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Abstract of Thesis presented to Postgraduate in Mathematics, of the Federal

University of Amazonas, as a partial fulfillment of the requirements for the degree

of Master of Mathematics. (M.Sc.)

THE DYNAMIC MODEL TO INFECTION RATE BASED ON POOLED

SAMPLES

Paola da Silva Martins

May/2020

Advisor: James Dean Oliveira dos Santos Júnior

Research lines: Statistics

In this thesis we will work on the real time estimation of infection rates in vectors.

It uses the dynamic generalized linear model to estimate the rate of infection of theses

vector that are put in different pools sizes. The proposed methodology used the data

of the mosquitoes tested weekly during the months of June through October referring

to the period of 2012 to 2019. These mosquitoes were taken from the Department

of Health from Rhode Island, in the United States. The model found had a good

adherence to the aforementioned data.
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Chapter 1

Introduction

Diseases such as dengue, leishmaniasis, onchocerciasis and Nile fever are trans-

mitted to humans by arbovirus (name used to refer to any viruses that are transmit-

ted by arthropod vectors). In order to control diseases such as these, governments

and private enterprises have set up epidemiological control agencies that collect

information regularly to monitor their development and issue warnings for interven-

tion. This is accomplished by monitoring various indicators.

Among the monitored variables, we highlight the prevalence of infection in the

vectors. As this is typically low (less than 1%), it would take a large sample to find

an infected vector, which makes verifying individual dissecting vectors very costly.

The solution is to create a pool: a grouping of vectors that will be shredded and

tested simultaneously. Pooled samples are observed over epidemiological weeks, ob-

taining a time series of the test results for the arbovirus in question. These results

are used to create alerts: an increase in the infection rate in the vectors may imply

an increase in the incidence of the disease in humans.

For this thesis, it will be used a data that the arbovirus is the West Nile virus

(WNV), that causes West Nile fever. This disease is typically spread by mosquitoes.

Cases of WNV occur during mosquito season, which starts in the summer and

continues through fall, in the United States. There are no vaccines to prevent or

medications to treat WNV in people. On the other hand, the repellent use has been

associated with reduced risk of WNV infection [Mon]. Fortunately, most people

infected with WNV do not feel the symptoms.

Since the population of the data is composed by a population of mosquitoes,

which is difficult to be accessed, the solution that was adopted to get information

was to create pools, which in each pool there is an amount of mosquitoes. The

mosquitoes collected for each pool were crushed in order to form a soup. From this

soup the study was made to know if the pool was infected or not. For this reason,

it is impossible to know how many mosquitoes were infected. Knowing only the

information of the infected pool, that is, there is at least one infected mosquito in
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the pool. The idea of using a pool was a good strategy, since checking mosquito

a mosquito would be very laborious and costly. And it was done over a period of

time. In Figure 1.1 we can see the number of infected pools, in the State of Rhode

Island, between 2012 and 2019. It’s interesting to observe that there were a small

amount of infected pools.
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Figure 1.1: Chart of the infected pools between 2012 and 2019

Therefore, for each period of time, we had observed the rate infected of

mosquitoes in the pools. Consequently, the amount of mosquitoes varies during

the time. So, to analyse a data with dependence in time, we can use basic time

series analysis. One possibility is to find a reasonable regularity in the behavior

of the phenomenon under study: forecasting the future behavior is clearly easier if

the series tends to repeat a regular path over time. Another way is using dynamic

generalized linear models, estimation and forecasting can be obtained recursively by

the well known Kalman filter. In this work we will explain and propose the last one.

1.1 Objective

The objective of this thesis is to build a dynamic generalized linear model to

estimate the rate of infection for any arbovirus. This model will be applied to data

from Rhode Island Department of Environmental Management (DEM).
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1.2 Organization of the text

The Chapter 2 shows how the likelihood of the original problem can be approx-

imated by a model in the exponential family. It was done a literature review of

the methods which were used in the next chapters, highlighting the characteristics

of the state space models, dynamic linear model, weak bayes, and dynamic gen-

eralized linear model that will be proposed as a model. The Chapter 3 describes

the structure of the model for datas in pools. In addition, it discusses a conjugate

prior distribution to approximate the likelihood function of infection rate. Chapter

4 briefly describes how the data were obtained and presents the application of the

proposed modeling. First, an exploratory analysis of the data is presented. And

then, it shows the predicted application of rate estimation for the West Nile Fever

transmitter mosquitoes in the United States. Chapter 5 presents the conclusion of

the work.
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Chapter 2

Literature Review

In this chapter we show an approximate likelihood that will be necessary for the

development of this thesis. Besides that, we discuss the basic notions about state

space models. Dynamic linear models are presented as a special case of general state

space models, being linear and Gaussian.

2.1 Approximate Likelihood

Considering a sample of k vectors, let Xi ∼ Bernoulli(π), where Xi = 1 implies

that the ith vector was infected and π is the prevalence of having an infected pool.

Let

Y = max{X1, . . . , Xk} (2.1)

be the result of the pool test formed by the k vectors and such that Xi ∼
Bernoulli(π) independents, with i = 1, . . . , k. A positive result (Y = 1) indi-

cates that at least one vector in the sample was infected, while a negative result

(Y = 0) implies that all the vectors were not infected. Considering that X1, . . . , Xk

is a sample of independent and identically distributed random variables, we have

that

Y ∼ Bernoulli(1− (1− π)k). (2.2)

In the matter of monitoring and intervention, these pools are analyzed within a

time window (usually one epidemiological week. Epidemiological week is on week

starting on Sunday and ending on Saturday). Then consider that for a given week t,

nt pools were observed, with sizes kt = {k1,t, . . . , knt,t}, where ki,t represents the ith

pool size in the epidemiological week t, resulting in the results yt = {y1,t, . . . , ynt,t}
where yi,t is the information about the infection or not of the ith pool in the epi-

demiological week t, i = 1 . . . , nt. So the likelihood function for πt, which represents
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the prevalence in week t, can be written as

L(πt) =
nt∏
i=1

p(yi,t|πt) = (1− πt)
∑nt

i=1 ki,t(1−yi,t)
nt∏
i=1

[1− (1− πt)ki,t ]yi,t . (2.3)

It is important to stretch that πt is variable throughout the year, since the

samples have different sizes. If all pools have the same sample size, the prediction

problem can be solved using dynamic generalized linear models (dglm) [16], since the

total number of infected pools can be appropriately modeled by one model in the

exponential family. Unfortunately, this does not apply when pools have different

sizes. However, Santos and Dorgam [15] showed that when the pools have small

variability between the sizes and prevalence is low, the likelihood in 2.3 can be

approximated by

L∗(πt) = (1− πt)ntk̄t(1−ȳt)
[
1− (1− πt)k̄t

]ntȳt
, (2.4)

where

ȳt =
nt∑
i=1

yi,t
nt
, (2.5)

k̄t =
nt∑
i=1

ki,t
nt
, (2.6)

where ȳt is the mean of infected pools at time t and k̄t is the mean size of the pools

at time t.

In this thesis, both hypotheses are satisfied, that means, the pools have small

variability between the sizes and prevalence is low. Indeed, they have shown that

under these conditions, common in practice, the Kullback-Leibler divergence [7]

between L(π) and L∗(π) is given by

KL(L,L∗) = EL

(
L(π)

L∗(π)

)
≈ π

n∑
i=1

kilog

(
ki
k̄t

)
. (2.7)

For a more detailed explanation of the Kullback-Leibler divergence see [7].

If ki are close to k̄ then the log will be close to zero. This is the condition of low

variability.

From the approximation of the proposed likelihood, most classics estimators are

based on the statistics ẏt (ẏt =
∑nt

i=1 yi,t). Since L(πt) 2.3 can be approximated by
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L∗(πt) 2.4, it follows that

Yi,t ≈ Bernoulli(1− (1− πt)k̄t). (2.8)

Therefore, it is possible to build new estimators for πt using existing results for

a single pool size.

By maximizing L∗ with respect to πt, the approximate maximum likelihood

estimator is given by

π̂t
∗ = 1−

(
1−

∑nt

i=1 Yi
nt

)1/k̄t

, (2.9)

and its corrected version, obtained after the bias correction of Burrows [11], is given

by

π̂t
∗
B = 1−

(
2k̄t(nt −

∑nt

i=1 Yi) + k̄t − 1

2k̄tnt + k̄t − 1

)1/k̄t

. (2.10)

In practice the pools have different sizes, but to facilitate the modeling of the

problem it is assumed that the pools have equal sizes, in this case the average size

of the pools in a given epidemiological week t.

Mathematically, the problem can be addressed using different pool sizes, however,

the maximal estimator is biased, and to correct this, Burrows did two approaches.

Another way to deal with the mathematical problem is to assume that the pools

have equal sizes. This last form was chosen to deal with in the current thesis.

With this model, the purpose of this thesis is to present the construction of a

dynamic generalized linear model for πt.

2.2 State Space Models

Consider a time series {Yt, t = 1, 2, . . . }, where Yt is an observable (m×1) random

vector. For making inference on the time series, in particular for predicting the next

value Yt+1 given the observations {Y1, . . . , Yt}, we need to specify the probability

law of the process (Yt), which means giving the dependence structure among the

Yt’s variables. The Figure 2.1 represents graphically the dependency among the

observed variables Yt and the unobservable process [10].
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Figure 2.1: Dependence structure for a state space model

State space models are based on the idea that the time series (Yt) is an incomplete

and noisy function of some underlying unobservable process {θt, t = 1, 2, . . . }, called

the state process. The term state space model is used when the state variables are

continuous. When they are discrete, the term hidden Markov model is used.

2.2.1 Filtering

The use of recent data to revise inferences regarding previous values of the state

vector is called filtering, this information being filtered back to previous time points.

Let us denote with Dt the information provided by the first t observations,

{Y1, . . . , Yt}. The filtered and predictive densities can be computed by a recur-

sive algorithm. Starting from θ0 ∼ p0(θ0) = p(θ0|D0) one can recursively compute,

for t = 1, 2, . . . the following.

Proposition 2.2.1. (Filtering recursion).

i) The one-step-ahead predictive density for the states can be computed from the

filtered density p(θt−1|Dt−1) according to

p(θt|Dt−1) =

∫
p(θt|Dt−1)p(θt−1|Dt−1)dv(θt−1). (2.11)

ii) The one-step-ahead predictive density for the observations can be computed

from the predictive density for the states as

f(yt|Dt−1) =

∫
f(yt|θt)p(θt|Dt−1)dv(θt). (2.12)

iii) The filtering density can be computed from the above densities as

p(θt|Dt) =
f(yt|θt)p(θt|Dt−1)

p(yt|Dt−1)
. (2.13)

7



Proof. i) Note that θt+1 is independent of (Y1, . . . , Yt)|θt. Therefore

p(θt|Dt−1) =

∫
p(θt−1, θt|Dt−1)dv(θt−1)

=

∫
p(θt|θt−1, Dt−1)p(θt−1|Dt−1)dv(θt−1)

=

∫
p(θt|θt−1)p(θt−1|Dt−1)dv(θt−1). (2.14)

ii) From the conditional independence between Yt and (Y1, . . . , Yt−1)|θt, we have:

f(yt|Dt−1) =

∫
f(yt, θt|Dt−1)dv(θt)

=

∫
f(yt|θt, Dt−1)p(θt|Dt−1)dv(θt)

=

∫
f(yt|θt)p(θt|Dt−1)dv(θt). (2.15)

iii) Using the Bayes rule:

p(θt|Dt) =
p(θt|Dt−1)f(yt|θt, Dt−1)

f(yt|Dt−1)
=
p(θt|Dt−1)f(yt|θt)

p(yt|Dt−1)
, (2.16)

by the conditional independence between Yt and (Y1, . . . , Yt−1)|θt.

2.2.2 Smoothing

One of the attractive features of state space models is that estimation and fore-

casting can be developed sequentially. However, in time series analysis one often

has observations on Yt for a certain period, t = 1, . . . , T and wants to retrospec-

tively reconstruct the behavior of the system, underlying the observations. While

Bayesian filters in their basic form only compute estimates of the current state of

the system given the history of measurements, smoothing can be used to reconstruct

states that happened before the current time. Again, one has a backward-recursive

algorithm for computing the conditional densities of θt|DT , for t < T , starting from

the filtering density p(θT |DT ) and estimating backward all the states’ history.

Proposition 2.2.2. (smoothing recursion):

8



i) Conditional on DT , the state sequence (θ0, . . . , θT ) has backward transition

probabilities given by

p(θt|θt+1, DT ) =
p(θt+1|θt)p(θt|Dt)

p(θt+1|Dt)
. (2.17)

ii) The smoothing densities of θt given DT can be computed according to the fol-

lowing backward recursion in t (starting from p(θT |DT )):

p(θt|DT ) = p(θt|Dt) =

∫
p(θt+1|θt)
p(θt+1|Dt)

p(θt+1|DT )dν(θt+1). (2.18)

Proof. i) Using the Bayes formula:

p(θt|θt+1, DT ) = p(θt|θt+1, Dt) =
p(θt|Dt)p(θt+1|θt, Dt)

p(θt+1|Dt)
=
p(θt|Dt)p(θt+1|θt)

p(θt+1|Dt)
.

(2.19)

ii) Let’s find the marginal for p(θt, θt+1|DT ):

p(θt|DT ) =

∫
p(θt, θt+1|DT )dν(θt+1) =

∫
p(θt+1|DT )p(θt|θt+1, DT )dν(θt+1)

=

∫
p(θt+1|DT )p(θt|θt+1, DT )dν(θt+1)

=

∫
p(θt+1|DT )

p(θt+1|θt, DT )p(θt|DT )

p(θt+1|DT )
dν(θt+1)

= p(θt|Dt)

∫
p(θt+1|θt)

p(θt+1|DT )

p(θt+1|Dt)
dν(θt+1). (2.20)

2.3 Dynamic linear models

The first important class of state space models is given by Gaussian linear state

space models, also called dynamic linear models (dlm), that can be specified by the

following definition:

Definition 2.3.1. Let

Yt = Ftθt + vt, vt ∼ Nm(0, Vt), (2.21)

θt = Gtθt−1 + wt, wt ∼ Np(0,Wt), (2.22)

9



where Gt and Ft are known matrices and vt and wt are two independent white noises

with normal distribution, with mean zero and the known covariance matrices Vt and

Wt, respectively. Besides that, 2.21 are the observation equations and 2.22 are the

evolution equations.

Furthermore, it is assumed that θ0 has a Gaussian distribution,

θ0 ∼ Np(m0, C0). (2.23)

2.3.1 The Kalman Filter for dlm

The Proposition 2.2.1 applied to the dlm is called Kalman filter. The Kalman

filter has long been considered the best answer to several tracking and data pre-

diction tasks. It merely calculates these the functions “measuring” and “updating”

over and over again.

The filter cyclically overrides the mean and the variance of the result. The filter

can continuously be assured on wherever it is, as long as the readings do not deviate

too much from the predicted value.

Since the measured values (in update) match relatively well to the predicted ones

(by predict), the filter improves step by step to make sure that it is correct (normal

distributions become narrower and higher), even though the values are noisy.

The Kalman filter produces estimates of unknown variables that tend to be

more accurate than those based on a single measurement alone, by estimating a

joint probability distribution over the variables for each timeframe.

Theorem 2.3.1. (Kalman Filter). Given that θt−1|Dt−1 ∼ Np(mt−1, Ct−1), for the

dlm, if

θ0|D0 ∼ Np(m0, C0), (2.24)

then, for every t ≥ 1,

i) the one-step-ahead state predictive density of θt, given Dt−1 is Gaussian, with

parameters

at = E(θt|Dt−1) = Gtmt−1, (2.25)

Rt = V ar(θt|Dt−1) = GtCt−1G
′

t +Wt; (2.26)

ii) the one-step-ahead predictive density of Yt given Dt−1 is Gaussian, with pa-

10



rameters

ft = E(Yt|Dt−1) = Ftat, (2.27)

Qt = V ar(Yt|Dt−1) = FtRtF
′

t + Vt; (2.28)

iii) the filtering density of θt given Dt is Gaussian, with

mt = E(θt|Dt) = at +RtF
′

tQ
−1
t et, (2.29)

Ct = V ar(θt|Dt) = Rt −RtF
′

tQ
−1
t FtRt. (2.30)

where et = Yt − ft is the forecast error.

Proof. From standard results on the multivariate Normal distribution it follows that

the joint density of (θ0, θ1, . . . , θt, Y1, . . . , Yt) is Gaussian, for any t ≥ 1. Conse-

quently, the distribution of any subvector is also Gaussian, as is the conditional

distribution of some components given some other components. Therefore the pre-

dictive densities and the filtering densities are Gaussian, and it suffices to compute

their means and variances.

i)

at = E(θt|Dt−1) = E(Gtθt−1 + wt|Dt−1)

= E(Gtθt−1|Dt−1) + E(wt|Dt−1)

= GtE(θt−1|Dt−1) = Gtmt−1. (2.31)

Rt = V ar(θt|Dt−1) = E(V ar(θt|Dt−1)) + V ar(E(θt|Dt−1))

= E(V ar(Gtθt−1 + wt|Dt−1)) = E(V ar(Gtθt−1|Dt−1)) + E(V ar(wt|Dt−1))

= E(GtV ar(θt−1|Dt−1)G
′

t) + E(Wt)

= E(GtCt−1G
′

t) +Wt = GtCt−1G
′

t +Wt. (2.32)

11



ii)

ft = E(Yt|Dt−1) = E(Ftθt + vt|Dt−1)

= E(Ftθt|Dt−1) + E(vt|Dt−1)

= FtE(θt|Dt−1) = Ftat. (2.33)

Qt = V ar(Yt|Dt−1) = E(V ar(Yt|Dt−1)) + V ar(E(Yt|Dt−1))

= E(V ar(Ftθt + vt|Dt−1)) = E(V ar(Ftθt|Dt−1)) + E(V ar(vt|Dt−1))

= E(FtV ar(θt|Dt−1)F
′

t ) + E(Vt)

= FtRtF
′

t + Vt. (2.34)

iii) Let’s say At = RtF
′
tQ

−1
t . We know that the covariance between yt|Dt and

θt − Atyt|Dt is null, and from the normality, they are independents, then,

E(θt|Dt) = E(θt − Atyt + Atyt|Dt)

= E(θt − Atyt|Dt) + E(Atyt|Dt)

= E(θt − Atyt|yt, Dt−1) + Atyt

= E(θt − Atyt|Dt−1) + Atyt = at − Atft + Atyt

= at + At(yt − ft) = mt. (2.35)

V ar(θt|Dt) = V ar(θt − Atyt + Atyt|Dt)

= V ar(θt − Atyt|Dt) = V ar(θt − Atyt|Dt−1)

= V ar(θt|Dt−1) + AtV ar(yt|Dt−1)A
′

t − 2Cov(θt, Atyt|Dt−1)

= Rt + AtQtA
′

t − 2Cov(θt, yt|Dt−1)A
′

t

= Rt + AtQtA
′

t − 2RtF
′

tA
′

t

= Rt + AtQtA
′

t − 2RtF
′

tQ
−1
t QtA

′

t = Rt − AtQtA
′

t = Ct. (2.36)

2.3.2 Smoothing

For the dlm the Proposition 2.2.2 is reduced to the following.

Proposition 2.3.2. (smoothing recursion for the dlm):

12



If θt+1|DT ∼ Np(st+1, St+1), then θt|DT ∼ Np(st, St), where

st = mt + CtG
′

t+1R
−1
t+1(st+1 − at+1). (2.37)

St = Ct + CtG
′

t+1R
−1
t+1(St+1 −Rt+1)R−1

t+1Gt+1Ct. (2.38)

Proof.

p(θt|θt+1, DT ) ∝ p(θt, θt+1, yT , . . . , yt+1, Dt) (2.39)

∝ p(yT , . . . , yt+1|θt+1)p(θt+1|θt, Dt)p(θt|Dt) (2.40)

∝ p(θt+1|θt, Dt)p(θt|Dt). (2.41)

If

θt+1|θt ∼ Np(Gt+1θt,Wt+1), (2.42)

θt ∼ Np(mt, Ct), (2.43)

then, using the Theorem A.1 from the appendix we have:(
θt+1

∣∣∣∣ Dt
θt

)
∼ Np

((
Gt+1mt

mt

)
,

(
Gt+1CtG

′
t+1 +Wt+1 Gt+1C

′
t

CtG
′
t+1 Ct

))
. (2.44)

Now we can write using the Conditional Theorem A.2 that

θt|θt+1, DT ∼ Np(mt +Bt+1(θt+1 − at+1), Ct −Bt+1Rt+1B
′

t+1) (2.45)

where Wt+1 +Gt+1CtG
′
t+1 = Rt+1 and CtG

′
t+1R

−1
t+1 = Bt+1. Now we have through

the Theorem A.1 from the appendix the Equation 2.45 and

θt+1|DT ∼ Np(st+1, St+1). (2.46)

Therefore, (
θt

∣∣∣∣ DT
θt+1

)
∼ Np

((
mt +B1(st+1 − at+1)

st+1

)
,
(
Ut+1

))
, (2.47)

where

Ut+1 =

(
Ct +B1(St+1 −Rt+1)B

′
1 B1St+1

St+1B
′
1 St+1

)
.
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2.3.3 Forecasting

The forecasting involves the supply of forecast information in terms of probabil-

ity distributions that represent and summarise current uncertain information and

beliefs. For the sample Dt the forecast one-step-ahead distribution is yt+k|Dt, with

k > 0. After having the Dt, one may be inquisitive about forecasting future values

of the observations, Yt+k, or of the state vectors, θt+k. For dlm, the recursive kind

of computations makes it natural to calculate the one-step-ahead forecasts and to

update them consecutive, as new data become obtainable. This is clearly of interest

in applied issues where the data do arrive consecutive, like in the problem of this

thesis.

Note below that the data only enter the predictive distributions through the

mean of the filtering distribution at the time the last observation was taken.

Proposition 2.3.3. Set at(0) = mt and Rt(0) = Ct. Then, for k ≥ 1, the following

hold:

i) The distribution of θt+k given Dt is Gaussian, with

at(k) = Gt+kat(k − 1), (2.48)

Rt(k) = Gt+kRt(k − 1)G
′

t+k +Wt+k; (2.49)

ii) The distribution of Yt+k given Dt is Gaussian, with

ft(k) = Ft+kat(k), (2.50)

Qt(k) = Ft+kRt(k)F
′

t+k + Vt+k. (2.51)

Proof. i) We need to prove what are the parameters for the Gaussian distribution

of θt+k given Dt.

If k = 0 we know that θt|Dt ∼ Np(mt, Ct).

Using induction hypothesis we have θt+k−1|Dt ∼ Np(at(k − 1), Rt(k − 1)).

We also know that

θt+k|θt+k−1, Dt ∼ Np(Gt+kθt+k−1,Wt+k), (2.52)

θt+k−1|Dt ∼ Np(at(k − 1), Rt(k − 1)). (2.53)

Through the Theorem A.1 of the Appendix we can write(
θt+k

∣∣∣∣ Dt
θt+k−1

)
∼ Np

((
Gt+kat(k − 1)

at(k − 1)

)
,
(
Zt+k(k − 1)

))
. (2.54)
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where

Zt+k(k − 1) =

(
Gt+kRt(k − 1)G

′

t+k +Wt+k Gt+kRt(k − 1)

Rt(k − 1)G
′

t+k Rt(k − 1)

)
(2.55)

Therefore,

θt+k|Dt ∼ Np(at(k), Rt(k)). (2.56)

ii) For the forecast we want to know the parameters for the Gaussian distribution

Yt+k|Dt.

We know that

Yt+k|θt+k, Dt ∼ Np(Ft+kθt+k, Vt+k), (2.57)

θt+k|Dt ∼ Np(at(k), Rt(k)). (2.58)

Now, it is easy to see through the Theorem A.1 from the appendix that(
Yt+k

∣∣∣∣ Dt
θt+k

)
∼ Np

((
Ft+kat(k)

at(k)

)
,

(
Ft+kRt(k)F

′

t+k + Vt+k Ft+kRt(k)

Rt(k)F
′

t+k Rt(k)

))
.

(2.59)

Therefore,

Yt+k|Dt ∼ Np(ft(k), Qt(k)). (2.60)

2.4 Weak Bayes’ Estimation

Among several model selection criteria, we choose the Weak Bayes’ estimation,

which makes probabilistic statements that facilitate recurrences for various distribu-

tional characteristics. These recurrence relationships are identical to those of linear

Bayes’ but are based upon a precise modelling assumption rather than a loss func-

tion approach.

In this thesis will be illustrated an application of Weak Bayes’ estimation in the

context of dlms. Let’s suppose that θt−1|Dt−1 ∼ [mt−1, Ct−1], which means that we

don’t know its distribution, except by its mean mt and its variance Ct. As long as
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we consider the moments of the observation and evolution equations, let

E(θt|Dt−1) = at, (2.61)

V ar(θt|Dt−1) = Rt, (2.62)

E(Yt|Dt−1) = ft, (2.63)

V ar(Yt|Dt−1) = Qt. (2.64)

The covariance between θt and Yt given Dt−1 is

Cov(θt, Yt|Dt−1) = Cov(θt, Ftθt + vt|Dt−1) (2.65)

= Cov(θt, vt|Dt−1) + Cov(θt, Ftθt|Dt−1) (2.66)

= 0 + Cov(θt, θt|Dt−1)F
′

t = V ar(θt|Dt−1)F
′

t = RtF
′

t . (2.67)

Therefore, we can write:(
θt

∣∣∣∣ Dt−1
Yt

)
∼

[(
at

ft

)
,

(
Rt RtF

′
t

FtRt Qt

)]
. (2.68)

Let’s say At = RtF
′
tQ

−1
t . Then, with a transformation matrix

L =

(
I −At
0 I

)
, (2.69)

the transformed vector

L

(
θt

Yt

)
=

(
I −At
0 I

)(
θt

Yt

)
=

(
θt − AtYt

Yt

)
, (2.70)

has the following moments

E

(
L

(
θt

Yt

)∣∣∣∣∣Dt−1

)
=

(
E(θt|Dt−1)− AtE(Yt|Dt−1)

E(Yt|Dt−1)

)
=

(
at − Atft

ft

)
, (2.71)
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V ar

(
L

(
θt

Yt

)∣∣∣∣∣Dt−1

)
= LV ar

(
θt

∣∣∣∣ Dt−1
Yt

)
L
′
=

(
I −At
0 I

)(
Rt AtQt

QtA
′
t Qt

)(
I 0

−A′t I

)
(2.72)

=

(
Rt − AtQtA

′
t AtQt − AtQt

QtA
′
t Qt

)(
I 0

−A′t I

)
=

(
Rt − AtQtA

′
t 0

0 Qt

)
.

(2.73)

Concluding that Cov(θt − AtYt, Yt|Dt−1) = 0. The weak Bayes supposes that

this covariance equal to zero, under normality, implies independence. Therefore, it

is possible to find the moments of the posterior distribution of θt|Dt by using the

Theorem 2.3.1 item iii) and substituting Yt to yt. Then we have,

E(θt − AtYt|Dt) = E(θt − Atyt|Yt = yt, Dt−1) = at + Atet and (2.74)

V ar(θt − AtYt|Dt) = V ar(θt − Atyt|Yt = yt, Dt−1) = Rt − AtQtA
′

t. (2.75)

2.5 Dynamic generalized linear models

In the time series context, the use of time varying regression type models is

appropriate, applying to define the following dynamic generalized linear model.

Definition 2.5.1. Consider the following quantities at time t.

• θt, an p-dimensional state vector at time t;

• Ft, a known p× p diagonal matrix;

• Gt, a known p× p diagonal matrix;

• ωt, an p-vector of evolution errors having zero mean and known variance matrix

Wt, denoted by ωt ∼ [0,Wt];

• λt = Ftθt, a linear function of the state vector parameters;

• (Yt|ηt), have a distribution which belongs to the exponential family (Section

??);

• ηt, is the natural parameter;

• g(ηt), a known, continuous and monotonic function mapping ηt to the real line.
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Then the dynamic generalized linear model (dglm) for the series {Yt, t = 1, 2, . . . }
is defined by the following components.

Observation model:

p(yt|ηt) and g(ηt) = λt = Ftθt. (2.76)

Evolution equation:

θt = Gtθt−1 + ωt with ωt ∼ [0,Wt]. (2.77)

Consider the time series of scalar observations {Yt, t = 1, 2, . . . }. If Yt is assumed

to have a sampling distribution in the exponential family, then the density of Yt may

be described as follows. For some defining quantities ηt and Vt, and three known

functions yt(Yt), a(ηt) and b(Yt, Vt), the density is

p(Yt|ηt, Vt) = exp{V −1
t [yt(Yt)ηt − a(ηt)]}b(Yt, Vt), (2.78)

where,

1. ηt is the natural parameter of the distribution, a continuous quantity.

2. Vt > 0 is a scale parameter; the precision parameter of the distribution is

defined as φt = V −1
t .

3. As a function of the natural parameter for fixed Yt, Equation 2.78, viewed as

a likelihood for ηt, depends on Yt through the transformed value yt(Yt).

4. The function a(ηt) is assumed twice differentiable in ηt.

The definition 2.5.1 is an extension of the standard dlm in the observation

model. Given the non-normality of the observational model and in general the

non-linearity of the observation mean µt as a function of θt, there is no general,

exact analysis. It is important to know that p(.) assumes data conditionally

independently drawn from distributions with common exponential family form.

The Definition 2.3.1 provides the basic observation and evolution model at

time t. To complete the model specification for time t, we need to fully define

two more component distributions: (a) that of the evolution error ωt, as yet

only specified in terms of mean and variance matrix; and (b) p(θt−1|Dt−1) that

sufficiently summarises the historical information and analysis prior to time

t. West and Harrison [16] showed 5 steps as an alternative for the usual fore-

casting and updating equations at time t. We can see, briefly, the steps 1 to 5 below.
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Step 1: Prior for λt

λt = Ftθt is a linear function of the state vector. Hence, under the prior, λt

and θt have a joint prior distribution that is only partially specified in terms of

moments (
λt

∣∣∣∣Dt−1
θt

)
∼

[(
ft

at

)
,

(
qt FtRt

RtF
′
t Rt

)]
, (2.79)

where,

ft = Ftat and qt = FtRtF
′

t . (2.80)

Step 2: One-step-ahead forecasting

The sampling distribution of Yt depends on θt only via ηt = g−1(λt), and

thus the historical information relevant to forecasting Yt is completely summarised

in the marginal prior for (ηt|Dt−1). However, this is now only partially specified

through the mean and variance of λt = g(ηt) from 2.79,

(λt|Dt−1) ∼ [ft, qt]. (2.81)

In order to calculate the forecast distribution (and to update to the posterior for

ηt), further assumptions about the form of the prior for ηt are necessary. Apart

from 2.81, no further restrictions have been made on the prior. Thus, there is no

prior form to be calculated or approximated in any sense, the forecaster may choose

any desired form consistent with the mean at and variance Rt. The prior may be

assumed approximately normal, for example, or to take any other convenient form.

The most convenient form is that of the conjugate family, and thus a conjugate prior

is supposed. This requires, of course, that such a prior can be found consistent with

the mean and variance of λt.

Given 2.81, assume that the prior for ηt has the conjugate form namely

p(ηt|Dt−1) = c(rt, st) exp[rtηt − sta(ηt)]. (2.82)

Since ft and qt are functions of rt and st, these parameters (rt and st) are chosen

to be consistent with the moments for λt in 2.79, thus implicitly satisfying the

equations

E(g(ηt)|Dt−1) = ft and V ar(g(ηt)|Dt−1) = qt. (2.83)

The resolution of this system is called the elicitation step. The one-step-ahead
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forecast distribution now follows from the density

p(yt|Dt−1) =
c(rt, st)b(yt, Vt)

c(rt + φtyt, st + φt)
. (2.84)

See Section ?? to remember who are these parameters.

Step 3: Updating for ηt

Observing Yt, the posterior for ηt in the conjugate form,

p(ηt|Dt) = c(rt + φtYt, st + φt) exp[(rt + φtYt)ηt − (st + φt)a(ηt)]. (2.85)

By analogy with the prior, denote the posterior mean and variance of λt = g(ηt)

by

f ∗
t = E(g(ηt)|Dt) and q∗t = V ar(g(ηt)|Dt). (2.86)

Step 4: Conditional structure for (θt|λt, Dt−1)

The objective of the updating is to calculate the posterior for θt. This can

be derived from the joint posterior for λt and θt. The joint density is, by Bayes’

Theorem,

p(λt, θt|Dt) ∝ p(λt, θt|Dt−1)p(yt|λt)

∝ [p(θt|λt, Dt−1)p(λt|Dt−1)]p(yt|λt)

∝ p(θt|λt, Dt−1)[p(λt|Dt−1)p(yt|λt)]

∝ p(θt|λt, Dt−1)p(λt|Dt). (2.87)

Hence, given λt, and Dt−1, θt is conditionally independent of Yt, and it follows that

p(θt|Dt) =

∫
p(θt|λt, Dt−1)p(λt|Dt)dλt. (2.88)

The second component in the integrand p(λt|Dt) may be obtained directly from the

conjugate form posterior for ηt in 2.82. The first component, defining the conditional

prior for θt given t, is, of course, not fully specified. Note, however, that to complete

the updating cycle, we need to calculate only the posterior mean and variance matrix

of θt, the full posterior remaining unspecified and indeterminate. From 2.88 the

key ingredients in these calculations are the prior mean and variance matrix of

(θt|λt, Dt−1). Unfortunately, due to the incomplete specification of the joint prior,
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these conditional moments are unknown, non-linear and indeterminate functions of

λt. They cannot be calculated without imposing further structure. However, given

the partial moments specification in 2.79, they can be estimated using standard

Bayesian techniques.

Step 5: Updating for θt.

From 2.88, it follows that

E(θt|Dt) = E(E(θt|λt, Dt−1)|Dt), (2.89)

and

V ar(θt|Dt) = V ar(E(θt|λt, Dt−1)|Dt) + E(V ar(θt|λt, Dt−1)|Dt). (2.90)

This leads to the posterior moment

(θt|Dt) ∼ [mt, Ct], (2.91)

the posterior moments defined as follows. Firstly,

mt = E(E(θt|λt, Dt−1)|Dt)

= E(at +RtFt(λt − ft)/qt|Dt)

= at +RtFtE(λt|Dt)− ft)/qt
= at +RtFt(f

∗
t − ft)/qt. (2.92)

Similarly,

Ct = V ar(E(θt|λt, Dt−1)|Dt) + E(V ar(θt|λt, Dt−1)|Dt)

= V ar(at +RtFt(λt − ft)/qt|Dt) + E(Rt −RtFtF
′

tRt/qt|Dt)

= RtFtF
′

tRtV ar(λt|Dt)/q
2
t +Rt −RtFtF

′

tRt/qt

= Rt −RtFtF
′

tRt(1− q∗t /qt)/qt. (2.93)

Substituting the values of f ∗
t and q∗t from Step 3 completes the updating.
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2.5.1 Solving the elicitation step in dynamic models for pro-

portions

The elicitation of hyperparameters at time t in dynamic Bayesian models for

proportions is performed by solving a nonlinear system. James and José [14] show

that an algorithm can solve this system when the logit function is used. If the initial

conditions are satisfied, it is guaranteed that the algorithm converges to the solution.

In the following it will be shown the functions ψ(.) and ψ1(.) whose definitions

and some properties can be found in A.3. The ψ(.) is known as the digamma

function and ψ1(.) is known as the trigamma function. Without loss of generality,

the elicitation step can be summarized in the following nonlinear system

ψ(r)− ψ(s) = f, (2.94)

ψ1(r) + ψ1(s) = Q, (2.95)

where the index t has been suppressed from the terms (f,Q, r, s) for clarity. Let

h : R2
+ → R× R+ be a real function given by

h(r, s) = (ψ(r)− ψ(s), ψ1(r) + ψ1(s)). (2.96)

They demonstrated that h is a bijective function, which implies that the solution of

the system exists and is unique.

Now, we discuss the problem of obtaining an approximate solution for the system

µ(r, s) := ψ(r)− ψ(s) = f, (2.97)

σ2(r, s) := ψ1(r) + ψ1(s) = Q. (2.98)

The pair (ro, so) is considered an approximate solution to the above system if,

for some fixed tolerance ε > 0,

|µ(ro, so)− ft| < ε, (2.99)

|σ2(ro, so)−Qt| < ε. (2.100)

If ft = 0, then ro = so and the problem reduces to solving

ψ1(s0) =
Qt

2
. (2.101)

The above equation can readily be solved numerically. Then consider ft 6= 0.

Let S be the set of all values of r and s belonging to the domain of µ(., .) and σ2(., .).

Suppose that (r
′
, s
′
) ∈ S is not an approximate solution. In practice, S needs to
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be just big enough to contain an approximate solution. Therefore, the following

algorithm can be stated:

1. Choose S0 = (rinf , rsup) × (sinf , ssup) so that an approximate solution in S0

certainly exists.

2. Set

r
′
=

1

2
(rinf + rsup), s

′
=

1

2
(sinf + ssup). (2.102)

If this pair is an approximate solution, stop the algorithm (an approximate

solution has been found). Otherwise, set i = 0 and go to Step 3.

3. While (r
′
, s
′
) is not an approximate solution:

(a) Calculate f = µ(r
′
, s
′
) and Q = σ2(r

′
, s
′
).

i. If f < ft and Q < Qt, set ssup = s
′
.

ii. If f < ft and Q > Qt, set rinf = r
′
.

iii. If f > ft and Q < Qt, set rsup = r
′
.

iv. If f > ft and Q > Qt, set sinf = s
′
.

(b) Set Si+1 = (rinf , rsup)× (sinf , ssup), i = i+ 1 and

r
′
=

1

2
(rinf + rsup), s

′
=

1

2
(sinf + ssup). (2.103)

(c) Test if (r
′
, s
′
) is an approximate solution.

Note that this algorithm creates a sequence of nested rectangles Si ⊃ Si+1 that

converges to the solution. So far, choosing rinf = sinf = 0 and rsup = ssup = 10κ,

where κ is a natural number, has been shown to be a good strategy for application

to real data. For example, in the article [14] the authors use rsup = ssup = 108. For

this thesis, it was used rsup = ssup = 1030.
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Chapter 3

Building the model

In this chapter we present the model structure through the conjugate prior dis-

tribution to approximate likelihood in Equation 2.1 using the dynamic model and

the forecast distribution.

3.1 A conjugate prior distribution to approxi-

mate likelihood

For each time t, let yi,t = 1 if the ith pool observed at time t generated a positive

result and let yi,t = 0 otherwise. Let nt be the number of pools at time t; let

ẏt =
∑nt

i=1 yi,t the total number of positive pools at time t.

Here, the notation L∗(.|k) is used to reinforce the fact that k is known. Provided

that: (a) the rate is low, that is, the probability 1− (1− πt)k̄t is near to 0 and (b)

the variability of k is not very high, in other words, the k have all almost the same

size, [15] show that likelihood in 2.1 can be approximated by

L∗(πt|k̄t) = (1− πt)ntk̄t(1−ȳt)
[
1− (1− πt)k̄t

]ntȳt
. (3.1)

After some algebra we can write 3.1 as

L∗(πt|k̄t) = (1− πt)
ntk̄t

(
1− ẏt

nt

) [
1− (1− πt)k̄t

]nt
ẏt
nt

= (1− πt)k̄t(nt−ẏt)
[
1− (1− πt)k̄t

]ntẏt
(3.2)

It is worth noting that, except for a few constants, the above equation is pro-

portional to the likelihood of the model

ẏt|k̄t ∼ Binomial(nt, 1− (1− πt)k̄t). (3.3)
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It will be said that πt has BetaT (r, s|k̄t) distribution if its density is given by

p(πt|k̄t) =
k̄t

B(r, s)
(1− πt)rk̄t−1

[
1− (1− πt)k̄t

]s−1

, (3.4)

where B(r, s) = Γ(r)Γ(s)
Γ(r+s)

, r, s > 0, and πt ∈ [0, 1].

The BetaT distribution is a new continuous distribution. It can be proved that

its integral
∫ 1

0
p(πt|k̄t)dπt = 1 and some properties are presented in the Theorem

3.1.1 below.

It is trivial to show that BetaT (r, s|k̄t) is a conjugate prior for L∗(πt|k̄t), with the

constant being k̄t
B(r∗,s∗)

, where r∗ and s∗ can be found in the Equations 3.6 and 3.7.

Considering that πt|k̄t has the likelihood given for 2.1 and πt|k̄t ∼ BetaT (r, s|k̄t) we

see that the posterior distribution is given by

p(πt|ẏt, k̄t) ∝ p(ẏt|πt, k̄t)p(πt|k̄t)

∝ (1− πt)ntk̄t(1−ȳt)[1− (1− πt)k̄t ]ntȳt(1− πt)rk̄t−1[1− (1− πt)k̄t ]s−1

∝ (1− πt)ntk̄t(1−ȳt)+rk̄t−1[1− (1− πt)k̄t)]ntȳt+s−1

∝ (1− πt)r
∗−1[1− (1− πt)k̄t ]s

∗−1, (3.5)

where

r∗ = k̄t(nt(1− ȳt) + r) and (3.6)

s∗ = ntȳt + s. (3.7)

Some important properties of the BetaT (r, s|k̄t) distribution are shown below.

Theorem 3.1.1. Let ẏt|k̄t ∼ Binomial(nt, 1 − (1 − πt)k̄t). Consider the prior dis-

tribution πt ∼ BetaT (r, s, |k̄t).

1. 1− (1− πt)k̄t ∼ Beta(s, r).

2. ẏt|k̄t belongs to the exponential family with natural parameter

ηt = log

(
1− (1− πt)k̄t

(1− πt)k̄t

)
. (3.8)

3. BetaT (r, s|k̄t) belongs to the exponential family.

4. Some important moments:

(a)

E(πt) = 1−
B(r + 1

k̄
, s)

B(r, s)
; (3.9)
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(b)

V ar(πt) =
B(r + 2

k̄t
, s)

B(r, s)
−
B(r + 1

k̄t
, s)2

B(r, s)2
; (3.10)

(c)

E(ηt) = ψ(s)− ψ(r); (3.11)

(d)

V ar(ηt) = ψ1(s) + ψ1(s). (3.12)

Proof. 1. Considering that p(πt) has distribution BetaT Equation 3.4. Let’s use

the following transformation:

µt = 1− (1− πt)k̄t︸ ︷︷ ︸
(1)

⇒ (1−πt)k̄t = 1−µt ⇒ k̄t
√

1− µt = 1−πt ⇒ πt = 1− k̄t
√

1− µt︸ ︷︷ ︸
(2)

.

(3.13)

We want to find that µt = 1− (1− πt)k̄t ∼ Beta(s, r).

The Jacobian of the transformation is given by

|J | =
∣∣∣∣dµtdπt

∣∣∣∣ =

∣∣∣∣− 1

k̄t
(1− µt)

1
k̄t

−1
(−1)

∣∣∣∣ =
1

k̄t
(1− µt)

1
k̄t

−1
. (3.14)

From (1) consider 1−µt = (1−πt)k̄t and from (2) consider 1−πt = (1−µt)
1
k̄t .

These two equations will be used in the following demonstration. Then,

pµt = pπt(µt)|J | = (1− πt)rk̄t−1(1− (1− πt)k̄t)s−1 1

k̄t
(1− µt)

1
k̄t

−1 k̄t
B(r, s)

=
(1− µt)r

(1− µt)
1
k̄t

µs−1
t

(1− µt)
1
k̄t

(1− µt)
1

B(r, s)

= (1− µt)r−1µs−1
t B(r, s)−1. (3.15)

Therefore, it can be concluded that µt ∼ Beta(s, r).

2. Let µt = 1 − (1 − πt)
k̄t . This distribution can be written in its exponential

family form as
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p(ẏt|πt) =

(
nt

ẏt

)
exp {ẏt log(µt) + (nt − ẏt) log(1− µt)}

=

(
nt

ẏt

)
exp

{
ẏt log

(
µt

1− µt

)
+ nt log(1− µt)

}

=

(
nt

ẏt

)
exp

{
nt

(
ẏt
nt

log

(
µt

1− µt

)
+ log(1− µt)

)}
, (3.16)

where yt(Yt) = ẏt
nt

, ηt = log
(

µt
1−µt

)
, V −1

t = φt = nt, a(ηt) = − log(1 − µt) =

log
(

1
1−µt

)
= log(1 + exp{ηt}) and b(Yt, Vt) =

(
nt

ẏt

)
.

3. Let’s see if p(πt|k̄t) is in the exponential family:

p(Yt|ηt, Vt) = exp{V −1
t [yt(Yt)η − a(ηt)]}b(Yt, Vt), (3.17)

p(πt|k̄t) =
k̄t

B(r, s)
(1− πt)rk̄t−1[1− (1− πt)k̄t ]s−1

= exp

{
log

(
k̄t

B(r, s)
(1− πt)rk̄t−1[1− (1− πt)k̄t ]s−1

)}
= exp{log(k̄t)− log(B(r, s)) + (rk̄t − 1) log(1− πt) + (s− 1) log(1− (1− πt)k̄t)}

= exp{log(k̄t)− log(B(r, s)) + rk̄tlog(1− πt) + s log(1− (1− πt)k̄t)−

− (log(1− πt) + log(1− (1− πt)k̄t))}

= exp{log(k̄t − log(B(r, s)) + rk̄tlog(1− πt) + s log(1− (1− πt)k̄t)−

− [log((1− πt)(1− (1− πt)k̄t))]}

= exp

{
k̄t

[
log(1− πt)r +

log(1− (1− πt)k̄t)
k̄t

s− log(B(r, s))

k̄t

]}
k̄t[(1− πt)− (1− πt)k̄t+1]−1,

where yt(πt)1 = log(1 − πt), yt(πt)2 = log(1−(1−πt)k̄t )

k̄t
, η1(r, s) = r, η2(r, s) = s,

V −1
t = k̄t, , a(ηt) = log(B(r,s))

k̄t
and b(πt, Vt) = k̄t

(1−πt)−(1−πt)k̄t+1 .
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4. (a)

E(1− πt) =

∫
(1− πt)

k̄t
B(r, s)

(1− πt)rk̄t−1[1− (1− πt)k̄t ]s−1dπt

=
k̄t

B(r, s)

∫
(1− πt)[rk̄t+1]−1[1− (1− πt)k̄t ]s−1dπt

=
k̄t

B(r, s)

B(r + 1
k̄t
, s)

k̄t

∫
(1− πt)[rk̄t+1]−1[1− (1− πt)k̄t ]s−1 k̄t

B(r + 1
k̄t
, s)

dπt

=
B(r + 1

k̄t
, s)

B(r, s)

⇒ 1− E(πt) =
B(r + 1

k̄t
, s)

B(r, s)
⇒ E(πt) = 1−

B(r + 1
k̄t
, s)

B(r, s)
.

(3.18)

(b)

E((1− πt)2)) =

∫
(1− πt)2 k̄t

B(r, s)
(1− πt)rk̄t−1[1− (1− πt)k̄t ]s−1dπt

=
k̄t

B(r, s)

∫
(1− πt)[rk̄t+2]−1[1− (1− πt)k̄t ]s−1dπt

=
k̄t

B(r, s)

B(r + 2
k̄t
, s)

k̄t

∫
(1− πt)[rk̄t+2]−1[1− (1− πt)k̄t ]s−1 k̄t

B(r + 2
k̄t
, s)

dπt

=
B(r + 2

k̄t
, s)

B(r, s)
. (3.19)

Now, let’s do

E(1− (1− πt)2) = 1− E((1− πt)2) = 1−
B(r + 2

k̄t
, s)

B(r, s)
. (3.20)

Observe that

E(1− (1− πt)2) = 1− E(1− πt − πt + π2
t ) = 1− (1− E(πt)− E(πt) + E(π2

t ))

= E(πt) + E(πt)− E(π2
t ) = 1−

B(r + 2
k̄t
, s)

B(r, s)

⇒ E(π2
t ) = 2

(
1−

B(r + 1
k̄t
, s)

B(r, s)

)
− 1 +

B(r + 2
k̄t
, s)

B(r, s)
.

(3.21)
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And the variance is

V ar(πt) = E(π2
t )− E(πt)

2

= 2

(
1−

B(r + 1
k̄t
, s)

B(r, s)

)
− 1 +

B(r + 2
k̄t
, s)

B(r, s)
−

(
1−

B(r + 1
k̄t
, s)

B(r, s)

)2

= 2− 2
B(r + 1

k̄t
, s)

B(r, s)
− 1 +

B(r + 2
k̄t
, s)

B(r, s)
− 1 + 2

B(r + 1
k̄t
, s)

B(r, s)
−
B(r + 1

k̄t
, s)2

B(r, s)2

=
B(r + 2

k̄t
, s)

B(r, s)
−
B(r + 1

k̄t
, s)2

B(r, s)2
. (3.22)

(c) Let’s find its expected value:

E(ηt) = E

(
log

(
1− (1− πt)k̄t

(1− πt)k̄t

))
.

Consider the following variable change:

• x = 1− (1− πt)k̄t ;

whose derivative is

• dx = k̄t(1− πt)k̄t−1dπt

E(ηt) =

∫ 1

0

log

(
1− (1− πt)k̄t

(1− πt)k̄t

)
(1− πt)rk̄t−1[1− (1− πt)k̄t ]s−1

k̄t
B(r, s)

dπt

=

∫ 1

0

log

(
x

1− x

)
(1− πt)rk̄t−1xs−1

k̄t
B(r,s)

k̄t(1− πt)k̄t−1
dx

=

∫ 1

0

log

(
x

1− x

)
(1− πt)rk̄t−1−k̄t+1xs−1 1

B(r, s)
dx

=

∫ 1

0

log

(
x

1− x

)
(1− πt)k̄t[r−1]xs−1 1

B(r, s)
dx

=

∫ 1

0

log

(
x

1− x

)
(1− x)r−1xs−1B(r, s)−1dx

= ψ(s)− ψ(r). (3.23)

Take a look in the Appendix A.3 to see the definition and properties

of the digamma function (ψ(.)) and trigamma function (ψ1(.)) for the

Equation 3.25.
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(d) And the variance is:

V ar(ηt) = E(η2
t )− E(ηt)

2. (3.24)

E(η2
t ) =

∫ 1

0

log

(
1− (1− πt)k̄t

(1− πt)k̄t

)2

(1− πt)rk̄t−1[1− (1− πt)k̄t ]s−1

k̄t
B(r, s)

dπt

=

∫ 1

0

log

(
x

1− x

)2

(1− πt)rk̄t−1xs−1

k̄t
B(r,s)

k̄t(1− πt)k̄t−1
dx

=

∫ 1

0

log

(
x

1− x

)2

(1− πt)rk̄t−1−k̄t+1xs−1 1

B(r, s)
dx

=

∫ 1

0

log

(
x

1− x

)2

(1− πt)k̄t[r−1]xs−1 1

B(r, s)
dx

=

∫ 1

0

log

(
x

1− x

)2

(1− x)r−1xs−1B(r, s)−1dx

=

∫ 1

0

log(x)2(1− x)r−1xs−1B(r, s)−1dx+

+

∫ 1

0

log(1− x)2(1− x)r−1xs−1B(r, s)−1dx−

− 2

∫ 1

0

log(x) log(1− x)(1− x)r−1xs−1B(r, s)−1dx

= (ψ(s)− ψ(s+ r))2 + ψ1(s)− ψ1(s+ r)+

+ (ψ(r)− ψ(s+ r))2 + ψ1(r)− ψ1(s+ r)−

− 2[(ψ(s)− ψ(s+ r))(ψ(r)− ψ(s+ r))− ψ1(s+ r)]

= ψ(s)2 + ψ1(s) + ψ(r)2 + ψ1(r)− 2ψ(s)ψ(r). (3.25)

Therefore,

V ar(ηt) = E(η2
t )− E(ηt)

2 = ψ1(r) + ψ1(s). (3.26)

3.1.1 The dynamic model

The set Dt−1 will be defined as the collection of all known information before ẏt

is observed (this includes the vector kt that contains all pool sizes at time t). In this

particular work it will be supposed that Dt−1 = {nt, k̄t, Dt−2}, where t is the actual

time, t− 1 and t− 2 are one and two times backwards, respectively. The following
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dynamic generalized linear model for pooled data can be constructed.

Observation model:

ẏt|πt ≈ Binomial(nt, 1− (1− πt)k̄t), (3.27)

πt|Dt−1 ∼ BetaT (rt, st|k̄t), (3.28)

λt = g(µt) = Ftθt, that is the link function. (3.29)

Evolution Equations:

θt = Gtθt−1 + wt wt ∼ [0,Wt], (3.30)

with information a priori :

θ0|D0 ∼ Np(m0, C0). (3.31)

Now, considering the distribution ẏt|πt ∼ Binomial(nt, 1− (1− πt)k̄t).

p(ẏt|πt) =

(
nt

ẏt

)
µẏtt (1− µt)nt−ẏt , (3.32)

where µt = 1− (1− πt)k̄t .
This distribution can be written in its exponential family form as

p(ẏt|πt) =

(
nt

µt

)
exp {ẏt log(µt) + (nt − ẏt) log(1− µt)}

=

(
nt

µt

)
exp

{
ẏt log

(
µt

1− µt

)
+ nt log(1− µt)

}

=

(
nt

µt

)
exp

{
nt

(
ẏt
nt

log

(
µt

1− µt

)
+ log(1− µt)

)}
, (3.33)

where yt(Yt) = ẏt
nt

, ηt = log
(

µt
1−µt

)
, V −1

t = φt = nt, a(ηt) = − log(1 − µt) =

log
(

1
1−µt

)
= log(1 + exp{ηt}) and b(Yt, Vt) =

(
nt

ẏt

)
.

Its conjugate priori will be

p(πt|Dt−1) =
k̄t

B(r, s)
(1− πt)rk̄t−1[1− (1− πt)k̄t ]s−1. (3.34)
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We already know that

E(ηt) = ψ(s)− ψ(r) and

V ar(ηt) = ψ1(r) + ψ1(s).

Now we can elicitate rt and st solving the following systemE(ηt|Dt−1) = ft

V ar(ηt|Dt−1) = qt,
(3.35)

using the algorithm described in the section 2.5.1:ψ(st)− ψ(rt) = ft

ψ1(rt) + ψ1(st) = qt.
(3.36)

And we can find f ∗
t and q∗t numerically:{

ψ(st + yt)− ψ(rt + (nt − yt)) = f ∗
t

ψ1(rt + (nt − yt)) + ψ1(st + yt) = q∗t .
(3.37)

Using the relation between mt and Ct used in the Step 5 we obtain the posterior

moments of θt relating them to the f ∗ and q∗ using the algorithm described in the

section 2.5.

3.2 Empirical Bayes estimator for Wt

Empirical Bayes (EB) methods are procedures for statistical inference in which

the prior distribution is estimated from the data, that is, the hyperparameters of

the prior distribution are estimated. So, the EB approach uses the observed data

to estimate these final stage parameters and then uses this information in the prior

distribution.

Note that the EB approach is not fully Bayesian, since we are using the data to

determine the value of these final stage parameters and is also not entirely frequentist

since it relies on a prior specification of the parameter. The estimation of the

hyperparameters of the prior distribution may be performed with the moments or

likelihood methods, for example. For more details, see Mignon and Dani [9].

The following proposed model requires a prior knowledge of Wt. Let assume

that Wt = W = diag(w1, . . . , wp) and let estimate these hyperparameters via EB.

Consider the following hierarchical structure:
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ẏt|πt, Dt−1 ≈ Binomial(nt, 1− (1− πt)k̄t) (3.38)

πt|Dt−1 ∼ BetaT (rt, st|k̄t), (3.39)

that implies in

f(ẏt|rt, st, Dt−1) =

(
nt

ẏt

)
B(r∗t , s

∗
t )

B(rt, st)
, (3.40)

where r∗t and s∗t are given by the Equations 3.6 and 3.7. The equation 3.40 above,

is the predicted function and has distribution known as Beta-Binomial.

Assume the Ωt = {rt, st} and that Ω = {Ω1, . . . ,Ωt}. Therefore,

f(Dt|Ω) = f(D0)
t∏
i=1

f(ẏi|Ωi−1). (3.41)

Now, through the Equations 3.36 and (r, s)∗t we know that Ω is a function of W .

Thus, without loss of generality, we can write

f(Dt|Ω(W )) ∝
t∏
i=1

f(ẏi|Ωi−1(W )), (3.42)

where we assume that D0 does not carry any information about W . In this way,

an estimator using the EB method for W can be obtained by maximizing Equation

3.42.
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Chapter 4

Application of the West Nile Virus

data from Roden Island

In this chapter, the proposed model was applied in the data [WNV] to evaluate

the performance of the proposed methodology. In particular, the main objective is

to verify parameter estimates and the ability of the model proposed in Chapter 3 to

better fit the data set under analysis.

As it was already said, it was taken from the website of the State of the Ro-

den Island [WNV] a data about the West Nile virus (WNV), the leading cause of

mosquito-borne disease in the United States. It is most typically spread to individ-

uals by the bite of an infected mosquito. In the data there are ten variables:

1. Sort: the number of the epidemiological week;

2. Collection week: the days and months of the week;

3. Year: the year of the week;

4. Pools Tested: number of pools at time t;

5. Mosquitoes Tested: number of mosquitoes at the pools at time t;

6. Bristol: location;

7. Kent: location;

8. Newport: location;

9. Providence: location;

10. Washington: location.

The sample is the collection from June 9th 2012, to September 28th 2019, which

is t = 133 weeks. Since the mosquito season starts in the summer and continues
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through fall it was taken from June to September and the number of the week varies

between 16 and 18 each year.

Year Pools Tested Infected Pools
2012 2200 16
2013 2311 17
2014 1727 4
2015 2036 5
2016 1945 4
2017 1533 5
2018 1968 14
2019 2284 12

Table 4.1: Number of pools tested and infected over the years.

The Table 4.1 shows us the total number of the pools tested and infected between

2012 and 2019, that is, the sum of all weeks in 2012, the number of pools tested was

2200. And the sum of all weeks and all locations in 2012, presented only 16 pools

infected. It is important to stress that since the number of infected pools is very

small, it means that in the data was found a large amount of zero’s.

The data was organized as following: nt as the number of pools at time t, kt as

the mean size of pools at time t, and yt as the number of positives pools at time

t. It was necessary to use the five locations together because the data doesn’t show

the total per location. It is good to remember that each pool has an amount of

mosquitoes to be tested. If the pool is infect, it means that there was at least one

mosquito infected. If the pool is not infect, it means that there was any mosquito

infected.

To estimate the probability of π̂t, the estimator proposed by Burrows [11]. The

estimator is

π̂∗
B = 1−

(
2k̄t(nt − ẏt) + k̄t − 1

2k̄tnt + k̄t − 1

)1/k̄t

, (4.1)

and it was applied the following link function

λt = logit(µt) = log

(
µt

1− µt

)
= log

(
1− (1− πt)k̄t

(1− πt)k̄t

)
, (4.2)

where µt = 1− (1−πt)k̄t . In this problem, µt is the probability of having an infected

pool in the week t, and 1 − µt is the probability of not having an infected pool.

Having an infected pool means that there was a least one mosquito infected in the

pool.

Using the WNV data we can finally find the estimators for πt and λt. For each

time t will have an estimated π̂t probability. There were 87 epidemiological weeks

which were estimated, from the data, the probability equal to zero, as we can see
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in Figure 4.1. To calculate the λt in these times, if we leave the probability zero

we will have indeterminacy, since that, in order to be able to calculate λt we need

to know the value of πt previously, because λt depends on πt. So that this doesn’t

happen, when that probability was zero, that probability was replaced by the mean

value of π̂t.

We propose now a polynomial dglm of first order with

Ft = 1 and (4.3)

Gt = 1. (4.4)

In order to adjust the dynamic model, it was necessary to find the maximum

likelihood estimator for W as described in Section 3.2. With the command

“optimise” in the software R [12] with the function created with all the steps

showed in Section 2.2.

In Figures 4.1 and 4.2 we can compare the fluctuations for π̂t and λ̂t throughout

the time t. These figures present the estimated values for π̂t and λ̂t for each time

t. The fluctuations of λ̂t seem to occur around a fluctuating level, with a constant

variance.
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Figure 4.1: Fluctuations for π̂t
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Figure 4.2: Fluctuations for λ̂t

If we apply the exponential in the link function we can obtain the odds ratio.

exp{λt} = exp

{
log

(
µt

1− µt

)}
=

µt
1− µt

. (4.5)

Odds express the likelihood of an event occurring relative to the likelihood of

an event not occurring. In the problem of this work it means the likelihood of the

pool contains a mosquito with infection or not. We can see this chart in Figure 4.3.

An odds ratio of 1 indicates that the event under study is equally likely to occur in

both groups (pool infected or not). An odds ratio greater than 1 indicates that the

event is more likely to occur in the infected group. Finally, an odds ratio less than 1

indicates that the probability is lower in the infected group than in the not infected.

For t = 70, the odd ratio is equal to 0.014, it means that there is a very small chance

to the pool in that week be infected, and consequently it’s a much lower chance to

the mosquito in that week be infected.
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Figure 4.3: Fluctuations for exp{λ̂t}

Looking to the Figure 4.3 we can see that the odd ration for all the 133 weeks

is very small (less than 0.06). It means that the chance to have an infected pool is

low. In practice, it is not necessary to create an alert, in this case presented. Note

that the time series in the Figure 4.3 seems to be stationary in the level near to

mean 0.018. Observe that the series doesn’t even have trends or seasonality.

In Figure 4.4 it shows the observed ẏt and its predictions, that is, the number of

infected pools over the years 2012 to 2019 for each epidemiological week. We find

the observed value (solid black line), the predictive mean (dashed line in red) and

the predictive median (dashed line in blue). These predictions is an one-step-ahead

prediction. The prediction model is a beta-binomial and its mean presented a more

realistic forecasts than the median.
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Figure 4.4: Chart of the infected pools and its estimations between 2012 and 2019
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Chapter 5

Conclusion

In this thesis we worked on the real time estimation of infection rates in vectors.

This work has a practical motivation; a model was found to be used as an aid tool

for epidemiological alerts. In this work paper we analysed the data of the West Nile

River diseases. West Nile Virus is regarded as one of the most serious mosquito-

borne diseases in the United States. About 1 in 5 people who are infected develop

a fever and other symptoms. About 1 out of 150 infected people develop a serious,

sometimes fatal, illness, as you can see in [WNV].

To be able to help the governments to know when it is time to create an alert

to help the population to fight, not only this disease, but any arbovirus diseases, it

was created a model that is capable to say when it is the right time.

Using the BetaT distribution the model is defined by the following four compo-

nents: observation equation, the prior distribution, the link function and the state

evolution. Consider the following key components of the analysis for the BetaT

dynamic model.

Observation equation:

ẏt|πt ≈ Binomial(nt, 1− (1− πt)k̄t).

Prior:

πt|Dt−1 ∼ BetaT (rt, st; k̄t).

Link function: consider, without loss of generality, the logit link

λt = g(µt) = Ftθt = log

(
µt

1− µt

)
.

System equation:

θt = Gtθt−1 + wt wt ∼ (0,Wt).

In order to begin the sequential estimation procedure we need to state the initial
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information θ0.

Initial information:

θ0|D0 ∼ Np(m0, C0).

The model that was proposed is a dglm using the Kalman Filter with a Bayesian

approach. The dglm is the logit because it is a model that correlates the values of

covariates with the mean of the binomial distribution. The predictive Beta-Binomial

model (Equation 5.1) was created to predict the number of infected pools, and it

was built from the prior and the distribution of the observations.

f(ẏt|rt, st, Dt−1) =

(
nt

ẏt

)
B(r∗t , s

∗
t )

B(rt, st)
, (5.1)

where r∗t and s∗t are given by the Equations 3.6 and 3.7.

In this thesis we only worked in the fit of the model. Other features of the

models are yet to be explored in future works. Besides that, for future works it will

be done the monitoring and forecasting. Another propose for a future work is to

verify others link functions, as the probit, square root of arcsin, and complimentary

log-log, and then do a simulated study comparing these other link functions.

Observing the website [CDC] , we see the table with information on the number

of cases reported to the government of the Nile Virus disease. For the State of Rhode

Island, from 2012 to 2018 there were only 10 cases, as you can see in the Table 5.1,

what goes according to the number of infected pools observed in the sample of the

present study. Other states had a much larger number of reported cases.

It is good to remember that we can reduce our risk of WNV by using insect

repellent and wearing long-sleeved shirts and long pants to prevent mosquito bites,

that is the most effective way to prevent infection. Mosquitoes bite during the

day and night, so, take steps to control mosquitoes indoors and outdoors. The

government has made some plans to control the proliferation of the mosquitoes,

such as the adult mosquito control using pesticides applied from trucks or aircraft.

Year Reported Cases
2012 4
2013 1
2014 0
2015 0
2016 2
2017 2
2018 1

Table 5.1: Number reported cases over the years.

41



Appendix A

Appendix

A.1 Theorem 1:

If

x1|x2 ∼ N(µ1 +B1(x2 − µ2), B2)

x2 ∼ N(µ2,Σ22)

Therefore,(
x1

x2

)
∼ N

[(
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

)]

Where Σ11 = B2 +B1Σ22B
′
1 and Σ12 = B1Σ22

A.2 Theorem 2:

If (
x1

x2

)
∼ N

[(
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

)]

Therefore,

x2|x1 ∼ N
[
µ2 + Σ

′

12Σ−1
11 (x1 − µ1), Σ22 − Σ

′

12Σ−1
11 Σ12

]
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A.3 Moments of logarithmically transformed ran-

dom variables:

Let X ∼ Beta(α, β), for 0 ≤ x ≤ 1. Its density is

f(x) =
1

B(α, β)
xα−1(1− x)β−1. (A.1)

The logarithm of the geometric mean GX of a distribution with random variable X

is the arithmetic mean of log(X), or, equivalently, its expected value: log(GX) =

E(log(X)).

For a beta distribution, the expected value integral gives:

E(log(X)) =

∫ 1

0

log(x)f(x;α, β)dx =

∫ 1

0

log(x)
xα−1(1− x)β−1

B(α, β)
dx

=
1

B(α, β)

∫ 1

0

∂
xα−1(1− x)β−1

∂α
dx

=
1

B(α, β)

∂

∂α

∫ 1

0

xα−1(1− x)β−1dx

=
1

B(α, β)

∂B(α, β)

∂α
=
∂ log(B(α, β))

∂α

=
∂ log(Γ(α))

∂α
− ∂ log(Γ(α + β))

∂α

= ψ(α)− ψ(α + β), (A.2)

where ψ is the digamma function, that is defined as the logarithmic derivative of

the gamma function:

ψ(α) =
∂ log Γ(α)

∂α
=

Γ
′
(α)

Γ(α)
. (A.3)

It is the first of the polygamma functions.

The logarithm of the geometric variance, log(V ar(GX)), of a distribution with

random variable X is the second moment of the logarithm of X centered on the

geometric mean of X, log(GX):

log V ar(GX) = E((log(X)− log(GX))2)

= E((log(X)− E(log(X)))2)

= E((log(X))2)− (E(log(X)))2

= V ar(log(X)). (A.4)

For a beta distribution, higher order logarithmic moments can be derived by

using the representation of a beta distribution as a proportion of two Gamma dis-
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tributions and differentiating through the integral. They can be expressed in terms

of higher order polygamma functions.

Here, there are some important moments:

• E
(

log

(
X

1−X

))
= ψ(α)− ψ(β);

• E(log2(X)) = (ψ(α)− ψ(α + β))2 + ψ1(α)− ψ1(α + β);

• E(log2(1−X)) = (ψ(β)− ψ(α + β))2 + ψ1(β)− ψ1(α + β);

• E(log(1−X)) = (ψ(α)− ψ(α + β))(ψ(β)− ψ(α + β)) + ψ1(α + β),

where the trigamma function, denoted ψ1(α), is the second of the polygamma func-

tions, and is defined as the derivative of the digamma function:

ψ1(α) =
∂2 log Γ(α)

∂α2
=
∂ψ(α)

∂α
. (A.5)

An alternative is to use the approximation. For more information see [1].

44



Bibliography

[CDC] Centers for disease control and prevention. https://www.cdc.gov/

westnile/statsmaps/cumMapsData.html. Accessed: 2019-09-30.

[Mon] Monitoring and controlling west nile virus: Are your prevention practices in

place? https://www.cdc.gov/nceh/ehs/Docs/JEH/2013/april-wnv.

pdf. Accessed: 2019-09-30.

[WNV] West Nile Virus state of rhode island: Department of health. https://

health.ri.gov/diseases/mosquitoes/?parm=109. Accessed: 2019-09-

30.

[1] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions with For-

mulas, Graphs, and Mathematical Tables. Courier Dover Publications,

9th edition, 1965.

[2] Jeff Harrison (auth.) Andy Pole, Mike West. Applied Bayesian Forecasting

and Time Series Analysis. Springer US, 1994. ISBN 978-0-412-04401-

4,978-1-4899-3432-1. URL http://gen.lib.rus.ec/book/index.php?

md5=5dac26c5619086bb455efc312917241b.

[3] Luc Bauwens, Michel Lubrano, and Jean-Francois Richard. Bayesian Inference

in Dynamic Econometric Models. Oxford University Press, 2000. URL

https://EconPapers.repec.org/RePEc:oxp:obooks:9780198773139.

[4] George Casella. An introduction to empirical bayes data analysis. The American

Statistician, 39(2):83–87, 1985.

[5] C.Q. da Silva, H.S. Migon, and L.T. Correia. Dynamic bayesian beta models.

Computational Statistics Data Analysis, 55(6):2074–2089, 2011.

[6] Robbins H. An empirical bayes approach to statistics. 1:157–163, 1956.

[7] S. Kullback. Information Theory and Statistics. John Wiley Sons. Republished

by Dover Publications in 1968, 1959. ISBN 0-8446-5625-9.

45

https://www.cdc.gov/westnile/statsmaps/cumMapsData.html
https://www.cdc.gov/westnile/statsmaps/cumMapsData.html
https://www.cdc.gov/nceh/ehs/Docs/JEH/2013/april-wnv.pdf
https://www.cdc.gov/nceh/ehs/Docs/JEH/2013/april-wnv.pdf
https://health.ri.gov/diseases/mosquitoes/?parm=109
https://health.ri.gov/diseases/mosquitoes/?parm=109
http://gen.lib.rus.ec/book/index.php?md5=5dac26c5619086bb455efc312917241b
http://gen.lib.rus.ec/book/index.php?md5=5dac26c5619086bb455efc312917241b
https://EconPapers.repec.org/RePEc:oxp:obooks:9780198773139


[8] James B. McDonald and Yexiao J. Xu. A generalization of the beta distribution

with applications. Journal of Econometrics, 66:133–152, 1995.

[9] Gamerman D. Louzada F. Migon, H. S. Statistical Inference An Integrated Ap-

proach. CHAPMAN HALL/CRC Texts in Statistical Science Series, 2nd

edition, 2015.

[10] G. Petris, S. Petrone, and P. Campagnoli. Dynamic Linear Mod-

els with R. Use R. Springer-Verlag New York, 1 edition, 2009.

ISBN 0387772375,9780387772370. URL http://gen.lib.rus.ec/book/

index.php?md5=32F8695465A6AA2C74A02D314A3AB59A.

[11] Burrows P.M. Improved estimation of pathogen transmission rates by group

testing. 77(2):363–365, 1987.

[12] R Core Team. R: A Language and Environment for Statistical Computing.

R Foundation for Statistical Computing, Vienna, Austria, 2016. URL

https://www.R-project.org/.

[13] Saerkkae S. Bayesian Filtering and Smoothing. Institute of Mathematical

Statistics Textbooks. Cambridge University Press, 2013. ISBN 978-1-107-

03065-7,978-1-107-61928-9. URL http://gen.lib.rus.ec/book/index.

php?md5=2de3979e55774a5f6095ed5e82913d16.
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