
Van Den Berg da Gama Ferreira

Optimizing BEVA with Two-Level Indexes

Manaus, AM - Brazil
2020

Van Den Berg da Gama Ferreira

Optimizing BEVA with Two-Level Indexes

Dissertation presented to the Program of Post-
graduate in Informatics of the Federal Univer-
sity of Amazonas - UFAM as a requirement to
obtain the degree of Masters in Informatics.

Universidade Federal do Amazonas – UFAM

Instituto de Computação – ICOMP

Programa de Pós-Graduação em Informática – PPGI

Supervisor: Prof. Dr. Edleno Silva de Moura

Manaus, AM - Brazil
2020

Ficha Catalográfica

F383b Optimizing BEVA with Two-Level Indexes / Van Den Berg da
Gama Ferreira . 2020
 87 f.: il. color; 31 cm.

 Orientador: Edleno Silva de Moura
 Dissertação (Mestrado em Informática) - Universidade Federal do
Amazonas.

 1. query processing. 2. error-tolerant. 3. autocompletion,. 4. two-
level. 5. trie. I. Moura, Edleno Silva de. II. Universidade Federal do
Amazonas III. Título

Ficha catalográfica elaborada automaticamente de acordo com os dados fornecidos pelo(a) autor(a).

Ferreira, Van Den Berg da Gama

PODER EXECUTIVO
MINISTÉRIO DA EDUCAÇÃO

INSTITUTO DE COMPUTAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA

FOLHA DE APROVAÇÃO
"2SWPL]LQJ�%(9$�ZLWK�WZR�OHYHO�LQGH[HV"

9$1�'(1�%(5*�'$�*0�)(55(,5$

Dissertação de Mestrado defendida e aprovada pela banca examinadora constituída pelos�

Professores:

3URI��(GOHQR�6LOYD�GH�0RXUD�- PRESIDENTE

Prof��$OWLJUDQ�6RDUHV�GD�6LOYD - MEMBRO INTERNO

3URI��7KLHUVRQ�&RXWR�5RVD - MEMBRO EXTERNO

Manaus, �� de -XOKR de 20��

Av. Rodrigo Otávio, 6.200 - Campus Universitário Senador Arthur Virgílio Filho - CEP 690��-�00 - Manaus, AM, Brasil�
Tel. (092) 3305 1193 E-mail: secretariappgi@icomp.ufam.edu.br www.ppgi.ufam.edu.br

This work is dedicated to my parents, brave warriors of the countryside, who when
children could not have the opportunity to walk the path of studies, but knew the

importance of the study and gave me full support to walk this path from an early age.

Acknowledgements

First of all, I want to thank GOD for giving me health, strength and determination
throughout this journey.

MY FAMILY, especially my wife and unconditional companion and my daughter
Anallu, for being my fuel that propelled me to continue every day with strength and
motivation.

TO MY FATHER and MY MOTHER, who, even though they were a few kilometers
away, remained tireless in their expressions of love and affection.

TO MY SUPERVISOR, for the great learning and dedication to help with his
brilliant mind, for also providing me with great challenges allowing me to evolve as a
person and researcher. My thanks.

TO THE BDRI STUDENT GROUP, in the person of Anderson Pimentel, Lucas
Castro and Felipe Franco, for the exchange of knowledge. Especially the availability of
Anderson Pimentel to help in the start this journey. That was very important.

TO THE UFAM GRADUATE PROGRAM, represented by Prof. Dr. Eduardo
Luzeiro Feitosa and all the teachers who took part in this journey, teaching great questions
of study, research and extension. My gratitude.

TO ICOMP, for providing all the support I needed to carry out my research.

Finally, to all those who contributed in one way or another so that this journey
could be completed.

“Nothing is impossible.
If it can be dreamed,
then it can be done.

(Theodore Roosevelt)

Abstract

Query autocompletion is an important component of modern search systems
that suggests possible queries at each user keystroke to complete the query based on
the prefix already typed in the search box. One of the most adopted and successful
data structures for query autocompletion is the TRIE which is used to index the
possible query suggestions. The TRIE is traversed based on the search prefix typed
by the user in order to select suggestions that match the prefix. The use of TRIEs
requires a large amount of extra memory for processing queries, which may increase
the cost for processing queries and may limit the number of query suggestions
indexed. In this work we propose optimized alternative implementations of BEVA
algorithm, currently the state-of-the-art in the literature for autocompletion, in order
to achieve a reduction in its memory consumption while keeping it efficient in query
processing times.

First, we propose a novel strategy to build the TRIE, named level-at-a-time
(laat), and compare its performance to the way TRIEs are usually built, the key-at-
a-time (kaat). In the kaat strategy the index is built in depth-ward direction and in
the laat strategy the index is built in breadth-ward direction. We implemented the
proposed ideas and experimented them with several datasets, where we show that
laat strategy allows a significant speedup in query processing of BEVA, being up to
four times faster, with improvements achieved specially in queries with high number
of errors, which are the most expensive ones.

Second, we study the use of two-level indexing and prefix processing ap-
proaches for query autocompletion also in BEVA method. Two-level approaches
combine the use of indexes with sequential search in order to reduce memory re-
quirements in search systems. In our study, we insert in the TRIE only part of each
query inserted, and the leaf nodes reference to a set of queries where a sequential
search is performed. We experimented two alternative ways of selecting the portion
of each key that remains indexed in the first level and compare their performance.
The two-level approach has shown to significantly reduce the memory requirements
for storing the index with just a small variation in query processing times.

Keywords: query processing, error-tolerant, autocompletion, two-level, TRIE.

List of Figures

Figure 1 – Query autocompletion in search box. 23

Figure 2 – Representation of the TRIE data structure with the exact search and
approximate search for the prefix query “undo”. Nodes in blue color
represent the nodes that exact search processing traverses. The green
nodes represent the nodes that are traversed when the search is approx-
imate and in this case the blue nodes can also be part. For query “undo”
and 𝜏 = 1. 37

Figure 3 – Computing the active nodes for 𝒫𝒬 = “live” and 𝜏 = 1. The strings
“life”, “live” and “love” are similar to 𝒫𝒬. 38

Figure 4 – Representation of boundary active nodes (in blue) obtained step by step
for the query “live” and 𝜏 = 1. 40

Figure 5 – Difference between obtaining active nodes and boundary active nodes
when changing the prefix query from “li” to “liv” and 𝜏 = 1. On the
left side we have the active nodes in green and on the right side the
boundary active nodes in the same step. 41

Figure 6 – Representation of the boundary active nodes set computation as the
prefix query changes. For this example we have the query “love”, 𝜏 = 1
and the prefixes indexed in the TRIE are “life”, “live” and “love”. For
this example, although the edit vectors are represented in a different
structure from the TRIE, the edit vectors are manipulated in the TRIE
nodes. 43

Figure 7 – Edit vector automata for 𝜏 = 1. 45

Figure 8 – Ways of building a TRIE index. 48

Figure 9 – Example of the indexing with updates in the intervals. 52

Figure 10 – Indexing with fixed size branches 4. 52

Figure 11 –Example of the indexing construction in LS method with 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 = 2. . 55

Figure 12 – Indexing with Limited Slot Method. 55

Figure 13 –Architecture of our proposed methods using the two-level approach. On
the left side we have our first level with part of the strings indexed in
the TRIE, the size of the string to be indexed depends of the configured
parameter. Each node in the tree has an interval referring to the complete
strings that this node covers. When we reach a given node, we take its
range and directly access the complete string in the list of strings. In
this index we run the BEVA with adaptations. On the right side of the
figure is our list of complete strings in lexicographic order, in which
we obtain the complete string from the first level. We run the also the
second level in this list of complete strings, but only in subsets covered
by active nodes or covered by active word nodes. At the bottom of
the figure we have the EVA structure that allows the efficient the edit
distance calculation between two strings by storing states associated
with the active nodes. Both levels use this structure. 57

Figure 14 –Representation of query processing using the LS method. Consider the
prefix query “midd”. The boundary active prefix set is {𝑛4}. 60

Figure 15 –Amount of memory used (MB) for LD and LS methods in the USADDR
dataset with 25%, 50%, 75% and 100% of the dataset portion and 𝜏 = 1 79

Figure 16 –Memory Consumption (MB) with portion of 25%, 50%, 75% and 100%
of the dataset sizes in USADDR, MEDLINE and DBLP. 83

List of Tables

Table 1 – Edit distance calculation with classic dynamic programming. 34
Table 2 – The cell values in color grey from top to bottom represent the 𝑘-diagonal

varying from -1 to 1 for 𝜏 = 1. The vertical in grey dark is the 0-diagonal. 35
Table 3 – Edit vectors represented in yellow and green. 42
Table 4 – Query processing step by step with BEVA and prefix query “live”. . . . 46

Table 5 – Query processing with LS method for prefix query “midday”. The bound-
ary active nodes set obtained in the first level, shown in step 1 to 4. And
the word active node set obtained in the second level, shown in step 5 to 7. 61

Table 6 – Dataset Statistics . 64
Table 7 – Query processing time (ms) of the BEVA with the TRIE Built in laat

and kaat strategies with prefix queries of sizes 5, 7, 9, 13 and 17 and 𝜏

from 1 to 3. 65
Table 8 – Simulation of memory cache misses collected by the CacheGrind program

in the USADDR dataset for 𝜏 = 3. 66
Table 9 – Query processing time (ms) of the LD with the TRIE Built in laat and

kaat strategies with queries of sizes 5, 9, 13 and 17 and 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ with
values 6, 8, 10, 12 and 14 for 𝜏 varying from 1 to 3 in the USADDR,
MEDLINE and DBLP datasets. 66

Table 10 –Query processing time (ms) of the LS with the TRIE Built in laat and
kaat strategies with queries of sizes 5, 9, 13 and 17 and 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 with
values 1, 2, 4, 6, 8 and 10 for 𝜏 varying from 1 to 3 in the USADDR,
MEDLINE and DBLP datasets. 67

Table 11 –Query processing time (at 1o and 2o level) and fetch time (ms) with
prefix queries of sizes 5, 9, 13 and 17 and 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ varying from 4 to 15
in LD, and 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 with constants 1, 2, 4, 6, 8 and 10 in LS with memory
usage value (MB) for each method in USADDR dataset and 𝜏 = 3. . . . 69

Table 12 –Query processing time (at 1o and 2o level) and fetch time (ms) with
prefix queries of sizes 5, 9, 13 and 17 and 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ varying from 4 to 15
in LD, and 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 with constants 1, 2, 4, 6, 8 and 10 in LS with memory
usage value (MB) for each method in MEDLINE dataset and 𝜏 = 3. . . 69

Table 13 –Query processing time (at 1o and 2o level) and fetch time (ms) with
prefix queries of sizes 5, 9, 13 and 17 and 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ varying from 4 to
15 in LD, and 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 with constants 1, 2, 4, 6, 8 and 10 in LS with
memory usage value (MB) for each method in DBLP dataset and 𝜏 = 3. 70

Table 14 –Query processing time (at 1o and 2o level) and fetch time (ms) with
prefix queries of sizes 5, 9, 13 and 17 and 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ varying from 4 to 15
in LD, and 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 with constants 1, 2, 4, 6, 8 and 10 in LS with memory
usage value (MB) for each method in USADDR dataset and 𝜏 = 1. . . . 71

Table 15 –Query processing time (at 1o and 2o level) and fetch time (ms) with
prefix queries of sizes 5, 9, 13 and 17 and 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ varying from 4 to 15
in LD, and 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 with constants 1, 2, 4, 6, 8 and 10 in LS with memory
usage value (MB) for each method in MEDLINE dataset and 𝜏 = 1. . . 72

Table 16 –Query processing time (at 1o and 2o level) and fetch time (ms) with
prefix queries of sizes 5, 9, 13 and 17 and 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ varying from 4 to
15 in LD, and 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 with constants 1, 2, 4, 6, 8 and 10 in LS with
memory usage value (MB) for each method in DBLP dataset and 𝜏 = 1. 72

Table 17 –USADDR - Average number of operations per query (on the scale of
thousands) in query processing in the 1o and 2o level in the prefix query
length 5, 9, 13 and 17 for 𝜏 = 3 in the LD and LS methods. 73

Table 18 –Query processing time (at 1o and 2o level) and fetch time (ms) with
prefix queries of sizes 5, 9, 13 and 17 and 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ varying from 4 to 15
in LD, and 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 with constants 1, 2, 4, 6, 8 and 10 in LS with memory
usage value (MB) for each method in USADDR dataset and 𝜏 = 4. . . . 74

Table 19 –Query processing time (at 1o and 2o level) and fetch time (ms) with
prefix queries of sizes 5, 9, 13 and 17 and 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ varying from 4 to 15
in LD, and 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 with constants 1, 2, 4, 6, 8 and 10 in LS with memory
usage value (MB) for each method in MEDLINE dataset and 𝜏 = 4. . . 74

Table 20 –Query processing time (at 1o and 2o level) and fetch time (ms) with
prefix queries of sizes 5, 9, 13 and 17 and 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ varying from 4 to
15 in LD, and 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 with constants 1, 2, 4, 6, 8 and 10 in LS with
memory usage value (MB) for each method in DBLP dataset and 𝜏 = 4. 75

Table 21 –Query processing time (at 1o and 2o level) and fetch time (ms) with
prefix queries of sizes 5, 9, 13 and 17 and 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ varying from 4 to 15
in LD, and 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 with constants 1, 2, 4, 6, 8 and 10 in LS with memory
usage value (MB) for each method in USADDR dataset and 𝜏 = 2. . . . 76

Table 22 –Query processing time (at 1o and 2o level) and fetch time (ms) with
prefix queries of sizes 5, 9, 13 and 17 and 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ varying from 4 to 15
in LD, and 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 with constants 1, 2, 4, 6, 8 and 10 in LS with memory
usage value (MB) for each method in MEDLINE dataset and 𝜏 = 2. . . 76

Table 23 –Query processing time (at 1o and 2o level) and fetch time (ms) with
prefix queries of sizes 5, 9, 13 and 17 and 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ varying from 4 to
15 in LD, and 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 with constants 1, 2, 4, 6, 8 and 10 in LS with
memory usage value (MB) for each method in DBLP dataset and 𝜏 = 2. 77

Table 24 –Number of nodes and memory usage in TRIE index build in the USADDR,
MEDLINE and DBLP datasets . 79

Table 25 –Query response time (ms) comparison with confidence interval between
baselines methods varying 𝜏 from 1 to 4, |𝒫| = 5 in the USADDR,
MEDLINE and DBLP datasets. 81

Table 26 –Query response time (ms) comparison with confidence interval between
baselines methods varying 𝜏 from 1 to 4, |𝒫| = 13 in the USADDR,
MEDLINE and DBLP datasets. 81

Table 27 –Query response time (ms) comparison with confidence interval between
baselines methods, varying the prefix queries sizes 5, 9, 13 and 17 for
𝜏 = 3 in the USADDR, MEDLINE and DBLP datasets. 82

List of Algorithms

Algorithm 1 – Insert Query Suggestions with kaat strategy 49
Algorithm 2 – Insert Query Suggestions with laat strategy 49
Algorithm 3 – Insert Query Suggestions with LD Method 53
Algorithm 4 – Insert Query Suggestions with LS Method 56
Algorithm 5 – Process prefix query . 58
Algorithm 6 – Find active nodes . 59
Algorithm 7 – Find word active nodes . 59
Algorithm 8 – Calculate edit distance and save new word active nodes 59

Contents

1 Introduction . 23

2 Related Work . 29

3 Preliminaries . 33
3.1 Problem Definition . 33
3.2 Alternative Solutions to Pattern Matching 34

3.2.1 Sequential Search . 34
3.2.2 Index-Based Search . 35

3.3 TRIE . 36
3.4 Active Nodes . 37
3.5 Two-level Search . 38
3.6 BEVA . 39

3.6.1 Boundary Active Prefix Set . 39
3.6.2 Edit vector . 41
3.6.3 Edit Vector Automata . 43
3.6.4 Query Processing With Edit Vector Automata 45

4 Improving BEVA . 47
4.1 Index Building Strategies . 47
4.2 Two-Level Approach . 49

4.2.1 Limited Depth Method . 50
4.2.2 Limited Slot Method . 54
4.2.3 Query Processing with Two-Level Approach 56

4.2.3.1 Running a Query with LS method 60

5 Results . 63
5.1 Experiments Setup . 63

5.1.1 Experienced Methods . 63
5.1.2 Experimental Environment and Datasets 63
5.1.3 Settings . 64

5.2 Improving Index Building . 65
5.3 Selecting Parameters for the Proposed Methods 67

5.3.1 Query Response Time . 68
5.3.2 Memory Consumption . 78

5.4 Baselines Comparison . 80

5.4.1 Varying Edit Distance Threshold 80
5.4.2 Varying Query Length . 81
5.4.3 Varying Dataset Portions for Memory Consumption 82

6 Conclusion . 85

Bibliography . 87

23

1 Introduction

Search systems are present is most of current programs available nowadays, including
e-commerce services, web search engines, dialing applications in mobile phones, among
others. One of the important feature of such systems is the property of performing query
autocompletion, which is an essential component in the interaction between the user and
the input interface of the search systems. Figure 1a shows an example where the user has
typed the prefix “note” and the system suggests possible queries that match with it.

When searching in a system, the users can submit queries that contain typos that
might result into unsatisfactory or even into empty query results. Because of this, recent
works have propose the error-tolerant query autocompletion Chaudhuri and Kaushik
(2009); Ji et al. (2009); Li et al. (2011); Xiao et al. (2013); Deng et al. (2016); Zhou et al.
(2016), where results within a small amount of errors are allowed, being the number of
errors usually an edit distance between two sequences that represents the minimum number
of operations that includes insertion, deletion or substitution of characters to make two
sequences equal.

Error-tolerant query autocompletion can be seen as a mechanism to teach users
about how to correctly spell difficult queries or to fix typos when the user is writing a prefix
query. An example of a search system that allows error-tolerant query autocompletion
is showed in Figure 1b, where the user receives suggestions “notebook dell”, “notebook
samsung”, “notebook gamer”, “notebook acer” and “notebook lenovo”, all of them being
answers that match with erroneous typed prefix “notebok”.

(a) Example of Simple Query Autocomple-
tion.

(b) Example of Error-Tolerant Query Auto-
completion.

Figure 1: Query autocompletion in search box.

This mechanism can be seen as a specialized version of pattern matching problem.
In the pattern matching problem, a search window with the size of the pattern is moved
from left to right along the text and the pattern is searched within this window. There

24 Chapter 1. Introduction

are two types of pattern matching problems: (1) The exact pattern matching and (2) the
approximate pattern matching. The exact pattern matching is defined as all occurrences of
an given pattern 𝑃 = 𝑝1, ..., 𝑝𝑚 in a text 𝑇 = 𝑡1, ..., 𝑡𝑛, with 𝑚 ≤ 𝑛, and each occurrence
being a string equal to the pattern defined by a starting position in 𝑇 and with the size of
the pattern. The approximate pattern matching is defined as all occurrences of an given
pattern 𝑃 = 𝑝1, ..., 𝑝𝑚 in a text 𝑇 = 𝑡1, ..., 𝑡𝑛, whose have a given edit distance within a
given threshold 𝑘 when compared to the pattern.

The approximate version of the string pattern matching problem has several
practical applications, being applied, for example, when searching into DNA sequences or,
as discussed here, to provide suggestions of the correct spelling of queries in search systems
when the user makes any mistake while typing a query. In additional, the approximate
pattern allows us to define more formally the problem treated in error-tolerant query
autocompletion. Given an input pattern 𝑃 of length 𝑚, a set 𝑄𝑠 = 𝑄1, ..., 𝑄𝑛 of 𝑛 strings
representing possible query suggestions and a threshold that limits the maximum number
of errors 𝜏 , the error-tolerant query autocompletion problem can be defined as the problem
of finding a subset of 𝑄 composed of elements whose prefixes match 𝑃 with at most 𝜏

errors.

This problem has been addressed by several authors in recent research articles
published in the literature Ji et al. (2009); Li et al. (2011); Xiao et al. (2013); Deng et al.
(2016); Zhou et al. (2016). And the most successful current error-tolerant solutions adopt a
TRIE data structure Fredkin (1960) to solve this problem. A TRIE is a search tree where
the keys are usually strings with symbols belong to a predefined alphabet Σ, which each
character of the string is stored as a key on a node. Each path from the root to a leaf of
the TRIE represents a string, and each node in this path represents one of the characters
of such string, with the root node representing an empty string. All equal prefixes in the
TRIE share the same nodes.

While solutions based on data structure TRIEs represent the current state-of-the-
art methods to perform fast query autocompletion computation allowing errors, these
data structures and the proposed algorithms to search on them present a large memory
consumption that makes the query autocompletion processing unfeasible for scenarios
where the query dataset is large, which are quite common scenarios in practical applications.
For instance, the BEVA algorithm proposed by Zhou et al. (2016), which is one of the
fastest current solutions for query autocompletion, performs the pre-computation of large
data through edit vectors that store them in a set of distinct states forming a structure
called edit vector automata (EVA). This structure allow the query processing very efficient,
but the memory consumption required to store both the TRIE and the edit vector automata
is quite high.

On the other hand, time performance is also critical in autocompletion systems,

25

once the query suggestions should quickly appear as the users are typing their queries, and
the answers should be changed as each new character is typed. Miller (1968) suggest that
each query needs to be completed in a total time of less than 100 ms to avoid noticeable
delays during interactive search sessions.

We here study alternative forms of implementing query autocompletion methods. We
focused our study on improving the BEVA method. We investigate alternative ways of using
two-level indexing approaches to reduce the memory requirements for processing queries.
We also propose and experiment a novel index building strategy for query autocompletion
that allows faster query processing than Original BEVA by reducing memory cache misses
when processing queries.

The two-level strategies studied perform the search in two steps. In the first step,
we perform a search in the TRIE index, but this TRIE does not necessarily contain the
full path to find the suggestion results. As a consequence, when the system reaches a leaf
of the TRIE, this leaf may be associated to a set of strings, instead of a single string. If
necessary, a second step is performed, and the matching processing should then continue
to select the strings that match the query among the ones found by the TRIE in the
first step. For these strings, the second step performs a sequential search. We name this
approach as two-level processing approach.

We implemented the proposed ideas using the algorithm BEVA to process queries
in the first level. In the second level, a sequential search is performed incrementally from
the results of the first level. This sequential search continues the query processing by
using BEVA. The only difference is that this second step does not use a TRIE, but just
sequentially process all the strings selected by the first step. The key idea behind our
method is that we adjust the amount of data indexed in the TRIE to be large enough
to allow just a small number of strings need to be processed in the sequential second
step. On the other hand, as smaller is the size of the paths indexed in the TRIE, as more
advantageous is our method when compared to a method that uses the TRIE to index the
full path of each string.

BEVA is one of the fastest methods in the literature, where it makes use of a
structure called Edit Vector Automata (EVA) to calculate the edit distance between two
strings. Such structure is built from edit vectors Ukkonen (1985). In addition, BEVA
defines a set of active nodes, called boundary active nodes, which considerably reduces the
number of nodes manipulated during query processing in previous work. Each active node
in the TRIE is associated with a state in the automaton. We chose BEVA as the basis for
our study because it is the state-of-the-art method in the literature.

We studied two ways of reducing the number of nodes in the first level of the
TRIE. In the first, named as Limited Depth (LD), the size of this prefix is controlled by
a parameter called 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ. In the second, named as Limited Slots (LS), we limit the

26 Chapter 1. Introduction

number of entries associated to each leaf of the TRIE, controlling it by a parameter called
𝑚𝑎𝑥𝑠𝑙𝑜𝑡. Notice that in LD we do not control the number of entries in the second level
associated to each leaf, while in LS we do not control the maximum size of a path in the
TRIE.

In addition, we studied two strategies to build the TRIE. In the first strategy the
index is built in depth-ward direction, that is, we insert one key in the TRIE, and thus
we named it as key-at-a-time (kaat). Kaat is the natural insertion strategy for keys in
a TRIE and is the one usually described or assumed in autocompletion articles Ji et al.
(2009); Li et al. (2011); Xiao et al. (2013); Deng et al. (2016); Zhou et al. (2016). In second
strategy, the index is built in breadth-ward direction, that is, we insert a position of all
keys at a time, creating a new level in the TRIE. Only after that we start to insert the
flowing position of each key, thus creating the following level. We repeat the process until
inserting the whole keys in the TRIE. We named this strategy as level-at-a-time (laat),
and as far as we know, it is a novel insertion strategy that was not considered before in
the literature.

As we show in the experiments, our methods with two-level approach results
in a considerable reduction of memory requirements for processing error-tolerant query
autocompletion. For instance, our method requires only about 5% of the memory required
by original BEVA algorithm for processing queries of dataset MEDLINE1, a dataset usually
adopted in experimental evaluation of error-tolerant query autocompletion methods, while
keeping a time performance close to BEVA.

Our experiments also show a large difference in query processing times when we
comparing laat and kaat strategies. The main algorithms in the literature, such as: Ji
et al. (2009); Li et al. (2011); Zhou et al. (2016) process queries in breadth-ward direction,
which makes laat the best insertion strategy to fastening the query processing. In our
experiments, laat strategy was able to make BEVA up to four times faster.

Our contributions can be summarized as:

∙ We studied and compare two strategies for TRIE index building, the laat and the
kaat strategies.

∙ We propose and study two alternative ways of using BEVA with two-level indexes:
LD and LS methods.

The remaining of this dissertation is organized as follows. In Section 2 we present
the related work and present the error-tolerant query autocompletion algorithms available
in the literature. In section 3, we formally define the problem and also some important
definitions necessary for easy understanding in our proposed method. In Section 4 we
1 https://www.nlm.nih.gov/databases/download/pubmed_medline.html

https://www.nlm.nih.gov/databases/download/pubmed_medline.html

27

present different ways to build the trie index, with the kaat and laat strategies. In addition,
we present details about the proposed two-level approach methods , and also show how to
implement them using BEVA, which one of the fastest methods for error-tolerant query
autocompletion. In Section 5 we present experiments performed with our two strategies to
build the TRIE index and our proposed methods, as well as comparison of our methods
with baselines. Finally, in section 6, we present our conclusions and possible future research
directions.

29

2 Related Work

The widespread use of query autocompletion in search systems has attracted
attention to this problem in the literature. Grabski and Scheffer (2004) studied the
query autocompletion and discuss a retrieval model to select sentences to be shown to
users from the ones that autocomplete the query user. Their model is motivated by
administrative and call center environments, in which users have to write documents with
a certain repetitiveness. Bast and Weber (2006) propose the Hyb data structure, which
basically uses inverted indexes, computing for each prefix, the union of inverted lists of
all words that complete such prefix. Nandi and Jagadish (2007) also studied the query
autocompletion problem as a multi-word “phrase” and introduced a FussyTree structure
to select autocomplete phrases for a given prefix.

We here address the problem of error-tolerant query autocompletion. It was first
studied by Chaudhuri and Kaushik (2009) and Ji et al. (2009), which proposed solutions
based on incrementally maintaining a set of active nodes on a TRIE Fredkin (1960). In
their approach, each character typed by the user is adopted to update the list of active
nodes. After updating such list, the result can be reported by taking all the leaf nodes
that can be reached from the active nodes in the TRIE. While both use the same general
strategy, Chaudhuri and Kaushik (2009) propose to partition all possible queries at a
certain length into a limited number of equivalent classes (via reduction of the alphabet
size) and precompute the answer active nodes for all these classes. This strategy changes
the time complexity to maintain the list of active nodes, and while the time complexity of
each maintenance step is 𝑂(𝜏 · (|𝐴|+ |𝐴′|)) for Ji et al. (2009), the time is 𝑂(|𝐴|+ |𝐴′|) for
Chaudhuri and Kaushik (2009), where |𝐴| and |𝐴′| are the numbers of active nodes before
and after the maintenance, respectively. The number of active nodes can be extremelly
high when performing error-tolerant query autocompletion, which can slow down the
search process. For instance, this number can be up to 𝑂((|𝑄|+ 𝜏)𝜏 · |Σ|𝜏) in the proposal
of Ji et al. (2009).

Several authors have presented improvements in the idea of using a TRIE and
computing active nodes. Li et al. (2011) improved the method proposed by Ji et al. (2009)
to reduce memory consumption and query response time by only considering the subset of
active nodes with the last characters being neither substituted nor deleted, reducing the
number of active nodes to 𝑂((|𝑄|+ 𝜏 − 1)𝜏 · |Σ|𝜏), which still can become quite high.

In another effort to reduce the costs for computing active nodes, Deng et al. (2016)
propose the method META. One additional feature proposed in META is the ability of
supporting top-k queries. Authors designed a compact tree index to maintain active nodes

30 Chapter 2. Related Work

in order to avoid the redundant computations that occurs in previous proposals, such as
ICAN (Ji et al. (2009)) and ICPAN (Li et al. (2011)). They also devised an incremental
method to efficiently answer top-k queries.

Zhou et al. (2016) propose an even more efficient evaluation strategy for the active
nodes that speedups the query processing by entirely eliminating ancestor-descendant
relationships among active nodes. They show how to implement their new strategy by
using a data structure named edit vector automaton (EVA). Their experiments show that
their complete method, named BEVA, outperforms existing approaches in both space and
time efficiency. While any of the above mentioned methods could be adopted as the first
level in the two-level query autocompletion method proposed here, we here adopted BEVA
as the method for the first step query processing in our work, given its high performance.

In an alternative direction when compared to the method BEVA, Xiao et al. (2013)
propose the method incNGTrie, a proposal focused in speed up the query processing while
increasing the amount of memory required for processing queries. It builds a TRIE for all
the 𝜏 -deletion variants of the data strings and process the query by a simple matching
procedure. This change results in performance gains when compared to other methods.
However, its indexes sizes become several times larger than the other baselines, while the
effective gain in time performance is not so expressive. The index size represents a severe
restriction to the use of incNGTrie. Qin et al. (2019) improved the method to reduce the
index size produced by IncNGTrie. They also studied the usage of their method to solve
the problem of duplicate removal. While still their method requires more memory than
methods BEVA and META, their new proposal reduces such difference, at a price of a
significant increasing in the time for indexing the databases.

We here study the combination of a TRIE with sequential search for performing
error-tolerant query autocompletion, deriving a method that is at the same time fast
and memory efficient. Two-level strategies for indexing and search large string sets were
previously adopted in the literature. Manber et al. (1994); Baeza-Yates and Navarro (2000);
Navarro et al. (2000) studied the possible combination between full inverted index and
sequential search with no indexing. In these works, the full search into text collections
is performed by using an index that points to blocks, rather than each position in the
text. The search is performed first in this index to detect blocks that might match the
query, and then a second level with sequential search is performed to find the real list of
occurrences in the text.

The application of TRIES and other structures into a two-level index has also
being considered in previous work. Sussenguth Jr (1963) studied the use of a two-level
structure to access file systems where the first level index was a TRIE. In their application,
the mixed strategy decreased the quantity of TRIE nodes by a factor of six without high
variation in the running time. Heinz et al. (2002) propose the so called Burst TRIES

31

which can be seen as another example of two-level index applied to a distinct context. The
Burst TRIES are collections of small data structures, called containers. Such containers
represent the second level index, that are accessed via a conventional TRIE, which can be
considered as the first level index.

33

3 Preliminaries

3.1 Problem Definition

Let Σ be a finite alphabet of symbols or characters. A string 𝑠 is an ordered array
of symbols drawn from Σ with length denoted by |𝑠| and 𝑠[𝑖] being the ith character of 𝑠,
starting from 1. The substring of 𝑠 is denoted by 𝑠[𝑖..𝑗] between positions 𝑖 and 𝑗. Given
two strings 𝑠 and 𝑠′, where 𝑠′ = 𝑠[1..𝑖], 1 ≤ 𝑖 ≤ |𝑠| the 𝑠′ ≤ 𝑠 denotes that 𝑠′ is a prefix of
𝑠.

The definition of error-tolerant query autocompletion is given by a string 𝒫𝒬

representing the prefix of the query already typed by the user, a set of strings 𝒟 representing
the possible suggestions to complete the prefix query that the user is typing, and a maximum
edit distance threshold (maximum number of errors) represented by symbol 𝜏 . The problem
is to given a prefix query 𝒫𝒬, a dataset 𝒟, and an edit distance threshold 𝜏 , the error-
tolerant query autocompletion task is to: (1) return all 𝑑 ∈ 𝒟 sentences that are similar
to 𝒫𝒬 in at most 𝜏 edit distance operations, and (2) be able to efficiently process the
subsequent prefix queries when additional characters are appended to 𝒫𝒬.

Given two character strings 𝑠1 and 𝑠2, the edit distance between them defined as
𝑒𝑑(𝑠1, 𝑠2) is the minimum number of edit operations required to transform 𝑠1 into 𝑠2 or
vice versa. Most commonly, the edit operations allowed for this purpose follow the so
called Levenshtein edit distance proposed by Levenshtein (1966), and include the following
operations:

1. Insertion of a single character. If 𝑎 = 𝑥𝑧, then inserting the symbol 𝑦 produces
𝑎 = 𝑥𝑦𝑧. This can also be denoted by 𝜖→ 𝑦, using 𝜖 to denote the empty string.

2. Deletion of a single character changes 𝑎 = 𝑥𝑦𝑧 to 𝑎 = 𝑦𝑧. This can also be denoted
by 𝑥→ 𝜖.

3. Substitution of a single character 𝑥 for a symbol 𝑦 ̸= 𝑥 changes 𝑎 = 𝑥𝑦𝑧 to 𝑎 = 𝑦𝑦𝑧.
This can also be denoted by 𝑥→ 𝑦.

Chaudhuri and Kaushik (2009) propose for the first time the query autocompletion
algorithm that allow a small amount of errors in input query and consequently increase the
usability significantly of systems that has search interfaces mainly in mobile applications
that naturally has an bad usability.

34 Chapter 3. Preliminaries

3.2 Alternative Solutions to Pattern Matching
The pattern matching solutions can be divided into two subgroups, being solved

either using algorithms that index the dataset to be searched before proceeding the search,
the so called index-based approach, or using algorithms that do not index the dataset, the
so called sequential search approach.

3.2.1 Sequential Search

Algorithms that do not have indexes are also known as sequential search algorithms,
in which a sequential search is performed comparing the pattern with each string in the
dataset searched. As we are interested here in the query autocompletion allowing errors, a
sequential search comparing the prefix to each string in the dataset searched should be
performed. We describe below a solution for sequential search that is based on dynamic
programming. While it is not the best solution for solving the sequential string matching
problem, it is important because the idea is the basis for other more sophisticated pattern
matching algorithms we study here.

A well known method to compute the edit distance between two strings 𝑑 and 𝑄

(of length 𝑛 and 𝑚, respectively) is the dynamic programming algorithm that fills in a
matrix 𝑀 of size (𝑛 + 1) · (𝑚 + 1). Each cell 𝑀 [𝑖, 𝑗] records the edit distance between the
prefixes of lengths 𝑖 and 𝑗 of the two strings, respectively. The cell values can be computed
in one pass in row-wise or column-wise order based on the following recurrence equation:

𝑀 [𝑖, 𝑗] = 𝑚𝑖𝑛(𝑀 [𝑖− 1, 𝑗 − 1] + 𝛿(𝑑[𝑗], 𝑄[𝑖]), 𝑀 [𝑖− 1, 𝑗] + 1, 𝑀 [𝑖, 𝑗 − 1] + 1)

, where 𝛿(𝑥, 𝑦) = 0 if 𝑥 = 𝑦, and 1 otherwise. The boundary conditions are 𝑀 [0, 𝑗] = 𝑗 and
𝑀 [𝑖, 0] = 𝑖. In the Table 1, the distance between the words 𝑚𝑖𝑑 and 𝑚𝑎𝑖𝑛 is recovered
just take the value of the position cell 𝑀 [𝑛− 1, 𝑚− 1]. The time complexity to calculate
is 𝑂(𝑛 ·𝑚).

0 1 2 3
𝜖 m i d

0 𝜖 0 1 2 3
1 m 1 0 1 2
2 a 2 1 1 2
3 i 3 2 1 2
4 n 4 3 2 2

Table 1: Edit distance calculation with classic dynamic programming.

Ukkonen (1985) observed that, based on the dynamic programming algorithm to
calculate the distance between two strings 𝑑 and 𝑄, it is possible to obtain the same result
by pruning the matrix values. This idea still uses dynamic programming but avoids keeping

3.2. Alternative Solutions to Pattern Matching 35

previously unnecessary values for a certain edit distance threshold. Such improvement was
called of 𝑘-diagonal of the matrix and was defined as all the cells 𝑀 [𝑖, 𝑗] such that 𝑗− 𝑖 = 𝑘.
To determine if the edit distance from 𝑑 to 𝑄 is within 𝜏 , the threshold edit distance
algorithm in Ukkonen (1985) only needs to compute the 𝑘-diagonals of the matrix, where
𝑘 ∈ [−𝜏, 𝜏], according to Table 2, where cells in gray vertically represent the 𝑘-diagonal.
The complexity is 𝑂(𝜏 ·𝑚𝑖𝑛(𝑛, 𝑚)). In addition, Ukkonen (1985) show the following lemma:
∀ 𝑀 [𝑖, 𝑗], 𝑀 [𝑖, 𝑗] ≥𝑀 [𝑖− 1, 𝑗 − 1].

0 1 2 3
𝜖 m i d

0 𝜖 0 1 2 3
1 m 1 0 1 2
2 a 2 1 1 2
3 i 3 2 1 2
4 n 4 3 2 2

Table 2: The cell values in color grey from top to bottom represent the 𝑘-diagonal varying
from -1 to 1 for 𝜏 = 1. The vertical in grey dark is the 0-diagonal.

However, even considering the best alternatives available in this paradigm, the
sequential search is not an acceptable solution in most of the query autocompletion
scenarios, since the dataset of query suggestions is usually too large and the time for
performing sequential search becomes higher than the average time the users take to type
their queries. Thus, sequential search is not considered as an option for solving the query
autocompletion problem in the literature.

3.2.2 Index-Based Search

Index-based algorithms use specialized data structures to speed up the query
processing. There are several alternative specialized index structures that are applied
according to the characteristics of the problem addressed, including inverted index Baeza-
Yates and Ribeiro-Neto (1999), signature files, suffix TRIEs and TRIEs. Among these
data structures, the TRIEs are the ones that are currently adopted by most of the state-
of-the-art query autocompletion methods that allow errors in the search as Zhou et al.
(2016) and Deng et al. (2016).

While sequential search is not a viable solution, da Costa Xavier (2019) studied the
possibility of combining it with index-based approaches for producing new solutions to the
query autocompletion problem that are fast and reduce the amount of memory required
for processing queries when compared to index-based approaches. This approach, named
as two-level, adopts an index to reduce the search space and then proceeds a sequential
search in this reduced space. Our proposal here is to further study this alternative.

36 Chapter 3. Preliminaries

3.3 TRIE

TRIE is a data structure usually applied to store strings whose symbols belong to
a predefined alphabet Σ, which each character of the string is stored as a key on a node.
A TRIE is a rooted tree formed as follows. It starts with a root node representing an
empty string. Each node has references to a set of children nodes containing at most |Σ|
children, |Σ| being the size of the alphabet. The insertion of a new string 𝑁𝑆 starts with
a search operation to find the maximum path that already matches the inserted string in
the TRIE. This search makes the root as the current node, which is pointed by 𝑐𝑢𝑟𝑟, and
the current position 𝑝𝑜𝑠 in the inserted pattern as 1, the first character of the string. It
then repeats the following procedure: searches for a child of 𝑐𝑢𝑟𝑟 that contains the key
value equal 𝑁𝑆[𝑝𝑜𝑠]. When finding this child, making 𝑐𝑢𝑟𝑟 point to it and increasing 𝑝𝑜𝑠

by 1. When not finding, a new child node of 𝑐𝑢𝑟𝑟 is created with the value of 𝑁𝑆[𝑝𝑜𝑠] as
its key, making 𝑐𝑢𝑟𝑟 pointing to this new child and increasing 𝑝𝑜𝑠 by 1. We repeat the
process until reaching the end of the string being inserted. Each string inserted in the
TRIE should end with a string terminator symbol, so that the last node inserted marks
the end of a word. For strings that are already present in the TRIEs, no new nodes are
created by the insertion process.

Analogous to insertion, the search for a pattern string into a TRIE follows the
procedure described above, except that the search returns a fail when not finding a child
node equal to 𝑁𝑆[𝑝𝑜𝑠]. Thus the search stops and returns a fail, instead of creating new
nodes. In case of success until the terminator symbol of the string, the search indicates
that the key was found. If considering a linear search on the children nodes, in both search
and insertion the cost is 𝑂(Σ ·𝑚), where Σ is the size of the alphabet and 𝑚 is the size
of the searching key. Notice that the cost does not depend on the size of the number of
strings inserted in the TRIE, which makes the TRIE a very attractive data structure
for indexing strings, specially when searching for a large set of string, as it occurs in the
problem of query autocompletion.

The exact search and approximate search can be performed using the TRIE data
strucuture. Figure 2 show how the exact search and approximate search occurs in TRIE
for the prefix query “undo”. The exact search occurs when the TRIE traversal is performed
in prefixes that match exactly with the prefix query searched. When we processing also the
approximate search, we need to analyze adjacent branches in order to find prefixes that are
within a certain threshold. This feature increases the complexity of processing queries. Here
we will approach the approximate search that is controlled by an edit distance threshold.
The TRIE prefixes that are within this threshold are called of active nodes and then the
processing is performed incrementally from the active nodes of the previous prefix query.

3.4. Active Nodes 37

u

n

d

e o

i

t

Q: u Q: un Q: und Q: undo

Exact
search

Approximate
search

r

u

n

d

e o

i

t

r

u

n

d

e o

i

t

r

u

n

d

e o

i

t

r

Figure 2: Representation of the TRIE data structure with the exact search and approximate
search for the prefix query “undo”. Nodes in blue color represent the nodes that exact
search processing traverses. The green nodes represent the nodes that are traversed when
the search is approximate and in this case the blue nodes can also be part. For query
“undo” and 𝜏 = 1.

3.4 Active Nodes

An active node is characterized by the edit distance between a prefix from dataset
and a prefix query that is within the edit distance threshold, and the active node set is
formally defined as: 𝒱𝒫𝒬 = {𝒫𝑑 | 𝒫𝑑 ∈ 𝒫(𝒟) ∧ 𝑒𝑑(𝒫𝑑,𝒫𝒬) ≤ 𝜏}, where 𝒫(𝒟) is prefix set
from dataset 𝒟, 𝒫𝑑 ∈ 𝒫(𝒟) and it is one prefix from prefix set and 𝒫𝒬 is the prefix query.

In Figure 3 we show the steps to computing the active nodes set as the prefix query
changes. Consider the query “live” and 𝜏 = 1. Initially, when we have the empty query
𝜖, where 𝜖 represent the empty string, we consider the prefixes 𝜖 and “l” as active nodes
because 𝑒𝑑(𝜖, 𝜖) = 0 (dashed circle) and 𝑒𝑑(𝑙, 𝜖) = 1 (bold circle). When the prefix query
changes to “l”, we have to compute the new active nodes from the active nodes in the
previous prefix query. So we need to analyze the nodes represented by the 𝜖 and “l” prefixes
and also their children. The stopping criterion is when we find a prefix that is outside
the edit distance threshold. So, we get the prefixes 𝜖, “l”, “li” and “lo” as active nodes
because 𝑒𝑑(𝜖, 𝑙) = 1 (bold circle), 𝑒𝑑(𝑙, 𝑙) = 0 (dashed circle), 𝑒𝑑(𝑙𝑖, 𝑙) = 1 and 𝑒𝑑(𝑙𝑜, 𝑙) = 1
(both with bold circles), the other prefixes have an edit distance greater than ours edit
distance threshold 1 and therefore are not part of the active nodes set for the prefix query
“l”. When the prefix query changes to “li” the root node is no longer an active node for this
prefix query because 𝑒𝑑(𝜖, 𝑙𝑖) = 2. The rest of the active nodes from the previous prefix
query remain as active nodes for the prefix query “li” and their edit distances are updated.
In addition, the prefixes “lif” and “liv” become active nodes. This algorithm is repeated
for the other prefixes query, until reaching the prefix query “live”, in which the active
nodes set is represented by the prefixes “life”, “live” and “love”.

38 Chapter 3. Preliminaries

l

i

vf

o

v

e

P: l

e e

l

i

vf

o

v

e

P: li

e e

l

i

vf

o

v

e

P: liv

e e

l

i

vf

o

v

e

P: live

e e

ED=1 ED>1ED=0

l

i

vf

o

v

e

P:

e e

Figure 3: Computing the active nodes for 𝒫𝒬 = “live” and 𝜏 = 1. The strings “life”, “live”
and “love” are similar to 𝒫𝒬.

3.5 Two-level Search

The two-level search consists of a combination of two approaches that together
combine the search final result. It is an alternative to one level search because it has some
advantages, such as: reduction in memory usage and efficient query processing, since less
data in memory do processing more efficient.

Broder et al. (2003) present an efficient query evaluation method based on a two-
level approach. At the first level, the method iterates in parallel over query term postings
and identifies candidate documents using an approximate evaluation taking into account
only partial information on term occurrences and no query independent factors; at the
second level, promising candidates are fully evaluated and their exact scores are computed.
In this context, it is unnecessary to fully evaluate candidates who would not be part of
the final result. Therefore a partial evaluation is done, in which it avoids a greater volume
of processing. That said, the experiments in Broder et al. (2003) show that the algorithm
reduces significantly the total number of full evaluations by more than 90%, without any
loss in precision or recall.

da Costa Xavier (2019) proposes a error-tolerant query autocompletion method
that use the two-level approach. The TRIE data structure with the ICAN algorithm (Ji
et al. (2009)) were used in the first level with branches of the TRIE with fixe sizes 8,
9 and 10. When the processing reaches a leaf node the sequential search is performed
based on the results of the first level. This work shows a significant reduction in memory
consumption when compared to baselines. However, in some scenarios this method is not
efficient for processing large volumes of data at the second level.

Therefore, our proposal in this work is to use the two-level approach in query

3.6. BEVA 39

autocompletion. Thus, it is believed that by indexing less data in the TRIE, fewer nodes
are generated, and therefore fewer active nodes in query processing, saving memory space
and improving query processing efficiency. When the partial indexing of the dataset in
TRIE is not sufficient to determine the autocompletion result, the second level processing
is used, which consists of the sequential search among the set of items resulting from the
processing in the first level.

3.6 BEVA
In Chaudhuri and Kaushik (2009) and Ji et al. (2009) all prefixes that satisfy the

edit distance constraint are kept as active nodes. Li et al. (2011) maintain a subset these
active nodes, achieving better efficiency both in terms of space and time complexities.
It is natural to ask what is the smallest set of prefixes that are within the edit distance
threshold that an algorithm must maintain for the error-tolerant autocompletion problem.
Zhou et al. (2016) propose the Boundary Active Nodes Set, which is the smallest set
that retrieves all responses efficiently and correctly.

Besides that, the computation to obtain the edit distance between two strings 𝑠

and 𝑡 can be costly even with the best dynamic programming methods existing in the
literature, due to the amount of comparisons in the TRIE that is performed in large
datasets. Zhou et al. (2016) propose an efficient structure called edit vector automata
(EVA), in which it computes the edit distance between two strings efficiently and also
helps to maintain only a minimum set of active nodes, called Boundary Active Nodes Set.

3.6.1 Boundary Active Prefix Set

The boundary active node satisfies the edit distance constraint with the current
prefix query, and none of its prefixes (or ancestors in the TRIE) satisfies the edit distance
constraint. The boundary active prefix set is defined formally as: ℬ𝒫𝒬 = {𝑣 | 𝑣 ∈
𝒱𝒫𝒬 ∧ (@𝑣′ ∈ 𝒱𝒫𝒬 ∧ |𝑣′| ≤ |𝑣|)}, according to Zhou et al. (2016).

In Figure 4 we show how the active nodes and boundary active nodes are obtained
for the prefix query “live” and 𝜏 = 1 in a TRIE structure with the strings “life”, “live”
and “love” indexed. Initially, we have the prefix query “l”, the nodes represented by the
prefixes 𝜖 (where 𝜖 represent the empty string in the root node), “l”, “li” and “lo” are the
nodes that have the edit distance for the prefix query within the edit distance threshold,
that is, 𝑒𝑑(𝜖, 𝑙) = 1, 𝑒𝑑(𝑙, 𝑙) = 0, 𝑒𝑑(𝑙𝑖, 𝑙) = 1 and 𝑒𝑑(𝑙𝑜, 𝑙) = 1, therefore are considered
active nodes. The root node is the only node that is within the set of boundary active
nodes because it is part of the active nodes and does not have any active node that has a
prefix smaller than it. When we have “li” as a prefix query, the set of active nodes and
boundary active nodes are obtained from the active nodes of the previous query. Thus,

40 Chapter 3. Preliminaries

the new active nodes are the nodes represented by the prefixes: “l”, “li”, “lo”, “lif” and
“liv”. And the set of boundary active nodes is the active node that has the lowest prefix
among the other active nodes, that is, there is no ancestor to this node that is an active
node and therefore we only have the node represented by the prefix “l”. And so on, until
reaching the end of the prefix query.

P: l P: li P: liv P: live

l

i

vf

o

v

e

P:

e e

ED=1 ED>1ED=0 Boundary
active nodes

N0

N1

N2

N3

N4

N5

N6

N7

N8

N9

l

i

vf

o

v

ee e

N0

N1

N2

N3

N4

N5

N6

N7

N8

N9

l

i

vf

o

v

ee e

N0

N1

N2

N3 N5

N6

N7

N8

N9

l

i

vf

o

v

ee e

N0

N1

N2

N3 N5

N6

N7

N8

N9

l

i

vf

o

v

ee e

N0

N1

N2

N3 N5

N6

N7

N8

N9N4 N4 N4

Figure 4: Representation of boundary active nodes (in blue) obtained step by step for the
query “live” and 𝜏 = 1.

An important note is that a boundary active node cannot be a boundary active node
of the following query and therefore the algorithm in BEVA analyzes only the children
of the set of boundary active nodes from the previous query, unlike the maintenance
of active nodes (used by Chaudhuri and Kaushik (2009); Ji et al. (2009)) that keeps
all prefixes that are within the distance threshold. The root problem that causes much
overhead in this solutions is due to their definition of active nodes, which inherently allows
ancestor-descendant relationships among active nodes. But, the essential reason for keeping
such redundancy in these methods is to ensure that edit distance information can be easily
and correctly passed on to the descendant node.

For example, in Figure 5 we have the computation of the active nodes (in green)
and the computation of the boundary active nodes (in blue) for the prefix queries “li” and
“liv” , 𝜏 = 1 and the prefixes indexed in the TRIE are “life”, “live” and “ love”. As we
explained earlier, the active nodes for the prefix query “li” are represented by the prefixes:
“l”, “li”, “lif”, “liv” and “lov”. Analyzing the boundary active nodes in this same step we
have only one boundary active node represented by the prefix “l”, without having to save
the other prefixes as boundary active nodes because it may cause duplicate results when
taking the complete suggestions. In the active nodes computation, if we not keep the prefix
“lo” for the next prefix query “liv” we not be able to obtain the active node represented

3.6. BEVA 41

by the prefix “lov”, though this must be part of the result, because when analyzing the
child nodes of “l” we obtain 𝑒𝑑(𝑙𝑖, 𝑙𝑜𝑣) = 2, which is outside our edit distance threshold
and then the processing ends without reach all the answers correctly. For this reason, the
previous methods need to keep all active nodes.

To ensure that all the query results can be computed correctly the key idea in
BEVA is to keep for each node all its edit distance values between its (−𝜏)-and 𝜏 -diagonals.
Zhou et al. (2016) formalize this idea as edit vectors and show that it can be encoded as a
state in an edit vector automaton. This also allows to maintain only the Boundary Active
Nodes Set.

l

i

vf

o

v

e

P: li

e e

l

i

vf

o

v

e

P: liv

e e

ED=1 ED>1ED=0

l

i

vf

o

v

e

P: li

e e

l

i

vf

o

v

e

P: liv

e e

Active
nodes

Boundary
active nodes

Figure 5: Difference between obtaining active nodes and boundary active nodes when
changing the prefix query from “li” to “liv” and 𝜏 = 1. On the left side we have the active
nodes in green and on the right side the boundary active nodes in the same step.

3.6.2 Edit vector

A raw edit vector 𝑣𝑗 with respect to 𝜏 is a column vector of size 2𝜏 + 1 at the 𝑗th
column of 𝑀 . It is unnecessary to keep the actual value of cells whose value is larger than
𝜏 . No values that are greater than 𝜏 are saved. Therefore, the values of these cells are
replaced with a special symbol # to generate the edit vector. The edit vector of column 0
always has the form [𝜏, 𝜏 − 1, . . . , 1⏟ ⏞

𝜏

, 0, 1, 2, . . . , 𝜏⏟ ⏞
𝜏

], because the word in column 0 is empty.

This characteristic is named as the initial edit vector. Similarly, the vector with all the
symbols #, which is, [#, #, . . . , #⏟ ⏞

2𝜏+1

] is named as the final edit vector. From Table 3, we

have four edit vectors: [1, 0, 1], [1, 0, 1], [1, 1, 1], and [#, #, #].

The threshold edit distance computation is essentially computing the subsequent
𝑗th edit vector starting from 𝑗 = 0. The computation is performed from the top-row cell

42 Chapter 3. Preliminaries

to the bottom cell of the column, using the recurrence equation adapted from recurrence
equation of the dynamic programming to obtain the edit distance between two strings:

𝑣𝑗+1[𝑖] = 𝑚𝑖𝑛(𝑣𝑗[𝑖] + 𝛿(𝑑[𝑗 + 1], 𝑄[𝑗− 𝜏 + 𝑖]), 𝑣𝑗[𝑖 + 1] + 1, 𝑣𝑗+1[𝑖− 1] + 1),∀1 ≤ 𝑖 ≤ 2𝜏 + 1.

Finally, the edit distance between 𝑄 and a data string 𝑑 is given by 𝑣|𝑑|[𝜏 + 1 + (|𝑄| − |𝑑|)]
when |𝑄| ∈ [|𝑑| − 𝜏, |𝑑|+ 𝜏] or more than 𝜏 otherwise.

0 1 2 3
1 m i d

0 0 1
1 m 1 0 1
2 a 1 1 #
3 i 1 #
4 n #

𝑉0 𝑉1 𝑉2 𝑉3

Table 3: Edit vectors represented in yellow and green.

Zhou et al. (2016) modeled the computation of the subsequent edit vector called
of 𝑣𝑗+1 as a function 𝑓 that receives a set of input parameters. The edit vector 𝑣𝑗+1 was
modeled as f(𝑣𝑗,ℬ), where ℬ is a binary bitmap of 2𝜏+1 bits and ℬ = ¬𝛿(𝑑[𝑗+1], 𝑄[𝑗−𝜏+𝑖]),
for ∀1 ≤ 𝑖 ≤ 2𝜏 + 1. For example, suppose the edit vectors of Table 3 for calculating
the transition function ¬𝛿(𝑚, 𝜖) = 0, ¬𝛿(𝑚, 𝑚) = 1, ¬𝛿(𝑚, 𝑎) = 0, the bitmap ℬ = 010.
Then 𝑓([1, 0, 1], 010) = [1, 0, 1]. The authors from BEVA observed that no matter what
characters 𝑑[𝑗 + 1] and 𝑄[𝑗 − 𝜏 + 𝑖] are, it is whether they match or not that affects the
resulting edit vector. The bitmaps are used only to compare the prefix label from TRIE
with each character of the prefix query, in which the comparison in prefix query size varies
from [|𝑛| − 𝜏, |𝑛|+ 𝜏], where |𝑛| represent the current prefix size from TRIE.

The control of the bitmaps can be performed in a table ℋ that represents the
characters that appeared or not in the prefix query. The size of ℋ can be at most the size
of the alphabet. The update of ℋ is performed as the prefix query changes. Supposing
𝜏 = 1 and the last 2𝜏 + 1 characters of the prefix query “lov” (Figure 6), the dynamic
table of bitmap ℋ maps “l” to 100, “o” to 010, “v” to 001 and all the other characters to
000. If a new character “e” is appended to the prefix query, we will delete the character “l”
in the table of bitmap (delete means set the bit to 000) and update the bitmap of “o” and
“v” by shifting 1 bit leftwards and then add “e” = 001.

In addition, we need to construct also a new boundary active node set from the
descendants of current boundary active nodes (represented by the prefix “liv” and “lo”).
Hence, we iterate over all the current boundary active nodes to traverse its descendants, and
for each child node, the corresponding bitmap is generated to obtain the next edit vector.
The corresponding bitmap is generated using the formula ℋ(𝑛′.𝑐ℎ𝑎𝑟)≪ (𝜏 − |𝒫𝒬| − |𝒫𝑑|),

3.6. BEVA 43

where 𝑛′ is the current node from TRIE, |𝒫𝒬| is the prefix query size and |𝒫𝑑| is the size
of the prefix from TRIE, according to Zhou et al. (2016). Finally we get the new boundary
active nodes represented by the prefixes “live” and “lov”.

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

0 0 0

l

i

vf

o

v

e

P: love

e e

E I L O VF

1

2

3

4

1 0 1

1 0 1

101

1 1 2
111

2 1 2

101

2 2 2

000
1 0 1

101

1 0 1

101

2 1 2

101

Figure 6: Representation of the boundary active nodes set computation as the prefix query
changes. For this example we have the query “love”, 𝜏 = 1 and the prefixes indexed in
the TRIE are “life”, “live” and “love”. For this example, although the edit vectors are
represented in a different structure from the TRIE, the edit vectors are manipulated in
the TRIE nodes.

Zhou et al. (2016) realized that it is not necessary to compute the next edit vector
during the boundary active nodes set computation. So the authors from BEVA proposed a
structure called Edit Vector Automata or just EVA that pre-computes all the edit vectors
that can be generated based on bitmaps. And from then on, every boundary active node
is associated with a state in this automaton.

3.6.3 Edit Vector Automata

The key idea of the Edit Vector Automata (EVA) algorithm is to store all edit
distances between the 𝑘-diagonals where 𝑘 ∈ [−𝜏, 𝜏]. Thus, the idea of edit vector can be
encoded as a state in an automaton edit vector. The total number of precomputed table
entries will be upper bounded by |𝒱(𝜏)| · 22𝜏+1, where |𝒱(𝜏)| represents the number of
distinct states and hence does not depend on the size of the alphabet Σ - the number of
entries is only 41,344 for 𝜏 = 3, according to Zhou et al. (2016).

Zhou et al. (2016) define the algorithm to compute of the edit vector automaton
(EVA) through of the following steps:

44 Chapter 3. Preliminaries

1. Add 𝒮0 state associated with the initial edit vector inside the empty queue.

2. While the queue is not empty, the state 𝒮𝑖 of the queue is removed. Compute
𝒮 ′ = 𝑓(𝒮𝑖,ℬ) for every 22𝜏+1 possible values of ℬ. Record these transitions in the
automaton. Finally, if 𝒮 ′ is a new state, add it into the queue.

Each new state is pushed into the queue exactly once. For each state propped from
the queue, are computed 22𝜏+1 transitions, each taking 𝑂(𝜏) time. Testing if a state is
new takes 𝑂(1) time. In total the complexity of the algorithm is 𝑂(𝜏 · 62𝜏), according
to Zhou et al. (2016).

Finally, Zhou et al. (2016) define formally the edit vector automaton with respect
to 𝜏 as an 5-tuple (𝒮,ℬ, 𝑓, {𝒮0}, {𝒮⊥}).

∙ 𝒮 is the set of states and each state is associated with a single edit vector.

∙ ℬ = {0, 1}2𝜏+1, is the set of all bitmaps of size 2𝜏 +1 that drives the state transitions.

∙ 𝑓 is the transition function of the edit vector.

∙ 𝒮0 ∈ 𝒮, is the only initial state associated with the initial edit vector.

∙ 𝒮⊥ ∈ 𝒮, is the only final state associated with the final edit vector.

After executing the automaton construction algorithm, the edit vector automaton
is obtained, as shown in Figure 7. In Figure 7, we have the EVA structure for 𝜏 = 1. As we
can see in this figure, the initial state represented by [1, 0, 1] is always associated with the
initial edit vector previously defined. For each state, the other states that can be generated
for the 22𝜏+1 possible transitions for the bitmap of size 2𝜏 + 1 are calculated. Although we
show a large number of transitions, most of them can generate the same edit vector and
thus have a transition for itself in the automaton. In the initial state, bitmaps 010, 011,
110 and 111 led to the same state 𝑆0 associated with the edit vector [1, 0, 1]. Bitmaps 001
and 101 led to the state 𝑆1 associated with the edit vector [1, 1, 1].

Let’s take bitmap 001 and show as occurs 𝑓([1, 0, 1], 001) = [1, 1, 1]. For this
we need to apply the recurrence equation that generates the edit vectors: 𝑣𝑗+1[𝑖] =
𝑚𝑖𝑛(𝑣𝑗 [𝑖] + 𝛿(𝑑[𝑗 + 1], 𝑄[𝑗− 𝜏 + 𝑖]), 𝑣𝑗 [𝑖 + 1] + 1, 𝑣𝑗+1[𝑖− 1] + 1),∀1 ≤ 𝑖 ≤ 2𝜏 + 1. With that,
we have as input for this equation the previous edit vector 𝑣𝑗 = [1, 0, 1] and we will replace
𝑑[𝑗 + 1], 𝑄[𝑗 − 𝜏 + 𝑖] by the bitmap 001 with the corresponding position inverted. Thus,
we can substitute in the equation, as: 𝑣𝑗+1[0] = 𝑚𝑖𝑛(1 + 1, 0 + 1, # + 1) = 1, 𝑣𝑗+1[1] =
𝑚𝑖𝑛(0 + 1, 1 + 1, 1 + 1) = 1, 𝑣𝑗+1[2] = 𝑚𝑖𝑛(1 + 0, # + 1, 1 + 1) = 1. Zhou et al. (2016) use
the special symbol # to denote out-of-boundary cell values and also define three natural
rules regarding the essential computations on #: (i) 𝜏 + 1 = #, (ii) # + 1 = #, and (iii)
> 𝜏 . Thus, 𝑓([1, 0, 1], 001) = [1, 1, 1].

3.6. BEVA 45

S8

1	0	1
S0

010,011,110,111

1	1	1
S1

111

1	#	1
S3

101,111

#	#	1
S6

001,011,101,111

#	#	#

000-111

001,101 101 001,011 000,010,100,110

#	1	1
S2

011,111

#	1	#
S5

010,011,110,111

011

010,110

000,001,100,101

000,100

001,101

010

001

1	1	#
S4

110,111

110

1	#	#
S7

100,101,110,111

000,001,010,011

100,101

000,100
100

000,001

010,011

000

100,110
000,010

Figure 7: Edit vector automata for 𝜏 = 1.

3.6.4 Query Processing With Edit Vector Automata

BEVA processes queries incrementally by using boundary active nodes from the
previous query. Boundary active nodes are associated with a state in the edit vector
automaton. The processing starts from root node of the TRIE and on each of its descendants.
The edit distance is computed for each prefix in the TRIE. The edit distance calculation is
performed through the edit vector automata (EVA), in which it has all the edit distances
pre-computed. If the edit distance is within the edit distance threshold then the node is
computed as a response and added to the list of boundary active nodes to be used in the
next query, otherwise, the descendants of this node are analyzed and this process repeats
until that a boundary active node is found or that the final state of the automaton is
reached. In the latter case, it is no longer possible to find boundary active nodes at the
lowest levels of the TRIE and then the computation is terminated.

An interesting consequence of definition of boundary active nodes is that if 𝑛 is
an active node of the current prefix query 𝒫𝒬, then this cannot be an active node of the
subsequent query 𝒫 ′

𝒬 and only its first descendant nodes in path of the subtrie that satisfy
the edit distance constraint will be the active nodes of 𝒫 ′

𝒬. Zhou et al. (2016) define two
lemma, that best describes these rules:

1. For a given 𝜏 , none of the active nodes of a query 𝒫𝒬 is an active node of the query

46 Chapter 3. Preliminaries

𝒫 ′
𝒬 = 𝒫𝒬 ∘ 𝑐, where ∘ denotes a concatenation, and 𝑎 is an appended character

2. For a given 𝜏 , a node 𝑛 is an active node of a query 𝒫 ′
𝒬 = 𝒫𝒬 ∘ 𝑐 if and only if (1)

one of 𝑛′𝑠 ancestors is an active node of the query 𝒫𝒬, (2) none of its ancestor nodes
is an active node of the query 𝒫 ′

𝒬, and (3) it satisfies the edit distance constraint
with respect to 𝒫 ′

𝒬.

There is a dynamic table of bitmaps values ℋ, where each bitmap is associated
with a character, this table size is equal to the size alphabet. Adding a character to the
input prefix query all bitmaps in the table are updated, i.e, the bitmaps have shifting 1
bit leftwards. New characters are added to ℋ with bitmap 001, and in iterations followed
it is only updated.

For example, consider the TRIE shown in the Figure 4 that contains the strings:
“life”, “live” and “love”, 𝜏 = 1 and characters of 𝒫𝒬 are “liv”, the dynamic Table ℋ maps
𝑙 to 100, 𝑖 to 010, 𝑣 to 001, and all the other characters to 000. If a new character 𝑒 is
appended to query 𝒫𝒬, we will update the dynamic table to ℋ(𝑙) = 000, ℋ(𝑖) = 100 and
ℋ(𝑣) = 010 by shifting 1 bit leftwards and add ℋ(𝑒) = 001. We show the boundary active
nodes and their states associated with the edit vector for each step of the prefix query in
Table 4.

Step 𝒫𝒬 Boundary Active Node Set ℬ𝒫𝒬

1 𝜖 {[𝑛0, 𝑆0]}
2 𝑙 {[𝑛0, 𝑆0]}
3 𝑖 {[𝑛1, 𝑓(𝑆0, 010) = 𝑆0]}
4 𝑣 {[𝑛2, 𝑓(𝑆0, 010) = 𝑆0], [𝑛8, 𝑓(𝑆0, 010) = 𝑆5]}

5 𝑒
{[𝑛4, 𝑓(𝑆4, 010) = 𝑆5], [𝑛5, 𝑓(𝑆0, 010) = 𝑆0],

[𝑛9, 𝑓(𝑆5, 010 = 𝑆5)]}

Table 4: Query processing step by step with BEVA and prefix query “live”.

47

4 Improving BEVA

In this chapter we show in detail our proposals for building TRIE index and
processing prefix queries with low memory consumption and respecting the speed restriction
in query processing time.

4.1 Index Building Strategies
Depth First Search (or just DFS) and Breadth First Search (or just BFS) are

algorithms that determine the direction of search in a tree or graph, the only difference
from one structure to the other is that the tree does not admit cycles and therefore the
algorithm does not require a boolean array to mark visited nodes. Here we will use these
concepts in the context of a TRIE data structure. However, the way of indexing strings in
a TRIE is not addressed in the literature, but the depth-ward direction is more natural for
indexing. As it is about insertions and not search, we will not treat such indexing strategy
as DFS algorithm.

In DFS, the query processing in the TRIE is performed in depth-ward direction,
that is, one prefix is entirely analyzed and then the next one entirely until all the prefixes
be analyzed. In BFS, the query processing in the TRIE is performed in breadth-ward
direction, that is, all prefixes have their first character analyzed and then all prefixes
have the second character analyzed until all prefixes be analyzed. Currently, the main
error-tolerant query autocompletion algorithms available in the literature perform the
query processing using the BFS algorithm (Chaudhuri and Kaushik (2009); Ji et al. (2009);
Zhou et al. (2016); Deng et al. (2016)) and the prefixes are indexed in the TRIE in
depth-ward direction, indexing one prefix at a time, until all the prefixes of the dataset
are indexed.

When implementing BEVA algorithm, we have found an important practical issue
that affects not only BEVA performance, but also may affect the performance of other
TRIE based algorithms proposed in literature. We realized that the way the TRIE is built
in memory may largely affect the performance of the algorithm due to the cache effects in
the memory hierarchy. The autocompletion algorithms, such as BEVA, are implemented
using BFS search, since they need to find the new set of answers for each key typed by
the user. Authors of BEVA have discussed an implementation of BEVA that uses DFS
for being used to speedup situations where user types a query too fast, such as when the
query is copied to the search box. Their experiments has shown that BEVA DFS can be
sligthly faster for these situations, but difference in performance was small and BFS is the
default strategy for searching if considering a user typing one character at a time.

48 Chapter 4. Improving BEVA

When building the TRIE, the more natural way of inserting keys is to insert them
in a key-at-a-time (kaat) approach, which creates all the nodes for a key as soon as the
key is inserted. In the Figure 8a we show the direction in which the keys are inserted
in the TRIE for the kaat strategy, in this case the nodes are inserted in the following
order: N0, N1, N2, N3, N4, N5, N6, N7 and N8. A side effect of this strategy is that
nodes of lower levels for new keys tend to become far from each other in the memory
system, since they tend to be separated by the several nodes created to represent the full
previous keys inserted. This distance can be decreased if we change the approach to a
level-at-a-time (laat) TRIE construction, which inserts all keys in parallel. In the laat, we
start by inserting the first character of all keys, then insert the second and so on. In the
Figure 8b we show the direction in which the keys are inserted in the TRIE for the laat
strategy, in this case the nodes are inserted in the following order: N0, N1, N2, N3, N4,
N5, N6, N7 and N8. We argue that laat approach may reduce the distance between low
level nodes of the TRIE in memory, which allows a better use of the machine cache system
when processing queries.

Step 2Step 1 Step 3 Step 4

N1

N0 N0

N1 N4

N5

N3 N6

N0

N1 N4

N5

N7N6

N8

N2

N3

N1

N0

N2

N3

N4

N5

N6

N2

N3

N2

N7

(a) TRIE Index Building with kaat strategy.
The TRIE is built from the top to the bottom
in each step.

Step 1 Step 2 Step 3 Step 4

N0N0

N1 N2 N3

N0

N1 N2 N3

N4 N5

N0

N1 N2 N3

N4 N5

N8N6 N7

(b) TRIE Index Building with laat strategy. The
TRIE is built from the left to right in each step.

Figure 8: Ways of building a TRIE index.

Algorithm 1 describes the TRIE index building with the kaat strategy. This
algorithm receive 𝒟 as parameter, in which represent the dataset. In line 2, all strings
in the dataset are processed at a time. In line 3, the root node is obtained. In line 4, all
characters from query are processed and in line 5 this character is inserted in the TRIE as
a node. In the lines 6 to 8 the node interval is updated. Finally, the node is marked as leaf
node in line 9.

Algorithm 2 describes the TRIE index building with the laat strategy. This algo-
rithm receive 𝒟 as parameter, in which represent the dataset. Initially, the maximum level
of the TRIE is instantiated with the size of the first query from dataset and this variable
can be updated as that found levels more depth in the TRIE, as describes in lines 7 and 8.
In line 3 the iteration through of the levels of the TRIE is performed, this iteration control
the level that the character of the records are inserted. In line 4 and 5 all characters from

4.2. Two-Level Approach 49

Algorithm 1 Insert Query Suggestions with kaat strategy
1: procedure TrieIndexBuildingWithKaat(𝒟)
2: for each 𝒬 in 𝒟 do
3: 𝑛𝑜𝑑𝑒← 𝑟
4: for each c in 𝒬 do
5: 𝑛𝑜𝑑𝑒← insert(c)
6: if 𝑛𝑜𝑑𝑒.𝑏𝑒𝑔𝑖𝑛𝑅𝑎𝑛𝑔𝑒 = -1 then
7: 𝑛𝑜𝑑𝑒.𝑏𝑒𝑔𝑖𝑛𝑅𝑎𝑛𝑔𝑒← 𝒬𝑖𝑑

8: 𝑛𝑜𝑑𝑒.𝑒𝑛𝑑𝑅𝑎𝑛𝑔𝑒← 𝒬𝑖𝑑

9: 𝑛𝑜𝑑𝑒.𝑖𝑠𝐿𝑒𝑎𝑓 ← True

query are processed and the current level is checked to be less than the query size. In line
6 the last node known for the query (in the first time the only node known is the root
node) is retrieved. In line 9 the node associated with the current character is created and
inserted in the TRIE and the node interval is updated in lines 10 to 12. Finally, the last
node created is saved as last node known for the query and the node is marked as leaf
node if the current level reached the query size, lines 13, 14 and 15.

Algorithm 2 Insert Query Suggestions with laat strategy
1: procedure TrieIndexBuildWithLaat(𝒟)
2: 𝑚𝑎𝑥𝐿𝑒𝑣𝑒𝑙← |𝒬0| ◁ for 𝒬0 ∈ 𝒟
3: for each 𝑙𝑒𝑣𝑒𝑙 until 𝑚𝑎𝑥𝐿𝑒𝑣𝑒𝑙 do
4: for each 𝒬 in 𝒟 do
5: if 𝑙𝑒𝑣𝑒𝑙 ≤ |𝒬| then
6: 𝑝𝑎𝑟𝑒𝑛𝑡← retrieve last node known for 𝒬
7: if 𝑙𝑒𝑣𝑒𝑙 > 𝑚𝑎𝑥𝐿𝑒𝑣𝑒𝑙 then
8: 𝑚𝑎𝑥𝐿𝑒𝑣𝑒𝑙← 𝑙𝑒𝑣𝑒𝑙
9: 𝑛𝑜𝑑𝑒← insert(c)

10: if 𝑛𝑜𝑑𝑒.𝑏𝑒𝑔𝑖𝑛𝑅𝑎𝑛𝑔𝑒 = -1 then
11: 𝑛𝑜𝑑𝑒.𝑏𝑒𝑔𝑖𝑛𝑅𝑎𝑛𝑔𝑒← 𝒬𝑖𝑑

12: 𝑛𝑜𝑑𝑒.𝑒𝑛𝑑𝑅𝑎𝑛𝑔𝑒← 𝒬𝑖𝑑

13: 𝑝𝑎𝑟𝑒𝑛𝑡← keeps last node known for 𝒬
14: if 𝑙𝑒𝑣𝑒𝑙 = |𝒬| then
15: 𝑛𝑜𝑑𝑒.𝑖𝑠𝐿𝑒𝑎𝑓 ← True

4.2 Two-Level Approach
Query autocompletion methods based on TRIEs present a considerably high memory

requirement to store the index. We here describe our solution to reduce this overhead
with no significant increasing in query processing times. The main idea is quite simple: we
index only small prefixes of the queries in the TRIE and use such index to select subset of
queries that are candidate for matching the prefix query already typed by the user. We
then perform a sequential search in this subset to find the actual list of suggestions that

50 Chapter 4. Improving BEVA

match the prefix typed by the user. The query processing is performed partially using the
TRIE, the first level, and partially performing sequential search in the query results, the
second level. We name this approach as two-level.

For implementing the two-level approach, we have selected BEVA, which is one of
the fastest algorithms available in literature. BEVA has also the advantage of using the
Edit Vector Automata (EVA) to perform the match in the fist level. While performing the
second level, we take advantage of the states already computed by BEVA, and keeping
using the EVA to performing the prefix matches in the second level of our algorithm. We
show that this combination allows achieving a significant reduction in the size of the index,
while time performance is quite close to the ones achieved by BEVA.

We have considered two alternative ways for implementing the two-level approach,
namely: (1) Limited Depth or LD and (2) Limited Slot or LS. The limited depth method
does not allow TRIE nodes above a specified maximum threshold level. The limited slot
method limits the number of query suggestions associated to each leaf node in the TRIE.
As a consequence, LS allows query suggestions with less frequent prefixes in the data
set to have fewer characters indexed in the TRIE, whereas query suggestions that have
very frequent prefixes have more characters indexed in the TRIE. This method aims at
adjusting the number of levels stored according to the popularity of the prefix, which may
have impact in the final performance. The hypothesis is that prefix that have more strings
in common may also have more chance of being typed. Further, in such cases, fixing a
maximum depth could result in a larger set of strings to be searched in the second level.

4.2.1 Limited Depth Method

Our first two-level approach lies on the strategy of limiting the maximum depth of
the TRIE. The boundary indexing uses a TRIE structure, where a TRIE has a defined
maximum depth called 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ for all branches, starting at the root node. Using this
approach, we may use any algorithm to search in the TRIE, such as BEVA or IncNGTRIE
and, if the prefix searched is larger than 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ, get the set of results as candidates
for matching the prefix queries. We can then perform a sequential search in the set of
candidates in order to select the suggestions that really match the query. Any method
could be used for searching the TRIE in the first level. However, when using BEVA, we
can take advantage the EVA states of each candidate to accelerate the query processing at
the second level. We thus need to just continue to process the candidates from the starting
point where the EVA automaton stopped in the first level.

A first observation about the proposed approach is that the query can be processed
just using the first level if the given prefix is smaller than the upperbound 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ − 𝜏 ,
where 𝜏 is the number of errors allowed in the search task. This fact is important if
considering that good query autocompletion systems provide relevant suggestions for small

4.2. Two-Level Approach 51

prefix, thus increasing the chance of users to click in a suggestion by just typing a few
characters. If the prefix query typed by the user is bigger than 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ − 𝜏 , the second
level is started and performs a sequential search in the suggestions selected by the first
level.

When creating the TRIE, we insert the strings in a lexicographic order and index
up to 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ characters of each query suggestion. In such case, each node of the TRIE
represents a set of all query suggestions that share a unique prefix represented by the node.
We thus include in such node integer pointers to the beginning and to the end positions of
the query suggestions associated to the node in the full list of query suggestions. Thus
each node stores a range of integer values referring to the first and last position of its
associated query suggestions in the dataset. Notice that all entries associated to a node
will be in contiguous positions at the full list of query suggestions, since we sort them in
lexicographic order before indexing.

For example, suppose we will index the “midday” and “midfield” strings in the
TRIE, and their IDs are 1 and 2, respectively. When indexing the character “m”, it is
created a new node in the TRIE with the value “m” and interval [1, 1]. Then we index the
character “i”, and a new node is created with value “i” and same interval [1, 1] and so on
until the end of the word “midday”. When indexing new prefixes in a branch that already
exists in the TRIE, only the intervals will be updated. For instance, when inserting the
query suggestion “midfield”, the character “m” is processed and it is detected that the
character already exists in the TRIE. In this case, only its interval is updated from [1,
1] to [1, 2] also encompassing the prefix “midfield”, and so on until the end of the query
suggestion, as shown in Figure 9. This technique allows instant access to the list of query
suggestions associated to the node, which significantly reduces the time for fetching the
results.

Query processing starts at the first level with BEVA. When the query prefix is
larger than the maximum prefix 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ, the processing goes to the second level. For
example, suppose the query suggestion “midday” has been indexed until the fourth position
(second occurrence of “d”) and the user has typed the query “m”-“i”-“d” (trace (-) is
to simulate each keystroke) in this way the processing is performed entirely on the first
level through BEVA. If the user had typed the prefix query “m”-“i”-“d”-“d”-“a”, we had
processed the query “midd” using BEVA and had taken all the results to be sequentially
inspected to check for the occurrence of the complement “a”.

In LD we index only part of the prefix. The size of the prefix to be indexed in the
TRIE should be large enough to allow that the second level search is performed into a
small set of items, so that this second level, which performs sequential search, takes an
acceptable query processing time to be performed. On the other hand, it should be short
enough to allow a significant reduction in the total amount of memory taken by the TRIE.

52 Chapter 4. Improving BEVA

1 midday
2 midfield

N0

m

i

N10

d

N11

d N13

a N14

y N15

N12

N0

m

i

N10

d

N11

d N13

a N14

y N15

f

N12

i

N16

e

N17

l

N18

d

N19

N20

[1,1]

[1,1]

[1,1]

[1,1]

[1,1]

[1,1]

[1,2]

[1,2]

[1,1]

[1,2]

[1,1]

[1,1] [2,2]

[2,2]

[2,2]

[1,1] [1,2]

[2,2]

[2,2]

Figure 9: Example of the indexing with updates in the intervals.

The upper bound should be set through experiments to balance these two values according
the necessity of either more performance or less space requirement. Figure 10 shows an
example of TRIE using a fixed depth threshold for limiting the prefix indexed in the TRIE.
In the example, only the 4 first characters of the query suggestions are inserted into the
TRIE.

c N1

N0

h N2

i N3

l N4

m

i

N5

d

N6

w N10d N8 f

N7

N9

s

u

N11

N12

s

e

N13

m

N14

i

N15

N16

Dataset

1 child

2 childhood

3 midday

4 midfield

5 midway

6 misunderstand

7 semicircle

8 semifinalist

9 semiprofessional

[1,9]

[1,2]

[1,2]

[1,2]

[1,2]

[3,6]

[3,6]

[6,6][3,5]

[3,3] [4,4] [5,5] [6,6]

[7,9]

[7,9]

[7,9]

[7,9]

Figure 10: Indexing with fixed size branches 4.

Algorithm 3 describes the insertion of queries in the TRIE when using the Limited
Depth method. The algorithm received as parameters: 𝑟, 𝒬, 𝒬𝑖𝑑 and 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ, where
represent the root node, query, query identifier and max depth in the TRIE, respectively.

4.2. Two-Level Approach 53

Each query suggestion is inserted character by character in the TRIE, as shown in line
5. In lines 7 and 8 the query ranges are updated in the node. In line 9, the value of the
variable 𝑑𝑒𝑝𝑡ℎ is incremented, where 𝑑𝑒𝑝𝑡ℎ is the current depth in the TRIE. In line 10 it
is verified if 𝑑𝑒𝑝𝑡ℎ is greater than the 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ, to determine when stopping the insertion
procedure.

Algorithm 3 Insert Query Suggestions with LD Method
1: procedure InsertSuggestion(𝑟,𝒬,𝒬𝑖𝑑, 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ)
2: 𝑛𝑜𝑑𝑒← 𝑟
3: 𝑑𝑒𝑝𝑡ℎ← 0
4: for each c in 𝒬 do
5: 𝑛𝑜𝑑𝑒← insert(c)
6: if 𝑛𝑜𝑑𝑒.𝑏𝑒𝑔𝑖𝑛𝑅𝑎𝑛𝑔𝑒 = -1 then
7: 𝑛𝑜𝑑𝑒.𝑏𝑒𝑔𝑖𝑛𝑅𝑎𝑛𝑔𝑒← 𝒬𝑖𝑑

8: 𝑛𝑜𝑑𝑒.𝑒𝑛𝑑𝑅𝑎𝑛𝑔𝑒← 𝒬𝑖𝑑

9: 𝑑𝑒𝑝𝑡ℎ← 𝑑𝑒𝑝𝑡ℎ + 1
10: if 𝑑𝑒𝑝𝑡ℎ ≥ 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ then
11: break
12: 𝑛𝑜𝑑𝑒.𝑖𝑠𝐿𝑒𝑎𝑓 ← True

As we will show in the experiments, the naive two-level approach using the limited
depth method already allows a significant decreasing in memory usage. For comparison,
we can see in Figures 4 and 10 an example comparing the number of nodes in TRIE that
the baseline BEVA and others algorithm in literature achieve when inserting a small set of
strings in the TRIE. Figure 10 shows the number of nodes in TRIE that two-level approach
requires when using the Limited Depth method. In the example, there is a reduction from
64 to 16 nodes, that is, 48 nodes less in the TRIE. The list of strings in lexicographic order
is shown on the left side of the figure, the TRIE with the respective strings is shown on the
right side, but all are limited to the same size as determined by the 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ parameter.
To access the complete string we use the ranges of nodes that correspond to the position
of the complete string in the list of strings.

However, for prefixes larger than threshold that share too many query suggestions,
the second level processing may become slow. In the worst case, the number of strings to
be searched for in the second level may be 𝑂(𝑛), where 𝑛 is the number of suggestions
in the dataset, which means performing a linear sequential search in the whole dataset.
While this worst case is not expected to occur in practice, this theoretical limitation is
useful to explain how slow might be the LD method if the query contains a prefix that has
a high number of occurrences in the dataset. Further, the 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ threshold may vary in
different datasets and a poor choice of this parameter may result either in a larger number
of nodes in the TRIE or in higher query processing times.

54 Chapter 4. Improving BEVA

4.2.2 Limited Slot Method

In the two-level approach in which we use the Limited Depth method it is necessary
to set a fixed size for the size of the prefix to be indexed. This size can vary in different
dataset and a poor choice of prefix size can cause some disadvantages. For example, if the
size of the chosen prefix is too small, few nodes will be indexed in the TRIE, however, the
list in the second level will be very large. A search for results on the second level in a very
large list can cause slowness due to the nature of the sequential search. In an attempt
to solve the performance limitations of LD method, we studied a second alternative for
use the two-level approach, called Limited Slot or just LS. The idea is to determine the
stopping criteria to go to the second level based on the number of nodes to be searched in
the second level, instead of fixing a maximum depth for the nodes in the TRIE.

When creating the TRIE in this second approach, we use the parameter max
second level slot size (𝑚𝑎𝑥𝑠𝑙𝑜𝑡), which determines the maximum size of query suggestions
associated to a leaf node of the TRIE. In this method the indexing for a string stop with
a few letters indexed, according to the thresholds configured, but as the number of query
suggestions that share the same prefix increases, expansions in the TRIE occurs until that
the parameter 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 is respected. For instance, in the Figure 11 we have 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 = 2.
Initially we index the string “semicircle” and as the threshold 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 is not exceeded,
only a single node is added to the TRIE. Next, we index the string “semifinalist”, in
which it shares the same prefix as the previously added string, but only the range of node
𝑁1 is updated, as both strings do not exceed 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 = 2. Finally, we index the string
“semiprofessional”, which has a similar prefix with the words “semicircle” and “semifinalist”.
When we update the node interval, this size exceeds the threshold 2, so we must expand
the strings until we have a leaf node interval smaller or equal to 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 = 2. In this way,
we make 4 expansions until we reach the nodes with intervals that are within our threshold.
Notice that query suggestions that share large prefixes with several other query suggestions
tend to have larger paths indexed in the resulting TRIE, since now we limit the cost for
second level, instead of limiting the size of the paths in the TRIE. We experimented with
constant values to set the value of 𝑚𝑎𝑥𝑠𝑙𝑜𝑡, so that the final time complexity for searching
when using BEVA is maintained in LS.

For example, suppose that the parameter 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 has the value 2. And we want to
index the words: “child”, “childhoold”, “midday”, “midfield”, “midway”, “misunderstand”,
“semicircle”, “semifinalist”, and “semiprofessional”. All queries that have a similar prefix
with more than two queries suggestion, according to the value of 𝑚𝑎𝑥𝑠𝑙𝑜𝑡, will have a larger
amount of their characters indexed in the TRIE until their current prefix has a list in
second level less than or equal to 𝑚𝑎𝑥𝑠𝑙𝑜𝑡. For example, the words “midday”, “midfield”
and “midway”, and also “semicirle”, “semifinalist” and “semiprofessional”, as shown in
Figure 12.

4.2. Two-Level Approach 55

S

N0

N1

[7,7]

[7,7]

semicircle semifinalist

S

N0

N1

[7,9]

[7,9]

semiprofessional

E N2

[7,9]

M N3

[7,9]

I N4

[7,9]

C N5

[7,7]

F N6

[8,8]

P N7

[9,9]

S

N0

N1

[7,8]

[7,8]

Figure 11: Example of the indexing construction in LS method with 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 = 2.

C

N0

N1

[1,9]

[1,2]

M N2

[3,6]

I N3

[3,6]

[7,7]

D N4

[3,5]

S N7

[6,6]

F N6

[4,4]

D N5

[3,3]

W N8

[5,5]

S N9

[7,9]

E N10

[7,9]

M N11

[7,9]

I N12

[7,9]

C N13

[7,7]

F N14

[8,8]

P N15

[9,9]

Dataset

2 childhood

1 child

3 midday

4 midfield

5 midway

6 misunderstand

7 semicircle

8 semifinalist

9 semiprofessional

Figure 12: Indexing with Limited Slot Method.

The mechanism for indexing prefixes with varied size branches is very simple and
is described in Algorithm 4. The function received as parameters: 𝑟, 𝒬, 𝒬𝑖𝑑 and 𝑚𝑎𝑥𝑠𝑙𝑜𝑡,
where this parameters represent the root node, query, query identifier and max slot from
interval of the queries covered in the leaf nodes, respectively. The query suggestions is
inserted character by character in line 5. In lines 7 and 8 the query suggestion ranges are
updated in the node. In line 9, the value of the variable 𝑑𝑒𝑝𝑡ℎ is incremented. In line 10,
the list size in the second level is obtained for the current prefix query. In line 11, it is
checked if this list is less or equal than the variable 𝑚𝑎𝑥𝑠𝑙𝑜𝑡, in case true, the indexing is
stopped. In line 13 the nodes is marked as leaf.

56 Chapter 4. Improving BEVA

Algorithm 4 Insert Query Suggestions with LS Method
1: procedure InsertSuggestion(𝑟,𝒬,𝒬𝑖𝑑, 𝑚𝑎𝑥𝑠𝑙𝑜𝑡)
2: 𝑛𝑜𝑑𝑒← 𝑟
3: 𝑑𝑒𝑝𝑡ℎ← 0
4: for each c in 𝒬 do
5: 𝑛𝑜𝑑𝑒← insert(c) ◁ If 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 is exceeded, the expansion of strings occurs
6: if 𝑛𝑜𝑑𝑒.𝑏𝑒𝑔𝑖𝑛𝑅𝑎𝑛𝑔𝑒 = -1 then
7: 𝑛𝑜𝑑𝑒.𝑏𝑒𝑔𝑖𝑛𝑅𝑎𝑛𝑔𝑒← 𝒬𝑖𝑑

8: 𝑛𝑜𝑑𝑒.𝑒𝑛𝑑𝑅𝑎𝑛𝑔𝑒← 𝒬𝑖𝑑

9: 𝑑𝑒𝑝𝑡ℎ← 𝑑𝑒𝑝𝑡ℎ + 1
10: 𝑟𝑎𝑛𝑔𝑒← node.endRange - node.beginRange + 1
11: if 𝑟𝑎𝑛𝑔𝑒 ≤ 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 then
12: break
13: 𝑛𝑜𝑑𝑒.𝑖𝑠𝐿𝑒𝑎𝑓 ← True

In the second level a new search is performed for query suggestions that are similar
to the prefix query typed by the user. We use the boundary active nodes results from the
search in the first level to create the list of candidate results that should be inspected in
the second level. Whenever a leaf node in the TRIE becomes a boundary active node, we
extract the range of query suggestions covered by it and associate the edit vector automata
(EVA) state of such node to each of the query suggestion found, inserting these suggestion
in the list of candidates to be inspected at the second level of query processing. We then
continue process new characters typed by the user, always updating the list of boundary
active nodes and sequentially evaluating all candidate suggestions using the EVA states
inferred from the first level. Finally, query suggestions that have edit distance within the
desired threshold are computed as responses to the query. The architecture of the two-level
methods presented can be seen in detail in Figure 13.

4.2.3 Query Processing with Two-Level Approach

In this section we explain in more details the query processing with the first and
second level and the incremental computation of boundary active nodes or word active
nodes. BEVA is used on the first level to process queries and its edit vector automata is
reused on the second level to perform the edit distance calculation between words and
prefix query. We use the edit vector automata to drive the traversal on the TRIE. Hence,
an active node of the query is always associated with a state in the edit vector automata.
Initially, the only active node is the root node of the TRIE, associated with the initial
state 𝑆0.

The adaptation of the 𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 function proposed in Zhou et al. (2016) is shown
in the Algorithm 5. This function takes 𝑐, |𝒫|,𝒜, and𝒲 as parameters, which represents
the current character from prefix query, prefix query length, list of active nodes and list of

4.2. Two-Level Approach 57

C

N0

N1

[1,9]

[1,2]

M N2

[3,6]

I N3

[3,6]

D N4

[3,5]

S N8

[6,6]

F N6

[4,4]

D N5

[3,3]

W N7

[5,5]

S N9

[7,9]

E N10

[7,9]

M N11

[7,9]

I N12

[7,9]

C N13

[7,7]

F N14

[8,8]

P N15

[9,9]

Dataset

2 childhood

1 child

3 midday

4 midfield

5 midway

6 misunderstand

7 semicircle

8 semifinalist

9 semiprofessional

1º	Level 2º	Level

Edit	Vector
Automata	(EVA)

Figure 13: Architecture of our proposed methods using the two-level approach. On the left
side we have our first level with part of the strings indexed in the TRIE, the size of the
string to be indexed depends of the configured parameter. Each node in the tree has an
interval referring to the complete strings that this node covers. When we reach a given
node, we take its range and directly access the complete string in the list of strings. In
this index we run the BEVA with adaptations. On the right side of the figure is our list of
complete strings in lexicographic order, in which we obtain the complete string from the
first level. We run the also the second level in this list of complete strings, but only in
subsets covered by active nodes or covered by active word nodes. At the bottom of the
figure we have the EVA structure that allows the efficient the edit distance calculation
between two strings by storing states associated with the active nodes. Both levels use
this structure.

word active nodes, respectively. Initially, in line 2, the global bitmaps are updated. When
the prefix query length is 1, the only active node is the root node associated with the
initial state 𝒮′, as described in lines 3 and 4. The search for new active nodes only starts
when |𝒫| ≥ 𝜏 , 𝜏 being the edit distance threshold, and this is checked on line 5. In line
6 and 7 are instantiated the list of active nodes and the list of word active nodes, both
empty. If the list of word active nodes from the previous prefix query is not empty, the
Algorithm 8 is called to find new word active nodes from word active nodes from previous
prefix query and these nodes are concatenated in the new list of word active nodes, as

58 Chapter 4. Improving BEVA

Algorithm 5 Process prefix query
1: procedure Maintain(𝑐, |𝒫|,𝒜,𝒲)
2: updateBitmap(𝑐)
3: if |𝒫| = 1 then
4: 𝒜 ← ⟨𝑟,𝒮0⟩
5: else if |𝒫| ≥ 𝜏 then
6: 𝒜′ ← ∅
7: 𝒲 ′ ← ∅
8: for each ⟨𝑤,𝒮⟩ in 𝒲 do
9: 𝒲 ′ ←𝒲 ′ ∪ findWordActiveNodes(|𝒫|, ⟨𝑤,𝒮⟩)

10: for each ⟨𝑛,𝒮⟩ in 𝒜 do
11: if n.isLeaf then
12: 𝒲 ′ ←𝒲 ′ ∪ findWordActiveNodes(|𝒫|, ⟨𝑛,𝒮⟩)
13: else
14: 𝒜′,𝒲 ′ ← 𝒜′,𝒲 ′ ∪ findActiveNodes(|𝒫|, ⟨𝑛,𝒮⟩)
15: 𝒜 ← 𝒜′

16: 𝒲 ←𝒲 ′

17: return 𝒜,𝒲

can be seen in lines 8 and 9. In line 10, the iteration in the boundary active nodes of the
previous prefix query in the first level is performed. Finally, the Algorithm 6 is called to
transverse its descendants and search new boundary active nodes. If the processing at the
first level reaches a leaf node in the TRIE, then the Algorithm 7 is called to transfer the
processing to the second level, because for such leaf node does not have children nodes
but this leaf node can have an suffix in second level, so does not have all the answers in
first level and for this reason the second level is triggered in order to get all the results
and the results are concatenated in the new lists of active nodes and word active nodes
and returned, as shown in lines 10 to 15.

The Algorithm 6 is derived from Algorithm 2: FindActive proposed by Zhou
et al. (2016). The difference is that if a given node is a leaf node, the processing that
started at the first level will be transferred to the second level (both processes will happen
together in case of LS method). The answers are computed in the findWordActiveNodes
and findActiveNodes functions independently, but without duplicates.

In the Algorithm 7, the processing will be performed from the list of global queries
determined by the range contained in the active node of the previous prefix query, lines
3, 4 and 5. This algorithm is only used when we are processing at the first level and
we transfer the processing to the second level. If we find any word active nodes in this
step it will be processed in the next prefix query directly by the Algorithm 8 called from
Maintain algorithm 5. This processing is performed incrementally, as in the first level,
using the active nodes of the previous prefix query typed by the user. For instance, if the
user typed a query “abcd”, and then type an “e” to complement it, the “abcde” prefix will

4.2. Two-Level Approach 59

Algorithm 6 Find active nodes
1: procedure FindActiveNodes(|𝒫|, ⟨𝑛,𝒮⟩)
2: 𝒜 ← ∅
3: 𝒲 ← ∅
4: 𝑙𝑒𝑣𝑒𝑙← 𝑛.𝑙𝑒𝑣𝑒𝑙 + 1
5: for each child n’ of n do
6: ℬ𝑛′ ← buildBitmap(|𝒫|, 𝑙𝑒𝑣𝑒𝑙, 𝑛′.𝑐ℎ𝑎𝑟)
7: 𝒮 ′ ← 𝑓(𝒮,ℬ𝑛′)
8: if 𝒮 ′ ̸= 𝒮⊥ then
9: if 𝒮 ′[|𝒫| − 𝑙𝑒𝑣𝑒𝑙] ≤ 𝜏 then

10: 𝒜 ← 𝒜 ∪ ⟨𝑛′,𝒮 ′⟩
11: else if n’.isLeaf then
12: 𝒲 ←𝒲 ∪ findWordActiveNodes(|𝒫|, ⟨𝑛′,𝒮 ′⟩)
13: else
14: 𝒜,𝒲 ← 𝒜,𝒲 ∪ findActiveNodes(|𝒫|, ⟨𝑛′,𝒮 ′⟩)
15: return 𝒜,𝒲

Algorithm 7 Find word active nodes
1: procedure findWordActiveNodes(|𝒫|, ⟨𝑛,𝒮⟩)
2: 𝒲 ← ∅
3: for each record in records[n.beginRange, n.endRange] do
4: 𝑤′ ← ⟨𝑟𝑒𝑐𝑜𝑟𝑑.𝑖𝑑, 𝑛.𝑙𝑒𝑣𝑒𝑙⟩
5: 𝒲 ←𝒲 ∪ CalculateEDWords(|𝒫|, ⟨𝑤′,𝒮⟩)
6: return 𝒲

be computed taking the active nodes computed when processing the query up to “abcd”.

Algorithm 8 Calculate edit distance and save new word active nodes
1: procedure CalculateEDWords(|𝒫|, ⟨𝑤,𝒮⟩)
2: 𝒲 ← ∅
3: while 𝑛.𝑙𝑒𝑣𝑒𝑙 < |𝑟𝑒𝑐𝑜𝑟𝑑𝑠[𝑤.𝑖𝑑]| do
4: 𝑛.𝑙𝑒𝑣𝑒𝑙← 𝑛.𝑙𝑒𝑣𝑒𝑙 + 1
5: ℬ𝑛′ ← buildBitmap(|𝒫|, 𝑛.𝑙𝑒𝑣𝑒𝑙, 𝑟𝑒𝑐𝑜𝑟𝑑𝑠[𝑤.𝑖𝑑][𝑙𝑒𝑣𝑒𝑙])
6: 𝒮 ′ ← 𝑓(𝒮,ℬ𝑛′)
7: if 𝒮 ′ ̸= 𝒮⊥ then
8: if 𝒮 ′[|𝒫| − 𝑛.𝑙𝑒𝑣𝑒𝑙] ≤ 𝜏 then
9: 𝑤′ ← ⟨𝑤.𝑖𝑑, 𝑛.𝑙𝑒𝑣𝑒𝑙⟩

10: 𝒲 ←𝒲 ∪ ⟨𝑤′,𝒮 ′⟩
11: break
12: return 𝒲

The Algorithm 8 shows how the new word active nodes are computed. The
processing is also performed incrementally, and the edit vector automata proposed by Zhou
et al. (2016) is used to calculate the edit distance between two strings. The processing
is similar to the Algorithm 6, with the difference that we have words instead of prefixes
queries from TRIE. When the edit distance in the new state is within the edit distance

60 Chapter 4. Improving BEVA

threshold, then a new word active node is computed as a response, and the processing
terminates as described in lines 8 to 11. Otherwise, a new character must be checked.

4.2.3.1 Running a Query with LS method

Here we will show an example of execution. Consider that the prefix query is “midd”,
the edit distance threshold is 𝜏 = 1 and the strings indexed in the TRIE are: “child”,
“childhood”, “midday”, “midfield”, “midway”, “misunderstand”, “semicircle”, “semifinalist“
and “ semiprofessional“, as shown in Figure 14. We will show query processing for LS
method and the value from 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 is 3. For the prefix query “midd” the processing was
performed at the first level with the BEVA algorithm and the boundary active node
computed is only 𝑛4, as shown in gray in Figure 14. This boundary active node is
associated with the state of the automaton as follows: {[𝑛4, 𝑓(𝑆0, 011) = 𝑆0]}, as shown
in the Table 5 until step 5. When the prefix query is incremented and a character “a”
is appended to the previous prefix query, a new set of active nodes must be computed
for the new prefix query “midda”. The computation of the new set will be performed
incrementally starting the boundary active node of the previous prefix query.

C

N0

N1

[1,9]

[1,2]

M N2

[3,6]

I N3

[3,6]

D N4

[3,5]

S N8

[6,6]

S N9

[7,9]

Figure 14: Representation of query processing using the LS method. Consider the prefix
query “midd”. The boundary active prefix set is {𝑛4}.

The new set of active nodes is computed in Algorithm 5. The new set of active
nodes of the prefix query “midda” is computed starting from node 𝑛4. Thus, we process
the node 𝑛4, as the node 𝑛4 is a leaf node, the Algorithm 7 is called to process the set of
active nodes in the second level.

We obtain the range of ids covered by node 𝑛4 in Algorithm 7. Such range can
access the list of words: “midday”, “midfield”, and “midway” from the list of all words in
the dataset. For each string in this list, we will calculate the edit distance between the
string and the prefix query using the edit vector automata, through the Algorithm 8. The
edit distances of the prefix query for each string are shown as follows: 𝑒𝑑(𝑚𝑖𝑑𝑑𝑎, 𝑚𝑖𝑑𝑑) = 1,

4.2. Two-Level Approach 61

𝑒𝑑(𝑚𝑖𝑑𝑑𝑎, 𝑚𝑖𝑑𝑓𝑖) = 2 and 𝑒𝑑(𝑚𝑖𝑑𝑑𝑎, 𝑚𝑖𝑑𝑤𝑎) = 1. Thus, the strings 𝑚𝑖𝑑𝑑𝑎𝑦 and 𝑚𝑖𝑑𝑤𝑎𝑦

analyzed are within the edit distance threshold and therefore, will be part of the new list
of active nodes, the called word active nodes, in which each node stores the word and the
state associated in the automaton.

Step 𝒫 Boundary Active Node Set
and Word Active Node Set

1 𝜖 {[𝑛0, 𝑆0]}
2 𝑚 {[𝑛0, 𝑆0]}
3 𝑖 {[𝑛2, 𝑓(𝑆0, 010) = 𝑆0]}
4 𝑑 {[𝑛3, 𝑓(𝑆0, 010) = 𝑆0]}
5 𝑑 {[𝑛4, 𝑓(𝑆0, 011) = 𝑆0]}
6 𝑎 {[𝑖𝑑3, 𝑓(𝑆0, 110) = 𝑆0] , [𝑖𝑑5, 𝑓(𝑆4, 111) = 𝑆5]}
7 𝑦 {[𝑖𝑑3, 𝑓(𝑆0, 001) = 𝑆0] , [𝑖𝑑5, 𝑓(𝑆4, 000) = 𝑆4]}

Table 5: Query processing with LS method for prefix query “midday”. The boundary active
nodes set obtained in the first level, shown in step 1 to 4. And the word active node set
obtained in the second level, shown in step 5 to 7.

Finally, the character “y” will be added to the previous prefix query, forming the
new prefix query “midday”. Such prefix query will be initially processed in the Algorithm
5 and then it will be verified that the list of nodes from the first level is empty, so the
Algorithm 7 will be called direct in line 9 of the Algorithm 5. And then the process for
computing the edit distances will be repeated starting from list of word active nodes of
the previous prefix query. After doing the edit distance calculations, the strings “midday”
and “midway” will be added to the new list of word active nodes. The complete process is
show in the Table 5.

63

5 Results

In this chapter, we analyze and report the results of the study of parameters for
the proposed methods, their advantages, disadvantages and scenarios in which they can
be better used. We also compare our proposed methods with the baseline methods and we
proposed improvements to such methods in literature. At the end of these experiments, we
hope to answer the following question: (1) The alternative implementations of BEVA are
able to reduce the memory requirements for performing query autocompletion ? (2) What
is the impact of the new index building strategies proposed (laat) in overall performance
of the query autocompletion methods studied ? (3) How the two alternative two-level
methods proposed perform in practice ?

5.1 Experiments Setup

5.1.1 Experienced Methods

The following methods are analyzed in the experiments:

∙ META It is a method that uses indexing in compact trees, being able to reduce
redundant calculations in query autocompletion processing. Deng et al. (2016).

∙ BEVA is method based on the boundary maintenance strategy and edit vector
automata Zhou et al. (2016).

∙ LD Is BEVA with two-level approach and branches from TRIE with limited depth.

∙ LS Is BEVA with two-level approach and leaf nodes from TRIE with references to
lists in the second level with limited size or slot.

5.1.2 Experimental Environment and Datasets

All the experiments were carried out on a machine with Intel R○ Xeon E5-4617 2.90
GHz and 64GB RAM, running Ubuntu 18.04.1 LTS. We implemented all the algorithms
in C++ and compiled with gcc 7.4.0.

We select three publicly available dataset:

∙ USADDR1 Is a set with 10 million addresses and places of the United States,
extracted from the collection SimpleGeo CC0. From this database, the place names

1 http://archive.org/download/2011-08-SimpleGeo-CC0-Public-Spaces/

http://archive.org/download/2011-08-SimpleGeo-CC0-Public-Spaces/

64 Chapter 5. Results

were extracted and inserted into a single text file, where each row is equivalent to
one item.

∙ MEDLINE2 Is the main bibliographic database of the National Library (NLM),
which contains more than 14 million references to articles in health science journals,
with emphasis on biomedicine. MEDLINE is the online version of MEDLARS (System
of Analysis and Recovery of Medical Literature), originated in 1964. The title of
each article was extracted, removing duplications. Each title extracted is one item in
the file.

∙ DBLP3 About 4.5 million computer science publication records. For the experiments,
we extracted only title of each publication and output it line-by-line into a file.

Dataset Items Words Avg len
words

Avg len
items

USADDR 10,251,121 32,408,910 5.8 20.7
MEDLINE 14,419,464 168,912,499 6.7 90.1

DBLP 4,544,402 43,937,367 6.9 75.7

Table 6: Dataset Statistics

5.1.3 Settings

For MEDLINE, USADDR and DBLP we follow Chaudhuri and Kaushik (2009) to
randomly sample 1,000 strings as prefix queries. Such prefix queries received a number of
errors that are within range 0− 𝜏 at any position in the prefix query, where the number
of errors and the error position in the prefix query were randomly chosen. The query
processing and memory consumption were experimented in separated executions because
the method to collect memory consumption causes overhead in query processing time.

We measure (1) the query response time, which consists of the searching time
(separated at 1o and 2o level for proposed methods) and result fetching time (2) TRIE
index size and (3) the memory consumption (of each parameter experienced for proposed
methods). All the measures are averaged over 1,000 prefix queries. The query response
time was experimented with prefix query of sizes 5, 9, 13 and 17. The query response
time was experimented with all datasets described in this dissertation for edit distance
threshold 1, 2, 3 and 4. Edit distance thresholds greater than 4 are not common in real
systems, therefore, we not have performed with such edit distance threshold.

2 https://www.nlm.nih.gov/databases/download/pubmed_medline.html
3 https://dblp.uni-TRIEr.de/faq/How+can+I+download+the+whole+dblp+dataset

https://www.nlm.nih.gov/databases/download/pubmed_medline.html
https://dblp.uni-TRIEr.de/faq/How+can+I+download+the+whole+dblp+dataset

5.2. Improving Index Building 65

5.2 Improving Index Building
We decided to evaluate the TRIE build in the same direction that the strings are

searched in query processing. Our hypothesis with this is that the nodes in the TRIE
will be indexed in nearby memory addresses. Thus, we expect that the query processing
times will decrease due to the better performance of the cache policies of the machine. We
performed experiments to compare the performance of BEVA and also in the proposed
methods - which use the BEVA in the first level when running over TRIES built in the
two strategies, key-at-a-time (kaat) and level-at-a-time (laat). We have the processing
time for prefix queries sizes 5, 9, 13 and 17, varying the edit distance from 1 to 3 in the
USADDR, MEDLINE and DBLP datasets.

In Table 7, for USADDR dataset and 𝜏 = 1, we have a decrease of approximately
50% in the processing time of prefix queries of sizes 5, 9, 13 and 17 when the TRIE Built is
performed in laat strategy for the BEVA. When we increase the 𝜏 to 2, this time difference
is almost three times smaller when compared to the processing time when we use the kaat
strategy in the TRIE building and this difference remains when we analyze the results
for 𝜏 = 3. In the DBLP dataset, the difference is even greater than in the USADDR
dataset, for prefix queries of sizes 5, 9, 13 and 17 and 𝜏 = 1 we have the Beva-laat method
more than twice faster than the BEVA-kaat method, and when we increase the 𝜏 to
3, for example, we have the BEVA-laat method more than three times faster than the
BEVA-kaat method. A really considerable decrease in time using a state-of-the-art method.
In the comparisons with the baselines methods (Section 5.3) we will use the BEVA-laat
method.

𝜏 = 1 𝜏 = 2 𝜏 = 3
|𝒫| = 5 |𝒫| = 9 |𝒫| = 13 |𝒫| = 17 |𝒫| = 5 |𝒫| = 9 |𝒫| = 13 |𝒫| = 17 |𝒫| = 5 |𝒫| = 9 |𝒫| = 13 |𝒫| = 17

USADDR
BEVA-laat 0.2 0.2 0.2 0.2 2.4 3.0 3.1 3.1 12.7 20.4 20.7 20.8
BEVA-kaat 0.4 0.4 0.5 0.5 6.7 7.6 7.6 7.7 36.2 48.7 49.0 49.1

MEDLINE
BEVA-laat 0.2 1.5 1.5 1.5 1.8 2.0 2.1 2.1 6.6 9.4 9.5 9.6
BEVA-kaat 0.6 2.3 2.3 2.3 7.0 7.5 7.6 7.7 28.3 34.5 34.7 34.9

DBLP
BEVA-laat 0.2 0.2 0.2 0.2 1.6 1.9 1.9 1.9 5.8 8.2 8.3 8.3
BEVA-kaat 0.5 0.5 0.5 0.5 5.0 5.4 5.4 5.5 21.0 25.7 25.9 25.9 5

Table 7: Query processing time (ms) of the BEVA with the TRIE Built in laat and kaat
strategies with prefix queries of sizes 5, 7, 9, 13 and 17 and 𝜏 from 1 to 3.

The reason for this significant decrease in times when using BEVA-laat is due to the
lower number of cache misses that occur when processing with BEVA-laat when compared
to BEVA-kaat. In Table 8 we present the numbers of cache misses at level 1 and the last
level from machine cache hierarchy, which are shown in columns D1 and DL, respectively.
We can see a reduction in the number of caches misses at level 1 from 652,070,680 to
439,034,841 and at the last level from 469,774,543 to 231,654,885. A considerable decrease
in the number of cache misses, being these cache misses responsible for the time difference

66 Chapter 5. Results

between the kaat and laat strategies. This cache misses numbers represent only a simulation
of memory cache misses, simulated by the CacheGrind program 4, it simulates a machine
with independent first-level instruction and data caches (I1 and D1), backed by a unified
second-level cache (L2). In a real scenario, the number of cache misses may be even higher
for others cache levels, however we were unable to do this full test.

Memory Cache Misses
D1 DL

BEVA-kaat 652,070,680 469,774,543
BEVA-laat 439,034,841 231,654,885

Table 8: Simulation of memory cache misses collected by the CacheGrind program in the
USADDR dataset for 𝜏 = 3.

In Tables 9 and 10 we show the experiments result for 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ with values 6,
8, 10, 12 and 14 and 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 with values 1, 2, 4, 6, 8 and 10, for LD and LS methods,
respectively. We quickly realized that unanimously the query processing times is shorter
when the TRIE is built using laat approach when compared to kaat strategy. For example,
for 𝜏 = 3, |𝒫| = 5 and MEDLINE dataset, the query processing times for the LD6 method
were 0.4 ms and 0.1 ms for the index built in kaat and laat strategies, respectively. As
we increase the value of 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ this trend continues. When we increase the prefix query
size to 17 or the edit distance threshold, we also see the same trend in the LD method
(see Table 9).

𝜏 = 1 𝜏 = 2 𝜏 = 3
|𝒫| = 5 |𝒫| = 9 |𝒫| = 13 |𝒫| = 17 |𝒫| = 5 |𝒫| = 9 |𝒫| = 13 |𝒫| = 17 |𝒫| = 5 |𝒫| = 9 |𝒫| = 13 |𝒫| = 17

kaat laat kaat laat kaat laat kaat laat kaat laat kaat laat kaat laat kaat laat kaat laat kaat laat kaat laat kaat laat
USADDR

LD6 0.3 0.2 0.7 0.6 0.9 0.7 0.9 0.8 4.8 2.7 6.9 4.9 7.2 5.2 7.2 5.2 20.7 17.2 42.7 39.8 43.3 40.5 43.4 40.6
LD8 0.4 0.2 0.4 0.3 0.6 0.4 0.6 0.4 5.8 2.6 6.6 3.4 6.8 3.6 6.9 3.7 26.0 13.4 35.5 22.3 36.2 23.1 36.3 23.1
LD10 0.4 0.2 0.4 0.3 0.5 0.3 0.5 0.3 6.3 2.6 7.0 3.2 7.2 3.4 7.2 3.4 31.3 13.3 41.8 21.0 42.4 21.6 42.5 21.7
LD12 0.4 0.2 0.4 0.2 0.5 0.3 0.5 0.3 6.5 2.6 7.2 3.2 7.3 3.3 7.3 3.4 33.0 13.4 44.0 21.0 44.3 21.4 44.4 21.5
LD14 0.4 0.2 0.5 0.2 0.5 0.2 0.5 0.3 6.7 2.6 7.5 3.2 7.5 3.3 7.6 3.3 34.3 13.5 45.8 21.0 46.0 21.3 46.1 21.4

MEDLINE
LD6 0.4 0.2 2.9 2.7 4.5 4.3 4.9 4.8 3.7 2.1 9.0 7.4 11.4 9.7 12.0 10.4 12.8 11.5 35.0 34.1 38.8 38.0 40.0 39.2
LD8 0.5 0.2 1.0 0.7 2.7 2.5 3.1 2.9 4.4 1.9 5.2 2.8 7.3 4.9 7.9 5.5 14.8 7.6 20.1 12.8 23.0 15.7 24.2 16.9
LD10 0.5 0.2 0.6 0.3 1.5 1.2 1.9 1.6 4.8 1.9 5.2 2.3 6.3 3.3 6.9 3.9 18.3 7.6 22.0 10.7 23.3 12.1 24.5 13.2
LD12 0.5 0.2 0.6 0.3 0.8 0.5 1.2 0.9 5.0 1.9 5.4 2.2 5.7 2.5 6.2 3.1 19.8 7.5 24.0 10.5 24.4 11.0 25.3 11.9
LD14 0.5 0.2 0.6 0.3 0.6 0.3 0.9 0.6 5.3 1.9 5.7 2.2 5.8 2.3 6.1 2.6 20.6 7.5 25.0 10.5 25.1 10.7 25.6 11.2

DBLP
LD6 0.3 0.2 1.0 0.8 1.3 1.2 1.4 1.2 2.9 1.8 4.6 3.6 5.2 4.1 5.3 4.2 9.0 8.2 17.8 17.2 18.8 18.3 19.0 18.5
LD8 0.4 0.2 0.5 0.3 0.8 0.6 0.9 0.7 3.5 1.7 3.9 2.1 4.3 2.6 4.5 2.7 11.3 6.4 14.7 9.8 15.5 10.6 15.8 10.8
LD10 0.4 0.2 0.4 0.2 0.6 0.4 0.7 0.5 3.9 1.7 4.1 2.0 4.4 2.2 4.5 2.4 14.4 6.4 17.3 8.8 17.7 9.3 18.0 9.6
LD12 0.4 0.2 0.4 0.2 0.5 0.3 0.6 0.4 4.0 1.7 4.3 1.9 4.4 2.0 4.5 2.2 16.0 6.4 19.2 8.8 19.4 9.1 19.6 9.3
LD14 0.4 0.2 0.4 0.2 0.4 0.2 0.5 0.3 4.1 1.7 4.4 1.9 4.4 2.0 4.5 2.1 16.7 6.5 20.1 9.0 20.2 9.2 20.4 9.3

Table 9: Query processing time (ms) of the LD with the TRIE Built in laat and kaat
strategies with queries of sizes 5, 9, 13 and 17 and 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ with values 6, 8, 10, 12 and
14 for 𝜏 varying from 1 to 3 in the USADDR, MEDLINE and DBLP datasets.

The difference between query processing time in the TRIE built with the laat and
kaat strategies increases when we increase the amount of information in the first level, as
when we increase the value of 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ or decrease the value of 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 for the LD and
4 https://valgrind.org/docs/manual/cg-manual.html

5.3. Selecting Parameters for the Proposed Methods 67

𝜏 = 1 𝜏 = 2 𝜏 = 3
|𝒫| = 5 |𝒫| = 9 |𝒫| = 13 |𝒫| = 17 |𝒫| = 5 |𝒫| = 9 |𝒫| = 13 |𝒫| = 17 |𝒫| = 5 |𝒫| = 9 |𝒫| = 13 |𝒫| = 17

kaat laat kaat laat kaat laat kaat laat kaat laat kaat laat kaat laat kaat laat kaat laat kaat laat kaat laat kaat laat
USADDR

LS-1 0.4 0.2 0.5 0.3 0.5 0.3 0.5 0.3 7.7 4.4 9.0 5.6 9.1 5.7 9.2 5.7 49.7 34.3 70.3 52.4 70.9 52.9 71.0 53.0
LS-2 0.4 0.2 0.5 0.3 0.5 0.3 0.5 0.4 7.8 5.1 9.3 6.5 9.4 6.6 9.4 6.6 53.2 41.2 75.6 61.8 76.2 62.4 76.3 62.4
LS-4 0.4 0.3 0.5 0.4 0.5 0.4 0.5 0.4 8.2 5.9 9.8 7.4 9.9 7.5 9.9 7.5 56.4 47.2 79.6 69.3 80.2 69.9 80.3 70.0
LS-6 0.4 0.3 0.5 0.4 0.5 0.4 0.5 0.4 8.4 6.4 10.0 7.9 10.1 8.1 10.1 8.1 58.6 50.3 82.1 72.7 82.7 73.3 82.8 73.4
LS-8 0.4 0.3 0.5 0.4 0.5 0.4 0.5 0.4 8.5 6.6 10.1 8.2 10.3 8.3 10.3 8.3 59.2 52.1 82.5 74.5 83.1 75.1 83.1 75.1
LS-10 0.4 0.3 0.5 0.4 0.5 0.4 0.6 0.4 8.7 6.9 10.3 8.5 10.5 8.6 10.5 8.6 59.8 53.5 83.0 75.9 83.5 76.5 83.6 76.6

MEDLINE
LS-1 0.5 0.3 0.7 0.4 0.7 0.4 0.7 0.4 6.8 4.3 7.6 5.0 7.7 5.0 7.8 5.1 36.3 27.6 44.9 35.1 45.3 35.5 45.4 35.6
LS-2 0.5 0.3 0.6 0.4 0.7 0.4 0.7 0.5 7.1 5.0 7.8 5.7 7.9 5.8 8.0 5.8 39.3 33.0 48.5 41.5 48.9 41.8 49.1 42.0
LS-4 0.5 0.3 0.6 0.4 0.6 0.4 0.6 0.4 7.5 5.8 8.3 6.6 8.4 6.7 8.5 6.8 42.4 37.4 52.1 46.4 52.5 46.8 52.7 47.0
LS-6 0.5 0.3 0.6 0.4 0.6 0.4 0.6 0.5 7.8 6.3 8.6 7.0 8.7 7.1 8.8 7.2 43.5 39.4 53.3 48.7 53.7 49.1 53.9 49.3
LS-8 0.5 0.4 0.6 0.4 0.6 0.5 0.7 0.5 8.0 6.6 8.9 7.4 9.0 7.5 9.0 7.6 44.2 40.5 54.0 49.8 54.4 50.2 54.6 50.5
LS-10 0.5 0.4 0.6 0.4 0.6 0.5 0.7 0.5 8.2 6.8 9.0 7.6 9.1 7.7 9.2 7.8 44.4 41.0 54.3 50.4 54.7 50.8 54.9 51.1

DBLP
LS-1 0.4 0.3 0.5 0.3 0.5 0.3 0.5 0.3 5.6 4.0 6.2 4.6 6.2 4.6 6.3 4.7 32.1 25.8 39.5 32.5 39.8 32.8 39.9 32.9
LS-2 0.4 0.3 0.5 0.3 0.5 0.4 0.5 0.4 6.1 4.8 6.7 5.4 6.8 5.5 6.9 5.5 34.2 30.8 42.1 38.2 42.4 38.5 42.5 38.6
LS-4 0.4 0.3 0.5 0.4 0.5 0.4 0.5 0.4 6.6 5.6 7.2 6.2 7.3 6.3 7.4 6.4 36.1 34.0 44.0 41.7 44.3 41.9 44.4 42.1
LS-6 0.4 0.4 0.5 0.4 0.5 0.4 0.6 0.5 6.9 6.0 7.6 6.7 7.6 6.8 7.7 6.8 36.7 34.7 44.5 42.3 44.8 42.6 44.9 42.7
LS-8 0.5 0.4 0.5 0.4 0.5 0.4 0.6 0.5 7.0 6.3 7.7 6.9 7.8 7.0 7.8 7.1 36.6 35.0 44.3 42.5 44.6 42.8 44.7 42.9
LS-10 0.5 0.4 0.5 0.4 0.6 0.5 0.6 0.5 7.1 6.5 7.8 7.1 7.9 7.2 7.9 7.2 36.2 34.8 43.8 42.2 44.1 42.5 44.2 42.6

Table 10: Query processing time (ms) of the LS with the TRIE Built in laat and kaat
strategies with queries of sizes 5, 9, 13 and 17 and 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 with values 1, 2, 4, 6, 8 and 10
for 𝜏 varying from 1 to 3 in the USADDR, MEDLINE and DBLP datasets.

LS methods, respectively. This is because, in the first level, node references are handled
more frequently, such references receive an addresses in memory during indexing. When
we build the TRIE with the kaat strategy, theses addresses of the nodes in memory are
more distant between each node, on the other hand, when we build the TRIE with the
laat strategy, the addresses of the nodes in memory are close. This proximity between
references facilitates the cache policies of the machine during query processing. And this
is more evident when: (1) we increase the processing volume, that is, when we increase
the value of 𝜏 , (2) the index in the first level is higher, that is, there are more references
of nodes in memory.

Thus, we conclude that the index built with the laat strategy is better than index
built with the kaat strategy. This implementation is relatively simple and does not affect
the size of the index in memory, the change is only in the location of the node addresses
in memory, which it also given the significant gain in performance of laat TRIE building.
We have adopted the laat TRIE building strategies for all the remaining experiments.

5.3 Selecting Parameters for the Proposed Methods
In this section, we analyze the selection of parameters for the proposed methods.

The LD and LS methods use the two-level approach, which consists of the query processing
in two step. Both LD and LS methods use the BEVA for query processing in the first level.
In the second level, sequential search is performed on the first level results and reuses the
edit vector automaton to calculate the edit distance between two sequences.

LD was analyzed with various thresholds to check query response time with different
amounts of characters indexed in the first level. This threshold is called 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ with

68 Chapter 5. Results

values varying from 4 to 15. Values of 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ less than 4 not were analyzed because
the query processing occurs frequently only in the second level. In same way, values of
𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ greater than 15 not were analyzed because, in this scenario, the query processing
occurs frequently only in the first level and the aim here is analyze the query processing
using the first and second level.

LS allows control the amount of information added to the second level. This control
is performed by a threshold called 𝑚𝑎𝑥𝑠𝑙𝑜𝑡, which consists of the string interval length
to be processed. The 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 threshold avoids the size of the list of words processed in
the second level to become large, ie, if the list size exceed this threshold, the indexing
process does not stop until we reach a level in the TRIE where it is not exceeded. We
experimented with values 1, 2, 4, 6, 8 and 10. Values of 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 greater than 10 not were
analyzed because we don’t want long processing in the second level.

The aim in this section is to study different values for 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ and 𝑚𝑎𝑥𝑠𝑙𝑜𝑡, their
advantages and disadvantages and try to choose the best value of 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ and 𝑚𝑎𝑥𝑠𝑙𝑜𝑡

for LD and LS methods, respectively, considering the query processing time and memory
consumption used for each dataset and edit distance threshold.

5.3.1 Query Response Time

Query response time is a very important metric for error-tolerant query autocom-
pletion algorithms. This metric helps us to identify fast and non-fast algorithms and
thus propose the best user experience in the computer systems, avoiding delays in the
interactive search session and showing responses at each user keystroke in a fluid way. The
query response times may vary depending of the prefix query characteristic, an example
is the prefix query length, ie, short prefix queries are processed fast when computing
the results, but present slower fetching times, on the other hand, long prefix queries are
processed fast when computing the search results and when fetching results.

We measure the searching time separated by levels when experimenting the two-
level strategies. The sum of values of the columns 1o and 2o in the Tables of the experiments
represent the searching time, fetch column represents the result fetching time and total
column represents the query response time (searching and fetching together). We present
the times separated by level to have a better perception of the time spent in each level. In
this way, we quickly see that there is a big difference in the query processing times spent
at each level as we vary the values of 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ for the LD method. The processing times
spent on small values of 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ such as 4, 5 and 6 is very high because small indexed
prefixes in TRIE tend to have large lists in the second level, and processing for large lists
in the second level is not efficient, as we can observe in Tables 11, 12 and 13 for LD4, LD5
and LD6 methods. This same behavior is not seen in prefix query length 5 in the LD5
and LD6 methods because the prefix query length is smaller than the TRIE level, so the

5.3. Selecting Parameters for the Proposed Methods 69

processing occurs with less frequency in the second level or only in the first level.

𝜏 = 3

method |𝒫| = 5 |𝒫| = 9 |𝒫| = 13 |𝒫| = 17 Mem
(MB)1o 2o fetch total 1o 2o fetch total 1o 2o fetch total 1o 2o fetch total

LD4 20.5 136.5 118.6 275.7 23.8 184.4 0.7 208.8 23.8 185.0 - 208.8 23.8 185.1 - 208.9 2041.7
LD5 17.6 26.8 118.5 163.0 26.0 59.9 0.7 86.6 26.0 60.5 - 86.6 26.0 60.6 - 86.6 2047.5
LD6 14.2 3.0 119.2 136.4 23.1 16.8 0.7 40.5 23.1 17.4 - 40.6 23.1 17.5 - 40.6 2076.4
LD7 13.5 0.2 118.9 132.6 21.5 4.5 0.7 26.7 21.6 5.1 - 26.7 21.6 5.2 - 26.8 2138.1
LD8 13.4 - 118.5 131.9 21.1 1.2 0.7 23.0 21.2 1.8 - 23.1 21.2 1.9 - 23.2 2230.0
LD9 13.5 - 118.5 132.0 21.1 0.3 0.7 22.0 21.4 0.8 - 22.2 21.4 0.9 - 22.3 2360.1
LD10 13.3 - 118.5 131.8 20.9 - 0.7 21.6 21.2 0.4 - 21.7 21.2 0.5 - 21.7 2527.6
LD11 13.3 - 117.6 130.9 20.9 - 0.7 21.5 21.2 0.2 - 21.4 21.2 0.3 - 21.5 2729.9
LD12 13.4 - 117.7 131.1 21.0 - 0.7 21.7 21.3 0.1 - 21.4 21.3 0.2 - 21.5 2959.6
LD13 13.3 - 117.5 130.8 20.9 - 0.7 21.6 21.2 - - 21.3 21.2 0.1 - 21.3 3207.6
LD14 13.5 - 120.3 133.7 21.0 - 0.7 21.7 21.3 - - 21.4 21.4 0.1 - 21.4 3465.2
LD15 13.3 - 117.9 131.2 21.0 - 0.7 21.6 21.3 - - 21.3 21.3 - - 21.4 3725.2
LS-1 20.7 13.6 115.6 149.9 31.2 21.2 0.7 53.0 31.5 21.4 - 53.0 31.5 21.4 - 53.0 2867.8
LS-2 22.9 18.3 116.1 157.3 33.8 28.0 0.7 62.4 34.1 28.3 - 62.4 34.1 28.3 - 62.5 2486.8
LS-4 24.2 23.0 116.6 163.8 34.8 34.5 0.7 70.0 35.1 34.8 - 70.0 35.1 34.8 - 70.0 2290.0
LS-6 24.7 25.6 116.6 166.9 35.0 37.8 0.7 73.4 35.2 38.1 - 73.4 35.2 38.1 - 73.4 2218.6
LS-8 24.8 27.3 116.7 168.8 34.7 39.8 0.7 75.2 35.0 40.1 - 75.1 35.0 40.2 - 75.1 2180.1
LS-10 24.8 28.7 116.6 170.2 34.4 41.5 0.7 76.6 34.6 41.9 - 76.5 34.7 41.9 - 76.6 2155.7

Table 11: Query processing time (at 1o and 2o level) and fetch time (ms) with prefix
queries of sizes 5, 9, 13 and 17 and 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ varying from 4 to 15 in LD, and 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 with
constants 1, 2, 4, 6, 8 and 10 in LS with memory usage value (MB) for each method in
USADDR dataset and 𝜏 = 3.

𝜏 = 3

method |𝒫| = 5 |𝒫| = 9 |𝒫| = 13 |𝒫| = 17 Mem
(MB)1o 2o fetch total 1o 2o fetch total 1o 2o fetch total 1o 2o fetch total

LD4 15.4 232.6 263.4 511.4 18.1 314.0 3.6 335.7 18.2 317.7 1.1 337.0 18.2 318.8 0.2 337.2 5905.6
LD5 10.3 35.3 259.7 305.3 14.2 84.0 3.7 101.9 14.3 87.6 1.1 103.1 14.3 88.7 0.2 103.3 5915.1
LD6 8.2 3.3 262.0 273.5 11.8 22.4 3.7 37.8 11.9 26.1 1.1 39.1 11.9 27.3 0.2 39.4 5928.5
LD7 7.7 0.2 268.1 276.0 11.0 6.8 3.7 21.5 11.1 10.2 1.1 22.4 11.1 11.3 0.2 22.6 5952.3
LD8 7.6 - 268.4 276.0 10.7 2.1 3.7 16.5 10.8 4.9 1.1 16.8 10.9 6.0 0.2 17.0 5987.8
LD9 7.6 - 264.9 272.4 10.6 0.4 3.7 14.7 10.7 2.5 1.1 14.3 10.8 3.6 0.2 14.6 6034.4
LD10 7.6 - 267.4 275.0 10.6 0.1 3.7 14.4 10.8 1.3 1.1 13.2 10.8 2.4 0.2 13.4 6094.2
LD11 7.6 - 265.7 273.3 10.7 - 3.6 14.3 10.8 0.7 1.1 12.6 10.9 1.7 0.2 12.7 6177.3
LD12 7.5 - 264.0 271.6 10.5 - 3.6 14.1 10.7 0.3 1.1 12.1 10.7 1.1 0.2 12.0 6287.7
LD13 7.6 - 265.1 272.7 10.6 - 3.7 14.2 10.8 0.1 1.1 12.0 10.8 0.7 0.2 11.8 6424.9
LD14 7.5 - 265.7 273.3 10.5 - 3.6 14.1 10.7 - 1.1 11.7 10.7 0.4 0.2 11.3 6592.0
LD15 7.7 - 265.0 272.7 10.6 - 3.7 14.3 10.8 - 1.1 11.9 10.9 0.2 0.2 11.3 6790.7
LS-1 14.6 12.9 260.4 288.0 18.8 16.3 3.6 38.8 19.0 16.4 1.1 36.5 19.1 16.5 0.2 35.8 8184.1
LS-2 16.3 16.7 262.7 295.7 20.6 20.9 3.6 45.1 20.8 21.0 1.1 42.9 20.9 21.1 0.2 42.2 6990.4
LS-4 17.2 20.1 265.3 302.7 21.4 25.0 3.6 50.0 21.6 25.2 1.1 47.9 21.7 25.3 0.2 47.2 6477.0
LS-6 17.5 21.9 263.0 302.4 21.6 27.1 3.6 52.3 21.8 27.3 1.1 50.2 21.9 27.4 0.2 49.5 6305.2
LS-8 17.5 22.9 267.2 307.6 21.4 28.4 3.7 53.5 21.6 28.6 1.0 51.3 21.7 28.8 0.2 50.6 6216.1
LS-10 17.4 23.6 264.9 305.9 21.2 29.3 3.6 54.1 21.3 29.5 1.1 51.9 21.4 29.6 0.2 51.2 6160.9

Table 12: Query processing time (at 1o and 2o level) and fetch time (ms) with prefix
queries of sizes 5, 9, 13 and 17 and 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ varying from 4 to 15 in LD, and 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 with
constants 1, 2, 4, 6, 8 and 10 in LS with memory usage value (MB) for each method in
MEDLINE dataset and 𝜏 = 3.

As we have seen, LD does not behave well when it has to process a large amount
of information in the second level. This is natural and occurs because we migrate (in part)
the processing from a TRIE structure to sequential search. The TRIE structure group
several words that have the common prefix, in this way, the processing is performed in one
node, but this single node can cover several words. On the other hand, the processing in
the second level is performed in a sequential list, which does not allow grouping of words,

70 Chapter 5. Results

so it is necessary to process several words, even if they have the common prefix. To try
avoid slow processing in the second level, we proposed the LS method that controls the
amount of information that is added to the second level.

The LS-1 especially allows a TRIE with few incomplete branches, so we have a
method that has the same complexity of the BEVA - which runs at the first level. Thus,
we expect that this method will have the query processing times similar to BEVA, our
premise to this is that we have an index closes to BEVA index. In addition, we also expect
to have less memory consumption than the BEVA because the LS method does not have
a complete TRIE.

LS better controls the amount of information that is added to the second level.
Thus, we does not have a large disparity of time in the second level processing as we
increase the values of 𝑚𝑎𝑥𝑠𝑙𝑜𝑡, as it happens for the LD method in short prefixes indexed in
the TRIE. In Tables 11, 12 and 13 it is possible to observe that the processing times taken
in the second level grows slightly as we increase the values of 𝑚𝑎𝑥𝑠𝑙𝑜𝑡. In contrast, there
are always processing in the second level, even for small prefix queries, such as the prefix
query length 5. This is because there are several words in the TRIE that may be indexed
with a prefix smaller than the prefix query length. For example, the word “schwarzenegger”
may not have a common prefix with any word in a given dataset, so this word may have
only one character indexed in the TRIE and a reference to a list with a single word in the
second level.

𝜏 = 3

method |𝒫| = 5 |𝒫| = 9 |𝒫| = 13 |𝒫| = 17 Mem
(MB)1o 2o fetch total 1o 2o fetch total 1o 2o fetch total 1o 2o fetch total

LD4 13.9 76.7 92.4 183.0 15.8 102.2 1.0 119.0 15.9 103.1 0.2 119.2 15.9 103.4 - 119.3 1774.8
LD5 8.6 12.7 91.8 113.2 11.8 28.7 1.0 41.6 11.9 29.7 0.2 41.7 11.9 29.9 - 41.8 1777.0
LD6 6.7 1.5 91.8 100.0 9.5 7.8 1.0 18.3 9.5 8.7 0.2 18.5 9.5 9.0 - 18.6 1786.0
LD7 6.4 0.2 91.4 98.0 9.0 2.5 1.0 12.6 9.1 3.4 0.2 12.7 9.1 3.7 - 12.8 1801.0
LD8 6.4 - 90.7 97.0 8.9 0.9 1.0 10.8 9.0 1.6 0.2 10.8 9.0 1.8 - 10.9 1822.0
LD9 6.4 - 92.7 99.1 8.9 0.2 1.0 10.1 9.0 0.8 0.2 10.0 9.0 1.0 - 10.1 1849.2
LD10 6.4 - 90.8 97.2 8.8 0.1 1.0 9.8 8.9 0.4 0.2 9.5 8.9 0.7 - 9.6 1883.6
LD11 6.4 - 91.9 98.2 8.8 - 1.0 9.8 8.9 0.2 0.2 9.3 8.9 0.4 - 9.4 1926.5
LD12 6.4 - 92.5 98.9 8.8 - 1.0 9.8 9.0 0.1 0.2 9.3 9.0 0.3 - 9.3 1979.1
LD13 6.3 - 91.2 97.5 8.8 - 1.0 9.8 8.9 - 0.2 9.1 8.9 0.2 - 9.2 2042.7
LD14 6.5 - 91.2 97.7 9.0 - 1.0 10.0 9.1 - 0.2 9.3 9.2 0.1 - 9.4 2117.8
LD15 6.5 - 91.8 98.2 9.0 - 1.0 10.0 9.1 - 0.2 9.3 9.2 0.1 - 9.3 2205.0
LS-1 13.4 12.5 90.1 115.9 16.9 15.6 1.0 33.5 17.0 15.7 0.2 32.9 17.1 15.8 - 32.9 2756.2
LS-2 14.9 15.9 90.4 121.2 18.4 19.8 1.0 39.2 18.6 19.9 0.2 38.7 18.6 19.9 - 38.6 2105.2
LS-4 15.5 18.4 91.6 125.6 18.9 22.7 1.0 42.7 19.1 22.9 0.2 42.1 19.1 22.9 - 42.1 1936.7
LS-6 15.4 19.2 90.9 125.5 18.7 23.7 1.0 43.3 18.8 23.8 0.2 42.8 18.8 23.9 - 42.7 1886.8
LS-8 15.2 19.8 91.2 126.2 18.2 24.3 1.0 43.5 18.4 24.4 0.2 43.0 18.4 24.5 - 42.9 1860.8
LS-10 14.9 19.9 91.4 126.2 17.8 24.4 1.0 43.2 17.9 24.6 0.2 42.7 17.9 24.7 - 42.6 1845.0

Table 13: Query processing time (at 1o and 2o level) and fetch time (ms) with prefix
queries of sizes 5, 9, 13 and 17 and 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ varying from 4 to 15 in LD, and 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 with
constants 1, 2, 4, 6, 8 and 10 in LS with memory usage value (MB) for each method in
DBLP dataset and 𝜏 = 3.

For |𝒫| = 5 and 𝜏 = 1 the LS and LD methods presented very close time in the
USADDR and DBLP datasets. When we compare LD4 and LD5 with the LS method
(for any value of 𝑚𝑎𝑥𝑠𝑙𝑜𝑡) the LS method was faster (Tables 14 and 16). In this scenario,

5.3. Selecting Parameters for the Proposed Methods 71

the LS method is faster due to better control of the amount of information added to the
second level, ie, there are always little information in the second level, unlike the LD4 and
LD5 methods, which processes large lists of words in the second level. When we increase
the prefix query length to 9, 13, and 17 the LD method becomes quite competitive and,
for large prefixes, it is slightly better than LS (for any value of 𝑚𝑎𝑥𝑠𝑙𝑜𝑡). This is because
the second level is triggered for smaller lists, until processing does not exist in this level,
as we can see in Tables 14 and 16, |𝒫| = 9 and 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ varying from 10 to 15.

In the MEDLINE dataset and 𝜏 = 1 (Table 15) we see an advantage for the LS
method. For |𝒫| = 5, the searching time was better in the LD method, but the fetching
time was better in the LS, and the fetching time dominated the response time for this
prefix query. For |𝒫| = 9, the searching time was better for the LS method, but the
fetching time was better in the LD method, as the fetching time dominated, the response
time for this prefix query was better in the LD method. For |𝒫| = 13 and |𝒫| = 17 the
fetching time is almost negligible and so the LS method is better than LD method, as we
increase the values of 𝑚𝑎𝑥𝑠𝑙𝑜𝑡, this is because the first level time decreased considerably
when we increased the size of the lists in the second level and as we’ve already seen, the
expected is that we don’t have a long time in the second level for LS method, while in the
LD method we had an increase in the first level time and the decrease in the second level
time was not sufficient to compensate such increasing.

𝜏 = 1

method |𝒫| = 5 |𝒫| = 9 |𝒫| = 13 |𝒫| = 17 Mem
(MB)1o 2o fetch total 1o 2o fetch total 1o 2o fetch total 1o 2o fetch total

LD4 0.2 1.2 1.0 2.4 0.2 2.2 0.1 2.5 0.2 2.3 - 2.5 0.2 2.3 - 2.5 2021.9
LD5 0.2 0.1 0.9 1.2 0.2 0.8 0.1 1.1 0.2 0.9 - 1.2 0.2 0.9 - 1.2 2035.6
LD6 0.2 - 1.0 1.1 0.2 0.4 0.1 0.7 0.2 0.5 - 0.7 0.2 0.5 - 0.8 2068.8
LD7 0.2 - 0.9 1.1 0.2 0.2 0.1 0.5 0.2 0.3 - 0.5 0.2 0.3 - 0.5 2131.2
LD8 0.2 - 1.0 1.1 0.2 0.1 0.1 0.4 0.2 0.2 - 0.4 0.2 0.2 - 0.4 2225.1
LD9 0.2 - 0.9 1.1 0.2 - 0.1 0.3 0.2 0.1 - 0.4 0.2 0.1 - 0.4 2355.0
LD10 0.2 - 0.9 1.2 0.2 - 0.1 0.3 0.3 0.1 - 0.3 0.3 0.1 - 0.3 2522.5
LD11 0.2 - 0.9 1.1 0.2 - 0.1 0.3 0.2 - - 0.3 0.2 - - 0.3 2724.7
LD12 0.2 - 1.0 1.1 0.2 - 0.1 0.3 0.3 - - 0.3 0.3 - - 0.3 2954.4
LD13 0.2 - 0.9 1.1 0.2 - 0.1 0.3 0.2 - - 0.3 0.3 - - 0.3 3202.4
LD14 0.2 - 0.9 1.1 0.2 - 0.1 0.3 0.2 - - 0.3 0.2 - - 0.3 3460.0
LD15 0.2 - 0.9 1.1 0.2 - 0.1 0.3 0.2 - - 0.3 0.2 - - 0.3 3720.0
LS-1 0.2 - 0.9 1.2 0.2 0.1 0.1 0.4 0.3 0.1 - 0.3 0.3 0.1 - 0.3 2862.5
LS-2 0.2 - 0.9 1.2 0.2 0.1 0.1 0.4 0.3 0.1 - 0.4 0.3 0.1 - 0.4 2481.5
LS-4 0.2 0.1 0.9 1.2 0.3 0.1 0.1 0.4 0.3 0.1 - 0.4 0.3 0.1 - 0.4 2284.7
LS-6 0.2 0.1 0.9 1.2 0.3 0.1 0.1 0.5 0.3 0.1 - 0.4 0.3 0.1 - 0.4 2213.3
LS-8 0.2 0.1 0.9 1.2 0.3 0.1 0.1 0.5 0.3 0.2 - 0.4 0.3 0.2 - 0.4 2174.7
LS-10 0.2 0.1 0.9 1.3 0.3 0.2 0.1 0.5 0.3 0.2 - 0.4 0.3 0.2 - 0.4 2150.2

Table 14: Query processing time (at 1o and 2o level) and fetch time (ms) with prefix
queries of sizes 5, 9, 13 and 17 and 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ varying from 4 to 15 in LD, and 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 with
constants 1, 2, 4, 6, 8 and 10 in LS with memory usage value (MB) for each method in
USADDR dataset and 𝜏 = 1.

When we have a higher volume of processing, as occurs when we increase the edit
distance threshold to 2, 3 or 4 we see that LD is faster than LS as we increase the values of

72 Chapter 5. Results

𝜏 = 1

method |𝒫| = 5 |𝒫| = 9 |𝒫| = 13 |𝒫| = 17 Mem
(MB)1o 2o fetch total 1o 2o fetch total 1o 2o fetch total 1o 2o fetch total

LD4 0.2 3.4 13.4 17.1 0.3 10.0 1.5 11.9 0.4 11.6 0.4 12.4 0.4 12.0 0.1 12.5 5900.4
LD5 0.2 0.5 13.4 14.1 0.3 5.2 1.5 7.0 0.4 6.8 0.4 7.6 0.4 7.2 0.1 7.7 5907.9
LD6 0.2 - 13.5 13.7 0.3 2.4 1.5 4.2 0.3 4.0 0.4 4.8 0.3 4.4 0.1 4.8 5922.7
LD7 0.2 - 13.4 13.6 0.3 1.2 1.5 3.0 0.4 2.8 0.4 3.6 0.4 3.2 0.1 3.6 5946.9
LD8 0.2 - 13.7 13.9 0.3 0.4 1.5 2.2 0.4 2.1 0.4 2.9 0.4 2.5 0.1 3.0 5982.5
LD9 0.2 - 13.3 13.5 0.3 0.1 1.5 1.9 0.3 1.4 0.4 2.2 0.4 1.8 0.1 2.2 6029.1
LD10 0.2 - 13.4 13.6 0.3 - 1.5 1.8 0.3 0.9 0.4 1.6 0.3 1.3 0.1 1.7 6089.4
LD11 0.2 - 13.7 13.9 0.3 - 1.5 1.8 0.3 0.5 0.4 1.3 0.3 0.9 0.1 1.4 6172.8
LD12 0.2 - 13.6 13.8 0.3 - 1.5 1.8 0.3 0.2 0.4 0.9 0.3 0.6 0.1 1.0 6283.5
LD13 0.2 - 13.4 13.6 0.3 - 1.5 1.8 0.3 - 0.4 0.7 0.3 0.4 0.1 0.8 6420.5
LD14 0.2 - 13.4 13.6 0.3 - 1.5 1.8 0.3 - 0.4 0.7 0.3 0.2 0.1 0.6 6587.5
LD15 0.2 - 13.4 13.6 0.3 - 1.5 1.8 0.3 - 0.4 0.7 0.3 0.1 0.1 0.5 6786.0
LS-1 0.2 0.1 13.3 13.6 0.3 0.1 1.5 1.9 0.4 0.1 0.4 0.8 0.4 0.1 0.1 0.5 8179.2
LS-2 0.2 0.1 13.4 13.7 0.3 0.1 1.5 1.9 0.3 0.1 0.4 0.8 0.4 0.1 0.1 0.5 6985.6
LS-4 0.2 0.1 13.5 13.8 0.3 0.1 1.6 2.0 0.3 0.1 0.4 0.8 0.3 0.1 0.1 0.5 6472.2
LS-6 0.2 0.1 13.3 13.6 0.3 0.2 1.6 2.0 0.3 0.2 0.4 0.8 0.3 0.2 0.1 0.5 6300.4
LS-8 0.2 0.1 13.5 13.9 0.3 0.2 1.6 2.0 0.3 0.2 0.4 0.9 0.3 0.2 0.1 0.6 6211.3
LS-10 0.2 0.1 13.4 13.8 0.3 0.2 1.6 2.0 0.3 0.2 0.4 0.9 0.3 0.2 0.1 0.6 6155.9

Table 15: Query processing time (at 1o and 2o level) and fetch time (ms) with prefix
queries of sizes 5, 9, 13 and 17 and 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ varying from 4 to 15 in LD, and 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 with
constants 1, 2, 4, 6, 8 and 10 in LS with memory usage value (MB) for each method in
MEDLINE dataset and 𝜏 = 1.

𝜏 = 1

method |𝒫| = 5 |𝒫| = 9 |𝒫| = 13 |𝒫| = 17 Mem
(MB)1o 2o fetch total 1o 2o fetch total 1o 2o fetch total 1o 2o fetch total

LD4 0.2 0.9 2.7 3.8 0.2 2.7 0.3 3.2 0.2 3.0 0.1 3.3 0.3 3.1 - 3.3 1764.0
LD5 0.2 0.1 2.7 3.0 0.2 1.4 0.3 1.9 0.2 1.7 0.1 2.0 0.2 1.8 - 2.0 1770.1
LD6 0.2 - 2.7 2.9 0.2 0.6 0.3 1.1 0.2 0.9 0.1 1.2 0.2 1.0 - 1.3 1780.8
LD7 0.2 - 2.7 2.9 0.2 0.3 0.3 0.8 0.2 0.6 0.1 0.9 0.2 0.7 - 0.9 1796.3
LD8 0.2 - 2.7 2.9 0.2 0.1 0.3 0.5 0.2 0.4 0.1 0.7 0.2 0.5 - 0.7 1817.5
LD9 0.2 - 2.7 2.9 0.2 - 0.3 0.5 0.2 0.3 0.1 0.6 0.2 0.4 - 0.6 1844.7
LD10 0.2 - 2.9 3.1 0.2 - 0.3 0.5 0.2 0.2 0.1 0.5 0.2 0.3 - 0.5 1879.2
LD11 0.2 - 3.1 3.3 0.2 - 0.3 0.5 0.2 0.1 0.1 0.4 0.2 0.2 - 0.4 1922.2
LD12 0.2 - 2.7 2.9 0.2 - 0.3 0.5 0.2 - 0.1 0.3 0.2 0.1 - 0.4 1974.8
LD13 0.2 - 2.8 3.0 0.2 - 0.3 0.5 0.2 - 0.1 0.3 0.2 0.1 - 0.3 2038.2
LD14 0.2 - 2.7 2.9 0.2 - 0.3 0.5 0.2 - 0.1 0.3 0.2 0.1 - 0.3 2113.4
LD15 0.2 - 2.8 3.0 0.2 - 0.3 0.5 0.2 - 0.1 0.3 0.2 - - 0.3 2200.5
LS-1 0.2 0.1 2.9 3.1 0.2 0.1 0.3 0.6 0.3 0.1 0.1 0.4 0.3 0.1 - 0.4 2751.5
LS-2 0.2 0.1 2.8 3.1 0.2 0.1 0.3 0.6 0.3 0.1 0.1 0.4 0.3 0.1 - 0.4 2100.6
LS-4 0.2 0.1 2.9 3.2 0.2 0.1 0.3 0.6 0.3 0.2 0.1 0.5 0.3 0.2 - 0.4 1932.0
LS-6 0.2 0.1 3.0 3.3 0.2 0.2 0.3 0.7 0.3 0.2 0.1 0.5 0.3 0.2 - 0.5 1882.0
LS-8 0.2 0.1 2.7 3.1 0.2 0.2 0.3 0.7 0.3 0.2 0.1 0.5 0.3 0.2 - 0.5 1856.2
LS-10 0.2 0.2 2.8 3.2 0.2 0.2 0.3 0.7 0.2 0.2 0.1 0.5 0.3 0.2 - 0.5 1840.3

Table 16: Query processing time (at 1o and 2o level) and fetch time (ms) with prefix
queries of sizes 5, 9, 13 and 17 and 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ varying from 4 to 15 in LD, and 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 with
constants 1, 2, 4, 6, 8 and 10 in LS with memory usage value (MB) for each method in
DBLP dataset and 𝜏 = 1.

5.3. Selecting Parameters for the Proposed Methods 73

𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ. For example, in the USADDR dataset, |𝒫| = 9 and 𝜏 = 3 (Table 11) the times
varying from LD8 to LD15 was between 23.1 ms and 21.3 ms while the time in the LS-1
(best configuration for LS) was 53 ms, ie, LD was twice fast than the LS and the same is
true for prefix queries sizes 13 and 17. In the MEDLINE and DBLP datasets (Tables 12
and 13), the same trend occurs and the LD advantage grows as we increase the value of 𝜏

(See Tables 18, 19 and 20). This great advantage for the LD surprised us and later we will
try to understand the reason for this.

𝜏 = 3

method |𝒫| = 5 |𝒫| = 9 |𝒫| = 13 |𝒫| = 17
nodes words it 1o it 2o nodes words it 1o it 2o nodes words it 1o it 2o nodes words it 1o it 2o

LD4 38.96 1412.35 105.07 1469.79 68.08 4835.46 150.51 5736.75 68.08 4848.83 150.51 5782.92 68.08 4850.18 150.51 5786.44
LD5 44.97 123.00 161.29 121.31 101.05 1165.10 317.25 1301.60 101.05 1183.38 317.25 1347.77 101.05 1184.72 317.25 1351.29
LD6 45.69 4.93 170.19 4.47 113.42 237.09 391.99 253.62 113.47 257.12 392.05 294.89 113.47 258.47 392.05 298.42
LD7 45.75 - 170.69 - 117.06 44.81 414.62 44.62 117.36 63.98 415.08 76.58 117.36 65.33 415.08 80.10
LD8 45.75 - 170.69 - 117.95 6.10 420.64 5.81 118.74 20.87 422.10 26.42 118.74 22.22 422.10 29.94
LD9 45.75 - 170.69 - 118.12 0.58 421.77 0.53 119.42 8.49 424.62 10.44 119.42 10.26 424.62 13.97
LD10 45.75 - 170.69 - 118.15 0.05 421.92 0.04 119.80 3.22 425.87 3.71 119.80 5.02 425.88 6.82
LD11 45.75 - 170.69 - 118.15 - 421.94 - 119.99 1.12 426.47 1.09 120.03 2.82 426.52 3.54
LD12 45.75 - 170.69 - 118.15 - 421.94 - 120.06 0.18 426.73 0.16 120.17 1.59 426.88 1.81
LD13 45.75 - 170.69 - 118.15 - 421.94 - 120.07 0.02 426.79 0.01 120.26 0.85 427.08 0.87
LD14 45.75 - 170.69 - 118.15 - 421.94 - 120.07 0.00 426.80 0.00 120.30 0.44 427.18 0.38
LD15 45.75 - 170.69 - 118.15 - 421.94 - 120.07 - 426.80 - 120.33 0.18 427.23 0.12
LS-1 44.33 9.77 160.44 10.25 110.97 35.15 382.72 39.22 112.44 36.09 386.25 40.54 112.62 36.21 386.56 40.71
LS-2 43.40 17.45 154.42 17.98 106.77 60.96 361.00 67.48 108.05 62.40 364.02 69.53 108.20 62.59 364.26 69.80
LS-4 42.05 30.21 146.23 31.10 101.27 100.61 333.55 111.65 102.35 102.68 336.02 114.66 102.47 102.95 336.21 115.05
LS-6 41.05 41.31 140.31 42.61 97.45 132.85 314.94 148.08 98.42 135.35 317.10 151.77 98.52 135.68 317.26 152.24
LS-8 40.14 52.12 135.21 54.01 94.31 161.85 300.16 181.31 95.20 164.68 302.10 185.53 95.29 165.06 302.24 186.07
LS-10 39.33 62.84 130.70 65.33 91.62 188.82 287.75 212.45 92.44 191.94 289.52 217.14 92.52 192.35 289.64 217.74

Table 17: USADDR - Average number of operations per query (on the scale of thousands)
in query processing in the 1o and 2o level in the prefix query length 5, 9, 13 and 17 for
𝜏 = 3 in the LD and LS methods.

In order to understand why the LD is much faster than the LS, we decided to
compute the number of operations, such as: number of nodes created in the first level,
number of word nodes created in the second level, number of iterations in the first level
and number of iterations in the second level, with aim of verifying whether the difference
in the number of operations might explain the differences in the time performance of
the methods. For USADDR dataset, 𝜏 = 3 and |𝒫| = 17, the query response time for
LD7 was of 26.8 ms and the number of operations was 117.36, 65.33, 415.08 and 80.10
for the columns nodes, words, it 1o and it 2o, respectively, for LS-1 the query response
time was of 53.0 ms and the number of operations was 112.62, 36.21, 386.56 and 40.71
for the columns nodes, words, it 1o and it 2o, respectively and this scenario is repeated
for the other methods and prefix query lengths (see Tables 11 and 17). Surprisingly, we
found a smaller number of operations for the LS-1 compared to the LD7, not justifying
the advantage of the LD7 in this example. So this suggested another hypothesis for us
to understand this wide advantage of LD in general, namely: the alternate processing
between the levels affects the cache policies of the machine where we run the experiments.

The processing in the LD starts in the first level and after of a certain level in
the TRIE the processing is entirely transferred to a new way of processing prefix queries,
which are the lists in the second level. In the LS, the processing starts in the first level

74 Chapter 5. Results

𝜏 = 4

method |𝒫| = 5 |𝒫| = 9 |𝒫| = 13 |𝒫| = 17 Mem
(MB)1o 2o fetch total 1o 2o fetch total 1o 2o fetch total 1o 2o fetch total

LD4 31.6 220.4 793.2 1045.2 60.9 570.0 3.3 634.2 60.9 572.8 0.1 633.9 61.0 573.0 - 634.0 2150.0
LD5 39.4 87.4 796.0 922.9 118.9 354.7 3.5 477.2 119.0 357.6 0.1 476.8 119.0 357.8 - 476.8 2169.1
LD6 25.6 17.6 794.0 837.3 109.4 146.7 3.4 259.5 109.6 149.6 0.1 259.3 109.6 149.7 - 259.4 2198.6
LD7 22.3 1.9 798.1 822.3 96.0 46.0 4.1 146.1 96.7 48.9 0.1 145.8 96.7 49.1 - 145.8 2253.4
LD8 21.8 0.2 798.2 820.1 90.4 12.3 4.2 106.9 91.8 15.2 0.1 107.1 91.8 15.4 - 107.2 2346.0
LD9 21.7 - 794.5 816.2 88.3 2.6 4.1 95.1 90.2 5.0 0.1 95.4 90.2 5.2 - 95.4 2476.1
LD10 21.6 - 784.7 806.3 87.3 0.5 3.5 91.3 89.4 1.9 0.1 91.4 89.4 2.1 - 91.5 2643.6
LD11 21.6 - 771.6 793.2 87.4 0.1 3.5 91.0 89.5 0.8 0.1 90.5 89.5 1.0 - 90.6 2845.9
LD12 21.6 - 792.4 814.0 87.4 - 4.2 91.6 89.5 0.3 0.1 90.0 89.6 0.5 - 90.1 3075.6
LD13 21.6 - 783.8 805.4 87.2 - 3.5 90.8 89.3 0.1 0.1 89.5 89.4 0.3 - 89.8 3323.6
LD14 21.9 - 767.7 789.6 87.9 - 3.5 91.4 89.9 - 0.1 90.1 90.1 0.2 - 90.3 3581.2
LD15 21.6 - 777.2 798.8 87.0 - 3.5 90.5 89.0 - 0.1 89.2 89.3 0.1 - 89.4 3841.2
LS-1 41.3 33.3 774.7 849.2 141.8 113.6 4.2 259.6 143.8 115.3 0.1 259.3 144.0 115.4 - 259.4 2983.1
LS-2 45.4 42.4 771.0 858.9 150.3 142.3 3.4 296.1 152.1 144.3 0.1 296.6 152.2 144.4 - 296.7 2601.9
LS-4 47.1 49.5 777.0 873.6 149.0 162.2 3.4 314.7 150.5 164.3 0.1 314.9 150.6 164.4 - 315.0 2405.9
LS-6 47.2 52.5 785.1 884.8 145.7 170.6 4.1 320.4 147.0 172.7 0.1 319.8 147.1 172.8 - 319.9 2334.5
LS-8 46.3 53.9 762.1 862.2 140.6 173.4 3.3 317.3 141.8 175.4 0.1 317.3 141.8 175.5 - 317.4 2296.3
LS-10 45.6 55.0 777.5 878.1 136.5 175.9 3.4 315.7 137.6 177.9 0.1 315.6 137.6 178.0 - 315.6 2272.2

Table 18: Query processing time (at 1o and 2o level) and fetch time (ms) with prefix
queries of sizes 5, 9, 13 and 17 and 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ varying from 4 to 15 in LD, and 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 with
constants 1, 2, 4, 6, 8 and 10 in LS with memory usage value (MB) for each method in
USADDR dataset and 𝜏 = 4.

𝜏 = 4

method |𝒫| = 5 |𝒫| = 9 |𝒫| = 13 |𝒫| = 17 Mem
(MB)1o 2o fetch total 1o 2o fetch total 1o 2o fetch total 1o 2o fetch total

LD4 26.4 345.2 1513.5 1885.1 49.0 880.2 13.9 943.1 49.3 890.3 1.9 941.6 49.4 892.3 0.3 942.0 6022.9
LD5 21.8 123.4 1462.0 1607.2 60.0 467.3 13.7 541.0 60.3 477.5 2.0 539.7 60.3 479.5 0.3 540.1 6030.0
LD6 14.1 19.3 1434.6 1468.1 49.0 152.6 13.7 215.3 49.2 162.2 1.9 213.4 49.3 164.2 0.3 213.8 6046.3
LD7 12.3 1.8 1436.0 1450.1 42.3 41.2 13.7 97.1 42.7 49.6 1.9 94.2 42.7 51.6 0.3 94.6 6067.1
LD8 11.9 0.1 1440.0 1452.0 38.9 11.0 13.6 63.4 39.6 17.9 1.9 59.4 39.6 19.9 0.3 59.9 6100.5
LD9 11.8 - 1449.9 1461.7 37.2 2.7 13.6 53.5 38.2 7.6 1.9 47.7 38.3 9.6 0.3 48.2 6147.8
LD10 11.9 - 1457.5 1469.3 37.1 0.6 13.7 51.5 38.1 3.3 1.9 43.3 38.1 5.1 0.3 43.6 6207.3
LD11 11.8 - 1449.6 1461.4 37.4 0.2 13.6 51.2 38.4 1.5 1.9 41.8 38.5 3.1 0.3 41.9 6291.9
LD12 11.8 - 1447.8 1459.6 36.7 0.1 13.6 50.4 37.7 0.7 1.9 40.2 37.8 2.0 0.3 40.1 6401.6
LD13 11.8 - 1454.1 1465.9 36.8 - 13.6 50.5 37.8 0.3 1.9 39.9 38.0 1.3 0.3 39.6 6539.2
LD14 11.8 - 1455.7 1467.5 36.8 - 13.6 50.4 37.8 0.1 1.9 39.8 38.0 0.8 0.3 39.2 6705.8
LD15 11.7 - 1451.7 1463.4 36.7 - 13.6 50.3 37.7 - 1.9 39.6 37.9 0.5 0.3 38.7 6904.7
LS-1 26.4 25.0 1329.7 1381.2 65.6 59.7 13.7 139.1 66.6 60.6 1.9 129.1 66.9 60.8 0.3 128.0 8298.2
LS-2 28.2 30.3 1352.7 1411.2 68.3 72.2 13.8 154.3 69.3 73.2 1.9 144.4 69.5 73.5 0.3 143.3 7104.4
LS-4 28.6 34.4 1356.6 1419.5 67.8 82.1 13.7 163.6 68.7 83.2 1.9 153.8 68.9 83.5 0.3 152.8 6591.1
LS-6 28.1 35.7 1285.0 1348.9 65.9 85.7 13.8 165.4 66.7 86.9 1.8 155.5 67.0 87.2 0.3 154.5 6419.4
LS-8 27.5 36.6 1287.4 1351.5 64.3 88.4 13.8 166.5 65.1 89.6 1.8 156.5 65.3 89.9 0.3 155.5 6330.4
LS-10 26.8 36.8 1288.7 1352.3 62.4 89.6 13.5 165.5 63.1 90.8 1.8 155.8 63.3 91.1 0.3 154.8 6275.1

Table 19: Query processing time (at 1o and 2o level) and fetch time (ms) with prefix
queries of sizes 5, 9, 13 and 17 and 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ varying from 4 to 15 in LD, and 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 with
constants 1, 2, 4, 6, 8 and 10 in LS with memory usage value (MB) for each method in
MEDLINE dataset and 𝜏 = 4.

5.3. Selecting Parameters for the Proposed Methods 75

and at a certain level it can trigger processing in the second level and remain at both at
the same time, which may negatively affect the cache policies of the machine. We thus
decided to study the affects of the methods in the cache system. Preliminary data did not
point a large difference in cache misses from one method to another as being the factor
for the LD to perform better than the LS. However, we will try to better understand this
cache factor in future works.

𝜏 = 4

method |𝒫| = 5 |𝒫| = 9 |𝒫| = 13 |𝒫| = 17 Mem
(MB)1o 2o fetch total 1o 2o fetch total 1o 2o fetch total 1o 2o fetch total

LD4 21.2 111.6 384.4 517.2 39.6 283.3 3.5 326.3 39.6 285.9 0.3 325.9 39.7 286.3 0.1 326.1 1899.6
LD5 17.4 45.4 385.0 447.7 47.7 162.7 3.5 213.9 47.8 165.4 0.3 213.5 47.8 165.8 0.1 213.7 1895.9
LD6 10.9 7.5 387.0 405.4 36.9 54.1 3.5 94.5 37.0 56.7 0.3 94.0 37.0 57.1 0.1 94.2 1905.4
LD7 9.5 0.7 387.0 397.2 31.1 14.6 3.5 49.2 31.3 17.0 0.3 48.6 31.3 17.3 0.1 48.7 1917.4
LD8 9.1 0.1 378.0 387.3 28.7 4.0 3.5 36.2 29.1 6.1 0.3 35.5 29.1 6.4 0.1 35.6 1937.9
LD9 9.1 - 387.2 396.2 28.1 1.0 3.5 32.6 28.7 2.6 0.3 31.5 28.7 3.0 0.1 31.7 1963.2
LD10 9.0 - 384.6 393.6 27.9 0.2 3.5 31.7 28.5 1.1 0.3 30.0 28.5 1.5 0.1 30.1 1997.1
LD11 9.0 - 384.9 393.9 27.8 0.1 3.5 31.4 28.4 0.5 0.3 29.3 28.4 0.9 0.1 29.4 2040.2
LD12 9.1 - 384.3 393.4 28.0 - 3.5 31.5 28.6 0.2 0.3 29.2 28.7 0.6 0.1 29.3 2092.9
LD13 9.0 - 385.7 394.8 28.0 - 3.5 31.5 28.6 0.1 0.3 29.0 28.7 0.4 0.1 29.1 2156.5
LD14 9.1 - 387.7 396.8 28.0 - 3.5 31.5 28.5 - 0.3 28.9 28.7 0.2 0.1 29.0 2231.8
LD15 9.1 - 384.1 393.2 28.0 - 3.5 31.5 28.6 - 0.3 28.9 28.7 0.1 0.1 28.9 2319.0
LS-1 21.6 21.3 377.6 420.6 52.8 51.2 3.6 107.6 53.4 51.7 0.3 105.4 53.5 51.8 0.1 105.4 2870.2
LS-2 23.4 25.5 383.0 431.9 54.9 60.9 3.5 119.3 55.5 61.5 0.3 117.3 55.6 61.6 0.1 117.3 2219.2
LS-4 23.0 27.4 382.4 432.9 52.7 65.3 3.5 121.5 53.2 66.0 0.3 119.5 53.3 66.1 0.1 119.5 2050.8
LS-6 22.0 27.4 381.9 431.2 49.9 65.5 3.5 118.8 50.3 66.1 0.3 116.8 50.4 66.3 0.1 116.8 2000.9
LS-8 21.2 27.1 383.0 431.3 47.7 65.3 3.5 116.5 48.1 66.0 0.3 114.4 48.2 66.1 0.1 114.4 1975.1
LS-10 20.1 26.9 383.1 430.2 45.4 65.0 3.5 113.9 45.8 65.7 0.3 111.8 45.9 65.8 0.1 111.8 1959.3

Table 20: Query processing time (at 1o and 2o level) and fetch time (ms) with prefix
queries of sizes 5, 9, 13 and 17 and 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ varying from 4 to 15 in LD, and 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 with
constants 1, 2, 4, 6, 8 and 10 in LS with memory usage value (MB) for each method in
DBLP dataset and 𝜏 = 4.

As expected, the query processing times in second level for the LD becomes high
when the processing in second level is triggered early for a very large list of words. But, as
we increase the values of 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ we notice a large difference in query processing time
because the second level processing decreases considerably. The time difference is huge
at 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ = 4 and 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ = 15. As an example, for 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ = 4 the time spent is
119.2 ms and for 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ = 15 the time spent is only 9.3 ms for the same query prefix
length (|𝒫| = 13) in USADDR dataset and 𝜏 = 3 (Table 11), a difference of more than
109 ms only by choosing the length of the prefixes to be indexed in the first level. While
in LS, times do not vary so much as we increase the value of 𝑚𝑎𝑥𝑠𝑙𝑜𝑡, in some scenarios
even worse times. Thus, it is easy to see that it is necessary to study the ideal choice of
𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ to be indexed in the first level for the LD.

LD performs better when |𝒫|+ 𝜏 ≤ 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ, ie, the processing occurs only at the
first level and the processing in second level is not required. Or when we have relatively
large prefix sizes indexed in TRIE. At the end of this section we show such prefixes, which
are not very large but which already provide a very competitive method. Thus, when
occurs this scenarios we have a very competitive method in terms of processing queries.
For example, in LD7, LD8, LD9, LD10 and LD11 methods for 𝜏 = 2 and |𝒫| = 13 in Table

76 Chapter 5. Results

𝜏 = 2

method |𝒫| = 5 |𝒫| = 9 |𝒫| = 13 |𝒫| = 17 Mem
(MB)1o 2o fetch total 1o 2o fetch total 1o 2o fetch total 1o 2o fetch total

LD4 3.1 17.9 8.4 29.4 3.3 22.8 0.2 26.3 3.3 23.0 - 26.4 3.3 23.1 - 26.4 2024.1
LD5 2.8 2.1 8.3 13.2 3.3 5.6 0.2 9.2 3.3 5.9 - 9.2 3.3 5.9 - 9.3 2036.8
LD6 2.6 0.1 8.2 11.0 3.2 1.7 0.2 5.1 3.2 1.9 - 5.2 3.2 2.0 - 5.2 2071.2
LD7 2.6 - 8.3 10.8 3.2 0.6 0.2 4.0 3.2 0.8 - 4.1 3.2 0.9 - 4.1 2133.8
LD8 2.6 - 8.3 10.9 3.2 0.2 0.2 3.6 3.2 0.4 - 3.7 3.2 0.4 - 3.7 2225.4
LD9 2.6 - 8.3 10.9 3.2 - 0.2 3.4 3.2 0.2 - 3.5 3.2 0.3 - 3.5 2355.2
LD10 2.6 - 8.3 10.9 3.2 - 0.2 3.4 3.3 0.1 - 3.4 3.3 0.2 - 3.4 2522.7
LD11 2.6 - 8.3 10.9 3.2 - 0.2 3.4 3.3 0.1 - 3.3 3.3 0.1 - 3.4 2725.0
LD12 2.6 - 8.3 10.9 3.2 - 0.2 3.4 3.3 - - 3.3 3.3 0.1 - 3.4 2954.7
LD13 2.6 - 8.3 11.0 3.3 - 0.2 3.5 3.4 - - 3.4 3.4 - - 3.5 3202.7
LD14 2.6 - 8.4 10.9 3.2 - 0.2 3.4 3.2 - - 3.3 3.3 - - 3.3 3460.2
LD15 2.6 - 8.4 10.9 3.2 - 0.2 3.4 3.3 - - 3.3 3.3 - - 3.3 3720.2
LS-1 3.2 1.2 8.1 12.5 3.9 1.7 0.2 5.8 4.0 1.7 - 5.7 4.0 1.7 - 5.8 2862.9
LS-2 3.4 1.8 8.2 13.3 4.1 2.4 0.2 6.7 4.2 2.4 - 6.6 4.2 2.4 - 6.7 2481.8
LS-4 3.5 2.4 8.2 14.1 4.3 3.1 0.2 7.6 4.3 3.2 - 7.5 4.3 3.2 - 7.5 2285.0
LS-6 3.6 2.8 8.2 14.6 4.3 3.6 0.2 8.1 4.4 3.7 - 8.1 4.4 3.7 - 8.1 2213.5
LS-8 3.6 3.0 8.2 14.8 4.3 3.9 0.2 8.4 4.4 4.0 - 8.3 4.4 4.0 - 8.3 2175.1
LS-10 3.6 3.3 8.2 15.1 4.3 4.2 0.2 8.7 4.4 4.2 - 8.6 4.4 4.2 - 8.6 2150.5

Table 21: Query processing time (at 1o and 2o level) and fetch time (ms) with prefix
queries of sizes 5, 9, 13 and 17 and 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ varying from 4 to 15 in LD, and 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 with
constants 1, 2, 4, 6, 8 and 10 in LS with memory usage value (MB) for each method in
USADDR dataset and 𝜏 = 2.

𝜏 = 2

method |𝒫| = 5 |𝒫| = 9 |𝒫| = 13 |𝒫| = 17 Mem
(MB)1o 2o fetch total 1o 2o fetch total 1o 2o fetch total 1o 2o fetch total

LD4 2.6 29.9 34.6 67.0 2.9 44.4 2.0 49.3 3.0 46.6 0.6 50.2 3.0 47.2 0.1 50.3 5901.2
LD5 2.1 3.0 34.4 39.5 2.4 13.1 2.0 17.6 2.5 15.4 0.6 18.5 2.5 16.0 0.1 18.6 5904.9
LD6 1.9 0.2 33.3 35.4 2.3 5.2 2.0 9.4 2.3 7.4 0.6 10.3 2.4 8.0 0.1 10.5 5912.4
LD7 1.9 - 33.5 35.4 2.2 1.8 2.0 6.0 2.3 4.0 0.6 6.9 2.3 4.6 0.1 7.1 5936.5
LD8 1.9 - 33.3 35.2 2.2 0.6 1.9 4.8 2.3 2.6 0.6 5.5 2.3 3.2 0.1 5.6 5971.8
LD9 1.9 - 33.2 35.1 2.2 0.1 1.9 4.3 2.3 1.7 0.6 4.5 2.3 2.3 0.1 4.7 6020.8
LD10 1.9 - 32.9 34.8 2.2 - 1.9 4.2 2.3 1.0 0.6 3.9 2.3 1.6 0.1 4.1 6086.7
LD11 2.0 - 33.5 35.5 2.3 - 1.9 4.2 2.3 0.5 0.6 3.4 2.3 1.1 0.1 3.6 6172.9
LD12 1.9 - 32.8 34.7 2.2 - 1.9 4.1 2.3 0.2 0.6 3.0 2.3 0.8 0.1 3.2 6283.6
LD13 1.9 - 33.3 35.2 2.3 - 1.9 4.2 2.3 - 0.6 2.9 2.3 0.5 0.1 2.9 6420.6
LD14 1.9 - 34.4 36.3 2.2 - 2.0 4.3 2.3 - 0.6 2.9 2.3 0.3 0.1 2.7 6587.7
LD15 1.9 - 32.7 34.6 2.2 - 1.9 4.2 2.3 - 0.6 2.8 2.3 0.1 0.1 2.5 6786.2
LS-1 2.7 1.5 33.5 37.8 3.2 1.8 2.0 7.0 3.2 1.8 0.6 5.6 3.3 1.8 0.1 5.2 8179.5
LS-2 2.9 2.1 33.5 38.5 3.3 2.4 1.9 7.6 3.3 2.5 0.6 6.3 3.3 2.5 0.1 5.9 6985.8
LS-4 3.1 2.8 34.0 39.9 3.4 3.2 1.9 8.5 3.5 3.2 0.6 7.2 3.5 3.3 0.1 6.9 6472.4
LS-6 3.1 3.2 33.8 40.1 3.5 3.6 2.0 9.0 3.5 3.6 0.6 7.7 3.5 3.7 0.1 7.3 6300.6
LS-8 3.2 3.5 34.0 40.7 3.5 3.9 2.0 9.4 3.6 4.0 0.6 8.1 3.6 4.0 0.1 7.7 6211.5
LS-10 3.1 3.7 34.0 40.8 3.5 4.1 2.0 9.6 3.5 4.2 0.6 8.3 3.5 4.2 0.1 7.9 6156.1

Table 22: Query processing time (at 1o and 2o level) and fetch time (ms) with prefix
queries of sizes 5, 9, 13 and 17 and 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ varying from 4 to 15 in LD, and 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 with
constants 1, 2, 4, 6, 8 and 10 in LS with memory usage value (MB) for each method in
MEDLINE dataset and 𝜏 = 2.

5.3. Selecting Parameters for the Proposed Methods 77

21. There are also scenarios where processing in the second level is triggered frequently
for LD, but does not negatively affect the searching time. This happens when processing
queries of long query prefix length and larger 𝜏 . Such queries trigger the second level
more often because they are often greater than the values of 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ. However the time
does not grow much because at deeper levels of TRIE, the set of results is small and,
consequently, the list size to be processed in the second level are too small. For example,
in DBLP dataset, |𝒫| = 17 and 𝜏 = 3 the LD10, LD11, LD12, LD13, LD14 and LD15
(Table 13) methods trigger the second level, but the queries processing is fast.

𝜏 = 2

method |𝒫| = 5 |𝒫| = 9 |𝒫| = 13 |𝒫| = 17 Mem
(MB)1o 2o fetch total 1o 2o fetch total 1o 2o fetch total 1o 2o fetch total

LD4 2.3 9.6 8.3 20.2 2.4 13.9 0.4 16.7 2.4 14.4 0.1 16.9 2.4 14.5 - 16.9 1764.2
LD5 1.8 1.1 8.3 11.1 2.0 4.1 0.5 6.5 2.0 4.6 0.1 6.7 2.0 4.7 - 6.8 1770.4
LD6 1.7 0.1 8.2 10.0 2.0 1.6 0.4 4.0 2.0 2.1 0.1 4.2 2.0 2.2 - 4.3 1781.3
LD7 1.7 - 8.3 10.0 2.0 0.6 0.4 3.0 2.0 1.1 0.1 3.2 2.0 1.2 - 3.3 1796.8
LD8 1.7 - 8.1 9.8 1.9 0.2 0.4 2.5 1.9 0.6 0.1 2.7 2.0 0.8 - 2.7 1817.7
LD9 1.7 - 8.3 10.0 1.9 - 0.4 2.4 2.0 0.4 0.1 2.5 2.0 0.5 - 2.5 1844.9
LD10 1.7 - 8.2 9.9 2.0 - 0.4 2.4 2.0 0.2 0.1 2.3 2.0 0.4 - 2.4 1879.4
LD11 1.7 - 8.1 9.8 1.9 - 0.4 2.4 2.0 0.1 0.1 2.2 2.0 0.3 - 2.3 1922.2
LD12 1.7 - 8.1 9.8 1.9 - 0.4 2.4 2.0 0.1 0.1 2.1 2.0 0.2 - 2.2 1974.8
LD13 1.7 - 8.3 10.0 2.0 - 0.4 2.4 2.0 - 0.1 2.1 2.0 0.1 - 2.2 2038.3
LD14 1.7 - 8.1 9.9 1.9 - 0.4 2.4 2.0 - 0.1 2.1 2.0 0.1 - 2.1 2113.5
LD15 1.7 - 8.3 10.0 1.9 - 0.4 2.4 2.0 - 0.1 2.1 2.0 - - 2.0 2200.6
LS-1 2.4 1.6 8.8 12.8 2.7 1.8 0.5 5.0 2.8 1.8 0.1 4.8 2.8 1.8 - 4.7 2751.8
LS-2 2.7 2.2 9.6 14.4 3.0 2.5 0.4 5.9 3.0 2.5 0.1 5.6 3.0 2.5 - 5.6 2100.8
LS-4 2.8 2.8 8.8 14.4 3.1 3.1 0.4 6.7 3.1 3.2 0.1 6.4 3.2 3.2 - 6.4 1932.2
LS-6 2.9 3.2 8.4 14.4 3.2 3.5 0.4 7.1 3.2 3.6 0.1 6.9 3.2 3.6 - 6.8 1882.2
LS-8 2.9 3.4 9.4 15.6 3.1 3.8 0.4 7.4 3.2 3.8 0.1 7.1 3.2 3.9 - 7.1 1856.4
LS-10 2.9 3.6 8.4 14.8 3.2 4.0 0.4 7.5 3.2 4.0 0.1 7.3 3.2 4.0 - 7.3 1840.5

Table 23: Query processing time (at 1o and 2o level) and fetch time (ms) with prefix
queries of sizes 5, 9, 13 and 17 and 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ varying from 4 to 15 in LD, and 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 with
constants 1, 2, 4, 6, 8 and 10 in LS with memory usage value (MB) for each method in
DBLP dataset and 𝜏 = 2.

Therefore, for larger values of 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ, usually starting at the prefix query length
7, the time spent in the second level decreases considerably, as can be seen in Tables
21 and 23 for |𝒫| = 9. In this way, as the value of 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ grows the method will be
faster. But the time difference between large values of 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ is very small, for example
𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ = 11 and 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ = 15 have an almost imperceptible difference, as can be seen
in Table 21 for |𝒫| = 13 and 𝜏 = 2, on the other hand, the same cannot be said for
memory consumption. As we increase the values of 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ there is considerable increase
in memory consumption. Thus, it is necessary to choose the highest possible value for
𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ and that has a reasonable consumption of memory. We will analyze the memory
consumption in more detail in the next section and try to suggest the best values of
𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ and 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 for the LD and LS methods, respectively, in order to find a good
balance between query processing time and memory consumption.

78 Chapter 5. Results

5.3.2 Memory Consumption

Query autocompletion systems keep the index and suggestions in memory to allow
fast construction and access to the indexes, because it allows to show results to each user
keystroke without a significant delay. However, it is necessary to balance the speed of query
processing with the memory consumption because memory is a limited and costly resource.
The amount of memory used is directly influenced by the amount of information that is
added to the index. A practical example for this is the IncNGTRIE method proposed
by Xiao et al. (2013), which is faster method in literature, however it consumes absurdly
more memory than any algorithm in the literature, making its use impractical in several
practical applications.

In contrast to query response time, the memory consumption in the LD is smaller
when the value of 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ is smaller because, in this scenario, there are few nodes indexed
in the TRIE when compared to the number of nodes indexed in the TRIE when we use
higher values for 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ. For instance, the number of nodes is 150,513 and 34,466,454
and the memory consumption is 2017.2 MB and 3719.8 MB in USADDR dataset (Table
24), for LD4 and LD15 methods, respectively. For large values of 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ, the memory
consumption increases as the amount of information in the index increases, as we can see in
Table 24 (column MEM. (MB) for all datasets). In LS, the memory consumption is small
when the value of 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 is high. For small values of 𝑚𝑎𝑥𝑠𝑙𝑜𝑡, the memory consumption
increases. There is a clear trade off between memory consumption in both methods, and
we need to study the behaviour of the two methods as we vary theirs parameters.

From results presented in Tables 14, 15 and 16, we observe that when the query
prefix lengths is small and 𝜏 = 1 we see that the LD5 was quite efficient in both query
processing time and memory consumption. We can notice that, although the LD method
is fast for large values of 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ, the memory consumption significantly grows as we
increase the values of 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ, as can be seen the curve growth in Figure 15a to 25%, 50%,
75% and 100% of the USADDR dataset portion. However, it is worth mentioning that the
memory consumption even for large values of 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ is still little when compared to the
memory consumption of any method that does the complete indexing of strings in the
TRIE.

The context and scenario of a system can also influence in the choice of the ideal
value for 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ or 𝑚𝑎𝑥𝑠𝑙𝑜𝑡. For example, a smaller value of 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ can be chosen
for less memory consumption, but the processing time can increase or a larger value of
𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ can be chosen to faster query response, but the memory consumption increases.
Similarly, a larger value of 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 can be chosen for less memory consumption, but the
processing time can increase or a smaller value of 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 can be chosen to faster query
response, but the memory consumption increases. In addition, the ideal choice of 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ

or 𝑚𝑎𝑥𝑠𝑙𝑜𝑡 also depends on the average query prefix length that a given system receives,

5.3. Selecting Parameters for the Proposed Methods 79

USADDR MEDLINE DBLP

method Number
of nodes

Mem.
(MB)

Number
of nodes

Mem.
(MB)

Number
of nodes

Mem.
(MB)

LD4 150,513 2017.2 121,865 5882.5 104,087 1761.6
LD5 589,965 2032.1 330,084 5890.6 266,186 1768.1
LD6 1,485,677 2067.6 685,473 5905.7 511,954 1779.1
LD7 2,938,372 2130.3 1,231,710 5930.0 852,792 1794.9
LD8 5,014,427 2224.6 2,013,567 5965.8 1,300,640 1816.3
LD9 7,795,064 2354.7 3,079,701 6015.7 1,870,284 1843.7
LD10 11,273,374 2522.3 4,488,767 6082.5 2,582,008 1878.4
LD11 15,352,963 2724.6 6,307,010 6169.7 3,460,691 1921.5
LD12 19,868,649 2954.2 8,596,566 6280.8 4,528,988 1974.3
LD13 24,655,213 3202.2 11,409,217 6418.9 5,806,163 2037.9
LD14 29,559,749 3459.9 14,785,962 6586.7 7,302,808 2113.1
LD15 34,466,454 3719.8 18,752,025 6785.7 9,019,275 2200.3
LS-1 19,360,374 2862.4 49,787,393 8179.2 20,550,602 2751.5
LS-2 11,767,608 2481.5 26,270,104 6985.4 8,147,970 2100.6
LS-4 7,432,404 2284.7 15,262,983 6472.2 4,560,809 1932.0
LS-6 5,713,691 2213.3 11,295,344 6300.4 3,390,379 1882.0
LS-8 4,740,798 2174.7 9,147,067 6211.2 2,755,905 1856.1
LS-10 4,097,443 2150.2 7,768,093 6155.8 2,352,604 1840.3
BEVA 77,542,385 5441.7 979,452,352 54802.2 250,356,405 14773.1

Table 24: Number of nodes and memory usage in TRIE index build in the USADDR,
MEDLINE and DBLP datasets

(a) Amount of memory used (MB) for LD
method

(b) Amount of memory used (MB) for LS
method

Figure 15: Amount of memory used (MB) for LD and LS methods in the USADDR dataset
with 25%, 50%, 75% and 100% of the dataset portion and 𝜏 = 1

the amount of memory resource available and the dataset size.

Finally, in this dissertation we selected the LD8, LD10, LD12, LS-1 and LS-4 to be
compared with baseline methods, based on the aspects that we exposed previously and
also in the queries prefix lengths 5, 9, 13 and 17. Such methods showed a better balance in
the average between query processing time and memory consumption among all datasets
and edit distance thresholds experienced.

80 Chapter 5. Results

5.4 Baselines Comparison

We compared the LD and LS methods with META (code provided by the authors)
and BEVA (Binary provided by the authors, however it contained a reading problem
and so we used our BEVA implementation), currently the state-of-the-art algorithm in
the literature. The works in the literature also compare with the ICAN, IPCAN and
IncNGTRIE methods. However, for such algorithms we found problems of correctness in
implementations available for them, so the comparison was not possible and we discarded
them. For query response time, we experienced varying the 𝜏 from 1 to 4 and prefix queries
of sizes 5, 9, 13 and 17. For memory consumption, we selected only the results of 𝜏 = 3
(because memory consumption is close to all edit distance threshold) and portions of 25%,
50%, 75% and 100% of the sizes of the dataset to check the memory consumption between
the baselines when we scale the size of the dataset.

5.4.1 Varying Edit Distance Threshold

In the Tables 25 and 26 we show the query response times for all algorithms with
edit distance threshold 𝜏 between 1 and 4, at fixed prefix query lengths of 5 and 13,
respectively. We show results only for prefix query lengths 5 and 13 because we want
to analyze results with small and larger prefix query sizes. The prefix query size 13 is
sufficient to make our proposed methods perform processing also in the second level,
allowing us to analyze our methods with processing in both levels. From Table 25, 𝜏 = 1
and USADDR dataset we observed that all compared methods are very close in time, with
a slight advantage for the META and BEVA methods. When we increased the 𝜏 to 2, we
noticed that the META method time become much worse, while the BEVA time remains
smaller than the others, but with a very small difference. This worsening of the META
method and the increase in difference between the BEVA and our proposed methods
is greater when we increase the 𝜏 to 3 and 4. However, we observed that our methods
maintain a smaller confidence interval when compared to the META and BEVA methods.
This shows us that our methods is more stable than the BEVA despite having a slightly
longer time. This trend is repeated also in the MEDLINE and DBLP datasets.

For |𝒫| = 13, USADDR dataset, varying 𝜏 from 1 to 4 (Table 26) we realized that
the time difference between the BEVA and LD decrease even more, this is because the
fetching time does not have much influence in the final results and the LD method triggers
the processing in the second level for small lists, this becomes more frequently when we
increase the prefix query size. As we can see we have 0.23ms and 0.27ms, 3.08ms and
3.33ms, 20.76ms and 21.43ms, 85.37ms and 89.95ms, for 𝜏 with sizes 1, 2, 3 and 4 in the
BEVA and LD12 methods, respectively.

5.4. Baselines Comparison 81

USADDR MEDLINE DBLP
𝜏 = 1 𝜏 = 2 𝜏 = 3 𝜏 = 4 𝜏 = 1 𝜏 = 2 𝜏 = 3 𝜏 = 4 𝜏 = 1 𝜏 = 2 𝜏 = 3 𝜏 = 4

BEVA 1.00
± 0.096

9.51
± 0.372

122.07
± 3.257

706.66
± 8.028

9.04
± 1.417

30.91
± 2.090

225.93
± 6.939

1297.80
± 29.329

2.69
± 0.300

9.34
± 0.516

70.64
± 1.627

340.66
± 4.290

META 0.79
± 0.011

59.45
± 0.985

4654.42
± 136.661

78063.53
± 1272.354

-
-

-
-

-
-

-
-

0.70
± 0.010

50.60
± 0.878

1918.91
± 36.257

14145.36
± 266.927

LD8 1.14
± 0.003

10.89
± 0.037

131.90
± 0.192

820.13
± 0.237

13.87
± 0.002

35.22
± 0.021

276.01
± 0.072

1451.99
± 0.120

2.87
± 0.002

9.80
± 0.020

97.04
± 0.052

387.26
± 0.078

LD10 1.15
± 0.003

10.88
± 0.038

131.83
± 0.191

806.31
± 0.224

13.63
± 0.002

34.79
± 0.021

275.04
± 0.072

1469.33
± 0.112

3.09
± 0.002

9.94
± 0.020

97.21
± 0.052

393.60
± 0.073

LD12 1.15
± 0.003

10.88
± 0.038

131.09
± 0.193

813.99
± 0.222

13.77
± 0.002

34.72
± 0.020

271.57
± 0.072

1459.60
± 0.110

2.88
± 0.002

9.76
± 0.020

98.85
± 0.052

393.38
± 0.074

LS-1 1.17
± 0.002

12.54
± 0.059

149.87
± 0.493

849.22
± 0.927

13.59
± 0.003

37.79
± 0.044

287.97
± 0.255

1381.21
± 0.416

3.12
± 0.003

12.82
± 0.045

115.87
± 0.229

420.62
± 0.337

LS-4 1.21
± 0.003

14.11
± 0.077

163.84
± 0.661

873.64
± 1.167

13.82
± 0.003

39.87
± 0.061

302.69
± 0.320

1419.55
± 0.482

3.22
± 0.003

14.40
± 0.062

125.61
± 0.282

432.85
± 0.389

Table 25: Query response time (ms) comparison with confidence interval between baselines
methods varying 𝜏 from 1 to 4, |𝒫| = 5 in the USADDR, MEDLINE and DBLP datasets.

USADDR MEDLINE DBLP
𝜏 = 1 𝜏 = 2 𝜏 = 3 𝜏 = 4 𝜏 = 1 𝜏 = 2 𝜏 = 3 𝜏 = 4 𝜏 = 1 𝜏 = 2 𝜏 = 3 𝜏 = 4

BEVA 0.23
± 0.005

3.08
± 0.056

20.76
± 0.388

85.37
± 1.524

1.85
± 0.621

2.60
± 0.108

10.49
± 0.267

36.66
± 0.636

0.27
± 0.013

2.00
± 0.031

8.47
± 0.103

26.53
± 0.352

META 1.05
± 0.019

63.01
± 1.097

4712.01
± 138.001

78878.52
± 1285.878

-
-

-
-

-
-

-
-

0.84
± 0.012

51.96
± 0.899

1935.15
± 36.679

14293.40
± 270.603

LD8 0.42
± 0.022

3.66
± 0.090

23.11
± 0.486

107.10
± 2.371

2.86
± 0.485

5.46
± 0.475

16.85
± 0.619

59.42
± 1.764

0.71
± 0.040

2.70
± 0.059

10.78
± 0.194

35.50
± 0.687

LD10 0.33
± 0.009

3.42
± 0.065

21.67
± 0.420

91.44
± 1.704

1.64
± 0.235

3.89
± 0.202

13.16
± 0.228

43.32
± 0.771

0.48
± 0.020

2.34
± 0.035

9.53
± 0.116

29.97
± 0.426

LD12 0.27
± 0.004

3.33
± 0.060

21.43
± 0.400

89.95
± 1.606

0.89
± 0.154

3.05
± 0.064

12.06
± 0.155

40.22
± 0.574

0.34
± 0.005

2.14
± 0.027

9.26
± 0.107

29.17
± 0.381

LS-1 0.33
± 0.005

5.75
± 0.098

52.96
± 0.944

259.27
± 4.029

0.82
± 0.146

5.61
± 0.198

36.53
± 0.433

129.06
± 1.384

0.41
± 0.004

4.75
± 0.060

32.95
± 0.362

105.43
± 0.900

LS-4 0.39
± 0.005

7.52
± 0.121

69.95
± 1.185

314.92
± 4.385

0.80
± 0.006

7.25
± 0.089

47.87
± 0.530

153.79
± 1.510

0.48
± 0.005

6.44
± 0.079

42.13
± 0.432

119.47
± 0.904

Table 26: Query response time (ms) comparison with confidence interval between baselines
methods varying 𝜏 from 1 to 4, |𝒫| = 13 in the USADDR, MEDLINE and DBLP datasets.

5.4.2 Varying Query Length

In Table 27, we experiment with our methods and baselines with fixed 𝜏 3 and
varying the prefix query with sizes 5, 9, 13 and 17. We use only 𝜏 = 3 following the
literature, it also allows us to analyze the query processing of the methods with a relevant
amount of errors. Values greater than 3 are not common in practical scenarios. From
Table 27 we can observe two things: (1) The LD method is the second fastest method, but
with a lower confidence interval, in which it represents that this method is more stable.
(2) When we increase the prefix query sizes to 9, 13 and 17, the LD method becomes
very competitive when compared to the BEVA - which has a better time. For example,
for |𝒫| = 17, the query response time is 20.79ms and 21.50ms for the BEVA and LD12
methods, respectively, a practically derisory difference, however the BEVA was slightly
more stable with a confidence interval of 0.392 against 0.404 of the LD12 method.

For the DBLP and MEDLINE dataset, this trend continues, but the difference
in query response times between the LD method (our fastest method) and the BEVA
increases. This is because in the DBLP, despite being a smaller dataset than the USADDR
dataset, with 4.5M words against 10.2M of words of the USADDR dataset, has an average

82 Chapter 5. Results

USADDR MEDLINE DBLP
|𝒫| = 5 |𝒫| = 9 |𝒫| = 13 |𝒫| = 17 |𝒫| = 5 |𝒫| = 9 |𝒫| = 13 |𝒫| = 17 |𝒫| = 5 |𝒫| = 9 |𝒫| = 13 |𝒫| = 17

BEVA 122.07
± 3.257

21.19
± 0.420

20.76
± 0.388

20.79
± 0.392

225.93
± 6.939

12.77
± 0.481

10.49
± 0.267

9.77
± 0.139

70.64
± 1.627

9.13
± 0.134

8.47
± 0.103

8.38
± 0.100

META 4654.42
± 136.661

4709.06
± 137.903

4712.01
± 138.001

4713.02
± 138.020

-
-

-
-

-
-

-
-

1918.91
± 36.257

1934.24
± 36.660

1935.15
± 36.679

1935.53
± 36.685

LD8 131.90
± 0.192

23.00
± 0.447

23.11
± 0.486

23.15
± 0.489

276.01
± 0.072

16.51
± 0.373

16.85
± 0.619

17.04
± 0.771

97.04
± 0.052

10.75
± 0.165

10.78
± 0.194

10.86
± 0.204

LD10 131.83
± 0.191

21.64
± 0.378

21.67
± 0.420

21.71
± 0.423

275.04
± 0.072

14.39
± 0.141

13.16
± 0.228

13.41
± 0.382

97.21
± 0.052

9.85
± 0.103

9.53
± 0.116

9.62
± 0.127

LD12 131.09
± 0.193

21.66
± 0.377

21.43
± 0.400

21.50
± 0.404

271.57
± 0.072

14.14
± 0.136

12.06
± 0.155

12.05
± 0.233

98.85
± 0.052

9.84
± 0.101

9.26
± 0.107

9.32
± 0.113

LS-1 149.87
± 0.493

53.02
± 0.916

52.96
± 0.944

53.00
± 0.946

287.97
± 0.255

38.77
± 0.419

36.53
± 0.433

35.81
± 0.433

115.87
± 0.229

33.54
± 0.356

32.95
± 0.362

32.89
± 0.364

LS-4 163.84
± 0.661

69.97
± 1.155

69.95
± 1.185

69.99
± 1.186

302.69
± 0.320

50.02
± 0.515

47.87
± 0.530

47.19
± 0.530

125.61
± 0.282

42.67
± 0.425

42.13
± 0.432

42.09
± 0.435

Table 27: Query response time (ms) comparison with confidence interval between baselines
methods, varying the prefix queries sizes 5, 9, 13 and 17 for 𝜏 = 3 in the USADDR,
MEDLINE and DBLP datasets.

size of its items larger than the USADDR dataset, with an average size of 75.7 against
only 20.7 of the USADDR dataset. This means that for DBLP, our proposed methods will
have more data to process in the second level, on the other hand, we will have a more
significant reduction in memory consumption because the TRIE does not have a very
deep level. In MEDLINE we have an average item size of 90.1, that is, the time difference
will be even greater, but the memory consumption will be much smaller for the proposed
methods (See section 5.4.3).

5.4.3 Varying Dataset Portions for Memory Consumption

When comparing memory consumption, we saw that our methods have a large
advantage over baseline methods. In Figure 16 we show the memory consumption among
the baselines methods in the USADDR, MEDLINE and DBLP dataset with portions of
25%, 50%, 75% and 100% of the dataset size. In the USADDR dataset (Figure 16a), the
LD8 and LS-4 methods obtain the lowest memory consumption, a difference of three times
and two times less compared to the memory consumption of the META and BEVA methods,
respectively. In the DBLP dataset (Figure 16c), this difference in memory consumption
of our methods is three times and five times less than the META and BEVA methods,
respectively.

In the MEDLINE dataset - the largest dataset that we experienced, in which it
has more than 14M words, the difference in memory consumption was very relevant. In
the LD8 and LS-4 method we obtained 6GB and 6.5GB, respectively, while in the BEVA
we obtained 56GB of memory - which represents a memory consumption of 800% more
than our proposed methods, including LD8, LD10, LD12 , LS-1 and LS-4. In the META
method we were unable to run 100% of the portion of this dataset with 64GB of available
memory on our experiment server (Figure 16b). Therefore, this shows that it is essential
to study and obtain the lowest memory consumption in error-tolerant query completion

5.4. Baselines Comparison 83

(a) USADDR - Memory Con-
sumption (MB) between LD8,
LD10, LD12, LS-1, LS-4, BEVA
and META for 𝜏 = 3.

(b) MEDLINE - Memory Con-
sumption (MB) between LD8,
LD10, LD12, LS-1, LS-4 and
BEVA for 𝜏 = 3.

(c) DBLP - Memory Consump-
tion (MB) between LD8, LD10,
LD12, LS-1, LS-4, BEVA and
META for 𝜏 = 3.

Figure 16: Memory Consumption (MB) with portion of 25%, 50%, 75% and 100% of the
dataset sizes in USADDR, MEDLINE and DBLP.

methods, because memory is a limited and costly resource, in which we not always have
enough memory to run state-of-the-art algorithms from literature.

The use of the two-level approach in the context of error-tolerant query autocom-
pletion algorithms proved to be quite effective. It is a good alternative to compress indexes
in such algorithms and thus achieve low memory consumption. Given these results, we can
finally answer the question raised at the beginning of this chapter. The two-level approach
with the strategy of limiting the depth of the TRIE proved to be quite competitive when
compared to the main algorithms available in the literature, especially when the size of
the prefix query is smaller than the parameter 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ or when the value of 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ

is reasonably higher. In addition, we achieved a much lower memory consumption, with
90% less memory used in the MEDLINE dataset, for example. The competitiveness of our
method is due to the following: (1) In scenarios where we have a prefix query size smaller
than the configured parameters or where the size of the set parameter is reasonably large,
we have almost the same query processing time, especially when the prefix query size is
small, which often occurs in real application scenarios. (2) given an approximate processing
time, the low memory consumption reinforces that the method is very competitive.

85

6 Conclusion

Autocomplete has become an important and popular feature for search applications.
Its use brings an important gain in the usability of search applications helping users to
complete or correct misspelled queries. However, the main algorithms in the literature
consume a high amount of memory, which is a limited resource with high cost.

This dissertation proposes implementation improvements in the BEVA algorithm,
currently the state-of-the-art in the literature in order to achieve a reduction in its memory
consumption and remain efficient in the query processing time. For this, we index only
small prefixes of the queries in the TRIE and use such index to select subset of queries that
are candidate for matching the prefix query already typed by the user. We then perform
a sequential search in this subset to find the current list of suggestions that match the
prefix typed by the user. We name this approach as two-level, since the query processing
is performed partially using the TRIE, the first level, and partially performing sequential
search in the query results, the second level. The results for such approach were quite
competitive when compared to the main algorithms in the literature, being more effective
in query processing times when the prefix query size is less than the depth of the TRIE or
when the depth of the TRIE is reasonably deep. For memory consumption, we achieved a
reduction of approximately 90% compared to other methods tested in MEDLINE dataset.

In addition, we studied two ways of building the TRIE, using the key-at-a-time
(kaat) and level-at-a-time (laat) strategies. As far as we know, no previous works about
error-tolerant query autocompletion has addressed the question about alternative strategies
to build the index and authors use always the standard kaat strategy (Chaudhuri and
Kaushik (2009), Ji et al. (2009), Zhou et al. (2016), Deng et al. (2016)). Our experiments
show that we can improve the performance of BEVA when using laat strategy to build
the index. We achieve reductions in processing time varying from 50% for 𝜏 = 1 to 75%
when 𝜏 = 3 when using laat compared to the use of kaat.

As future work, it is necessary to further study and understand the the reasons why
the LS method was not efficient in processing queries. Our initial hypothesis was that the
cache policies of the machine would be affected by intermittent processing between the first
and second level, unlike processing in the LD method which is completely transferred to
the second level. However, initial data showed us that there is not such a large difference in
cache misses between the LD and LS methods, thus it is still necessary to fully understand
its inefficiency. Other works that can be studied are the use of the patricia tree as an
alternative to the two-level approach, since the patricia tree also brings a significant
reduction in memory consumption and it could not have the efficiency problems that the

86 Chapter 6. Conclusion

methods with two-level approach have when they process a large mass of data at the
second level. In addition, testing patricia trees with the two-level approach could bring an
even greater reduction in memory consumption.

87

Bibliography

Baeza-Yates, R. and G. Navarro
2000. Block addressing indices for approximate text retrieval. Journal of the American
Society for Information Science, 51(1):69–82. Cited on page 30.

Baeza-Yates, R. A. and B. Ribeiro-Neto
1999. Modern Information Retrieval. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc. Cited on page 35.

Bast, H. and I. Weber
2006. Type less, find more: Fast autocompletion search with a succinct index. In
Proceedings of the 29th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’06, P. 364–371, New York, NY, USA.
Association for Computing Machinery. Cited on page 29.

Broder, A., D. Carmel, M. Herscovici, A. Soffer, and J. Zien
2003. Efficient query evaluation using a two-level retrieval process. International
Conference on Information and Knowledge Management, Proceedings, Pp. 426–434.
Cited on page 38.

Chaudhuri, S. and R. Kaushik
2009. Extending autocompletion to tolerate errors. In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’09, Pp. 707–718,
New York, NY, USA. ACM. Cited 8 times on pages 23, 29, 33, 39, 40, 47, 64, and 85.

da Costa Xavier, D.
2019. Um método em dois níveis para completação automática de sentenças. ’. Cited 2
times on pages 35 and 38.

Deng, D., G. Li, H. Wen, H. Jagadish, and J. Feng
2016. Meta: an efficient matching-based method for error-tolerant autocompletion.
Proceedings of the VLDB Endowment, 9(10):828–839. Cited 8 times on pages 23, 24,
26, 29, 35, 47, 63, and 85.

Fredkin, E.
1960. Trie memory. Commun. ACM, 3(9):490–499. Cited 2 times on pages 24 and 29.

Grabski, K. and T. Scheffer
2004. Sentence completion. In Proceedings of the 27th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’04,
Pp. 433–439. ACM. Cited on page 29.

88 Bibliography

Heinz, S., J. Zobel, and H. E. Williams
2002. Burst tries: a fast, efficient data structure for string keys. ACM Transactions on
Information Systems (TOIS), 20(2):192–223. Cited on page 30.

Ji, S., G. Li, C. Li, and J. Feng
2009. Efficient interactive fuzzy keyword search. In Proceedings of the 18th international
conference on World wide web, Pp. 371–380. ACM. Cited 10 times on pages 23, 24, 26,
29, 30, 38, 39, 40, 47, and 85.

Levenshtein, V.
1966. Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Soviet
Physics Doklady, 10:707. Cited on page 33.

Li, G., S. Ji, C. Li, and J. Feng
2011. Efficient fuzzy full-text type-ahead search. The VLDB Journal—The International
Journal on Very Large Data Bases, 20(4):617–640. Cited 6 times on pages 23, 24, 26,
29, 30, and 39.

Manber, U., S. Wu, et al.
1994. Glimpse: A tool to search through entire file systems. In Usenix Winter, Pp. 23–32.
Cited on page 30.

Miller, R. B.
1968. Response time in man-computer conversational transactions. In Proceedings of
the December 9-11, 1968, fall joint computer conference, part I, Pp. 267–277. ACM.
Cited on page 25.

Nandi, A. and H. V. Jagadish
2007. Effective phrase prediction. In Proceedings of the 33rd International Conference
on Very Large Data Bases, VLDB ’07, P. 219–230. VLDB Endowment. Cited on page
29.

Navarro, G., E. S. De Moura, M. Neubert, N. Ziviani, and R. Baeza-Yates
2000. Adding compression to block addressing inverted indexes. Information retrieval,
3(1):49–77. Cited on page 30.

Qin, J., C. Xiao, S. Hu, J. Zhang, W. Wang, Y. Ishikawa, K. Tsuda, and K. Sadakane
2019. Efficient query autocompletion with edit distance-based error tolerance. The
VLDB Journal, Pp. 1–25. Cited on page 30.

Sussenguth Jr, E. H.
1963. Use of tree structures for processing files. Communications of the ACM, 6(5):272–
279. Cited on page 30.

Bibliography 89

Ukkonen, E.
1985. Algorithms for approximate string matching. Inf. Control, 64(1–3):100–118. Cited
3 times on pages 25, 34, and 35.

Xiao, C., J. Qin, W. Wang, Y. Ishikawa, K. Tsuda, and K. Sadakane
2013. Efficient error-tolerant query autocompletion. Proceedings of the VLDB Endow-
ment, 6(6):373–384. Cited 5 times on pages 23, 24, 26, 30, and 78.

Zhou, X., J. Qin, C. Xiao, W. Wang, X. Lin, and Y. Ishikawa
2016. Beva: An efficient query processing algorithm for error-tolerant autocompletion.
ACM Transactions on Database Systems (TODS), 41(1):5. Cited 17 times on pages 23,
24, 26, 30, 35, 39, 41, 42, 43, 44, 45, 47, 56, 58, 59, 63, and 85.

	Title page
	Approval
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	List of Figures
	List of Tables
	Contents
	Introduction
	Related Work
	Preliminaries
	Problem Definition
	Alternative Solutions to Pattern Matching
	Sequential Search
	Index-Based Search

	TRIE
	Active Nodes
	Two-level Search
	BEVA
	Boundary Active Prefix Set
	Edit vector
	Edit Vector Automata
	Query Processing With Edit Vector Automata

	Improving BEVA
	Index Building Strategies
	Two-Level Approach
	Limited Depth Method
	Limited Slot Method
	Query Processing with Two-Level Approach
	Running a Query with LS method

	Results
	Experiments Setup
	Experienced Methods
	Experimental Environment and Datasets
	Settings

	Improving Index Building
	Selecting Parameters for the Proposed Methods
	Query Response Time
	Memory Consumption

	Baselines Comparison
	Varying Edit Distance Threshold
	Varying Query Length
	Varying Dataset Portions for Memory Consumption

	Conclusion
	Bibliography

