
APPLYING MACHINE LEARNING TO

RELEVANCE EVIDENCE FUSION

AT INDEXING TIME

SHEILA DA NÓBREGA SILVA

APPLYING MACHINE LEARNING TO

RELEVANCE EVIDENCE FUSION

AT INDEXING TIME

Tese apresentada ao Programa de Pós-
-Graduação em Informática do Instituto
de Computação da Universidade Federal
do Amazonas como requisito parcial para
a obtenção do grau de Doutor em Infor-
mática.

Orientador: Edleno Silva de Moura

Manaus

Julho de 2020

SHEILA DA NÓBREGA SILVA

APPLYING MACHINE LEARNING TO

RELEVANCE EVIDENCE FUSION

AT INDEXING TIME

Dissertation presented to the Graduate
Program in Computer Science of the Uni-
versidade Federal do Amazonas in partial
fulfillment of the requirements for the de-
gree of Doctor in Computer Science.

Advisor: Edleno Silva de Moura

Manaus

July 2020

Silva, Sheila da Nóbrega

S586a Applying Machine Learning to Relevance Evidence Fusion at
Indexing Time / Sheila da Nóbrega Silva. 2020

84 f.: il. color; 31cm.

Orientador: Edleno Silva de Moura
Tese (Doutorado em Informática) - Universidade Federal do

Amazonas.

1. Computação. 2. Recuperação de Informação. 3.
Indexação. 4. Learning to rank. 5. LambdaMART. I. Moura,
Edleno Silva de. II. Universidade Federal do Amazonas III.
Título

A Deus, por me permitir chegar até aqui com saúde e serenidade.
Aos meus pais, José Herculano da Nóbrega e Maria Gomes da Nóbrega, pelo

grande incentivo e amor incondicional.
Aos meus filhos, Leandro e Gustavo, por entenderem cada momento presente,

mas na verdade ausente, concentrada nos estudos.
Ao Sidney, que mesmo não estando mais fisicamente ao meu lado, sempre me

fortalece de alguma forma.
Aos amigos de vida e do trabalho, pela torcida constante pelo meu sucesso.
Ao Tribunal de Contas do Estado do Amazonas, por ter propiciado as condições

necessárias para o avanço desta pesquisa.
Ao meu orientador, por ter colocado os estudos de volta na minha vida em um

momento onde tudo estava sem cor.

ix

“Quando achamos que não somos mais capazes,
chegamos no ponto exato da superação.”

(Sheila da Nóbrega Silva)

xi

Resumo

O principal objetivo das máquinas de busca é produzir resultados de ranking de alta
qualidade. Um aspecto importante das máquinas de busca modernas é o uso de um
grande número de distintas fontes de evidência de relevância para construir um modelo
de learning to rank (L2R). Essas evidências coletivamente ajudam a estimar se o doc-
umento é relevante ou não para a consulta. O ranking com os resultados da consulta é
calculado por meio da fusão de todas as fontes de evidência em um único score do doc-
umento, para cada documento que compõe o ranking final. Nas últimas décadas vários
trabalhos sobre fusão de evidências tem sido feito com a implementação de métodos
de L2R.

Os métodos de L2R usam exemplos de consultas com os seus respectivos resulta-
dos para treinar modelos de aprendizagem supervisionada que determinam a posição
relativa do documento na lista final de resultados. Uma vez treinado, o modelo pode
ser usado durante o processamento da consulta para determinar o ranking final. Esta
abordagem, entretanto, inadvertidamente adiciona custos computacionais para o pro-
cessamento da consulta, o que pode levar a uma queda no desempenho do tempo de
processamento. Para mitigar este problema, foi proposto na literatura uma abordagem
alternativa - Learning to Precompute Evidence Fusion (LePrEF), baseada em uma
técnica de aprendizagem supervisionada com PG (Programação Genética). O modelo
LePrEF propõe implementar a fusão de um conjunto de evidências em tempo de index-
ação, gerando um único índice invertido contendo entradas unificadas representando
todas as fontes de evidências. Esses termos unificados são chamados de Unified Term
Impacts (UTIs). Cada UTI substitui vários atributos por um único valor no índice
de documentos, reduzindo assim o esforço para calcular os scores dos documentos em
tempo de processamento da consulta porque o sistema busca e processa menos valores.
A adoção de valores de UTI produz resultados de ranking competitivos. Entretanto,
a ausência dos atributos que não estão disponíveis em tempo de consulta pode levar a
uma perda de acurácia.

Nesta tese estudamos e propomos uma modificação no LambdaMART, que pas-

xiii

samos a chamar de UTI-LambdaMART, um algorítimo de gradiente boosting para gerar
valores unificados de impactos do termo em tempo de indexação. Também, propomos e
avaliamos um modelo híbrido que utiliza valores de UTI com atributos dependentes da
consulta. Demonstramos que o nosso método híbrido por entregar resultados com alta
qualidade, equivalente aos modelos neurais atuais estado da arte. Os resultados dos
experimentos mostram que o nosso melhor modelo híbrido, HLambdaMART,alcança
um NDCG@10 igual 0,495 usando apenas 36 atributos em tempo de processamento
da consulta, enquanto o melhor baseline alcança 0,490 usando um conjunto maior de
atributos em tempo de processamento da consulta. O uso do nosso framework híbrido
reduz o tempo de execução do LambdaMART em cerca de 35% do tempo que seria
executá-lo sem a nossa proposta. Adicionamente, estudamos e propomos um método
simples para obter ganhos significativos na compressão do índice de UTI sem perda
na qualidade dos resultados das buscas. Nossa abordagem foi capaz de alcançar 79%
de taxa de compressão do índice, enquanto manteve a qualidade dos resultados equiv-
alentes aos métodos que não usam compressão. Conduzimos também experimentos
demonstrando o uso do UTI-LambdaMART como um base ranker.

xiv

Abstract

The production of high quality ranking results is the main goal of web search engines.
An important aspect of modern search engines is the use of a large number of distinct
sources of relevance evidence to build the learning to rank (L2R) model. Collectively,
they determine whether the document is relevant to a query or not. The ranking of
query results is computed by fusing all sources of evidence into a single document score,
for each document in the final ranking. In the past few decades, most of the works on
evidence fusion has been done with the implementation of L2R methods.

L2R methods use examples of queries and their respective results to train su-
pervised learning models that determine the relative position of the documents in the
result list. Once trained, the model can be used during query processing to determine
the final ranking. This approach, however, inadvertently adds computational costs to
query processing, which may lead to a drop in time performance. To mitigate this
problem, an alternative approach was proposed in literature — Learn to Precompute
Evidence Fusion (LePrEF), based on supervised learning techniques with GP (Genetic
Programming). LePrEF proposes to implement the bulk of the evidence fusion during
indexing time, generating a single inverted index containing unified entries representing
all sources of evidence. These unified entries are called Unified Term Impacts (UTIs).
Each unified term impact replaces several features with a single value in the document
index, thereby reducing the effort to compute the document scores at query processing
time because the system fetches and processes fewer values. The adoption of UTI val-
ues produces competitive ranking results. However, the lack of features available only
at query time might lead to accuracy loss.

In this dissertation we study and propose a modified LambdaMART, named UTI-
LambdaMART, a gradient boosting algorithm to generate unified term impacts (UTI)
values at indexing time. We also propose and evaluate a hybrid model that uses UTI
values with query-dependent features. We demonstrate that our hybrid methods can
deliver high-quality results on par with those of the existing state-of-the-art neural
ranking models. The experimental results show that our best hybrid model, HLamb-

xv

daMART, achieves an NDCG@10 value of 0.495 using only 36 features at query pro-
cessing time when applied to the MQ2007 collection, while the best baseline achieves
0.490 using a larger set of features at query processing time. The use of our hybrid
framework reduces the time to run LambdaMART to about 35% of the time to run it
without using our proposals. In addition, we study and propose a simple method to
obtain significant gains in UTI-index compression with virtually no loss in the quality
of search results. Our approach was able to achieve 79% compression rate of the index,
while keeping the quality of results on par with methods that do not use compression.
We also conduct experiments that demonstrate the use of the UTI-LambdaMART as
a base ranker.

xvi

List of Figures

1.1 Two-stage L2R query processing . 2
1.2 Indexing and query processing when using UTI-LambdaMART 5

3.1 The L2R process. 18
3.2 Boosted ensemble of decision trees. 20
3.3 Boosting tree example with N=3 and L=3. 21
3.4 General steps for constructing a LambdaMART model for a ranking problem. 24
3.5 The process used to generate a UTI value computation model, the learning

process, described in the upper part of the figure, and the indexing process,
which takes the model and pairs of terms and documents to produce UTI
values. 26

3.6 An individual representation in GP . 28

4.1 An example of the UTI-LambdaMARTmodel output for indexing and query
processing. 41

4.2 Examples of UTI values of terms present in two different queries. Note
that given a term and a document, we always take the same UTI value,
regardless of what the other query terms are. 42

4.3 Query processing using a hybrid approach that adopts UTI values to sub-
stitute all features available at indexing times. The L2R model combines
UTI values with the remaining features. Differences from the architecture
described in Fig. 1 are highlighted in blue 43

4.4 Query processing using the hybrid approach and adopting a UTI both as
a feature of the L2R process and as a base ranker. Differences from the
architecture described in Fig. 1.1 are highlighted in blue. 45

5.1 Comparison of the UTI-LambdaMART quality results in MQ2007 with and
without the two additional positional features for each term-document . . 53

6.1 Quality results for HiNT and HLambdaMART on MQ2007. 63

xvii

6.2 Quality of results achieved by HLambdaMART when using UTI-
LambdaMART and BM25 as base rankers of MQ2007 for distinct sizes of
the top-k results transferred from the base ranker to HLambdaMART. . . 67

xviii

List of Tables

5.1 Characteristics of the Datasets . 48

5.2 Summary of the data extraction from Gov 49

5.3 Original features (from 1 to 46) of MQ2007 and MQ2008, plus a set of nine
features related to the positions of query terms, used in the baseline L2R
methods. 50

5.4 Impact in MAP results when varying the number of term-Document posi-
tional features . 52

5.5 MQ2007 and MQ2008 term-related versions of features 1-15 available in
MQ2007 and MQ2008, i.e. features mapping terms to documents. 53

5.6 Query-dependent features of LETOR MQ2007 and MQ2008, plus UTI score
and a set of nine features related to the positions of query terms, used in
the hybrids methods (HCA, HMART and HLambdaMART) 56

5.7 Number of features adopted by each method at indexing times and at query
processing times. The HiNT and DeepRank methods learn from the raw
text inputs (features equivalent to the 55 adopted by the other methods). . 57

6.1 Performance of UTI-LambdaMART compared to that of UTI-GP (the pre-
vious UTI method available in the literature) and to that of the original
LambdaMART. UTI methods apply the learning process at indexing time
and use a limited set of features, while the original LambdaMART method
performs the learning at query processing time and uses the full set of fea-
tures available in the collection. 60

6.2 Comparing the UTI-LambdaMART in MQ2008 test set using the model
trained in MQ2007 and in MQ2008. A significant performance degradation
is denoted as (O). 61

xix

6.3 Performances of MART, CA,LambdaMART, DeepRank, HiNT and the hy-
brid methods, combining UTI-LambdaMART with CA (HCA) and Lamb-
daMART (HLambdaMART). We applied the 9 passage-based features in all
L2R methods. A significant performance degradation of HLambdaMART
is denoted as (O). 62

6.4 Performance comparisons of MART with different set of features on MQ2007
and MQ2008. 65

6.5 Performance comparisons of CA with different set of features on MQ2007
and MQ2008. 66

6.6 Performance comparisons of LambdaMARTwith different set of features on
MQ2007 and MQ2008. 66

6.7 LambdaMART and HLambdaMART time (seconds) to index and space
(MB) when applied to MQ2007 and MQ2008. 69

6.8 LambdaMART and HLambdaMART average times, in milliseconds, to run
base ranker (base) and top ranker (top) on MQ2007 and MQ2008. 70

6.9 Impact on NDCG@10 of UTI-LambdaMART and HLambdaMART when
varying the number of decimal places per entry when computing UTI values
on MQ2007. 72

xx

Contents

Resumo xiii

Abstract xv

List of Figures xvii

List of Tables xix

1 Introduction 1
1.1 Problem Statement . 3
1.2 Research Goals . 4
1.3 Research Questions . 5
1.4 Publication . 7

2 Related Work 9
2.1 Precomputed Evidence Fusion . 9
2.2 Document rank models . 10

3 Background 15
3.1 Learning-To-Rank . 16
3.2 LambdaMART rank model . 19
3.3 Learning UTI values . 24

3.3.1 UTI-GP Model . 27
3.4 Deep learning model . 28
3.5 Evaluation Measures . 29

4 The UTI-LambdaMART Model 33
4.1 Modified LambdaMART Algorithm . 34

4.1.1 An example of UTI generation using UTI-LambdaMART 39
4.2 Combining UTIs with Query-Time Features 42

xxi

4.2.1 Using UTI Values as a Query-Time Feature 43
4.2.2 Using UTI-LambdaMART as a Base Ranker 44

5 Experimental Protocols 47
5.1 Datasets . 47
5.2 Baseline Methods . 51

5.2.1 UTI Methods . 51
5.2.2 L2R Methods . 54
5.2.3 Deep Matching Methods . 54
5.2.4 Hybrid Methods . 55

6 Experiment Results 59
6.1 UTI-LambdaMART for evidence fusion 59
6.2 Hybrid architecture evaluation . 61

6.2.1 The impact of UTI on L2R methods 63
6.3 Evaluation the UTI-LambdaMART for base ranker 66
6.4 A performance evaluation . 68
6.5 An UTI-Index compression evaluation 71

7 Conclusions and Future Work 73
7.1 Conclusions . 73
7.2 Future Work . 74

Bibliography 77

xxii

Chapter 1

Introduction

High-quality ranking results are fundamental for web search engines. Users expect

answers to their queries displayed at the top of the list of search engines result

pages [Saraiva et al., 2001]. Modern search engine users experience fast query response

regardless of the size of the datasets; however, any noticeable increase in waiting time

can dampen their perception of the quality of the system, thus computational efficiency

cannot be obtained at the cost of quality.

Quality is addressed through machine learning techniques known as learning-to-

rank (L2R) techniques. Fig. 1.1 shows query processing performed through a two-step

L2R-based search engine [Dang et al., 2013; Capannini et al., 2016; Daoud et al., 2017;

Sousa et al., 2019]. In the first step, top-k ranking results are retrieved using a low-

cost ranking strategy, such as BM25 [Robertson and Walker, 1994], referred to as a

base ranker. The value of k depends on the quality of the first ranking, because the

goal is to obtain a list that covers most of the potentially relevant documents for the

user. The choice of k also influences computational costs because a higher k yields a

higher cost for processing queries [Daoud et al., 2017]. In the second step, adopting

an L2R model referred to as a top ranker, the top-k documents are reranked using a

more sophisticated ranking method. This step accesses an index that contains dozens

1

2 Chapter 1. Introduction

Figure 1.1: Two-stage L2R query processing

or more than a hundred features per document, to be combined into a final score. The

main goal is to offer the best final result to the user. While other architectures could

be adopted, such as one that involves processing all documents with the L2R method,

the two-step approach described in Fig. 1.1 is mentioned and adopted in the literature

as a solution to allow for fast query processing since the top ranker needs to process

the features of only a few documents [Dang et al., 2013; Capannini et al., 2016; Daoud

et al., 2017; Sousa et al., 2019].

Using many distinct sources of relevance evidence to build a L2R model is an

important aspect of modern search engines. Collectively, these sources are combined

to estimate the relevance of a document to a query. Examples of these sources are

the frequencies of terms in the text; URLs, titles, and other parts of the document;

web link graph analysis; and query log analysis [Baeza-Yates and Ribeiro-Neto, 2011].

These features are in the top ranker index in Fig. 1.1.

In the top ranker, the ranking of the query results is computed, fusing all sources

of evidence into a single document score, at the query processing time to produce

a final document ranking. In the past few decades, works on evidence fusion have

1.1. Problem Statement 3

been carried out using L2R implementations [Liu, 2011], such as genetic programming

algorithms [de Almeida et al., 2007; Silva et al., 2009], gradient boosting methods [Wu

et al., 2010; Lucchese et al., 2018b], and neural networks [Mitra et al., 2017; Pang et al.,

2017; Fan et al., 2018; Xu et al., 2019].

Thus, L2R methods use example queries and their respective results to train

supervised learning models. Then, these models determine the relative position of the

documents from the results of a new query and determine the final ranking. However,

this approach increases the computational cost of query processing, leading to a drop

in query-time performance.

To mitigate this problem, [Costa Carvalho et al., 2012] proposed an alternative

that fused evidences at indexing time named UTI-GP, based on supervised genetic pro-

gramming as the underlying learning mechanism. UTI-GP generates a single inverted

index that contains unified entries representing all sources of evidence, called unified

term impact (UTI) values. On the basis of a pretrained L2R model, each UTI value is

computed at indexing time. At query time, the search engine obtains the score of each

document by adding UTI values that associate it to each of the query terms. Using this

approach, several features of the top ranker are substituted with a single feature, i.e.,

a UTI value. This substitution makes the top ranker extremely simple and lightweight

when compared with the traditional L2R strategies.

1.1 Problem Statement

A limitation of the UTI-GP approach is that several features usually available for search

systems are not available at indexing time. For instance, features that depend on the

query set, such as the BM25 [Robertson and Walker, 1994] of the document given a

query, are not available at indexing time. Other examples of features that would not be

available include any personalized information about the user who is typing the query

or information about the most-clicked documents given a query. Other limitation is the

4 Chapter 1. Introduction

long time required for training the model using genetic programming. Thus, UTI-based

methods have important limitations.

1.2 Research Goals

In the present study, we propose UTI-LambdaMART, an adaptation of Lamb-

daMART [Burges, 2010; Wu et al., 2010], a gradient boosting algorithm, to com-

pute UTI values of each pair of document and term during indexing. Compared to

LambdaMART, our method uses less resources and reduces the cost of query process-

ing.Fig. 1.2 illustrates the process of UTI index generation and how the queries are

processed using UTI values. At indexing time (Fig. 1.2a), the available features are

fused into a single index that contains UTI values computed by UTI-LambdaMART.

Query processing is performed as depicted in Fig. 1.2b, where queries are processed in

a single step using only the index containing UTI values. A simple ranking method is

used, in which the score of a document is the sum of UTI values of each query term.

Here, we also address the limitations of UTI-based methods and discuss how to take

advantage of UTI-based methods by combining them with traditional L2R methods.

We improve the proposal of Carvalho et al. in terms of four aspects:

1. We propose a new method for generating UTI values, named UTI-LambdaMART,

to significantly reduce the required training compared with UTI-GP while im-

proving the quality of the search results.

2. To address the raised problem, we demonstrate a method of using our proposed

UTI-LambdaMART in a hybrid model and combining it with other L2R methods.

The results achieved are on par with those of state-of-the-art neural ranking

methods, while still processing fewer features at query processing times.

3. We show that our method offers an extremely low computational effort. The

experiments presented indicate it is useful as a practical alternative base ranker

1.3. Research Questions 5

Figure 1.2: Indexing and query processing when using UTI-LambdaMART

for search systems, as it produces a first ranking close to the final result.

4. Using a simple compression scheme, we reduce the space requirements of the in-

verted index produced, achieving this reduction without significant loss of search

quality.

1.3 Research Questions

This work addresses five main research questions:

• RQ1: If we adapt LambdaMART to compute UTI values, would it

result in an effective method in terms of the quality of the results?

To address this question, we demonstrate a method of using LambdaMART

to produce a term-based learning model and precompute UTI values.A term-

based learning model produces a score for each document given a single term

(as the case of the UTI score), instead of producing a score of a full query,

as done by traditional L2R models. Our solution produces competitive results

when compared with other L2R methods since, as other methods that produce

6 Chapter 1. Introduction

UTIs, it encodes a more fine grained information in the learning process, tak-

ing features at the term level instead of query level. In our model, we take

individual term frequency as a feature, whereas in conventional L2R models,

information on the individual frequency of each term is encoded in a single

feature, such as a sum of term frequencies or max term frequency among the

query terms. We also performed experiments to compare the performance of

UTI-LambdaMART with the work of Costa Carvalho et al. [2012], where the

results of our LambdaMART adaptation achieves results in 2.8% of the time re-

quired for UTI-GP. Using only features at indexing time, we produce results on

pair with the original LambdaMART, that uses a full set of features.

• RQ2: Because search systems rely on features not available at indexing

time, would the combination of methods that compute UTI values with

L2R methods at query processing time produce high-quality results?

Here, we investigate how to use UTI computation as one of the steps in a two-

stage learning process, proposing a hybrid approach that uses UTI values to

substitute, at the query processing time, the set of features available at indexing

time. This approach considerably reduces the number of features to be fetched

and processed, thus reducing the time to answer the query. We also performed

experiments to show that our hybrid approach produces quality scores on pair

with the best neural ranking baselines in the literature Pang et al. [2017]; Fan

et al. [2018].

• RQ3: Is UTI-LambdaMART a good alternative base ranker? Since

it produces a high-quality ranking and, at the same time, is quite fast, UTI-

LambdaMART can be used as a strong base ranker; i.e., it can produce a rank-

ing closer to the final ranking with minimum compromise in terms of the time

efficiency. When used as a base ranker, we can reduce the number k of docu-

ments analyzed at query processing time. We investigate this hypothesis in the

1.4. Publication 7

experiments.

• RQ4: In addition to quality issues, would the use of UTI-

LambdaMART produce a fast L2R alternative solution ? This question

is about performance. The methods proposed here have as one of their goals

reducing the query processing times. We thus investigate the possible impact of

the methods on the performance of a search system.

• RQ5: How much can the UTI index be reduced with virtually no loss

in the quality of search results ? We address the problem of generating

UTI values that produce an index that can be compressed. We exploited UTI-

LambdaMART to achieve a much smaller index with low impact in terms of its

construction time. Our proposal for index size reduction consists of truncating

the decimal places in the UTI values generated. We investigate whether it is

most profitable to reduce the size of the UTI representation during or after the

training.

The rest of this dissertation is organized as follows. In Section 2, we discuss

related works. Section 3 presents background information about L2R and UTI learning.

Section 4 describe our proposal. Section 5 presents our experimental setup, followed

by a comparison with current baselines and the answers to our research question in

Section 6. Section 7 concludes the paper and offers directions for future research.

1.4 Publication

The evaluations described in this thesis are also presented in the following paper:

• S. D. N. Silva, E. S. De Moura, P. P. Calado and A. S. Da Silva, Effective

Lightweight Learning-to-Rank Method Using Unified Term Impacts, in IEEE Ac-

cess, vol. 8, pp. 70420-70437, 2020, doi: 10.1109/ACCESS.2020.2986943.

Chapter 2

Related Work

In this section, we review the related works on precomputed evidence fusion and doc-

ument rank models.

2.1 Precomputed Evidence Fusion

Anh and Moffat [2002] were the first to propose precomputed term impacts on doc-

uments, which was further addressed in two other followup articles [Anh and Moffat,

2005; Anh et al., 2008]. Their work aimed at reducing the number of arithmetic com-

putations performed at query processing times using a fixed term impact computation

strategy not based on machine learning. It is different from our work because they

propose an ad hoc method and do not study the use of multiple features, as we and

other authors do.

Costa Carvalho et al. [2012] proposed a method, referred to here as UTI-GP, to

learn UTI values using genetic programming (GP), where the concept of UTI was first

introduced. Basically, the learning process consist of generate individuals to combine

all sources of relevance evidence into a single value for each term-document pair. Then,

the quality of the rankings generated by the UTIs created for each individual is used

as this individual’s fitness value. The quality of the results was measured using the

9

10 Chapter 2. Related Work

Normalized Discounted Cumulative Gain (NDCG) [Järvelin and Kekäläinen, 2002].

Although the authors showed that computing UTI values is a promising strategy, the

longer time required to train the evidence fusion model was a major drawback.

2.2 Document rank models

Several authors have studied L2R methods in the literature using different machine

learning techniques [de Almeida et al., 2007; Silva et al., 2009; Wu et al., 2010; Lucchese

et al., 2018b; Pang et al., 2017; Fan et al., 2018; Xu et al., 2019]. Other examples and

details of the L2R methods can be found in the works of Liu [2011] and Tax et al.

[2015]. All methods mentioned in this session apply the learning at query processing

only, with none of them studying the possibility of computing unified term impacts or

applying them in the L2R process.

Wei et al. [2017] propose a novel learning-to-rank model on the basis of the Markov

decision process (MDP), referred to as MDPRank. In the learning phase of MDPRank,

the construction of a document ranking is considered as a sequential decision-making,

each corresponding to an action of selecting a document for the corresponding position.

The policy gradient algorithm of REINFORCE is adopted to train the model parame-

ters. The evaluation measures calculated at every ranking position are utilized as the

immediate rewards to the corresponding actions, which guide the learning algorithm to

adjust the model parameters so that the measure is optimized. The authors compare

their methods to several baselines using the collection MQ2007 [Liu et al., 2007]; the

results, however, are quite inferior to those achieved by the current state-of-the-art

methods.

Lucchese et al. [2016] propose a framework called CLEaVER to optimize L2R

models based on ensembles of regression trees. Their method first removes a subset

of the trees in the ensemble and then fine-tunes the weights of the remaining trees

according to a quality measure. Experiments performed on two publicly available

2.2. Document rank models 11

datasets show that CLEaVER can prune up to 80% of the trees. In Lucchese et al.

[2018a], the authors improved the pruning strategies of CLEaVER and proposed the

extension model called X-CLEaVER. Again, their method is orthogonal to the ones

proposed here. Their pruning strategy can also be applied when fusing evidence at

indexing times, which may reduce the computational training costs.

Issues related to the combination of the efficiency and effectiveness in L2R meth-

ods have recently been addressed in the literature. Chen et al. [2017] explored the

importance of integrating feature costs into multistage L2R IR systems, optimizing

cascaded ranking models that offer a better balance between the efficiency and qual-

ity of ranking results. The proposal in this study can be combined with the cascade

strategy because the approaches that compute UTI values may be incorporated in any

cascade ranking strategy.

Pang et al. [2017] propose a deep learning approach called DeepRank to relevance

ranking in information retrieval. DeepRank simulates the human judgment process

aggregating relevance signals from a query-centric context. Basically, the process has

three stages: first, the entire document is analyzed to find the relevant locations (where

the query terms are); second, the local relevances is determined using CNN and 2D-

GRU and, finally, using RNN and a term gating network, these locations are aggregated

to a global one for ranking.

Fan et al. [2018] propose a HIerarchical Neural maTching model (HiNT). HiNT is

composed of two stacked components, namely, the local matching layer and the global

decision layer. The local matching layer focuses on producing a set of local relevance

signals by modeling the semantic matching between a query and each passage of the

document. The global decision layer accumulates local signals and uses them for the

final relevance score. The shortcoming of the high computational cost is identified in

these methods, which employ special hardware and GPUs to run at a competitive time.

Guo et al. [2019] present a comprehensive survey about L2R methods, comparing

more than 20 methods available in the literature, and show that deep neural networks,

12 Chapter 2. Related Work

such as DeepRank [Pang et al., 2017] and HiNT [Fan et al., 2018], are among the best

L2R methods. They show that HiNT is the method with the best performance when

applied to MQ2007, and DeepRank yields results close to it. Nonetheless, we adopted

these methods owing to their high-quality results. On the basis of the experimental

results, our hybrid can achieve quality results on par with those achieved by these

baselines, which use lightweight L2R models and fewer features at query processing

times.

The research in the area is continuously evolving. Yu et al. [2019] recently pre-

sented a study specifically focused on listwise methods, a specific type of L2R method,

and proposed the WassRank method. To validate the effectiveness of WassRank, they

conduct a series of experiments on two benchmark collections and present results in-

dicating that their method produces results with a quality superior to that of other

listwise methods.

In another recent study, Xu et al. [2019] show that the quality of document

features can affect the effectiveness of ranking models and study methods to better

model the relationship between queries and documents. They perform their study using

deep neural network models to generate effective features and incorporate autoencoders

in the construction of ranking models based on L2R. While the ideas presented show a

potential contribution to the area, their final results, however, are not superior to those

achieved by HiNT [Fan et al., 2018]. We consider as a future work using their ideas

as a possible alternative to improve the quality of features and produce even better

ranking results in our methods. As the quality of results presented by the method is

quite low compared to those of HiNT, we decided to not include this method in our

baselines.

Gallagher et al. [2019] present a framework for learning an end-to-end cascade

of rankers using backpropagation. They show that learning objectives at each stage

can be chained together and optimized jointly to achieve significantly better tradeoffs

globally. In the proposed cascading ranking model, for each stage only the highest

2.2. Document rank models 13

ranked documents are promoted to the next stage, thus the full list of candidate docu-

ments is seen only in the earlier stages. They work with different set of features across

the stages. Their approach is another alternative to improve the quality of results of

L2R methods, such as LambdaMART. As in X-CLEaVER, the work of Gallagher is

orthogonal to our research presented here.

Ji et al. [2019] discuss the high computational costs of recently proposed L2R

methods based on the neural network and investigate a method for the fast approxi-

mation of three interaction-based L2R neural network ranking algorithms using local-

ity sensitive hashing (LSH). Their method accelerates the query-document interaction

computation by using a runtime cache with precomputed term vectors and speeds

up the kernel calculation by taking advantage of the limited integer similarity values.

Zamani et al. [2018] propose a standalone ranking model (SNRM) using an indexing

method for neural representation. While their ideas reduce the computational costs re-

lated to L2R neural network, the high computational costs of these methods, compared

to other L2R approaches, are still an important issue to be addressed in the literature.

Chapter 3

Background

In this section, we further explain the main differences between learning-to-rank and

UTI learning. We also summarize the LambdaMART model and the evaluation metrics

adopted to evaluate the quality of our experiments.

In the past, ranking models were usually created without learning techniques,

adopting a specific formula based on a reasoning regarding how to represent queries,

documents and the similarity scores between them. An example of ranking models is

the probabilistic model that was used to propose the BM25 [Robertson and Walker,

1994] score function. BM25 provides a formula to compute the similarity score to

estimate how relevant a document is to a given query, and this score function is adopted

to compute the ranking results in search systems.

As search systems evolved in the past decades, several new sources of relevance

information have been introduced and, in spite of initial efforts provide simple functions

to combine distinct sources of relevance, such as combining evidices using a Bayesian

Network probabilistic approach [Silva et al., 2000], just performing a linear combination

[Westerveld et al., 2001] or using a SIGMOID ajustiment function in an attempt to

better modeling the importance of the combined features [Craswell et al., 2005]. A

common problem with all the mentioned approaches is that they adopt too simplified

15

16 Chapter 3. Background

models for combining evidences, which tend to achieve low quality of results, specially

as the number of evidences to be combined grow or when the there are relationships

between sources of relevance evidence that are not captured by them.

In a more promise research direction, solutions employing machine learning tech-

niques to automatically construct ranking models also have emerged in the literature in

the past few decades. Motivations include the increasing complexity of modern search

systems, which now use several sources of relevance evidence, also know as features. For

instance, systems currently include information on the user clicks in past occurrences

of a query, personalized information about the users, such as geographic information,

and so on. In this context, the use of machine learning techniques has become almost a

standard solution for automatically producing high-quality models in search systems.

3.1 Learning-To-Rank

In information retrieval, for a given query, the objective of the L2R is to order a set

of resulting documents according to their degree of relevance. We start by defining a

supervised learning-to-rank approach in the two-step L2R-based search engine. The

L2R task can be divided into a learning system and a ranking system [Li, 2011]. To

explain the learning system, we first need to define the training data used to create a

ranking model. Let Q={q(1), q(2), q(3),...,q(m)} denotes a set of queries. For each query

q(i) ⊂ Q, there is an associated set of k resulting documents Di={d(i)1 , d
(i)
2 ..., d

(i)
k }.

Each query document pair (q(i), d
(i)
j), with q(i) being a query and d

(i)
j ∈ Di being

a document, has an associated feature set fs(q(i), d(i)j) containing n related features

fs(q(i), d
(i)
j)={fs1(i)

j ,fs2(i)
j , ..., fsn

(i)
j } and its respective document relevance judgment

r
(i)
j , representing the relevance score of document d(i)j as a result for query q(i). The

training data are the input used to learn a ranking model (Fig. 3.1), or ranking

function. Consider that queries and documents are represented together as vectors in

3.1. Learning-To-Rank 17

Rn, basically we need to find a rank function f : Rn → R which minimizes

R(f) =
1

m

m∑
q=1

L(π(f,Dq), rq) (3.1)

where, π(f,Dq) is the ranking of documents for query q and L measures the dis-

crepancy between π(f,Dq) and rq. L is the loss function and can be defined according

to the adopted L2R approach. There are three approaches used in L2R implementa-

tions:

1. Pointwise: an approach in which the loss function is defined based on a single

document. Pointwise approach ignores the group structure of ranking, then dur-

ing the training the data is seen in the same way as in conventional supervised

learning, when we take the relevance r as a class label and the problem becomes

a classification problem. Given a query, we can use the model to ranking docu-

ments simply by sorting the documents according to the scores provided by the

model.

2. Pairwise: in this approach, the loss function is defined based on pairs of feature

vectors (related with pairs of documents) with different judgments of relevance.

The ranking problem is transformed into pairwise classification or pairwise re-

gression. Ranknet[Burges et al., 2005] and LambdaRank[Burges et al., 2006] are

examples of this approach.

3. Listwise: an approach that considers the entire list of documents to define the

loss function. This approach learns during the training a rank function f(x) that

can assign scores to documents (feature vectors) and rank the documents using

the scores, such documents with higher scores are ranked higher. ListNet[Xia

et al., 2008], AdaRank[Xu and Li, 2007] and LambdaMART[Burges, 2010] im-

plement the listwise approach.

18 Chapter 3. Background

In some methods, the ranking model assigns scores to each document in the

answer set for a query. In these cases, it can be defined as a function F (x), x =

(q(i), d
(i)
j , fs(q

(i), d
(i)
j)), with F being a function that assigns a numerical score to each

document given a query, using only the feature set associated with them to compute

this score. In the ranking system, a rank model learned is used to predict the rank of

documents for a new query, given as input documents not seen during the training and

their related features.

q(1), d
(1)
1 , fs1

(1)
1 , fs2

(1)
1 ..fsn

(1)
1 , r

(1)
1

q(1), d
(1)
2 , fs1

(1)
2 , fs2

(1)
2 ..fsn

(1)
2 , r

(1)
2

q(m), d
(m)
k , fs1

(m)
k , fs2

(m)
k ..fsn

(m)
k , r

(m)
k

Training data

Learning to Rank
Algorithm

Model h

Ranking System

q, d, fs1, fs2..fsn, h(x)

q, d, fs1, fs2..fsn, ?

Test data

Figure 3.1: The L2R process.

We may find small variants of this general model. For instance, other methods

produce a ranking model that requires the whole set of documents and features as

input when processing queries. This is the case, for instance, for SVMRank [Joachims,

2002], which compares all pairs of documents in the answer and ranks them according

to the number of times a document is better than other documents in the answer. This

approach is known as pairwise L2R. In SVMRank, the whole set of results for a query

should be analyzed at query processing time to produce the score of each document in

the results set since it does not produce a function f that depends only on the pair of

a given document and query, always requiring the whole set of results to produce the

ranking.

Some methods perform pairwise and listwise comparisons only when learning the

model and produce as the result a function that assigns the scores for a given document

3.2. LambdaMART rank model 19

and query based only on the feature set associated with them, without comparing them

to other results to produce this score. For instance, this is the case of LambdaMART,

which is a listwise method, but one that produces a function f as described above.

3.2 LambdaMART rank model

LambdaMART [Burges, 2010] is a combination of MART [Friedman, 2001], an L2R

method that adopts a boosted tree model, and LambdaRank [Burges et al., 2006],

which is based in RankNet [Burges et al., 2005]. LambdaMART is the MART method

using the cost function of the LambdaRank.

LambdaMART constructs a ranking model F that maps each set of features of

instance x into a numerical score F (x). At training time, each instance x = (q, d, r) is

a tuple composed of a set of features values related to query q and document d, and a

set of relevance r that indicates the relevance of the document d to the query q.

The model constructs a function that maximizes the quality of the ranking in

the training set, using information on the relevance level r of each document d with

respect to query q to compute the quality of the results. LambdaMART generates

a tree ensemble model (Fig. 3.2). The goal is to find a set of trees that, together,

minimize the loss function. The output F (x) can be defined as

F (x) =
N∑
i=1

fi(x) (3.2)

where N is the number of trees and each fi is a function assigned for a individual

regression free.

Mapping occurs by traversing each regression tree, where the direction to be fol-

lowed (left or right) is defined using the value of each feature and the threshold learned.

The leaves are the output of the tree. In decision trees, we have two parameters: the

parameter region assignments Rn that assigns an instance xn to a leaf node l, and the

20 Chapter 3. Background

Figure 3.2: Boosted ensemble of decision trees.

leaf outputs γl that are the tree’s output for all instances assigned for the region Rl.

Each leaf γl,n of the tree has a value learned in the training, 1 ≤ l ≤ L and 1 ≤ n ≤ N ,

where N is the number of trees and L is the number of leaves. The parameters defined

by the user are N , L and the learning rate η (value that is multiplied for every γl,n for

every tree).

An example of the model generated by the LambdaMART is shown in Fig. 3.3.

The parameters are N = 3 and L = 3. We consider the instance x, with features

f1 = 0.5 and f2 = 38, then we parsing x down the tree f1, where f1 and f2 are the

features assigned to the nodes of this tree with their respective thresholds 0.43 and 36.

In our example, for the instance x the value of f1 is greater than the threshold 0.43, so

we proceed to the right of the root node, for the right child of the root node the value

of the feature f2 is also greater than the threshold value, so we turn right again and

finally reaches a leaf node γ3,1 with the predicted value 0.3. We repeat the same steps

for the others trees. The final score is the sum of the predicted values in each model

tree. The mapping is 1:1; i.e., for each instance, it is assigned a score.

The Cost Function

LambdaMART objective function is based on LambdaRank, which is based on

RankNet. The Ranknet model uses a probabilistic cost function implemented in a

neural network. We begin describing the RankNet objective function. The RankNet

training data is partitioned by query. For a query q, for each pair of documents dj , dk,

3.2. LambdaMART rank model 21

Figure 3.3: Boosting tree example with N=3 and L=3.

with different labels, and feature vectors xj, xk, the outputs of the model are mapped

to a learned probability of the document dj be ranked higher than dk (because the

document dj is labeled as ’relevant’ and document dk ’not relevant’) is expressed as a

sigmoid function:

Pjk =
1

1 + e−σ(sj−sk)
(3.3)

where the scores sj = f(xj), sk = f(xk), and the parameter σ determines the

shape of the sigmoid. The cost function calculates the cross entropy loss:

C = −P jk logPjk − (1− P jk) log(1− Pjk) (3.4)

where P jk is the model probability and Pjk the actual probability (1 for relevant

judgments and 0 for not relevant judgments). The RankNet combines Eq. 3.3 and 3.4

then the cost when dj must be ranked higher than dk is:

C = sj − sk + log(1 + esj−sk) (3.5)

LambdaRank is based on RankNet, but instead of pairwise error, the Lamb-

22 Chapter 3. Background

daRank optimization cost C has the property that

∂C

∂sj
� ∂C

∂sk
(3.6)

whenever j � k. The main idea is to express how the rank order of documents

change after sorting them by score for a given query. We use S = s1, ..., sn to denote

the scores assigned by F to D, and r = r1, ..., rn to denote how relevant the document

dj is for query qi. The gradient of the cost C with respect to the score of the document

dj (at rank position j) for the query qi, as

∂C

∂sj
= −λj(s1, r1, s2, r2, ..., sni

, rni
) (3.7)

where positive λj means that the document must move up the ranked list to

reduce the cost, and negative value means it must moves down. Thus, the λ function

depends on the ranked order (based on the computed scores) of the all documents re-

turned for a query qi, which makes LambdaMARTa listwise approach. LambdaRANK

solved the problem of information retrieval measures being discontinuous or flat, com-

puting the gradients after the documents have been sorted by their scores. Burges

et al. [2006] prove that to optimize some IR measure we just multiply the |∆Z| by λ,

where |∆Z| is the difference of an IR measure when dj and dk are swapped. Here, we

are interested in optimizing the NDCG, then we just multiply the λ’s by the ∆NDCG

(Eq. 3.8), that is the change in NDCG when swapping dj and dk.

λjk =
∂C(sj − sk)

∂sj
=

1

1 + e(sj−sk)
∗∆NDCG (3.8)

We use Normalized Discounted Cumulative Gain (NDCG) to evaluate the agree-

ment between the ranking produced by F and the relevance labels r for query q.

3.2. LambdaMART rank model 23

Gradient Boosting Regression Tree

LambdaMART is a boosted tree model, so the output of the model is a linear combi-

nation of the outputs of a set of regression trees. During the training suppose we are

given a data set {fsi, ri}, i = 1, ...,m where the set of features fsi ∈ Rd and the labels

ri ∈ R. For a give vector fsi we index its features values by fsi,j, j = 1, ..., d. First

we consider all data to be resident on the root node, and we need to do the first split

and distribute the data on two leaves connect to the root. To do it, we loop through

all training instances to find the feature fsi,j and threshold t such that, if all training

instances with fsi,j ≤ t fall to the left child node and the rest fall to the right child

node, then the sum

Sj =
∑
i∈L

(λi − λL
2
) +

∑
i∈R

(λi − λR)
2 (3.9)

is minimized. Where λL is the mean of λ′s of the set of instances that fall to the

left child node and λD the mean of λ′s of all instances that fall to the right child note.

After calculating Sj for all features, the feature j and threshold t attached to the rood

node are those that reach the minimal Sj. To build a tree with a total of L leaves this

process is executed L− 1 times. For each leaf nodes l we assign the value of γl, which

is the mean of the λ’s of the instances that reach the leaf node l. The leaf output γl is

the tree’s output for all instances assigned to region Rl. LambdaMART can decrease

the utility for some queries while increasing the general utility.

Each regression tree fi , with L leaves, models the λ for the entire set of instances.

The least squares is used to compute the splits, it defines the choice of a specific

threshold t and node j of the generated regression tree. For each leaf is assigned the

mean of λ’s of the training instances that fall there. Each tree contributes to a gradient

step in the direction that minimizes the loss function.

24 Chapter 3. Background

The lambdaMART algorithm

Fig. 3.4 shows the general steps used by LambdaMART to build a rank model. Refer

to the original method [Wu et al., 2010] for further details of all steps. It is important

for this study to understand the model inputs (instances used in the learning process):

step 2.1, namely, how the scores are updated, and step 2.2, namely, how the gradient

is computed, from the original LambdaMART model.

1 Create an initial base model F0

2
For each interaction n (of N boosting
rounds) construct a regression tree for all
query-document instances. (repeat steps 2.1-2.5)

2.1 Update document scores using current model (Fn−1)

2.2

Compute λ(gradient) and w(derivate of λ) for each query-
document instance x. The gradient λ can be seen as the
force to define the direction that each document must fol-
low in rank. This force is based in the document relative
position given its relevance and score compared with other
documents of the query response set. LambdaMART uses
the LambdaRank cost function, ∆NDCG

2.3 Fit a next regression tree, with L leaves, to model the
lambda for the entire set of instances

2.4
Do a Newton step[Wu et al., 2010] to optimize gradient pre-
diction in terminal nodes of the tree created in step 2.3

2.5 Update the model Fn

3 Return FN

Figure 3.4: General steps for constructing a LambdaMART model for a ranking prob-
lem.

3.3 Learning UTI values

In this work, we study a problem slightly different from the L2R problem. We need

to learn a score for each document and term pair present in the collection, named as

3.3. Learning UTI values 25

UTI. It should summarize the importance of the term to the document by fusing, at

indexing times, a set of features that relate the term to a document, the feature set

associated with the document and term pair. Thus, the main difference relative to

other L2R approaches is that we learn a function that assigns a score to a document

given a term, instead of assigning a score to a document given a query. The impact of

a term for a document is learned based on its overall impact on queries.

To explain the learning process, we first define the training data used to create

a UTI model. Let Q={q(1), q(2), q(3),...,q(m)} denotes a set of queries. For each query

q(i) ⊂ Q, there is an associated set of k resulting documents Di={d(i)1 , d
(i)
2 ..., d

(i)
k },

and j query terms ti={t(i)1 , t
(i)
2 ..., t

(i)
j }. Each triple, query, document, and term

(q(i), d
(i)
j , t

(i)
k), with q(i) being a query, d(i)j ∈ Di being a document, and t

(i)
k ∈ ti be-

ing a term, has an associated feature set fs(q(i), d(i)j , t
(i)
k)) containing n related fea-

tures fs(q(i), d(i)j , t
(i)
k)={fs1(j,k),fs2(j,k), ..., fsn(j,k)} and its respective document rele-

vance judgment r(i)(j), representing the relevance of document d(i)j with the term t
(i)
k as a

result for query q(i). The training data are the input used to learn a UTI model (Fig.

3.5).

In addition to the important difference stated above, the process of learning UTI

values is quite similar to the process of L2R. Our main goal is to find a score function

that maps each term and document pair to a numeric score. After learning this mapping

function, it is then applied in the indexing to generate UTI values and store them in

the search engine indexing. Note that the generation of UTI values is performed offline

at indexing time.

Fig. 3.5 shows how to learn a UTI model. In the process of learning UTI val-

ues, the inputs are query term-by-term instances, whereas each instance x is a set of

term-document features (all features of the term and the document available only at

indexing time, such as, the term frequency in the body of the document, first occur-

rence position of the term in the document and document length) and the relevance

judgment regarding the whole query.

26 Chapter 3. Background

q(1), d
(1)
1 , t11, fs11,1fs21,1..fsn1,1, r

(1)
1

q(1), d
(1)
1 , t12, fs11,2, fs21,2..fsn1,2, r

(1)
1

q(1), d
(1)
2 , t

(1)
1 , fs12,1, fs22,1..fsn2,1, r

(1)
2

q(m), d
(m)
k , t

(m)
j , fs1k,j , fs2k,j ..fsnk,j , r

(m)
k

Training data

UTI Learning
Algorithm

UTI Model

Indexing System

UTI Index

d, t, fs1, fs2..fsn

Learning Process

Indexing Process

Figure 3.5: The process used to generate a UTI value computation model, the learning
process, described in the upper part of the figure, and the indexing process, which
takes the model and pairs of terms and documents to produce UTI values.

The algorithm learns the patterns to compute UTI values using the queries in the

learning process, as depicted in Fig. 3.5. The learning process searches for a function

that produces UTI values that optimize the quality of ranking results for the training

set. The ranking of UTI values to be optimized is always computed by adding the

UTI values of all query terms for each document analyzed. The result of the learning

process is a model that maps the provided values of term-document features to a single

numerical value, namely, the UTI. The index processing consists of applying the UTI

model, taking as input the term-document features; thus, this model can compute UTI

for words not seen in the learning process or that do not exist in the document.

As it is used to produce an index before the queries arrive at the search system,

features that are not available at indexing time cannot be used by models that compute

UTI values. For instance, at indexing time, it is not possible to know the BM25 score

of the query since it is a feature that depends on the set of query terms present in

each query, instead of depending on an isolated term. Another example of a feature

that would be unavailable at indexing time is the current geographical location of a

user when typing a query. This is information that may change each time the user

types the query. Thus, UTI models can adopt only a subset of the features usually

3.3. Learning UTI values 27

available in L2R collections because during the learning process we discard all features

not available to compute UTIs, such as the query dependent features.

3.3.1 UTI-GP Model

In a previous study, [Costa Carvalho et al., 2012] proposed LePrEF, referred to here

as UTI-GP, a method to fuse relevance evidences at indexing time using a genetic

programming method. LePrEF adopts the concept of a single numerical value to

represent the whole set of relevance evidences, storing Unified Term Impacts (UTIs) in

the inverted index instead of storing several values for each isolated source of evidence.

Instead, it fuses the sets of index entries for all relevance evidences into a single value.

UTI-GP is a Learning to Rank method that is based on the idea of performing

the fusion of different sources of relevance at indexing time. To do so, it introduced the

concept of Unified Term Impacts (UTIs), which are single numerical values representing

the impact that a term has in a document, taking into consideration all sources of

relevance evidence. To achieve this fusion, it uses Genetic Programming (GP) in order

to generate individuals (mathematical formulas, as can seen in Fig. 3.6) to combine all

sources of relevance evidence into a single value for each term-document pair. Then, the

quality of the rankings generated by the UTIs created for each individual is used as this

individual’s fitness value. In the original paper, the quality of the results was measured

using the well-known Normalized Discounted Cumulative Gain (NDCG) Järvelin and

Kekäläinen [2002].

After finding the best individual result during the training stages, the whole

dataset has to be indexed according to that individual, generating an UTI inverted

index

28 Chapter 3. Background

/

∗
tfT itle

inlink
+

tfbody pagerank

Figure 3.6: An individual representation in GP

3.4 Deep learning model

One of the problems faced by the L2R methods is about the available features during

the learning of the model. The more effective the features, the better the results.

In this context, deep learning methods have been applied for automatically learning

ranking features. Huang et al. [2013] use a deep neural network (DNN) for mapping

the raw text features (query and documents) into the features in a semantic space. The

implementation consists of two vector: a high-dimensional vector for the input of the

raw text features and, another vector for the output the model in a low-dimensional

semantic feature space. The cosine similarity between these vectors is used to compute

the relevance score.

Recent studies are focused on discovering contexts [Pang et al., 2017; Fan et al.,

2018], trying to simulate the way people judge the document as relevant or improving

the identification of parts of the document with high relevance in relation to other

parts, and the impact of this on the overall relevance of the document. Pang et al.

[2017] use convolutional neural network (CNN) or two dimensional gated recurrent

units (2D-GRU) to determine the local relevances. Their model, DeepRank, was the

first deep IR model to outperform learning to rank models. [Fan et al., 2018] use deep

matching networks to automatically learn the passage-level relevance signals.

3.5. Evaluation Measures 29

3.5 Evaluation Measures

MAP, P@N and NDCG@N are evaluation metrics [Robertson, 2000] commonly adopted

when evaluating the quality of results produced by search systems [Baeza-Yates and

Ribeiro-Neto, 2011]. Their values vary from 0, the worst possible result, to 1, the best

possible result. We further explain the metrics bellow:

MAP is the mean average precision. It is a metric that is useful to compare the

overall ranking provided by the systems. The MAP of a set of query results QR, with

each element qri ∈ QR being a list of ranked documents provided as a result of a

system for a specific query qi in the set of queries Q, is defined as follows:

MAP (QR) =

∑|QR|
i=1 AvPel(qri)

|QR|
(3.10)

where AvPel(qri) is the average precision of query result qri. When examining

the list of results for a system, whenever we find a relevant document, we say that we

improve the recall, and may compute the precision by dividing the number of relevant

documents found so far by the number of examined results so far. We compute the

precision for all positions in qri at which we find a relevant answer. We assign a precision

of zero for recall levels not reached by the system. For instance, a system that gives 3

of 7 relevant results in a list of results will have 3 non-zero precision values and 4 zero

precision values. MAP is designed for binary relevance levels. The average precision

takes the average precision at all recall levels. It is important to say that AvPel(qri)

is not defined if qi has no relevant answer, since there are zero possible recall levels in

this case. For these situations, most of the authors assign average precision of zero.

We follow this strategy here.

P@N is the average value of precision achieved by the system when considering

the precision when inspecting exactly N results for each query. The precision for a

specific query when inspecting N results is the number of relevant results found at

the top N results divided by N . P@N presented in our results is the average for all

30 Chapter 3. Background

queries. It is usually adopted in experiments related to web search, being useful to

compare the quality of the systems at the top of the ranking.

NDCG@N is the average of normalized discounted cumulative gain computed for

all queries at the top N results of the ranking. In this thesis we use the LambdaMART

algorithm to maximize the NDCG function. For each query, NDCG@N is computed

as

NDCG@N(QR,REL) =

∑|QR|
i=1

DCG@N(qri)
IDCG@N(reli)

|QR|
(3.11)

where QR is a set of result lists, qri ∈ QR is the list of results of the system

for query i and is sorted by in decreasing order of relevance score, REL is also a set

of lists, and reli ∈ REL is the list of relevant results for query i sorted in decreasing

order of score.

DCG@N(qri) is the discounted cumulative gain achieved by the system for the

results of query i (qri) and is computed as

DCG@N(qri) =
N∑
j=1

2relScore(qri,j) − 1

log2 (j + 1)
(3.12)

where qri represents the list of query results provided by the system to the query

i, j is the j-th position of the list and relScore(qri, j) is the relevance score of the j-th

element of the list qri. In the MQ2007 and MQ2008 collections, the relevance score

varies from 0 (non-relevant) to 2 (relevant). All documents with a relevance score

greater than zero are considered relevant.

The IDCG(reli) is the ideal discounted cumulative gain, and is computed as

IDCG@N(reli) =
N∑
j=1

2relScore(reli,j) − 1

log2 (j + 1)
(3.13)

where reli is the list of relevant results for query i, sorted in decreasing order of

scores, j is the j-th position of the list and relScore(reli, j) is the relevance score of the

3.5. Evaluation Measures 31

j-th element of the list. NDCG is a metric broadly adopted when comparing ranking

results of search systems. It gives better values for systems that provide relevant results

closer to the top of the ranking.

We conducted a two-sided paired t-test for statistical significance tests, with a

p-value ≤ 0.05. The t-test is the most adopted and studied statistical test when

comparing rankings of search results [Cormack and Lynam, 2007; Smucker et al.,

2007, 2009].

Chapter 4

The UTI-LambdaMART Model

Currently, deep learning models are among the most successful methods applied to the

L2R problem [Guo et al., 2019]. They achieve superior quality when compared to most

of the alternative L2R models available nowadays. However, they have several practical

disadvantages that still need to be solve to allow them to be viable when considering

time performance issues. One of them is that during the learning process, while the

L2R models use manually extracted features, the deep models use the raw text. This

property can be seem as an advantage at a first glance, since there is less engineering

effort to find and model useful features. These models might, for instance, capture

interesting and useful features, such as the possibility of catching the relationship

between the relevance of the query-terms and their location in the document. While at

first these methods might have an advantage when considering the potential modeling

alternatives, this access to the raw text is a disadvantage because it makes the models

more expensive both at learning and, most importantly, at query processing times.

Further, the main problem faced by neural models is the high cost of learning. The

implementation of learning raw text features is complex due to the high-dimensional

data and requires more computational resources and time to be implemented than

other simpler learning to rank methods.

33

34 Chapter 4. The UTI-LambdaMART Model

When considering efficiency in L2R, the LePrEF approach becomes a good alter-

native to capture features of each term in the document without adding costs to the

query processing. It is also able to capture and model term to document relationships,

while traditional learning to rank methods only allow learning query to document rela-

tionships. As we will show in the Chapter 6 that presents experimental results, we can

explore term to document modeling to produce effective and light weigh L2R models.

We now show our proposal to adapt a fast L2R algorithm to learn UTI at the

indexing time, and we exploit the position of the term in the document as a new

feature. Our experimental results (described in Section 5.2.1.1) show that the use of

the first two positions of the terms in the document during the UTI learn reaches a

higher quality than that obtained by the LamdaMART top rank algorithm using all

features available at query time. We also propose a hybrid model to address the lack

of features available only at query time. In this new model, the sum of the UTI values

of all query-terms is used as a feature for a top ranker algorithm.

In Section 4.1 we present our proposal for the UTI model, which is an adaptation

of the LambdaMART algorithm [Wu et al., 2010]. In Section 4.2 we show how to

combine UTIs with query-time features.

4.1 Modified LambdaMART Algorithm

We use the LambdaMART algorithm to implement our model. Three main reasons

are behind the choice to modify LambdaMART in our research. First, according to

experiments presented in a recent survey about this area, LambdaMART represents

one of the best L2R methods available in the literature [Guo et al., 2019]. In addition

to the high-quality results produced by LambdaMART, it also has the property of

assigning numeric scores to each document given a query, a property that is useful

when converting the method to generate UTI values, since they are numeric scores.

Finally, we consider it a fast algorithm, both when training a new L2R model and

4.1. Modified LambdaMART Algorithm 35

when processing queries with the generated model.

To adapt LambdaMART to generate UTI values, we modified it to (i) obtain

information about the query terms, instead of information about the entire queries, as

input, and (ii) compute the lambda of each individual term-document considering how

good the query term is in the final position of the document.

UTI-LambdaMART uses gradient boosted decision trees using NDCG@n, n being

a constant, as a cost function to learn UTI values given labeled queries. Based on

LambdaMART, our approach computes a model Ft that produces UTI scores for each

term and document pair, instead of a model that computes scores for each query and

document pair. In our case, each instance x = (q, d, fs(d,q)) is decomposed into |q|

training instances xt as described in Eq. 4.1.

xt = (t, d, fs(d,t))) (4.1)

where t ∈ q and fs(d,t) denote a set of feature values related to the document d

and term t. Each instance x has |q| instances xt, where |q| is the total number of query

terms. The query-document score is calculated according of Eq. 4.2.

Score(q,d) =
∑
∀t∈q

Ft(xt) (4.2)

where each query-document score is used in the training to produce rankings and

evaluate the quality of the function Ft by using the information on the relevance of

the documents, r(d,q). During the training, the document-term impact is computed

considering the query-term impact. The sum of UTI values of a query term is taken

whenever it is necessary to compute the score of the document given a labeled query.

The model Ft is trained and then applied to compute UTI values stored at indexing

time, in a process detailed below in Algorithm 1.

UTI-LambdaMART works as follows: The process starts with the model’s ini-

tialization (lines 1–5). In the iteration to create N trees (lines 6–31), we start by

36 Chapter 4. The UTI-LambdaMART Model

Algorithm 1: Algorithm LambdaMART for Precomputing UTI
input : number of trees N , set of training instancesM, number of leaves

per tree L, learning rate η
output: Model to compute UTI values Ft

1 foreach (q, d, r(d,q)) ∈M do
2 foreach t ∈ q do
3 Ft0((t, d, fs(d,t)))← 0
4 end
5 end
6 for n← 1 to N do
7 foreach (q, d, r(d,q)) ∈M do
8 scores[d, q]← 0;
9 foreach t ∈ q do scores[d, q]← scores[d, q] + Ftn−1(t, d, fs(d,t)) ;

10

11 end
12 foreach Query q ∈M and each pair of documents (dj, dk) resulting of q

do
13 if (r(dj ,q) > r(dk,q))and(j > k) then

14 ∆λ←
(

∆NDCG(dj, dk, q, scores)/(1 + e(scores[dj ,q]−scores[dk,q])
)
;

15 ∆w ← ∆λ× (1− (1 + e(scores[dj ,q]−scores[dk,q]))) ;
16 foreach t ∈ q do
17 λ[t, dj, q]← λ[t, dj, q] + ∆λ/|q|;
18 λ[t, dk, q]← λ[t, dk, q]−∆λ/|q|;
19 w[t, dj, q]← w[t, dj, q] + ∆w/|q|;
20 w[t, dk, q]← w[t, dk, q] + ∆w/|q|;
21 end
22 end
23 end
24 Create L leaf tree {Rln}Ll=1 on {∀(q, d, r(d,q)) ∈M, and

∀t ∈ q|(t, d, fs(d,t)), λ[t, d, q]};
25 Assign leaf values to {Rln}Ll=1 using the calculated λ and w based on

Newton step;
26 foreach x = (q, d, r(d,q)) ∈M do
27 foreach t ∈ q do
28 Update the model Ftn(t, d, fs(d,t)) using parameter η and {Rln}Ll=1

29 end
30 end
31 end

computing a score for each document-query pair (scores[d, q], lines 7–11). Different

from the original algorithm, here we need to compute this score considering that the

4.1. Modified LambdaMART Algorithm 37

model generates a single UTI for each term-document, instead of producing a single

score for all the query-term of the document. So, this score consists of summing each

term’s individual UTI, using the model Ftn−1, computed so far by the algorithm. Thus:

scores[d, q] = scores[d, q] + Ftn−1(t, d, fs(d,t)) (4.3)

Using the computed scores to sort the documents in descending order, we can

estimate the difference in NDCG obtained by switching the order of every pair of

documents (dj, dk) , in a query results list (∆NDCG, lines 12–23). This is performed

when the relevance score for dj is greater than the relevance score for dk, and j > k.

This happens if the document at position j is below the document at position k in

the rank although it is more relevant, which means that the document dj was ranked

below the document dk.

∆NDCG is then used to compute the ∆λ and ∆w values associated with each

pair of documents (dj, dk) as shown in Eq. 4.4. The ∆NDCG is computed for O(n(i)2)

documents pairs, where n(i) is the number of documents for query qi. These two steps

(lines 14–15) are exactly equal to the original LambdaMART. The variable ∆λ com-

putes the loss function optimization on each train point. This is one of the points that

made LambdaMART popular, the ease of optimizing any IR metric, simply replacing

the ∆NDCG with the desired information retrieval metric.

∆λ←
(

∆NDCG(dj, dk, q, scores)/(1 + e(scores[dj ,q]−scores[dk,q])
)

(4.4)

The ∆w (show in Eq. 4.5) is computed here to be used in the Newton’s optimiza-

tion step.

∆w ← ∆λ× (1− (1 + e(scores[dj ,q]−scores[dk,q]))) (4.5)

38 Chapter 4. The UTI-LambdaMART Model

Each term of the query q has its value of λ increased by ∆λ/|q| for the document

dj, and decreased by the same amount for the document dk as shown in Eq. 4.6.

λ[t, dj, q] = λ[t, dj, q] + ∆λ/|q|

λ[t, dk, q] = λ[t, dk, q]−∆λ/|q|
(4.6)

All query-terms in documents dj and dk have their values of w increased as

described in Eq.4.7

w[t, dj, q] = w[t, dj, q] + ∆w/|q|

w[t, dk, q] = w[t, dk, q] + ∆w/|q|
(4.7)

Note that since the judgment of relevance is over the entire query, the values com-

puted are divided by the number of query terms |q| (λ[t, d, q] and w[t, d, q], respectively,

lines 16–21).

After computing the gradients λ and weighs w for the entire dataset, the algorithm

fits the regression tree (lines 24–25). First, it creates the tree n with L leaves {Rln}Ll=1.

Suppose for a given vector of features fs(d,t)i , we index its feature values by fs(d,t)ij ,

j = 1, .., z. fs(d,t)i ∈ R
z and labels r(d,q)i ∈ R, where z is the dimension of the region.

Basically the region assignment Ri assigns a training example xti to a leaf node l.

Every feature fs(d,t)ij runs through the tree until it reaches a leaf node. All data

that falls on a specific node is taken into account when deciding to split the values of

the current set of leaf nodes. For a better understanding, lets consider that all data

is on the root node. For a given feature, the algorithm iterates for all samples until it

finds the threshold h, that is the value that better determines the split, so the samples

with fs(d,t)ij <= h fall to the left child node, and the rest fall to the right child node.

The feature and threshold assigned to the root node are those that minimize the loss

function.

After building the tree, it is applied a single step of Newton’s method to optimize

4.1. Modified LambdaMART Algorithm 39

lambda predictions in terminal nodes1. The next regression tree, for each training point

evaluated, models the m derivatives of the cost related with the current model, where

m is the total of training instances.

γl,n is the output of the tree and it is a fixed value associate for the tree n, and

leaf l. Thus, as shown in the Eq. 4.8 each tree leaf γl,n is the sum of ∆λ of all instances

i where l is the final node, divided by the sum of ∆w values from the same instances.

Since w values are always positive, this step serves to reduce the magnitude of the

lambdas. This fact makes the algorithm conservative when it is in the right direction,

but it ends up having a positive impact when it is in the wrong direction.

γl,n =

∑
(t,d,fs(d,t))i∈Rl,n

∆λi∑
(t,d,fs(d,t))i∈Rl,n

∆wi
(4.8)

Finally, on lines 26–30, the original step for updating the model are executed,

and the model Ftn is updated. Each tree models the gradient of the cost for a score

model,and a new regression tree is added to the ensemble applying the learning rate η

for each leaf γl,n.

The regression trees map terms and documents features, and the computed UTI

value is a linear combination of all created trees. During the learning process, after

each interaction, the next regression tree is fitted based on the lambda force, which

increases the term impact or reduces its impact.

4.1.1 An example of UTI generation using UTI-LambdaMART

The first step is to use UTI-LambdaMART to train the model that will be applied

during the indexing time to generate the UTIs for each term-document. The general

process to learning UTI values is detailed in Section 3.3.

1Newton’s method is an iterative method for finding the roots of a differentiable function F , which
are solutions to the equation F (x) = 0. In optimization, Newton’s method is applied to the derivative
f ′ of a twice-differentiable function f to find the roots of the derivative (solutions to f ′(x) = 0), also
known as the stationary points of f

40 Chapter 4. The UTI-LambdaMART Model

Fig. 4.1 shows an example using the UTI-LambdaMART algorithm for indexing

and query processing. In this example, the model is generated at the end of the

interactions. Fig. 4.1 illustrates the output of the method, which is a model with three

trees (N = 3) and each tree with four leaves (L = 4). The node represents the feature

label and the values of the threshold, and the final nodes are learn during the training

of the model. The actual value of the feature determines the direction to follow in the

tree, on the left if the value is low and on the right if it is above the threshold. Each

next regression tree models was created based in the previously model. The threshold

and leaf of each tree were optimizing during the training process, for this reason their

values are different in each of the trees created. The goal during the learning is finding

a set of trees that when together minimize the loss function.

In the indexing time, for the example shown in the Fig.4.1, the document GX000-

14-11495597 and the word "reheat" have as input of the UTI-Model three features, f11

(length of the body of the document), f16 and f17 (the first and second positions where

"reheat" appears in the document). Theses features can be seen on the trees with the

labels "11", "16" and "17". Lets consider that this model was trained with only these

three features.

The UTI value produced is the linear combination of all regression trees and thus

the sum of the terminal nodes reached by their feature values (f11, f16, and f17). The

UTI-LambdaMART algorithm generalizes over terms not seen in the query set because

the final score obtained is not word-dependent; thus, the term-document feature values

define the UTI value. The cost to calculate the UTI is the time to go through each

tree, accumulating the output values of each one for the set of input features.

In the query processing, for the same document, given a query "temperature for

reheat food", the document score is a simple sum of UTI values of each query term,

thus the score is 3.02013 in the given example. For the document GX160-11-2318949,

the score is -0.2869. We note that the impact of not having the term in the document

is learned based on features document-dependent and on the relevance of the term to

4.1. Modified LambdaMART Algorithm 41

other documents.

Regarding time performance, the improvement achieved by the UTI-model in

comparison to methods that process all the features at query processing times in the

query processing is to reduce the time to compute the document score for a given query,

because all the features available at the time of indexing do not need to be processed

again at the query-time.

114.82831

170

1617

−0.99136

−0.05791

0.51345 0.24348

114.59511

170

1617

−1.00517

−0.16887

0.50669 0.19867

11 feature label5.22574

threshold

170

167

−0.50747

leaf

−0.12214

0.60897 0.253360

term f11 f16 f17

"temperature" 6.04263 210 227

"reheat" 6.04263 828 877

"food" 6.04263 7 9

UTI

0.69551

0.69551

1.62911

f11 f16 f17

5.09375 18 56

5.09375 17 55

5.09375 0 0

UTI

-0.06532

0.51267

-0.73425

qid:8688 "temperature for reheat food"

Document score

GX000-14-11495597 3.02013

GX160-11-2318949 -0.2869

UTI-LambdaMART Model (N=3, L=4)

doc GX000-14-11495597 doc GX160-11-2318949Indexing

Query Processing

Figure 4.1: An example of the UTI-LambdaMART model output for indexing and
query processing.

Fig. 4.2 presents further practical examples of UTI values produced by our model.

Note that UTI values are independent of the query, being unique for each term and

document pair. For instance, the terms "food" and "temperature" have the same UTI

values when present in queries 8688 and 9513. We can conclude with the generated

UTI values that the word "food" is the one that has the highest impact on document

GX000-14-11495597, followed by the words "cook" and "reheat".

Regarding quality of results, a possible benefit of UTI-LambdaMART, compared

42 Chapter 4. The UTI-LambdaMART Model

qid:8688
"temperature

for reheat food"
GX000-14-11495597

docID

temperature
reheat
food

term

0.072725927
0.090611666
0.895362371

UTI

qid:9513
"cook food
left at room
temperature"

GX000-14-11495597

cook
food
left
room

temperature

0.280159877
0.895362371
0.005127802
-0.081957972
0.072725927

Figure 4.2: Examples of UTI values of terms present in two different queries. Note
that given a term and a document, we always take the same UTI value, regardless of
what the other query terms are.

to the original LambdaMART is that we can now model individual term features not

available in the original model. For instance, we can now include the individual TF

and inverse document frequency(IDF) weight of terms in isolation, and features that

indicate the position of the term in the document, whereas in traditional L2R methods,

this information exists only as an aggregated value, such as the sum of all TF values or

are just not considered, such as positional features about each individual term. On the

other hand, when using UTI there is a lack of information that is only available at query

processing time, such as BM25 scores or user profiles, and this absence of information

may lead to a loss of quality. In the next Chapter, we present experiments to examine

the final balance between the positive and negative aspects of using UTIs as the only

source of information for computing the final ranking. Nevertheless, we also propose

and study here hybrid approaches that may overcome the possible disadvantages of

using only UTI values for the ranking.

4.2 Combining UTIs with Query-Time Features

We propose two alternative approaches to adopt UTIs in an L2R framework and address

the lack of query-time information that occurs when using UTIs. Both alternatives

combine UTI values computed using our method with traditional L2R methods.

4.2. Combining UTIs with Query-Time Features 43

4.2.1 Using UTI Values as a Query-Time Feature

The idea is to run the UTI-LambdaMART algorithm to obtain UTI values. In the

following, we use a standard L2R approach. However, we substitute all features adopted

to generate UTI values by the UTI value itself, complementing it with the remaining

features available at query processing time. As a result, the number of features fetched

and processed at query time becomes smaller. The amount of reduction depends on

the number of features at indexing time and on the project decision regarding features

encoded in UTI values. We show examples in the Section 5.

Figure 4.3: Query processing using a hybrid approach that adopts UTI values to sub-
stitute all features available at indexing times. The L2R model combines UTI values
with the remaining features. Differences from the architecture described in Fig. 1 are
highlighted in blue

Fig. 4.3 shows the complete query processing steps when using our proposed

hybrid approach, highlighting the differences from Fig. 1.1 in blue. The first step is

similar to that in any traditional L2R approach—a simple base ranker is applied to

obtain a list of k potentially relevant documents. In the second step, UTI value, learned

as described in Fig. 1.2b, is taken as one of the features used by the L2R top ranker as

a substitute for the features adopted to generate the UTI values. UTI values of query

44 Chapter 4. The UTI-LambdaMART Model

terms are summed up and combined with the remaining query-dependent features.

Note that with this change, we reduce the number of features to be processed and

fetched by the hybrid approach compared to the approach described in Fig. 1.1.

UTI values can encode information not available to traditional L2R methods

because they learn weights for the individual term entries, whereas traditional methods

address only aggregate query-level features. As a consequence, our hybrid approach

can improve the overall quality of results. Using two L2R collections, we performed

experiments to validate this hypothesis in the experimental section.

4.2.2 Using UTI-LambdaMART as a Base Ranker

Base rankers are simple methods with a low computational cost for computing query

results [Capannini et al., 2016]. Another method for creating a hybrid approach is

to take advantage of UTI values in the first step of the query processing, in the base

ranker. When processing queries with UTI values, the final score for each document is

computed as a simple sum of UTI values for the documents in the inverted lists of their

query terms. This lowers the computational effort, common in L2R methods and even

traditional IR methods, such as BM25. Thus, our UTI-based approach fits perfectly

as a base ranker.

We illustrate this idea in Fig. 4.4 , where UTI values are used in the first step

of query processing. The differences from the architecture described in Fig. 1.1 are

highlighted in blue and consist of (i) changing the base ranker to use UTI values and

(ii) using the hybrid approach described in Fig. 4.3. The goal here is not so much

to yield improvements in the final ranking quality achieved by the top-ranker, but

rather to reduce the number of top-k documents retrieved in the first step of the query

processing by improving the quality of results provided by the base ranker, thereby

reducing the overall cost of producing the final ranking. We remember that the cost

of query processing may be influenced by the number of top-k results that need to be

4.2. Combining UTIs with Query-Time Features 45

Figure 4.4: Query processing using the hybrid approach and adopting a UTI both as
a feature of the L2R process and as a base ranker. Differences from the architecture
described in Fig. 1.1 are highlighted in blue.

retrieved Daoud et al. [2017].

The proposal is to apply the same trained UTI-model used by a top ranker algo-

rithm for the UTI generation in the initial selection of documents, making the model

act as a base ranker. The use of UTI values have also the potential to reduce the

base ranker computation given that the score function is quite simple, with final scores

by just adding the UTI values, which is a low cost computation when compared, for

instance, to the cost of computing BM25 score.

Chapter 5

Experimental Protocols

In this chapter we present our experimental setup. We begin by describing the dataset

adopted, the baseline methods and the parameter settings.

5.1 Datasets

For our experiments, we used two LETOR 4.0 benchmark datasets [Liu et al., 2007]:

Million Query Track 2007(MQ2007) and Million Query Track 2008(MQ2008). The

LETOR collection was extracted from the GOV2 collection, a document collection

containing about 25 million web pages. The three main reasons for choosing these two

datasets are as follows. First, they are largely adopted in other L2R-related works [Pang

et al., 2017; Fan et al., 2018; Yu et al., 2019; Xu et al., 2019]. Second, their meta feature

files are available. Thus, it is possible to extract individual features and relate terms of

documents, which is information that is required for UTI-LambdaMART. Third, the

document content is available for this collection, allowing for the extraction of features

from the document, which are useful in the experiments with our method and also are

required by the best baselines we found [Pang et al., 2017].

LETOR was created by using BM25 [Robertson and Walker, 1994] as the base

ranker to select an initial set of documents that can be good answers for each query.

47

48 Chapter 5. Experimental Protocols

Then, L2R methods reorder this initial set of ranked documents by applying the entire

set of features available to generate the final ranking [Cambazoglu et al., 2010]. Every

query-document pair in the MQ2007 and MQ2008 datasets is represented by a 46-

feature vector that maps the query to documents. All the features of LETOR are

numeric values. Recent studies [Fan et al., 2018] introduced 9 extra features related

to positional information of the term queries in passages of the documents. We adopt

this expanded set of features in our experiments. All of these 9 extra features are also

numeric values.

Following a procedure adopted in previous works, because the number of terms

in MQ2008 is small for training, we merged MQ2007 and MQ2008 when processing

MQ2008 such that our training sets became larger. This procedure was adopted by

recent research articles [Pang et al., 2017; Fan et al., 2018] to increase the training set

when using neural networks. We repeated the same procedure for a fair comparison

of the methods. The validation and test sets remained unchanged. In total, there are

1,692 queries, 2,727 terms, 69,623 query-document pairs, and 236,774 query-document-

term triples in MQ2007. MQ2008, after the merger, contains 2,477 queries, 2,909 terms,

84,834 query-document pairs, and 300,442 query-document-term triples. The details

are summarized in Table5.1.

Table 5.1: Characteristics of the Datasets

Dataset Queries Query-document
pairs

Query-dependent
Features

Standard
features

MQ2007 1,692 69,623 26 46
MQ2008(Merge) 2,477 84,834 26 46

The LETOR collections were originally created by just providing feature values for

the top-ranked documents to each query. We here are interested in adding new term

features and are also interested in performing experiments to evaluate the indexing

and query processing times when applying the experimented L2R methods to these

collections. To do so, we extracted the content of all mentioned documents in the

5.1. Datasets 49

collections MQ2007 and MQ2008. As a result of this process, the total number of

documents in MQ2007 is 65,216, with a size of 935.2MB of plain text, and the total

number of documents in MQ2008 is 78,593 documents, with a total of 1100MB of plain

text. The total number of posting lists to represent the frequency of the query terms

in the documents is 7,454,889 in MQ2007 and 9,145,089 in MQ2008. The details are

summarized in Table 5.2.

Table 5.2: Summary of the data extraction from Gov

Dataset Documents Query-document-term triples Posting lists
MQ2007 65,216 236,774 7,454,889
MQ2008(Merge) 78,593 300,442 9,145,089

Table 5.3 reports a complete list of the features available. Some of these features

are extracted from the TF, IDF, and TF×IDF values of the terms in the document.

These features naturally map terms of documents can be extracted individually, term

by term, and used in UTI-LambdaMART. In the original LETOR, the sum of the values

for the query terms maps queries to documents. For instance, LETOR represents as a

feature the sum of the TF values of query terms instead of each individual TF value.

The document length (DL, expressed as the number of terms) is also computed as a

query-independent feature. Each of these values is computed as a single value for all

query terms from different areas in the document — the body of the text, the anchor

text, the title, the URL, and the entire document — thereby generating a total of 20

features. Six other features are derived from the link structure and URL — PageRank,

InLink Count, OutLink Count, Number of Slashes in the URL, Length of the URL,

and Number of Child Pages.

Finally, the remaining original LETOR features are the similarity scores between

the documents and queries. Although features such as the TF can be used to map

terms of documents, these query similarity features are nonusable by UTI methods

because they represent maps between queries and documents. These features include

the BM25 score and three variations of language model-based (LMIR) functions, all

50 Chapter 5. Experimental Protocols

Table 5.3: Original features (from 1 to 46) of MQ2007 and MQ2008, plus a set of nine
features related to the positions of query terms, used in the baseline L2R methods.

Seq Features Type
(01-05) Sum of TFs (term frequencies) of the body, anchor, title,

URL and whole document.
term-related

(06-10) Sum of IDFs (inverse document frequencies) of body,
anchor, title, URL and whole document.

term-related

(11-15) Sum of TF*IDFs of the body, anchor, title, URL and
the whole document.

term-related

(16-20) DL (document length) of the body, anchor, title, URL
and whole document.

document-related

(21-25) BM25 of the body, anchor, title, URL and whole of doc-
ument.

query-dependent

(26-30) LMIR.ABS of the body, anchor, title, URL and whole
of document.

query-dependent

(31-35) LMIR.DIR of the body, anchor, title, URL and whole of
document.

query-dependent

(36-40) LMIR.JM of the body, anchor, title, URL and whole of
document.

query-dependent

(41) PageRank query-dependent
(42) Inlink number query-dependent
(43) Outlink number query-dependent
(44) Number of slashes in the URL query-dependent
(45) Length of the URL query-dependent
(46) Number of child page query-dependent
(47-55) Maximum, minimum and average passage-based fea-

tures taken from TF*IDF, BM25, and LM
term-related

applied to the same five different areas of the document. Although we can decompose

these values into term to document scores, they are still intrinsically related to queries.

This study [Liu et al., 2007] provides a detailed description of the LETOR features.

In addition to the 46 original LETOR features, we have also adopted the nine

passage-based features described by the authors of DeepRank [Pang et al., 2017]. They

divide documents into smaller portions, named passages, and calculate the TF-IDF,

BM25 and language model (LM) scores for each query-passage pair, picking the max-

imum, minimum, and average scores across passages as the nine new features for the

L2R process [Pang et al., 2017].

When examining the list of features in Table 5.3, LETOR features represent

maps between queries and documents, assigning one feature value for each document

and query pair. We divide these features into three distinct groups. First, some of

5.2. Baseline Methods 51

these features are more related to terms than to queries. We refer to these as term-

related features. This is the case for the TF and IDF values, which are individual

properties of terms. In this first group, we include features 1-15 of LETOR, features

more related to the queries, such as BM25 scores or LMIR scores, named query-related

or query-dependent features. We include in the second group features from 21-40. The

third group of features is composed of document properties that do not depend on the

query or the query terms. This is the case for features 41-46. The nine passage-based

features are also divided into query-related and term-related groups.

5.2 Baseline Methods

We work with four types of baseline methods for comparison: UTI methods, L2R

methods, deep matching model, and hybrid methods.

5.2.1 UTI Methods

The baseline adopted to compare with our UTI-LambdaMART is the UTI-GP method,

which applies genetic programming to produce UTI values at indexing times. This

method was proposed by [Costa Carvalho et al., 2012] and was included for complete-

ness in the experiments.

The authors provided the UTI-GP implementation; the methodology and param-

eter settings adopted follow those proposed in their article. More specifically, we used

40 generations, a population size of 1000, a tree depth of 17, a tournament size of 6,

a crossover rate of 0.85, a mutation rate of 0.05 and a reproduction rate of 0.10 to

perform 10 runs with distinct random seeds.

UTI-LambdaMART was trained using 100 trees (N = 100), with a learning rate

of 0.1 (η = 0.1) and number of leaves of 10 (L = 10). During training, we optimized

the average NDCG with a cutoff of 10 results.

52 Chapter 5. Experimental Protocols

5.2.1.1 Term-related features

When learning to produce single UTI values for each term, we are interested in the

term-related features. To perform this task, we use the related features as values

associated with pairs of terms and documents instead of queries and documents. Thus,

we produced the required information term by term to use in the learning process of

UTI-LambdaMART and UTI-GP.

The passage-based extra features of LETOR are also query-dependent. To replace

them as term-document maps, we included information about the first and second

positions of each term in each document. These two features represent the positional

information available to generate UTI values and were defined after we observed that

even varying the number of positions from 2 to 10 resulted in no change in the quality,

as shown in Table 5.4.

Table 5.4: Impact in MAP results when varying the number of term-Document posi-
tional features

Number of positional features - 1 2 3 4 5
MAP 0.466 0.476 0.480 0.480 0.479 0.480

We decided to add these two positional features after evaluating the results of the

experiments with and without the extra features. As shown in figure 5.1, the results

with the positional features are superior, the NDCG@10 using 22 features was 0.465,

whereas it was 0.449 for 20 features.

The features related to documents can be easily adopted by associating them

with terms or queries. In the experiment, we investigated their use at both indexing

and query processing times. For instance, PageRank [Page et al., 1999] can be encoded

as a feature when computing UTI values and as a feature available to the top ranker

when processing queries.

Table 5.5 summarizes the term-document features that we adopted. Features

16-17 were adopted to represent the positions of terms in documents, playing the same

role as features 47-55 presented in Table 5.3. These two features are extracted from

5.2. Baseline Methods 53

Fold1 Fold2 Fold3 Fold4 Fold5

0.42

0.44

0.46

0.48

N
D

C
G

@
10

Fold1 Fold2 Fold3 Fold4 Fold5

0.44

0.46

0.48

0.5

M
A

P

20 Features
22 Features

Figure 5.1: Comparison of the UTI-LambdaMART quality results in MQ2007 with
and without the two additional positional features for each term-document

the original documents from the GOV2 collection. We also investigated if the first

term occurrence position could improve other L2R methods, adding it as an additional

feature. However, we concluded that it would not have a significant impact on the final

performance of the other L2R methods when passage-based information was adopted.

Table 5.5: MQ2007 and MQ2008 term-related versions of features 1-15 available in
MQ2007 and MQ2008, i.e. features mapping terms to documents.

Seq Term-Document Features Data Source
(01-05) TFs (term frequencies) of the body, anchor, title,

URL and whole document
Meta data for LETOR
datasets

(06-10) IDFs (inverse document frequencies) of the body,
anchor, title, URL and whole document

Meta data for LETOR
datasets

(11-15) TF*IDFs of the body, anchor, title, URL and
whole document

Meta data for LETOR
datasets

(16-17) First and second occurrence position of a term in
the document; zero if it does not occur

Original documents of
GOV2

When producing UTI values with UTI-LambdaMART and UTI-GP, we adopted

features 1-17 mentioned in Table 5.5 and combined them with the remaining query-

independent features available at indexing time. We included features 16-20 in Ta-

ble 5.3, producing a total of 22 features available to compute UTI values. These

features are exploited only at indexing time. The stop-words were removed using the

INQUERY stop-words list [Callan et al., 1995] before extracting these features. It

contains 429 words.

54 Chapter 5. Experimental Protocols

5.2.2 L2R Methods

We chose methods from studies that have achieved the best scores in the existing

L2R methods to serve as baselines, the listwise linear feature-based model coordinate

ascent (CA) [Donald Metzler, 2007]; MART [Friedman, 2001] and the original Lamb-

daMART [Wu et al., 2010].

We use QuickRank1 [Capannini et al., 2016] to implement LambdaMART, MART

and CA. CA was trained using 21 samples, a window size of 10, and a reduction factor

of 25. All boosting models, including MART, were trained using 100 trees (N = 100),

with a learning rate of 0.1 (η = 0.1) and number of leaves of 10 (L = 10). During

training, we optimized the average NDCG with a cutoff of 10 results.

The traditional L2R methods adopted (LambdaMART, MART and CA) were

tested using the original features available in LETOR, and the full expanded set of

55 LETOR features mentioned in 5.3. Since the deep matching model use passage-

level information, we also introduced 9 passage-based features for fair comparison. We

applied the full set of features (original+ 9 passage features) on all three learning to

rank models presented in Table 6.3,

5.2.3 Deep Matching Methods

Only in recent studies have deep learning models surpassed conventional L2R models.

We chose methods from studies that have achieved the best scores to serve as baselines,

namely, DeepRank [Pang et al., 2017] and the hierarchical neural matching model

(HiNT) [Fan et al., 2018], the best baselines found in the literature that uses neural

network learning methods [Guo et al., 2019];

For HiNT and DeepRank, we collected the results reported by the authors using

the MQ2007 and MQ2008 collections (described in the following section). In addition

to LETOR (MQ2007 and MQ2008) features, HiNT and DeepRank also extract other

1https://github.com/hpclab/quickrank

5.2. Baseline Methods 55

features, such as text passages, from the GOV2 collection (the collection used to create

LETOR). The authors make these features available for a fair comparison with other

methods. We also adopt these extra features in our experiments.

The deep matching models DeepRank and HiNT adopt passage-level informa-

tion during learning. DeepRank obtained better experimental results with resources

automatically learned from the classification texts and all handcrafted resources (46

standard features in LETOR). The set of features adopted by DeepRank and HiNT

is similar to the set adopted by the baselines, although their model does not have an

explicit set of features [Fan et al., 2018].

5.2.4 Hybrid Methods

The experiments combining methods that compute UTI values with query-dependent

features were conducted using CA, MART and LambdaMART, referred to as HCA,

HMART and HLambdaMART. When implementing our hybrid approach, we first pro-

duced UTI values using features 1-17 in Table5.5 and features 16-20 in Table 5.3.

The six document features related to LETOR features (41-46 in Table 5.3) could

be applied both at indexing time to produce UTI values and at query processing time.

From the observation, they performed better at query processing, despite being ex-

cluded when computing UTI values in the hybrid approach. As a consequence, in

addition to UTI values, we have features 21-55 in Table 5.3 at query processing times

of the hybrid approach. The final set of features adopted at query-time can be seen in

Table 5.6. Thus, in our hybrid approach, 22 features are adopted at indexing times and

36 at query processing times. This combination produced high-quality ranking results.

We use QuickRank [Capannini et al., 2016] to implement HLambdaMART,

HMART and HCA. HCA was trained using 21 samples, a window size of 10, and

a reduction factor of 25. All boosting models, HMART and HLambdaMART, were

trained using 100 trees (N = 100), with a learning rate of 0.1 (η = 0.1) and number of

56 Chapter 5. Experimental Protocols

leaves of 10 (L = 10). During training, we optimized the average NDCG with a cutoff

of 10 results.

Table 5.6: Query-dependent features of LETOR MQ2007 and MQ2008, plus UTI score
and a set of nine features related to the positions of query terms, used in the hybrids
methods (HCA, HMART and HLambdaMART)

Seq Query-Document Features Data Source
(1-5) LMIR.ABS of the body, anchor, title, URL and

whole of document.
LETOR query sets

(6-10) LMIR.DIR of the body, anchor, title, URL and
whole of document.

LETOR query sets

(11-15) LMIR.JM of the body, anchor, title, URL and
whole of document.

LETOR query sets

(16-20) BM25 of the body, anchor, title, URL and whole
of document.

LETOR query sets

(21) PageRank LETOR query sets
(22) Inlink number LETOR query sets
(23) Outlink number LETOR query sets
(24) Number of slashes in the URL LETOR query sets
(25) Length of the URL LETOR query sets
(26) Number of child page LETOR query sets
(27) Sum of UTIs UTI Index
(28-36) Maximum, minimum and average passage-based

features taken from TF*IDF, BM25, and LM
LETOR query sets
with extra features

Table 5.7 summarizes the features adopted by each method, describing whether

the features are adopted at indexing or at query processing time. All methods were

compared fairly with the information allotted to them being the same, respecting the

restrictions and settings of each method. We also performed an embedded feature

selection, taking the subset that optimized the results in training [Lai et al., 2013] for

each of the tested methods. Thus, we selected the best result for each method and

each feature set tested.

5.2. Baseline Methods 57

Table 5.7: Number of features adopted by each method at indexing times and at query
processing times. The HiNT and DeepRank methods learn from the raw text inputs
(features equivalent to the 55 adopted by the other methods).

Method Indexing Query
Processing

UTI-LambdaMART 22 -
UTI-GP 22 -
Hybrid methods (HCA, HLambdaMART and HMART) - 36
L2R Baselines (LambdaMART, MART and CA) - 55
Neural Baselines (DeepRank and HiNT) - raw text

Chapter 6

Experiment Results

In this chapter we present experiments performed to evaluate the ideas proposed by us

in this thesis. We provide a detailed description of our results and answer each research

question raised in the Chapter 1.

6.1 UTI-LambdaMART for evidence fusion

RQ1: If we adapt LambdaMART to compute UTI values,

would it result in an effective method in terms of the quality of

the results ?

The first question references the possibility of modifying LambdaMART to produce a

competitive model to generate UTI values, applying the learning process at indexing

time to learn weights associated with terms instead of rank queries. Table 6.1 re-

ports the results of the MQ2007 and MQ2008 datasets. Interestingly, when comparing

the UTI-LambdaMART results to those of the original LambdaMART, the results of

UTI-LambdaMART are quite close to those of the original method. A lower computa-

tional cost when ranking at the query processing time is another benefit of this version.

A further investigation reveals that UTI-LambdaMART takes advantage of the more

59

60 Chapter 6. Experiment Results

fine-grained features owing to a lack of query-dependent features. Moreover, LETOR

contains a small set of features available at the query processing time. Thus, informa-

tion such as clicks and other personalized user information could be adopted to offer

more advantages to the original method when compared to the UTI-LambdaMART

version.

Table 6.1: Performance of UTI-LambdaMART compared to that of UTI-GP (the previ-
ous UTI method available in the literature) and to that of the original LambdaMART.
UTI methods apply the learning process at indexing time and use a limited set of
features, while the original LambdaMART method performs the learning at query pro-
cessing time and uses the full set of features available in the collection.

MQ2007
Model NDCG@1 NDCG@5 NDCG@10 P@1 P@5 P@10 MAP
UTI-GP 0.402O 0.415O 0.442O 0.468O 0.418O 0.384O 0.462O
LambdaMART 0.424 0.432 0.459 0.486 0.427 0.392 0.477
UTI-LambdaMART 0.429 0.437 0.465 0.499 0.435 0.414 0.481

MQ2008
Model NDCG@1 NDCG@5 NDCG@10 P@1 P@5 P@10 MAP
UTI-GP 0.383O 0,472O 0.228O 0.449O 0.345O 0.246O 0.473O
LambdaMART 0.413 0.491 0.237 0.464 0.356 0.251 0.490
UTI-LambdaMART 0.397 0.489 0.237 0.464 0.352 0.249 0.486

Another interesting observation is the quality of results achieved by UTI-

LambdaMART, being superior to that achieved by UTI-GP. The differences in the

results of the two methods are statistically significant in terms of all metrics reported.

In addition to the quality of results, it is also important to report the time required to

train the models in both UTI alternatives. The time required for the training of UTI-

LambdaMART is far less than the time required for the training of UTI-GP. In our

experiments, the UTI-GP model took approximately three training hours Costa Car-

valho et al. [2012], whereas UTI-LambdaMART took only 5 minutes, just about 2.8%

of the training time required for UTI-GP.

We conducted an experiment to complement the assessment of the generalization

of the UTI model for new instances. In this experiment, we trained the model using

the training and validation set in MQ2007, after generating the final model it is applied

6.2. Hybrid architecture evaluation 61

to the MQ2008 test set. We compared this experiment with the quality achieved when

all training and testing is performed on the MQ2018 data set.

The quality results presented in Table 6.2 show practically similar results between

the two training processes, for instance, with the final model trained on MQ2007 the

MAP was 0.485 and with the model trained on MQ2008, the MAP was 0.486. We

observe a significant degradation (when the training process is on MQ2007) only on

metrics NDCG@1 and P@1. Considering that they are sets with the same features,

but with different data context, the results were quite satisfactory.

Table 6.2: Comparing the UTI-LambdaMART in MQ2008 test set using the model
trained in MQ2007 and in MQ2008. A significant performance degradation is denoted
as (O).

MQ2008
UTI-LambdaMART NDCG@1 NDCG@5 NDCG@10 P@1 P@5 P@10 MAP
Trained model in MQ2007 0.380O 0.482 0.233 0.454O 0.349 0.249 0.485
Trained model in MQ2008 0.397 0.489 0.237 0.464 0.352 0.249 0.486

6.2 Hybrid architecture evaluation

RQ2: Would the combination of UTI methods and L2R

methods at query processing time produce high-quality results ?

As previously discussed, UTI models are not able to handle features that are available

only at query processing times. This limitation raises questions about how to take

advantage of them in practical systems. One of the solutions is to use UTI values

in the hybrid architecture proposed in Section 4.2. We here perform experiments to

evaluate the quality of results provided by this combination.

When considering the results of the methods presented in Tables 6.1 and 6.3,

we can see that when comparing UTI-LambdaMART to the best baselines found in

the literature, both DeepRank and HiNT produce better results, superior of both of

62 Chapter 6. Experiment Results

Table 6.3: Performances of MART, CA,LambdaMART, DeepRank, HiNT and the
hybrid methods, combining UTI-LambdaMART with CA (HCA) and LambdaMART
(HLambdaMART). We applied the 9 passage-based features in all L2R methods. A
significant performance degradation of HLambdaMART is denoted as (O).

MQ2007
Model NDCG@1 NDCG@5 NDCG@10 P@1 P@5 P@10 MAP
MART 0.405O 0.421O 0.446O 0.475O 0.413O 0.383O 0.465O
CA 0.401O 0.417O 0.441O 0.451O 0.412O 0.375O 0.463O
LambdaMART 0.424O 0.432O 0.459O 0.486O 0.427O 0.392O 0.477O
DeepRank 0.441O 0.457 0.482 0.508O 0.452 0.412 0.497
HiNT 0.447O 0.463 0.490 0.515O 0.461 0.418 0.502
HMART 0.457O 0.464 0.491 0.527O 0.456 0.416 0.498
HCA 0.466 0.467 0.492 0.536 0.458 0.415 0.501
HLambdaMART 0.469 0.466 0.495 0.538 0.456 0.416 0.503

MQ2008
Model NDCG@1 NDCG@5 NDCG@10 P@1 P@5 P@10 MAP
MART 0.385O 0.483O 0.230O 0.455O 0.354O 0.250O 0.484O
CA 0.395O 0.477O 0.229O 0.452O 0.348O 0.248O 0.478O
LambdaMART 0.413 0.491O 0.237O 0.464O 0.356O 0.251O 0.490O
DeepRank 0.406 0.496 0.240 0.482 0.359 0.252 0.498
HiNT 0.415 0.501 0.244 0.491 0.367 0.255 0.505
HMART 0.406O 0.501 0.245 0.482 0.360 0.253 0.500
HCA 0.416 0.505 0.246 0.485 0.364 0.253 0.506
HLambdaMART 0.414 0.506 0.247 0.483 0.361 0.253 0.503

the collections and in terms of all metrics considered. However, Table 6.3 shows that

our hybrid HLambdaMART produces scores results superior to or on par with those

of the best baselines, according to the metric and collection tested. HLambdaMART

was superior to HiNT in NDCG@1 and P@1 on MQ2007 (Fig. 6.1), with statistically

significant differences in the results and improvements of 4.9% and 4.5%, respectively.

For the remaining comparisons, there were no statistically significant differences. For

instance, on MQ2007, the NDCG@10 for HLambdaMART was 0.495, whereas it was

0.490 for HiNT. Differences between HiNT and HLambdaMART were not statistically

significant, except for NDCG@1 and P@1 on MQ2007, where HLambdaMART outper-

forms HiNT.

For MQ2007 and MQ2008, the hybrid models outperform their respective tradi-

tional models LambdaMART and CA, which indicates the superiority of our hybrid

approach. Our results show that the automatically learned features in the deep learn-

6.2. Hybrid architecture evaluation 63

0

0,1

0,2

0,3

0,4

0,5

0,6

N
D
C
G
@
1

N
D
C
G
@
5

N
D
C
G
@
10

P@
1

P@
5

P
@
1
0

N
D
C
G
@
1

N
D
C
G
@
5

N
D
C
G
@
10

P@
1

P@
5

P
@
1
0

HiNT HLambdaMART

FOLD1

FOLD2

FOLD3

FOLD4

FOLD5

Figure 6.1: Quality results for HiNT and HLambdaMART on MQ2007.

ing baselines adopted in this study, using complex models for training, have quality

results on pair with the traditional use of features in L2R models.

6.2.1 The impact of UTI on L2R methods

We conducted experiments applying four different sets of features on L2R methods

(MART, CA and LambdaMART) and on our hybrids methods (HMART, HCA and

HLambdaMART).

Each method and set of features used is detailed below:

• L2R (Original): L2R method applied to the original set of features available in

LETOR MQ2007 and MQ2008. Total of 46 features.

• L2R (Original+9 passage): L2R method applied to the original features plus 9

passage-based features proposed by Pang et al. [2017]. Total of 55 features.

64 Chapter 6. Experiment Results

• Hybrid (QDF+UTI): Hybrid method. In this set, we consider only the query-

dependent features (QDF) available in original LETOR dataset and we added

one more feature, the UTI score feature, which is the sum of all UTIs of the

query-terms. Total of 27 features.

• Hybrid (QDF+UTI+9 passage): Hybrid method. Here, we consider only the

query-dependent features (QDF) available in original set and we added ten (10)

more features, the UTI score feature and the 9 passage-based features. Total of

36 features.

When comparing the results of the methods in Tables 6.4, 6.5 and 6.6 we can see

that all hybrids models improves significantly the results of the learning methods on

MQ2007 and MQ2008. The results of the comparisons between the models are shown

below:

Comparison between L2R(Original) model and Hybrid

(QDF+UTI) model

The NDCG@10 for HMART was 10% higher than the MART model using all original

features of LETOR MQ2007. For the same sets, we can see that there was also an

increase in the hybrid models HCA and LambdaMART, comparing to CA and Lamb-

daMART, which were 11.9% and 6.3%, respectively.In all cases, the improvements are

statistically significant.

Even applying only 27 features, the results presented by the hybrid models are

better than any other L2R model published in the literature in a recent L2R methods

survey Guo et al. [2019].

6.2. Hybrid architecture evaluation 65

Comparison between L2R(Original+9 passage) model and

Hybrid (QDF+UTI+9 passage) model

On MQ2007, the NDCG@10 for HLambdaMART was 7.8% higher than the one

achieved by LambdaMART, and the NDCG@10 for HCA was 11.6% higher than the

one achieved by CA. In both cases, the improvements are statistically significant. We

demonstrated our final results with the 9 passage-base features for the reason that it

was considered in the experiments done by the authors of the deeprank and HiNT

models.

Comparison between L2R(Original) model and L2R(Original+9

passage) model

NDCG@10 for MART, CA and LambdaMART, in comparison with the experiment

using all the original features of the LETOR MQ2007 plus the 9 passage-based features,

were 2.1%, 1.3%, and 0.6%, respectively. That was the worst result, it demonstrates

that the effort to extract the passage-based features to match with the features used in

neural network models does not have a significant impact on the improvement of the

L2R models. The same was observed in the MQ2008 dataset,

Table 6.4: Performance comparisons of MART with different set of features on MQ2007
and MQ2008.

MQ2007
Model Features NDCG@1 NDCG@5 NDCG@10 P@1 P@5 P@10 MAP
MART Original 0.396 0.414 0.437 0.454 0.414 0.379 0.457
MART Original+ 9 passage 0.405 0.421 0.446 0.475 0.413 0.383 0.465
HMART QDF+UTI 0.449 0.458 0.486 0.520 0.452 0.414 0.495
HMART QDF+UTI+ 9 passage 0.457 0.464 0.491 0.527 0.456 0.416 0.498

MQ2008
Model Features NDCG@1 NDCG@5 NDCG@10 P@1 P@5 P@10 MAP
MART Original 0.372 0.476 0.229 0.439 0.352 0.250 0.477
MART Original+9 passage 0.385 0.483 0.230 0.455 0.354 0.250 0.484
HMART QDF+UTI 0.405 0.499 0.242 0.485 0.361 0.251 0.500
HMART QDF+UTI+9 passage 0.406 0.501 0.245 0.482 0.360 0.253 0.500

66 Chapter 6. Experiment Results

Table 6.5: Performance comparisons of CA with different set of features on MQ2007
and MQ2008.

MQ2007
Model Features NDCG@1 NDCG@5 NDCG@10 P@1 P@5 P@10 MAP
CA Original 0.379 0.410 0.435 0.438 0.405 0.370 0.450
CA Original+9 passage 0.401 0.417 0.441 0.451 0.412 0.375 0.463
HCA QDF+UTI 0.464 0.460 0.487 0.535 0.453 0.414 0.499
HCA QDF+UTI+9 passage 0.466 0.467 0.492 0.536 0.458 0.415 0.501

MQ2008
Model Features NDCG@1 NDCG@5 NDCG@10 P@1 P@5 P@10 MAP
CA Original 0.372 0.471 0.226 0.437 0.346 0.245 0.474
CA Original+9 passage 0.367 0.473 0.228 0.439 0.346 0.249 0.475
HCA QDF+UTI 0.407 0.499 0.243 0.480 0.360 0.252 0.501
HCA QDF+UTI+9 passage 0.416 0.505 0.246 0.485 0.364 0.253 0.506

Table 6.6: Performance comparisons of LambdaMARTwith different set of features on
MQ2007 and MQ2008.

MQ2007
Model Features NDCG@1 NDCG@5 NDCG@10 P@1 P@5 P@10 MAP
LambdaMART Original 0.411 0.429 0.451 0.475 0.425 0.385 0,468
LambdaMART Original+9 passage 0.424 0.432 0.459 0.486 0.427 0.392 0.477
HLambdaMART QDF+UTI 0.452 0.453 0.481 0.524 0.449 0.410 0.493
HLambdaMART QDF+UTI+9 passage 0.469 0.466 0.495 0.538 0.456 0.416 0.503

MQ2008
Model Features NDCG@1 NDCG@5 NDCG@10 P@1 P@5 P@10 MAP
LambdaMART Original 0.373 0.476 0.232 0.453 0.347 0.247 0.478
LambdaMART Original+9 passage 0.373 0.482 0.233 0.440 0.350 0.248 0.477
HLambdaMART QDF+UTI 0.389 0.501 0.243 0.468 0.358 0.251 0.496
HLambdaMART QDF+UTI+9 passage 0.414 0.506 0.247 0.483 0.361 0.253 0.503

6.3 Evaluation the UTI-LambdaMART for base

ranker

RQ3: Is UTI-LambdaMART method a good alternative base

ranker ?

UTI-LambdaMART is useful for compiling a large set of initial features and producing

a first cut ranking result to be used at query processing times by other L2R methods,

which may be included in our HLambdaMART. In these cases, UTI-LambdaMART is

used as a base ranker.

We performed experiments to verify the impact of this alternative to compare

6.3. Evaluation the UTI-LambdaMART for base ranker 67

with BM25, the base ranker adopted to create the MQ2007 and MQ2008 datasets. We

computed a first ranking with the UTI values produced by UTI-LambdaMART and

then adopted the other learning to rank method to reorder the top 20 results produced

by the base ranker, providing a final ranking using the whole set of features available.

The same procedure was then executed using BM25 as the base ranker.

Fig. 6.2 presents the results of MQ2007. We do not present the results of MQ2008

because the conclusions and results are similar to those of MQ2007.

2 4 6 8 10 12 14 16 18 20
0.35

0.4

0.45

0.5

top-k

N
D
C
G
@
10

UTI
BM25

Figure 6.2: Quality of results achieved by HLambdaMART when using UTI-
LambdaMART and BM25 as base rankers of MQ2007 for distinct sizes of the top-k
results transferred from the base ranker to HLambdaMART.

In Fig. 6.2, UTI-LambdaMART outperforms BM25 as a base ranker. For ex-

ample, from the top-10 results to be processed, UTI-LambdaMART achieves a higher

NDCG@10 score than that of BM25 for the top-20 results. For instance, on MQ2007,

the NDCG@10 for HLambdaMART using BM25 score as base ranker was 0.448,

whereas it was 0.493 for UTI score, thus 10% higher than the one achieved by BM25

on the same top-10 results.

This result shows that UTI-LambdaMART is effective as a base ranker in web

search, since we can use it to obtain the same quality by processing fewer results in

the top ranker. The combined advantages of our method are discussed in the next

experiment.

68 Chapter 6. Experiment Results

6.4 A performance evaluation

RQ4: In addition to quality issues, would the use of

UTI-LambdaMART produce a fast L2R alternative solution ?

To make it easier to understand the advantages and disadvantages of adopting HLamb-

daMART, we compare the time performance of our method to that of the original

LambdaMART method, comparing a system that adopts the architecture presented in

Fig. 1.1 to our proposal presented in Fig. 4.4, thus using UTI values to produce the

base ranker and our proposed hybrid method that combines UTI values with features

not available at indexing times. The time performance experiment presented here was

executed using a machine with an Intel Core i5-4200U 1.6-GHz CPU, and 8 GB of

memory. The time performance experiment described here adopts the indexing and

searching systems provided by Daoud et al Daoud et al. [2017], using BMW as the

query processing algorithm.

We start by comparing the time and space required by each method when index-

ing the collections. For LambdaMART, we need to store the frequency of the term

in the collection, which is used by the base ranker and by the top ranker, and the

maximum, minimum and average frequencies of each term in the document passages

in the collection, information required to compute passage-based features from 47-55

of Table 5.3. Features from 16-20 and 41 to 46 require a smaller storage space that is

proportional to the number of indexed documents. The remaining features can either

be computed at query processing time or have a storage space proportional to the

vocabulary of the collection, such as the IDF values in features 6-10 of Table 5.3.

For HLambdaMART, it is necessary to add the index of UTI values, which has

a number of entries equal to the number of frequency posting lists in the collection.

Table 6.7 presents the space required by the index of MQ2007 and MQ2008. The

HLambdaMART required an index that is approximately 27% greater both in MQ2007

6.4. A performance evaluation 69

and MQ2008. This is the additional cost of using this method. Regarding the time

for indexing, HLambdaMART required 15% extra time when indexing MQ2007 and

approximately 18% extra time for indexing MQ2008. UTI index is generated by taking

the indexes already built to process queries, which reduces the overhead to create it.

Table 6.7: LambdaMART and HLambdaMART time (seconds) to index and space
(MB) when applied to MQ2007 and MQ2008.

MQ2007 MQ2008
Method Time Space Time Space
LambdaMART 72 180.1 87 213.4
HLambdaMART 83 229.7 103 272.0

Table 6.8 presents the average time for processing queries in the base ranker and

top ranker in both collections. When looking to the results at the top ranker, we see

that the time needed to run HLambdaMART was approximately 38% the time required

by LambdaMART on MQ2007 and 35% of the time on MQ2008. The performance gain

is a natural consequence of:

(i) the reduction in the number of documents that are inspected by the system, since

our approach using UTI method as the base ranker reduces the number of docu-

ments inspected to half the number inspected when using BM25, and

(ii) the reduction in the number of features processed since HLambdaMART fetches

and processes only 36 features, while the original LambdaMART method pro-

cesses 55 features. We thus note that the input size given to HLambdaMART

was approximately 32% the input given to LambdaMART, which explains the

gain in performance. This experiment illustrates the potential gain in time perfor-

mance at query processing time achieved when using our proposed ideas, results

that are achieved with a gain in the quality of results compared to those of the

original LambdaMART.

When looking to the times achieved by the base ranker, HLambdaMART was 38%

faster for MQ2007 and 37% faster for MQ2008. The base ranker of HLambdaMART

70 Chapter 6. Experiment Results

is faster because it: i) computes a simple ranking function that adds only UTI values,

whereas BM25 requires math operations to compute the ranking, and ii) it requires a

smaller number of top results to produce the final ranking, as shown in Fig. 6.2.

Table 6.8: LambdaMART and HLambdaMART average times, in milliseconds, to run
base ranker (base) and top ranker (top) on MQ2007 and MQ2008.

MQ2007 MQ2008
Method base top base top
LambdaMART 0.024 0.037 0.032 0.018
HLambdaMART 0.015 0.014 0.021 0.006

A comparison of our method to the baselines HiNT and DeepRank other methods

based on neural networks recently proposed in the literature, would be not only a

difficult task but also unfair. First, these two methods use the raw text and data from

the collection as the input to the L2R process at query processing time; this simple

procedure slows down the performance of the methods compared to methods that take

explicitly precomputed feature values, as discussed recently by Ji et al. Ji et al. [2019].

Adding the raw text to the L2R process opens the possibility of improving the quality

of results, with the two methods being among the state-of-the-art L2R methods when

considering the quality of results, but it also makes the methods expensive, since the

neural network adopted by them needs to process the raw data at query processing

time. A second important factor is that neural network methods require specialized

hardware to run, which makes a time comparison difficult to perform.

If we compare the methods using the same hardware, without specialized hard-

ware with GPUs, the neural network methods would become extremely slow, since

these methods take advantage of massive parallel operations and use the parallelism of

GPUs to accelerate the query processing. From these observations, we limit ourselves

and say only that LambdaMART is known to be a fast L2R method and requires less

computational resources than current methods based on neural networks, such as HiNT

and DeepRank. By obtaining a quality of results similar to that of these methods, we

conclude that our proposal is a competitive alternative solution for L2R.

6.5. An UTI-Index compression evaluation 71

6.5 An UTI-Index compression evaluation

RQ5: How much can the UTI index be reduced without loss of

quality ?

In our study, we exploited UTI-LambdaMART to achieve a much smaller index with

low impact in terms of its construction time. Our approach still allows for the comple-

mentary application of standard compression methods, yielding even greater gains.

A common approach for improving search engine time and space efficiency is to

compress the inverted index Baeza-Yates and Ribeiro-Neto [2011]. A compressed index

will take less storage space and thus require less I/O operations, generally yielding a

gain in performance. In our proposal, we can exploit UTI-LambdaMART to achieve a

much smaller index with low impact on its construction time. In addition, our approach

will still allow the complementary application of standard compression methods, thus

possibly yielding even greater gains.

Our proposal for index size reduction consists of, quite simply, truncating the

decimal places in the UTI values generated. In Algorithm 1, every time the function

Ftn is evaluated, only the first d decimal places are considered. A smaller value for d

means less bytes required for storage per UTI. Interestingly, even though this will limit

the precision of the document score calculation, UTI-LambdaMART will still try to

optimize the final ranking, thereby minimizing the impact that this loss of information

might have on the quality of the results.

Our process of index size reduction consists of truncating the decimal places when

computing UTI values. We investigate whether it is most profitable to reduce the size

of the UTI values representation during or after the training. During the training, in

Algorithm 1, every time the function Ftn is evaluated, only the first α decimal places

are considered. A smaller value for α means fewer bytes required for storage per UTI

value. When the reduction occurs after the training, we simply truncate the final UTI

72 Chapter 6. Experiment Results

score. The final result analysis of the quality shows that the second approach is superior

with not only lower quality loss but also lower implementation cost.

Table 6.9 reports the compression rates achieved with the number of digits trun-

cated in when computing UTI values. We report only the results for MQ2007, because

the conclusions and results for MQ2008 are similar. We also compressed the truncated

UTI values using the commonly used technique of Elias Delta coding Elias [1975]. The

results are expressed as the number of bits per entry. In reference to the amount of com-

pression, each original UTI value (i.e., nontruncated) would be represented as a 32-bit

floating point number; thus, a 3-bit representation is equivalent to a 90% compression

rate.

Table 6.9: Impact on NDCG@10 of UTI-LambdaMART and HLambdaMART when
varying the number of decimal places per entry when computing UTI values on
MQ2007.

Decimal
places

Bits per
entry

CR UTI-LambdaMart
(NDCG@10)

HLambdaMart
(NDCG@10)

0 2.68 92% 0.450 0.488
1 6.59 79% 0.465 0.494
2 12.70 60% 0.466 0.496
3 19.18 40% 0.465 0.492
All 32.00 - 0.465 0.495

From the results, a small tradeoff between quality and compression rate is ob-

served as we vary the number of truncated decimal point values. Nevertheless, the

results of truncating UTI values to only one decimal digit yield virtually no reduction

in NDCG@10, thereby achieving a compression rate of approximately 79%. When trun-

cating to zero decimal digits, we observed a clear negative impact on the NDCG@10

values, indicating that the best tradeoff was achieved when setting the system to use

just 1 decimal place. In conclusion, we may say that the experiments with compression

indicate the possibility of reducing the average number of bits required to store each

UTI value from 18 to 6 bits, without significant loss in the quality of the results.

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we propose UTI-LambdaMART, a modified LambdaMART ranking al-

gorithm designed to generate UTI scores for each term and document pair at indexing

time. Our method surpasses the UTI-GP baseline in quality and training time. The

time required to training the UTI-LambdaMART is 2.8% of the time to training the

UTI-GP and the quality of its generated model is statistically superior.

Passage-based features are extensively explored by deep matching models. Thus,

we also explored information about the term’s position in the document as a feature

and our experiments showed that above 2 positions there is no improvement in the

quality of the model. On MQ2007, the MAP of the UTI-LambdaMART model was

0.466 and using this two positional features the map is 0.480.

Besides UTI-LambdaMART, we also propose a hybrid methods that combine

UTI-LambdaMART with other L2R methods, producing new L2R methods named

HCA, HMART and HLambdaMART. Our experimental results show that HCA,

HMART and HLambdaMART produce results on par with those of the state-of-the-

art L2R method HiNT, which adopts a neural network model. Further, for P@1 and

73

74 Chapter 7. Conclusions and Future Work

NDCG@1 the results produced by our methods were better than the ones achieved by

HiNT. The result offers a significant reduction in the number of features fetched and

processed at query processing times, reducing the from 55 to 36 in collections MQ2007

and MQ2008. Furthermore, our architecture resulted in a reduction in the time needed

to process queries, which is an important property for real-world search systems.

To complement our proposal, we investigated the UTI-LambdaMART as a base

ranker and the UTI-LambdaMART as the main ranker. In the first case, the UTI values

produce high-quality first cut rankings actually closer to the final ranking produced by

the best L2R methods. This reduces the number of documents inspected by the top

ranker, which ultimately allows faster query processing when compared to a system

that adopts BM25 as the base ranker. In the second case, UTI-LambdaMART is

directly applied as the top ranker. In this case, it does not require a learning model at

a query processing time, yielding an extremely simple ranking strategy. Considering

the features only available at the indexing time, the UTI-LambdaMART produces

quality rankings compared with other L2R methods. Unlike previous methods, UTI-

LambdaMART is a simple and lightweight ranking method that does not fetch several

features at a query processing time.

Finally, we investigated an alternative of reducing the storage space when rep-

resenting UTI values. The reduction is achieved by truncating the UTI numbers pro-

duced, mapping them to lower precision numbers, compressed using methods commonly

applied to search indexes. We show that this strategy may reduce the average number

of bits required to store each UTI value from 18 to 6 bits, without significant loss in

the quality of results.

7.2 Future Work

As a future work, we plan to investigate a combination of HiNT and our hybrid ap-

proach. The idea is to study a hybrid approach where HiNT would be used as a top

7.2. Future Work 75

ranker. We also intend to investigate the relationships between the different rankings

as an additional feature in our hybrid approach. In this case, the final ranking would

be computed by combining results produced by a set of other ranking methods.

As another important future direction, we plan to combine our proposal with

other optimization methods related to L2R, which can further improve either the qual-

ity of the results or the performance of the L2R methods. For instance, we plan to

explore the possible combination of the methods proposed here with the cascade meth-

ods proposed in the literature Chen et al. [2017]; Lucchese et al. [2018a]; Gallagher

et al. [2019].

We also plan to study the effect of methods developed to produce more stable

rankings, namely, risk-sensitive L2R methods, and study their impact when applied

to UTI methods. Risk-sensitivity is a subarea of L2R that tries to learn models that

are good on average while at the same time reducing the risk of performing poorly in

a few but important queries (e.g., medical or legal queries) Sousa et al. [2019]. Their

usage when combined with UTI values represents a challenge, since when computing

UTI values, the learning is performed at indexing times.

Bibliography

Anh, V. N. and Moffat, A. (2002). Impact transformation: Effective and efficient web

retrieval. In Proceedings of 25th International ACM SIGIR Conference on Research

and Development in Information Retrieval (SIGIR’02), pages 3--10, New York, NY,

USA. ACM.

Anh, V. N. and Moffat, A. (2005). Simplified similarity scoring using term ranks. In

Proceedings of 28th International ACM SIGIR Conference on Research and Devel-

opment in Information Retrieval (SIGIR’05), pages 226--233, New York, NY, USA.

ACM.

Anh, V. N., Wan, R., and Moffat, A. (2008). Term impacts as normalized term frequen-

cies for bm25 similarity scoring. In International Symposium on String Processing

and Information Retrieval, pages 51--62. Springer.

Baeza-Yates, R. and Ribeiro-Neto, B. (2011). Modern Information Retrieval. Addison-

Wesley Professional, Boston, MA, USA, 2 edition.

Burges, C., Ragno, R., , and Le, Q. (2006). Learning to rank with nonsmooth cost

functions. In In Advances in Neural Information Processing Systems, pages 392--402.

MIT Press.

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., and Hullen-

der, G. (2005). Learning to rank using gradient descent. In Proceedings of the 22nd

international conference on Machine learning, pages 89--96.

77

78 Bibliography

Burges, C. J. C. (2010). From RankNet to LambdaRank to LambdaMART: An

overview. Technical report, Microsoft Research.

Callan, J. P., Croft, W. B., and Broglio, J. (1995). Trec and tipster experiments with

inquery. Information Processing & Management, 31(3):327--343.

Cambazoglu, B. B., Zaragoza, H., Chapelle, O., Chen, J., Liao, C., Zheng, Z., and

Degenhardt, J. (2010). Early exit optimizations for additive machine learned ranking

systems. In Proceedings of the Third ACM International Conference on Web Search

and Data Mining (WSDM’10), pages 411--420. ACM.

Capannini, G., Lucchese, C., Nardini, F. M., Orlando, S., Perego, R., and Tonellotto, N.

(2016). Quality versus efficiency in document scoring with learning-to-rank models.

Information Processing & Management, 52(6):1161--1177.

Chen, R.-C., Gallagher, L., Blanco, R., and Culpepper, J. S. (2017). Efficient cost-

aware cascade ranking in multi-stage retrieval. In Proceedings of 40th International

ACM SIGIR Conference on Research and Development in Information Retrieval

(SIGIR’17), pages 445--454, New York, NY, USA. ACM.

Cormack, G. V. and Lynam, T. R. (2007). Validity and power of t-test for compar-

ing map and gmap. In Proceedings of the 30th annual international ACM SIGIR

conference on Research and development in information retrieval, pages 753--754.

Costa Carvalho, A. L., Rossi, C., Moura, E. S., Silva, A. S., and Fernandes, D. (2012).

Lepref: Learn to precompute evidence fusion for efficient query evaluation. Jour-

nal of the American Society for Information Systems and Technology (JASIST),

63(7):1383--1397.

Craswell, N., Robertson, S., Zaragoza, H., and Taylor, M. (2005). Relevance weighting

for query independent evidence. In Proceedings of the 28th annual international ACM

Bibliography 79

SIGIR conference on Research and development in information retrieval, pages 416-

-423.

Dang, V., Bendersky, M., and Croft, W. B. (2013). Two-stage learning to rank for in-

formation retrieval. In Advances in Information Retrieval, pages 423--434. Springer.

Daoud, C. M., de Moura, E. S., Fernandes, D., da Silva, A. S., Rossi, C., and Carvalho,

A. (2017). Waves: a fast multi-tier top-k query processing algorithm. Information

Retrieval, 20(3):292--316. ISSN 1573-7659.

de Almeida, H. M., Gonçalves, M. A., Cristo, M., and Calado, P. (2007). A combined

component approach for finding collection-adapted ranking functions based on ge-

netic programming. In Proceedings of 30th International ACM SIGIR Conference

on Research and Development in Information Retrieval (SIGIR’07), pages 399--406.

ACM.

Donald Metzler, W. B. C. (2007). Linear feature-based models for information retrieval.

Information Retrieval, 10(3):257--274.

Elias, P. (1975). Universal codeword sets and representations of the integers. IEEE

Transactions on Information Theory, 21(2):194--203.

Fan, Y., Guo, J., Lan, Y., Xu, J., Zhai, C., and Cheng, X. (2018). Modeling diverse

relevance patterns in ad-hoc retrieval. In Proceedings of 41st International ACM SI-

GIR Conference on Research and Development in Information Retrieval (SIGIR’18),

pages 375--384. ACM.

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine.

In The Annals of Statistics, pages 1189--1232.

Gallagher, L., Chen, R.-C., Blanco, R., and Culpepper, J. S. (2019). Joint optimization

of cascade ranking models. In Proceedings of the 12th ACM International Conference

80 Bibliography

on Web Search and Data Mining (WSDM’19), pages 15--23, New York, NY, USA.

ACM.

Guo, J., Fan, Y., Pang, L., Yang, L., Ai, Q., Zamani, H., Wu, C., Croft, W. B., and

Cheng, X. (2019). A deep look into neural ranking models for information retrieval.

Information Processing & Management, page 102067.

Huang, P.-S., He, X., Gao, J., Deng, L., Acero, A., and Heck, L. (2013). Learning deep

structured semantic models for web search using clickthrough data. In Proceedings of

the 22nd ACM international conference on Information & Knowledge Management,

pages 2333--2338.

Järvelin, K. and Kekäläinen, J. (2002). Cumulated gain-based evaluation of ir tech-

niques. ACM Transactions on Information Systems (ACM TOIS), 20(4):422--446.

ISSN 1046-8188.

Ji, S., Shao, J., and Yang, T. (2019). Efficient interaction-based neural ranking with

locality sensitive hashing. In Proceedings of the 28th International World Wide Web

Conference (WWW’19), pages 2858--2864, New York, NY, USA. ACM.

Joachims, T. (2002). Optimizing search engines using clickthrough data. In Proceedings

of the eighth ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 133--142. ACM.

Lai, H.-J., Pan, Y., Tang, Y., and Yu, R. (2013). Fsmrank: Feature selection algorithm

for learning to rank. IEEE transactions on neural networks and learning systems,

24(6):940--952.

Li, H. (2011). Learning to rank for information retrieval and natural language process-

ing, volume 1. Morgan & Claypool Publishers.

Liu, T.-Y. (2011). Learning to rank for information retrieval. Springer Science &

Business Media.

Bibliography 81

Liu, T.-Y., Xu, J., Qin, T., Xiong, W., and Li, H. (2007). Letor: Benchmark dataset

for research on learning to rank for information retrieval. In SIGIR 2007 workshop

on learning to rank for information retrieval, pages 3--10.

Lucchese, C., Nardini, F. M., Orlando, S., Perego, R., Silvestri, F., and Trani, S. (2016).

Post-learning optimization of tree ensembles for efficient ranking. In Proceedings of

39th International ACM SIGIR Conference on Research and Development in Infor-

mation Retrieval (SIGIR’16), pages 949--952, New York, NY, USA. ACM.

Lucchese, C., Nardini, F. M., Orlando, S., Perego, R., Silvestri, F., and Trani, S.

(2018a). X-cleaver: Learning ranking ensembles by growing and pruning trees. ACM

Transactions on Intelligent Systems and Technology (TIST), 9(6):62.

Lucchese, C., Nardini, F. M., Perego, R., Orlando, S., and Trani, S. (2018b). Selective

gradient boosting for effective learning to rank. In Proceedings of 41st International

ACM SIGIR Conference on Research and Development in Information Retrieval

(SIGIR’18), pages 155--164. ACM.

Mitra, B., Diaz, F., and Craswell, N. (2017). Learning to match using local and

distributed representations of text for web search. In Proceedings of the 26th Inter-

national World Wide Web Conference (WWW’17), pages 1291--1299, Republic and

Canton of Geneva, Switzerland.

Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The pagerank citation

ranking: Bringing order to the web. Technical report, Stanford InfoLab.

Pang, L., Lan, Y., Guo, J., Xu, J., Xu, J., and Cheng, X. (2017). Deeprank: A new

deep architecture for relevance ranking in information retrieval. In Proceedings of

the 26th ACM International Conference on Information and Knowledge Management

(CIKM’17), pages 257--266. ACM.

82 Bibliography

Robertson, S. (2000). Evaluation in information retrieval. In European Summer School

on Information Retrieval, pages 81--92. Springer.

Robertson, S. E. and Walker, S. (1994). Some simple effective approximations to

the 2-poisson model for probabilistic weighted retrieval. In Proceedings of 17th In-

ternational ACM SIGIR Conference on Research and Development in Information

Retrieval (SIGIR’94), pages 232--241. Springer-Verlag New York, Inc.

Saraiva, P. C., Silva de Moura, E., Ziviani, N., Meira, W., Fonseca, R., and Riberio-

Neto, B. (2001). Rank-preserving two-level caching for scalable search engines. In

Proceedings of 24th International ACM SIGIR Conference on Research and Devel-

opment in Information Retrieval (SIGIR’01), pages 51--58. ACM.

Silva, I., Ribeiro-Neto, B., Calado, P., Moura, E., and Ziviani, N. (2000). Link-based

and content-based evidential information in a belief network model. In Proceedings

of the 23rd Annual International ACM SIGIR Conference on Research and Devel-

opment in Information Retrieval, SIGIR ’00, page 96–103, New York, NY, USA.

Association for Computing Machinery.

Silva, T. P. C., de Moura, E. S., Cavalcanti, J. M. B., da Silva, A. S., de Carvalho, M. G.,

and Gonçalves, M. A. (2009). An evolutionary approach for combining different

sources of evidence in search engines. Information Systems, 34(2):276--289.

Smucker, M. D., Allan, J., and Carterette, B. (2007). A comparison of statistical

significance tests for information retrieval evaluation. In Proceedings of the 16th ACM

Conference on information and knowledge management (CIKM’07), pages 623--632.

ACM.

Smucker, M. D., Allan, J., and Carterette, B. (2009). Agreement among statistical

significance tests for information retrieval evaluation at varying sample sizes. In

Proceedings of the 32nd International ACM SIGIR Conference on Research and De-

Bibliography 83

velopment in Information Retrieval, SIGIR ’09, page 630–631, New York, NY, USA.

Association for Computing Machinery.

Sousa, D. X., Canuto, S., Gonçalves, M. A., Rosa, T. C., and Martins, W. S. (2019).

Risk-sensitive learning to rank with evolutionary multi-objective feature selection.

ACM Transactions on Information Systems (ACM TOIS), 37(2):24:1--24:34. ISSN

1046-8188.

Tax, N., Bockting, S., and Hiemstra, D. (2015). A cross-benchmark comparison of 87

learning to rank methods. Information processing & management, 51(6):757--772.

Wei, Z., Xu, J., Lan, Y., Guo, J., and Cheng, X. (2017). Reinforcement learning to

rank with markov decision process. In Proceedings of 40th International ACM SI-

GIR Conference on Research and Development in Information Retrieval (SIGIR’17),

pages 945--948, New York, NY, USA. ACM.

Westerveld, T., Kraaij, W., and Hiemstra, D. (2001). Retrieving web pages using

content, links, urls and anchors. In TREC, volume 1, pages 663--672.

Wu, Q., Burges, C. J., Svore, K. M., and Gao, J. (2010). Adapting boosting for

information retrieval measures. Information Retrieval, 13(3):254--270.

Xia, F., Liu, T.-Y., Wang, J., Zhang, W., and Li, H. (2008). Listwise approach to

learning to rank: theory and algorithm. In Proc. of the 25th international conference

on Machine learning, pages 1192--1199. ACM.

Xu, B., Lin, H., Lin, Y., and Xu, K. (2019). Incorporating query constraints for

autoencoder enhanced ranking. Neurocomputing, 356:142--150.

Xu, J. and Li, H. (2007). Adarank: a boosting algorithm for information retrieval. In

Proceedings of 30th International ACM SIGIR Conference on Research and Devel-

opment in Information Retrieval (SIGIR’07), pages 391--398. ACM.

84 Bibliography

Yu, H.-T., Jatowt, A., Joho, H., Jose, J. M., Yang, X., and Chen, L. (2019). Wassrank:

Listwise document ranking using optimal transport theory. In Proceedings of the

12th ACM International Conference on and Data Mining (WSDM’19), pages 24--

32. ACM.

Zamani, H., Dehghani, M., Croft, W. B., Learned-Miller, E., and Kamps, J. (2018).

From neural re-ranking to neural ranking: Learning a sparse representation for in-

verted indexing. In Proceedings of the 27th ACM International Conference on In-

formation and Knowledge Management (CIKM’18), pages 497--506, New York, NY,

USA. ACM.

	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Statement
	1.2 Research Goals
	1.3 Research Questions
	1.4 Publication

	2 Related Work
	2.1 Precomputed Evidence Fusion
	2.2 Document rank models

	3 Background
	3.1 Learning-To-Rank
	3.2 LambdaMART rank model
	3.3 Learning UTI values
	3.3.1 UTI-GP Model

	3.4 Deep learning model
	3.5 Evaluation Measures

	4 The UTI-LambdaMART Model
	4.1 Modified LambdaMART Algorithm
	4.1.1 An example of UTI generation using UTI-LambdaMART

	4.2 Combining UTIs with Query-Time Features
	4.2.1 Using UTI Values as a Query-Time Feature
	4.2.2 Using UTI-LambdaMART as a Base Ranker

	5 Experimental Protocols
	5.1 Datasets
	5.2 Baseline Methods
	5.2.1 UTI Methods
	5.2.2 L2R Methods
	5.2.3 Deep Matching Methods
	5.2.4 Hybrid Methods

	6 Experiment Results
	6.1 UTI-LambdaMART for evidence fusion
	6.2 Hybrid architecture evaluation
	6.2.1 The impact of UTI on L2R methods

	6.3 Evaluation the UTI-LambdaMART for base ranker
	6.4 A performance evaluation
	6.5 An UTI-Index compression evaluation

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	Bibliography

