNs is
generated.

Lastly, Coffman e Weaver (2010a) proposed a framework for evaluating R-KwS
systems and reported the results of applying this framework over three representative
standardized datasets they built, namely Mondial, IMDb and Wikipedia, along with
respective query workloads. The authors compare nine R-KwS systems, evaluating
them in many aspects related to their effectiveness and performance. These resources
built in this framework were also used in the experiments of several work, such as
Coffman e Weaver (2012), Luo et al. (2007) and Oliveira et al. (2015, 2018).

2.3 Support to Schema References in R-KwS

Systems

In fact, there are only a few works in the literature proposing methods for handling
schema references in keywords queries. One of the first system that supports such
queries was BANKS (Bhalotia et al., 2002). Although, in that work, the identification of
schema references considered only the exact matches between a keyword and a schema
element. Therefore, misspellings, abbreviations and synonyms of schema elements were
ignored. Besides, BANKS is a R-KwS system based on Data Graphs, which is out of
the scope of this work.

SQAK (Tata e Lohman, 2008) presented more robust support to schema refer-
ences by using an ontology-based normalization and an edit distance based measure.
In fact, the focus of SQAK was on handling more complex keyword queries, allowing
the usage of aggregation functions. For that reason, SQAK noted that aggregation
functions were generally succeeded by their targets: schema elements. For instance, in
the query “students average grade”, the average function targets the attribute grade.
Interestingly, SQAK showed us that keywords are not independent of one another.

Keymantic (Bergamaschi et al., 2011a) was the first work to specifically address
the problem of schema references support. In addition to the mapping of keywords to
either schema elements or instance values, Keymantic also looked for inter-dependencies
between query keywords, that is, how the keywords from the query affect one another.
For instance, in the query “actor denzel washington”, we can exploit the mapping of
“actor” to the relation person to increase the likelihood of “washington” be associated to
a person name, instead of movie title. Furthermore, Keymantic also used a combination
of different string similarity metrics and the semantic dictionary WordNet(Miller, 1998)
in the keyword mappings.

8 Chapter 2. Background and Related Work

KEYRY (Bergamaschi et al., 2011b) further exploited the inter-dependencies
among keywords using a Hidden Markov Model. On the other hand, KEYRY also
needed to exploit user feedback to improve the results. As a consequence, there is
often a need to have the user to manually select the more appropriate answers. Unfor-
tunately, both Keymantic and KEYRY do not consider database instances and, thus,
they cannot benefit from most of the other contributions in the literature.

Chapter 3

Lathe Overview

In this chapter, we present an overview of our system Lathe for generating SQL queries
given a keyword query with references to the database schema

We begin by presenting a simple example of the task carried out by the method.
For this, we use the sample movie database we illustrate in Figure 3.1. This database
is actually a simplified excerpt of the well-known IMDB1.

PERSON
ID Name

t1 1 Will Smith
t2 2 Will Theakston
t3 3 Maggie Smith
t4 4 Sean Bean
t5 5 Elijah Wood

MOVIE
ID Title Year

t6 6 Men in Black 1997
t7 7 I am Legend 2007
t8 8 Harry Potter and the Sorcerer’s Stone 2001
t9 6 The Lord of the Rings: The Fellowship of the Ring 2001
t10 10 The Lord of the Rings: The Return of the King 2003
t11 11 Silent Hill 2006

CHARACTER
ID Name

t12 12 Agent J
t13 13 Robert Neville
t14 14 Marcus Flint
t15 15 Minerva McGonagall
t16 16 Boromir
t17 17 Frodo Baggins
t18 18 Christopher da Silva

ROLE
ID Name

t19 19 Actor
t20 20 Actress
t21 21 Producer
t22 22 Writer
t23 23 Director
t24 24 Editor

CASTING
ID Person_ID Movie_ID Char_ID Role_ID

t25 25 1 6 12 19
t26 26 1 7 13 19
t27 27 2 8 14 19
t28 28 3 8 15 20
t29 29 4 9 16 19
t30 30 4 10 16 19
t31 31 4 11 18 19
t32 32 5 9 17 19
t33 33 5 10 17 19

Figure 3.1: A sample movie database taken from IMDB

Consider that a user inputs the keyword query Q=“will smith films”, and as-
sume that she wants the system to list the movies in which Will Smith appears. Notice
that, in this query, terms “will ” and “smith” are likely to match the contents of some
relation in database, while the term “films” is likely to match to the name of a relation
or attribute.

1Internet Movie Database https://www.imdb.com/interfaces/

9

10 Chapter 3. Lathe Overview

SELECT m. t i t l e , p . name
FROM person p
JOIN c a s t i ng c ON p . id=c . person_id
JOIN movie m ON m. id = c . movie_id
WHERE p . name ILIKE '%w i l l% '
AND p . name ILIKE '%smith% ' ;

SELECT m. t i t l e , p1 . name , p2 . name
FROM person p1
JOIN c a s t i ng c1 ON p1 . id=c1 . person_id
JOIN movie m ON m. id = c1 . movie_id
JOIN c a s t i ng c2 ON m. id = c2 . movie_id
JOIN person p2 ON p2 . id=c2 . person_id
WHERE p1 . name ILIKE '%w i l l% '
AND p2 . name ILIKE '%smith% '
AND p1 . id<>p2 . id ;

(a) (b)

m.title p.name
Men in Black Will Smith
I am Legend Will Smith

m.title p1.name p2.name
Harry Potter and the
Sorcerer’s Stone

Will Theaskton Maggie Smith

(c) (d)

Figure 3.2: SQL queries generated for the keyword query “will smith movies” and their
returned results.

As other methods previously proposed in the literature, such as CNGen (Hristidis
e Papakonstantinou, 2002) and MatCNGen (Oliveira et al., 2018) the main goal of
Lathe is, given a query such as Q, generating a SQL query that, when executed, fulfills
the user’s information need. The difference between Lathe and the previous methods
is that they are not able to handle references to schema elements, such as “films” in Q.

For query Q, two of the possible SQL queries that would be generated are queries
S1 and S2, presented in Figures 3.2 (a) and (b), respectively. The respective results
of these queries for the database of Figure 3.1 are presented in Figures 3.2(c) and (d).
Query S1 retrieves the movies in which Will Smith is an actor, and thus, corresponds
to the original user intent. On the other hand, query S2 retrieves movies in which two
different persons whose names include the terms “will ” and “smith” are actors.

As this simple example shows, there may be several of plausible SQL, queries
given a keyword query. Thus, it is necessary to decide which of these alternatives are
more likely to fulfill the user need. This task is also carried out by Lathe.

In the next section, we present an overview on the components and the functioning
of Lathe.

3.1 System Architecture

Now we present the overall architecture of Lathe. We base our discussion on Figure 3.3,
which illustrates the main phases that comprise the method’s functioning.

The process begins with an input keyword query posed by a user. The system
then tries to associate each of the keywords from the query with either instance values
or schema elements from the database. This phase, called Keyword Matching 1 ,

3.1. System Architecture 11

SQL Query

SELECT____
FROM______
JOIN___ON_
WHERE_____

Query Matching2

Query Match
Ranking

query matchesQuery Match
Generation

Candidate Network
Processing

3

candidate
networks

Candidate Network
Generation

Candidate Network
Ranking

RDBMS

Preprocessing0

Value Index Schema Index
Word

Embeddings

Keyword Matching1
Value-Keyword

Matching

Schema-Keyword
Matching

top-k
query matches

tuple-sets

similarity valuesterm information

VK matches

SK matches

Keyword Query

schema elements

schema graph

Figure 3.3: Lathe’s main phases

generates sets of Value-Keyword Matches, which associate keywords with sets of tuples
whose attribute values contain these keywords, and Schema-Keyword Matches, which
associate keywords with names of relations or attributes deemed as similar to these
keywords.

In the next phase, Query Matching 2 , keyword matches are combined so that
their combined keywords cover the input query in a total and minimal way. This
means that all keywords from the query must be included by the keyword matches and
no keyword match is redundant. These combinations of keyword matches are called
Query Matches. Since there may be a large number of such combinations, the method
may often generates many query matches. However, only a few of them are in fact
useful to produce plausible answers to the user. For this reason, we propose the first
algorithm for Ranking Query Matches. This ranking scores query matches based on the
likelihood that they fulfill the user needs when formulating the keyword query. Thus,
the system only outputs a few top-ranked query matches to the next phases. By doing
so, it avoids having to process less likely query matches.

Once we have query matches, the system tries to connect each piece of informa-
tion from them in the Candidate Network 3 phase. That is, the system search for
interpretation for the keyword query. The candidate network are based on relational
algebra, which can be directly translated into SQL queries. Next, we take advantage
of the ranked query matches to generate a Candidate Network Ranking. Roughly, this
ranking favors candidate networks that are more concise in the number of relation it
uses. Once we have the most likely candidate networks, we perform a translation of
candidate networks into SQL queries.

During the process of generating SQL queries, Lathe uses two data structures

12 Chapter 3. Lathe Overview

which are created in a Preprocessing stage 0 : the Value Index and the Schema Index.
The Value Index is an inverted index stores the occurrences of keyword in the database,
indicating the relations and tuples a keyword appear and which attributes are mapped
to that keyword. These occurrences are retrieved in the Query Matching phase. In
addition, the Value Index is also used to calculate term frequencies for the Ranking of
Query Matches. The Schema Index is an inverted index that stores information about
the database schema and statistics about ranking of attributes, which is also used in
the Query Matches Ranking.

In the following chapters we present each of the phases of Figure 3.3, describing
their steps, definitions, data structures, the algorithms used and discussing the main
project decisions that we made. We begin by presenting Keyword Matching process
in Chapter 4, describing the value-keyword and schema-keyword matches and their
respective generation algorithms VKMGen and SKMGen. After that, we present the
Query Matching process in Chapter 5, describing the conditions for combining key-
word matches into query matches, which is acomplished by the algorithm QMGen.
We also present QMRank, the first algorithm for ranking of query matches. Then, in
Chapter 6, we present the generation of candidate networks, we also present a straight-
forward ranking of candidate networks, which takes advantage of the previous ranking
of query matches, and several pruning techniques to decrease the number of candidate
networks.

Chapter 4

Keyword Matching

The first phase in the method, Keyword Matching associates the keywords from the
query to either instance values or schema elements, which respectively generate Value-
Keyword Matches, and Schema-Keyword Matches.

4.1 Value-Keyword Matching

We associate the keywords from the query to the tuples that contain these keywords
by means of value-keyword matches, according to Definition 1.

Definition 1.Let Q be a keyword query and R be a relation state over the relation
schema R(A1, . . . , Am). A value-keyword match from R over Q is given by:

RV [AK1
1 , . . . , AKm

m] = {t|t ∈ R ∧ ∀Ai : W (t[Ai]) ∩Q = Ki}

where ∃|Ki| ≥ 1, W (t[Ai]) returns the set of words in t for attribute Ai, Ki is the set
of keywords from Q that are associated to the attribute Ai and V denotes a match of
keywords to the database values.

Notice that, since W (t[Ai]) ∩ Q = Ki, each tuple from the database can be a
member of only one value-keyword match. Therefore, the value-keyword matches of a
given query are disjoint sets of tuples.

Throughout our discussion, for the sake of compactness in the notation, we
often omit mappings of attributes to empty keyword sets in the representation of
a value-keyword matches. For instance, we use the notation RV [AK1

1] to represent
RV [AK1

1 , A
{}
2 , . . . , A

{}
n].

Example 1.Consider the database instance of Figure 3.1. The following value-keyword

13

14 Chapter 4. Keyword Matching

matches can be generated for the query “will smith films”.

PERSONV [name{will,smith}]= {t1}

PERSONV [name{will}] = {t2}

PERSONV [name{smith}] = {t3}

Value-keyword matches play a similar role to the tuple-sets from related liter-
ature (Hristidis e Papakonstantinou, 2002; Oliveira et al., 2018), however, they are
more expressive, since they specify which attribute is associated with each keyword.
In contrast, some R-KwS systems, such as MatCNGen (Oliveira et al., 2018), cannot
create tuple-sets that span over different attributes. Example 2 illustrates a keyword
query that span over more than one attribute.

Example 2.Consider the query “lord rings 2001” whose intention is to return which
Lord of the Rings movie was launched in 2001. We can represent it with the following
value-keyword match:

MOV IEV [title{lord,rings}, year{2001}]= {t9}

VKMGen Algorithm

The generation of value-keyword matches is carried out by the Algorithm 1. It takes
tuples from the database in which the keywords occur and uses them to form value-
keyword matches.

The algorithm directly retrieves the occurrences of each keyword from a structure
we call the Value Index. This index is built in a preprocessing phase that scans only
once all the target relations. This phase precedes the processing of queries and we
assume that it does not need to be repeated often. Thus, the answers are generated for
each query without any further interaction with the DBMS. The Value Index follows
the structure below:

IV = {term : {relation : {attribute : {tuples}}}}

which stores the occurrences of keywords in the database, indicating the relations and
tuples a keyword appear and which attributes are mapped to the keyword.

Example 3.The value-keyword matches presented in Example 1 are based on the fol-

4.1. Value-Keyword Matching 15

lowing keyword occurrences:.

Iv[will] ={PERSON : {name : {t1, t2}}}

Iv[smith] ={PERSON : {name : {t1, t3}}}

Iv[smith][PERSON] ={name : {t1, t3}}

Iv[smith][PERSON][name]={t1, t3}

In Algorithm 1, once we obtained the occurrences of each keyword, we convert
them to the value-keyword structure (Line 7). However, they are not proper value-
keyword matches yet, because we need to guarantee that they are disjoint sets.

Algorithm 1: VKMGen(Q)
Input: A keyword query Q={k1, k2, . . . , km}
Output: The set of value-keyword matches VK

1 let IV the Value Index
/* Step 1: retrieve keyword occurrences */

2 O ← ∅
3 for keyword ki ∈ Q do
4 if ki ∈ IV .keys then
5 for relation Rj ∈ IV [ki].keys do
6 for attribute Ak ∈ IV [ki][Rj].keys do
7 RV

j [A
{ki}
k]← IV [ki][Rj][Ak]

8 O.append(RV
j [A

{ki}
k])

/* Step 2: generate value-keyword matches */
9 VK = VKMIter(O)

10 return VK

The task of ensuring that the value-keyword matches are disjoint sets is carried
out by Algorithm 2, VKMIter, which is based on the ECLAT algorithm (Zaki, 2000)
for finding frequent itemsets.

The algorithm looks for non-empty intersections of the pseudo value-keyword
matches recursively until all of them are disjoint sets, and thus, proper value-keyword
matches. These intersections are calculated as follows:

RV
ab[A

Kab,1

ab,1 , . . . , A
Kab,m

ab,m] =

{
{}, if Ra 6= Rb

RV
a [A

Ka,1

a,1 , . . . , AKa,m
a,m] ∩RV

b [A
Kb,1

b,1 , . . . , A
Kb,m

b,m], if Ra = Rb

where Kab,i = Ka,i ∪ Kb,i. Then, the algorithm updates the previous value-keyword

16 Chapter 4. Keyword Matching

Algorithm 2: VKMIter(V K)
Input: A set of value-keyword matches VK

1 for pair of value-keyword matches {KMa, KMb} ∈
(
VK
2

)
do

2 KMab ← KMa ∩KMb

3 if KMab 6= {} and KMab is valid then
4 VK.append(KMab)
5 KMa ← KMa −KMab

6 if KMa = {} then
7 VK.remove(KMa)
8 else
9 VK.update(KMa)

10 KMb ← KMb −KMab

11 if KMb = {} then
12 VK.remove(KMb)
13 else
14 VK.update(KMb)

15 VKMIter(VK)

matches, by removing the elements of their intersection from them:

RV
a [A

Ka,1

a,1 , . . . , AKa,m
a,m]⇐ RV

a [A
Ka,1

a,1 , . . . , AKa,m
a,m] \RV

ab[A
Kab,1

ab,1 , . . . , A
Kab,m

ab,m]

RV
b [A

Kb,1

b,1 , . . . , A
Kb,m

b,m]⇐ RV
b [A

Kb,1

b,1 , . . . , A
Kb,m

b,m] \RV
ab[A

Kab,1

ab,1 , . . . , A
Kab,m

ab,m]

4.2 Schema-Keyword Matching

Similarly to what we do for references to instance values, our method also addresses
references to the schema. Specifically, our method generates Schema-Keyword Matches,
which associate keywords from the query to schema elements. This is accomplished
using similarity metrics, which we will further explain later.

Definition 2.Let k ∈ Q be a keyword from the query, R(A1, . . . , Am) be a relation
schema. A schema-keyword match from R over k is given by:

RS[AK1
1 , . . . , AKm

m] = {t|t ∈ R ∧ ∀k ∈ Ki : sim(Ai, k) ≥ ε}

where Ki is the set of keywords from Q that are associated to the schema element
Ai, S denotes a match of keywords to the database schema and sim(Ai, k) gives the
similarity between the name of a schema element Ai and the keyword, which must be

4.2. Schema-Keyword Matching 17

above a threshold ε.

The schema-keyword matches play a different role in our method than the value-
keyword matches. The main objective of a schema-keyword matches is ensuring that
the attributes of a relation appear in the query results. In our method, they do not
denote any selection operation over database relations. This is the reason why they do
not “filter’" any of the tuples from the relation.

We generated an artificial attribute called self to be used when a keyword that is
matched to the name of a relation. Example 4 shows an instance of a schema-keyword
match wherein the keyword “films” is matched to the relation MOV IE.

Example 4.The following schema-based relation matches are created for the query
“will smith films”, considering a threshold ε = 0.6.

MOV IES[self {films}] ={t6, t7, t8, t9, t10, t11}, sim(movie, films)=1.00

MOV IES[title{will}] ={t6, t7, t8, t9, t10, t11}, sim(title, will) =0.87

PERSONS[name{smith}]={t1, t2, t3, t4, t5}, sim(name, smith) =0.63

Similarity Metrics

For the matching of keywords to schema elements, we used two similarity metrics based
on the lexical database WordNet : the Path similarity (Miller, 1998; Pedersen et al.,
2004) and the Wu-Palmer similarity (Wu e Palmer, 1994; Pedersen et al., 2004). We
introduce the WordNet database and the two similarity metrics below.

WordNet Database

WordNet (Miller, 1998) is a large lexical database which superficially resembles a the-
saurus, in that it groups words together based on their meanings. One use of WordNet
is to represent word senses, the many different meanings that a single lemma can have
(Keselj, 2009). Thus the lemma “film” can refer to a movie, to the act of recording of
to the plastic film.

WordNet also represents relations between senses, such as synonymy, hyponymy
and hypernymy. If two word senses have the same meaning, the are synonyms. In
addition, we say that the sense c1 is a hyponym of the sense c2 if c1 is more specific,
denoting a subclass of c2. For example, “protagonist” is a hyponym of “character”;
“actor” is a hyponym of “person”, and “movie” is a hyponym of “show”. The hypernymy
is the opposite of hyponymy relation. Thus, c2 us a hypernymy of c1.

18 Chapter 4. Keyword Matching

Path Similarity

The Path similarity (Miller, 1998; Pedersen et al., 2004) exploits the structure and
content of the WordNet database. The relatedness score is inversely proportional to
the number of nodes along the shortest path between the senses of two words. If the
two senses are synonyms, the path between them has length 1. The relatedness score
is calculated as follows:

simpath(w1, w2) = max
c1∈senses(w1)
c2∈senses(w2)

[
1

|shortest_path(c1, c2)|

]

Wu-Palmer Similarity

The Wu-Palmer measure (WUP) (Wu e Palmer, 1994; Pedersen et al., 2004) calculates
relatedness by considering the depths of the two synsets c1 and c2 in the WordNet
taxonomies, along with the depth of the Least Common Subsumer(LCS). The LCS is
the most specific synset c3 which is ancestor of both synsets c1 and c2.The score can
never be zero because the depth of the LCS is never zero (the depth of the root of a
taxonomy is one). Also, the score is 1 if the two input synsets are the same. The WUP
similarity for two words w1 and w2 is given by:

simwup(w1, w2) = max
c1∈senses(w1)
c2∈senses(w2)

[
2× depth(lcs(c1, c2))

depth(c1, c2)

]

SKMGen Algorithm

The retrieval of schema-keyword matches is pretty straightforward, which is detailed
in Algorithm 3. First, SKMGen iterates over the relations and attributes using a
structure called Schema Index (Lines 2-3), which is built in the preprocessing phase.
This index stores information about the database schema and statistics about the
ranking of attributes, which will be explained in Chapter 5. The stored information
follows the structure below:

IS = {relation : {attribute : {(norm,maxfrequency)}}}

Then, SKMGen calculates the similarity between each keyword and schema element.
It only considers the schema-keyword matches whose similarities are above a threshold
ε (Line 8).

Once SKMGen find a similarity between a keyword and a schema element above
the threshold, it generates a schema-keyword match(Line 9). The keyword match

4.3. Generalization of Keyword Matches 19

Algorithm 3: SKMGen(Q)
Input: A keyword query Q={k1, k2, . . . , km}, the Schema Index IS
Output: The set of schema-keyword matches SK

1 SK ← {}
2 for keyword ki ∈ Q do
3 for relation Rj ∈ IS.keys do
4 if sim(ki, Rj) ≥ ε then
5 RS

j [self
{ki}]← tuples(Ri)

6 SK← SK∪ {RS
j [self

{ki}]})
7 for attribute Al ∈ IS[Rj].keys do
8 if sim(ki, Al) ≥ ε then
9 RS

j [A
{ki}
l]← tuples(Ri)

10 SK← SK∪ {RS
j [A

{ki}
l]})

11 return SK

receives all the tuples from relation R, since schema-keyword matches do not perform
any filter operation over the tuples. Notice that SKMGen algorithm generates schema-
keyword matches associated with a single keyword.

4.3 Generalization of Keyword Matches

In this chapter, we presented the Definitions 1 and 2 which, respectively, introduces
Value-Keyword Matches and Schema-Keyword Matches. We choose to explain the
specificity of these concepts separately for the sake of better understanding. Definition 3
formally presents the concept of Keyword Matches. This generalization will be useful
when merging value-keyword matches and schema-keyword matches in the next phases.

Definition 3.Let Q be a keyword query and R be a relation state over the relation
schema R(A1, . . . , Am). A keyword match from R over Q is given by:

RS[A
KS

1
1 , . . . , AKS

m
m]V [A

KV
1

1 , . . . , AKV
m

m] = {t|t ∈ R ∧ (∀k ∈ KS
i : sim(Ai, k) ≥ ε)

∧ ((@|KV
i | ≥ 1) ∨ (∀Ai : W (t[Ai]) ∩Q = KV

i))}

where W (t[Ai]) returns the set of words in t for attribute Ai and sim(Ai, k) gives the
similarity between the name of a schema element Ai and the keyword, which must be
above a threshold ε.

The representations of value-keyword matches and schema-keyword matches in

20 Chapter 4. Keyword Matching

the general notation are given as follows:

RS[AK1
1 , . . . , AKm

m] = RS[AK1
1 , . . . , AKm

m]V [A
{}
1 , . . . , A

{}
m]

RV [AK1
1 , . . . , AKm

m] = RS[A
{}
1 , . . . , A

{}
m]V [AK1

1 , . . . , AKm
m]

Chapter 5

Query Matching

This chapter describes the processes of generating and ranking query matches, which
are combinations of the keyword matches generated in the previous phases that com-
prises every keyword from the keyword query.

5.1 Query Matches Generation

The objective of this step is combining the keyword matches generated in the previous
phases to create query matches, that is, configurations of keyword matches in which
every keyword from the query must appear in at least one of the keyword matches.

Intuitively, there may be many different combinations, however, Lathe considers
as query matches only those in which the combinations of keywords correspond to
minimal set covers for the query. This restriction ensures that query matches are total
and not redundant.

Definition 4.Let Q be a keyword query. Let VK be the set of all value-keyword matches
and SK be the set of all schema-keyword matches for Q in a certain database instance
I. Consider a subset M of VK∪SK of the form

M ={RS
1 [A

KS
1,1

1,1 , . . . , A
KS

1,m1
1,m1

]V [A
KV

1,1

1,1 , . . . , A
KV

1,m1
1,m1

],

. . . ,

RS
n [A

KS
n,1

n,1 , . . . , A
KS

n,mn
n,mn]V [A

KV
n,1

n,1 , . . . , A
KV

n,mn
n,mn]}

Also, let C =
⋃

1≤i≤n
1≤j≤mi
X∈{S,V }

KX
i,j be the set of all keywords associated with the keyword

matches in M . M is called a query match for Q if, and only, if C forms a minimal

21

22 Chapter 5. Query Matching

set cover of the keywords in Q. That is, C = Q and C \ {KX
i,j|1 ≤ j ≤ mi ∧ X ∈

{S, V }} 6= Q, for any 1≤i≤n.

Example 5.Considering the keyword matches from the Examples 1 and 4, only some
of the following sets are considered query matches for the query “will smith films”:

M1 = {PERSONV [name{will,smith}],MOV IES[self {films}]}

M2 = {PERSONV [name{will}], PERSONV [name{smith}],MOV IES[self {films}]}

U1 = {PERSONV [name{will}], PERSONV [name{smith}]}

U2 = {PERSONV [name{will,smith}]}

U3 = {PERSONV [name{will,smith}], PERSONV [name{smith}],MOV IES[self {films}]}

The sets M1 and M2 are considered query matches. In contrast, the sets of keyword
matches U1, U2 and U3 are not query matches. While U1 and U2 do not include all
query keywords, U3 is not minimal, that is, it has unnecessary keyword matches.

QMGen Algorithm

The generation of query matches is carried out by Algorithm 4, QMGen, which pre-
serves the same proposed idea as in Oliveira et al. (2018), but our method adapts it
to keyword matches instead of tuple-sets. Let V and S be respectively sets of value-
keyword matches, and schema-keyword matches previously generated. The algorithm
looks for combinations of keyword matches in V ∪ S that form minimal covers for the
query Q. At a first glance, this statement may suggest that we need to generate the
whole power set of V ∪S to obtain the complete set of query matches. However, it can
be shown that any minimal cover of a set of n elements has at most n subsets (Hearne
e Wagner, 1973). Therefore, no match for a query Q can be formed by more than |Q|
keyword matches.

For this reason, Algorithm 4 iterates over all the subsets of V ∪S whose size is
less or equal than the size of the query, and checks which of them form a minimal cover
for the query. The evaluation of minimal cover is carried out by Algorithm 5.

The Algorithm 5 first analyzes if a given set of keyword matches U covers the
query Q, ensuring that U is total. Then, the algorithm checks whether U continues to
be total if any one of its elements is removed. Lastly, Algorithm 6 looks for possible
mergings of the keyword matches from the query matches. Considering that schema-
keyword matches do not denote any selection operation over a database relation, they
can be merged with other keyword matches from the same relation.

5.2. Query Matches Ranking 23

Algorithm 4: QMGen(Q, VK, SK)
Input: A keyword query Q={k1, k2, . . . , km}

The set of value-keyword matches V
The set of schema-keyword matches S

Output: The set of query matches QM
1 H = VK ∪ SK
2 QM ← {}
3 for i ∈ {1, . . . , |Q|} do
4 let H[i] be set of subsets of size i of H
5 foreach U ∈ H[i] do
6 if MinimalCover(U,Q) then
7 MergeKeywordMatches(U)
8 QM.append(U)

9 return QM

Algorithm 5: MinimalCover(Q,U)
Input: A keyword query Q={k1, k2, . . . , km}

The set of keyword matches U
Output: If the set of keywords from M forms a minimal cover over Q

1 CoverU ← {}
2 for i ∈ {1, . . . , n} do
3 for j ∈ {1, . . . ,mi} do
4 CoverU ← CoverU ∪ {Ki,j}

5 if CoverU + Q then
6 return False

7 for i ∈ {1, . . . , n} do
8 CoverRi

← {}
9 for j ∈ {1, . . . ,mi} do

10 CoverRi
← CoverRi

∪ {Ki,j}
11 if CoverU \ CoverRi

+ Q then
12 return False

13 return True

5.2 Query Matches Ranking

As described in Chapter 3, Lathe performs a ranking of the query matches generated
in the previous step. This ranking is necessary because often many query matches are
generated, yet, only a few of them are in fact useful to produce plausible answers to
the user.

24 Chapter 5. Query Matching

Algorithm 6: MergeKeywordMatches(Q,U)
Input: The set of keyword matches U
Output: The set o keyword matchs U with a lower size, if possible

1 foreach RS
a [A

Ka,1

a,1 , . . . , A
Ka,ma
a,ma] ∈ U do

2 foreach RS
b [A

KS
b,1

b,1 , . . . , A
KS

b,mb
b,mb

]V [A
KV

1,b

1,b , . . . , A
KV

b,mb
b,mb

] ∈ U do
3 if a 6= b and Ra = Rb then
4 for i ∈ 1, . . . ,mb do
5 KS

b,i ← KS
b,i ∪Ka,i

6 U ← U − {RS
a [A

Ka,1

a,1 , . . . , A
Ka,ma
a,ma]}

Lathe estimates the relevance of query matches based on the current state of the
underlying database using a Bayesian Belief Network model. In practice, this model
considers two different types of relevancy score for the query matches to be ranked.
The value-based score is calculated according to the TF-IDF model, which adapts the
traditional vector space model to the context of relational databases, similarly as done
in LABRADOR (Mesquita et al., 2007) and CNRank (Oliveira et al., 2015). On the
other hand, the schema-based score is obtained by estimating the similarity between
keywords and the names of schema elements.

In Lathe, only the top-k query matches in the ranking are considered in the
succeeding phases. By doing so, we avoid generating candidate networks that are less
likely to properly interpret the keyword query.

Belief Bayesian Network

In this section, we describe the Bayesian Belief Network Model we used for the Ranking
of Query Matches. We adopt the Bayesian framework proposed by Ribeiro e Muntz
(1996) and de Cristo et al. (2003) for modeling distinct IR problems. This framework is
simple and allows combining features of distinct models into the same representational
scheme. In addition, it also has been used by other keyword search systems, such as
LABRADOR (Mesquita et al., 2007) and CNRank (Oliveira et al., 2015).

In our model, we interpret the query matches as documents, which are ranked
for the keyword query. Figure 5.1 illustrates an example of the Bayesian Network we
adopt. The Query Side, at the top of the network, contains the nodes that represent
the keyword query. The Database Side, at the bottom of the network, contains the
nodes that represent the query match that will be scored. The middle of the network
is present in both sides and it is composed by two set of keywords: the set V of all

5.2. Query Matches Ranking 25

terms present in the values of the database, and the set S of the names of all schema
elements.

����� [���]� � �{����,����ℎ} ��� � [���]�� � {�����}

��

�

will men …

�

smithlord

will smith films

…person name titlemovie
�

Database
Side

Query
Side

keyword
query

keywords

keyword
matches

query
match

database terms
and schema
elements

Figure 5.1: Bayesian network corresponding to the query Q = {will, smith, films}

In our Bayesian Network, we rank query matches based on their similarities with
the keyword query. This similarity is interpreted as the probability of observing a
query match QM given the keyword query Q:

P (QM |Q) = µP (QM ∧Q)

where µ = 1/P (Q) is a normalizing constant, as used in Pearl (2014).

We define a random binary variable associated with each keyword from the sets
V and S, which indicates whether the keyword was observed. Since these random
variables are the roots of our Bayesian Network, all of the probabilities of the other
nodes are dependent of them. Therefore, if we consider v ⊆ V and s ⊆ S as the sets of
keywords observed, we can derive the probability of any non-root event c as follows:

P (c) = P (c|v, s)× P (v)× P (s)

Since there is no preference for any particular set of terms, all possibilities of v and
s are equally likely a priori, then we can calculate each probability as P (v) = (1/2)|V |

and P (s) = (1/2)|S|.

The instantiation of the root nodes of the network separates the query match
nodes from the query nodes, making them mutually independent. Therefore:

P (QM ∧Q) = P (Q|v, s)P (QM |v, s)P (v)P (s)

26 Chapter 5. Query Matching

The probability of the keyword query Q = {q1, . . . , q|Q|} is splited between the
probability of each of its keywords:

P (Q|v, s) =
∏

1≤i≤|Q|

P (qi|v, s)

A keyword qi from the query is observed, given the sets s and v, either if qi occurs in
the values of the database or if qi has a similarity above a threshold ε with a schema
element.

P (qi|v, s) = (qi ∈ v) Y (∃k ∈ s : sim(qi, k) ≥ ε)

Similarly, in our network, the probability of a query match QM is splited between
the probability of each of its keyword matches.

P (QM |v, s) =
∏

1≤i≤|QM |

P (RS
i [A

KS
i,1

i,1 , . . . , A
KS

i,mi
i,mi

]V [A
KV

1,i

1,i , . . . , A
KV

i,mi
i,mi

]|v, s)

We compute the probability of keyword matches in two different ways: the prob-
abilities of schema-keyword matches are based on the same similarities used in the gen-
eration of schema-keyword matches and, the probabilities of value-keyword matches are
based on a vector model (Baeza-Yates e Ribeiro-Neto, 2008; Salton e Buckley, 1988),
using the cosine similarity.

P (RS
i [A

KS
i,1

i,1 , . . . , A
KS

i,mi
i,mi

]V [A
KV

1,i

1,i , . . . , A
KV

i,mi
i,mi

]|v, s) =



∏
1≤j≤mi

cos(
�

Ai,j,
�

v ∩KV
i,j)∏

1≤j≤mi

t∈s∩KS
i,j

sim(Ai,j, t)

It is important to distinct the documents from the Bayesian network model and
the Vector Model. While the documents of the Bayesian Network are the query matches
and the query is the keyword query itself. The documents of the Vector model are the
attributes from the database and the query is the set of keywords associated with the
keyword match.

Once we know the document and the query of the vector model, we can derive
the cosine similarity from the inner product of the document and the query. The cosine

5.2. Query Matches Ranking 27

similarity formula is given as follows:

cos(
�

Ai,j,
�

v ∩KV
i,j) =

�

AV
i,j ·

�

v ∩KV
i,j

| # �

Ai,j| × |
�

v ∩KV
i,j|

= α×

∑
t∈V

w(
�

Ai,j, t)× w(
�

v ∩KV
i,j, t)√∑

t∈V

w(
�

Ai,j, t)2

where α = 1/

√∑
t∈V w(

�

v ∩KV
i,j, t)

2 is the constant that represents the norm of the
query, which is not necessary for the ranking.

The weights for each term are calculated using the TF-IDF measure. This mea-
sure is based on the term frequency and specificness in the collection. For the term
frequency, we used the Augmented Normalized Term Frequency (Salton e Buckley,
1988), which is given as follows:

tf(X, t) =

0.5 + 0.5× freqX,t

max
l∈V

freqX,l


where X ∈ {cos(# �

Ai,j,
�

v ∩KV
i,j} can be either the document or the query. In case of

X be the query, freqX,t gives the number of occurrences of a term t in the keyword
query, which is generally 1. In case of X be an attribute(document), freqX,t gives the
occurrences of a term t in an attribute, which is obtained from the Value Index.

We use the Inverted Document Frequency(IDF)Salton e Buckley (1988); Baeza-
Yates e Ribeiro-Neto (2008) for measuring the specificness of terms, which is given by
the formula below:

idf(t) = log

(
NA

nt

)
where NA is the number of attributes in the database and nt is the number of attributes
which are mapped to the occurrences of the term t.

We chose the Normalized form of the Term Frequency suggested in Salton e
Buckley (1988) because our vector model does not benefit much from the Inverted
Document Frequency. This happens because generally a word occurs in all of the text
attributes from the database or it does not occur in any of them at all.

QMRank Algorithm

The ranking of query matches is carried out by Algorithm 7. The score of a query
match is based on the score of its keyword matches. Thus, the algorithm iterates over
each keyword match from each query match, scoring them.

28 Chapter 5. Query Matching

Algorithm 7: QMRank(QM)
Input: A set of query matches QM
Output: The set of ranked query matches RQM

1 RQM ← []
2 for M ∈ QM do
3 value_prod← 1, schema_prod← 1,
4 vk_count← 0, sk_count← 0

5 foreach RS
i [A

KS
i,1

i,1 , . . . , A
KS

i,mi
i,mi

]V [A
KV

1,i

1,i , . . . , A
KV

i,mi
i,mi

] ∈M do
6 for j ∈ {1, . . . ,mi} do
7 if ∃|KV

i,j| ≥ 1 then
8 vk_count← vk_count+ 1
9 (norm,maxfreq)← IS[Ri][Aj]

/* where norm = |Aj| and maxfreq = maxt∈S freqAj ,t */
10 value_sum← 0
11 for tk ∈ Ki,j do
12 num_occurrences← |IV [tk][Ri][Aj]|
13 tf ← 0.5 + 0.5× num_occurrences/maxfreq
14 value_sum← value_sum+ tf × iaf(tk)
15 value_prod← value_prod× value_sum/norm
16 if ∃|KS

i,j| ≥ 1 then
17 sk_count← sk_count+ 1
18 schema_sum← 0 for tk ∈ Ki,j do
19 if Aj = self then
20 schema_sum← schema_sum+ similarity(Ri, tk)
21 else
22 schema_sum← schema_sum+ similarity(Aj, tk)

23 schema_prod← schema_prod× schema_sum

24 final_score← 1
25 value_score← 0
26 schema_score← 0
27 if vk_count > 0 then
28 value_score← value_prod
29 final_score← final_score× value_score
30 if sk_count > 0 then
31 schema_score← schema_prod
32 final_score← final_score× schema_score
33 RQM .append((M, final_score, value_score, schema_score))

34 RQM.sortDescBy(final_score)
35 return RQM

5.2. Query Matches Ranking 29

In case of the schema-keyword matches, the score is based on the word similarity
functions presented in Chapter 4. In case of the value-keyword matches, the score is
based on the cosine similarity is calculated be using TF-IDF weights. To compute
the IDF, the algorithm obtains the maximum frequencies in a attribute and its norm
directly from the Schema Index. Similarly, the algorithm obtains the Term Frequencies
from the Value Index. Both of these indexes are presented in Chapter 4.

Once the algorithm aggregates the scores of keyword matches to generate the
score of query matches, the final step is to sort them in descending order.

Chapter 6

Candidate Networks Generation

In this chapter we present the details on our approach for generating Candidate Net-
works (CNs), which represent possible interpretations for the keyword query.

6.1 Concepts

The generation of CNs uses a structure we call a Schema Graph. In this graph, there
is a node representing each relation in the database and the edges correspond to the
PK/FK relationships in the database schema. In practice, this graph is built in a
preprocessing phase using the database schema.

Definition 5.Let R = {R1, . . . , Rn} be a set of relation schemas from the database.
Let E be a subset of the ordered pairs from R2 given by:

E = {〈Ra, Rb〉|〈Ra, Rb〉 ∈ R2 ∧Ra 6= Rb ∧RIC(Ra, Rb)}

where RIC(Rx, Ry) indicates that there exists a Referential Integrity Constraint from
a relation Rx to a relation Ry. We say that a schema graph is an ordered pair
GS = 〈R, E〉, where R are the vertices (nodes) of GS, and E are the edges of GS.

Example 6.Considering the sample movie database introduced in Figure 3.1, our
method generates the schema graph bellow.

GS =< {PERSON,MOV IE,CASTING,CHARACTER,ROLE},

{〈CASTING,PERSON〉, 〈CASTING,MOV IE〉,

〈CASTING,CHARACTER〉, 〈CASTING,ROLE〉} >

31

32 Chapter 6. Candidate Networks Generation

In Figure 6.1 we represent a graphical illustration of GS.

PERSON CASTING MOV IE

CHARACTER

ROLE

Figure 6.1: A schema graph for the sample movie database of Figure 3.1

Another concept require for the generation of CNs are keyword-free matches,
which are described in Definition 6. They are used as intermediate nodes in candidate
networks.

Definition 6.We say that a keyword match KM given by:

KM = RS[A
KS

1
1 , . . . , AKS

m
m]V [A

KV
1

1 , . . . , AKV
m

m]

is a keyword-free match if, and only if, @KS
i 6= {} ∧ @KV

i 6= {}.

For the sake of simplifying the notation, we will represent a keyword-free match
as RS[]V [] or simply by R.

Once we defined the schema graph and keyword-free matches, we can properly
introduce candidate networks. Intuitively, a candidate network CN contains every
keyword match from a query match M . Also, for the sake of connectivity, CN may
contain some free-keyword matches. Lastly, the CN is a connected graph structured
according to the schema graph GS. The definition of candidate networks is given as
follows:

Definition 7.Let M be a query match for a keyword query Q. Let GS be a schema
graph. Let F be a set of keyword-free matches. Consider a graph of keyword matches
CN = 〈V , E〉. We say that CN is a candidate network of keyword matches from M

over GS if the following conditions hold:

i) V =M ∪ F

ii) ∀KMi ∈ V : ∃〈KMa, KMb〉 ∈ E|KMi = KMa ∨KMi = KMb

iii)∀〈KMa, KMb〉 ∈ E =⇒ ∃〈Ra, Rb〉 ∈ GS

For the sake of simplifying the notation, we will use a graphical illustration to
represent candidate networks.

6.1. Concepts 33

Example 7.Considering the query match M1 previously generated in Example 5, the
following candidate networks can be generated:

CN1 = PERSONV [name{will,smith}] CASTING MOV IES[self {films}]

CN2 = PERSONV [name{will,smith}] CASTING MOV IES[self {films}]

CHARACTER

The candidate networks CN1 and CN2 cover the query match M1. The interpre-
tation of CN1 looks for the movies of the person will smith. CN2 looks for the movies
of the person will smith and which character will smith played in this movies.

Notice that a candidate network might have unnecessary information for the
keyword query, which was the case of CN2 presented in Example 7. One approach to
avoid generating unnecessary information is to generate minimal candidate networks,
which are addressed in Definition 8. Roughly, a minimal candidate network cannot
have any keyword-free match as a leaf, that is, a keyword-free match incident to a
single edge.

Definition 8.Let GS be a schema graph. Let M be a query match for a query Q. Let
CN = 〈V , E〉 be a candidate network from M over GS . We say that CN is minimal
if, and only if, the following condition holds:

∀KMa ∈ V(|{ {KMa, KMb} |〈KMa, KMb〉 ∈ E}| = 1 =⇒ KMa 6= RS
a []

V [])

Example 8.Considering the query match M2 previously generated in Example 5, the
following minimal candidate network can be generated:

CN3 = PERSONV [name{smith}] CASTING PERSONV [name{will}]

MOV IES[self {films}]

Another problem a candidate network might have is representing an inconsis-
tent interpretation. For instance, it is impossible to the CN3 presented in Example 8
return any results from the database. By Definition 1, the value-keyword matches
PERSONV [name{will}] and PERSONV [name{smith}] are disjoint. However, a tuple
from CASTING cannot refer to two different tuples of PERSON . Thus CN3 is in-
consistent.

One approach to prevent inconsistency was presented in Hristidis e Papakon-

34 Chapter 6. Candidate Networks Generation

stantinou (2002). It consists of verifying whether a candidate network contains an
inconsistent sub-graph. Definition 9 formalizes this approach.

Definition 9.Let GS be a schema graph. Let CN be candidate network given by CN =

〈V , E〉. We say that CN is a sound if, and only if, the following condition holds:

∀{KMa, KMb, KMc} ⊆ V|Ra = Rc =⇒ @{〈KMb, KMa〉, 〈KMb, KMc〉} ⊆ E

Example 9.Considering the query match M2 previously generated in Example 5, the
following sound candidate network can be generated:

CN4 =MOV IES[self {films}] CASTING PERSONV [name{will}]

CASTING PERSONV [name{smith}]

The candidate networks CN4 covers the query matches M2. CN4 is a minimal and
sound candidate network. The interpretation of CN4 looks for the movies where both
persons “will” (e.g. Will Theakston) and “smith” (e.g. Maggie Smith) participate in.
The two keyword-free matches from the CASTING are treated as different nodes in
candidate network CN4.

6.2 Candidate Network Generation

In this section, we present CNKMGen, our proposed algorithm for generating candidate
networks from the top-K query matches previously generated.

Roughly, for each query match, CNKMGen uses a Breadth-First Search approach
(Cormen et al., 2009) to expand partial trees of keyword matches until they become
candidate networks for this query match. Then, CNKMGen returns all the candidate
networks for all the query matches.

We describe CNKMGen in Algorithm 8. For each query match, CNKMGen gen-
erates the candidate networks for this query match using an internal algorithm called
CNKMIter. Therefore, for the remainder of this section, we will focus on describing
this internal.

In Algorithm 9, we present CNKMIter. This algorithm takes as input a query
matchM and the schema graph GS. Then, it algorithm chooses and arbitrary keyword
match from the query match as a starting point, resulting in an unitary graph (Lines 2-
5). If the query match M has only one element, we already generated the one possible
candidate network (Line 7).

6.2. Candidate Network Generation 35

Algorithm 8: CNKMGen(RQM,GS)
Input: The set of ranked query matches RQM

The schema graph GS

Output: The set of candidate networks CNs
1 CNs = {}
2 foreach query match M ∈ RQM do
3 CNM ← CNKMGenPerQM(M,GS)
4 CNs← CNs ∪ CNM

5 return CNs

Algorithm 9: CNKMInter(M,GS)
Input: The query match M ; The schema graph GS

Output: A set CN of candidate networks for the query match M
1 let GU

S be the undirected version of GS

2 let KM be an element from M
3 CN ← []
4 C ← graph()
5 Add KM to C.V
6 if |M | = 1 then
7 return {C}
8 D ← queue()
9 D.enqueue(C)

10 while D 6= {} do
11 C ← D.dequeue()
12 foreach keyword match KMu ∈ CN.V do
13 let Ru be the relation of KMu

14 foreach relation Ra adjacent Ru in GU
S do

15 foreach keyword match KMv ∈M \ CN.V|Rv = Ra do
16 C′ ← C
17 Expand C′ with KMv joined to KMu

18 if C′ /∈ CN and C′ is sound then
19 if C′.V ⊇M then
20 CN .append(C′)

21 else
22 D.enqueue(C′)

23 C′ ← C

24 Expand C′ with the keyword-free match RS
a []

V [] joined to KMu

25 D.enqueue(C′)

26 return CN

Next, the CNKMIter initializes a queue D, which will be used to store the partial
trees (Lines 8-9). In Loop 10-25, CNKMIter takes one partial tree C from the queue and
tries to expand it with keyword matches. Notice that C can be expanded with incoming
and outgoing neighbors, therefore it uses an undirected schema graph GU

S (Line 14).
Also, non-free keyword matches can only be added once in a partial tree.

The expansion of C results in a new partial tree C ′ (Lines 16-17). Then ,
CNKMIter verifies whether C ′ was not generated. Also, the algorithm check if C ′

36 Chapter 6. Candidate Networks Generation

is sound, according to Definition 9. If the new partial tree C ′ fails to meet these two
conditions it is pruned (Line 18).

If C ′ was not pruned, it will either be added in the deque D or it already is a
candidate networks. C ′ is considered a candidate network if it covers the query match
M(Lines 19 -22). At the end of the procedure, CNKMIter returns a set of candidate
networks CN(Line 26).

For better understanding, we present part of the execution of the CNKMIter
algorithm in Figure 6.2. In this case, the execution looks for the candidate networks
for the query match M1 from Example 5, which is given as follows:

M1 = {PERSONV [name{will,smith}],MOV IES[self {films}]}

I# Queue Operations

T1
PERSONV [name{will,smith}] initialize, enqueue 0

T2
PERSONV [name{will,smith}] CASTING expand 0, enqueue 1

T3

PERSONV [name{will,smith}] CASTING

CASTING expand 1, enqueue 2

T4
PERSONV [name{will,smith}] CASTING MOV IES[self {films}] return generated CN

Figure 6.2: Execution of CNKMIter algorithm for generating the candidate networks
for the query match M1

Initially, the arbitrary keyword match chosen was PERSONV [name{will,smith}]

and the unitary partial tree T1 generated. Next, since there is no keyword match from
M1 whose relation is neighbor to PERSON in the schema graph, T1 is not expanded
with any non-free keyword match. In this same iteration, the algorithm expands T1
with the keyword-free match, CASTING, resulting in partial tree T2

In the last iteration, CNKMIter selects T2 and it is expanded twice. First, the join
tree is expanded with another keyword-free match from relation CASTING, resulting
in join tree T3. Then, CNKMIter expands the current partial tree with CASTING

joined to PERSONV [name{will,smith}].

The number of candidate networks generated can be further reduced by the prun-
ing and ranking candidate networks. In Section 6.3, we present a ranking of the candi-
date networks returned by CNKMGen. In Section 6.4, we present pruning techniques
for the generation of candidate networks from CNKMGen and CNKMIter.

6.3. Candidate Network Ranking 37

6.3 Candidate Network Ranking

In this section, we present CNKMRank, a novel ranking of candidate networks based on
the ranking of query matches. This ranking is necessary because often many candidate
networks are generated, yet, only a few of them are indeed useful to produce relevant
answers.

We present in Section 5.2 a ranking of query matches that advances most of the
features present in the ranking of candidate networks of other proposed systems, such
as CNRank (Oliveira et al., 2015). Thus, we can exploit the scores of query matches
to rank the candidate networks. For this reason, CNKMRank provides a simple yet
effective ranking of candidate networks.

CNKMRank is described in Algorithm 10. Roughly, it uses the ranking of query
matches adding a penalization for large candidate networks. Therefore, the score of a
candidate network CNM from a query match M is given by:

score(CNM) = score(M)× 1

|CNM |

To ensure that CNs with the same score are placed in the same order that they
where generated in the CNKMIter algorithm, in Line 6, we used a stable sorting algo-
rithm (Cormen et al., 2009).

Algorithm 10: CNKMRank(QM)
Input: A set of candidate networks CN
Output: The set of candidate networks RCN

1 RCN ← []
2 for CNM ∈ RCN do
3 let M be the query match used to generate CNM

4 cn_score = score(M)/ |CNM |
5 RCN.append((CNM , cn_score))

6 RCN.sortDescBy(cn_score)
7 return RCN

6.4 Candidate Network Pruning

In this section, we present several pruning techniques for candidate networks. These
pruning techniques can be divided into schema-based and instance-based pruning tech-
niques.

38 Chapter 6. Candidate Networks Generation

6.4.1 Schema-based Pruning

The schema-based pruning techniques aim to decrease the number of candidate net-
works using the maximum values for the number of generated CNs or using maximum
values for CN properties, such as number of leaves or size. We incorporated all the
schema-based pruning techniques in Lathe by default.

Top-K CNs per QMs

This pruning technique considers only the first K candidate networks generated for
each query match. Therefore, CNKMIter returns the set of candidate networks when
it reaches the maximum size of K.

Top-k CNs

This pruning technique considers only the top-K of the ranked candidate networks.
Therefore, CNKMRank, after the sorting or CNs by score, returns a list of the first K
elements.

Maximum Number of Leaves

As the leafs in minimal candidate networks must be keyword matches from the query
match, the candidate networks generated by CNKMIter must have at most |QM | leaves.
Therefore, we present a prune technique for the CNKMIter Algorithm that prunes all
the partial trees that contain more than |QM | leaves.

Maximun CN Size

This pruning technique consider only the candidate networks whose size are below a
specific number Tmax. Therefore, CNKMIter prunes all the partial trees whose size is
above Tmax.

Maximum Number of Keyword-free Matches

This pruning technique is also based on the Maximum CN Size mentioned earlier. As
the size of a candidate network CNM is given by:

|CNM | = |M |+ |F |

where F is a set of keyword-free matches. If we consider a maximum CN size of
|CN | ≤ Tmax, we can define a maximum number of keyword-free matches, which is

6.4. Candidate Network Pruning 39

given by:
|F | ≤ Tmax − |M |

Therefore, CNKMIter Algorithm can prune all the partial trees whose number of
free-keyword matches are above Tmax − |M |.

6.4.2 Instance-based Pruning

The instance-base pruning techniques aim to decrease the number of candidate net-
works retrieving information from the database instance. As we cannot guarantee that
the SQL query associated with a candidate networks will return any tuples, there might
exist CNs that are not be useful for returning an answer for the user. These techniques
are not incorporated in Lathe by default.

Applying instance-based pruning techniques incur in a unavoidable increase in the
generation time. This is due to the queries we need to issue to the DBMS. Techniques
similar to those used in by SQL query optimizers can be used to mitigate this issues.
Currently, we left this issue to be addressed as a future work.

Pos-Prunning CNs with Empty Results

This pruning technique evaluates the ranked candidate networks in a sequential order,
pruning the CNs whose SQL queries do not return any tuples. As this technique prunes
CNs after the generation and ranking of candiadte networks, we call this technique Pos-
Pruning CNs with Empty Results, or simply CN-Pos.

Pre-Prunning CNs with Empty Results

This pruning technique evaluates candidate networks as soon as they are generated,
pruning the ones whose SQL queries do not return any tuples. In this technique
CNKMIter immediately evaluates the CNs before adding to the list of returned CNs.
Therefore, this technique prunes CNs before the generation of all candidate networks.
For this reason, we call this technique Pre-Prunning CNs with Empty Results, or simply
CN-Pre.

Chapter 7

Experiments

In this chapter, we report a set of experiments we performed with our method. For a
given keyword query, our method aims at generating a ranking of Candidate Networks
(CNs), so that the best ranked CNs are more likely to correctly represent the user
intent when formulating the query. Thus, in the experiments we report here, our
ultimate goal is to evaluate the quality of this ranking. In addition, we evaluate the
performance of our method for generating candidate networks. We also evaluate the
impact of instance-based pruning in generating and ranking CNs. Lastly, as the quality
of a CN is highly influenced by the quality of the Query Matches (QM) that generates
this CNs, we evaluated, as an intermediate result, the ranking of the QMs our method
generates.

7.1 Experimental Setup

Datasets

For all the experiments, we used two datasets, IMDb and MONDIAL, which were
previously used for the experiments performed by Coffman e Weaver (2010a, 2012),
Luo et al. (2007), Oliveira et al. (2015, 2018), among others.

The IMDb dataset is a subset of the well-known Internet Movie Database
(IMDb)1, which comprises information related to films, television shows and home
videos – including actors, characters, etc.

The MONDIAL dataset (May, 1999) comprises geographical and demographic
information from the well-known CIA World Factbook 2 , the International Atlas, the

1https://www.imdb.com/
2https://www.cia.gov/library/publications/the-world-factbook/

41

42 Chapter 7. Experiments

TERRA database, and other web sources.
The two datasets have different features. The IMDb dataset has a larger size, but

the MONDIAL dataset is more complex, with more relations and relational integrity
constraints (RICs). Table 7.1 summarizes the details of each dataset.

Table 7.1: Datasets we used in our experiments

Dataset Size(MB) Relations RIC Tuples

MONDIAL 9 29 40 17,115
IMDb 516 5 4 1,673,074

Query Sets

We used in our experiments the query sets provided by Coffman e Weaver (2010a) for
the datasets IMDb and MONDIAL.

An importante drawback we notice is that several queries from both query sets
do not have a clear intent, compromising the evaluation of the results, for instance,
the ranking of candidate networks generated. Therefore, for the the sake of providing
a more fair evaluation, we generated new query sets replacing queries that we consider
unclear with equivalent queries with added schema references.

As an example, consider the query “Saint Kitts Cambodia” for the MONDIAL
dataset, wherein Saint Kitts and Cambodia are the name of two countries. There ex-
ist several interpretations that might change the way tuples corresponding to these
countries are connected. For instance, one may be looking for common religions, lan-
guages or ethnic groups between the two countries. While all this alternatives would,
in principle, make valid interpretations, the relevant interpretation defined by Coffman
e Weaver (2010a) in their golden standard indicates that the query looks for organiza-
tions which both countries are member of. Thus, in this case, we replaced this query by
the query "Saint Kitts Cambodia Organizations" in the new query set we generated.

Table 7.2 presents the query sets we used in our experiments, along with some
of their features. Query sets whose names include the suffix “-DI” correspond to those
in which we have replaced ambiguous queries as explained above. Thus, these queries
sets have no ambiguous queries and they have a higher number of Schema References.

Golden Standards

Coffman e Weaver (2010a) provides the set of the relevant interpretations for each
query and its relevant SQL results. We used them to evaluate the effectiveness of our

7.2. Evaluation of Candidate Network Ranking 43

Table 7.2: Query sets we used in our experiments

Query Set Target Dataset Total Queries Ambiguous Queries Schema References

IMDb IMDb 50 5 20
IMDb-DI IMDb 50 - 25
MOND MONDIAL 45 7 12
MOND-DI MONDIAL 45 - 19

ranking of Candidate Networks and the ranking of Query Matches.
To obtain the golden standards for CNs and QMs we used the following procedure.

For each keyword query, we took the relevant interpretation defined by Coffman e
Weaver (2010a). Then, we manually generate the candidate network that represents
this relevant interpretation. We define this generated candidate network as relevant.
Next, we took the set of nodes from the relevant CN that are not free-keyword matches.
This set of keyword matches is a relevant query match.

Metrics

We evaluate the Ranking of Query Matches and the Ranking of Candidate Networks
using two metrics: Precision at position ranking K (P@K) and Mean Reciprocal
Rank (MRR).

Given a keyword query Q , the value of PQ@K is 1 if the target query for Q
appears in a position up to K in the ranking, and 0 otherwise. P@K is the average of
PQ@K, for all Q in a query set.

With respect to MRR given a keyword query Q, the value of RRQ is given by
1
K
, where K is the rank position of the relevant result. Then, the MRR obtained for

queries in a query set is the average of RRQ, for all Q in the query set. Intuitively, the
MRR metric measures how close the relevant results are from the first position of the
ranking.

7.2 Evaluation of Candidate Network Ranking

In this section, we present two evaluations of the ranking of candidate networks with
respect to the relevance and generation time. In both of the performed experiments,
we consider only the top-10 query matches, where each query match produces a single
candidate network.

In this experiment, we evaluate the ranking of Candidate Networks. We used the
metrics MRR and P@K for K up to the 4 rank position to evaluate the quality of the

44 Chapter 7. Experiments

ranking. Figure 7.1 presents the results obtained for the ranking of candidate networks
from the query sets presented in Table 7.2.

MRR P@1 P@2 P@3 P@4
0.0

0.2

0.4

0.6

0.8

1.0

IMDb
IMDb-DI
MOND
MOND-DI

Figure 7.1: Ranking of Candidate Networks

Overall, the query sets obtained an P@3 above 0.7, which indicates that the
relevant answer is often found among the top-3 returned candidate network. In addi-
tion, all the query sets obtained an MRR above 0.7, which indicates that the relevant
candidate network is, on average, found in the first or the second position.

Regarding the disambiguation of queries, IMDb-DI obtained better results than
IMDB. However, MOND-DI obtained the same results as MOND. This indicates that
adding a schema reference was not enough to disambiguate the queries for MONDIAL
dataset, probably due to its large number of RICs and respectively number of possible
CNs. However, the addition of schema references did not decrease the quality of results,
which indicates that adding schema references can help to improve the quality of the
CN ranking.

7.3 Performance Evaluation

In this experiment, we evaluate the time for obtaining the candidate networks given a
keyword query. This process includes the phases of Keyword Matching, Query Match-
ing and the Generation and Ranking of Candidate Networks. Figure 7.2 summarizes
the execution time for the queries from each query set using box plot graphs.

Box plots are a standardized way of displaying the distribution of data based on
a five number summary: “minimum”, first quartile (Q1), median, third quartile (Q3),
and “maximum” (Galarnyk, 2018). The median is the middle value of a dataset. The
first quartile is the middle number between the smallest number (not the “minimum”)
and the median of the dataset. The third quartile is the middle value between the
median and the highest value (not the “maximum”) of the dataset. Every value within
1.5 times the interquartile range is considered an outlier. Minimum is the lowest data
point excluding any outliers. Maximum is the largest data point excluding any outliers.

7.4. Impact of Instance-based Pruning on CNs 45

0 5 10 15 20 25 30 35
Execution Time(s)

MOND-DI

MOND

IMDb-DI

IMDb

Figure 7.2: Time spent for obtaining Candidate Networks

The whiskers from a boxplot graph represents the range between interquartile and the
values of maximum and minimum.

Overall, the results obtained for the third quartile are below 1.84 seconds, which
indicates that for the majority of keyword queries, Lathe return the candidate queries
in less than 1.84 seconds. Also, all query sets yielded a maximum execution time of
3.62 seconds.

In addition, we noticed several outlier queries, which requires an execution time
up to 34.74 seconds. In case of the query sets for the IMDb dataset, the outliers are
queries with 5 and 7 keywords, which reasonably might require more time. In the
case of the query sets for the MONDIAL dataset, the majority of outliers comes from
keyword queries involving the relation country twice. This relation has a total of 10
RICs, which directly affects the breadth-first search behavior of the candidate network
generation algorithm.

7.4 Impact of Instance-based Pruning on CNs

In this experiment, we evaluated the ranking of candidate networks when using our pro-
posed instance-based pruning techniques introduced in Section 6.4. These techniques
which prunes the CNs whose SQL queries results are empty.

We compare three configurations for ranking and generating candidate networks.
The first configuration does not perform any pruning technique and we call it the CN-
Std. The second configuration uses the pos-pruning technique CN-Pos, which applies
the pruning after the generation and ranking of CNs. The last configuration uses a the
pre-pruning technique CN-Pre, applies the pruning during the generation of CNs and
before the ranking of CNs.

We used the metrics MRR and P@K for K up to the 4 rank position to evaluate
the quality of the ranking. Also, we consider only the top-10 query matches, where

46 Chapter 7. Experiments

each query match produces a single candidate network. The results obtained with each
of configurations in the IMDb and MONDIAL datasets are respectively presented in
Figures 7.3 and 7.4.

IMDb IMDb-DI IMDb IMDb-DI IMDb IMDb-DI IMDb IMDb-DI IMDb IMDb-DI

MRR P@1 P@2 P@3 P@4

0.0

0.2

0.4

0.6

0.8

1.0

CN-Std
CN-Pos
CN-Pre

Figure 7.3: Ranking of Candidate Networks with Instance-based Pruning - IMDb

MOND MOND-DI MOND MOND-DI MOND MOND-DI MOND MOND-DI MOND MOND-DI

MRR P@1 P@2 P@3 P@4

0.0

0.2

0.4

0.6

0.8

1.0

CN-Std
CN-Pos
CN-Pre

Figure 7.4: Ranking of Candidate Networks with Instance-based Pruning - MONDIAL

Overall, the CN-Std configuration obtained the worst results in both datasets,
which indicates that adopting instance-based pruning techniques can help to improve
the quality of ranking CNs.

The CN-Pos configuration obtained slightly better results than CN-Std, with an
increase of 0.3 in MRR. Considering that CN-Pos only applies the pruning after the
generation and ranking of CNs, this configuration is not able to generate the relevant
CN if the relevant QM only produces CNs whose SQL queries results are empty.

The CN-Pre configuration obtained the best results overall. As that CN-Pre
applies the pruning during the generation of the CNs, it ensures that the relevant QM
will produce a CNs whose SQL queries results are not empty.

The large schema graph of MONDIAL database results in a large number of
possible candidate networks for a query match. This might lead to QMs producing
only CNs whose SQL queries results are empty. The high difference between the results

7.5. Evaluation of Query Matches Ranking 47

of CN-Pre and the others indicates for MONDIAL dataset indicates that this is the
case.

We stress that, as commented in Section 6.4, that applying instance-based prun-
ing techniques incur in a unavoidable increase in the generation time. This is due to
the queries we need to issue to the DBMS. Techniques similar to those used in by SQL
query optimizers can be used to mitigate this issues. Currently, we left this issue to be
addressed as a future work.

7.5 Evaluation of Query Matches Ranking

In this experiment, we will evaluate the quality of the ranking of Query Matches ac-
cording to the metrics MRR and P@K. Considering that Lathe generates CNs based
on the top-K QMs, it is important to discover in which ranking position K we are able
to maximize the quality of ranking CNs. That is, in which K the obtained results for
P@K reach their peak and stabilizes. Figure 7.5 presents the results obtained using
the metric P@K up to the 10th ranking position.

1 2 3 4 5 6 7 8 9 10
Rank Position K

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

P@
K

IMDb
IMDb-DI
MOND
MOND-DI

Figure 7.5: Ranking of Query Matches

Overall, the query sets results reached the their peak in P@7. This indicates that
we generate the maximum number of relevant QMs in the top-7 query matches. Also,
the P@7 of 0.98 obtained for the query sets IMDb and IMDb-DI indicates that these
Lathe generated the relevant query match for 49 out of 50 keyword queries.

Chapter 8

Conclusions and Future Work

In this chapter, we review our main contributions, discuss the conclusions we have
reached and we outline the future work.

8.1 Main Contributions

In this work, we presented Lathe, a novel method to for generating and ranking Can-
didate Networks considering queries with keywords that refer to schema elements with
support to schema references.

We formally defined Keyword Matches, which associate keywords with schema
elements or with sets of tuples whose attribute values contain these keywords.

We also adapted the definitions of Query Matches, Candidate Networks to com-
prise keyword matches. We adapted the algorithm for Query Match Generation, which
not only combines the keyword matches, but also merges them whenever is possible.

We proposed an algorithm for Ranking Query Matches, which serves as an inter-
mediate ranking for candidate networks.

We proposed a simple yet effective algorithm for Ranking Candidate Networks,
which takes advantage of the ranking of query matches.

We proposed several Instance-based Pruning Techniques for generating Candidate
Networks, such as pruning candidate networks whose SQL results are empty.

We presented an Evaluation of the Candidate Network Ranking, an Evaluation
of the Query Matches Ranking, and also an Evaluation of Instance-based Pruning on
the Generation and Ranking of Candidate Networks.

Finally, we presented a R-KwS method that can also be used as an underlying
framework to different applications, which will be further explained in the next section.

49

50 Chapter 8. Conclusions and Future Work

8.2 Future Work

The work we developed raises a number of issues that can further investigated as future
work. We list some of these issues below:

Natural Language Interfaces for Databases

Natural Language Interfaces for Databases (NLIDB) aim at enabling naive users to
specify complex, ad-hoc query intent without training. Typically, these interfaces lack
a proper support for mapping elements of the natural language query to the correspond-
ing elements in the database. In our research group, we are currently investigating how
our CN generation method can be used to improve this issue. The results we achieve
so far are promising, and we will continue to work in this approach in the near future.

Dealing with Database Schema Changes

A common problem in software development is that of adjusting applications’ code
when attributes of the database are renamed, moved or remove across different schema
versions. In our research group, we recently published a framework called LESSQL
(Afonso et al., 2020), which used our CN generation method with support for schema
references as an underlying framework that generates a corresponding SQL query for
the current schema. We will continue to work in this approach in the near future.

Candidate Network Generation and the Steiner-Tree Problem

In attempt to further improve the efficiency of Candidate Network generation, we are
currently investigating its relation with the well-known Steiner-Tree problem in graphs.
We plan to take advantage of several efficient approximate algorithms that there exists
for this problem in the literature and adapted them to the Candidate Generation
Problem.

Experiment in more databases

We performed our experiments in two well-known datasets for Keyword Search over
Databases. Our experiments showed promising results. We will also test our experi-
ments in several different datasets.

8.2. Future Work 51

Development of an API

We plan to develop an application programming interface of keyword search over re-
lational databases for other fields of research. In fact, our method is currently being
used underlying other two different applications.

Development of a DEMO

For better understanding of our method and to facilitate future comparisons with other
methods. We will develop an online DEMO of our work. Also, we aim make our code,
query sets, datasets and experiments publicly available.

Bibliography

Aditya, B., Bhalotia, G., Chakrabarti, S., Hulgeri, A., Nakhe, C., Sudarshanxe, S.,
et al. (2002). Banks: Browsing and keyword searching in relational databases.
Em VLDB’02: Proceedings of the 28th International Conference on Very Large
Databases, pgs. 1083–1086. Elsevier.

Afonso, A., da Silva, A., Conte, T., Martins, P., Garcia, A., e Cavalcanti, J. (2020).
Lessql: Dealing with database schema changes in continuous deployment. Em Pro-
ceedings of the 27 IEEE SANER International Conference on Software Analysis,
Evolution and Reengineering.

Agrawal, S., Chaudhuri, S., e Das, G. (2002). Dbxplorer: A system for keyword-based
search over relational databases. Em Proceedings 18th International Conference on
Data Engineering, pgs. 5–16. IEEE.

Baeza-Yates, R. e Ribeiro-Neto, B. (2008). Modern Information Retrieval: The Con-
cepts and Technology Behind Search. Addison-Wesley Publishing Company, USA,
2nd edition.

Baid, A., Rae, I., Li, J., Doan, A., e Naughton, J. (2010). Toward scalable keyword
search over relational data. Proceedings of the VLDB Endowment, 3(1-2):140–149.

Bergamaschi, S., Domnori, E., Guerra, F., Trillo Lado, R., e Velegrakis, Y. (2011a).
Keyword search over relational databases: a metadata approach. Em Proceedings
of the 2011 ACM SIGMOD International Conference on Management of data, pgs.
565–576. ACM.

Bergamaschi, S., Guerra, F., Rota, S., e Velegrakis, Y. (2011b). A hidden markov
model approach to keyword-based search over relational databases. Em International
Conference on Conceptual Modeling, pgs. 411–420. Springer.

53

54 BIBLIOGRAPHY

Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., e Sudarshan, S. (2002). Keyword
searching and browsing in databases using banks. Em Proceedings 18th International
Conference on Data Engineering, pgs. 431–440. IEEE.

Coffman, J. e Weaver, A. C. (2010a). A framework for evaluating database keyword
search strategies. Em Proceedings of the 19th ACM international conference on
Information and knowledge management, pgs. 729–738. ACM.

Coffman, J. e Weaver, A. C. (2010b). Structured data retrieval using cover density
ranking. Em Proceedings of the 2nd International Workshop on Keyword Search on
Structured Data, pg. 1. ACM.

Coffman, J. e Weaver, A. C. (2012). An empirical performance evaluation of relational
keyword search techniques. IEEE Transactions on Knowledge and Data Engineering,
26(1):30–42.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., e Stein, C. (2009). Introduction to
algorithms. MIT press.

de Cristo, M. A. P., Calado, P. P., Da Silveira, M. d. L., Silva, I., Muntz, R., e
Ribeiro-Neto, B. (2003). Bayesian belief networks for ir. International Journal of
Approximate Reasoning, 34(2-3):163–179.

Galarnyk, M. (2018). Understanding boxplots. Technical report, To-
wards Data Science. Available from https://towardsdatascience.com/

understanding-boxplots-5e2df7bcbd51.

He, H., Wang, H., Yang, J., e Yu, P. S. (2007). Blinks: ranked keyword searches on
graphs. Em Proceedings of the 2007 ACM SIGMOD international conference on
Management of data, pgs. 305–316. ACM.

Hearne, T. e Wagner, C. (1973). Minimal covers of finite sets. Discrete Mathematics,
5(3):247–251.

Hristidis, V., Gravano, L., e Papakonstantinou, Y. (2003). Efficient ir-style keyword
search over relational databases. Em Proceedings of the 29th international conference
on Very large data bases-Volume 29, pgs. 850–861. VLDB Endowment.

Hristidis, V. e Papakonstantinou, Y. (2002). Discover: Keyword search in relational
databases. Em VLDB’02: Proceedings of the 28th International Conference on Very
Large Databases, pgs. 670–681. Elsevier.

https://towardsdatascience.com/understanding-boxplots-5e2df7bcbd51
https://towardsdatascience.com/understanding-boxplots-5e2df7bcbd51

BIBLIOGRAPHY 55

Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R., e Karambelkar,
H. (2005). Bidirectional expansion for keyword search on graph databases. Em
Proceedings of the 31st international conference on Very large data bases, pgs. 505–
516. VLDB Endowment.

Keselj, V. (2009). Speech and language processing daniel jurafsky and james h. martin
(stanford university and university of colorado at boulder) pearson prentice hall, isbn
978-0-13-187321-6.

Liu, F., Yu, C., Meng, W., e Chowdhury, A. (2006). Effective keyword search in
relational databases. Em Proceedings of the 2006 ACM SIGMOD international con-
ference on Management of data, pgs. 563–574. ACM.

Luo, Y., Lin, X., Wang, W., e Zhou, X. (2007). Spark: top-k keyword query in relational
databases. Em Proceedings of the 2007 ACM SIGMOD international conference on
Management of data, pgs. 115–126. ACM.

May, W. (1999). Information extraction and integration with Florid: The Mondial

case study. Technical Report 131, Universität Freiburg, Institut für Informatik.
Available from http://dbis.informatik.uni-goettingen.de/Mondial.

Mesquita, F., da Silva, A. S., de Moura, E. S., Calado, P., e Laender, A. H. (2007).
Labrador: Efficiently publishing relational databases on the web by using keyword-
based query interfaces. Information Processing & Management, 43(4):983–1004.

Miller, G. A. (1998). WordNet: An electronic lexical database. MIT press.

Oliveira, P., da Silva, A., e de Moura, E. (2015). Ranking candidate networks of
relations to improve keyword search over relational databases. Em 2015 IEEE 31st
International Conference on Data Engineering, pgs. 399–410. IEEE.

Oliveira, P., da Silva, A., de Moura, E., e Rodrigues, R. (2018). Match-based candidate
network generation for keyword queries over relational databases. Em 2018 IEEE
34th International Conference on Data Engineering (ICDE), pgs. 1344–1347. IEEE.

Pearl, J. (2014). Probabilistic reasoning in intelligent systems: networks of plausible
inference. Elsevier.

Pedersen, T., Patwardhan, S., e Michelizzi, J. (2004). Wordnet:: Similarity: measuring
the relatedness of concepts. Em Demonstration papers at HLT-NAACL 2004, pgs.
38–41. Association for Computational Linguistics.

http://dbis.informatik.uni-goettingen.de/Mondial

56 BIBLIOGRAPHY

Ribeiro, B. A. e Muntz, R. (1996). A belief network model for ir. Em Proceedings of
the 19th annual international ACM SIGIR conference on Research and development
in information retrieval, pgs. 253–260. Citeseer.

Salton, G. e Buckley, C. (1988). Term-weighting approaches in automatic text retrieval.
Information processing & management, 24(5):513–523.

Tata, S. e Lohman, G. M. (2008). Sqak: doing more with keywords. Em Proceedings
of the 2008 ACM SIGMOD international conference on Management of data, pgs.
889–902. ACM.

Wu, Z. e Palmer, M. (1994). Verbs semantics and lexical selection. Em Proceedings of
the 32nd annual meeting on Association for Computational Linguistics, pgs. 133–138.
Association for Computational Linguistics.

Zaki, M. J. (2000). Scalable algorithms for association mining. IEEE transactions on
knowledge and data engineering, 12(3):372–390.

