UNIVERSIDADE FEDERAL DO AMAZONAS FACULDADE DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA E ENGENHARIA DE MATERIAIS

JÉSSICA RAÍSSA MELO GUIMARÃES

ESTUDO DA INCORPORAÇÃO DE LAMA RESIDUAL DE CONCRETO EM PASTA DE CIMENTO GEOPOLIMÉRICO

Manaus 2021

JÉSSICA RAÍSSA MELO GUIMARÃES

ESTUDO DA INCORPORAÇÃO DE LAMA RESIDUAL DE CONCRETO EM PASTA DE CIMENTO GEOPOLIMÉRICO

Dissertação apresentada ao Programa de Pós-Graduação em Ciência e Engenharia de Materiais (PPGCEM) da Universidade Federal do Amazonas (UFAM), como parte dos requisitos necessários à obtenção do título de Mestre em Ciência e Engenharia de Materiais.

Orientador: Prof. Dr. Lizandro Manzato Co-orientadora: Profa. Dra. Cláudia Cândida Silva

> Manaus 2021

Ficha Catalográfica

Ficha catalográfica elaborada automaticamente de acordo com os dados fornecidos pelo(a) autor(a).

À Leila Melo (in memorian), por todo amor, incentivo e exemplo.

AGRADECIMENTOS

A realização deste trabalho contou com o apoio e a ajuda de várias pessoas e sou imensamente grata a todos que contribuíram para que eu concluísse essa etapa.

Agradeço a minha família, principalmente à minha mãe e irmã, Leila Melo e Lorena Melo, pelo apoio, por ouvirem sobre as minhas dificuldades e por entenderem minhas faltas; ao meu amor, Antônio Arquelau, pelo encorajamento e companhia em todos os momentos; aos meus irmãos em Cristo da IBNR, pelas orações e comunhão.

Aos professores Samantha Pinheiro e Arlindo Lopes, que me apresentaram o mundo acadêmico, me instruíram e me ofereceram oportunidades de crescimento. Sem vocês eu não ingressaria nesse ciclo.

Aos meus orientadores, professor Lizandro Manzato e professora Cláudia Cândida, pela receptividade, ensino, confiança e incentivo. Houve momentos em que não acreditei na minha capacidade e vocês o fizeram, isso foi muito importante.

Ao professor João de Almeida pelas contribuições e pela disponibilidade do Vicat; aos alunos da professora Cláudia, em especial ao Yves Melo, pela confecção de muitas pastilhas; e Hugo Carvalho, por me auxiliar nas análises qualitativas e quantitativas de FRXDO.

Aos técnicos do Instituto Federal do Amazonas (IFAM): Wanison Pessoa, pelo auxílio nas atividades laboratoriais, coletas do resíduo, caracterizações e aulas de TG; e Mitsuo Takeno, pela disponibilidade nos ensaios de resistência à compressão, ajuda na utilização de *softwares* e troca de experiências. O suporte de vocês foi essencial.

Aos amigos de longa data, Luciana Castro, Matheus Basílio, Drisana Pantoja, Mateus Oliveira e Sabrina Santana, pelas conversas, abraços e companhia; aos amigos e colegas que o mestrado me trouxe: Maria Tereza, pela gentileza e companhia desde o início dessa jornada, pelas caronas, pelos incontáveis bolos de chocolate e desmoldes dos meus corpos de prova; Marcela, por me ensinar a manusear diferentes vidrarias e me ajudar nos ensaios de massa específica; Xavier, no auxílio de resultados de DRX e FTIR; Juliana, Marcus, Amanda, Igor e Anézio, pela parceria no laboratório, tanto em atividades práticas, quanto pela troca de conhecimentos.

À Fundação de Amparo e Apoio à Pesquisa do Estado do Amazonas (FAPEAM), por conceder a bolsa de estudos, viabilizando minha dedicação exclusiva à pesquisa; e ao Laboratório de Síntese e Caracterização de Nanomateriais (LSCN), associado ao SisNANO 2.0 (processo CNPq 442601/2019-0), no qual desenvolvi este trabalho e tenho a grande satisfação de fazer parte da equipe de pesquisa.

Às Centrais Dosadoras de Concreto e seus colaboradores, por me abrirem as portas e disponibilizarem o acesso para a coleta do resíduo.

Às empresas Metacaulim do Brasil e Elkem Materials South América Ltda pela doação do metacaulim e da microsílica., respectivamente.

À empresa Anton Paar, representada pela Talita Cardeal, por realizar o ensaio de Granulometria a laser.

Agradeço, acima de todos, ao meu Senhor, por tantas coisas! Por me conceder a oportunidade de ingressar em um mestrado, por colocar no meu caminho essas pessoas que tanto contribuíram com o meu crescimento, por renovar a minha força todos os dias e por me lembrar que é Dele que provém o sustento, a proteção e a sabedoria.

Portanto, quer comais, quer bebais ou façais outra coisa qualquer, fazei tudo para a glória de Deus.

Apóstolo Paulo

RESUMO

A lama residual de concreto é um material retirado de tanques de sedimentação que recebem águas utilizadas na lavagem de caminhões betoneira e pátios de centrais dosadoras de concreto (CDC). O presente estudo dividiu-se em duas etapas principais: (1) análise de variância da composição química do resíduo de três diferentes CDC e caracterização da amostra com maior teor de cálcio por diferentes técnicas analíticas, e (2) incorporação do resíduo como fonte de cálcio em pastas de cimento geopolimérico e avaliação de propriedades no estado fresco e endurecido. Os resultados da primeira fase apontaram que o material apresenta diferenças significativas na composição química entre CDC, entre meses de recolhimento e entre pontos de coleta nos tanques, e as demais características são típicas de resíduos de concreto. A pasta com incorporação, comparada a pasta de referência, mostrou-se menos fluida; com tempos de início e fim de pega reduzidos; resistência à compressão axial 60% superior em 3 dias e similar em 28 dias; composição química, mineralógica e térmica equivalente e característica de produtos geopoliméricos. Concluiu-se que a lama residual de concreto pode ser usada como fonte de cálcio em matriz geopolimérica, a qual confere uma aceleração na solidificação do material e consequente melhoria no comportamento mecânico nas idades iniciais.

Palavras-chave: Lama residual de concreto. Cimento geopolímero. Central dosadora.

ABSTRACT

Concrete slurry waste is a material taken from sedimentation tanks that receive water used for washing concrete mixer trucks and yards of concrete dosing plants (CDC). The present study was divided into two main stages: (1) analysis of variance of the chemical composition of the residue from three different CDCs and characterization of the sample with a higher calcium content by different analytical techniques, and (2) incorporation of the residue as a source of calcium in geopolymeric cement pastes and evaluation of properties in the fresh and hardened state. The results of the first phase showed that the material presents significant differences in the chemical composition between CDC, between months of collection and between collection points in the tanks, and the other characteristics are typical of concrete waste. The paste with incorporation, compared to the reference paste, was less fluid; with reduction of initial and final time of hardening; compressive strength 60% higher in 3 days and similar in 28 days; equivalent chemical, mineralogical and thermal composition and characteristic of geopolymeric products. It was concluded that the concrete slurry waste can be used as a source of calcium in a geopolymeric matrix, which gives an acceleration in the solidification of the material and consequent improvement in the mechanical behavior at early ages.

Keywords: Concrete slurry waste. Geopolymeric cement. Concrete dosing plants.

LISTA DE FIGURAS

Figura 1 – Material de estrutura de edifício residencial e intensidade de material	.18
Figura 2 – Material de estrutura de edifício não-residencial e intensidade de material	.19
Figura 3 – Produções de concreto projetadas para os próximos anos: (a) 2030 e (b) 2050	.20
Figura 4 – Percentual de volume de resíduos gerados nas centrais dosadoras	.22
Figura 5 – Sistema de recuperação de resíduos de concreto fresco em uma usina de concr	reto
	.24
Figura 6 – Lavagem do caminhão betoneira: (a) material aderido, (b) material sendo remov	vido
e (c) tambor rotativo limpo	.24
Figura 7 – Tanque de sedimentação: (1) câmara de entrada, cuja abertura é encontrada no ni	ível
do chão: (2) câmara de sedimentação e (3) câmara de saída	.26
Figura 8 – processo de geopolimerização	.30
Figura 9 – Estruturas moleculares dos geopolímeros	.32
Figura 10 – Tanques de sedimentação - à esquerda: CDC K: no meio: CDC P e à direita: C	DC
S: pontos de coleta: (A) entrada do tanque. (B) meio do tanque e (C) saída do tanque	.37
Figura 11 – Programa experimental	.39
Figura 12 – Preparação das amostras	.39
Figura 13 – Exemplo de identificação das amostras	.40
Figura 14 – Sequência de preparação da pasta de cimento geopolimérico	.43
Figura 15 – Corpo de prova em molde (a), desmoldado (b) e armazenamento até a idade	e de
ruptura (c)	.45
Figura 16 – Minicone para ensaio de abatimento	.46
Figura 17 – Procedimento simplificado do ensaio de fluidez das pastas geopoliméricas	.46
Figura 18 – Ensaio de determinação do tempo de início e fim de pega com utilização	de
higrômetro.	.47
Figura 19 – Teor dos óxidos com médias diferentes no mês 7	.50
Figura 20 – Teor dos óxidos com médias diferentes no mês 8	.51
Figura 21 – Teor dos óxidos com médias diferentes no mês 9	.51
Figura 22 – Teor dos óxidos com médias diferentes no mês 7	.52
Figura 23 – Teor dos óxidos com médias diferentes no mês 8	.52
Figura 24 – Teor dos óxidos com médias diferentes no mês 9	.53
Figura 25 – Teor dos óxidos com médias diferentes no mês 7	.53
Figura 26 – Teor dos óxidos com médias diferentes no mês 8	.54
Figura 27 – Teor dos óxidos com médias diferentes no mês 9	.54
Figura 28 – Teor dos óxidos com médias diferentes nos meses 7, 8 e 9	.55
Figura 29 – Teor dos óxidos com médias diferentes nos meses 7, 8 e 9	.55
Figura 30 – Teor dos óxidos com médias diferentes nos meses 7, 8 e 9	.56
Figura 31 – Média do teor dos óxidos de todas as amostras das três CDC	.56
Figura 32 – Médias de concentração e intervalo de confiança de CaO, SiO ₂ e Al ₂ O ₃ entre C	DC
	.57
Figura 33 – Média do teor dos óxidos comuns entre as CDC e Literatura	.59
Figura 34 – Difratograma da fonte de cálcio	.63
Figura 35 – Espectro de infravermelho da fonte de cálcio	.64
Figura 36 – Curva de perda de massa e DTG da fonte de cálcio	.66
Figura 37 – Espalhamento da pasta geopolímerica GEOREF	.67
Figura 38 – Espalhamento da pasta geopolimérica GEOFDC	.67

Figura 39 - Curvas tensão-deformação determinadas pelo ensaio de resistência à co	ompressão
para as amostras de pastas geopoliméricas nas idades: (a) 24 horas, (b) 3 dias, (c) 7	dias e (d)
28 dias	69
Figura 40 – Superfície de fratura do corpo de prova com eflorescência	72
Figura 41 – Difratograma das pastas geopoliméricas sintetizadas	74
Figura 42 – Espectro de infravermelho das pastas geopoliméricas sintetizadas	75
Figura 43 – Curvas de perda de massa e DTG da pasta geopolimérica GEOREF	77
Figura 44 - Curvas de perda de massa e DTG da pasta geopolimérica GEOFDC	78
Figura 45 – Curva granulométrica da fonte de cálcio	

LISTA DE TABELAS

Tabela 1 – Descarte médio de usina de concreto	21
Tabela 2 – Métodos potenciais de gerenciamento de lama residual de concreto	28
Tabela 3 – Características do Metacaulim comercial	35
Tabela 4 – Características da Microsílica comercial	36
Tabela 5 – Especificações do hidróxido de potássio comercial	36
Tabela 6 – Dosagem das amostras	43
Tabela 10 – Composição qualitativa das fontes de cálcio coletadas	48
Tabela 11 – Composição química da Fonte de Cálcio na Literatura	58
Tabela 12 – Média quantitativa dos principais óxidos de diferentes precursores e das fontes	s de
cálcio	60
Tabela 7 – Teor de umidade da fonte de cálcio	61
Tabela 8 – Massa específica da fonte de cálcio	62
Tabela 9 – Tamanho das partículas da fonte de cálcio	62
Tabela 13 – Propriedades mecânicas das pastas geopoliméricas	70
Tabela 14 – Composição química em óxidos das pastas geopoliméricas sintetizadas	72
Tabela 15 – Composição química das amostras coletadas na CDC K no mês 7	177
Tabela 16 – Composição química das amostras coletadas na CDC K no mês 8	177
Tabela 17 – Composição química das amostras coletadas na CDC K no mês 9	178
Tabela 18 – Composição química das amostras coletadas na CDC P no mês 7	179
Tabela 19 – Composição química das amostras coletadas na CDC P no mês 8	179
Tabela 20 – Composição química das amostras coletadas na CDC P no mês 9	180
Tabela 21 – Composição química das amostras coletadas na CDC S no mês 7	181
Tabela 22 – Composição química das amostras coletadas na CDC S no mês 8	181
Tabela 23 – Composição química das amostras coletadas na CDC S no mês 9	182
Tabela 24 – Médias mensais da composição química das amostras coletadas na CDC K	183
Tabela 25 – Médias mensais da composição química das amostras coletadas na CDC P	183
Tabela 26 – Médias mensais da composição química das amostras coletadas na CDC S	184
Tabela 27 – Média total da composição química das amostras coletadas nas CDC K, P e S	185

LISTA DE SIGLAS

ABCP	Associação Brasileira de Cimento Portland		
ABNT	Associação Brasileira de Normas Técnicas		
AEH	Aditivos Estabilizadores de hidratação		
ANOVA	Análise de variância		
ASTM	American Society for Testing and Materials		
C-S-A-H	Gel cálcio aluminossilicato alcalino que se apresenta na forma		
	$Ca_2O \cdot Al_2O_3 \cdot SiO_2 \cdot nH2O$		
CDC	Central Dosadora de Concreto		
CONAMA	Conselho Nacional do Meio Ambiente		
C-S-H	Gel de silicato de cálcio hidratado		
DRX	Difratrometria de Raios-X		
FRXDO	Fluorescência de Raios-X por dispersão de ondas		
FTIR	Espectroscopia no Infravermelho por Transformada de Fourier		
ICSD	Inorganic Crystal Structure Database		
MEV	Microscopia Eletrônica de Varredura		
NBR	Norma Brasileira		
SNIC	Sindicato Nacional da Indústria do Cimento		
TGA	Análise Termogravimétrica		

1 INTRODUÇÃO161.1 Objetivo geral171.2 Objetivos específicos172 REVISÃO BIBLIOGRÁFICA182.1 Produção de concreto: global, nacional e regional182.2 Resíduos da produção de concreto em centrais dosadoras212.1 Sobras de concreto222.2.2 Lastro de concreto242.3 Águas Residuárias252.4 Lama residual de Concreto272.3 Cimento Geopolimérico292.3.1 Mecanismos de geopolimerização302.3.2 Quanto a proporção Si:Al312.3.2.2 Quanto a composição dos componentes cimentícios322.3.3 Lama residual de concreto em geopolímeros333 MATERIAIS UTILIZADOS353.1 Metacaulim35

SUMÁRIO

2.3.2 Classificação	
2.3.2.1 Quanto a proporção Si:A1	
2.3.2.2 Quanto a composição dos componentes cimentícios	
2.3.3 Lama residual de concreto em geopolímeros	
3 MATERIAIS UTILIZADOS	
3.1 Metacaulim	
3.2 Solução alcalina ativadora	
3.2.1 Microsílica	
3.2.2 Hidróxido de potássio (KOH)	
3.2.3 Água	
3.3 Lama residual de concreto	
4 MÉTODOS DE ANÁLISE E PROCESSAMENTO	
4.1 Programa experimental	
4.2 Processo de secagem e identificação da fonte de cálcio	
4.3 Técnicas de Caracterização	40
4.3.1 Teor de Umidade	40
4.3.2 Massa específica	40
4.2.3 Granulometria a laser	41
4.3.4 Fluorescência de Raios-X por dispersão de ondas (FRXDO)	41
4.3.5 Difratrometria de Raios-X (DRX)	41

4.3.6 Espectroscopia no Infravermelho por Transformada de Fourier (FTIR)	42
4.3.7 Perda ao fogo	42
4.3.8 Análise termogravimétrica e térmica-diferencial (TGA-DTG)	42
4.4 Produção do cimento geopolimérico	42
4.4.1 Dosagem e processamento	42
4.4.2 Moldagem, desmoldagem e cura dos corpos de prova	44
4.5 Análise das pastas de cimento geopolimérico	45
4.5.1 Estado fresco	45
4.5.1.1 Fluidez pelo método de Kantro	45
4.5.1.2 Tempo de pega pelo aparelho de Vicat	46
4.5.2 Estado endurecido	47
4.5.2.1 Resistência à compressão axial	47
5 RESULTADOS E DISCUSSÕES	48
5.1 Caracterização da Fonte de Cálcio	48
5.1.1 Composição química	48
5.1.1.1 Qualitativa	48
5.1.1.2 Quantitativa	49
5.1.1.2.1 Pontos de Coleta	50
5.1.1.2.2 Mês de Coleta	54
5.1.1.2.3 Central Dosadora de Concreto	56
5.1.1.2.4 Composição Química da Fonte de Cálcio na literatura	58
5.1.1.2.5 Teor de CaO em ligantes álcali-ativados	60
5.1.2 Teor de Umidade	61
5.1.3 Massa específica	61
5.1.4 Tamanho e distribuição das partículas	62
5.1.5 Composição mineralógica	63
5.1.6 Composição de grupos funcionais	64
5.1.7 Comportamento térmico	65
5.2 Caracterização da pasta de cimento geopolimérico	67
5.2.1 Fluidez	67
5.2.2 Tempo de Pega	68
5.2.3 Resistência à compressão axial	69
5.2.4 Composição química	72
5.2.5 Composição mineralógica	73
5.2.6 Composição de grupos funcionais	75

5.2.7 Comportamento térmico	77
5.2.8 Pasta de cimento geopolimérico com incorporação de fonte de cálcio: possíveis a	plicações
6 CONCLUSÕES	80
7 SUGESTÕES PARA TRABALHOS FUTUROS	82
8 REFERÊNCIAS BIBLIOGRÁFICAS	83
9 APÊNDICE A – ANOVA: PONTOS DE COLETA	96
9.1 CDC K – K7A, K7B e K7C	96
9.2 CDC K – K8A, K8B e K8C	
9.3 CDC K – K9A, K9B e K9C	
9.4 CDC P – P7A, P7B e P7C	112
9.5 CDC P – P8A, P8B e P8C	118
9.6 CDC P – P9A, P9B e P9C	124
9.7 CDC S – S7A, S7B e S7C	
9.8 CDC S – S8A, S8B e S8C	
9.9 CDC S – S9A, S9B e S9C	141
10 APÊNDICE B – ANOVA: MÊS DE COLETA	148
10.1 CDC K – K7, K8 e K9	148
10.2 CDC P – P7, P8 e P9	153
10.1 CDC S – S7, S8 e S9	159
11 APÊNDICE C – ANOVA: CDC	165
12 APÊNDICE D – ANOVA: PONTOS DE COLETA	169
12.1 CDC K – K6A, K6B e K6C	169
13 APÊNDICE E – ANOVA: MÊS DE COLETA	174
13.1 CDC K– K6 E K789	174
14 APÊNDICE F – TABELAS RESUMO: MÉDIAS DAS CONCENTRAÇÕES	177
15 ANEXOS	

1 INTRODUÇÃO

A proteção ambiental e a sustentabilidade tornaram-se uma preocupação global de grande importância e a indústria da construção chama a atenção por ser uma das maiores consumidoras de recursos naturais da Terra e produzir cerca de 50% de seus resíduos (DE SCHEPPER et al., 2014). Com o desenvolvimento do setor, a demanda por concreto é crescente e, em 2050, estimativas apontam para uma produção superior a 250 Mt em vários países (MILLER; HORVATH; MONTEIRO, 2016). Se técnicas de reciclagem e reutilização de resíduos de concreto não forem adotadas, as quantidades produzidas no presente momento serão superadas, assim como emissões de CO₂ (atualmente cerca de 11% das emissões de CO₂ produzidas pelo homem) (GLOBALABC, 2018).

As centrais dosadoras de concreto (CDC) geram diferentes tipos de resíduos, incluindo resíduos de concreto fresco (sobras e lastro), águas residuárias e lama residual. No processo de produção deste último, os sólidos suspensos nas águas residuárias (derivadas da lavagem dos caminhões betoneira e do pátio) são depositados no fundo de tanques, após processo de sedimentação (XUAN et al., 2016a). Este resíduo, possui alto teor de água e os finos resultantes são constituídos de cimento endurecido, agregado miúdo e uma pequena parcela de agregado graúdo (SILVA, 2016).

Periodicamente, o volume de lama residual é dragado dos tanques de sedimentação, disposto em baias de secagem e posteriormente encaminhado para aterros sanitários (SILVA, 2016). No entanto, esta abordagem não é uma opção ambientalmente sustentável, devido ao consumo de energia e às emissões associadas ao transporte e manuseio. Além disso, estudos relatam que o resíduo seco ainda pode apresentar altos teores de metais que não se enquadram em critérios de aceitação de resíduos inertes em aterros (AUDO et al., 2018). O descarte indiscriminado pode causar efeitos prejudiciais à saúde humana, ao meio ambiente e aos ecossistemas circundantes, entre outros fatores (HOSSAIN; XUAN; POON, 2017).

Dentro do contexto de reaproveitamento desse resíduo, a literatura apresenta algumas pesquisas desenvolvidas em diferentes aplicações. A maioria dos estudos são voltados para a incorporação do resíduo em novos concretos, como aglomerante ou *filler* e na substituição de agregados. Os autores relataram que os produtos formados apresentavam desempenhos inferiores ao produto original, como baixa resistência, diminuição da trabalhabilidade e alta porosidade.

Poucas pesquisas foram direcionadas para a incorporação da lama residual de concreto em produtos geopoliméricos. Yang et al (2009a, 2009b e 2009c) afirmaram que este resíduo,

combinado com metacaulim e sílica ativa, é um material oportuno para a fabricação de geopolímero aplicável à construção civil, pois as resistências alcançadas nos estudos atendem aos requisitos comuns de construção e resulta em um produto mais favorável ao meio ambiente. Porém, os autores destacaram a necessidade de estudos mais aprofundados que utilizem outros componentes na solução ativadora com intuito de aprimorar as propriedades do material.

Assim, diante da existência de estudos limitados sobre o comportamento da lama residual como matéria prima geopolimérica, este trabalho propõe-se a contribuir com as pesquisas existentes, valorizando a reutilização do resíduo.

1.1 Objetivo geral

Avaliar a incorporação de lama residual de central dosadora de concreto como fonte de cálcio em pastas de cimento geopolimérico através de caracterizações e ensaios no estado fresco e endurecido.

1.2 Objetivos específicos

- Estudar a composição química de lamas residuais de três diferentes usinas de concreto por meio de FRXDO e investigar a variabilidade utilizando ANOVA de um fator;
- Caracterizar a lama residual com o maior teor de CaO através de DRX, FTIR, TG, Granulometria a laser e determinar o teor de umidade, a massa específica e a perda ao fogo;
- Produzir pastas de cimento geopolimérico com e sem incorporação da lama residual de concreto como fonte de cálcio;
- Caracterizar o estado fresco das pastas pelo método de Kantro e com o uso do aparelho de Vicat;
- Determinar a resistência à compressão axial em diferentes idades;
- Caracterizar o estado endurecido das pastas aos 28 dias por meio de FRXDO, DRX, FTIR, TG.

2 REVISÃO BIBLIOGRÁFICA

2.1 Produção de concreto: global, nacional e regional

O concreto é o material de construção civil mais usado e o segundo mais consumido na Terra, depois da água (MILLER; HORVATH; MONTEIRO, 2018; OPON; HENRY, 2019). A GLOBALABC (2018) divulgou em seu Relatório de Status Global que o material utilizado nas estruturas dos edifícios é diferente de uma região para outra. Em edifícios residenciais, a maioria dos países são altamente dependentes do uso de concreto, como a China, Índia e países da América Latina (Figura 1), assim como em edifícios não residenciais, nos quais se observa uma preferência mais significativa pelo material (Figura 2).

Figura 1 - Material de estrutura de edifício residencial e intensidade de material

Notas: ASEAN é uma sigla para Association of Southeast Asian Nations (Associação das Nações do Sudeste Asiático); A América do Norte compreende o Canadá, os Estados Unidos e o México; Outros países da Ásia refere-se à Ásia, exceto Japão, países do Oriente Médio, China, Hong Kong e Coréia.

Fonte: Adaptado de GLOBALABC (2018)

Figura 2 – Material de estrutura de edifício não-residencial e intensidade de material

Notas: ASEAN é uma sigla para Association of Southeast Asian Nations (Associação das Nações do Sudeste Asiático); A América do Norte compreende o Canadá, os Estados Unidos e o México; Outros países da Ásia refere-se à Ásia, exceto Japão, países do Oriente Médio, China, Hong Kong e Coréia.

Fonte: Adaptado de GLOBALABC (2018)

A grande popularidade do concreto em todo mundo decorre do seu baixo custo e facilidade de uso (MILLER; HORVATH; MONTEIRO, 2018). Aliado as vantagens que o insumo proporciona, o aumento da demanda por infraestrutura devido a urbanização e a industrialização conduzem a uma alta produção (DOYLE; HAVLICK, 2009).

Assumindo que o concreto representa cerca de 40-45% do consumo global de cimento (SCRIVENER; JOHN; GARTNER, 2018), a produção global de concreto em 2019 foi de aproximadamente 1,8 Gt (U.S. GEOLOGICAL SURVEY, 2020) com taxas de crescimento do consumo per capita que excedem as taxas de crescimento populacional (UN POPULATION DIVISION, 2019; MILLER; HORVATH; MONTEIRO, 2016).

No Brasil, o último relatório publicado pelo Sindicato Nacional da Indústria do Cimento (SNIC) (2019) informou que 9,2 Mt de cimento produzido foram distribuídos para centrais dosadoras de concreto. Considerando que 1,0 m³ de concreto convencional consome, em média, 350,0 kg/m³ de cimento (FAZZAN; PEREIRA; SILVA, 2016), é possível calcular que a produção anual foi em torno de 65,4 Mt. Por meio do mesmo relatório, estima-se que a Região Norte do país produziu 1,4 Mt.

Uma projeção da produção global de concreto para os próximos anos foi realizada por Miller, Horvath e Monteiro (2018) após um exame das projeções de produção de cimento baseados em modelos da Agência Internacional de Energia e os modelos de produção de concreto exposto por Miller, Horvath e Monteiro (2016). O cenário previsto apresenta altas produções de concreto para cada país em megatoneladas (Mt) (Figura 3).

Figura 3 – Produções de concreto projetadas para os próximos anos: (a) 2030 e (b) 2050.

Fonte: adaptado de Miller, Horvath e Monteiro (2018)

A produção brasileira será em torno de 250-500 Mt em 2030 e poderá atingir mais de 500 Mt em 2050, ultrapassando países como a Rússia e o México, que produzirão volumes equivalentes em anos anteriores, e alcançando países como os Estados Unidos da América, China e Índia, que manterão a margem de produção prevista em 2030.

2.2 Resíduos da produção de concreto em centrais dosadoras

O processo produtivo de concreto pré-misturado em uma unidade de dosagem envolve uma pesagem da quantidade necessária de cada material constituinte. Os agregados e o cimento são armazenados em silos e são dosados juntamente com aditivos e água (potável ou de reuso). Em seguida, os materiais são levados a misturadores estáticos ou a caminhões betoneira e, posteriormente, o concreto é transportado para as obras (SEALEY; PHILLIPS; HILL, 2001; VIEIRA et al., 2019).

A produção de concreto gera alguns resíduos, como qualquer processo produtivo. Antes da saída do concreto para a obra, materiais podem ser desperdiçados durante o transporte no interior da usina; há descarte de concretos com abatimento inadequado e de materiais usados no estudo de dosagem e controle da produção do concreto (SILVA, 2016; VIEIRA et al., 2019).

A fase de entrega e lançamento do concreto produz o maior volume de resíduos. As principais fontes de resíduo são o concreto devolvido à central, que corresponde ao volume de material que não foi descarregado na obra e a lavagem dos caminhões após cada entrega, para a retirada do lastro - material que fica impregnado no interior da betoneira após o descarregamento total do concreto (KAZAZ; ULUBEYLI, 2016; SEALEY; PHILLIPS; HILL, 2001; VIEIRA et al., 2019). A quantidade de resíduos gerados varia de acordo com o porte da usina de concreto, como apontado por Vieira (2010) e apresentados na Tabela 1.

Dimensão da	Produção	Resíduo	Resíduo	Descarte
Usina de Concreto	Mensal (m ³)	Mensal (m ³)	Anual (m ³)	Total (%)
Pequena	1500	33	399	2,2
Média	3000	57	687	1,9
Grande	9000	144	1732	1,6

Tabela 1 – Descarte médio de usina de concreto

Fonte: Viera (2010)

Grandes centrais dosadoras possuem, em média, uma porcentagem de descarte total inferior a de centrais menores, esse fato pode estar associado a uma gestão de resíduos mais desenvolvida em centrais que possuem uma grande produção mensal e a relutância de produtores menores devido ao custo operacional relativamente alto e o investimento de capital inicial no sistema de reciclagem. Adicionalmente, práticas adotadas por consumidores de grandes centrais, no tocante a redução de pedidos sem excessos, podem reduzir o volume de descarte (SILVA, 2016; TAM; TAM, 2007; VIERA, 2010).

Um estudo apresentado por Vieira e Figueiredo (2013), realizado com 109 usinas de concreto, em 12 estados brasileiros, estabeleceu a porcentagem dos tipos de resíduos produzidos nessas unidades. Os resultados da pesquisa, apresentados na Figura 4, dividem-se em três categorias: concreto devolvido à central (sobra), concreto aderido no interior do caminhão betoneira (lastro) e resíduos do processo produtivo (perdas).

Figura 4 - Percentual de volume de resíduos gerados nas centrais dosadoras

Fonte: Vieira e Figueiredo (2013)

A maior porcentagem é atribuída às sobras de concreto seguido do lastro aderido ao tambor do caminhão betoneira, que correspondem respectivamente a 52% e 43% do volume total de descarte efetuado pela CDC. Apenas 5% dos resíduos derivam de perdas do processo produtivo.

2.2.1 Sobras de concreto

Segundo Vieira et al. (2019) e ERMCO (2006), sobras e/ou retorno de concreto fresco podem ocorrer principalmente por pedidos em excesso pelo usuário, mas também deriva de problemas técnicos, como tempo de entrega ultrapassado, tempo de aplicação excedido, falhas no equipamento e não conformidade com especificação de trabalhabilidade.

As perdas de concreto fresco estão intimamente associadas a NBR 7212 (ABNT, 2021), que estabelece requisitos para execução de concreto dosado em central. Sobras podem ocorrer por causa do atendimento ao volume mínimo a ser transportado por caminhão betoneira (3 m³) e volumes múltiplos de 0,5 m³; o tempo de entrega e aplicação possui duração máxima

de 90 minutos para o transporte do concreto até a obra e 150 minutos para operações de lançamento e adensamento, iniciadas em até 30 minutos após a chegada na obra e a trabalhabilidade é especificada por classes, as quais possuem intervalos fixos de abatimento do concreto.

Esse tipo específico de resíduo é usualmente utilizado para melhorias dentro da empresa ou disposto em baias de secagem para posterior disposição em aterros sanitários. O concreto retornado também pode ser usado para confecção de outros produtos, como blocos de peso de tamanho padrão, para construção de camadas de aterro ou de retificação (ERMCO, 2006; VIEIRA et al., 2019; XUAN; POON; ZHENG, 2018).

Há ainda a possibilidade de reutilização de concreto fresco através da utilização de aditivos estabilizadores de hidratação (AEH) do cimento, cuja função é controlar a taxa de hidratação do cimento, mantendo a mistura no estado fresco por mais tempo do que o usual. Essa mistura é utilizada em um novo carregamento descontando água e aditivos e com adição de aditivo acelerador de pega, assim a hidratação volta a prosseguir normalmente. Misturas incorporando este material mostram propriedades mecânicas mais altas que concretos sem essa adição (SOLIMAN; NEHDI, 2011; SOLIMAN; NEHDI, 2013a; SOLIMAN; NEHDI, 2013b; SILVA, 2016).

As composições dos resíduos de concreto retornado, de acordo com a fração volumétrica, incluem comumente 70% ou mais de agregados recuperáveis e 30% ou menos de pasta (uma combinação de materiais cimentícios, água, cimento parcialmente hidratado ou produtos pozolânicos reagidos, quantidade limitada de agregados finos e quantidade relativamente insignificante de mistura não reagida). Muitas usinas instalam sistemas de lavagem para recuperar esses agregados (XUAN; POON; ZHENG, 2018).

O processo de reciclagem dos agregados requer um aparelho mecânico que fica inclinado a um ângulo de 45° (Figura 5). A lavagem do concreto fresco, feita opcionalmente com a água dos tanques de sedimentação, eleva os agregados através de uma rosca transportadora e despeja separadamente a areia, brita ou seixo em uma baia. A pasta separada dos agregados é direcionada a um tanque que possui um agitador para não deixar as partículas sedimentarem e depois destinadas a aterros credenciados (SILVA, 2016; XUAN et al., 2016a).

Figura 5 – Sistema de recuperação de resíduos de concreto fresco em uma usina de concreto

Fonte: Adaptado de Xuan et al. (2016a)

2.2.2 Lastro de concreto

Ainda que caminhões betoneira façam o descarregamento efetivo do concreto na obra ao qual ele foi destinado, uma fração da carga de concreto é sempre devolvida à usina, porque nem todo o concreto pode ser descarregado do tambor rotativo conforme ele é aderido à superfície interna (Figura 6a). Esse concreto aderido (lastro) é a fração do concreto pronto que só pode ser removido por lavagem (VIEIRA; FIGUEIREDO, 2016) (Figura 7b e Figura 7c). As Figuras 7a, 7b e 7c mostra os três momentos característicos desse procedimento de lavagem do caminhão betoneira.

Figura 6 – Lavagem do caminhão betoneira: (a) material aderido, (b) material sendo removido e (c) tambor rotativo limpo.

Fonte: Vieira (2013)

O concreto aderido não pode permanecer dentro do caminhão porque, dessa maneira, ele endurece e compromete a capacidade de mistura do tambor e a vida útil do equipamento. Consequentemente, este material deve ser removido lavando-se com água sob alta pressão no final de cada viagem (VIEIRA et al., 2019).

Os dados disponíveis sobre a quantidade de concreto aderido possuem uma faixa de variação: Paolini e Khurana (1998), afirmaram que há cerca de 300-350 kg de lastro em um tambor com capacidade de 9 m³; Sandrolini e Franzoni (2001) declararam que, em um caminhão com a mesma capacidade, no final de cada entrega, apresenta cerca de 200 a 400 kg de concreto aderido. Já Repette (2005), estimou que um caminhão com capacidade de carregamento de 8 m³ de concreto, retorna a usina com cerca de 100 litros de lastro aderido às paredes e lâminas do misturador.

Vieira et al. (2019) realizaram um estudo experimental que mediu a quantidade de concreto aderido. O autor afirma que o volume varia entre 160 kg e 470 kg e que as características do concreto (consumo de cimento e *slump*) influenciam nessa variação. O estudo ainda concluiu que 3% de todo o volume de concreto produzido retorna para a fábrica e, aproximadamente, 1,6% corresponde a concreto aderido e 1,4% a sobras de concreto.

Em contraste ao estudo de Vieira e Figueiredo (2013), Vieira et al. (2019) apresentaram um percentual de concreto retornado a usina (sobra) inferior ao percentual de concreto aderido. Pode-se atribuir a este fato uma melhoria na gestão do concreto pedido e efetivamente consumido, pois, como constatou Vieira e Figueiredo (2013), 80% das devoluções eram ocasionadas devido ao acréscimo implícito no pedido da obra.

Apesar da variabilidade da quantidade de concreto aderido e dos fatores que influenciam essa quantidade, é relevante como fonte de geração de resíduos, como apontado por Wu et al. (2014).

2.2.3 Águas Residuárias

A água utilizada para a lavagem dos caminhões e do pátio forma a chamada água residuária de concreto. Devido a suas características (alta alcalinidade e alto teor de sólidos) é necessária uma melhoria da qualidade deste efluente, submetendo-o a um tratamento antes de sua descarga para um sistema público ou, até mesmo, para algum possível reuso (PAULA e ILHA, 2014).

A Política Nacional de Resíduos Sólidos Brasileira, instituída pela Lei nº 12305 (BRASIL, 2010), estabelece que sempre que os líquidos apresentem propriedades que impossibilitem o seu descarte no sistema público de esgoto ou em corpos d'água, tecnologias limpas devem ser adotadas, desenvolvidas e aprimoradas para minimizar os impactos ambientais. Conjuntamente, a resolução CONAMA nº448 (BRASIL, 2012) estabelece condições e padrões para o descarte de águas residuais em corpos receptores. Assim, usualmente as centrais adotam o método simples de sedimentação para tratamento desse resíduo (PAULA e ILHA, 2014).

Tanques de sedimentação são correntemente utilizados para receber essa água residuária (Figura 7), nos quais, através da ação da gravidade, haverá a deposição dos sólidos, dando origem à lama residual de concreto. Periodicamente, este resíduo sólido deverá ser dragado dos tanques e destinado a baias de secagem, para posterior disposição em aterros sanitários (ERMCO, 2006).

Figura 7 – Tanque de sedimentação: (1) câmara de entrada, cuja abertura é encontrada no nível do chão; (2) câmara de sedimentação e (3) câmara de saída

Fonte: Paula e Ilha (2014)

Geralmente os tanques apresentam três compartimentos: na câmara de entrada (1) ficam os resíduos mais grossos; a segunda câmara (2) ainda recebe água com resíduos, porém mais finos e a terceira câmara (3) recebe água com uma proporção pequena de partículas finas. A água da terceira câmara pode ser transportada por gravidade para uma cisterna, onde fica armazenada para a reutilização em concretos usinados. Nas três bacias e na cisterna de água os resíduos ficam sedimentados (TSIMAS; ZERVAKI, 2011).

As águas residuais podem ser reutilizadas como água de limpeza para outros equipamentos, lavagem de agregados e pátios, mas deve-se considerar que uma película fina branca será deixada após o processo de limpeza, e deve estar separada do contato com a pele humana (KAZAZ; ULUBEYLI; 2016). Para a reutilização em concreto novo, é preciso atender os parâmetros fixados pela NBR 15900-1 (ABNT, 2009), considerando uma série de requisitos químicos e físicos com o intuito de evitar impactos nas reações de hidratação do cimento e a formação de seus compostos (PAULA e ILHA, 2014).

Pesquisas que estudaram a viabilidade da utilização de águas residuárias de concreto na produção de concreto fresco, apontam que a resistência à compressão, a resistência à tração e o módulo de elasticidade do concreto tendem a diminuir com o aumento dos percentuais de substituição da água da lama nas misturas de concreto, mas não de forma significativa, sendo praticável para uso na produção com substituição de até 50% de água de lavagem de concreto (ASADOLLAHFARDI et al., 2015; KADIR et al., 2016).

2.2.4 Lama residual de Concreto

Os sólidos suspensos nas águas residuárias, gerados a partir da lavagem dos caminhões betoneira e/ou do sistema de recuperação de agregados, são depositados no fundo do tanque, após processo de sedimentação (XUAN et al., 2016b). Este resíduo, nomeado como lama residual de concreto, possui alto teor de água e os finos resultantes são constituídos de cimento endurecido, agregado miúdo e uma pequena parcela de agregado graúdo (SILVA, 2016). Cerca de 30 kg de lama são gerados por 1m³ de concreto produzido (AUDO et al., 2018).

Devido ao seu alto valor de pH (acima de 11,5), a lama residual de concreto pode ser classificada como um material perigoso e corrosivo em outros países, como Japão, Espanha e Reino Unido. O descarte indiscriminado desse resíduo pode causar danos à saúde humana e seu descarte em aterros causa efeitos prejudiciais ao meio ambiente e aos ecossistemas circundantes devido ao alto teor alcalino (XUAN et al., 2016b).

No Brasil, a classificação desse resíduo não difere dos países citados. A partir da resolução CONAMA n° 307 (BRASIL, 2002), considera-se a lama cimentícia pertencente a classe D, relativa a resíduos perigosos que contém em sua composição substâncias nocivas à saúde. De forma complementar, com base na NBR 10004 (ABNT, 2004), o resíduo enquadra-se na classe I de resíduos perigosos, devido ao seu potencial corrosivo.

As centrais dosadores, geralmente, dispõem de baias de secagem, nas quais é depositado periodicamente o volume de lama residual dragada dos tanques de sedimentação. O concreto, quando no estado endurecido, é classificado como resíduo não perigoso e não inerte pela NBR 10004 (ABNT, 2004) ou como resíduo classe A pela resolução CONAMA n° 307. No entanto, se o resíduo não passar por esse tratamento de secagem, precisa ser disposto em aterros que apresentam uma Licença de Operação atribuída pelo órgão ambiental local especificada para o recebimento desse tipo de resíduo, o que limita as opções das centrais dosadoras na escolha de sua destinação (SILVA, 2016).

A disposição irregular de lama residual de concreto pode ser considerada como crime ambiental, de acordo com a Lei 9.605/98, e é passível de multa e prisão do responsável pela central dosadora. Assim, nota-se a necessidade de soluções que facilitem o gerenciamento do resíduo e o uso de técnicas sustentáveis que visam a reciclagem e a reutilização, além da redução de custos (SILVA, 2016; VIEIRA, 2010; XUAN et al., 2016b). Dentro do contexto de reaproveitamento desse resíduo, a literatura apresenta algumas pesquisas desenvolvidas em diferentes aplicações, conforme listado na Tabela 2. A reciclagem e reutilização da lama residual de concreto podem ser realizadas na fase sólida, necessitando de pré-tratamento, ou na fase aquosa.

Considerações técnicas		Posquisadoros	Desempenho e impactos
Consid	er ações techicas	i esquisauores	práticos
Fase	Substituição de	Shi-Cong,Bao-Jian e Chi-Sun (2012a)	Baixa resistência
Sólida	agregados	Shi-Cong,Bao-Jian e Chi-Sun (2012b)	• Diminuição da
	naturais em	Schoon et al. (2015)	trabalhabilidade
	concreto ou	Audo, Mahieux e Turcry (2016)	• Alta porosidade
	produtos de	Silva (2016)	• Necessita de um tempo
	concreto	Rughooputh, Rana e Joorawon (2016)	maior de processo e espaço
		Carvalho, Bonfim e de Paula (2016)	de armazenamento
		Xuan et al. (2016b)	• Processo de britagem
		Tang et al. (2019a)	adicional necessário
-	Material	Zhang e Fujiwara (2007)	Pré-secagem e moagem
	cimentício	Correia et al. (2009)	necessários
	em bases	Zervaki, Leptokaridis e Tsimas (2013)	• Quantidade limitada
	rodoviárias ou		utilizada
	preenchimento		
	de concreto		
-	Componente	The stal (2007)	Pré-tratamento necessário
	vitrocerâmico	That et al. (2007)	• Alta energia necessária
-	Geopolímero à	Yang et al. (2009a)	• Pré-secagem e moagem
	base de lama	Yang et al. (2009b)	necessários
	residual de	Yang et al. (2009c)	• Necessita de um processo
	concreto		de síntese otimizado

Fase	Utilização da	Chatveera, Lertwattanaruk e	Método econômico para
aquosa	água de lavagem,	Makul (2006)	reciclagem
	da lama como	Xuan et al. (2016a)	• Debate sobre os limites
	aglomerante ou	Audo, Mahieux e Turcry (2016)	aceitáveis de sólidos na
	filler para		água de chorume
	produção de		 Regulamentação política
	novos concretos		limitada
			• Diminuição da resistência
			à compressão, resistência à
			flexão e o módulo de
			elasticidade
	Absorvente de	Iizuka et al (2012a)	 Aplicação limitada
	produtos	Iizuka et al (2012b)	 Técnicas avançadas
	químicos,	Iizuka et al (2012c)	necessárias
	como captura	Tsunashima et al (2012)	
	de CO ₂ ,	Iizuka et al (2014)	
	recuperação de	Yoo, Shin e Ji (2018)	
	fósforo,		
	clarificação da		
	água e assim por		
	diante		

Cont. Tabela 2 – Métodos potenciais de gerenciamento de lama residual de concreto.

Fonte: Adaptado de Xuan et al (2016)

2.3 Cimento Geopolimérico

Materiais álcali-ativados pertencem à família de aglomerantes que são caracterizados por um alto teor de fase de ligação de aluminossilicatos, os quais não são reativos com a água, ou sua reação é muito lenta. Contudo, devido ao seu alto conteúdo amorfo, eles hidrolisam e condensam quando colocados em meio alcalino, formando estruturas poliméricas tridimensionais (HABERT, 2014; NAQI; JANG, 2019).

Considerado como um potencial substituto do cimento Portland, o cimento geopolimérico compete em custo, desempenho e menos emissões de CO₂. Além disso, possui a capacidade de formar uma forte ligação química com todo o tipo de agregados à base de rocha,

apresenta elevada resistência mecânica, alta durabilidade, baixos percentuais de retração e absorção de água e ainda provou ter mais durabilidade e capacidade de reciclar os milhões de toneladas de subprodutos e resíduos industriais (DAVIDOVITS, 2013; NAQI E JANG, 2019; LI, SUN e LI, 2010).

2.3.1 Mecanismos de geopolimerização

A geopolimerização pode ser considerada análoga a reação de zeólito, ainda que a microestrutura formada seja amorfa a semicristalina em vez de cristalina. Em geral, os processos envolvidos incluem a dissolução, a reorientação e a solidificação, como ilustrado na Figura 8 (AZEVEDO, 2017; DAVIDOVITS, 1991, BUCHWALD et al., 2004, DUXSON et al., 2005, DUXSON; LUKEY; VAN DEVENTER, 2006).

Figura 8 – processo de geopolimerização

Fonte: Adaptado de Yao et al. (2009)

A etapa de dissolução apresenta a produção das espécies Si e Al quando as matériasprimas Si-Al entram em contato com a solução alcalina - usualmente silicatos e hidróxidos de potássio (K) e/ou sódio (Na). A extensão da geração de Si e Al depende principalmente da concentração da solução alcalina e das propriedades intrínsecas das matérias-primas Si-Al (SANTOS, 2016; AZEVEDO, 2017). A reorientação é caracterizada pela difusão das espécies dissolvidas de Si e Al em oligômeros, os quais na fase aquosa formam redes relativamente grandes por condensação, resultando na formação de um gel. Esse processo libera a água que foi nominalmente consumida durante a dissolução. Como tal, a água desempenha o papel de um meio de reação, mas reside nos poros do gel (DUXSON; LUKEY; VAN DEVENTER, 2006; AZEVEDO, 2017).

O sistema continua a rearranjar-se e reorganizar-se, à medida que a conectividade da rede de gel aumenta, resultando na rede tridimensional amorfa ou semicristalina de aluminossilicato comumente atribuída aos geopolímeros, efetivando assim o processo de solidificação. Nesta fase de reação de fixação efetiva, a temperatura e a circulação de ar são primordiais para a determinação das propriedades dos produtos geopoliméricos finais (DUXSON; LUKEY; VAN DEVENTER, 2006; AZEVEDO, 2017; XU E VAN DEVENTER, 2000).

2.3.2 Classificação

2.3.2.1 Quanto a proporção Si:Al

A estrutura tridimensional dos geopolímeros é constituída de tetraedros ligados de SiO₄ e AlO₄ compartilhando todos os átomos de oxigênio. Davidovits (2002) propôs uma classificação baseando-se na proporção entre silício (Si) e alumínio (Al), a qual está ilustrada na Figura 9 e descrito abaixo:

 i) (-Si-O-Al-) (Si/Al = 1): chamado de sialato, é constituído de duas moléculas de sialato que se condensam para formar o dissialato, e três moléculas se condensam para formar o trissialato de estrutura hexagonal.

 ii) (-Si-O-Al-O-Si-O-) (Si/Al = 2) intitulado como sialato-siloxo, provavelmente de forma triangular podendo, também, ser linear. Duas moléculas se condensam formando o di(sialato-siloxo) ou tri(sialato-siloxo).

iii) (-Si-O-Al-O-Si-O-) (Si/Al = 3) temos o sialato-dissiloxo ou sialatodissiloxo no formato quadrado ou sialato-dissiloxo com formato de triângulo com o grupo lateral Si-O.

iv) (Si/Al > 3) introduzimos a ligação sialato entre as cadeias de polissiloxo obtendo a ligação Si-O-Al.

Figura 9 - Estruturas moleculares dos geopolímeros

As razões molares entre os componentes interferem diretamente nas propriedades do produto final, assim, pode-se definir algumas aplicações conforme a relação Si:Al: (Si:Al \leq 3) resulta em redes rígidas tridimensionais reticuladas e propriedades rígidas e frágeis viabilizando a produção de materiais geopoliméricos com características de cimento e cerâmicas, tais como tijolos e produtos de proteção ao fogo; (Si:Al > 3) resulta em redes 2-D e estruturas poliméricas ligadas linearmente com propriedades adesivas e de borracha; Razões Si:Al maiores que 20:1 e menores que 35:1, proporcionam ao produto final propriedades aprimoradas, tais como resistência ao calor e ao fogo (DAVIDOVITS, 2002).

Há também uma formulação empírica, apresentada para matriz de geopolímeros, apresentada por por Davidovits (1978):

$$Mn\{-(SiO_2)z-AlO_2-\}\cdot wH_2O$$

Onde M é um cátion alcalino (Na⁺, K⁺ ou Ca²⁺); n é o grau de polimerização; z é a razão de Si:Al de 1 a 3; w é o grau de hidratação.

2.3.2.2 Quanto a composição dos componentes cimentícios

Com base na composição dos componentes cimentícios, os cimentos ativados por álcalis são classificados em cinco categorias principais (SHI; FERNÁNDEZ-JIMÉNEZ; PALOMO, 2011):

i) Cimentos à base de escória ativados por álcalis: As propriedades mecânicas são determinadas pela natureza da escória e tipo e dosagem do ativador utilizado. Uma mistura

adequadamente projetada de cimento de escória ativado por álcalis apresenta pontos fortes em comparação com cimento Portland comum (SHI et al., 2006). O principal produto de reação formado é um gel de silicato de cálcio hidratado (C-S-H) contendo Al na sua estrutura (FERNÁNDEZ-JIMÉNEZ et al., 2003);

ii) Cimentos de pozolana ativados por álcalis: nessa categoria, o cimento de cinza volante ativado por álcalis e o cimento de metacaulim ativado por álcalis mostram-se como as opções mais estudadas na última década (RAMOS, 2017). São muito resistentes contra a reação ácida e álcali-sílica e exibem maiores resistências quando curados a temperaturas mais altas (PROVIS, 2014; JANG et al., 2015; BARBOSA E MACKENZIE, 2003);

iii) Cal-pozolana / cimentos de escória ativados por álcalis: integrando o grupo de materiais mais antigos da humanidade, as argamassas de cal-pozolana apresentam o gel cálcio aluminossilicato alcalino (C-S-A-H) como o produto da reação principal. Podem não possuir resistência suficiente para usos estruturais e apenas hidróxidos e sulfatos alcalinos podem ser normalmente utilizados como ativadores (RAMOS, 2017);

iv) Cimentos contendo aluminato de cálcio ativado por álcalis: como fonte de Al reativo no processo de ativação, os cimentos de aluminato de cálcio promovem a reação de policondensação para produzir uma ligação Si-O-Al polimérica propiciando ainda mais o endurecimento dos geopolímeros à temperatura ambiente (CAO et al., 2018). Dependendo das proporções de mistura e condições de reação, podem ser obtidos dois géis ricos em alumínio: um principal, o gel N-S-A-H e outro minoritário, o C-S-A-H (RAMOS, 2017);

v) Cimentos contendo cimento Portland ativados por álcali (cimento híbrido): Esses materiais cimentícios usam altas proporções de subprodutos industriais, como escória granulada de alto-forno ou cinzas volantes, com menos de 30% de cimento Portland ou clínquer, e a mistura é ativada por álcalis (ANGULO-RAMÍREZ; MEJÍA DE GUTIÉRREZ; PUERTAS, 2017; GARCÍA-LODEIRO et al., 2012; PALOMO et al., 2013). Possuem melhores propriedades mecânicas e de durabilidade, mesmo em idades precoces, e os produtos de hidratação dependem do tipo de subproduto industrial ou precursor de aluminossilicato usado (FERNÁNDEZ-JIMÉNEZ et al., 2013).

2.3.3 Lama residual de concreto em geopolímeros

Pesquisas muito limitadas foram direcionadas para o reaproveitamento de lama residual de concreto via geopolimerização. Yang et al. (2009a) produziram um concreto geopolimérico usando uma mistura de agregado de construção reciclado (40-55%) e agregados

naturais. A matriz geopolimérica foi preparada com uma mistura de lama residual de concreto em pó e metacaulim (5–25%) e a solução de ativação foi preparada usando NaOH/silicato de sódio em uma razão de massa variando de 0,5-1,3.

Os autores afirmaram que no geopolímero formado, as partículas de lama residual e areia de sílica apresentaram uma boa ligação que contribuiu para o aumento da resistência à compressão, principalmente após 28 dias de cura à temperatura ambiente. A resistência alcançou cerca de 40 MPa.

Yang et al. (2009b, 2009c) também estudaram as propriedades de geopolímeros à base de lama residual de concreto. Nesse caso, a pesquisa dividiu-se em dois testes: no primeiro, o pó da lama e a areia de sílica foram misturados com diferentes quantidades de metacaulim (10-40%) e a solução de NaOH/silicato de sódio foi usada como ativador alcalino. No segundo teste, sílica ativa foi adicionada à matriz de ligação (2-10%) conferindo melhores propriedades mecânicas das argamassas e tornando a estrutura muito mais densa.

A lama residual de concreto, combinada com metacaulim e sílica ativa, é um material oportuno para a fabricação de geopolímero aplicável à construção civil, pois as resistências alcançadas nos estudos atendem aos requisitos comuns de construção e resulta em um produto mais favorável ao meio ambiente. Contudo, embora a matéria-prima seja um material reciclado barato, outros componentes como NaOH e silicato de sódio ainda tem um custo relativamente alto. Substitutos desses materiais devem ser encontrados e as propriedades desse tipo de material de construção podem ser aprimoradas ainda mais (YANG et al, 2009b, 2009c).

Outras lacunas ainda precisam ser preenchidas, tais como: elaboração de uma mistura otimizada, observando a taxa de adição máxima do material para que o mesmo não afete significativamente o desenvolvimento da resistência do geopolímero; estudo mais aprofundado sobre influência do material nos produtos das reações e avaliação das propriedades no estado fresco e endurecido. Diante do exposto, um estudo mais abrangente sobre o desempenho da lama residual de concreto em cimento geopolimérico se faz necessário.

3 MATERIAIS UTILIZADOS

3.1 Metacaulim

O Metacaulim HP Ultra, utilizado como fonte de sílica e alumina, fora doado pelo fabricante Metacaulim do Brasil. As características fornecidas pelo fabricante estão na Tabela 3 juntamente com as especificações da NBR 15.894-1 (ABNT, 2010).

Coloração	Creme claro		
Propriedades Físico-Químicas	Valores típicos	Valores limites (NBR 15.894-1:2010)	
SiO ₂	57%	44% a 65%	
Al ₂ O ₃	34%	32% a 46%	
CaO + MgO	< 0,1%	< 1,5%	
SO ₃	< 0,1%	< 1%	
Na ₂ O	< 0,1%	< 0,5%	
Eq.Alcalino Na2O	< 1,5%	< 1,5%	
Fe ₂ O ₃	2%	-	
TiO ₂	1,50%	-	
Umidade	0,50%	< 2%	
Perda ao Fogo	3%	< 4%	
Resíduo #325	6%	< 10%	
Desempenho com Cimento (7 dias)	115%	> 105%	
Atividade Pozolânica Chapelle	880mg Ca(OH) ₂ /g	> 750mg Ca(OH) ₂ /g	
Área Específica BET	23,000 m²/g	150.000 cm ² /g	
Massa Específica	2,560 kg/dm ³	-	

Tabela 3 – Características do Metacaulim comercial.

Fonte: Metacaulim do Brasil (2016)

3.2 Solução alcalina ativadora

A dissolução do aluminossilicato foi realizada em meio alcalino, por meio de uma solução de silicato de potássio, composta por sílica ativa, hidróxido de potássio (KOH 9 mol/L) e água. A escolha desta solução baseou-se nos estudos de Santos (2016), Portela (2016) e Azevedo (2017).
A Microsílica Grade 920 ASTM, fonte de sílica ativa, é um material amorfo e seu tamanho de partícula é de $80\% < 5,000 \,\mu$ m com morfologia esférica. A empresa doadora Elkem Materials South América Ltda fornece as características químicas e físicas, apresentadas na Tabela 4.

Tabela 4 – Características da Microsílica comercial							
Propriedade Unidade Valor							
SiO ₂	%	Mínimo 85					
H ₂ O	%	Máximo 3					
Retido na peneira de 45µm	%	Máximo 10					
Perda de ignição	%	Máximo 6					
Superfície específica	m²/g	Mínimo 15					
Índice de atividade pozolânica	%	Mínimo 105					

Fonte: Elkem Silicon Materials (2020)

3.2.2 Hidróxido de potássio (KOH)

O KOH (Potassa Cáustica, marca Dinâmica), obtido comercialmente, possui a forma de lentilhas brancas e suas características são fornecidas pelo fabricante (Tabela 5).

Especificações					
Teor	Mín. 85 %				
Teor de K ₂ CO ₃	Máx. 2,0 %				
Hidrossolubilidade (20°C)	110 g/L				
Cloreto (Cl)	Máx. 0,01 %				
Comp. Nitrogen. (N)	Máx. 0,001				
Fosfato (PO ₄)	Máx. 5 ppm				
Sulfato (SO ₄)	Máx. 0,003 %				
Metais Pesados (ICP)	Máx. 0,001 %				
Ferro (Fe)	Máx. 0,001 %				
Níquel (Ni)	Máx. 0,001 %				

Tabela 5 - Especificações do hidróxido de potássio comercial

Cont. Tabela 5 - Especificações do hidróxido de potássio comercial

Cálcio (Ca)	Máx. 0,005 %
Magnésio (Mg)	Máx. 0,002 %
Sódio (Na)	Máx. 0,05 %

Fonte: Dinâmica Química Contemporânea Ltda (2019)

3.2.3 Água

A água utilizada é proveniente do sistema de abastecimento da cidade de Manaus. Por se tratar de um recurso público, é submetido a um tratamento que obedece a padrões nacionais da portaria vigente nº 5 do Ministério da Saúde (BRASIL, 2017). Assim, para garantir a potabilidade da água são adicionados coagulantes, cal (CaO), cloro (Cl), flúor (F) e polímeros durante o processo de tratamento. Além destes, em águas de rio pode ocorrer naturalmente o iodo, predominantemente na forma de iodeto (I⁻) (PICHEL e VIVAR, 2017; SHETAYA et al., 2012).

3.3 Lama residual de concreto

A lama residual de concreto é derivada do processo de limpeza dos caminhões betoneira e pátio das CDC e foi objeto de estudo para incorporação em cimento geopolimérico como fonte de cálcio (nomenclatura empregada a partir dos próximos tópicos deste trabalho).

No presente estudo, foram coletadas lamas residuais geradas em três diferentes centrais dosadoras de concreto na cidade de Manaus - AM, denominadas de CDC K, CDC P e CDC S. A coleta nos tanques de sedimentação foi feita em três pontos distintos (Figura 10), uma vez ao mês e durante três meses consecutivos (julho, agosto e setembro).

Figura 10 – Tanques de sedimentação - à esquerda: CDC K; no meio: CDC P e à direita: CDC S; pontos de coleta: (A) entrada do tanque, (B) meio do tanque e (C) saída do tanque.

4 MÉTODOS DE ANÁLISE E PROCESSAMENTO

4.1 Programa experimental

A realização deste trabalho iniciou com um estudo da composição química da fonte de cálcio proveniente de três diferentes CDC. As amostras foram submetidas a análise de Fluorescência de Raios-X por dispersão de ondas (FRXDO) e análise estatística dos dados (ANOVA), com o objetivo de investigar a variação da composição do material dentro do tanque de sedimentação, entre meses de recolhimento e entre as centrais.

Após o estudo qualitativo e quantitativo da composição do material, selecionou-se a amostra que apresentou maior teor de óxido de cálcio (CaO) para ser submetida a outros ensaios de caracterização (teor de umidade, massa específica, granulometria a laser, DRX, FTIR, TGA). Com o material caracterizado, definiu-se a dosagem para que a pasta de cimento geopolimérico apresentasse boa trabalhabilidade.

A produção das pastas de cimento geopolimérico envolveu dois tipos de amostras: sem adição de fonte de cálcio (GEOREF) e com adição (GEOFDC), as quais foram submetidas a ensaios de estado fresco (fluidez pelo método de Kantro (1980) e tempo de pega pelo aparelho de Vicat) e estado endurecido (resistência à compressão axial), além da análise mineralógica, química e térmica. O estudo finalizou-se com a indicação de possíveis aplicações do produto, considerando as suas características, e sugestões para trabalhos futuros, mediante as lacunas encontradas. Todas as etapas do estudo experimental estão estruturadas no fluxograma exposto na Figura 11.

Figura 11 – Programa experimental

4.2 Processo de secagem e identificação da fonte de cálcio

As amostras foram coletadas em estado úmido e secas em estufa, marca CIENLAB, modelo CE 220/81, a 105°C durante 24h, de acordo com a literatura (XUAN et al., 2016a; XUAN et al., 2016b; YOO, SHIN e JI, 2018). Em seguida, as porções foram maceradas com o auxílio de um pistilo de porcelana e peneiradas manualmente, separando-se para uso o volume passante da peneira ABNT nº 100 (abertura da malha de 150µm), a fim de garantir uma estreita distribuição granulométrica para algumas análises de caracterização e incorporação (Figura 12).

Para controle dos dados, as amostras receberam identificações únicas que incluíam a inicial da central dosadora de concreto (K, S ou P), o mês de coleta (7,8 ou 9) e o ponto de coleta no tanque de sedimentação (A, B ou C) (Figura 13).

4.3 Técnicas de Caracterização

4.3.1 Teor de Umidade

A porcentagem de umidade existente na fonte de cálcio foi determinada com o auxílio de um analisador de umidade, marca SHIMADZU, modelo MOC63u, do Laboratório de Síntese e Caracterização de Nanomateriais (LSCN), do Instituto Federal do Amazonas. Não houve tratamento prévio das amostras para esta análise e obteve-se o resultado a partir do cálculo da média aritmética de três medidas.

4.3.2 Massa específica

Para a obtenção da massa específica da fonte de cálcio utilizou-se o procedimento descrito na NBR 16605 (ABNT, 2017), no qual faz-se uso do frasco volumétrico de Le Chatelier e álcool metílico, cuja massa específica é 0,792 g/cm³ e não apresenta reação química com o material ensaiado. Previamente, a amostra foi peneirada em peneira com abertura de malha 150 µm com a finalidade de retirar corpos estranhos do material.

As medidas foram calculadas com a Equação 2, respeitando a diferença de 0,02 g/cm³ das determinações individuais e efetuou-se uma média aritmética das três medidas para a obtenção do resultado.

$$\rho = \frac{m}{v}$$
(Equação 2)

Onde:

 ρ: é massa específica do material ensaiado, expressa em gramas por centímetro cúbico (cm³); m: é a massa do material ensaiado, expressa em gramas (g);

v: é o volume deslocado pela massa do material ensaiado (v_2 '- v_1 '), expresso em centímetros cúbicos (cm³);

 v_2' - v_1' : são os valores corrigidos de v_1 e v_2 , respectivamente, a partir da calibração da escala do frasco volumétrico, em centímetros cúbicos (cm³).

4.2.3 Granulometria a laser

A distribuição do tamanho das partículas da fonte cálcio foi determinada por um Analisador de Tamanho de Partícula, modelo PSA, pertencente a empresa Anton Paar. A técnica baseou-se no método de Espalhamento de Laser e a teoria óptica da difração de Fraunhofer. A amostra foi previamente submetida a dispersão sólida e o ensaio foi realizado em triplicata.

4.3.4 Fluorescência de Raios-X por dispersão de ondas (FRXDO)

Para determinar a composição química da fonte de cálcio e dos cimentos geopolímericos produzidos, empregou-se a técnica de Espectrometria de Fluorescência de Raios-X por dispersão de ondas. A análise qualitativa e quantitativa foi realizada com o equipamento FRXDO da Rigaku, modelo Supermini, pertencente ao Laboratório do grupo Crowfoot de Métodos de Raios-X, da Universidade do Estado do Amazonas.

As pastilhas foram feitas em oito repetições, pesadas em balança analítica na razão de 0,5:4,0, ou seja, 0,500 g de amostra para 4,000 g de ácido bórico. Para a confecção da pastilha, uma prensa pneumática foi utilizada para a aglutinação da amostra no ácido bórico.

4.3.5 Difratrometria de Raios-X (DRX)

A identificação das fases cristalinas presentes na fonte de cálcio e nos cimentos geopolímericos foi realizada utilizando o difratômetro da Bruker, modelo D2 Phaser, pertencente ao Laboratório de Síntese e Caracterização de Nanomateriais (LSCN), do Instituto Federal do Amazonas. A radiação empregada era monocromática de cobre (Cu K α , λ = 1,5418 Å), operando a 40 kV e 30 mA, com varreduras de velocidade angular de 0,02° e intervalo de medida entre os ângulos de Bragg (20) de 10° e 80°. Nas análises, utilizou-se os padrões de difração fornecidos pelo *Inorganic Crystal Structure Database (ICSD)*.

4.3.6 Espectroscopia no Infravermelho por Transformada de Fourier (FTIR)

A determinação dos grupos funcionais presentes na fonte de cálcio e nos cimentos geopolímericos foram realizadas em Espectrofotômetro de Infravermelho, da marca Shimadzu – modelo IR Prestige 21, do Laboratório de Síntese e Caracterização de Nanomateriais (LSCN), do Instituto Federal do Amazonas. Efetuou-se a análise por transmitância, com resolução de 8 cm⁻¹, intervalo de 4000 a 650 cm⁻¹ e 128 varreduras por amostra.

4.3.7 Perda ao fogo

O teor de material perdido na fonte de cálcio quando esta é queimada durante 50 min foi realizado conforme NBR NM 18 (ABNT, 2012). As amostras utilizadas já estavam secas e as massas foram medidas em balança analítica de quatro casas decimais. O ensaio consiste, basicamente, na queima das porções em forno mufla à temperatura de 950 \pm 50 °C, com taxa de aquecimento de 15 °C/min, aproximadamente.

4.3.8 Análise termogravimétrica e térmica-diferencial (TGA-DTG)

A análise foi conduzida através de um analisador térmico (Shimadzu-TGA-50), a uma taxa de aquecimento de 10 ° C/min (temperatura ambiente a 1000 ° C em atmosfera de N_2) no Laboratório de Síntese e Caracterização de Nanomateriais (LSCN), do Instituto Federal do Amazonas. Pesou-se entre 8 e 10 mg das amostras em porta-amostra de platina.

4.4 Produção do cimento geopolimérico

4.4.1 Dosagem e processamento

A escolha da fonte de cálcio incorporada na matriz geopolimérica foi realizada após o emprego da técnica de Fluorescência de Raios-X e estudo da composição química (Item 5.1.1). Selecionou-se o material com maior teor de CaO, com o intuito de fornecer à matriz geopolimérica a maior quantidade desse óxido em 5% de incorporação, e formulou-se uma dosagem que apresentasse uma pasta com boa trabalhabilidade para moldagem dos corpos de prova. As proporções iniciais de teste basearam-se nos trabalhos de Santos (2016), Portela (2016) e Azevedo (2017).

Vale ressaltar que o presente estudo não fez uso de aditivos plastificantes e, portanto, optou-se por incorporações menores que 15,000%, inicialmente. Porém os teores entre 10-15,000% nos testes iniciais resultaram em uma trabalhabilidade inviável a moldável dos corpos de prova devido a pega acelerada.

Após avaliações preliminares baseadas na fluidez satisfatória, optou-se por substituir 5,000% em massa de metacaulim por fonte de cálcio. A Tabela 6 apresenta a dosagem utilizada para um volume 500,000 cm³, referente a quatro corpos de prova com 5 cm de aresta.

	Massa (g)						
Amostra	Metacaulim	Fonte de cálcio	KOH 9 mol/L	Água	Microsílica		
GEOREF	519,954	-	247 507	200.047	109 077		
GEOFDC	493,956	25,998	247,397	200,947	190,077		

Tabela 6 – Dosagem das amostras

A preparação das misturas foi realizada de acordo com Santos (2016), Portela (2016) e Azevedo (2017) que se basearam parcialmente em métodos estabelecidos de domínio público (DAVIDOVITS, 1982; DAVIDOVITS; SAWYER, 1985; DAVIDOVITS, J.; DAVIDOVICS, M.; DAVIDOVITS, N., 1994; DAVIDOVITS, J.; DAVIDOVITS, R., 2005), compreendendo as etapas apresentadas na Figura 14 e descritas abaixo:

Figura 14 – Sequência de preparação da pasta de cimento geopolimérico

- a) Preparação da solução ativadora (Figura 14a): em um recipiente plástico, pesou-se a microsílica e adicionou-se água gradativamente até a completa dissolução da mesma; o KOH foi acrescentado, também aos poucos, até alcançar a plena homogeneização dos materiais; armazenou-se o recipiente fechado em local apropriado para que a solução ficasse em repouso por um período de 24h;
- b) Após o período de repouso, para a amostra GEOFDC, misturou-se manualmente o metacaulim e a fonte de cálcio (peneirada em malha de 150 µm), ambos em pó, até homogeneização completa (Figura 14b). Na preparação de GEOREF não foi necessária esta etapa, pois não possui a incorporação da fonte de cálcio.
- c) Adição do precursor na solução (Figura 14c): Com a utilização de um misturador mecânico a vácuo, primeiramente submeteu-se apenas o ativador à rotação lenta durante 30 segundos; em seguida, adicionou-se a mistura em pó do precursor e da fonte de cálcio na cuba do misturador com rotação em velocidade média durante 4 minutos.

4.4.2 Moldagem, desmoldagem e cura dos corpos de prova

Para a realização dos ensaios de compressão axial, foram confeccionados corpos de prova logo após o processamento da pasta de cimento geopolimérico. De acordo com ASTM C109/C109 M, utilizou-se quatro moldes cúbicos de 5 cm de aresta para cada idade de rompimento, os quais foram previamente untados com vaselina e preenchidos com o material fresco.

Durante o preenchimento do molde, aplicou-se golpes laterais para eliminação de vazios e adensamento da mistura. Com o molde preenchido, a superfície superior foi rasada e

uma base acrílica posicionada no topo (Figura 15a), proporcionando uma superfície lisa para a boa distribuição de tensões na realização do ensaio.

Decorrido 24 horas da moldagem, os corpos de prova foram desmoldados (Figura 15b), envolvidos em filmes plásticos, embalados em sacos para evitar a perda de água (Figura 15c) e curados à temperatura ambiente até a realização do ensaio mecânico.

Figura 15 - Corpo de prova em molde (a), desmoldado (b) e armazenamento até a idade de ruptura (c)

4.5 Análise das pastas de cimento geopolimérico

4.5.1 Estado fresco

4.5.1.1 Fluidez pelo método de Kantro

O método de abatimento desenvolvido por Kantro (1980), também por conhecido por *mini-slump test*, têm sido utilizado para analisar a fluidez e a trabalhabilidade em pastas cimentícias e geopoliméricas. Além de estabelecer a dosagem, a técnica também permite a possível constatação de exsudação e segregação nas pastas utilizando quantidades relativamente pequenas de material (BELCHIOR, 2017; CESARI, 2015; GONÇALVES, 2015; RAMOS, 2017; SAMPAIO, 2017).

A realização deste ensaio envolveu a utilização de uma base plástica plana, um paquímetro digital e um molde tronco-cônico (Figura 16). Os procedimentos consistiram nas seguintes etapas: aplicação de uma fina camada de vaselina no molde; posicionamento do molde na base; preenchimento completo do cone com a pasta de cimento geopolimérico; levantamento vertical do cone, de forma contínua e cuidadosa e medição dos diâmetros perpendiculares com auxílio do paquímetro digital, após a estabilização das pastas. O tamanho médio dos dois diâmetros obtidos representou o espalhamento da pasta ensaiada (Figura 17).

Figura 16 - Minicone para ensaio de abatimento

Fonte: Monte (2003)

Figura 17 - Procedimento simplificado do ensaio de fluidez das pastas geopoliméricas

4.5.1.2 Tempo de pega pelo aparelho de Vicat

O tempo que a pasta de cimento geopolimérico levou para solidificar foi determinado com o auxílio do aparelho de Vicat, o qual efetua a penetração de uma agulha na pasta vertida em um molde cilíndrico. Na ausência de normas aplicáveis a geopolímeros, este ensaio seguiu os procedimentos descritos na NBR 16607 (ABNT, 2018) de forma adaptada, como realizado por Santos (2016), Geraldo (2016) e Caballero (2017).

A realização do ensaio das duas amostras não contou com o controle de umidade e temperatura, sendo apenas registrado tais parâmetros através da leitura de um higrômetro no

fim de pega (Figura 18). As medições das penetrações foram realizadas a cada 5 minutos e os tempos de início e fim de pega expressos em minutos. O ensaio finalizou-se quando a agulha não penetrou o material.

Figura 18 - Ensaio de determinação do tempo de início e fim de pega com utilização de higrômetro.

4.5.2 Estado endurecido

As pastas de cimento geopolimérico foram submetidas às mesmas técnicas de caracterização descritas nos itens 4.3.4, 4.3.5, 4.3.6 e 4.3.8. De forma complementar, as amostras também foram avaliadas quanto a resistência à compressão axial.

4.5.2.1 Resistência à compressão axial

O comportamento mecânico das pastas confeccionas conforme os itens 4.4.1 e 4.4.2 foi analisado mediante a determinação da resistência à compressão axial dos corpos de prova cúbicos, nas idades de 24 h, 3, 7 e 28 dias.

Realizou-se o ensaio à velocidade de carregamento de 0,2 mm/min utilizando uma prensa mecânica, marca Microtest, modelo EM2/200/FR e com capacidade de 200 kN, pertencente ao Laboratório de Ensaios de Tração e Compressão, do Instituto Federal do Amazonas (IFAM).

Para cada idade, foram rompidos quatro corpos de prova de GEOREF e GEOFDC, eliminando aquele cujo comportamento foi mais distante da média, conforme ASTM C109/C109 M. Os dados resultantes foram manipulados no software Origin Pro® 9.0.

5 RESULTADOS E DISCUSSÕES

5.1 Caracterização da Fonte de Cálcio

5.1.1 Composição química

5.1.1.1 Qualitativa

A composição química divide-se em dois grupos de óxidos: os comuns às amostras das três CDC, em seus três pontos de coleta no tanque, nos três meses de recolhimento; e os constituintes pontuais, aqueles que foram constatados em apenas duas CDC e/ou não ocorreram em todos os meses de coleta em uma determinada CDC (Tabela 10).

<u> </u>		CDC	K	(CDC P			CDC S		
Oxidos	K7	K8	K9	P7	P8	P9	S7	S8	S9	
Na ₂ O	Х	Х	х	Х	Х	Х	Х	Х	х	
MgO	Х	Х	х	Х	Х	Х	Х	Х	Х	
Al_2O_3	Х	Х	х	Х	Х	Х	Х	Х	Х	
SiO_2	Х	Х	х	Х	Х	Х	Х	Х	Х	
P_2O_5	Х	Х	х	Х	Х	Х	Х	Х	Х	
SO_3	Х	Х	х	Х	Х	Х	Х	Х	Х	
Cl	Х	Х	х	Х	Х	Х	Х	Х	Х	
K_2O	Х	Х	х	Х	Х	Х	Х	Х	Х	
CaO	Х	Х	х	Х	Х	Х	Х	Х	Х	
TiO ₂	Х	Х	х	Х	Х	Х	Х	Х	Х	
V_2O_5	Х	Х	х	Х	Х	Х	Х	Х	Х	
Cr_2O_3	Х	Х	х	Х	Х	Х	Х	Х	Х	
MnO	Х	Х	х	Х	Х	Х	Х	Х	Х	
Fe ₂ O ₃	Х	Х	х	Х	Х	Х	Х	Х	Х	
NiO	Х	Х	x ^{A,B}	Х	Х	Х	-	x ^{B,C}	Х	
CuO	Х	Х	х	Х	Х	Х	Х	Х	Х	
ZnO	Х	Х	х	Х	Х	Х	Х	Х	Х	
As_2O_3	Х	Х	х	-	-	-	Х	-	Х	
SrO	Х	Х	х	Х	Х	Х	Х	Х	Х	
Sb ₂ O ₃	-	-	-	Х	Х	Х	Х	Х	Х	
Ι	Х	Х	х	Х	Х	-	Х	Х	Х	
BaO	Х	Х	х	Х	-	Х	Х	Х	х	

Tabela 7 - Composição qualitativa das fontes de cálcio coletadas

OBS: Em negrito estão os óxidos pontuais

^{A,B} Identificado apenas nos pontos A e B de coleta;

^{B,C} Identificado apenas nos pontos B e C de coleta.

Segundo Schoon et al. (2015), a composição química da lama residual é influenciada principalmente pelas matérias-primas utilizadas na produção de concreto. Esta mistura é composta, basicamente, por cimento Portland, agregados, água, dentre outras adições, de acordo com o produto requerido (Zhao et al., 2018).

O conteúdo de CaO, SiO₂, Al₂O₃ e Fe₂O₃ possivelmente tem como fonte principal o cimento Portlant, pois, para este aglomerante, esses óxidos são essenciais. Outros componentes menores também podem ser derivados desse material, como: MgO, SO₃, Na₂O e K₂O (MARCHON e FLATT, 2016).

Os óxidos comuns e pontuais podem ainda ser provenientes dos agregados naturais. O SiO₂ é o componente principal das areias brancas que ocorrem em várias regiões da Amazônia (HORBE et al., 2003) e outros estudos apontam a incidência de TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O, P₂O₅ como constituintes principais do solo da região, e As, Ba, Cl, Cu, Ni, Sb, Sr, V e Zn em menores concentrações (MATSCHULLAT et.al, 2020; KONHAUSER et al., 1994, SOUZA et al., 2018, HORBE et al., 2007).

O Cl, CaO e I podem, também, ter origem na água. Uma vez que este recurso é proveniente do sistema público de abastecimento da cidade e é submetido a tratamento de potabilidade, logo nele há adições de coagulantes constituídos dos dois primeiros óxidos. O I ocorre naturalmente nas águas dos rios, predominantemente na forma de iodeto (I⁻) (SHETAYA et al., 2012; PICHEL e VIVAR, 2017).

A ocorrência pontual de alguns óxidos pode estar relacionada à variação de lotes e tipologia dos cimentos (CP II, CP III e CP IV) nos traços de concreto e, também, com a origem dos agregados utilizados na Região Norte do Brasil, os quais podem ser originados de maciços cristalinos no Amapá, Roraima, Amazonas e Maranhão (HOPPE FILHO et al., 2017; LA SERNA e REZENDE, 2009).

5.1.1.2 Quantitativa

O estudo quantitativo da composição química das fontes de cálcio foi, nos dois primeiros passos, desenvolvido individualmente por CDC. Investigou-se a variabilidade significativa das médias dos óxidos dentro do tanque de sedimentação de cada CDC, comparando entre si os pontos de coleta.

A análise prosseguiu com a comparação entre as médias dos óxidos por meses de coleta, novamente por CDC. Apenas o último passo apresenta a comparação entre as CDC,

considerando a média de todos as amostras coletadas, a fim de avaliar as diferenças e identificar qual das empresas produz um material com o maior teor de CaO.

Os óxidos pontuais, neste momento, não foram expostos nos dados gráficos devido ao fato de que, por incorrem regularmente, a análise de variância não foi realizada em todas as situações propostas. Contudo, é válido acrescentar que esses óxidos não obtiveram concentrações superiores a 0,500%, o BaO é o mais expressivo dentro do grupo e as médias com diferenças significativas foram observadas apenas para NiO e BaO em amostras da CDC K e apenas NiO nas amostras do mês sete da CDC P.

5.1.1.2.1 Pontos de Coleta

O primeiro mês de coleta na CDC K apresentou apenas seis óxidos com médias por ponto equivalentes estatisticamente entre si (Na₂O, P₂O₅, V₂O₅, MnO, ZnO e I). Esses componentes apresentam um quantitativo inferior a 0,500%, sendo atribuído ao P₂O₅ as maiores concentração desse grupo. Ainda neste conjunto, observou-se que, nos três pontos de coleta, a menor concentração no ponto C não ocorreu apenas para Na₂O. Os demais óxidos, cujas médias por ponto diferem entre si, também se mostram, em sua maioria, com quantitativos menores no mesmo ponto, com exceção de CaO, SO₃, SrO e Cr₂O₃ (Figura 19). No geral, as maiores porcentagens das amostras são conferidas ao CaO (60-75%) e SiO₂ (12-20%), nas três médias.

A quantidade de óxidos nas amostras do mês 8 da CDC K é ampliada com a presença de As₂O₃, o qual integra, juntamente com Na₂O, V₂O₅, MnO, NiO e I, o conjunto de óxidos que não exibe diferença significativa das médias. A concentração menor no ponto C não se repetiu para os mesmos óxidos do mês de coleta anterior, mas ainda é um fato observado para a maioria dos constituintes. No grupo dos óxidos com média de concentrações distintas e menor quantidade na última posição, acrescentou-se o SO₃ (Figura 20). A predominância de CaO e

SiO₂ ocorre novamente nas médias dos três pontos de coletas, em intervalos semelhantes do mês de julho.

Figura 20 - Teor dos óxidos com médias diferentes no mês 8

No terceiro mês de coleta das amostras na CDC K, o Na₂O, V₂O₅ e I continuam na ordem dos óxidos com médias estatisticamente semelhantes entre seus pontos de coletas e com porcentagem menor que 0,500%. Acrescidos a este grupo, estão ZnO, As₂O₃ e Cr₂O₃, o qual aparece nesta condição pela primeira vez. Notou-se a permanência de As₂O₃ na composição, porém com um quantitativo superior no ponto A e B, comparado ao mês 7. A tendência da maioria dos óxidos apresentarem menores concentrações no ponto C se repete, assim como os quantitativos mais expressivos pertencerem a CaO e SiO₂ (Figura 21).

A CDC P, diferente de todas as amostras coletadas na CDC K, apresenta em sua composição o Sb₂O₃ e não denota a existência de As₂O₃. No primeiro mês de coleta, expõe apenas quatro óxidos com médias sem diferenças significativas entres os pontos de coleta, a saber: CuO, Sb₂O₃, I e BaO, todos com concentrações inferiores a 0,050%. Os demais componentes não possuem, majoritariamente, seu menor quantitativo no ponto C, como ocorreu na CDC K, e os óxidos que se encontram nessa condição ocorrem em menos que 3,000% (Figura 22), além de CaO, cujo teor é o mais expressivo na composição (48-56%), seguido de SiO2 (25-30%).

Figura 22 - Teor dos óxidos com médias diferentes no mês 7

A composição química das amostras da CDC P no mês 8 apresentou os seguintes óxidos com médias por pontos de coleta equivalentes estatisticamente: V₂O₅, NiO, CuO, Sb₂O₃, TiO₂ e I, todos com quantitativos menores que 1,000% e os três primeiros com concentrações menores no ponto C. No geral, não houve, como no mês anterior, uma predominância de posição (A, B ou C) em termos de maior ou menor concentração. No caso dos óxidos com médias diferentes e menor teor na posição C, obteve apenas P2O5, Cr2O3, SrO, ZnO, todos com teor menor que 0,500% (Figura 23). O CaO também se apresentou nesta condição, porém com uma concentração mais expressiva (50-52%). O SiO2 continuou sendo a segunda maior porcentagem e dentro do intervalo do mês de julho.

P₂O₆

Na₂C

K₂O

■ P8A ■ P8B ■ P8C

MgO

SO₂

CaO

SiO₂

Al₂O₂ Fe₂O₂

No último mês de coleta na CDC P, em comparação aos meses anteriores, houve um número maior de óxidos com médias sem diferença significativa, os quais são: Na₂O, Cl, V₂O₅, Cr₂O₃, MnO, Fe₂O₃, NiO, CuO, SrO, Sb₂O₃, BaO. Considerando a composição como um todo, não há predominância de algum ponto com relação a menor concentração e no conjunto de óxidos com médias desiguais, somente CaO e Cr₂O₃ encontraram-se com percentuais menores no ponto C (Figura 24). Os maiores quantitativos permaneceram os mesmos dos meses precedentes.

O mês 7 de coleta na CDC S apresentou, dentre todos os meses das três CDC, o maior número de óxidos com médias similares, os quais foram: Al₂O₃, Cl, TiO₂, V₂O₅, Cr₂O₃, MnO, Fe₂O₃, CuO, As₂O₃, Sb₂O₃, I e BaO. Nesta composição mensal, observou-se que, na maior parte, os maiores teores se encontraram no ponto C, o oposto da CDC K, principalmente para os óxidos com médias diferentes (Figura 25). Entre todos os óxidos quantificados, as maiores concentrações são atribuídas a CaO (59-64%), seguido de SiO₂ (20-23%), como observado nas CDC K e CDC P.

No segundo mês de coleta na CDC S, os óxidos sem diferenças significativas nas médias entres os pontos de coleta não foram todos os mesmos que antes e ocorreram em menor número: Al₂O₃, Cr₂O₃, MnO, NiO, SrO, Sb₂O₃, I e BaO. O quantitativo de CaO continuou superior aos demais óxidos, mas inferior a porcentagem do mês 7. O teor de SiO₂, de maneira oposta, aumentou comparado ao mês anterior e permaneceu como o segundo óxido com maior quantitativo. Não houve predominância de ponto de coleta com relação a maior ou menor concentração dos óxidos na composição como um todo, mas para os óxidos com diferenças significativas notou-se que os maiores teores se encontraram na última posição (Figura 26).

Figura 26 - Teor dos óxidos com médias diferentes no mês 8

A última coleta da CDC S exibiu o maior número de óxidos dos três meses de recolhimento, ao todo 22, dos quais, 9 possuem médias equivalentes: Na₂O, V₂O₅, Cr₂O₃, MnO, NiO, As₂O₃, Sb₂O₃, I e BaO, todos com porcentagens menores que 0,500%. Os teores de CaO neste mês foram os maiores dos três meses apresentados e SiO₂ apenas inferior ao mês anterior e ambos os óxidos seguem a tendência de apresentarem os maiores quantitativos da composição geral. Novamente, não houve domínio de algum ponto de coleta referente a maior ou menor porcentagem os óxidos, considerando a totalidade da composição. Porém, ao restringir o conjunto para os óxidos com médias diferentes, observou-se que, em sua maioria, as concentrações superiores se encontram na última posição (Figura 27).

5.1.1.2.2 Mês de Coleta

Entre as três CDC, a CDC K apresenta o maior número de óxidos com médias semelhantes estatisticamente nos três meses de recolhimento, que são: Na₂O, MgO, Al₂O₃, SiO₂, CaO, TiO₂, V₂O₅, Cr₂O₃, MnO, Fe₂O₃, NiO, CuO, SrO, I e BaO.

As médias mensais reafirmam que as maiores concentrações do material pertencem ao CaO, que obteve sua maior porcentagem no mês 9, e SiO₂, cuja concentração mais expressiva exibiu-se no mês 7. O terceiro óxido com maior quantitativo é Al₂O₃, mas com percentuais próximos de Fe₂O₃.

Quanto aos componentes com diferenças significativas nas médias, comparando as concentrações nos meses entre si, SO₃ e K₂O foram mais expressivos no mês 9, com 3,867% e 0,596%, respectivamente; P_2O_5 e Cl no mês no mês 7 (0,220% e 0,060%); e ZnO foi o único com quantitativo maior no mês 8, com 0,076% (Figura 28).

Figura 28 - Teor dos óxidos com médias diferentes nos meses 7, 8 e 9

A CDC P apresenta os seguintes óxidos com médias mensais sem diferença estatística significativa: Na₂O, P₂O₅, Cl, TiO₂, V₂O₅, MnO, NiO, CuO, ZnO e Sb₂O₃, todos com porcentagens menores que 1,000%. Nesta CDC, encontra-se o maior teor de SiO₂ e, no geral, as maiores médias apresentadas pelos óxidos dividem-se entre o mês 7 e 9, inclusive para o subconjunto de óxidos com quantitativos mensais diferentes estatisticamente, no qual apenas SO₃ tem o teor mais expressivo no mês 8 (Figura 39).

O CaO e SiO₂ apresentam teores superiores ao demais componentes da composição química nos três meses de coleta, apresentando médias decrescente e crescente, respectivamente, entre o tempo de recolhimento. Como ocorrido na CDC K, o Al₂O₃ também ocupa a terceira posição de maior concentração, mas com um distanciamento superior das médias de Fe₂O₃.

Figura 29 - Teor dos óxidos com médias diferentes nos meses 7, 8 e 9

A composição química com maior número de óxidos pertence a CDC S. Os componentes com médias mensais semelhantes estatisticamente são: Na₂O, MgO, P₂O₅, TiO₂, V₂O₅, Cr₂O₃, MnO, ZnO, SrO, Sb₂O₃, I e BaO, cujas concentração são inferiores a 2,000%.

Como a CDC P, as maiores porcentagens dos óxidos encontram-se divididas nos meses 7 e 9, assim como no grupo dos constituintes de médias distintas, para o qual os maiores quantitativos de Al₂O₃ (6,370%) e Fe₂O₃ (4,842%) estão no mês 8 (Figura 30).

A CDC S também exibiu os maiores teores de CaO e SiO₂ em todos os meses de coleta, o primeiro com menor concentração no mês 8 e o segundo com maior concentração no mesmo mês. O Al₂O₃, mais uma vez, ocupou a terceira posição de maior teor no período de coleta.

5.1.1.2.3 Central Dosadora de Concreto

Apenas dois constituintes possuem médias sem diferenças significativas: $Na_2O e V_2O_5$. As três centrais apresentaram o CaO como maioritário, cuja concentração mais expressiva encontra-se na CDC K, a qual foi a única que apresentou médias mensais equivalentes estatisticamente deste óxido.

O quantitativo de SiO₂ no material da CDC K, ao contrário de CaO, é o menor dentre os três locais de coleta, assim como o Al₂O₃. As porcentagens superiores dos demais óxidos com diferenças significativas dividiram-se entre a CDC K e CDC P, em sua maioria. O P₂O₅ é o único componente que possui maior teor atribuído a CDC S (Figura 31).

Figura 31 - Média do teor dos óxidos de todas as amostras das três CDC

O CaO, o SiO₂ e o Al₂O₃ são os constituintes majoritários para as três CDC. Ao confrontar as médias com seus respectivos intervalos de confiança, notou-se que os mesmos não se sobrepõem (Figura 32), logo pode-se afirmar que a lama residual de concreto produzida

nas três CDC são diferentes, considerando a média de todas as amostras coletadas, durante os três meses indicados.

A média global dos óxidos identificados nas amostras apontou que o material sedimentado é distinto entre as CDC. Como justificado anteriormente, este fato pode ocorrer devido às diferentes origens das matérias primas utilizadas em cada lugar para a fabricação do concreto. Além disso, as CDC atendem à diferentes demandas do produto inicial, isso inclui mudanças nas resistências características e modificações na dosagem, alterando quantidades de agregados e aglomerantes, que por sua vez podem conter variações na composição química por classificação e/ou lote de fabricação.

As médias mensais estatisticamente divergentes também podem ser justificadas por solicitações de diferentes concretos dentro de uma única CDC, já que a mesma pode produzir em diferentes classes de resistência. Com relação a diferença por ponto de coleta, esta possivelmente está associada a geometria dos tanques de sedimentação e granulometria do material.

Os tanques possibilitam a separação de partículas suspensas em águas residuárias por meio da ação da gravidade e diferença na densidade dos componentes envolvidos. Assim, o desempenho desse sistema de tratamento é influenciado pelas características dos sólidos em suspensão e pela geometria e dimensões do tanque (DE LUNA et al., 2020).

As três CDC apresentam tanques retangulares, mas com subdivisões internas diferentes. Segundo Al-Sammarraee e Chan (2009b), quanto maior o número de paredes internas, mais intensos os movimentos verticais e menores os movimentos horizontais do fluido. A parede aumenta o tempo de retenção hidráulica, resultando em sedimentação significativamente aumentada.

Este efeito pode explicar as médias de concentrações maiores no ponto A, observadas nos meses 7 e 9 da CDC K, pois o tanque possui, nesta região (Figura 11), maior número de paredes e, consequentemente, no ponto C ocorreu o menor teor dos óxidos nos três meses de

coleta. Ou seja, houve assentamento maior das partículas na área referente a entrada e o centro do tanque, provavelmente associado a localização das paredes em maior número.

Outro fator que influencia na eficiência da sedimentação é a diminuição do tamanho das partículas. Espera-se que partículas maiores se assentem rapidamente ao longo da entrada do tanque por causa de sua massa e inércia. À medida que o tamanho das partículas diminui, o efeito da gravidade diminui (AL-SAMMARRAEE et al., 2009a).

As CDC P e S, como apontado anteriormente, não possuem uma predominância de pontos de coleta com maior ou menor concentração de óxidos, no geral. Esta ocorrência pode estar relacionada a uma estreita faixa granulométrica das partículas dos sedimentos, a qual pode acarretar a uma deposição semelhante ao longo do tanque, isto ainda somado à ausência de concentração de paredes internas, espaçadas em distâncias similares (Figura 11).

5.1.1.2.4 Composição Química da Fonte de Cálcio na literatura

A Tabela 11 expõe a composição química em óxidos do mesmo tipo de resíduo em estudo (aqui denominado como Fonte de Cálcio) apresentada por diferentes autores. O material recolhido por tais autores provém de centrais dosadoras de concreto de diferentes países: Tailândia, Japão, Bélgica, França e China. Na Figura 33 encontra-se a média das concentrações encontradas na literatura acompanhada das médias das Fontes de Cálcio coletadas nas CDC K, P e S.

	Quantitativos da Literatura (%)								
Óxidos	Chatveera, Lertwattanaruk e Makul (2006)	Iizuka et al. (2012a)	Schoon et al. (2015)	Audo, Mahieux e Turcry (2016)	Xuan et al. (2016b)	Tang et al. (2019a)	Tang et al. (2019b)	Média	Desvio Padrão
CaO	32,000	17,200	23,695	34,458	35,410	35,065	36,000	30,547	7,261
SiO_2	26,870	3,200	49,198	53,545	33,146	26,895	28,000	31,551	15,389
Al_2O_3	6,910	0,600	4,597	1,925	8,633	9,760	9,400	5,975	3,406
Fe_2O_3	3,170	1,900	1,956	1,525	6,585	4,645	7,000	3,826	2,114
SO_3	3,920	-	1,292	0,770	2,956	2,600	3,700	2,540	1,163
MgO	1,510	-	2,558	-	1,377	1,850	1,600	1,779	0,419
K_2O	0,980	-	0,564	-	1,652	1,150	1,500	1,169	0,386
Na ₂ O	0,180	-	0,298	-	-	0,830	1,000	0,577	0,346
TiO ₂	-	-	0,314	-	0,526	-	-	0,420	0,106
P_2O_5	-	-	0,154	-	-	0,250	0,300	0,235	0,061
Cl	-	-	0,057	-	-	0,015	0,100	0,057	0,035
Outros	24,460	77,100	15,317	7,778	9,715	16,940	11,400	23,244	22,574

Tabela 8 - Composição química da Fonte de Cálcio na Literatura

Figura 33 - Média do teor dos óxidos comuns entre as CDC e Literatura

As referências, no geral, apresentaram 11 dos 17 óxidos comuns às CDC K, P e S (Tabela 27). Os componentes não identificados nas referências foram os seguintes metais: V₂O₅, Cr₂O₃, MnO, CuO, ZnO e SrO, os quais exibiram teores inferiores a 1,000% nas amostras analisadas deste trabalho.

Com relação a porcentagem dos óxidos, observou-se que a predominância de CaO e SiO_2 ocorreu tanto nas amostras da Literatura quanto nas amostras das CDC visitadas. Porém, apenas nas quantificações apresentadas por Schoon et al. (2015) e Audo, Mahieux e Turcry (2016), as concentrações de SiO_2 foram superiores a CaO, o que não ocorreu em nenhuma das medidas apresentadas por este estudo. Pelo contrário, na média dos resultados obtidos, o teor de CaO mostrou-se em torno do dobro de SiO_2 ou pouco menos (Figura 33).

O percentual médio de SiO₂, K₂O, Na₂O e Cl da Literatura superam todos os percentuais apresentados pelas amostras das CDC K, P e S, assim como os seus respectivos desvios padrões, denotando uma considerável variabilidade entre as composições químicas publicadas (Figura 33).

As diferenças qualitativas e quantitativas entre as pesquisas presentes na Literatura e este trabalho podem, também, ser elucidadas pelos motivos já detalhados: diferentes origens e composições químicas das matérias-primas do produto original (concreto), variações nos lotes de cimento, mudanças de dosagem e/ou adições minerais.

5.1.1.2.5 Teor de CaO em ligantes álcali-ativados

Os precursores, componentes principais na produção de geopolímero, são obtidos de materiais naturais, resíduos e subprodutos. As características mineralógicas e a composição química dessas matérias-primas são determinantes nas propriedades do produto final e é preferível combinações de dois ou mais materiais de aluminossilicato a fim de complementar as vantagens de cada um (PAYÁ et al., 2019; JIANG et al., 2020).

Um dos principais elementos a considerar nos materiais precursores é o conteúdo de cálcio. Basicamente, os ligantes alcalinos são divididos em dois grupos, dependendo da natureza dos seus componentes cimentícios (sistema CaO-SiO₂-Al₂O₃) (PULIGILLA, 2017; PAYÁ et al., 2019; PANDEY, 2020; NITA, 2006):

- a) Aglutinantes com alto teor de cálcio (ATC): obtidos através da ativação de escórias de alto forno granuladas moídas (GGBFS) em condições alcalinas moderadas. Os componentes usuais da escória são CaO (35-40%), SiO₂ (25-35%), MgO (5-10%) e Al₂O₃ (5-15%) junto com SO₃, Fe₂O₃, MnO e K₂O em porcentagens em peso menores que 1%;
- b) Aglutinantes com baixo teor de cálcio (BTC): envolvem a ativação de precursores de aluminossilicato de baixo cálcio em condições de maior alcalinidade, como argilas calcinadas (metacaulim) e cinzas volantes classe F. Os óxidos que constituem estes materiais são: SiO₂ (38-63%), Al₂O₃ (27-44%) e Fe₂O₃ (3,3-6,4%) acompanhado de CaO, MgO, K₂O, Na₂O e TiO₂ iguais ou inferiores a 1% em peso.

Diante desta breve explanação, pode-se confrontar as médias obtidas da composição química das fontes de cálcio coletadas com o intervalo apresentado pela literatura para os precursores usualmente empregados na síntese de cimentos geopoliméricos. A Tabela 12 apresenta o comparativo entre os principais óxidos.

Tabela 9 - Média quantitativa dos principais óxidos de diferentes precursores e das fontes de cálcio

Óvidos	Precui	sores	Fontes de cálcio		
Oxidos	ATC (%)	BTC (%)	K (%)	P (%)	S (%)
Al_2O_3	5-15	27-44	4,206	8,052	5,923
SiO ₂	25-35	38-63	17,731	28,929	23,005
CaO	35-40	=<1	66,503	51,419	60,52

ATC: Precursor com alto teor de cálcio

BTC: Precursor com baixo teor de cálcio

As amostras coletadas nas CDC obtiveram percentuais superiores em CaO, em relação ao intervalo apresentado pelos precursores comuns (ATC e BTC). As médias de Al₂O₃ estão mais próximas dos percentuais exibidos por ATC, assim como SiO₂. Visto que a predominância de CaO do material em estudo é notável e que o quantitativo de Al₂O₃ e SiO₂ pode ser inferior ao apresentado por aluminossilicatos usuais, é possível afirmar que seu uso é oportuno como fonte de cálcio, em concordância com a afirmação de outros estudos (XUAN, POON e ZHENG, 2018; IIZUKA et al., 2012a).

5.1.2 Teor de Umidade

O conteúdo de água do material foi determinado a partir da média de três resultados individuais, exibidos na Tabela 7.

Tabela 10 - Teor de umidade da fonte de cálcio						
Resultados individuais Média						
Teor de Umidade (%)	88,590	87,950	87,840	88,127 ± 0,405		

O alto teor de umidade é uma característica comum deste material observada por outros autores, bem como sua variabilidade que pode ter influência das condições climáticas durante a amostragem e a duração do armazenamento antes da coleta (AUDO, MAHIEUX E TURCRY, 2016; XUAN et al., 2016a; TANG et al., 2019b).

O excesso de água reage com o cimento residual presente tornando-o muito fraco após o endurecimento (SCHOON et al., 2015) e conforme o tempo de armazenamento aumenta, menos partículas residuais de cimento desidratadas são encontradas no material (XUAN, POON e ZHENG, 2018).

ZHANG e FUJIWARA (2007) explicam que, após a hidratação de 28 dias, muitos vazios podem ser encontrados na superfície das partículas da fonte de cálcio, indicando uma estrutura porosa e altamente absorvente de água. Isso significa que frações incorporadas em outras misturas poderão competir pela água disponível e diminuir a trabalhabilidade (CORREIA et al, 2009; ZERVAKI, LEPTOKARIDIS e TSIMAS, 2013).

5.1.3 Massa específica

A Tabela 8 apresenta as medidas individuais de massa específica e a média resultante.

Tabela 11 - Massa específica da fonte de cálcio						
	Resultados individuais Média					
Massa específica (g/cm ³)	2,323	2,344	2,366	$2,344 \pm 0,021$		

O resultado obtido é próximo à medida apresentada por He et al. (2019), de 2,350 g/cm³, e de duas frações superiores a 100 μ m ensaiadas por Audo, Mahieux e Turcry (2016), com dados iguais a 2,300 g/cm³. Vale ressaltar que para esta caracterização separou-se um volume passante da peneira com abertura de malha de 150 μ m, a fim de retirar materiais pulverulentos da amostra. Segundo este último autor, frações com limites menores de tamanho podem apresentar massa específica ligeiramente inferior a frações de tamanhos superiores por obterem um teor maior de materiais cimentícios e um menor teor de areia.

5.1.4 Tamanho e distribuição das partículas

A Tabela 9 apresenta os parâmetros D_{10} , D_{50} e D_{90} extraídos da curva de distribuição cumulativa (ANEXOS) e que representam a porcentagem de partículas menores que o diâmetro relatado; isto é, 10% das partículas são menores que 107,581 µm, 50% são menores que 297,467 µm e 90% menores que 456,229 µm. Os resultados foram determinados a partir de três mensurações.

	Diâmetros (µm)						
	D ₁₀	D50	D 90	Diâmetro Médio			
Média	$107,581 \pm 6,186$	297,467 ± 4,208	$456,\!229 \pm 1,\!7357$	$319,227 \pm 4,474$			

Tabela 12 - Tamanho das partículas da fonte de cálcio

O diâmetro médio apresentado pela fonte de cálcio é superior às medidas apresentadas por Xuan et al. (2016a), Audo, Mahieux e Turcry (2016) e Yoo, Shin e Ji (2018) para o mesmo tipo de material. Esta distinção pode ocorrer em razão das diferentes granulometrias dos agregados usados no concreto, sugerindo a existência de agregados mais grossos na fonte de cálcio em estudo.

Segundo a NBR 6502 (ABNT, 1995), o tamanho médio de partícula apresentado pela amostra é característico de areia média, cujo diâmetro varia de 0,20 mm a 0,60 mm (200-600 µm). De acordo com Audo, Mahieux e Turcry (2016), a constatação de um diâmetro máximo

inferior a 8 mm (8000 μ m), torna o material conveniente para uma utilização como substituto de adições de areias e minerais.

A respeito do potencial de geopolimerização, a distribuição do tamanho das partículas é um importante parâmetro pois, geralmente, as partículas mais finas têm maior reatividade devido à maior área de superfície, desde que não apresentem uma elevada cristalinidade (ZHANG et al., 2020). Assim, aumentar a finura das matérias-primas pode conferir um aumento da resistência à compressão do geopolímero sintetizado, particularmente em idades precoces (SOMNA et al., 2011).

5.1.5 Composição mineralógica

A análise mineralógica da fonte de cálcio foi realizada por difratometria de Raios-X (DRX) e o resultado, exposto na Figura 34, indica que a fase cristalina predominante é a Calcita (ICSD 29179) e picos referentes ao Quartzo α (ICSD 16331) também foram constatados.

O pico mais intenso, localizado em torno de 30° 2 θ , é associado a Calcita junto com mais dezenove picos menores. Apenas dois picos são relacionados a Quartzo α : o de menor intensidade, identificado próximo a 26° 2 θ e outro mais acentuado em torno de 39° 2 θ . As fases cristalinas detectadas estão de acordo com as análises apresentadas em outros estudos sobre o mesmo material (TANG et al., 2019a; YANG et al., 2009a; HE et al., 2019; XUAN et al., 2016b).

A ocorrência dos minerais assinalados reflete os constituintes residuais do cimento, produtos de hidratação e Quartzo de areia, utilizada como agregado miúdo no concreto. O mineral calcita é a forma de carbonato de cálcio encontrada no calcário, geralmente acima de 90%, o qual é a principal matéria-prima para a fabricação de cimento Portland (HARRISSON, 2019).

Os demais componentes reconhecidos na análise de Fluorescência de Raios-X da amostra CDC K (Tabela 27) podem estar em quantidades pequenas, em torno de 1-5%, que dificultam a sua detecção por meio de DRX por causa das proporções de pico relativamente baixas (DE VILLIERS e LU, 2015).

5.1.6 Composição de grupos funcionais

O espectro de IV da Fonte de Cálcio é apresentado na Figura 35. A partir das bandas detectadas, foram determinados os tipos de vibrações, ligações e fases. A sequência da análise foi estabelecida com base na região espectral de 4000-650 cm⁻¹ e as respectivas atribuições das vibrações foram feitas conforme a literatura.

Figura 35 - Espectro de infravermelho da fonte de cálcio

As bandas associadas às ligações de O-H estão posicionadas em 3380 cm⁻¹, 2110 cm⁻¹ e 1645 cm⁻¹. Segundo Trezza (2007), a região entre 3100-3400 cm⁻¹ contém alongamentos simétricos e assimétricos desse tipo de ligação. Em 1645 cm⁻¹ há uma vibração de deformação e em 2110 cm⁻¹ encontra-se uma banda de associação, pois há uma combinação do modo de curvatura das moléculas de água com modos vibracionais intermoleculares envolvendo outras moléculas de água ou grupos não formadores de ligações de hidrogênio (RICHARD et al., 2006; EISENBERG e KAUZMANN, 2005).

A maioria das bandas identificadas estão relacionadas a ligações de CO_3^{2-} , como calcita, em 2510 cm⁻¹, 1792 cm⁻¹, 1404 cm⁻¹, 875 cm⁻¹ e 711 cm⁻¹, com vibrações de estiramento assimétrica, de deformação e de estiramento simétrica (MOLLAH et al., 2000; HUGHES et al, 1995; MANSUR, SANTOS e MANSUR, 2007; REIG, ADELANTADO e MORENO, 2002).

A banda posicionada em 1091 cm⁻¹ é devido à vibração de estiramento assimétrica de SO_4^{2-} como bassanita (CaSO₄·0,5H₂O) (MANSUR, SANTOS e MANSUR, 2007; HUGHES et al, 1995). Com o mesmo tipo de vibração, encontra-se a única banda associada a ligação Si-O (963 cm⁻¹) relativo à fase C-S-H (MOLLAH et al., 2000, GOMES, FERREIRA e FERNANDES, 2005).

O pequeno pico duplo identificado em 2355 cm⁻¹ e 2322 cm⁻¹ pode ser atribuído a absorção no espectro de infravermelho de dióxido de carbono (CO₂), um gás presente na atmosfera ambiente (THEOPHANIDES, 2012).

5.1.7 Comportamento térmico

A análise termogravimétrica da fonte de cálcio (Figura 36) apresentou dois eventos térmicos: o primeiro com início em 30°C e término em 600°C, aproximadamente; e o segundo observado entre 600°C e 850 °C.

Figura 36 - Curva de perda de massa e DTG da fonte de cálcio

O primeiro evento térmico é decorrente da evaporação da água livre e desidratação dos carboaluminatos, silicatos, aluminatos, sulfato aluminatos de cálcio e compostos de magnésio (SILVA, 2016; SCHOON et al., 2014). A perda de massa nesta faixa é de 6,848 %.

O último pico, posicionado em 793°C, corresponde a descarbonatação do calcário (Equação 1) e neste ponto encontra-se a perda de massa mais significativa da análise (32,200 %), indicando a decomposição de CO₂ (AUDO, MAHIEUX e TURCRY, 2016).

$$CaCO_3 \rightarrow CaO_{(s)} + CO_{2(g)}$$
 (Equação 1)

A vigente constatação de produtos de hidratação que decorrem do aglomerante reagido e de carbonatados provenientes do calcário, confirmam os resultados das técnicas de caracterizações anteriores, reiterando a composição química derivada do cimento e dos agregados presentes na lama.

A perda ao fogo indicou um teor de 38,604 % de material perdido pela amostra quando submetida a 950 ± 50 °C em forno mufla. Este percentual está bem próximo a perda de massa apresentado pela análise de TG na mesma temperatura – 39,205 %, afirmando o resultado obtido.

Chatveera, Lertwattanaruk e Makul (2006) obtiveram uma perda ao fogo de 25,000 % a 950 \pm 50 °C e massa específica de 2,500 g/cm³ para o mesmo tipo de material. Confrontando com a fonte de cálcio em estudo, esta possui maior quantidade de carbono devido a maior perda de massa.

5.2 Caracterização da pasta de cimento geopolimérico

5.2.1 Fluidez

A superfície de espalhamento das pastas geopoliméricas apresentaram-se com algumas bolhas de ar, porém homogêneas e circulares (Figura 37 e 38). Pode-se afirmar que a mistura dos componentes foi eficiente pois não foi constatado segregação e exsudação. O diâmetro médio para GEOREF e GEOFDC foi 101,420 mm e 83,465 mm, respectivamente. As pastas se estabilizaram em, aproximadamente, 2 min para a amostra de referência, e 3 min para a amostra com a incorporação da fonte de cálcio.

Figura 37 - Espalhamento da pasta geopolímerica GEOREF

Figura 38 - Espalhamento da pasta geopolimérica GEOFDC

A solução alcalina preparada para ambas as pastas continha os mesmos teores de seus componentes (Tabela 6), logo pode-se afirmar que a substituição de 5,000% em massa de Metacaulim pela fonte de cálcio provocou uma redução na fluidez da pasta geopolimérica, resultando em um diâmetro de espalhamento menor e tempo de estabilização maior, comparado ao produto referência (GEOREF).

Segundo Zhang et al. (2019) e Li et al. (2020), a diminuição da fluidez tem relação com a área superficial específica do material e o seu teor de introdução em uma matriz. Quanto maior esses fatores, maior a absorção de água por esse material adicionado, assim o teor de água livre diminui, o efeito plástico torna-se mais fraco e o atrito maior, diminuindo a trabalhabilidade do material.

A área superficial específica do Metacaulim, dada pelo fabricante, é 23 m²/g (Tabela 3) e a mesma propriedade física para a fonte de cálcio, medida por Silva (2016) que estudou o mesmo tipo de material, apresenta uma média de 27,3 m²/g. Além disso, a análise termogravimétrica (Item 5.2.7) da pasta GEOREF apontou um pico na curva DTG referente a saída de água livre não observado na pasta GEOFDC, o que pode significar que a fonte de cálcio absorveu mais água no sistema. Portanto, a incorporação da fonte de cálcio e a possibilidade desse material possuir maior área superficial específica que o precursor majoritário podem elucidar a redução de fluidez.

5.2.2 Tempo de Pega

As pastas geopoliméricas produzidas apresentaram tempos de início e fim de pega diferentes. Para GEOREF, o começo da solidificação ocorreu em torno de 355 min e finalizou em 620 min (UR 50,7 % e 26 °C) e, para GEOFDC, sucedeu em 250 min e 570 min (UR 66,3 % e 26,3 °C).

A literatura reporta que a substituição de fontes ricas em Ca acelera o tempo de pega inicial e final de matrizes geopoliméricas, independentemente da natureza da fonte (RATTANASAK, PANKHET e CHINDAPRASIRT, 2011; CHITHIRAPUTHIRAN e NEITHALATH, 2013; PULIGILLA e MONDAL, 2013; DJOBO et al., 2016; NATH e SARKER, 2015). Isto pode ocorrer devido a nucleação heterogênea e reações secundárias que dependem da natureza e concentração das fontes de Ca, dentre outros fatores (RANJBAR et al., 2020).

YIP et al. (2008a, 2008b) apontaram diferentes opções de participação do cálcio em uma matriz geopolímerica: pode tornar-se parte do produto amorfo, reagindo com o silicato

dissolvido e formando o gel Silicato de cálcio hidratado (C–S–H) ou o gel de hidrato de silicato de cálcio parcialmente substituído com Al (C-S-A-H) (coexistindo com o gel geopolimérico), ou ainda formar precipitados cristalinos, como Ca (OH)₂, em uma concentração abaixo dos limites de detecção de DRX.

A respeito de variação de umidade na realização dos ensaios, Islam (2015) afirma que o desenvolvimento de resistência de um geopolímero está relacionado ao seu histórico de temperatura e umidade. Zhang et al. (2015) acrescentam que, em umidades mais baixas, há uma redução na força de adesão atribuída a maior perda de água. Portanto, além da incorporação da fonte de cálcio, pode-se assumir a atuação das condições ambientais na solidificação do material.

5.2.3 Resistência à compressão axial

As curvas médias de tensão-deformação nas idades de 24 horas, 3 dias, 7 dias e 28 dias das amostras GEOREF e GEOFDC estão expostas nas Figuras 39a, 39b, 39c e 39d. As principais propriedades mecânicas foram obtidas através das curvas são apresentadas na Tabela 13, a saber: módulo de elasticidade (E), resistência média à compressão (RMC) e deformação total (DT). Os dados representam a média dos resultados individuais de três corpos de prova.

Tabela 13 - Propriedades mecânicas das pastas geopoliméricas

Propriedades	Propriedades Mêcanicas Amostras	Idade				
Mêcanicas		24 horas	3 dias	7 dias	28 dias	
	GEOREF	$7,\!167\pm0,\!004$	$11,\!089 \pm 0,\!007$	$14,333 \pm 0,004$	$22,765 \pm 0,010$	
GEOFD	GEOFDC	$10{,}226\pm0{,}018$	$17,334 \pm 0,016$	$16,039 \pm 0,004$	$17,715 \pm 0,007$	
RMC (MPa)	GEOREF	$12,\!455 \pm 0,\!560$	$27,\!290 \pm 1,\!774$	$48,251 \pm 2,281$	$60,851 \pm 2,919$	
	GEOFDC	$18,177 \pm 1,226$	$44,094 \pm 1,972$	$47,560 \pm 2,220$	$61,\!635 \pm 2,\!387$	
DT (mm)	GEOREF	$6,\!152\pm0,\!432$	$2,398 \pm 0,400$	$1,947 \pm 0,040$	$1,564 \pm 0,044$	
	GEOFDC	$3,190 \pm 0,002$	$2,100 \pm 0,037$	$1,672 \pm 0,105$	$1,677 \pm 0,010$	

E: Módulo de Elasticidade

RMC: Resistência média à compressão

DT: Deformação Total

É notável o efeito da incorporação da fonte de cálcio na matriz geopolimérica nas idades de 24 horas e 3 dias. Nesses primeiros estágios, a pasta GEOFDC mostra-se um material mais rígido que GEOREF, pois a inclinação da curva tensão-deformação na região elástica (E) é mais acentuada (Figura 39a e 39b) e sua resistência mecânica também é superior (Tabela 13).

A curva de GEOREF exibiu uma zona plástica bem maior que a de GEOFDC em 24 horas e, consequentemente, maior deformação total. Contudo, essas diferenças de comportamento mecânico são atenuadas em 3 dias de idade. Nesta segunda etapa (Figura 39b), ainda se constatou que a resistência máxima à compressão de GEOFDC foi cerca de 60% superior à de GEOREF e alcançou em torno de 70% da resistência média de 28 dias (Tabela 13).

O avanço das idades revelou que as pastas atingiram um desempenho mecânico similar. Com 7 dias (Figura 39c), a distinção entre GEOFDC e GEOREF é mais perceptível na zona plástica, onde GEOREF exibe uma área maior, assim como deformação total. A Resistência à compressão neste ponto pode ser considerada igual, pois distingue-se em menos de 1,000 MPa.

As propriedades não se apresentaram com diferenças significativas, principalmente na última idade. Pode-se observar, a partir da Figura 39d, que as duas pastas possuem um comportamento mais elástico, característico de materiais cerâmicos, e as zonas de estudo são semelhantes. Porém, notou-se que apenas aos 28 dias a pasta GEOREF exibiu uma deformação total menor que a de GEOFDC, a qual não apresentou diferença da medida na idade anterior (Tabela 13), sugerindo que em idades mais avançadas essa tendência pode continuar.

As duas amostras expõem um acréscimo na resistência à compressão à medida que a idade avança. Isto indica que há um desenvolvimento de redes geopoliméricas ocorrendo após o estado endurecido das pastas (ADHITYA, JANUARTI e TRIWULAN, 2017). No entanto, a pasta GEOFDC apresentou um avanço considerável na resistência inicial, comparado a GEOREF. O aumento da rigidez nas idades iniciais pode estar relacionado à solidificação acelerada pela incorporação da fonte de cálcio, a qual foi discutida no item 5.2.2.

Embora as amostras tenham apresentado comportamentos bem distintos nas primeiras idades, aos 7 e 28 dias passam a se assemelhar e o efeito da introdução mineral já não é mais evidente. A porcentagem de substituição (5,000 %) pode ter sido insuficiente para aumentar a resistência em idades mais avançadas ou o papel da fonte de cálcio está restrito a agilizar o processo de geopolimerização.

Após o rompimento dos corpos de prova, fez-se uma inspeção visual nas superfícies de fratura. Os corpos de prova rompidos apresentaram poucos vazios e constatou-se alguns depósitos brancos (Figura 40), tanto em GEOREF quanto em GEOFDC, que podem ser denominados de eflorescência. Este fenômeno resulta da lixiviação de álcalis livres presentes na estrutura dos poros que reagem gradualmente com CO_2 e formam um sal branco que é depositado na superfície. Esta reação é esteticamente indesejável, mas nem sempre é prejudicial à integridade estrutural do material (LONGHI et al., 2020).

Figura 40 - Superfície de fratura do corpo de prova com eflorescência

5.2.4 Composição química

A Tabela 14 apresenta a composição química em óxidos e a razão molar Si:Al das pastas geopoliméricas produzidas. Apenas os teores de SiO₂, K₂O e CaO diferem entre 1,000-3,000% nas amostras. Os demais óxidos apresentam desigualdades médias em 0,016%.

Óridaa	Amostras				
Oxidos	GEOREF (%)	GEOFDC (%)			
Na ₂ O	$0,\!166 \pm 0,\!055$	$0,\!274 \pm 0,\!036$			
MgO	$0,\!170\pm0,\!019$	$0,\!221 \pm 0,\!032$			
Al_2O_3	$18,\!854\pm0,\!097$	$18,\!567 \pm 0,\!090$			
SiO_2	$49{,}720 \pm 0{,}597$	$48,\!635 \pm 0,\!462$			
P_2O_5	$0,\!128\pm0,\!021$	$0,\!127\pm0,\!029$			
SO ₃	$0,\!106\pm0,\!009$	$0,\!336\pm0,\!133$			
Cl	$0,\!059\pm0,\!007$	$0{,}089 \pm 0{,}004$			
K ₂ O	$27,754 \pm 0,750$	$26{,}505 \pm 0{,}510$			
CaO	-	$2{,}079 \pm 0{,}062$			
TiO ₂	$1,\!114 \pm 0,\!067$	$1,\!067\pm0,\!116$			
Cr_2O_3	$0{,}028 \pm 0{,}006$	$0,044 \pm 0,013$			
MnO	$0,015 \pm 0,013$	$0{,}021\pm0{,}019$			
Fe ₂ O ₃	$1,\!745\pm0,\!048$	$1,866 \pm 0,093$			
NiO	$0{,}009\pm0{,}001$	$0,\!006\pm0,\!010$			
CuO	$0{,}007\pm0{,}006$	$0,\!017 \pm 0,\!003$			
ZnO	$0,014 \pm 0,004$	$0{,}020\pm0{,}004$			
As_2O_3	$0,003 \pm 0,005$	$0{,}008 \pm 0{,}007$			
Rb ₂ O	$0,\!015 \pm 0,\!001$	$0{,}018\pm0{,}008$			
SrO	$0,019 \pm 0,006$	$0,023 \pm 0,006$			

Tabela 14 - Composição química em óxidos das pastas geopoliméricas sintetizadas

ção químea em oxídos das pastas geoponmeneas sintenza						
ZrO_2	$0,065 \pm 0,024$	$0,063 \pm 0,033$				
Nb_2O_5	$0{,}008 \pm 0{,}007$	$0,016 \pm 0,003$				
Si:Al	2,329	2,309				

Cont. Tabela 14 - Composição química em óxidos das pastas geopoliméricas sintetizadas

O metacaulim é fonte principal de SiO_2 e Al_2O_3 nas duas amostras. Além destes, o precursor forneceu MgO, SO₃, Na₂O, Fe₂O₃ e TiO₂ para a matriz geopolímerica, de acordo com a composição química apresentada pelo fabricante (Tabela 3). A Microsílica comercial também concedeu SiO₂, pois é composta de, no mínimo, 85% desse óxido (Tabela 4).

O Cl presente nas duas pastas pode ter origem na água usada na solução ativadora, pois este recurso é proveniente do abastecimento público e contém adição desse elemento para tratamento de potabilidade. Acerca dos óxidos P₂O₅, SO₃, K₂O, Cr₂O₃, MnO, NiO, CuO, ZnO, As₂O₃, Rb₂O, SrO, ZrO₂ e Nb₂O₅, é possível que sejam provenientes dos materiais comerciais, como impurezas, além da fonte de cálcio.

A pasta geopolimérica GEOFDC apresentou um pequeno teor de CaO não identificado em GEOREF, isso ocorreu devido a incorporação da fonte de cálcio composta principalmente por esse óxido e por outros: MgO, Al₂O₃, SiO₂, P₂O₅, SO₃, Cl, K₂O, CaO, TiO₂, Cr₂O₃, MnO, Fe₂O₃, NiO, CuO, ZnO, SrO (Tabela 27).

A partir da razão molar Si:Al, calculada para GEOREF e GEOFDC, pode-se classificar os produtos sintetizados em um geopolímero do tipo poli(sialato-siloxo) (-Si-O-Al-O-Si-O-), o qual pode apresentar-se de forma triangular ou linear (Figura 10), como di(sialato-siloxo) ou tri(sialato-siloxo), após a condensação de duas moléculas (DAVIDOVITS, 2002).

5.2.5 Composição mineralógica

As fases cristalinas identificadas nas pastas geopoliméricas sintetizadas estão apresentadas na Figura 41. Observou-se grande proximidade entre os difratogramas das amostras GEOREF e GEOFDC, pois ambos exibem picos característicos de Quartzo α (ICSD 16331), Caulinita (ICSD 30285) e Microclínio (ICSD 83536), enquanto o mineral Calcita (ICSD 29179) é visível apenas na amostra GEOFDC.

Figura 41 - Difratograma das pastas geopoliméricas sintetizadas

O Quartzo, Caulinita e Microclínio são resíduos de caulim encontrados no metacaulim produzido industrialmente (CABALLERO et al, 2019). A presença desses minerais na pasta geopolimérica endurecida sugere que os mesmos não participaram da policondensação, não se dissolvendo completamente na solução alcalina durante o processo de geopolimerização e podem estar atuando como um preenchimento dos poros da estrutura do geopolímero (JI, SU e PEI, 2020; MANAENKOV, STEINEROVA e KUKLEVA, 2020).

A amostra GEOFDC exibe dois picos referentes à Calcita, em torno de 29° e 36° 2θ. A ocorrência dessa fase deve-se à incorporação da fonte de cálcio na pasta geopolímerica, a qual é composta principalmente por Calcita, como exibido no seu difratograma (Figura 35). Testifica-se a constatação com a análise da composição química das amostras (Tabela 14), cujo teor de CaO é identificado somente em GEOFDC.

Os picos de Calcita também sugerem que a fonte de cálcio não tem participação ativa na síntese do ligante geopolimérico e possivelmente está atuando como microagregado no sistema. No entanto, os dados de DRX não proporcionam fortes indicações de como exatamente os íons de cálcio originários da calcita participaram da geopolimerização (YIP et al., 2008a).

Considerando que não há outras novas fases cristalinas identificadas em GEOFDC, é possível que o cálcio se tornou parte do produto amorfo no final da reação ou foi incorporado ao gel de geopolímero, como discorrido em 5.2.2. Há ainda a possibilidade de formação de

precipitados cristalinos (por exemplo, Ca(OH)₂), em uma concentração abaixo dos limites de detecção de XRD (YIP et al., 2008a).

A banda larga localizada entre 20° a 40° 2 θ e centralizada, aproximadamente, em 27° 2 θ em ambas as amostras indica que o material geopolimérico tem uma estrutura amorfa e justifica a formação efetiva do gel de aluminossilicato amorfo (JI, SU e PEI, 2020; YUAN et al., 2016). Provis et al (2014) afirma que o halo amorfo centralizado em torno de 27-29° 2 θ é a maior característica do difratograma de Raios-X de um geopolímero, independente da escolha do precursor de aluminossilicato, da solução ativadora ou condições de cura.

5.2.6 Composição de grupos funcionais

Os espectros das amostras GEOREF e GEOFDC, exibidos na Figura 42, possuem bandas de transmitância com número de ondas análogos, porém com áreas de picos diferentes, o que pode indicar maior formação dos grupos funcionais identificados.

Figura 42 - Espectro de infravermelho das pastas geopoliméricas sintetizadas

As bandas em 3216 cm⁻¹ e 1642 cm⁻¹ foram, respectivamente, devido às vibrações de flexão e alongamento de grupos O-H presentes nas estruturas de geopolímero e à presença de água estrutural, sugerindo que a água livre no sistema gradualmente se transforma em água

ligada ao participar da reação de hidratação (UCHINO, SAKKA e IWASAKI, 1991; WANG et al., 2020).

Os picos em 2325 cm⁻¹ e 2093 cm⁻¹ são característicos do grupo C=O, devido à molécula de CO₂ absorvida da atmosfera (JOTHIBAS et al, 2018; WEI et al, 2018). A incidência desses picos certamente está associada ao fato de que as amostras foram expostas ao ar ambiente quando foram maceradas para a realização das análises.

Vibrações de alongamento de C–O foram identificadas em 1991 cm⁻¹ e 1380 cm⁻¹ (EREN, BAYSAL e DOĞAN, 2020; HOUNSI et al., 2014). Esta última banda é atribuída a uma espécie de carbonato, formado quando os íons de potássio não reagidos na solução alcalina reagem com o CO₂ atmosférico e formam depósitos de carbonato branco no geopolímero, ou seja, fenômeno de eflorescência, como identificado na superfície de fratura dos corpos de prova (Figura 41) (GAO et al., 2013; KAZE et al., 2020).

As bandas mais expressivas são atribuídas a vibrações internas características de geopolímeros. Em 975 cm⁻¹, indica-se uma vibração de alongamento assimétrico (T – O – Si), onde T = Si ou Al, denotando a formação da fase de gel de aluminossilicato amorfo (FERNANDEZ-JIMENEZ e PALOMO, 2005). A última banda, localizada a 688 cm⁻¹, é devida às vibrações de Al – O – Si (CATAURO et al., 2014). A faixa espectral do equipamento pode ser limitada para análises mais detalhadas de geopolímero, pois bandas características de ligações Si-O-Al e Si-O são ainda encontradas em 540 e 469 cm⁻¹, respectivamente (DAVIDOVITS, 2011).

As áreas de pico da amostra GEOREF relacionadas a ligações típicas de geopolímero que são moderadamente superiores as da amostra GEOFDC podem indicar conteúdo de ligação Si-OT mais alto, sugerindo que mais produtos geopolímericos são formados e o grau de polimerização é maior (WANG et al., 2020). Esta possibilidade corrobora com o fato de que GEOREF possui uma quantidade maior de aluminossilicato (precursor), pois não contém incorporação de fonte cálcio, a qual não possui SiO₂ reativo suficiente, como observado por Yang et al. (2009a).

Bandas associadas a fase Calcita (composição majoritária da fonte de cálcio) e C-S-H não foram observadas na amostra GEOFDC. Os teores podem ser pequenos, ficando abaixo do limite de detecção do equipamento, ou pode haver uma sobreposição de picos, onde a área da banda do produto mais abundante (gel de aluminossilicato amorfo) sobrepõe-se o menor. As curvas termogravimétricas diferenciais (DTG) com dados TG (curvas de perda de massa na faixa de 30-1000 °C) para as amostras de GEOREF E GEOFDC são mostradas na Figura 43 e 44. Observou-se que os resultados das duas amostras são semelhantes, ambas apresentam dois eventos térmicos, nos quais a perda significativa de massa ocorre no primeiro e a perda de massa total corresponde a 18,789% para GEOREF e 19,628% para GEOFDC.

Figura 43 - Curvas de perda de massa e DTG da pasta geopolimérica GEOREF

O primeiro evento térmico da amostra GEOREF inicia-se em 30 °C e termina em torno de 350 °C, com 16,107 % de perda de massa. Neste intervalo encontra-se dois picos: o menor em 41°C e um mais significativo em 76 °C. O segundo evento térmico apresenta 2,665 % de perda de massa e começa em 350 °C e se estende até o fim da análise, em 1000 °C. Um pico em torno de 850 °C é observado também nesta faixa de temperatura.

Figura 44 - Curvas de perda de massa e DTG da pasta geopolimérica GEOFDC

A pasta geopolimérica GEOFDC apresentou apenas um pico expressivo em 72 °C que se encontra na primeira região de evento térmico, entre 30 e 350 °C. A perda de massa correspondeu a 16,872 % no início da análise e 2,756 % no segundo evento térmico, a partir de 350 °C até 1000 °C.

A primeira degradação observada nas duas amostras pode ser atribuída à desidratação da água. O pequeno pico observado em 41 °C em GEOREF, relacionam-se à saída de água livre, e os mais pronunciados (76°C e 72°C) estão ligados a condensação de grupos hidroxila, pertencentes à rede de geopolímeros (SEDIRA e CASTRO-GOMES, 2020; KAZE et al., 2020).

A perda de massa principal antes de 300 °C indica que as estruturas da matriz geopolimérica são mais desordenadas, deixando mais espaço e mobilidade para as moléculas de água e permitindo que sejam removidas mais facilmente (DUXSON et al., 2006; BELL, DRIEMEYER e KRIVEN, 2009). Portanto, pode-se afirmar que há uma predominância do conteúdo amorfo nas amostras, o que é consistente com o resultado da análise de FTIR.

A partir de 350 °C, observou-se uma pequena perda de massa contínua nas duas amostras, a qual pode estar associada a diferentes fatores. A redução pode ter ocorrido pela decomposição do carbonato produzido por eflorescência (WANG et al., 2020), desidroxilação da caulinita em torno de 600 °C (KAZE et al., 2020) e à decomposição da calcita (apenas em GEOFDC) (SONG et al., 2018), os quais são definidos como conteúdo não reagido, conforme a identificação dos respectivos picos característicos na análise de DRX. Além disso, uma

desidratação total dos produtos de ativação alcalina ocorre em torno de 800 °C (ŠKVÁRA et al., 2009; SEDIRA e CASTRO-GOMES, 2020).

5.2.8 Pasta de cimento geopolimérico com incorporação de fonte de cálcio: possíveis aplicações

A aplicação de um produto requer o atendimento a uma série de especificações mínimas normatizadas. Neste trabalho, não houve um objetivo direto à aplicação do material final e sim um estudo de algumas propriedades da pasta de cimento geopolimérico, após a caracterização e incorporação de uma fonte de cálcio. Contudo, as características apresentadas podem indicar possíveis utilidades, mesmo com a necessidade de avaliações e ajustes mais aprofundados.

A razão molar Si:Al em geopolímeros é um fator determinante de propriedades e campos de aplicação. Quando esta relação é em torno de 2:1, obtém-se um produto adequado para cimentos e concretos com baixa emissão de CO_2 e encapsulamento de resíduos radioativos e tóxicos (DAVIDOVITS, 2011).

A resistência máxima à compressão da pasta GEOFDC em 28 dias (61,635 MPa) é característica do grupo de concreto de cimento Portland de alta resistência, segundo a NBR 6118 (ABNT, 2014). Como um promissor substituto, o ligante geopolimérico sintetizado pode ser combinado a agregados, formando um concreto álcali-ativado e ser empregado em grandes construções que demandam resistências mecânicas superiores a 50 MPa.

A incorporação da fonte cálcio resultou em menores tempo de início e fim de pega, com apenas 5,000 % de substituição em massa de metacaulim. Considerando os testes iniciais com porcentagens de incorporação superior a 10,000 %, infere-se que introduções mais elevadas apresentarão solidificações mais rápidas ainda. Este endurecimento acelerado é interessante para indústrias de pré-moldados, construção acelerada de pontes, reparação rápida de infraestrutura (rodovias, pistas de aeroportos etc.), além de auxiliar na remoção antecipada de formas e consequente redução dos cronogramas de obras (LI et al., 2020; RATTANASAK, PANKHET e CHINDAPRASIRT, 2011; MAJIDI, 2009).

6 CONCLUSÕES

As três CDC visitadas geram fontes de cálcio com composições químicas diferentes. A análise qualitativa mostrou que a maioria dos óxidos identificados são comuns às amostras das três usinas, mas observou-se a ocorrência pontual de alguns componentes. A respeito das concentrações, a análise de variância das médias denotou diferenças significativas entre os pontos e meses de coleta e, também, entre CDC. Este fato pode estar fortemente associado as diferentes matérias-primas e traços utilizados na confecção do concreto produzido nas unidades.

A fonte de cálcio com maior porcentagem de CaO, submetida as demais técnicas de caracterizações, apresentou alto teor de umidade (> 80%), massa específica inferior ao precursor aluminossilicato e diâmetro médio conveniente para utilização como substituto de adições de areias e minerais. A composição mineralógica, de grupos funcionais e o comportamento térmico refletiu os constituintes residuais do cimento Portland e agregados naturais.

As pastas geopoliméricas produzidas com a incorporação da fonte de cálcio apresentaram diferenças com relação a pasta referencial: diminuição da fluidez, associado a maior absorção de água pela fonte de cálcio que, possivelmente, possui área superficial específica superior à do metacaulim; e redução do tempo de início e fim de pega devido a provável nucleação heterogênea e/ou reações secundárias.

O estado endurecido também exibiu distinções: a resistência à compressão axial aos 3 dias da pasta com incorporação foi 60% mais alta e o comportamento mecânico mostrou-se mais elástico, com menores deformações. Aos 7 dias, esse contraste permaneceu de maneira mais atenuada até ambas as amostras apresentarem desempenhos semelhantes aos 28 dias de cura.

As análises química, mineralógica e térmica das pastas apresentaram resultados similares com algumas observações, além de apontarem características comuns de geopolímeros. A partir das composições químicas, obteve-se uma razão molar Si:Al um pouco acima de 2, o que torna o produto adequado para cimentos e materiais cerâmicos.

Ambas as pastas exibiram um halo amorfo no difratograma, referente ao gel geopolimérico, e a maior parte dos picos identificados foram relativos a Quartzo. O mineral Calcita foi identificado apenas em GEOFDC e pode significar que a fonte de cálcio não tem participação ativa na síntese do ligante e possivelmente está atuando como microagregado no sistema.

Vibrações típicas de ligações AI - O - Si, Si - O - Si ou AI - O - Si foram constatadas nos espectros de FTIR, mas GEOREF exibiu áreas de picos moderadamente superiores as da amostra GEOFDC, indicando maior conteúdo de ligações típicas de geopolímero. Já o estudo térmico deu indícios que houve maior absorção de água em GEOFDC causada pela incorporação da fonte de cálcio, através da ausência de um pico referente à saída de água livre observado na curva DTG de GEOREF.

Os resultados obtidos comprovam que a lama residual de centrais dosadoras de concreto, se estudada previamente quanto a suas características químicas e físicas, pode ser incorporada como fonte de cálcio em pastas de cimento geopolimérico, conferindo uma aceleração na solidificação do material e consequente aumento da resistência à compressão axial nas idades iniciais. Porém, serão necessárias análises mais aprofundadas quanto ao papel desempenhado pela fonte de cálcio no ligante, melhorias na matriz e realização de outros testes que proporcionem mais detalhes do comportamento do produto para possível aplicação.

7 SUGESTÕES PARA TRABALHOS FUTUROS

A partir da pesquisa realizada sugerem-se os seguintes tópicos para estudos futuros:

- Realizar medidas de calorimetria, a fim de verificar se a melhoria da resistência mecânica com a adição de fonte de cálcio no geopolímero é devida a uma aceleração da reação de geopolimerização por nucleação heterogênea;
- Aplicar microscopia eletrônica de varredura (MEV) nas amostras em diferentes idades para avaliar o desenvolvimento da microestrutura ao longo do tempo;
- Estudar a incorporação ótima da fonte de cálcio em estudo na matriz geopolimérica baseada em metacaulim ou outros precursores, integrando diferentes teores;
- Examinar e analisar os produtos em mais idades (intermediárias e além de 28 dias), realizando as técnicas de caracterização empregadas nos diferentes estágios, a fim de compreender a evolução microestrutural do material;
- Realizar testes de resistência à compressão com 4 corpos de prova ou mais para a aplicação de ANOVA e teste Tukey com o intuito de verificar se as diferenças de teores de incorporação são significativas estatisticamente e quais produtos sintetizados podem ser considerados semelhantes;
- Aplicar teste de absorção de água para determinar a permeabilidade e verificar o atendimento a parâmetros de produtos normatizados;
- Realizar testes de viscosidades (com auxílio de viscosímetro ou reômetro) para auxiliar no entendimento do estado fresco das pastas geopoliméricas com e sem adição de fonte de cálcio;
- Efetuar ensaio de resistência à flexão de 3 pontos para obter outras informações de comportamento mecânico do material.

8 REFERÊNCIAS BIBLIOGRÁFICAS

ADHITYA, L. W.; JANUARTI, J. E.; TRIWULAN. Factors influencing strength and setting time of fly ash based-geopolymer paste. **MATEC Web of Conferences**, v. 138, 2017.

ALONSO, S.; PALOMO, A. Calorimetric study of alkaline activation of calcium hydroxide \pm metakaolin solid mixtures. **Cement and Concrete Research**, v.31, p. 25-30, 2001.

AL-SAMMARRAEE, M.; CHAN, A. Large-eddy simulations of particle sedimentation in a longitudinal sedimentation basin of a water treatment plant. Part I: Particle settling performance. **Chemical Engineering Journal**, v. 152, p.307-314, 2009a.

AL-SAMMARRAEE, M.; CHAN, A. Large-eddy simulations of particle sedimentation in a longitudinal sedimentation basin of a water treatment plant. Part 2: The effects of baffles. **Chemical Engineering Journal**, v. 152, p.315-321, 2009b

ANGULO-RAMÍREZ, D. E.; MEJÍA DE GUTIÉRREZ, R.; PUERTAS, F. Alkali-activated Portland blast-furnace slag cement: Mechanical properties and hydration. **Construction and Building Materials**, v. 140, p. 119–128, 2017.

ASADOLLAHFARDI, G. et al. Experimental and statistical studies of using wash water from ready-mix concrete trucks and a batching plant in the production of fresh concrete. **Construction and Building Materials**, v. 98, p. 305–314, 2015.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Cimento Portland — Determinação dos tempos de pega: NBR 16607, Rio de Janeiro, 2018.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Cimento Portland e outros materiais em pó — Determinação da massa específica: NBR 16605, Rio de Janeiro, 2017.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **Projeto de estruturas de concreto** — **Procedimento**: NBR 6118, Rio de Janeiro, 2014.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **Execução de concreto dosado em central — Procedimento**: NBR 7212, Rio de Janeiro, 2021.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Cimento Portland - Análise química - Determinação de perda ao fogo: NBR NM 18, Rio de Janeiro, 2012.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Metacaulim para uso com cimento Portland em concreto, argamassa e pasta Parte 1: Requisitos: NBR 15894-1, Rio de Janeiro, 2010.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Água para amassamento do concreto. Parte 1: Requisitos: NBR 15900-1, Rio de Janeiro, 2009.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **Resíduos sólidos - Classificação**: NBR 10004, Rio de Janeiro, 2004.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **Rochas e solos - Teminologia**: NBR 6502, Rio de Janeiro, 1995.

ASTM C109/109M. American Society for Testing and Materials. **Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens)**, Sec.4, Volume 04.01, Philadelphia, 2000.

AUDO, M. et al. Characterization of ready-mixed concrete plants sludge and incorporation into mortars: Origin of pollutants, environmental characterization and impacts on mortars characteristics. **Journal of Cleaner Production**, v. 183, p. 153–161, maio 2018.

AUDO, M.; MAHIEUX, P.; TURCRY, P. Utilization of sludge from ready-mixed concrete plants as a substitute for limestone fillers. **Construction And Building Materials**. Elsevier BV, v. 112, p.790-799, 2016.

AZEVEDO, A. M. Síntese e caracterização química, física e mecânica de geopolímero utilizando caulim da amazônia desidroxilizado. 41 f. Dissertação (Mestrado em Engenharia Civil). Universidade Federal do Amazonas, Manaus, 2017.

BARBOSA, V.F.F.; MACKENZIE, K.J.D. Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate. **Materials Research Bulletin**, v. 38, n.2, p. 319-331, 2003.

BELCHIOR, W. M. Avaliação das propriedades físicas e mecânicas de microconcretos com substituição parcial do cimento por resíduos cerâmicos. Dissertação (Mestrado em Engenharia Civil). Universidade Federal do Amazonas, Manaus, 2017.

BELL, J. L.; DRIEMEYER, P.E.; KRIVEN, W.M. Formation of ceramics from metakaolinbased geopolymers. Part II: K-based geopolymer. **Journal of the American Ceramic Society**, v. 92, 2009.

BRASIL. Ministério da Saúde. **Portaria de consolidação nº 5**, de 28 de setembro de 2017. Consolidação das normas sobre as ações e os serviços de saúde do Sistema Único de Saúde. Brasília-DF. Disponível em:< https://portalarquivos2.saude.gov.br/images/pdf/2018/marco/29/PRC-5-Portaria-de-Consolida----o-n---5--de-28-de-setembro-de-2017> Acesso em 05 agos. 2020.

BRASIL. Ministério do Meio Ambiente. **Resolução n. 448**, de 19 de janeiro de 2012 a. Altera os artigos 2°, 4°, 5°, 6°, 8°, 9°, 10 e 11 e revoga os artigos 7°, 12 e 13 da resolução n°. 307 / 2002 do CONAMA. Brasilia-DF. Disponível em: < http://www.mma.gov.br/ port/conama> Acesso em 23 set. 2019.

BRASIL. Ministério do Meio Ambiente. **Resolução n. 307**, de 5 de julho de 2002. 2002. Estabelece diretrizes, critérios e procedimentos para a gestão dos resíduos da construção civil. Brasilia-DF. Disponível em: http://www2.mma.gov.br/port/conama/ Acesso em 23 set. 2019.

BRASIL. **Política Nacional de Resíduos Sólidos (Lei nº 12.305/2010**). Diário Oficial da União, Brasília, DF, 2010. Disponível em: < http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2010/lei/l12305.htm> Acesso em 22 set. 2019.

BUCHWALD, A. et al. Stabilised foam clay material with high performance thermal insulation properties. **Ceramic Forum international**, 2004.

CABALLERO, L. R. **Comportamento físico-mecânico de matrizes geopoliméricas à base de metacaulim reforçadas com fibras de aço.** 160 f. Dissertação (Mestrado em Engenharia Civil) Universidade Federal do Rio de Janeiro, COPPE, Rio de Janeiro, 2017.

CAO, Y. F. et al. Effect of calcium aluminate cement on geopolymer concrete cured at ambient temperature. **Construction and Building Materials**, v. 191, p. 242–252, 2018.

CARVALHO, I. M.; BONFIM, W. B.; DE PAULA, H. M. Uso de lama residual de concreto como substituto da cal hidratada para produção de argamassas de revestimento. **Revista Eletrônica de Engenharia Civil (REEC)**, v. 15, n.2, p.75-87, 2019.

CATAURO, M. et al. Investigation of the sample preparation and curing treatment effects on mechanical properties and bioactivity of silica rich metakaolin geopolymer. **Materials Science and Engineering: C**, v. 36, p. 20-24, 2014.

CESARI, V. F. Influência do uso de aditivos dispersantes em pastas de geopolímero produzido com cinza volante e hidróxido de sódio. 128 f. Dissertação (Mestrado em Engenharia Civil). Universidade Federal de Santa Catarina, Florianópolis, 2015.

CHATVEERA, B; LERTWATTANARUK, P e MAKUL, N. Effect of Sludge Water from Ready-mixed Concrete Plant on Properties and Durability of Concrete Cement and Concrete Composites. **Elsevier**, v. 28, n. 5, p. 441-450, 2006.

CHITHIRAPUTHIRAN, S.; NEITHALATH, N. Isothermal reaction kinetics and temperature dependence of alkali activation of slag, fly ash and their blends. **Construction and Building Materials**, v. 45, p. 233-242, 2013.

CORREIA, S.l. et al. Assessment of the recycling potential of fresh concrete waste using a factorial design of experiments. **Waste Management**. Elsevier BV, v. 29, n. 11, p. 2886-2891, 2009.

DAVIDOVITS, J. Geopolymer Cement, a review. Geopolymer Institute. Saint-Quentin, 2013.

DAVIDOVITS, J. **Geopolymers – chemistry and applications**. 3. ed. In: Institute Géopolymère, Saint-Quentin, France, 2011.

DAVIDOVITS, J. Geopolymer chemistry and sustainable Development. The Poly(sialate) terminology: a very useful and simple model for the promotion and understanding of greenchemistry. In: Geopolymer, Green Chemistry and Sustainable Development Solutions, World Congress Geopolymer. Proceedings, p. 9-15. Saint-Quentin: 2005

DAVIDOVITS, J. 30 Years of Successes and Failures in Geopolymer Applications. Market Trends and Potential Breakthroughs. In: **Geopolymer 2002 Conference**. Conferência. Melbourne: 2002.

DAVIDOVITS, J.; DAVIDOVICS, M.; DAVIDOVITS, N. **Process for obtaining a geopolymeric alumino-silicate and products thus obtained**. United States Patent 5, 342, 595, 1994.

DAVIDOVITS, J. Geopolymers: Inorganic Polymeric New Materials. Journal of Thermal Analysis, v. 37, p. 1633–1656, 1991.

DAVIDOVITS, J.; SAWYER, J.L. Early high-strength mineral polymer. United States Patent 4, 509, 985, 1985.

DAVIDOVITS, J. **Mineral polymers and methods of making them**. United States Patent 4, 349, 386, 1982.

DE LUNA, F. D. T. The Influence of Geometry on the Fluid Dynamics of Continuous Settler. Journal of Fluid Dynamics, v. 10, n. 3, 2020

DE SCHEPPER, M. et al. Life Cycle Assessment of Completely Recyclable Concrete. **Materials**, v. 7, n. 8, p. 6010–6027, 21 ago. 2014.

DE VILLIERS, J. P. R; LU, L. 3 - XRD analysis and evaluation of iron ores and sinters. **Iron Ore - Mineralogy, Processing and Environmental Sustainability**, P. 85-100, 2015.

DINÂMICA QUÍMICA CONTEMPORÂNEA LTDA. FGQ 050-CERTIFICADO DE ANÁLISE, LOTE 103860. 2019. Disponível em: < http://dinamicaquimica.com.br/index.html#Laudos> Acesso em 05 de jan.2020.

DJOBO, J. et al. Gel Composition and Strength Properties of Alkali-Activated Oyster Shell-Volcanic Ash: Effect of Synthesis Conditions. Journal of the American Ceramic Society, v. 99, p. 3159-3166, 2016.

DOYLE, M. W.; HAVLICK, D. G. Infrastructure and the Environment. Annual Review of Environment and Resources, v. 34, n. 1, p. 349–373, 2009.

DUXSON, P.; LUKEY, G.C.; VAN DEVENTER, J.S.J. Thermal evolution of metakaolin geopolymers: Part 1 – Physical evolution. **Journal of Non-Crystalline Solids**, v. 352, p. 5541–5555, 2006.

DUXSON, P. et al. Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids and Surfaces A: Physicochem. Eng. Aspects, v. 269, p. 47–58, 2005.

EISENBERG, D.; KAUZMANN, W.; KAUZMANN, WALTER. The Structure and Properties of Water. The Structure and Properties of Water. New York: Oxford University Press: 2005.

ELKEM SILICON MATERIALS. Elkem Microsilica® 920 ASTM Concrete applications – Product data sheet. 2020. Disponível em: < https://www.elkem.com/pt-br/silicon-products/construction/concrete/elkem-microsilica-powder/> Acesso em 05 de jan. 2020.

EREN, T.; BAYSAL, G.; DOĞAN, F. Biocidal Activity of Bone Cements Containing Curcumin and Pegylated Quaternary Polyethylenimine. Journal of Polymers and the Environment, v. 28, p. 2469-2480, 2020.

ERMCO – European Ready Mixed Concrete Organization. Guidance on Concrete Wash Water in the European Ready Mixed Concrete Industry. Bélgica: 2006. Disponível em < http://www.ermco.eu/document/ermco_wash_water_g uidance_oct_2006-pdf/> Acesso em 05 de set. 2019.

FAZZAN, J. V.; PEREIRA, A. M.; SILVA, W. J. DA. Aproveitamento de agregados regionais da jazida de prospecção às margens do rio Paraná. **Periódico Eletrônico Fórum Ambiental**

da Alta Paulista, v. 12, n. 5, p. 94–108, 2016.

FERNÁNDEZ-JIMÉNEZ, A. et al. Hybrid alkaline cements. part III. Durability and industrial applications. **Revista Romana de Materiale/ Romanian Journal of Materials**, v. 43, n. 2, p. 195-200. 2013.

FERNANDEZ-JIMENEZ, A.; PALOMO, A. Composition and microstructure of alkali activated fly ash binder: effect of the activator. **Cement and Concrete Research**, v. 35, p. 1984-1992, 2005.

FERNÁNDEZ-JIMÉNEZ, A.; PUERTAS, F.; SANZ, J.; SOBRADOS, I. Structure of calcium silicate hydrated formed in alkaliactivated slag pastes. Influence of the type of alkalineactivator, **Journal of the Americam Ceramic Society**, v. 86, n. 8, p. 1389–1394, 2003.

GAO, X. X. et al. Synthesis of consolidated materials from alkaline solutions and metakaolin: existence of domains in the Al–Si–K/O ternary diagram. Journal of Sol-Gel Science and Technology, v. 65, p 220-229, 2013.

GARCÍA-LODEIRO, I. et al. Hybrid alkaline cements. Part I: Fundamentals | Cimenturi Hibride Alcaline. Partea I: Fundamente. **Revista Romana de Materiale/ Romanian Journal of Materials**, v. 42, n. 4, p. 330–335, 2012.

GARCÍA-LODEIRO, I. et al. Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cement and Concrete **Research**, v. 41, p. 923-931, 2011.

GERALDO, R. H. **Aglomerante álcali-ativado contendo lodo de eta e cinza de casca de arroz**. 134 f. Dissertação (Mestrado em Engenharia Civil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo da Unicamp, Campinas, 2016.

GLOBALABC. Global Alliance for Buildings and Construction. **Global Status Report**. 325 p, 2018.

GOMES, C. E. M.; FERREIRA, O. P.; FERNANDES, M. R. Influence of Vinyl-Acetate-Versatic Vinylester Copolymer on the microstructural characteristics of cement paste. **Materials Research**, v.8, n. 1, p. 54-56, 2005.

GONÇALVES, F. M. **Desenvolvimento de geopolímero à base de cinza volante, solução ativadora de hidróxido de potássio e aditivo dispersante**. 91 f. Dissertação (Mestrado em Engenharia Civil). Universidade Federal de Santa Catarina, Florianópolis, 2015.

HABERT, G. Assessing the environmental impact of conventional and 'green' cement production. **Eco-efficient Construction and Building Materials**. Elsevier, 2014. p. 199–238.

HARRISSON, A. M. 4 - Constitution and Specification of Portland Cement. Lea's **Chemistry** of **Cement and Concrete**, p. 87-155, 2019.

HE, X. et al. New treatment technology: The use of wet-milling concrete slurry waste to substitute cement. **Journal of Cleaner Production**, v. 242, 2019.

HOPPE FILHO, J. Pozzolanic activity of mineral additions to Portland cement (Part I): Pozzolanic activity index with lime (PAI), X-ray diffraction (XRD), thermogravimetry (TG/DTG) and modified Chapelle. **Revista Matéria**, v. 22, n. 3, 2017.

HORBE, A. M. C. et al. Mineralogia e geoquímica dos perfis sobre sedimentos neógenos e quaternários da bacia do Solimões na região de Coari – AM. Acta Amazon., v. 37, 2007.

HORBE, A. M. C. et al. Origem dos depósitos de areias brancas no nordeste do amazonas. **Revista Brasileira de Geociências**, v. 33, p. 41-50, 2003.

HOSSAIN, M. U.; XUAN, D.; POON, C. S. Sustainable management and utilisation of concrete slurry waste: A case study in Hong Kong. **Waste Management**, v. 61, p. 397–404, 2017.

HOUNSI, A. D. et al. How does Na, K alkali metal concentration change the early age structural characteristic of kaolin-based geopolymers. **Ceramics International**, v. 40, p. 8953-8962, 2014.

HUGHES, T. L. et al. Determining Cement Composition by Fourier Transform Infrared Spectroscopy. Advanced Cement Based Material, v.2, n.3, p. 91-104, 1995.

IIZUKA, A. et al. Boron Removal Performance of a Solid Sorbent Derived from Waste Concrete. **Industrial & Engineering Chemistry Research**, v. 53, n 10, p. 4046–4051, 2014.

IIZUKA, A. et al. Phosphorus adsorbent derived from concrete sludge (PAdeCS) and its phosphorus recovery performance. **Industrial & Engineering Chemistry Research**, v. 51, p. 11266-11273, 2012a.

IIZUKA, A. et al. Aqueous mineral carbonation process via concrete sludge, **Kagaku kōgaku** ronbunshū, v. 38, p. 129-134, 2012b.

IIZUKA, A. et al. Bench-scale operation of a concrete sludge recycling plant. **Industrial & Engineering Chemistry Research**, v. 51, p. 6099-6104, 2012c.

ISLAM, M. Creep and shrinkage behavior of fly ash based geopolymer concrete. 228 f. Doctoral dissertation. Louisiana Tech University, Ruston, 2015.

JANG, J.G. et al. A novel eco-friendly porous concrete fabricated with coal ash and geopolymeric binder: Heavy metal leaching characteristics and compressive strength. **Construction and Building Materials**, v. 79, p. 173-181, 2015.

JI, Z.; SU, L.; PEI, Y. Synthesis and toxic metals (Cd, Pb, and Zn) immobilization properties of drinking water treatment residuals and metakaolin-based geopolymers. **Materials Chemistry and Physics**, v. 242, 2020.

JIANG, C. et al. A review on geopolymer in potential coating application: materials, preparation and basic properties, **Journal of Building Engineering**, 2020.

JOTHIBAS, M. et al. Synthesis and enhanced photocatalytic property of Ni doped ZnS nanoparticles. **Solar Energy**, v. 159, p. 434-443, 2018.

KADIR, A. A. et al. The effect on slurry water as a fresh water replacement in concrete

properties. **IOP Conference Series: Materials Science and Engineering**, v. 133, p. 012041, jun. 2016.

KANTRO, D.L. Influence of water-reducing admixtures on properties of cement paste – A miniature slump test. **Cement, Concrete and Aggregates**, v. 2, n. 2, p. 95-102, 1980.

KAZAZ, A.; ULUBEYLI, S. Current Methods for the Utilization of the Fresh Concrete Waste Returned to Batching Plants. **Procedia Engineering**, v. 161, p. 42–46, 2016.

KAZE, C. R. et al. Characterization and performance evaluation of laterite based geopolymer binder cured at different temperatures. **Construction and Building Materials**, v. 270, 2020.

KONHAUSER et al. Multi-element chemistry of some Amazonian waters and soils. Chemical Geology, v. 111, p.155-175, 1994.

LA SERNA, H. A. de. REZENDE, M. M. Agregados para a Construção Civil. **Agência Nacional de Mineração**. 2013. Disponível em: https://www.gov.br/anm/pt-br/centrais-de-conteudo/publicacoes/serie-estatisticas-e-economia-mineral/outras-publicacoes-1/8-1-2013-agregados-minerais> Acesso em 13 de dez. 2020.

LI, Y. et al. Multi-scale study on mechanical property and strength prediction of aeolian sand concrete. **Construction and Building Materials**, v. 247, 2020.

LI, C.; SUN, H.; LI, L. A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. **Cement and Concrete Research**, v. 40, n. 9, p. 1341–1349, 2010.

LONGHI, M. et al. Metakaolin-based geopolymers: Relation between formulation, physicochemical properties and efflorescence formation. **Composites Part B: Engineering**, v. 182, 2020.

MANAENKOV, A.; STEINEROVA, M.; KUKLEVA, E. Effect of Kaolin Addition into Metakaolin Geopolymer Composite. Journal of Materials in Civil Engineering, v. 33, 2020.

MANSUR, A. P.; SANTOS, D. B.; MANSUR, H.S. A microstructrural approach to adherence mechanism of poly (vinyl alcohol) modified cement systems to ceramic tiles. **Cement and Concrete Research**, v. 37, p. 270-282, 2007.

MAJIDI, B. Geopolymer technology, from fundamentals to advanced applications: a review. **Materials Technology: Advanced Performance Materials**, v. 24, p. 79-87, 2009.

MARCHON, D.; FLATT, R. J. Mechanisms of cement hydration. Science and Technology of Concrete Admixtures, p. 129-145, 2016.

MATSCHULLAT et al. What influences upland soil chemistry in the Amazon basin, Brazil? Major, minor and trace elements in the upper rhizosphere. Journal of Geochemical Exploration, v. 211, 2020.

METACAULIM DO BRASIL. Ficha de Informação de Segurança de Produtos Químicos – FISPQ, 2016. Disponível em:< http://www.metacaulim.com.br/impermeabilizantes-metacaulim-hp-ultra.html> Acesso em 05 de jan. 2020.

MILLER, S. A.; HORVATH, A.; MONTEIRO, P. J. M. Readily implementable techniques can cut annual CO2 emissions from the production of concrete by over 20%. Environmental Research Letters, v. 11, n. 7, 2016.

MILLER, S. A.; HORVATH, A.; MONTEIRO, P. J. M. Impacts of booming concrete production on water resources worldwide. **Nature Sustainability**, v. 1, n. 1, p. 69–76, 2018.

MOLLAH, M.Y.A. et al. A Fourier transform infrared spectroscopic investigation of the early hydration of Portland cement and the influence of sodium lignosulfonate. **Cement and Concrete Research**, v.2, n. 2, p. 267-273, 2000.

MONTE, R. Avaliação de metodologias de ensaio destinadas à verificação da eficiência de aditivos superplastificantes em pastas de cimento Portland. 102 f. Dissertação (Mestrado em Engenharia). Universidade de São Paulo, Escola Politécnica, São Paulo, 2003.

NATH, P.; SARKER, P. Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature. **Cement and Concrete Composites**, v. 55, p. 205-214, 2015.

NAQI, A.; JANG, J. G. Recent progress in green cement technology utilizing low-carbon emission fuels and raw materials: A review. **Sustainability** (Switzerland), v. 11, n. 2, 2019.

NITA, C. Utilização de pozolanas em compósitos de cimento reforçados com fibras de celulose e PVA. Dissertação (Mestrado). Escola Politécnica. São Paulo, 2006.

OPON, J.; HENRY, M. An indicator framework for quantifying the sustainability of concrete materials from the perspectives of global sustainable development. **Journal of Cleaner Production**, v. 218, p. 718–737, 2019.

PALOMO, A. et al. Hybrid alkaline cements. Part II: The clinker factor | Cimenturi hibride alcaline. Part II-a: Factorul clincher. **Revista Romana de Materiale/ Romanian Journal of Materials**, v. 43, n. 1, p. 74–80, 2013.

PANDEY, V. C. Fly ash properties, multiple uses, threats, and management: an introduction. **Phytomanagement of Fly Ash**, p. 1-34, 2020.

PAOLINI, M.; KHURANA, R. Admixtures for recycling of waste concrete. Cement and Concrete Composites, v. 20, p. 221-9, 1998.

PAULA, H. M.; ILHA, M. S. O. Quality of concrete plant wastewater for reuse. **Revista Ibracon de Estruturas e Materiais**, v. 7, n. 3, p. 349-366, 2014.

PAYÁ, J. et al. Application of alkali-activated industrial waste. New Trends in Eco-efficient and Recycled Concrete, p. 357-424, 2019.

PICHEL, N.; VIVAR, M. A critical review on iodine presence in drinking water access at the Saharawi refugee camps (Tindouf, Algeria). Journal of Trace Elements in Medicine and Biology, v. 42, p. 32-38, 2017.

PORTELA, G. **Compósito geopolimérico reforçado com tecido de juta**. Dissertação (Mestrado em Engenharia Civil). Universidade Federal do Amazonas, Manaus, 2016.

PROVIS, J. L. Geopolymers and other alkali activated materials: Why, how, and what? **Materials and Structures**, v. 47, p. 11-25, 2014.

PULIGILLA, S. Understanding the role of calcium on the reaction mechanism of geopolymer cements through addition of nucleation seeds. Dissertation (Ph.D.). University of Illinois at Urbana-Champaign, 2017.

PULIGILLA, S.; MONDAL, P. Role of slag in microstructural development and hardening of fly ash-slag geopolymer. **Cement and Concrete Research**, v. 43, p. 70-80, 2013.

RAMOS, G. A. **Cimento geopolimérico contendo resíduo do polimento de placas cerâmicas**. 116 f. Dissertação (Mestrado em Engenharia Civil). Universidade Federal de Santa Catarina, Florianópolis, 2017.

RANJBAR, N et al. Hardening evolution of geopolymers from setting to equilibrium: A review. **Cement and Concrete Composites**, v. 114, 2020.

RATTANASAK, U.; PANKHET, K.; CHINDAPRASIRT, P. Effect of chemical admixtures on properties of high-calcium fly ash geopolymer. **International Journal of Minerals**, **Metallurgy, and Materials**, v.18, p. 364-369, 2011.

REIG, F. B.; ADELANTADO, J. V.; MORENO, M. C. M. FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples. **Talanta**, v.58, p. 811-821, 2002.

REPETTE, W. L. Reciclagem de Água de Lavagem de caminhão-betoneira para produção de concreto. Formulário para a apresentação de projeto PIBIC/CNPq – BIP/UFSC 2005/2006.

RICHARD, T. et al. Diffuse reflectance infrared Fourier transform spectroscopy as a tool to characterise water in adsorption/confinement situations. Journal of Colloid and Interface Science, v. 304, p. 125-136, 2006.

RUGHOOPUTH, R.; RANA, J. O.; JOORAWON, K. Possibility of using fresh concrete waste in concrete for non structural civil engineering works as a waste management strategy. **Journal Of Civil Engineering**. Springer Nature, v. 21, n. 1, p.94-99, 2016.

SAMPAIO, R. B. Argamassa geopolimérica à base de lodo de estação de tratamento de água calcinado. 139 f. Dissertação (Mestrado em Engenharia Civil). Universidade Federal de Santa Catarina, Florianópolis 2017.

SANDROLINI, F.; FRANZONI, E. Waste wash water recycling in ready-mixed concrete plants. Cement and Concrete Research, v. 31, p. 485-9, 2001.

SANTOS, G. Z. B. Argamassa geopolimérica à base de lodo de estação de tratamento de água calcinado. Dissertação (Mestrado em Engenharia Civil). Universidade Federal do Amazonas, Manaus, 2016.

SCHOON, J. et al. Feasibility Study of the Use of Concrete Sludge As Alternative Raw Material for Portland Clinker Production. **Journal of Materials in Civil Engineering**. American Society of Civil Engineers (ASCE), v. 27, n. 10, p.1-12, 2015.

SCRIVENER, K. L.; JOHN, V. M.; GARTNER, E. M. Eco-efficient cements: Potential

economically viable solutions for a low-CO 2 cement-based materials industry. **Cement and Concrete Research**, v. 114, p. 2–26, 2018.

SEALEY, B. J.; PHILLIPS, P. S.; HILL, G. J. Waste management issues for the UK readymixed concrete industry. **Resources, Conservation and Recycling**, v. 32, n. 3–4, p. 321–331, jul. 2001.

SEDIRA, N.; CASTRO-GOMES, J. Effect of activators on hybrid alkaline binder based on tungsten mining waste and ground granulated blast furnace slag. **Construction and Building Materials**, v. 232, 2020.

SHETAYA, W.H. et al. Iodine dynamics in soils. **Geochimica et Cosmochimica Acta**, v.77, p.457-473, 2012.

SHI, C.; FERNÁNDEZ JIMÉNEZ, A.; PALOMO, A. New cements for the 21st century: The pursuit of an alternative to Portland cement. **Cement and Concrete Research**, v. 41, p. 750-763, 2011.

SHI, C.; ROY, D.M.; KRIVENKO, P.V. Alkali-activated Cements and Concretes. London: Taylor & Francis, 2006, 392 p.

SHI-CONG, K.; BAO-JIAN, Z.; CHI-SUN, P. Properties of partition wall blocks prepared with fresh concrete wastes. **Construction and Building Materials**, v. 36, p. 566-571, 2012a.

SHI-CONG, K.; BAO-JIAN, Z.; CHI-SUN, P. Feasibility study of using recycled fresh concrete waste as coarse aggregates in concrete. Construction and Building Materials, v. 28, p. 549-556, 2012b.

ŠKVÁRA, F. et al. Material and structural characterization of alkali activated low-calcium brown coal fly ash. **Journal of Hazardous Materials**, v. 168, p. 711-720, 2009.

SILVA, D. O. F. DA. **Reaproveitamento de lamas residuais do processo de fabricação do concreto**. 84 f. Dissertação (Mestrado em Ciências). Escola Politécnica da Universidade de São Paulo, São Paulo, 2016.

SNIC. Sindicato Nacional da Indústria do Cimento. **Relatório Anual 2013.** Rio de Janeiro, 2019. Disponível em: http://snic.org.br/assets/pdf/relatorio_anual/rel_anual_2019.pdf> Acesso em 02 de jun. 2021.

SOLIMAN, A.M; NEHDI, M.L. Effect of partially hydrated cementitious materials and superabsorbent polymer on early-age shrinkage of UHPC. **Construction and Building Materials**, v. 41, p. 270-275, 2013a.

SOLIMAN, A.M; NEHDI, M.L. Effect of partially hydrated cementitious materials on earlyage shrinkage of ultra-high-performance concrete. **Magazine of Concrete Research**, v. 65, n.19, p. 1147-1154, 2013b.

SOLIMAN, A.M; NEHDI, M.L. Self-accelerated reactive powder concrete using partially hydrated cementitious materials. **ACI Materials Journal**, v. 108, n. 6, p. 596-604, 2011.

SOMNA, K. et al. NaOH-activated ground fly ash geopolymer cured at ambient temperature. **Fuel**, v. 90, p. 2118-2124, 2011.

SONG, H. et al. A study of thermal decomposition of phases in cementitious systems using HT-XRD and TG. **Construction and Building Materials**, v. 169, p. 648-661, 2018.

SOUZA, J. J. L. et al. Geochemical signature of Amazon tropical rainforest soils. **Rev. Bras.** Ciênc. Solo, v. 42, 2018.

TAM, V. W. Y.; TAM, C. M. Economic comparison of recycling over-ordered fresh concrete: A case study approach. **Resources, Conservation and Recycling**, v. 52, n. 2, p. 208–218, dez. 2007.

TANG, P. et al. Use of CO2 curing to enhance the properties of cold bonded lightweight aggregates (CBLAs) produced with concrete slurry waste (CSW) and fine incineration bottom ash (IBA). **Journal of Hazardous Materials**, v, 381, 2019a.

TANG, P. et al. Valorization of concrete slurry waste (CSW) and fine incineration bottom ash (IBA) into cold bonded lightweight aggregates (CBLAs): feasibility and influence of binder types. **Journal of Hazardous Materials**, v. 381, p. 689-697, 2019b.

THEOPHANIDES, T. Infrared Spectroscopy: Materials Science, Engineering and Technology. Rijeka: IntechOpen, 2012.

TIAN, Q.B. et al. Preparation and Properties of Glass-ceramics made from Concrete Sludge. **Rare Metal Materials and Engineering**, v. 36, p. 979-982, 2007.

TREZZA, M.A. Hydration Study of Ordinary Portland Cement in the Presence of Zinc Ions. **Materials Research**, v. 10, n. 4, p. 331-334, 2007.

TSIMAS, S.; ZERVAKI, M. Reuse of waste water from ready-mixed concrete plants. **Management of Environmental Quality: An International Journal**, v. 22, n. 1, p. 7–17, 2011.

TSUNASHIMA, Y. et al. Preparation of sorbents containing ettringite phase from concrete sludge and their performance in removing borate and fluoride ions from waste water. **Chemical Engineering Journal**. v. 200–202, p. 338–343, 2012.

UCHINO, T.; SAKKA, T.; IWASAKI, M. Interpretation of Hydrated States of Sodium Silicate Glasses by Infrared and Raman Analysis. **Journal of the American Ceramic Society**, v. 74, 1991.

UN POPULATION DIVISION. **World Population Prospects 2019**. United Nations Department of Economic and social Affairs, New York, 2019. Disponível em: Acesso em 15 de ago. 2019">https://population.un.org/wpp/Download/Standard/Population/> Acesso em 15 de ago. 2019.

U.S. GEOLOGICAL SURVEY. Mineral commodity summaries 2020: U.S. Geological Survey, 200 p., 2020.

VIEIRA, L. DE B. P. et al. Waste generation from the production of ready-mixed concrete. **Waste Management**, v. 94, p. 146–152, jul. 2019.

VIEIRA, L. DE B. P.; FIGUEIREDO, A. D. DE. Evaluation of concrete recycling system efficiency for ready-mix concrete plants. **Waste Management**, v. 56, p. 337–351, out. 2016.

VIEIRA, L. DE B. P.; FIGUEIREDO, A. D. DE. Resíduos da Concreteira: o aproveitamento do problema. **Revista Concreto IBRACON**, v. 22, n.71, p.49-53, 2013.

VIEIRA, L. DE B. P. **Implantação de modelo sustentável para centrais dosadoras de concreto:** Redução do volume de resíduos com o uso de estabilizador de pega em centrais dosadoras de concreto. Fortaleza, 2010. Disponível em: http://www.ibracon.org.br/eventos/52cbc/LUIZ_DE_BRITO.pdf> Acesso em 20 de ago. 2019.

WANG, Y et al. Effects of Si/Al ratio on the efflorescence and properties of fly ash based geopolymer. **Journal of Cleaner Production**, v. 244, 2020.

WEI, Y. et al. The degradation behavior and mechanism of polytetrafluoroethylene under low energy proton irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, v. 430, p. 47-53, 2018.

WU, Z. et al. Quantifying construction and demolition waste: An analytical review. **Waste Management**, v. 34, n. 9, p. 1683-1692, 2014.

XU, H.; VAN DEVENTER, J.S.J. The geopolymerisation of alumino-silicate minerals. **International Journal of Mineral Processing**, v. 59, p. 247–266, 2000.

XUAN, D. et al. Innovative reuse of concrete slurry waste from ready-mixed concrete plants in construction products. **Journal of Hazardous Materials**, v. 312, p. 65–72, 2016a.

XUAN, D. et al. Carbon dioxide sequestration of concrete slurry waste and its valorisation in construction products. **Construction and Building Materials**, v. 113, p. 664–672, 2016b.

XUAN, D.; POON, C. S.; ZHENG, W. Management and sustainable utilization of processing wastes from ready-mixed concrete plants in construction: A review. **Resources, Conservation and Recycling**, v. 136, n. May, p. 238–247, 2018.

YANG, Z. X. et al. Geopolymer concrete fabricated by waste concrete sludge with silica fume. **Materials Science Forum**, v. 620–622, p. 791–794, 2009a

YANG, Z. X. et al. The performance of geopolymer based on recycled concrete sludge, **Ceramic Materials and Components for Energy and Environmental Applications**, v. 10, p. 221-224, 2009b.

YANG, Z. X. et al. The effect of SiO₂ on the performance of inorganic sludge-based structural concretes, **Journal of Ceramic Processing Research**, v. 10, n. 3, p. 266-268, 2009c.

YIP, C. et al. Carbonate mineral addition to metakaolin-based geopolymers. Cement and Concrete Composites, v. 30, p. 979-985, 2008a.

YIP, C. et al. Effect of calcium silicate sources on geopolymerisation. **Cement and Concrete Research**, v. 38, p. 554-564, 2008b.

YOO, J. C.; SHIN, H.; JI, S. Evaluation of the Applicability of Concrete Sludge for the Removal of Cu, Pb, and Zn from Contaminated Aqueous Solutions. **Metals**, v. 8, n. 9, p. 1-17, 2018.

YUAN, J. et al. Effect of curing temperatura and SiO₂/K₂O molar ratio on the performance of metakaolin-based geopolymers. **Ceramics International**, v. 42, n.14, p. 16184-16190, 2016.

ZERVAKI, M.; LEPTOKARIDIS, C.; TSIMAS, S. Reuse of by-products from ready-mixed concrete plants for the production of cement mortars. Journal of Sustainable Development of Energy, Water and Environment, v. 1, n. 2, p 152-162, 2013.

ZHANG, H. et al. Characterizing the bond strength of geopolymers at ambient and elevated temperatures. **Cement and Concrete Composites**, v. 58, p. 40-49, 2015.

ZHANG, J. et al. Properties of fresh and hardened geopolymer-based grouts. Ceramics - Silikaty, v. 63, p. 164-173, 2019.

ZHANG, J.; FUJIWARA, T. Concrete Sludge Powder for Soil Stabilization. **Transportation Research Record: Journal of the Transportation Research Board**, n. 2026, p. 54–59, 2007.

ZHAO, C. et al. Study on Carbon Emission Calculation Method of Concrete. **Key Engineering Materials**, v. 768, p. 293-305, 2018.

9 APÊNDICE A - ANOVA: PONTOS DE COLETA

9.1 CDC K – K7A, K7B e K7C

Legenda:

Médias estatisticamente iguais Médias com diferenças significativas

RESUMO

Grupo	Contagem	Soma	Média	Variância
Na ₂ O_A	8	1,2864	0,1608	0,002666
Na ₂ O_B	8	0,98559	0,123199	0,011097
Na ₂ O_C	8	1,305	0,163125	0,003815

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,008036	2	0,004018	0,68569	0,514669	3,4668
Dentro dos grupos	0,12305	21	0,00586			
Total	0,131086	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
MgO_A	8	20,9087	2,613588	0,009092
MgO_B	8	24,96039	3,120049	0,002893
MgO_C	8	6,7135	0,839188	0,019405

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	22,95287	2	11,47644	1096,821	5,72E-22	3,4668
Dentro dos grupos	0,219731	21	0,010463			
Total	23,1726	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Al ₂ O ₃ _A	8	39,4992	4,9374	0,016664
Al ₂ O ₃ _B	8	40,55329	5,069161	0,006305
Al ₂ O ₃ _C	8	25,4411	3,180138	0,040695

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	17,79665	2	8,898324	419,3096	1,18E-17	3,4668
Dentro dos grupos	0,445649	21	0,021221			
Total	18,2423	23				

Grupo	Contagem	Soma	Média	Variância
SiO ₂ _A	8	164,9685	20,62106	0,191037
SiO ₂ _B	8	165,9452	20,74315	0,149159
SiO ₂ _C	8	103,2402	12,90503	0,439851

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	322,6355	2	161,3178	620,4151	2,1E-19	3,4668
Dentro dos grupos	5,460333	21	0,260016			
Total	328,0959	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
P ₂ O ₅ _A	8	1,8345	0,229313	0,000245
$P_2O_5_B$	8	1,73729	0,217161	0,000269
$P_2O_5_C$	8	1,6978	0,212225	0,000327

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,001237	2	0,000619	2,20353	0,135295	3,4668
Dentro dos grupos	0,005896	21	0,000281			
Total	0,007133	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
SO ₃ _A	8	25,364	3,1705	0,006773
SO ₃ _B	8	31,58279	3,947849	0,00666
SO ₃ _C	8	26,7579	3,344738	0,014961

ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	2,662328	2	1,331164	140,644	6,9E-13	3,4668
Dentro dos grupos	0,19876	21	0,009465			
Total	2,861088	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Cl_A	8	0,6795	0,084938	8,47E-06
Cl_B	8	0,46169	0,057711	2,38E-05
Cl_C	8	0,3027	0,037838	2,25E-05

ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,008946	2	0,004473	245,2862	2,75E-15	3,4668
Dentro dos grupos	0,000383	21	1,82E-05			
Total	0,009329	23				
RESUMO						
Grupo	Contagem	Soma	Média	Variância		
K_2O_A	8	4,9999	0,624988	0,000876		
K_2O_B	8	4,26779	0,533474	0,000657		
K ₂ O_C	8	3,0682	0,383525	0,000181		
ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,237769	2	0,118885	208,0222	1,44E-14	3,4668
Dentro dos grupos	0,012002	21	0,000572			
Total	0,249771	23				
RESUMO						
Grupo	Contagem	Soma	Média	Variância		
		495,657				
CaO_A	8	6	61,9572	0,149366		
		501,919				
CaO_B	8	8	62,73998	27,39508		
CaO C	8	604,950 A	75 6188	0 890/189		
	0	+	75,0100	0,070407		
ANOVA						
Fonte da variação	SO	gl	МО	F	valor-P	F crítico
Entre grupos	<u>~</u> 941,6432	2	470,8216	49,67358	1,09E-08	3,4668
Dentro dos grupos	199,0445	21	9,478311		,	,
Total	1140,688	23				
	· · ·					
RESUMO						
Grupo	Contagem	Soma	Média	Variância		
TiO ₂ _A	8	3,8476	0,48095	0,001673		
TiO ₂ _B	8	3,76179	0,470224	0,004142		
TiO ₂ _C	8	1,8441	0,230513	0,004023		
ANOVA						
Fonto da namia o ão	50	~1	MO	\boldsymbol{L}	ualan D	E aniti a a

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,320788	2	0,160394	48,91055	1,25E-08	3,4668
Dentro dos grupos	0,068866	21	0,003279			
Total	0,389654	23				

Grupo	Contagem	Soma	Média	Variância
CuO_A	8	0,3578	0,044725	1,76E-05
CuO_B	8	0,41319	0,051649	0,000112
CuO_C	8	0,1648	0,0206	4,78E-05

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,004251	2	0,002125	35,98338	1,64E-07	3,4668
Dentro dos grupos	0,00124	21	5,91E-05			
Total	0,005491	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
ZnO_A	8	0,645	0,080625	3,87E-05
ZnO_B	8	0,57919	0,072399	0,000148
ZnO_C	8	0,5735	0,071688	7,05E-05

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000395	2	0,000197	2,301963	0,124762	3,4668
Dentro dos grupos	0,001801	21	8,58E-05			
Total	0,002196	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
SrO_A	8	1,1013	0,137663	0,000104
SrO_B	8	0,88149	0,110186	0,000336
SrO_C	8	2,4345	0,304313	0,001852

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,176566	2	0,088283	115,5376	4,65E-12	3,4668
Dentro dos grupos	0,016046	21	0,000764			
Total	0,192612	23				

RESUMO

	Grupo	Contagem	Soma	Média	Variância
I_A		8	0,074	0,00925	0,000685
I_B		8	0,2591	0,032388	0,002267
I_C		8	0,1363	0,017038	0,001023

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,002218	2	0,001109	0,837013	0,446943	3,4668
Dentro dos grupos	0,027819	21	0,001325			
Total	0,030037	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
BaO_A	8	0,2488	0,0311	0,003326
BaO_B	8	0,4466	0,055825	0,003614
BaO_C	8	1,5897	0,198713	0,006945

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,130992	2	0,065496	14,15067	0,000128	3,4668
Dentro dos grupos	0,097198	21	0,004628			
Total	0,22819	23				

9.2 CDC K – K8A, K8B e K8C

RESUMO				
Grupo	Contagem	Soma	Média	Variância
Na ₂ O_A	8	0,705	0,088125	0,00549
Na ₂ O_B	8	1,0449	0,130613	0,004296
Na ₂ O_C	8	0,9118	0,113975	0,005783

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,007334	2	0,003667	0,706582	0,504684	3,4668
Dentro dos grupos	0,108984	21	0,00519			
Total	0,116318	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
MgO_A	8	15,2351	1,904388	0,01822
MgO_B	8	22,6584	2,8323	0,01745
MgO_C	8	5,1184	0,6398	0,002724

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	19,37936	2	9,689679	757,1424	2,68E-20	3,4668
Dentro dos grupos	0,268752	21	0,012798			
Total	19,64811	23				

Grupo	Contagem	Soma	Média	Variância
Al ₂ O ₃ _A	8	35,806	4,47575	0,002657
$Al_2O_3_B$	8	39,2633	4,907913	0,031322
Al ₂ O ₃ _C	8	26,2804	3,28505	0,003279

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	11,3019	2	5,650951	455,0094	5,12E-18	3,4668
Dentro dos grupos	0,260808	21	0,012419			
Total	11,56271	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
SiO ₂ _A	8	161,2517	20,15646	0,018272
SiO ₂ _B	8	162,391	20,29888	0,158874
SiO ₂ _C	8	107,1348	13,39185	0,006746

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	249,2994	2	124,6497	2033,526	9,17E-25	3,4668
Dentro dos grupos	1,287244	21	0,061297			
Total	250,5866	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
$P_2O_5_A$	8	1,6582	0,207275	0,000101
$P_2O_5_B$	8	1,6039	0,200488	6,12E-05
$P_2O_5_C$	8	1,7583	0,219788	0,00025

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,001534	2	0,000767	5,575997	0,011419	3,4668
Dentro dos grupos	0,002888	21	0,000138			
Total	0,004422	23				

RESUMO

RESCINC				
Grupo	Contagem	Soma	Média	Variância
SO ₃ _A	8	30,0114	3,751425	0,002543
SO ₃ _B	8	33,5574	4,194675	0,005066
SO ₃ _C	8	28,9154	3,614425	0,002177

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	1,471812	2	0,735906	225,6077	6,38E-15	3,4668
Dentro dos grupos	0,0685	21	0,003262			
Total	1,540312	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Cl_A	8	0,4393	0,054913	1,66E-05
Cl_B	8	0,4487	0,056088	4,73E-05
Cl_C	8	0,1968	0,0246	3,44E-06

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,005098	2	0,002549	113,6371	5,45E-12	3,4668
Dentro dos grupos	0,000471	21	2,24E-05			
Total	0,005569	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
K_2O_A	8	4,9883	0,623538	0,000475
K_2O_B	8	5,3297	0,666213	0,000422
K ₂ O_C	8	3,7576	0,4697	0,00024

ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,170945	2	0,085472	225,5733	6,39E-15	3,4668
Dentro dos grupos	0,007957	21	0,000379			
Total	0,178902	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
CaO_A	8	503,3761	62,92201	0,069119
CaO_B	8	488,9741	61,12176	0,213679
CaO_C	8	592,8012	74,10015	0,09653

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	791,0139	2	395,5069	3127,952	1,02E-26	3,4668
Dentro dos grupos	2,655299	21	0,126443			
Total	793,6692	23				

Grupo	Contagem	Soma	Média	Variância
TiO ₂ _A	8	4,0368	0,5046	0,003912
TiO ₂ _B	8	4,2072	0,5259	0,005428
TiO ₂ _C	8	2,138	0,26725	0,000567

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,329836	2	0,164918	49,9402	1,04E-08	3,4668
Dentro dos grupos	0,069349	21	0,003302			
Total	0,399185	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
V ₂ O ₅ _A	8	0,258	0,03225	0,001235
$V_2O_5_B$	8	0,3776	0,0472	0,001611
$V_2O_5_C$	8	0,5121	0,064013	0,001787

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,00404	2	0,00202	1,30817	0,291454	3,4668
Dentro dos grupos	0,032427	21	0,001544			
Total	0,036467	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Cr ₂ O ₃	8	0,3721	0,046513	0,000591
Cr_2O_3	8	0,2508	0,03135	0,000554
Cr ₂ O ₃	8	0,4751	0,059388	0,000167

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,003151	2	0,001576	3,602695	0,045166	3,4668
Dentro dos grupos	0,009185	21	0,000437			
Total	0,012336	23				

RESUMO

KLSUWO				
Grupo	Contagem	Soma	Média	Variância
MnO_A	8	0,6184	0,0773	0,000242
MnO_B	8	0,5946	0,074325	6,6E-05
MnO_C	8	0,6061	0,075763	0,000282

_	ANC)VA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	3,54E-05	2	1,77E-05	0,090106	0,914186	3,4668
Dentro dos grupos	0,004127	21	0,000197			
Total	0,004162	23				

Grupo	Contagem	Soma	Média	Variância
Fe ₂ O ₃ _A	8	38,0499	4,756238	0,040761
Fe ₂ O ₃ _B	8	36,295	4,536875	0,096345
Fe ₂ O ₃ _C	8	24,1387	3,017338	0,039324

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	14,34903	2	7,174516	121,9944	2,75E-12	3,4668
Dentro dos grupos	1,235015	21	0,05881			
Total	15,58405	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
NiO_A	8	0,1351	0,016888	0,000114
NiO_B	8	0,0928	0,0116	5,51E-05
NiO_C	8	0,0859	0,010738	8,64E-05

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000177	2	8,87E-05	1,042272	0,370193	3,4668
Dentro dos grupos	0,001787	21	8,51E-05			
Total	0,001965	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
CuO_A	8	0,4774	0,059675	2,68E-05
CuO_B	8	0,4673	0,058413	3,09E-05
CuO_C	8	0,1693	0,021163	3,85E-05

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,00766	2	0,00383	119,4257	3,38E-12	3,4668
Dentro dos grupos	0,000673	21	3,21E-05			
Total	0,008333	23				

Grupo	Contagem	Soma	Média	Variância
ZnO_A	8	0,5803	0,072538	1,59E-05
ZnO_B	8	0,5928	0,0741	4,78E-05
ZnO_C	8	0,6443	0,080538	4,99E-05

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000288	2	0,000144	3,800041	0,039034	3,4668
Dentro dos grupos	0,000795	21	3,79E-05			
Total	0,001083	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
SrO_A	8	1,0967	0,137088	0,000277
SrO_B	8	0,9973	0,124663	0,000423
SrO_C	8	2,3968	0,2996	0,001272

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,152448	2	0,076224	115,9919	4,48E-12	3,4668
Dentro dos grupos	0,0138	21	0,000657			
Total	0,166248	23				

RESUMO

	Grupo	Contagem	Soma	Média	Variância
I_A		8	0,2626	0,032825	0,001233
I_B		8	0,2572	0,03215	0,002311
I_C		8	0,1867	0,023338	0,001962

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000448	2	0,000224	0,122147	0,885643	3,4668
Dentro dos grupos	0,038541	21	0,001835			
Total	0,038989	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
BaO_A	8	0,5952	0,0744	0,003832
BaO_B	8	0,5453	0,068163	0,005357
BaO_C	8	1,6822	0,210275	0,027128

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,103192	2	0,051596	4,262175	0,027952	3,4668
Dentro dos grupos	0,254216	21	0,012106			
Total	0,357408	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
As ₂ O ₃ _A	8	0,0459	0,005738	6,38E-05
As ₂ O ₃ _B	8	0,0507	0,006338	4,69E-05
As ₂ O ₃ _C	8	0,0903	0,011288	9,66E-05

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000148	2	7,42E-05	1,073854	0,359723	3,4668
Dentro dos grupos	0,001451	21	6,91E-05			
Total	0,0016	23				

9.3 CDC K – K9A, K9B e K9C

RESUMO				
Grupo	Contagem	Soma	Média	Variância
Na ₂ O_A	8	1,3192	0,1649	0,012292
Na ₂ O_B	8	1,4012	0,17515	0,00204
Na ₂ O_C	8	0,8701	0,108763	0,009078

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,020437	2	0,010218	1,309524	0,291103	3,4668
Dentro dos grupos	0,163866	21	0,007803			
Total	0,184302	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
MgO	8	18,558	2,31975	0,400503
MgO	8	14,9135	1,864188	0,004541
MgO	8	5,4317	0,678963	0,002477

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	11,47861	2	5,739305	42,25035	4,36E-08	3,4668
Dentro dos grupos	2,852649	21	0,13584			
Total	14,33126	23				

Grupo	Contagem	Soma	Média	Variância
Al ₂ O ₃ _A	8	37,136	4,642	0,070968
$Al_2O_3_B$	8	36,2163	4,527038	0,013768
Al ₂ O ₃ _C	8	22,6641	2,833013	0,018205

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	16,41433	2	8,207164	239,1807	3,55E-15	3,4668
Dentro dos grupos	0,720587	21	0,034314			
Total	17,13491	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
SiO ₂ _A	8	167,2979	20,91224	0,550601
SiO ₂ _B	8	158,8516	19,85645	0,082192
SiO ₂ _C	8	85,5811	10,69764	0,128175

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	504,8976	2	252,4488	995,2395	1,57E-21	3,4668
Dentro dos grupos	5,326783	21	0,253656			
Total	510,2243	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
$P_2O_5_A$	8	1,6146	0,201825	0,000228
$P_2O_5_B$	8	1,5902	0,198775	0,000102
$P_2O_5_C$	8	1,4588	0,18235	0,000239

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,001756	2	0,000878	4,633428	0,021535	3,4668
Dentro dos grupos	0,003978	21	0,000189			
Total	0,005734	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância		
SO ₃ _A	8	29,3767	3,672088	0,002749		
SO ₃ _B	8	38,0756	4,75945	0,008493		
SO ₃ _C	8	25,3624	3,1703	0,019741		
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
-------------------	----------	----	----------	----------	----------	-----------
Entre grupos	10,55879	2	5,279394	511,2038	1,55E-18	3,4668
Dentro dos grupos	0,216875	21	0,010327			
Total	10,77566	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Cl_A	8	0,4895	0,061188	3,75E-05
Cl_B	8	0,483	0,060375	7,26E-06
Cl_C	8	0,2303	0,028788	7,17E-06

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,005462	2	0,002731	157,7557	2,24E-13	3,4668
Dentro dos grupos	0,000364	21	1,73E-05			
Total	0,005825	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
K ₂ O_A	8	4,7365	0,592063	0,000376
K_2O_B	8	6,197	0,774625	0,0004
K ₂ O_C	8	3,3736	0,4217	0,000794

ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,498423	2	0,249211	476,3069	3,2E-18	3,4668
Dentro dos grupos	0,010988	21	0,000523			
Total	0,50941	23				

RESUMO

	Grupo	Contagem	Soma	Média	Variância
CaO		8	492,8892	61,61115	2,196311
CaO		8	497,345	62,16813	0,139146
CaO		8	626,261	78,28263	0,445351

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	1434,468	2	717,2339	773,7685	2,14E-20	3,4668
Dentro dos grupos	19,46566	21	0,926936			
Total	1453,933	23				

Grupo	Contagem	Soma	Média	Variância
TiO ₂ _A	8	4,4682	0,558525	0,007695
TiO ₂ _B	8	4,1188	0,51485	0,002432
TiO ₂ _C	8	2,3606	0,295075	0,001666

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,318972	2	0,159486	40,57117	6,12E-08	3,4668
Dentro dos grupos	0,082551	21	0,003931			
Total	0,401523	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
$V_2O_5_A$	8	0,6274	0,078425	0,000166
$V_2O_5_B$	8	0,3142	0,039275	0,001573
$V_2O_5_C$	8	0,422	0,05275	0,002433

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,006329	2	0,003165	2,275483	0,127505	3,4668
Dentro dos grupos	0,029206	21	0,001391			
Total	0,035535	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Cr ₂ O ₃ _A	8	0,2835	0,035438	0,000313
Cr ₂ O ₃ _B	8	0,2511	0,031388	0,000433
Cr ₂ O ₃ _C	8	0,2726	0,034075	0,000541

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	6,8E-05	2	3,4E-05	0,07921	0,92412	3,4668
Dentro dos grupos	0,009007	21	0,000429			
Total	0,009075	23				

Grupo	Contagem	Soma	Média	Variância
MnO_A	8	0,6416	0,0802	0,00011
MnO_B	8	0,6102	0,076275	0,000129
MnO_C	8	0,4384	0,0548	0,000713

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,002991	2	0,001496	4,712693	0,020386	3,4668
Dentro dos grupos	0,006665	21	0,000317			
Total	0,009656	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Fe ₂ O ₃ _A	8	37,9923	4,749038	0,05346
Fe ₂ O ₃ _B	8	36,5981	4,574763	0,012851
Fe ₂ O ₃ _C	8	19,8123	2,476538	0,018339

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	25,59247	2	12,79623	453,4974	5,3E-18	3,4668
Dentro dos grupos	0,592552	21	0,028217			
Total	26,18502	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
NiO_A	8	0,1237	0,015463	0,000175
NiO_B	8	0,1162	0,014525	8,6E-05
NiO_C	8	0	0	0

ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,001203	2	0,000601	6,903552	0,004964	3,4668
Dentro dos grupos	0,001829	21	8,71E-05			
Total	0,003031	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
CuO_A	8	0,4346	0,054325	6,52E-05
CuO_B	8	0,4883	0,061038	3,87E-05
CuO_C	8	0,2631	0,032888	7,72E-05

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,003459	2	0,001729	28,6531	9,96E-07	3,4668
Dentro dos grupos	0,001267	21	6,04E-05			
Total	0,004726	23				

Grupo	Contagem	Soma	Média	Variância
ZnO_A	8	0,5364	0,06705	2,9E-05
ZnO_B	8	0,5625	0,070313	5,78E-05
ZnO_C	8	0,5531	0,069138	6,76E-05

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	4,37E-05	2	2,18E-05	0,424445	0,65962	3,4668
Dentro dos grupos	0,001081	21	5,15E-05			
Total	0,001124	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
SrO_A	8	0,8761	0,109513	0,000373
SrO_B	8	1,0879	0,135988	0,000174
SrO_C	8	2,9884	0,37355	0,001449

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,338274	2	0,169137	254,1782	1,92E-15	3,4668
Dentro dos grupos	0,013974	21	0,000665			
Total	0,352248	23				

RESUMO

	Grupo	Contagem	Soma	Média	Variância
I_A		8	0,1768	0,0221	0,000932
I_B		8	0,0919	0,011488	0,001056
I_C		8	0,3006	0,037575	0,002859

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,002754	2	0,001377	0,852193	0,440707	3,4668
Dentro dos grupos	0,033929	21	0,001616			
Total	0,036683	23				

Grupo	Contagem	Soma	Média	Variância
BaO_A	8	0,3551	0,044388	0,003754
BaO_B	8	0,6108	0,07635	0,004172
BaO_C	8	1,3033	0,162913	0,004969

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,060168	2	0,030084	6,999212	0,004686	3,4668
Dentro dos grupos	0,090262	21	0,004298			
Total	0,150429	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
As2O3_A	8	0,0663	0,008288	8,16E-05
As2O3_B	8	0,0765	0,009563	0,000114
As2O3_C	8	0,0531	0,006638	0,000352

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	3,44E-05	2	1,72E-05	0,094142	0,910536	3,4668
Dentro dos grupos	0,003838	21	0,000183			
Total	0,003872	23				

9.4 CDC P – P7A, P7B e P7C

RESUMO				
Grupo	Contagem	Soma	Média	Variância
Na ₂ O_A	8	0,439	0,054875	0,005837
Na ₂ O_B	8	0,4301	0,053763	0,003341
Na ₂ O_C	8	1,4643	0,183038	0,000852

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,08837	2	0,044185	13,21551	0,000193	3,4668
Dentro dos grupos	0,070212	21	0,003343			
Total	0,158582	23				

RESUMO

MgO_A812,64761,580950,006845MgO_B812,40481,55060,007607MgO_C811,43221,4290250,003694	Grupo	Contagem	Soma	Média	Variância
MgO_B812,40481,55060,007607MgO_C811,43221,4290250,003694	MgO_A	8	12,6476	1,58095	0,006845
MgO C 8 11.4322 1.429025 0.003694	MgO_B	8	12,4048	1,5506	0,007607
	MgO_C	8	11,4322	1,429025	0,003694

ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,103421	2	0,05171	8,549141	0,001922	3,4668
Dentro dos grupos	0,127021	21	0,006049			
Total	0,230442	23				

Grupo	Contagem	Soma	Média	Variância
Al ₂ O ₃ _A	8	56,6838	7,085475	0,008787
$Al_2O_3_B$	8	62,782	7,84775	0,011673
Al ₂ O ₃ _C	8	67,8266	8,478325	0,010515

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	7,783251	2	3,891626	376,9223	3,52E-17	3,4668
Dentro dos grupos	0,21682	21	0,010325			
Total	8,000071	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
SiO ₂ _A	8	203,0126	25,37658	0,077501
SiO ₂ _B	8	229,4309	28,67886	0,017641
SiO ₂ _C	8	241,7115	30,21394	0,068385

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	97,76436	2	48,88218	896,768	4,64E-21	3,4668
Dentro dos grupos	1,144695	21	0,054509			
Total	98,90905	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
$P_2O_5_A$	8	1,5378	0,192225	0,000276
$P_2O_5_B$	8	1,3843	0,173038	0,000234
$P_2O_5_C$	8	1,4425	0,180313	6,68E-05

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,001501	2	0,000751	3,908976	0,036045	3,4668
Dentro dos grupos	0,004033	21	0,000192			
Total	0,005534	23				

Grupo	Contagem	Soma	Média	Variância
SO ₃ _A	8	17,9893	2,248663	0,000769
SO ₃ _B	8	21,582	2,69775	0,001439
SO ₃ _C	8	15,3387	1,917338	0,000721

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	2,454665	2	1,227333	1257,324	1,38E-22	3,4668
Dentro dos grupos	0,020499	21	0,000976			
Total	2,475164	23				

RESUMO

CLA 8 0.1523 0.019038 5	
	0,62E-06
Cl_B 8 0,2017 0,025213 7	7,72E-06
Cl_C 8 0,2106 0,026325	1,3E-05

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000247	2	0,000123	14,06001	0,000133	3,4668
Dentro dos grupos	0,000184	21	8,77E-06			
Total	0,000431	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
K ₂ O_A	8	1,9259	0,240738	6,21E-05
K_2O_B	8	1,663	0,207875	0,000182
K ₂ O_C	8	3,9121	0,489013	0,000247

ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,378023	2	0,189012	1154,749	3,35E-22	3,4668
Dentro dos grupos	0,003437	21	0,000164			
Total	0,381461	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
CaO_A	8	454,5446	56,81808	0,058426
CaO_B	8	417,7435	52,21794	0,019363
CaO_C	8	391,4899	48,93624	0,108048

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	250,8112	2	125,4056	2024,442	9,61E-25	3,4668
Dentro dos grupos	1,300861	21	0,061946			
Total	252,112	23				

Grupo	Contagem	Soma	Média	Variância
TiO ₂ _A	8	5,1462	0,643275	0,004537
TiO ₂ _B	8	4,7644	0,59555	0,006487
TiO ₂ _C	8	5,9747	0,746838	0,011571

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,095709	2	0,047854	6,353555	0,006954	3,4668
Dentro dos grupos	0,15817	21	0,007532			
Total	0,253879	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
$V_2O_5_A$	8	0,1778	0,022225	0,001706
$V_2O_5_B$	8	0,6109	0,076363	0,000617
$V_2O_5_C$	8	0,2637	0,032963	0,001309

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,013146	2	0,006573	5,429724	0,012569	3,4668
Dentro dos grupos	0,025422	21	0,001211			
Total	0,038568	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Cr ₂ O ₃ _A	8	0,905	0,113125	0,000176
$Cr_2O_3_B$	8	0,8366	0,104575	0,000823
Cr ₂ O ₃ _C	8	0,557	0,069625	0,000359

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,008498	2	0,004249	9,384375	0,001225	3,4668
Dentro dos grupos	0,009509	21	0,000453			
Total	0,018007	23				

Grupo	Contagem	Soma	Média	Variância
MnO_A	8	1,525	0,190625	0,005061
MnO_B	8	1,5012	0,18765	0,000284
MnO_C	8	2,1392	0,2674	0,005777

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,032702	2	0,016351	4,410359	0,025169	3,4668
Dentro dos grupos	0,077856	21	0,003707			
Total	0,110558	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Fe ₂ O ₃ _A	8	41,145	5,143125	0,014646
Fe ₂ O ₃ _B	8	43,154	5,39425	0,002906
Fe ₂ O ₃ _C	8	54,8324	6,85405	0,034412

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	13,65692	2	6,828459	394,2228	2,23E-17	3,4668
Dentro dos grupos	0,363748	21	0,017321			
Total	14,02067	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
NiO_A	8	0,2432	0,0304	2,38E-05
NiO_B	8	0,2456	0,0307	3,97E-05
NiO_C	8	0,1303	0,016288	0,000132

ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,001085	2	0,000543	8,34285	0,002155	3,4668
Dentro dos grupos	0,001366	21	6,5E-05			
Total	0,002451	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
CuO_A	8	0,1345	0,016813	0,000146
CuO_B	8	0,198	0,02475	1,14E-05
CuO_C	8	0,1637	0,020463	1,61E-05

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000253	2	0,000126	2,178602	0,138114	3,4668
Dentro dos grupos	0,001217	21	5,8E-05			
Total	0,00147	23				

Grupo	Contagem	Soma	Média	Variância
ZnO_A	8	0,3755	0,046938	8,23E-05
ZnO_B	8	0,2558	0,031975	2,33E-05
ZnO_C	8	0,2405	0,030063	7,53E-05

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,001366	2	0,000683	11,32643	0,00046	3,4668
Dentro dos grupos	0,001266	21	6,03E-05			
Total	0,002633	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
SrO_A	8	0,6405	0,080063	4,09E-05
SrO_B	8	0,3177	0,039713	3,91E-05
SrO_C	8	0,3771	0,047138	1,67E-05

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,007379	2	0,00369	114,4519	5,09E-12	3,4668
Dentro dos grupos	0,000677	21	3,22E-05			
Total	0,008056	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Sb ₂ O ₃ _A	8	0,2874	0,035925	0,001576
$Sb_2O_3_B$	8	0,166	0,02075	0,00083
Sb ₂ O ₃ _C	8	0,1694	0,021175	0,000873

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,001195	2	0,000597	0,546493	0,586991	3,4668
Dentro dos grupos	0,022955	21	0,001093			
Total	0,02415	23				

Grupo	Contagem	Soma	Média	Variância
I_A	8	0,1874	0,023425	0,001061
I_B	8	0,182	0,02275	0,000993
I_C	7	0,2044	0,0292	0,001428

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000184	2	9,19E-05	0,080093	0,923325	3,492828
Dentro dos grupos	0,022944	20	0,001147			
Total	0,023127	22				

RESUMO

Grupo	Contagem	Soma	Média	Variância
BaO_A	8	0,3	0,0375	0,004878
BaO_B	8	0,1462	0,018275	0,002672
BaO_C	8	0,1189	0,014863	0,001767

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,002383	2	0,001192	0,383679	0,686029	3,4668
Dentro dos grupos	0,06522	21	0,003106			
Total	0,067604	23				

9.5 CDC P – P8A, P8B e P8C

RESUMO				
Grupo	Contagem	Soma	Média	Variância
Na ₂ O_A	8	1,434	0,17925	0,006572
Na ₂ O_B	8	0,6544	0,0818	0,005758
Na ₂ O_C	8	0,9951	0,124388	0,003397

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,038187	2	0,019093	3,642034	0,043864	3,4668
Dentro dos grupos	0,110093	21	0,005243			
Total	0,14828	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
MgO_A	8	23,6859	2,960738	0,21107
MgO_B	8	12,1169	1,514613	0,007226
MgO_C	8	18,7204	2,34005	0,124262

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	8,421007	2	4,210503	36,87402	1,35E-07	3,4668
Dentro dos grupos	2,39791	21	0,114186			
Total	10,81892	23				

Grupo	Contagem	Soma	Média	Variância
Al ₂ O ₃ _A	8	64,3061	8,038263	0,047623
Al ₂ O ₃ _B	8	62,7749	7,846863	0,007381
Al ₂ O ₃ _C	8	66,0741	8,259263	0,025832

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,681463	2	0,340732	12,64534	0,000249	3,4668
Dentro dos grupos	0,56585	21	0,026945			
Total	1,247313	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
SiO ₂ _A	8	225,6537	28,20671	0,167604
SiO ₂ _B	8	229,0059	28,62574	0,097519
SiO ₂ _C	8	235,0494	29,38118	0,203426

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	5,668346	2	2,834173	18,14653	2,65E-05	3,4668
Dentro dos grupos	3,279835	21	0,156183			
Total	8,948182	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
$P_2O_5_A$	8	1,4815	0,185188	0,000271
$P_2O_5_B$	8	1,4661	0,183263	0,000172
$P_2O_5_C$	8	1,2801	0,160013	0,000198

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,003141	2	0,001571	7,359131	0,003784	3,4668
Dentro dos grupos	0,004482	21	0,000213			
Total	0,007624	23				

Grupo	Contagem	Soma	Média	Variância
SO ₃ _A	8	18,8476	2,35595	0,002745
SO ₃ _B	8	20,7703	2,596288	0,00118
SO ₃ _C	8	22,0794	2,759925	0,001763

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,660627	2	0,330314	174,1788	8,42E-14	3,4668
Dentro dos grupos	0,039825	21	0,001896			
Total	0,700452	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Cl_A	8	0,1204	0,01505	2,33E-06
Cl_B	8	0,2108	0,02635	5,09E-06
Cl_C	8	0,2988	0,03735	9,87E-06

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,001989	2	0,000995	172,6806	9,17E-14	3,4668
Dentro dos grupos	0,000121	21	5,76E-06			
Total	0,00211	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
K ₂ O_A	8	2,032	0,254	0,000247
K_2O_B	8	1,6692	0,20865	0,000155
K ₂ O_C	8	1,7922	0,224025	0,000143

ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,008511	2	0,004255	23,41527	4,5E-06	3,4668
Dentro dos grupos	0,003816	21	0,000182			
Total	0,012327	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
CaO_A	8	439,5896	54,9487	5,741293
CaO_B	8	420,3202	52,54003	0,064359
CaO_C	8	400,789	50,09863	0,704436

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	94,09434	2	47,04717	21,68043	7,81E-06	3,4668
Dentro dos grupos	45,57062	21	2,170029			
Total	139,665	23				

Grupo	Contagem	Soma	Média	Variância
TiO ₂ _A	8	4,9242	0,615525	0,004372
TiO ₂ _B	8	4,6595	0,582438	0,004135
TiO ₂ _C	8	5,0562	0,632025	0,005237

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,010203	2	0,005101	1,113531	0,347027	3,4668
Dentro dos grupos	0,096205	21	0,004581			
Total	0,106407	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
$V_2O_5_A$	8	0,2445	0,030563	0,001176
$V_2O_5_B$	8	0,2621	0,032763	0,001227
$V_2O_5_C$	8	0,1051	0,013138	0,000493

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,00185	2	0,000925	0,958224	0,39972	3,4668
Dentro dos grupos	0,020268	21	0,000965			
Total	0,022117	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Cr ₂ O ₃ _A	8	0,7499	0,093738	0,000308
$Cr_2O_3_B$	8	0,8053	0,100663	0,000626
Cr ₂ O ₃ _C	8	0,5091	0,063638	0,000171

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,0062	2	0,0031	8,41254	0,002073	3,4668
Dentro dos grupos	0,007738	21	0,000368			
Total	0,013937	23				

Grupo	Contagem	Soma	Média	Variância
MnO_A	8	1,2244	0,15305	0,000431
MnO_B	8	1,6379	0,204738	0,011841
MnO_C	8	1,929	0,241125	0,000113

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,031341	2	0,01567	3,795752	0,039157	3,4668
Dentro dos grupos	0,086697	21	0,004128			
Total	0,118038	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Fe ₂ O ₃ _A	8	39,0821	4,885263	0,084177
Fe ₂ O ₃ _B	8	42,2717	5,283963	0,029981
Fe ₂ O ₃ _C	8	44,1958	5,524475	0,033715

ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	1,667735	2	0,833867	16,91734	4,2E-05	3,4668
Dentro dos grupos	1,035105	21	0,049291			
Total	2,70284	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
NiO_A	8	0,1992	0,0249	5,13E-05
NiO_B	8	0,2172	0,02715	5,95E-05
NiO_C	8	0,1328	0,0166	0,000128

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000494	2	0,000247	3,10065	0,066086	3,4668
Dentro dos grupos	0,001673	21	7,97E-05			
Total	0,002167	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
CuO_A	8	0,1646	0,020575	3,09E-05
CuO_B	8	0,184	0,023	3,69E-06
CuO_C	8	0,1386	0,017325	6,21E-05

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,00013	2	6,49E-05	2,012744	0,158594	3,4668
Dentro dos grupos	0,000677	21	3,22E-05			
Total	0,000807	23				

Grupo	Contagem	Soma	Média	Variância
ZnO_A	8	0,3059	0,038238	9,18E-06
ZnO_B	8	0,2588	0,03235	2,91E-05
ZnO_C	8	0,2161	0,027013	2,47E-05

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000504	2	0,000252	12,00674	0,000334	3,4668
Dentro dos grupos	0,000441	21	2,1E-05			
Total	0,000946	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
SrO_A	8	0,4904	0,0613	7,21E-05
SrO_B	8	0,2664	0,0333	1,89E-05
SrO_C	8	0,2073	0,025913	4,31E-05

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,005576	2	0,002788	62,40222	1,46E-09	3,4668
Dentro dos grupos	0,000938	21	4,47E-05			
Total	0,006514	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Sb ₂ O ₃ _A	8	0,0456	0,0057	0,00026
Sb ₂ O ₃ _B	8	0,0976	0,0122	0,000512
Sb ₂ O ₃ _C	8	0,1691	0,021138	0,000997

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000961	2	0,000481	0,814954	0,456177	3,4668
Dentro dos grupos	0,012384	21	0,00059			
Total	0,013345	23				

Grupo	Contagem	Soma	Média	Variância
I_A	8	0,1639	0,020488	0,000837
I_B	8	0,2137	0,026713	0,001461
I_C	8	0,2627	0,032838	0,001279

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,00061	2	0,000305	0,255828	0,776654	3,4668
Dentro dos grupos	0,025041	21	0,001192			
Total	0,025651	23				

9.6 CDC P – P9A, P9B e P9C

RESUMO

Grupo	Contagem	Soma	Média	Variância
Na ₂ O_A	8	0,923	0,115375	0,00308
Na ₂ O_B	8	1,0796	0,13495	0,003806
Na ₂ O_C	8	1,3667	0,170838	0,000695

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,012659	2	0,00633	2,504673	0,10579	3,4668
Dentro dos grupos	0,053069	21	0,002527			
Total	0,065728	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
MgO_A	8	13,9431	1,742888	0,008022
MgO_B	8	22,0602	2,757525	0,00944
MgO_C	8	20,2736	2,5342	0,014836

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	4,548103	2	2,274052	211,2259	1,23E-14	3,4668
Dentro dos grupos	0,226085	21	0,010766			
Total	4,774189	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Al ₂ O ₃ _A	8	63,8721	7,984013	0,006971
$Al_2O_3_B$	8	66,7733	8,346663	0,009804
Al ₂ O ₃ _C	8	68,6216	8,5777	0,013405

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	1,432955	2	0,716478	71,22118	4,4E-10	3,4668
Dentro dos grupos	0,211258	21	0,01006			
Total	1,644213	23				

Grupo	Contagem	Soma	Média	Variância
SiO ₂ _A	8	235,8245	29,47806	0,065468
SiO ₂ _B	8	241,5069	30,18836	0,025172
SiO ₂ _C	8	241,7276	30,21595	0,265155

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	2,799374	2	1,399687	11,80193	0,000367	3,4668
Dentro dos grupos	2,49056	21	0,118598			
Total	5,289934	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
P ₂ O ₅ _A	8	1,5591	0,194888	0,00016
$P_2O_5_B$	8	1,4516	0,18145	0,000199
$P_2O_5_C$	8	1,3803	0,172538	0,000152

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,002025	2	0,001013	5,9438	0,009005	3,4668
Dentro dos grupos	0,003578	21	0,00017			
Total	0,005603	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
SO ₃ _A	8	20,2768	2,5346	0,004998
SO ₃ _B	8	20,887	2,610875	0,000598
SO ₃ _C	8	20,415	2,551875	0,001148

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,025593	2	0,012796	5,691941	0,010589	3,4668
Dentro dos grupos	0,047211	21	0,002248			
Total	0,072804	23				

Grupo	Contagem	Soma	Média	Variância
Cl_A	8	0,2154	0,026925	7,54E-06
Cl_B	8	0,2342	0,029275	5,81E-06
Cl_C	8	0,2278	0,028475	1,49E-05

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	2,28E-05	2	1,14E-05	1,210815	0,317924	3,4668
Dentro dos grupos	0,000198	21	9,43E-06			
Total	0,000221	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
K ₂ O_A	8	2,1235	0,265438	0,000186
K_2O_B	8	1,5596	0,19495	0,000132
K ₂ O_C	8	1,8702	0,233775	5,26E-05

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,019942	2	0,009971	80,64021	1,4E-10	3,4668
Dentro dos grupos	0,002597	21	0,000124			
Total	0,022539	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
CaO_A	8	409,9533	51,24416	0,068018
CaO_B	8	397,2756	49,65945	0,065257
CaO_C	8	395,0421	49,38026	0,204346

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	16,16902	2	8,08451	71,8365	4,06E-10	3,4668
Dentro dos grupos	2,363349	21	0,11254			
Total	18,53237	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
TiO ₂ _A	8	5,5544	0,6943	0,002446
TiO ₂ _B	8	4,6768	0,5846	0,002904
TiO ₂ _C	8	5,0566	0,632075	0,00148

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,048426	2	0,024213	10,63514	0,000646	3,4668
Dentro dos grupos	0,047811	21	0,002277			
Total	0,096238	23				

Grupo	Contagem	Soma	Média	Variância
$V_2O_5_A$	8	0,3671	0,045888	0,001171
$V_2O_5_B$	8	0,1547	0,019338	0,000767
$V_2O_5_C$	8	0,2417	0,030213	0,001048

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,00285	2	0,001425	1,431634	0,2613	3,4668
Dentro dos grupos	0,020905	21	0,000995			
Total	0,023755	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
$Cr_2O_3_A$	8	0,9793	0,122413	0,000277
$Cr_2O_3_B$	8	0,8329	0,104113	0,000659
Cr ₂ O ₃ _C	8	0,7772	0,09715	0,001969

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,002724	2	0,001362	1,406512	0,267147	3,4668
Dentro dos grupos	0,020337	21	0,000968			
Total	0,023061	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
MnO_A	8	1,38	0,1725	0,003007
MnO_B	8	1,2274	0,153425	0,00039
MnO_C	8	6,2475	0,780938	2,933824

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	2,038219	2	1,019109	1,040891	0,370659	3,4668
Dentro dos grupos	20,56055	21	0,979074			
Total	22,59877	23				

Grupo	Contagem	Soma	Média	Variância
Fe ₂ O ₃ _A	8	41,5076	5,18845	0,056342
Fe ₂ O ₃ _B	8	39,1792	4,8974	0,039536
Fe ₂ O ₃ _C	8	35,5819	4,447738	3,275323

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	2,228164	2	1,114082	0,991411	0,387764	3,4668
Dentro dos grupos	23,59841	21	1,123734			
Total	25,82658	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
NiO_A	8	0,2467	0,030838	4,4E-05
NiO_B	8	0,2001	0,025013	4,34E-05
NiO_C	8	0,1864	0,0233	3,56E-05

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,00025	2	0,000125	3,046174	0,068931	3,4668
Dentro dos grupos	0,000861	21	4,1E-05			
Total	0,001111	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
CuO_A	8	0,1784	0,0223	2,46E-05
CuO_B	8	0,1564	0,01955	1,25E-05
CuO_C	8	0,1391	0,017388	0,000139

ANOVA

ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	9,7E-05	2	4,85E-05	0,826366	0,451374	3,4668
Dentro dos grupos	0,001232	21	5,87E-05			
Total	0,001329	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
ZnO_A	8	0,2766	0,034575	1,43E-05
ZnO_B	8	0,2521	0,031513	1,25E-05
ZnO_C	8	0,2086	0,026075	2,95E-05

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000297	2	0,000148	7,897419	0,00277	3,4668
Dentro dos grupos	0,000394	21	1,88E-05			
Total	0,000691	23				

Grupo	Contagem	Soma	Média	Variância
SrO_A	8	0,2854	0,035675	4,35E-05
SrO_B	8	0,2026	0,025325	9,18E-06
SrO_C	8	0,2397	0,029963	0,00016

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,00043	2	0,000215	3,027719	0,069925	3,4668
Dentro dos grupos	0,001491	21	7,1E-05			
Total	0,001921	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Sb ₂ O ₃ _A	8	0,2338	0,029225	0,001079
Sb ₂ O ₃ _B	8	0,0427	0,005338	0,000228
Sb ₂ O ₃ _C	8	0,105	0,013125	0,000635

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,002375	2	0,001187	1,833668	0,18451	3,4668
Dentro dos grupos	0,013597	21	0,000647			
Total	0,015972	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
BaO_A	8	0,3	0,0375	0,004843
BaO_B	8	0,2466	0,030825	0,003405
BaO_C	8	0,2913	0,036413	0,004763

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000205	2	0,000103	0,023661	0,976643	3,4668
Dentro dos grupos	0,091072	21	0,004337			
Total	0,091277	23				

9.7 CDC S – S7A, S7B e S7C

RESUMO				
Grupo	Contagem	Soma	Média	Variância
Na ₂ O_A	8	0,9996	0,12495	0,004334
Na ₂ O_B	8	0,5398	0,067475	0,003362
Na ₂ O_C	8	1,3317	0,166463	0,000527

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,039534	2	0,019767	7,211487	0,004129	3,4668
Dentro dos grupos	0,057562	21	0,002741			
Total	0,097096	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
MgO_A	8	15,9815	1,997688	0,015177
MgO_B	8	10,0362	1,254525	0,005831
MgO_C	8	6,9967	0,874588	0,013177

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	5,221324	2	2,610662	229,1101	5,47E-15	3,4668
Dentro dos grupos	0,239291	21	0,011395			
Total	5,460615	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Al ₂ O ₃ _A	8	49,6913	6,211413	0,003501
Al ₂ O ₃ _B	8	45,7785	5,722313	0,012227
Al ₂ O ₃ _C	8	43,8639	5,482988	1,180672

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	2,205595	2	1,102798	2,76529	0,085894	3,4668
Dentro dos grupos	8,374799	21	0,3988			
Total	10,58039	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
SiO ₂ _A	8	189,6582	23,70728	0,031827
SiO ₂ _B	8	185,1339	23,14174	0,020479
SiO ₂ _C	8	160,3253	20,04066	9,655613

ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	62,34812	2	31,17406	9,633598	0,001075	3,4668
Dentro dos grupos	67,95543	21	3,235973			
Total	130,3036	23				

Grupo	Contagem	Soma	Média	Variância
$P_2O_5_A$	8	6,0287	0,753588	0,000776
$P_2O_5_B$	8	6,0487	0,756088	0,00038
$P_2O_5_C$	8	2,0015	0,250188	0,000462

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	1,358274	2	0,679137	1259,786	1,35E-22	3,4668
Dentro dos grupos	0,011321	21	0,000539			
Total	1,369595	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
SO ₃ _A	8	15,1288	1,8911	0,001254
SO ₃ _B	8	22,3392	2,7924	0,00299
SO ₃ _C	8	22,6412	2,83015	0,105003

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	4,521551	2	2,260776	62,08253	1,53E-09	3,4668
Dentro dos grupos	0,764729	21	0,036416			
Total	5,28628	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Cl_A	8	0,1695	0,021188	7,6E-06
Cl_B	8	0,2075	0,025938	3,93E-06
Cl_C	8	0,1775	0,022188	0,00016

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,0001	2	5,02E-05	0,8794	0,429768	3,4668
Dentro dos grupos	0,001198	21	5,7E-05			
Total	0,001298	23				

Grupo	Contagem	Soma	Média	Variância
K ₂ O_A	8	3,0084	0,37605	0,000193
K_2O_B	8	2,9936	0,3742	0,000161
K ₂ O_C	8	3,7593	0,469913	0,003358

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,047932	2	0,023966	19,37305	1,71E-05	3,4668
Dentro dos grupos	0,025979	21	0,001237			
Total	0,073911	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
CaO_A	8	475,1535	59,39419	0,052424
CaO_B	8	483,2762	60,40953	0,033596
CaO_C	8	516,0933	64,51166	23,77541

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	117,4586	2	58,72932	7,383796	0,00373	3,4668
Dentro dos grupos	167,03	21	7,953812			
Total	284,4887	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
TiO ₂ _A	8	4,4643	0,558038	0,009641
TiO ₂ _B	8	4,0668	0,50835	0,003928
TiO ₂ _C	8	3,9706	0,496325	0,010407

ANOVA

ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,017125	2	0,008563	1,071392	0,360528	3,4668
Dentro dos grupos	0,167831	21	0,007992			
Total	0,184956	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
$V_2O_5_A$	8	0,1753	0,021913	0,000961
$V_2O_5_B$	8	0,1774	0,022175	0,001044
$V_2O_5_C$	8	0,3494	0,043675	0,002313

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,002496	2	0,001248	0,866957	0,434734	3,4668
Dentro dos grupos	0,030227	21	0,001439			
Total	0,032723	23				

Grupo	Contagem	Soma	Média	Variância
$Cr_2O_3_A$	8	0,3562	0,044525	0,00026
Cr ₂ O ₃ _B	8	0,4591	0,057388	0,000347
Cr ₂ O ₃ _C	8	0,5762	0,072025	0,001402

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,003029	2	0,001515	2,261736	0,128954	3,4668
Dentro dos grupos	0,014063	21	0,00067			
Total	0,017092	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
MnO_A	8	0,4619	0,057738	0,000306
MnO_B	8	0,4994	0,062425	2,95E-05
MnO_C	8	0,5527	0,069088	0,000366

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,00052	2	0,00026	1,11287	0,347234	3,4668
Dentro dos grupos	0,004911	21	0,000234			
Total	0,005431	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Fe ₂ O ₃ _A	8	36,3979	4,549738	0,04277
Fe ₂ O ₃ _B	8	36,4834	4,560425	0,032801
Fe ₂ O ₃ _C	8	34,4332	4,30415	0,765789

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,336278	2	0,168139	0,599526	0,558201	3,4668
Dentro dos grupos	5,889517	21	0,280453			
Total	6,225795	23				

Grupo	Contagem	Soma	Média	Variância
CuO_A	8	0,2203	0,027538	5,17E-05
CuO_B	8	0,2351	0,029388	1,96E-05
CuO_C	8	0,3066	0,038325	0,000192

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000532	2	0,000266	3,030767	0,069759	3,4668
Dentro dos grupos	0,001845	21	8,78E-05			
Total	0,002377	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
ZnO_A	8	0,4497	0,056213	4,94E-05
ZnO_B	8	0,4319	0,053988	3,2E-05
ZnO_C	8	0,6223	0,077788	0,000733

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,002765	2	0,001382	5,095024	0,015708	3,4668
Dentro dos grupos	0,005698	21	0,000271			
Total	0,008463	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
SrO_A	8	0,5152	0,0644	2,06E-05
SrO_B	8	0,3675	0,045938	3,61E-05
SrO_C	8	0,8006	0,100075	0,004807

ANOVA

ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,012119	2	0,006059	3,737201	0,040882	3,4668
Dentro dos grupos	0,034048	21	0,001621			
Total	0,046167	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Sb ₂ O ₃ _A	8	0,2058	0,025725	0,000783
$Sb_2O_3_B$	8	0,1132	0,01415	0,000733
Sb ₂ O ₃ _C	8	0,2296	0,0287	0,003311

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000945	2	0,000473	0,293767	0,748464	3,4668
Dentro dos grupos	0,033792	21	0,001609			
Total	0,034737	23				

_	Grupo	Contagem	Soma	Média	Variância
I_A		8	0,2831	0,035388	0,001463
I_B		8	0,1877	0,023463	0,001088
I_C		8	0,1664	0,0208	0,001505

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000966	2	0,000483	0,357128	0,703851	3,4668
Dentro dos grupos	0,028389	21	0,001352			
Total	0,029355	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
BaO_A	8	0,6398	0,079975	0,004652
BaO_B	8	0,5818	0,072725	0,003741
BaO_C	8	0,7324	0,09155	0,011639

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,001442	2	0,000721	0,108009	0,898115	3,4668
Dentro dos grupos	0,140227	21	0,006677			
Total	0,14167	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
As ₂ O ₃ _A	8	0,0106	0,001325	1,4E-05
As ₂ O ₃ _B	8	0,0431	0,005388	5,94E-05
As ₂ O ₃ _C	8	0,0697	0,008713	0,000607

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000219	2	0,00011	0,482609	0,623849	3,4668
Dentro dos grupos	0,004765	21	0,000227			
Total	0,004984	23				

9.8 CDC S – S8A, S8B e S8C

RESUMO				
Grupo	Contagem	Soma	Média	Variância
Na ₂ O_A	8	1,3503	0,168788	0,000799
Na ₂ O_B	8	1,0888	0,1361	0,00035
Na ₂ O_C	8	0,986	0,12325	0,000972

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,008819	2	0,00441	6,236905	0,00748	3,4668
Dentro dos grupos	0,014848	21	0,000707			
Total	0,023667	23				

RESUMO				
Grupo	Contagem	Soma	Média	Variância
MgO_A	8	9,908	1,2385	0,005296
MgO_B	8	10,5466	1,318325	0,002474
MgO_C	8	10,8461	1,355763	0,008496

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,057398	2	0,028699	5,292956	0,01376	3,4668
Dentro dos grupos	0,113864	21	0,005422			
Total	0,171261	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Al ₂ O ₃ _A	8	50,2287	6,278588	0,014691
$Al_2O_3_B$	8	58,5031	7,312888	0,012777
Al ₂ O ₃ _C	8	44,1401	5,517513	0,020638

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	12,99302	2	6,496511	405,1407	1,68E-17	3,4668
Dentro dos grupos	0,336739	21	0,016035			
Total	13,32976	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
SiO ₂ _A	8	207,5261	25,94076	0,039939
SiO ₂ _B	8	184,3566	23,04458	0,08624
SiO ₂ _C	8	188,9014	23,61268	0,374002

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	37,68168	2	18,84084	113,0041	5,75E-12	3,4668
Dentro dos grupos	3,501267	21	0,166727			
Total	41,18295	23				

Grupo	Contagem	Soma	Média	Variância
$P_2O_5_A$	8	6,7055	0,838188	0,000769
$P_2O_5_B$	8	3,5013	0,437663	0,000415
$P_2O_5_C$	8	2,1699	0,271238	0,000209

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	1,3588	2	0,6794	1463,595	2,84E-23	3,4668
Dentro dos grupos	0,009748	21	0,000464			
Total	1,368548	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
SO ₃ _A	8	15,5479	1,943488	0,000501
SO ₃ _B	8	16,0412	2,00515	0,00104
SO ₃ _C	8	20,752	2,594	0,004618

ANOVA

ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	2,063235	2	1,031617	502,4595	1,85E-18	3,4668
Dentro dos grupos	0,043116	21	0,002053			
Total	2,106351	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Cl_A	8	0,1579	0,019738	1,03E-06
Cl_B	8	0,1199	0,014988	3,79E-06
Cl_C	8	0,1132	0,01415	1,41E-05

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000145	2	7,26E-05	11,49042	0,000426	3,4668
Dentro dos grupos	0,000133	21	6,32E-06			
Total	0,000278	23				

Grupo	Contagem	Soma	Média	Variância
K ₂ O_A	8	4,7309	0,591363	0,00017
K_2O_B	8	3,7792	0,4724	0,000201
K ₂ O_C	8	4,064	0,508	0,000423

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,05965	2	0,029825	112,6686	5,92E-12	3,4668
Dentro dos grupos	0,005559	21	0,000265			
Total	0,065209	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
CaO_A	8	455,8194	56,97743	0,12904
CaO_B	8	476,4474	59,55593	0,142333
CaO_C	8	482,3966	60,29958	0,252205

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	48,63562	2	24,31781	139,3364	7,56E-13	3,4668
Dentro dos grupos	3,665044	21	0,174526			
Total	52,30067	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
TiO ₂ _A	8	3,9113	0,488913	0,010311
TiO ₂ _B	8	4,8906	0,611325	0,008406
TiO ₂ _C	8	4,1429	0,517863	0,002256

ANOVA

ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,065488	2	0,032744	4,683581	0,0208	3,4668
Dentro dos grupos	0,146817	21	0,006991			
Total	0,212305	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
$V_2O_5_A$	8	0,4411	0,055138	0,000539
$V_2O_5_B$	8	0,1826	0,022825	0,001055
$V_2O_5_C$	8	0,5535	0,069188	0,000926

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,009043	2	0,004521	5,381424	0,012976	3,4668
Dentro dos grupos	0,017644	21	0,00084			
Total	0,026686	23				

Grupo	Contagem	Soma	Média	Variância
Cr ₂ O ₃ _A	8	0,3355	0,041938	0,000835
Cr ₂ O ₃ _B	8	0,4486	0,056075	0,000133
Cr ₂ O ₃ _C	8	0,5305	0,066313	0,00085

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,002397	2	0,001198	1,976164	0,163545	3,4668
Dentro dos grupos	0,012735	21	0,000606			
Total	0,015132	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
MnO_A	8	0,5307	0,066338	6,87E-05
MnO_B	8	0,5418	0,067725	0,000224
MnO_C	8	0,5491	0,068638	0,000188

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	2,15E-05	2	1,07E-05	0,066981	0,935412	3,4668
Dentro dos grupos	0,003364	21	0,00016			
Total	0,003386	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Fe ₂ O ₃ _A	8	40,7466	5,093325	0,032725
Fe ₂ O ₃ _B	8	37,8948	4,73685	0,02944
Fe ₂ O ₃ _C	8	37,5647	4,695588	0,097016

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,765259	2	0,38263	7,211179	0,004129	3,4668
Dentro dos grupos	1,114273	21	0,053061			
Total	1,879532	23				

Grupo	Contagem	Soma	Média	Variância
NiO_A	8	0,1239	0,015488	0,000107
NiO_B	8	0,1155	0,014438	9,37E-05
NiO_C	8	0,0493	0,006163	7,61E-05

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000417	2	0,000209	2,261248	0,129006	3,4668
Dentro dos grupos	0,001938	21	9,23E-05			
Total	0,002356	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
CuO_A	8	0,2607	0,032588	2,24E-05
CuO_B	8	0,2386	0,029825	1,86E-05
CuO_C	8	0,3343	0,041788	2,37E-05

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000628	2	0,000314	14,55253	0,000108	3,4668
Dentro dos grupos	0,000453	21	2,16E-05			
Total	0,001081	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
ZnO_A	8	0,4519	0,056488	2,9E-05
ZnO_B	8	0,4836	0,06045	4,51E-05
ZnO_C	8	0,6378	0,079725	7,97E-05

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,002473	2	0,001236	24,10203	3,65E-06	3,4668
Dentro dos grupos	0,001077	21	5,13E-05			
Total	0,00355	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
SrO_A	8	0,6089	0,076113	0,000107
SrO_B	8	0,5095	0,063688	5,88E-05
SrO_C	8	0,5035	0,062938	0,00027

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000876	2	0,000438	3,018176	0,070445	3,4668
Dentro dos grupos	0,003048	21	0,000145			
Total	0,003924	23				

Grupo	Contagem	Soma	Média	Variância
Sb ₂ O ₃ _A	8	0,0713	0,008913	0,000635
$Sb_2O_3_B$	8	0,1215	0,015188	0,000798
Sb ₂ O ₃ _C	8	0,1111	0,013888	0,000672

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000176	2	8,78E-05	0,125032	0,88312	3,4668
Dentro dos grupos	0,014739	21	0,000702			
Total	0,014915	23				

RESUMO

	Grupo	Contagem	Soma	Média	Variância
I_A		8	0,3094	0,038675	0,001087
I_B		8	0,056	0,007	0,000392
I_C		8	0,1827	0,022838	0,000998

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,004013	2	0,002007	2,42985	0,112397	3,4668
Dentro dos grupos	0,017342	21	0,000826			
Total	0,021355	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
BaO_A	8	0,2344	0,0293	0,002504
BaO_B	8	0,1327	0,016588	0,002201
BaO_C	8	0,4716	0,05895	0,007222

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,007561	2	0,00378	0,950884	0,402418	3,4668
Dentro dos grupos	0,083489	21	0,003976			
Total	0,09105	23				

9.9 CDC S – S9A, S9B e S9C

RESUMO				
Grupo	Contagem	Soma	Média	Variância
Na ₂ O_A	8	0,9392	0,1174	0,001635
Na ₂ O_B	6	0,7228	0,120467	0,000577
Na ₂ O_C	8	0,9533	0,119163	0,000654

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	3,33E-05	2	1,66E-05	0,016715	0,983439	3,521893
Dentro dos grupos	0,018907	19	0,000995			
Total	0,018941	21				

Grupo	Contagem	Soma	Média	Variância
MgO_A	8	9,7799	1,222488	0,004109
MgO_B	8	11,8276	1,47845	0,001794
MgO_C	8	12,6126	1,576575	0,003067

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,534729	2	0,267364	89,41687	5,32E-11	3,4668
Dentro dos grupos	0,062792	21	0,00299			
Total	0,597521	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Al ₂ O ₃ _A	8	42,4682	5,308525	0,008812
Al ₂ O ₃ _B	8	45,5271	5,690888	0,016827
Al ₂ O ₃ _C	8	46,273	5,784125	0,00439

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	1,016239	2	0,50812	50,76347	9,05E-09	3,4668
Dentro dos grupos	0,210201	21	0,01001			
Total	1,22644	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
SiO ₂ _A	8	177,2661	22,15826	0,050919
SiO ₂ _B	8	181,3274	22,66593	0,077378
SiO ₂ _C	8	181,8433	22,73041	0,042984

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	1,571295	2	0,785647	13,76071	0,000152	3,4668
Dentro dos grupos	1,198964	21	0,057094			
Total	2,770258	23				

Grupo	Contagem	Soma	Média	Variância
$P_2O_5_A$	8	6,7171	0,839638	0,001335
$P_2O_5_B$	8	2,1996	0,27495	0,000335
$P_2O_5_C$	8	2,3168	0,2896	0,000289

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	1,657674	2	0,828837	1269,556	1,25E-22	3,4668
Dentro dos grupos	0,01371	21	0,000653			
Total	1,671384	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
SO ₃ _A	8	18,2168	2,2771	0,000426
SO ₃ _B	8	16,6614	2,082675	0,001146
SO ₃ _C	8	22,0828	2,76035	0,001472

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	1,9482	2	0,9741	960,3175	2,28E-21	3,4668
Dentro dos grupos	0,021301	21	0,001014			
Total	1,969502	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Cl_A	8	0,1507	0,018838	5,85E-06
Cl_B	8	0,1018	0,012725	5,47E-06
Cl_C	8	0,114	0,01425	8,86E-07

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000162	2	8,1E-05	19,90008	1,42E-05	3,4668
Dentro dos grupos	8,55E-05	21	4,07E-06			
Total	0,000247	23				

Grupo	Contagem	Soma	Média	Variância		
K ₂ O_A	8	4,2686	0,533575	0,000304		
K_2O_B	8	4,5093	0,563663	0,000404		
K ₂ O_C	8	4,0541	0,506763	0,00024		
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
-------------------	----------	----	----------	----------	----------	-----------
Entre grupos	0,012965	2	0,006482	20,52084	1,15E-05	3,4668
Dentro dos grupos	0,006634	21	0,000316			
Total	0,019598	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
CaO_A	8	495,5098	61,93873	0,063487
CaO_B	8	491,5372	61,44215	0,126713
CaO_C	8	481,1874	60,14843	0,040245

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	13,66796	2	6,83398	88,96648	5,58E-11	3,4668
Dentro dos grupos	1,61312	21	0,076815			
Total	15,28108	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
TiO ₂ _A	8	3,9813	0,497663	0,006686
TiO ₂ _B	8	4,4195	0,552438	0,005923
TiO ₂ _C	8	5,2006	0,650075	0,016774

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,095368	2	0,047684	4,868566	0,018316	3,4668
Dentro dos grupos	0,205679	21	0,009794			
Total	0,301047	23				

RESUMO

REDUMO				
Grupo	Contagem	Soma	Média	Variância
$V_2O_5_A$	8	0,3546	0,044325	0,001846
$V_2O_5_B$	8	0,1604	0,02005	0,001414
$V_2O_5_C$	8	0,3978	0,049725	0,000995

SQ	gl	MQ	F	valor-P	F crítico
0,003997	2	0,001999	1,409161	0,266523	3,4668
0,029786	21	0,001418			
0,033783	23				
	<i>SQ</i> 0,003997 0,029786 0,033783	SQ gl 0,003997 2 0,029786 21 0,033783 23	SQglMQ0,00399720,0019990,029786210,0014180,03378323	SQ gl MQ F 0,003997 2 0,001999 1,409161 0,029786 21 0,001418 0,033783 23	SQ gl MQ F valor-P 0,003997 2 0,001999 1,409161 0,266523 0,029786 21 0,001418 0,033783 23

Grupo	Contagem	Soma	Média	Variância
Cr ₂ O ₃ _A	8	0,332	0,0415	0,000392
Cr ₂ O ₃ _B	8	0,3665	0,045813	0,000457
Cr ₂ O ₃ _C	8	0,3313	0,041413	0,000369

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000101	2	5,06E-05	0,12474	0,883375	3,4668
Dentro dos grupos	0,008522	21	0,000406			
Total	0,008623	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
MnO_A	8	0,4838	0,060475	0,000159
MnO_B	8	0,4633	0,057913	6,79E-05
MnO_C	8	0,523	0,065375	0,000129

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,00023	2	0,000115	0,970497	0,395252	3,4668
Dentro dos grupos	0,002489	21	0,000119			
Total	0,002719	23				

RESUMO

	neula varianeia
Fe ₂ O ₃ _A 8 37,1396 4	4,64245 0,028908
Fe ₂ O ₃ _B 8 37,424	4,678 0,059588
Fe ₂ O ₃ _C 8 39,8188 4	4,97735 0,015804

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,541419	2	0,27071	7,786476	0,002952	3,4668
Dentro dos grupos	0,7301	21	0,034767			
Total	1,271519	23				

NiO_A 8 0,1028 0,01285	Grupo	Contagem	Soma	Média	Variância
	NiO_A	8	0,1028	0,01285	0,000123
N1O_B 8 0,10/3 0,013413	NiO_B	8	0,1073	0,013413	8,79E-05
NiO_C 8 0,1057 0,013213	NiO_C	8	0,1057	0,013213	0,000149

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	1,3E-06	2	6,5E-07	0,005419	0,994597	3,4668
Dentro dos grupos	0,00252	21	0,00012			
Total	0,002522	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
CuO_A	8	0,2933	0,036663	1,42E-05
CuO_B	8	0,3671	0,045888	7,86E-05
CuO_C	8	0,3702	0,046275	2,36E-05

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000474	2	0,000237	6,102428	0,008141	3,4668
Dentro dos grupos	0,000815	21	3,88E-05			
Total	0,001289	23				

RESUMO

KESUMO				
Grupo	Contagem	Soma	Média	Variância
ZnO_A	8	0,4662	0,058275	9,66E-05
ZnO_B	8	0,5912	0,0739	0,000122
ZnO_C	8	0,5755	0,071938	3,34E-05

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,001159	2	0,00058	6,900107	0,004974	3,4668
Dentro dos grupos	0,001764	21	8,4E-05			
Total	0,002923	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
SrO_A	8	0,6062	0,075775	0,000154
SrO_B	8	0,7025	0,087813	0,000305
SrO_C	8	0,5432	0,0679	8,61E-05

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,001609	2	0,000805	4,4259	0,024895	3,4668
Dentro dos grupos	0,003818	21	0,000182			
Total	0,005427	23				

Grupo	Contagem	Soma	Média	Variância
Sb_2O_3A	8	0,2993	0,037413	0,001719
$Sb_2O_3_B$	8	0,0708	0,00885	0,000627
Sb ₂ O ₃ _C	8	0,0538	0,006725	0,000362

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,004699	2	0,002349	2,603016	0,097744	3,4668
Dentro dos grupos	0,018954	21	0,000903			
Total	0,023653	23				

RESUMO

	Grupo	Contagem	Soma	Média	Variância
I_A		8	0,2213	0,027663	0,001478
I_B		8	0,4204	0,05255	0,002285
I_C		8	0,2737	0,034213	0,001415

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,002663	2	0,001331	0,771407	0,475026	3,4668
Dentro dos grupos	0,036245	21	0,001726			
Total	0,038908	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
BaO_A	8	0,3746	0,046825	0,004274
BaO_B	8	0,4397	0,054963	0,005856
BaO_C	8	0,3202	0,040025	0,005549

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000895	2	0,000447	0,085616	0,918266	3,4668
Dentro dos grupos	0,109752	21	0,005226			
Total	0,110647	23				

Grupo	Contagem	Soma	Média	Variância
As ₂ O ₃ _A	8	0,0284	0,00355	4,56E-05
As ₂ O ₃ _B	8	0,0521	0,006513	8,78E-05
As ₂ O ₃ _C	8	0,0486	0,006075	7,38E-05

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	4,09E-05	2	2,05E-05	0,296237	0,746667	3,4668
Dentro dos grupos	0,00145	21	6,91E-05			
Total	0,001491	23				

10 APÊNDICE B - ANOVA: MÊS DE COLETA

10.1 CDC K – K7, K8 e K9

RES	UMO

Grupo	Contagem	Soma	Média	Variância
Na ₂ O_K7	24	3,79369	0,15807	0,009115
Na ₂ O_K8	24	2,6617	0,110904	0,005057
Na ₂ O_K9	24	3,5905	0,149604	0,008013

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,030352	2	0,015176	2,052132	0,136229	3,129644
Dentro dos grupos	0,510274	69	0,007395			
Total	0,540626	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
MgO_K7	24	52,578	2,19075	1,007145
MgO_K8	24	43,0119	1,792163	0,854266
MgO_K9	24	38,9032	1,620967	0,623098

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	4,102664	2	2,051332	2,476947	0,09144	3,129644
Dentro dos grupos	57,14369	69	0,828169			
Total	61,24636	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Al ₂ O ₃ _K7	24	105,489	4,395375	0,792827
Al ₂ O ₃ _K8	24	101,3497	4,222904	0,502727
Al ₂ O ₃ _K9	24	96,0164	4,000683	0,744996

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	1,879278	2	0,939639	1,38145	0,258074	3,129644
Dentro dos grupos	46,93264	69	0,680183			
Total	48,81192	71				

Grupo	Contagem	Soma	Média	Variância
SiO ₂ _K7	24	434,1493	18,08955	14,26369
SiO ₂ _K8	24	430,7775	17,94906	10,89507
SiO ₂ _K9	24	411,7306	17,15544	22,18367

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	12,1771	2	6,088552	0,38582	0,68135	3,129644
Dentro dos grupos	1088,876	69	15,78081			
Total	1101,053	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
$P_2O_5_K7$	24	5,265	0,219375	0,00031
$P_2O_5_K8$	24	5,0204	0,209183	0,000192
P ₂ O ₅ _K9	24	4,6636	0,194317	0,000249

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,007622	2	0,003811	15,20659	3,38E-06	3,129644
Dentro dos grupos	0,017293	69	0,000251			
Total	0,024916	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
SO ₃ _K7	24	83,7001	3,487504	0,124141
SO ₃ _K8	24	92,4842	3,853508	0,06697
SO ₃ _K9	24	92,8147	3,867279	0,468507

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	2,227022	2	1,113511	5,064343	0,008867	3,129644
Dentro dos grupos	15,17122	69	0,219873			
Total	17,39824	71				

G	Grupo (Contagem	Soma	Média	Variância
Cl_K7		24	1,4393	0,059971	0,000405
Cl_K8		24	1,0848	0,0452	0,000242
Cl_K9		24	1,2028	0,050117	0,000253

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,002716	2	0,001358	4,524336	0,014246	3,129644
Dentro dos grupos	0,020708	69	0,0003			
Total	0,023424	71				

Grupo	Contagem	Soma	Média	Variância
K_2O_K7	24	12,3313	0,513804	0,010843
K_2O_K8	24	14,0756	0,586483	0,007778
K_2O_K9	24	14,3071	0,596129	0,022148

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,097222	2	0,048611	3,577011	0,033258	3,129644
Dentro dos grupos	0,937696	69	0,01359			
Total	1,034917	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
CaO_K7	24	1586,584	66,10767	47,85838
CaO_K8	24	1585,151	66,04798	34,50736
CaO_K9	24	1616,495	67,35397	63,2145

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	26,09939	2	13,04969	0,268918	0,765003	3,129644
Dentro dos grupos	3348,345	69	48,52674			
Total	3374,445	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
TiO ₂ _K7	24	9,4489	0,393704	0,016923
TiO ₂ _K8	24	10,382	0,432583	0,017356
TiO ₂ _K9	24	10,9476	0,45615	0,017458

ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,047732	2	0,023866	1,383887	0,25747	3,129644
Dentro dos grupos	1,18994	69	0,017246			
Total	1,237672	71				

Grupo	Contagem	Soma	Média	Variância
$V_2O_5_K7$	24	0,9748	0,040617	0,001595
$V_2O_5_K8$	24	1,1477	0,047821	0,001586
V ₂ O ₅ _K9	24	1,3636	0,056817	0,001545

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,003162	2	0,001581	1,003694	0,37181	3,129644
Dentro dos grupos	0,108692	69	0,001575			
Total	0,111854	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Cr ₂ O ₃ _K7	24	1,0782	0,044925	0,00033
$Cr_2O_3_K8$	24	1,098	0,04575	0,000536
$Cr_2O_3_K9$	24	0,8072	0,033633	0,000395

ANOVA

ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,0022	2	0,0011	2,617039	0,080256	3,129644
Dentro dos grupos	0,029002	69	0,00042			
Total	0,031202	71				

RESUMO

Grup	oo Contagem	Soma	Média	Variância
MnO_K7	24	1,6023	0,066763	0,000164
MnO_K8	24	1,8191	0,075796	0,000181
MnO_K9	24	1,6902	0,070425	0,00042

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000991	2	0,000495	1,944274	0,150851	3,129644
Dentro dos grupos	0,017583	69	0,000255			
Total	0,018574	71				

Grupo	Contagem	Soma	Média	Variância
Fe ₂ O ₃ _K7	24	91,5524	3,814683	1,227486
$Fe_2O_3_K8$	24	98,4836	4,103483	0,677567
Fe ₂ O ₃ _K9	24	94,4027	3,933446	1,138479

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	1,011382	2	0,505691	0,498458	0,609637	3,129644
Dentro dos grupos	70,00126	69	1,014511			
Total	71,01264	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
NiO_K7	24	0,2693	0,011221	0,000126
NiO_K8	24	0,3138	0,013075	8,54E-05
NiO_K9	24	0,2399	0,009996	0,000132

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000115	2	5,77E-05	0,504212	0,606189	3,129644
Dentro dos grupos	0,007893	69	0,000114			
Total	0,008009	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
CuO_K7	24	0,9312	0,0388	0,000236
CuO_K8	24	1,114	0,046417	0,000362
CuO_K9	24	1,186	0,049417	0,000205

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,001438	2	0,000719	2,682692	0,075509	3,129644
Dentro dos grupos	0,018491	69	0,000268			
Total	0,019928	71				
RESUMO						
Grupo	Contagem	Soma	Média	Variância		
ZnO_K7	24	1,7931	0,074713	9,5E-05		
ZnO_K8	24	1,8174	0,075725	4,71E-05		
ZnO_K9	24	1,652	0,068833	4,89E-05		

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000665	2	0,000332	5,222504	0,007727	3,129644
Dentro dos grupos	0,004391	69	6,36E-05			
Total	0,005056	71				

Grupo	Contagem	Soma	Média	Variância
SrO_K7	24	4,4127	0,183863	0,008417
SrO_K8	24	4,4908	0,187117	0,007228
SrO_K9	24	4,9524	0,20635	0,015315

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,00709	2	0,003545	0,343488	0,710498	3,129644
Dentro dos grupos	0,71208	69	0,01032			
Total	0,71917	71				

RESUMO

Gr	upo Contagen	n Soma	Média	Variância
I_K7	24	0,4694	0,019558	0,001306
I_K8	24	0,7065	0,029438	0,001695
I_K9	24	0,5693	0,023721	0,001595

ANOVA

ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,001181	2	0,00059	0,385387	0,681642	3,129644
Dentro dos grupos	0,105709	69	0,001532			
Total	0,10689	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
BaO_K7	24	2,2851	0,095213	0,009921
BaO_K8	24	2,8227	0,117613	0,015539
BaO_K8	24	2,2692	0,09455	0,00654

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,008273	2	0,004136	0,387765	0,680041	3,129644
Dentro dos grupos	0,736027	69	0,010667			
Total	0,7443	71				

10.2 CDC P – P7, P8 e P9

Grupo	Contagem	Soma	Média	Variância
Na ₂ O_P7	24	2,3334	0,097225	0,006895
Na ₂ O_P8	24	3,0835	0,128479	0,006447
Na ₂ O_P9	24	3,3693	0,140388	0,002858

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,023853	2	0,011927	2,208671	0,117555	3,129644
Dentro dos grupos	0,372591	69	0,0054			
Total	0,396444	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
MgO_P7	24	36,4846	1,520192	0,010019
MgO_P8	24	54,5232	2,2718	0,470388
MgO_P9	24	56,2769	2,344871	0,207573

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	10,0028	2	5,001401	21,80906	4,57E-08	3,129644
Dentro dos grupos	15,82355	69	0,229327			
Total	25,82635	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Al ₂ O ₃ _P7	24	187,2924	7,80385	0,347829
$Al_2O_3_P8$	24	193,1551	8,048129	0,054231
$Al_2O_3_P9$	24	199,267	8,302792	0,071488

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	2,987745	2	1,493872	9,463919	0,000233	3,129644
Dentro dos grupos	10,8916	69	0,157849			
Total	13,87934	71				

Grupo	Contagem	Soma	Média	Variância
SiO ₂ _P7	24	674,155	28,08979	4,300394
SiO ₂ _P8	24	689,709	28,73788	0,389051
SiO ₂ _P9	24	719,059	29,96079	0,229997

ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	43,32943	2	21,66471	13,21169	1,39E-05	3,129644
Dentro dos grupos	113,1472	69	1,639814			
Total	156,4766	71				

Grupo	Contagem	Soma	Média	Variância
$P_2O_5_P7$	24	4,3646	0,181858	0,000241
$P_2O_5_P8$	24	4,2277	0,176154	0,000331
P ₂ O ₅ _P9	24	4,391	0,182958	0,000244

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,00064	2	0,00032	1,177555	0,314144	3,129644
Dentro dos grupos	0,018761	69	0,000272			
Total	0,019401	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
SO ₃ _P7	24	54,91	2,287917	0,107616
SO ₃ _P8	24	61,6973	2,570721	0,030454
SO ₃ _P9	24	61,5788	2,565783	0,003165

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	1,2577	2	0,62885	13,35746	1,25E-05	3,129644
Dentro dos grupos	3,24842	69	0,047079			
Total	4,50612	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Cl_P7	24	0,5646	0,023525	1,87E-05
Cl_P8	24	0,63	0,02625	9,17E-05
Cl_P9	24	0,6774	0,028225	9,6E-06

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000267	2	0,000134	3,339314	0,041278	3,129644
Dentro dos grupos	0,002762	69	4E-05			
Total	0,003029	71				

Grupo	Contagem	Soma	Média	Variância
K ₂ O_P7	24	7,501	0,312542	0,016585
K_2O_P8	24	5,4934	0,228892	0,000536
K_2O_P9	24	5,5533	0,231388	0,00098

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,108716	2	0,054358	9,009069	0,000334	3,129644
Dentro dos grupos	0,416327	69	0,006034			
Total	0,525043	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
CaO_P7	24	1263,778	52,65742	10,96139
CaO_P8	24	1236,091	51,50378	1,67693
CaO_P9	24	1202,271	50,09463	0,805755

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	79,07597	2	39,53798	8,822766	0,000387	3,129644
Dentro dos grupos	309,2138	69	4,481359			
Total	388,2897	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
TiO ₂ _P7	24	15,8853	0,661888	0,011038
TiO ₂ _P8	24	14,6399	0,609996	0,004626
TiO ₂ _P9	24	15,2878	0,636992	0,004184

ANOVA

ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,032331	2	0,016165	2,44326	0,094361	3,129644
Dentro dos grupos	0,456523	69	0,006616			
Total	0,488854	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
$V_2O_5_P7$	24	1,0524	0,04385	0,001677
$V_2O_5_P8$	24	0,6117	0,025488	0,000962
$V_2O_5_P9$	24	0,7635	0,031813	0,001033

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,004177	2	0,002088	1,706486	0,189073	3,129644
Dentro dos grupos	0,08444	69	0,001224			
Total	0,088617	71				

Grupo	Contagem	Soma	Média	Variância
$Cr_2O_3_P7$	24	2,5894	0,107892	0,001003
$Cr_2O_3_P8$	24	2,0643	0,086013	0,000606
$Cr_2O_3_P9$	24	2,5894	0,107892	0,001003

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,007659	2	0,00383	4,399702	0,015908	3,129644
Dentro dos grupos	0,060059	69	0,00087			
Total	0,067718	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
MnO_P7	24	5,1654	0,215225	0,004807
MnO_P8	24	4,7913	0,199638	0,005132
MnO_P9	24	8,8549	0,368954	0,982555

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,42035	2	0,210175	0,635294	0,53285	3,129644
Dentro dos grupos	22,82736	69	0,330831			
Total	23,24771	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
$Fe_2O_3_P7$	24	139,1314	5,797142	0,609594
$Fe_2O_3_P8$	24	125,5496	5,231233	0,117515
Fe ₂ O ₃ _P9	24	116,2687	4,844529	1,122895

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	11,0181	2	5,509052	8,93358	0,000355	3,129644
Dentro dos grupos	42,55008	69	0,616668			
Total	53,56818	71				

RESUMO				
Grupo	Contagem	Soma	Média	Variância
NiO_P7	24	0,6191	0,025796	0,000107
NiO_P8	24	0,5492	0,022883	9,42E-05
NiO_P9	24	0,6332	0,026383	4,83E-05

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000169	2	8,43E-05	1,015455	0,367586	3,129644
Dentro dos grupos	0,005729	69	8,3E-05			
Total	0,005898	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
CuO_P7	24	0,4962	0,020675	6,39E-05
CuO_P8	24	0,4872	0,0203	3,51E-05
CuO_P9	24	0,4739	0,019746	5,78E-05

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	1,05E-05	2	5,24E-06	0,100358	0,904645	3,129644
Dentro dos grupos	0,003606	69	5,23E-05			
Total	0,003616	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
ZnO_P7	24	0,8718	0,036325	0,000114
ZnO_P8	24	0,7808	0,032533	4,11E-05
ZnO_P9	24	0,7373	0,030721	3E-05

ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000393	2	0,000196	3,172494	0,048075	3,129644
Dentro dos grupos	0,004269	69	6,19E-05			
Total	0,004661	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
SrO_P7	24	1,3353	0,055638	0,00035
SrO_P8	24	0,9641	0,040171	0,000283
SrO_P9	24	0,7277	0,030321	8,35E-05

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,007817	2	0,003909	16,35375	1,54E-06	3,129644
Dentro dos grupos	0,016492	69	0,000239			
Total	0,024309	71				

Grupo	Contagem	Soma	Média	Variância
$Sb_2O_3_P7$	24	0,6228	0,02595	0,00105
$Sb_2O_3_P8$	24	0,3123	0,013013	0,00058
Sb ₂ O ₃ _P9	24	0,3815	0,015896	0,000694

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,002214	2	0,001107	1,428754	0,246606	3,129644
Dentro dos grupos	0,053467	69	0,000775			
Total	0,055681	71				

10.1 CDC S – S7, S8 e S9

RESUMO				
Grupo	Contagem	Soma	Média	Variância
Na ₂ O_S7	24	2,8711	0,119629	0,004222
Na ₂ O_S8	24	3,4251	0,142713	0,001029
Na ₂ O_S9	24	2,6153	0,108971	0,00195

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,01428	2	0,00714	2,974694	0,057649	3,129644
Dentro dos grupos	0,165612	69	0,0024			
Total	0,179891	71				

RESUMO

RESUMO				
Grupo	Contagem	Soma	Média	Variância
MgO_S7	24	33,0144	1,3756	0,237418
MgO_S8	24	31,3007	1,304196	0,007446
MgO_S9	24	34,2201	1,425838	0,025979

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,179352	2	0,089676	0,9933	0,375585	3,129644
Dentro dos grupos	6,229397	69	0,090281			
Total	6,408749	71				

Grupo	Contagem	Soma	Média	Variância
$Al_2O_3_S7$	24	139,3337	5,805571	0,460017
$Al_2O_3_S8$	24	152,8719	6,369663	0,579555
Al ₂ O ₃ _S9	24	134,2683	5,594513	0,053323

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	7,70882	2	3,85441	10,58036	9,82E-05	3,129644
Dentro dos grupos	25,13659	69	0,364298			
Total	32,84541	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
SiO ₂ _S7	24	535,1174	22,29656	5,665372
SiO ₂ _S8	24	580,7841	24,19934	1,790563
SiO ₂ _S9	24	540,4368	22,5182	0,120446

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	51,96734	2	25,98367	10,28869	0,000123	3,129644
Dentro dos grupos	174,2568	69	2,52546			
Total	226,2241	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
$P_2O_5_S7$	24	14,0789	0,586621	0,059548
$P_2O_5_S8$	24	12,3767	0,515696	0,059502
P ₂ O ₅ _S9	24	11,2335	0,468063	0,072669

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,170843	2	0,085421	1,33667	0,269436	3,129644
Dentro dos grupos	4,409527	69	0,063906			
Total	4,58037	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
SO ₃ _S7	24	60,1092	2,50455	0,229838
SO ₃ _S8	24	52,3411	2,180879	0,09158
SO ₃ _S9	24	56,961	2,373375	0,085631

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	1,272195	2	0,636097	4,688111	0,012329	3,129644
Dentro dos grupos	9,362132	69	0,135683			
Total	10,63433	71				

Grupo	Contagem	Soma	Média	Variância
Cl_S7	24	0,5545	0,023104	5,64E-05
Cl_S8	24	0,391	0,016292	1,21E-05
Cl_S9	24	0,3665	0,015271	1,08E-05

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000871	2	0,000435	16,46719	1,42E-06	3,129644
Dentro dos grupos	0,001824	69	2,64E-05			
Total	0,002694	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
K ₂ O_S7	24	9,7613	0,406721	0,003214
K_2O_S8	24	12,5741	0,523921	0,002835
K ₂ O_S9	24	12,832	0,534667	0,000852

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,241772	2	0,120886	52,55308	1,36E-14	3,129644
Dentro dos grupos	0,158718	69	0,0023			
Total	0,40049	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
CaO_S7	24	1474,523	61,43846	12,36907
CaO_S8	24	1414,663	58,94431	2,273942
CaO_S9	24	1468,234	61,17643	0,664395

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	90,17459	2	45,08729	8,836366	0,000383	3,129644
Dentro dos grupos	352,0704	69	5,10247			
Total	442,245	71				

Grupo	Contagem	Soma	Média	Variância
TiO_2_S7	24	12,5017	0,520904	0,008042
TiO ₂ _S8	24	12,9448	0,539367	0,009231
TiO ₂ _S9	24	13,6014	0,566725	0,013089

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,025511	2	0,012756	1,26038	0,289992	3,129644
Dentro dos grupos	0,698308	69	0,01012			
Total	0,723819	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
$V_2O_5_S7$	24	0,7021	0,029254	0,001423
$V_2O_5_S8$	24	1,1772	0,04905	0,00116
$V_2O_5_S9$	24	0,9128	0,038033	0,001469

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,004723	2	0,002361	1,74828	0,181695	3,129644
Dentro dos grupos	0,093193	69	0,001351			
Total	0,097915	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
$Cr_2O_3_S7$	24	1,3915	0,057979	0,000743
$Cr_2O_3_S8$	24	1,3146	0,054775	0,000658
$Cr_2O_3_S9$	24	1,0298	0,042908	0,000375

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,003026	2	0,001513	2,555544	0,084981	3,129644
Dentro dos grupos	0,040847	69	0,000592			
Total	0,043873	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
MnO_S7	24	1,514	0,063083	0,000236
MnO_S8	24	1,6216	0,067567	0,000147
MnO_S9	24	1,4701	0,061254	0,000118

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000506	2	0,000253	1,51432	0,227177	3,129644
Dentro dos grupos	0,011536	69	0,000167			
Total	0,012042	71				

Grupo	Contagem	Soma	Média	Variância
$Fe_2O_3_S7$	24	107,3145	4,471438	0,270687
$Fe_2O_3_S8$	24	116,2061	4,841921	0,081719
Fe ₂ O ₃ _S9	24	114,3824	4,765933	0,055283

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	1,838078	2	0,919039	6,762797	0,00208	3,129644
Dentro dos grupos	9,376846	69	0,135896			
Total	11,21492	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
CuO_S7	24	0,762	0,03175	0,000103
CuO_S8	24	0,8336	0,034733	4,7E-05
CuO_S9	24	1,0306	0,042942	5,6E-05

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,001612	2	0,000806	11,71853	4,16E-05	3,129644
Dentro dos grupos	0,004747	69	6,88E-05			
Total	0,006359	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
ZnO_S7	24	1,5039	0,062663	0,000368
ZnO_S8	24	1,5733	0,065554	0,000154
ZnO_S9	24	1,6329	0,068038	0,000127

ANOVA

ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000347	2	0,000174	0,802351	0,452412	3,129644
Dentro dos grupos	0,014936	69	0,000216			
Total	0,015283	71				

Grupo	Contagem	Soma	Média	Variância
SrO_S7	24	1,6833	0,070138	0,002007
SrO_S8	24	1,6219	0,067579	0,000171
SrO_S9	24	1,8519	0,077163	0,000236

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,001182	2	0,000591	0,734462	0,483476	3,129644
Dentro dos grupos	0,055517	69	0,000805			
Total	0,056699	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Sb ₂ O ₃ _A	24	0,5486	0,022858	0,00151
Sb ₂ O ₃ _B	24	0,3039	0,012663	0,000648
Sb ₂ O ₃ _C	24	0,4239	0,017663	0,001028

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,001248	2	0,000624	0,587175	0,558649	3,129644
Dentro dos grupos	0,073305	69	0,001062			
Total	0,074552	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
I_S7	24	0,6372	0,02655	0,001276
I_S8	24	0,5481	0,022838	0,000928
I_S9	24	0,9154	0,038142	0,001692

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,003059	2	0,001529	1,177595	0,314132	3,129644
Dentro dos grupos	0,089618	69	0,001299			
Total	0,092677	71				

RESUMO

Grupo	Contagem	Soma	Média	Variância
BaO_S7	24	1,954	0,081417	0,00616
BaO_S8	24	0,8387	0,034946	0,003959
BaO_S9	24	1,1345	0,047271	0,004811
BaO_S9	24 24	1,1345	0,034946	0,0039

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,027819	2	0,01391	2,795141	0,068039	3,129644
Dentro dos grupos	0,343366	69	0,004976			
Total	0,371185	71				

11 APÊNDICE C – ANOVA: CDC

KLSUWIO				
Grupo	Contagem	Soma	Média	Variância
Na ₂ O_K	72	9,82919	0,136517	0,006413
Na ₂ O_P	72	8,7862	0,122031	0,005584
Na ₂ O_S	72	8,9115	0,123771	0,002534

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,009008	2	0,004504	0,929889	0,396193	3,038264
Dentro dos grupos	1,03166	213	0,004843			
Total	1,040668	215				

RESUMO

RESUMO				
Grupo	Contagem	Soma	Média	Variância
MgO_K	72	134,4977	1,868023	0,862783
MgO_P	72	147,2847	2,045621	0,363751
MgO_S	72	98,5352	1,368544	0,090264

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	17,74686	2	8,873431	20,21592	9,15E-09	3,038264
Dentro dos grupos	93,4927	213	0,438933			
Total	111,2396	215				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Al ₂ O ₃ _K	72	302,8597	4,206385	0,687619
Al ₂ O ₃ _P	72	579,7145	8,05159	0,195484
Al ₂ O ₃ _S	72	426,4739	5,923249	0,462611

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	534,3136	2	267,1568	595,5726	5,93E-88	3,038264
Dentro dos grupos	95,54569	213	0,448571			
Total	629,8593	215				

Grupo	Contagem	Soma	Média	Variância
SiO ₂ _K	72	1276,662	17,73142	15,50827
SiO ₂ _P	72	2082,923	28,92949	2,203896
SiO ₂ _S	72	1656,338	23,0047	3,186255

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	4519,377	2	2259,688	324,3817	2,26E-65	3,038264
Dentro dos grupos	1483,788	213	6,96614			
Total	6003,165	215				

RESUMO

Grupo	Contagem	Soma	Média	Variância
$P_2O_5_K$	72	14,95359	0,207689	0,000352
$P_2O_5_P$	72	12,9833	0,180324	0,000273
$P_2O_5_S$	72	37,6891	0,52346	0,064512

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	5,236861	2	2,618431	120,5948	9,48E-36	3,038264
Dentro dos grupos	4,624791	213	0,021713			
Total	9,861652	215				

RESUMO

Grupo	Contagem	Soma	Média	Variância
SO ₃ _K	72	269,0036	3,736161	0,245096
SO ₃ _P	72	178,1861	2,474807	0,063466
SO ₃ _S	72	169,4113	2,352935	0,149779

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	84,46036	2	42,23018	276,4108	6,5E-60	3,038264
Dentro dos grupos	32,54225	213	0,152781			
Total	117,0026	215				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Cl_K	72	3,73149	0,051826	0,000331
Cl_P	72	1,872	0,026	4,27E-05
Cl_S	72	1,312	0,018222	3,79E-05

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,044561	2	0,022281	162,3152	1,5E-43	3,038264
Dentro dos grupos	0,029238	213	0,000137			
Total	0,073799	215				

Grupo	Contagem	Soma	Média	Variância
K ₂ O_K	72	40,71859	0,565536	0,014575
K ₂ O_P	72	18,5477	0,257607	0,007395
K ₂ O_S	72	35,1674	0,488436	0,005641

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	3,697123	2	1,848561	200,8523	9,54E-50	3,038264
Dentro dos grupos	1,960364	213	0,009204			
Total	5,657486	215				

RESUMO

Grupo	Contagem	Soma	Média	Variância
CaO_K	72	4788,231	66,50321	47,52739
CaO_P	72	3702,14	51,41861	5,46887
CaO_S	72	4357,421	60,51973	6,228803

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	8308,261	2	4154,131	210,4243	3,64E-51	3,038264
Dentro dos grupos	4204,979	213	19,74169			
Total	12513,24	215				

RESUMO

Grupo	Contagem	Soma	Média	Variância
TiO ₂ _K	72	30,78309	0,427543	0,017434
TiO ₂ _P	72	45,813	0,636292	0,006885
TiO ₂ _S	72	39,0479	0,542332	0,010195

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	1,573944	2	0,786972	68,40561	1,13E-23	3,038264
Dentro dos grupos	2,450457	213	0,011504			
Total	4,024401	215				

Grupo	Contagem	Soma	Média	Variância
$V_2O_5_K$	72	3,49069	0,048482	0,001578
$V_2O_5_P$	72	2,4276	0,033717	0,001248
$V_2O_5_S$	72	2,7921	0,038779	0,001379

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,008107	2	0,004053	2,891405	0,05768	3,038264
Dentro dos grupos	0,298597	213	0,001402			
Total	0,306704	215				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Cr ₂ O ₃ _K	72	2,98799	0,0415	0,000438
Cr ₂ O ₃ _P	72	6,9523	0,09656	0,000856
Cr ₂ O ₃ _S	72	3,7359	0,051888	0,000618

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,123242	2	0,061621	96,699	1,32E-30	3,038264
Dentro dos grupos	0,135734	213	0,000637			
Total	0,258976	215				

RESUMO

Grupo	Contagem	Soma	Média	Variância
MnO_K	72	5,11619	0,071058	0,000266
MnO_P	72	18,8116	0,261272	0,327433
MnO_S	72	4,6057	0,063968	0,00017

ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	1,803854	2	0,901927	8,252659	0,000353	3,038264
Dentro dos grupos	23,27861	213	0,109289			
Total	25,08246	215				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Fe ₂ O ₃ _K	72	284,4433	3,950601	1,000237
Fe ₂ O ₃ _P	72	380,9497	5,290968	0,754481
Fe ₂ O ₃ _S	72	337,903	4,693097	0,157957

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	64,92799	2	32,464	50,91926	8,43E-19	3,038264
Dentro dos grupos	135,7999	213	0,637558			
Total	200,7279	215				

Grupo	Contagem	Soma	Média	Variância
CuO_K	72	3,23579	0,044942	0,000281
CuO_P	72	1,4573	0,02024	5,09E-05
CuO_S	72	2,6262	0,036475	8,96E-05

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,02269	2	0,011345	80,79627	7,73E-27	3,038264
Dentro dos grupos	0,029908	213	0,00014			
Total	0,052597	215				

RESUMO

Grupo	Contagem	Soma	Média	Variância
ZnO_K	72	5,26709	0,073154	7,16E-05
ZnO_P	72	2,3899	0,033193	6,57E-05
ZnO_S	72	4,7101	0,065418	0,000215

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,064684	2	0,032342	275,2532	8,97E-60	3,038264
Dentro dos grupos	0,025027	213	0,000117			
Total	0,089712	215				

RESUMO

Grupo	Contagem	Soma	Média	Variância
SrO_K	72	13,86049	0,192507	0,010114
SrO_P	72	3,0271	0,042043	0,000342
SrO_S	72	5,1571	0,071626	0,000799

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,915038	2	0,457519	121,9476	5,03E-36	3,038264
Dentro dos grupos	0,799127	213	0,003752			
Total	1,714165	215				

12 APÊNDICE D – ANOVA: PONTOS DE COLETA

12.1 CDC K – K6A, K6B e K6C

Grupo	Contagem	Soma	Média	Variância
MgO_A	8	16,1312	2,0164	0,009533
MgO_B	8	17,7341	2,216763	0,005304
MgO_C	8	7,6532	0,95665	0,018502

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	7,336263	2	3,668132	330,078	1,36E-16	3,4668
Dentro dos grupos	0,233371	21	0,011113			
Total	7,569635	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Al ₂ O ₃ _A	8	37,0933	4,636663	0,043926
Al ₂ O ₃ _B	8	37,4506	4,681325	0,002317
Al ₂ O ₃ _C	8	17,7256	2,2157	0,000697

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	31,8463	2	15,92315	1017,674	1,25E-21	3,4668
Dentro dos grupos	0,328579	21	0,015647			
Total	32,17487	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
SiO ₂ _A	8	139,9705	17,49631	0,253816
SiO ₂ _B	8	139,3407	17,41759	0,012234
SiO ₂ _C	8	66,1436	8,26795	0,00633

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	450,3593	2	225,1797	2480,132	1,15E-25	3,4668
Dentro dos grupos	1,906661	21	0,090793			
Total	452,266	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
$P_2O_5_A$	8	1,5329	0,191613	0,000237
$P_2O_5_B$	8	1,5288	0,1911	0,0002
$P_2O_5_C$	8	1,0874	0,135925	0,000126

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,016388	2	0,008194	43,67035	3,3E-08	3,4668
Dentro dos grupos	0,00394	21	0,000188			
Total	0,020329	23				

Grupo	Contagem	Soma	Média	Variância
SO ₃ _A	8	36,6979	4,587238	0,004165
SO ₃ _B	8	37,1273	4,640913	0,007523
SO ₃ _C	8	18,5863	2,323288	0,000871

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	27,9993	2	13,99965	3344,101	5,05E-27	3,4668
Dentro dos grupos	0,087914	21	0,004186			
Total	28,08721	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Cl_A	8	0,3578	0,044725	2,31E-05
Cl_B	8	0,4043	0,050538	3,17E-05
Cl_C	8	0,1665	0,020813	6,28E-06

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,003971	2	0,001986	97,40801	2,37E-11	3,4668
Dentro dos grupos	0,000428	21	2,04E-05			
Total	0,004399	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
K ₂ O_A	8	4,4903	0,561288	0,000453
K_2O_B	8	4,964	0,6205	0,000896
K ₂ O_C	8	2,5489	0,318613	5,16E-05

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,409422	2	0,204711	438,6041	7,46E-18	3,4668
Dentro dos grupos	0,009801	21	0,000467			
Total	0,419224	23				

Grupo	Contagem	Soma	Média	Variância
CaO_A	8	521,6995	65,21244	0,438728
CaO_B	8	518,019	64,75238	0,034544
CaO_C	8	663,8968	82,9871	0,074311

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	1729,748	2	864,874	4738,322	1,31E-28	3,4668
Dentro dos grupos	3,833077	21	0,182527			
Total	1733,581	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
TiO ₂ _A	8	4,5441	0,568013	0,00928
TiO ₂ _B	8	4,5023	0,562788	0,002701
TiO ₂ _C	8	1,9414	0,242675	0,005881

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,555583	2	0,277792	46,65853	1,88E-08	3,4668
Dentro dos grupos	0,125028	21	0,005954			
Total	0,680612	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
Cr ₂ O ₃ _A	8	0,2654	0,033175	0,000807
Cr ₂ O ₃ _B	8	0,3883	0,048538	0,000771
Cr ₂ O ₃ _C	8	0,3382	0,042275	0,00153

ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000955	2	0,000477	0,460809	0,637001	3,4668
Dentro dos grupos	0,021755	21	0,001036			
Total	0,02271	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
MnO_A	8	0,8374	0,104675	0,000462
MnO_B	8	1,0028	0,12535	0,000388
MnO_C	8	0,2296	0,0287	0,000193

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,041442	2	0,020721	59,58261	2,21E-09	3,4668
Dentro dos grupos	0,007303	21	0,000348			
Total	0,048746	23				

Grupo	Contagem	Soma	Média	Variância
Fe ₂ O ₃ _A	8	33,7192	4,2149	0,054529
Fe ₂ O ₃ _B	8	35,0291	4,378638	0,027406
Fe ₂ O ₃ _C	8	15,2695	1,908688	0,006641

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	30,52288	2	15,26144	516,8954	1,38E-18	3,4668
Dentro dos grupos	0,620029	21	0,029525			
Total	31,14291	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
NiO_A	8	0,1518	0,018975	0,000147
NiO_B	8	0,1323	0,016538	0,000132
NiO_C	8	0,0759	0,009488	0,000112

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000388	2	0,000194	1,492065	0,2478	3,4668
Dentro dos grupos	0,002733	21	0,00013			
Total	0,003122	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
CuO_A	8	0,6708	0,08385	3,41E-05
CuO_B	8	0,6483	0,081038	5,27E-05
CuO_C	8	0,3117	0,038963	0,000111

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,010115	2	0,005057	76,52249	2,27E-10	3,4668
Dentro dos grupos	0,001388	21	6,61E-05			
Total	0,011503	23				

Grupo	Contagem	Soma	Média	Variância
ZnO_A	8	0,5531	0,069138	1,74E-05
ZnO_B	8	0,6881	0,086013	3,77E-05
ZnO_C	8	0,3392	0,0424	1,22E-05

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,007738	2	0,003869	172,5493	9,24E-14	3,4668
Dentro dos grupos	0,000471	21	2,24E-05			
Total	0,008209	23				

RESUMO

Grupo	Contagem	Soma	Média	Variância
SrO_A	8	1,2848	0,1606	0,000394
SrO_B	8	1,0401	0,130013	0,000188
SrO_C	8	2,9144	0,3643	0,000961

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,25952	2	0,12976	252,1963	2,08E-15	3,4668
Dentro dos grupos	0,010805	21	0,000515			
Total	0,270325	23				

13 APÊNDICE E – ANOVA: MÊS DE COLETA

13.1 CDC K- K6 E K789

RESUMO

Grupo	Contagem	Soma	Média	Variância
MgO_K6	24	41,5185	1,729938	0,329115
MgO_K789	24	44,83103	1,86796	0,724772

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,228602	1	0,228602	0,433826	0,513401	4,051749
Dentro dos grupos	24,2394	46	0,526943			
Total	24,468	47				

RESUMO

Grupo	Contagem	Soma	Média	Variância
SiO ₂ _K6	24	345,4548	14,39395	19,66374
SiO ₂ _K789	24	425,5525	17,73135	15,28005

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	133,6591	1	133,6591	7,64995	0,008146	4,051749
Dentro dos grupos	803,707	46	17,47189			
Total	937,3661	47				

Grupo	Contagem	Soma	Média	Variância
SO ₃ _K6	24	92,4115	3,850479	1,221183
SO ₃ _K789	24	89,66633	3,736097	0,173004

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,156999	1	0,156999	0,225219	0,637337	4,051749
Dentro dos grupos	32,06631	46	0,697094			
Total	32,22331	47				

RESUMO

Grupo	Contagem	Soma	Média	Variância
K ₂ O_K6	24	12,0032	0,500133	0,018227
K ₂ O_K789	24	13,57133	0,565472	0,010767

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,05123	1	0,05123	3,533811	0,066471	4,051749
Dentro dos grupos	0,666867	46	0,014497			
Total	0,718097	47				

RESUMO

Grupo	Contagem	Soma	Média	Variância
TiO ₂ _K6	24	10,9878	0,457825	0,029592
TiO ₂ _K789	24	10,2595	0,427479	0,014874

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,011050435	1	0,01105	0,497036	0,48436	4,051749
Dentro dos grupos	1,022702376	46	0,022233			
Total	1,033752811	47				

RESUMO

Grupo	Contagem	Soma	Média	Variância
MnO_K6	24	2,0698	0,086242	0,002119
MnO_K789	24	1,703867	0,070994	0,000105

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,00279	1	0,00279	2,508455	0,120089	4,051749
Dentro dos grupos	0,051158	46	0,001112			
Total	0,053948	47				

Grupo	Contagem	Soma	Média	Variância
NiO_K6	24	0,36	0,015	0,000136
NiO_K789	24	0,274333	0,011431	5,02E-05

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000153	1	0,000153	1,644936	0,206075	4,051749
Dentro dos grupos	0,004276	46	9,29E-05			
Total	0,004428	47				

RESUMO

Grupo	Contagem	Soma	Média	Variância
ZnO_K6	24	1,5804	0,06585	0,000357
ZnO_K789	24	1,754167	0,07309	2,3E-05

ANOVA

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,000629	1	0,000629	3,311957	0,075288	4,051749
Dentro dos grupos	0,008737	46	0,00019			
Total	0,009366	47				

RESUMO

Grupo	Contagem	Soma	Média	Variância
BaO_K6	24	0,5794	0,024142	0,003161
BaO_K789	24	2,459	0,102458	0,006104

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,073602	1	0,073602	15,88834	0,000238	4,051749
Dentro dos grupos	0,213093	46	0,004632			
Total	0,286695	47				

14 APÊNDICE F – TABELAS RESUMO: MÉDIAS DAS CONCENTRAÇÕES

Os dados tabulados são expressos como média \pm DP (desvio padrão) e a análise estatística utilizada é a ANOVA (análise de variância) de um fator. Os óxidos acompanhados com asterisco (*) em sua nomenclatura apresentam diferenças significativas entres as médias dos teores ao nível de significância de 0,05.

Óridas		Amostras	
Oxidos -	K7A (%)	K7B (%)	K7C (%)
Na ₂ O	$0,\!161 \pm 0,\!052$	$0,123 \pm 0,099$	$0,\!163\pm0,\!058$
MgO*	$2,\!614 \pm 0,\!095$	$3,\!120\pm0,\!050$	$0,\!839\pm0,\!130$
Al_2O_3*	$4,\!937\pm0,\!129$	$5,069 \pm 0,074$	$3,\!180\pm0,\!189$
SiO ₂ *	$20,\!621 \pm 0,\!437$	$20,743 \pm 0,361$	$12,905 \pm 0,620$
P_2O_5	$0{,}229\pm0{,}016$	$0,217 \pm 0,015$	$0,212 \pm 0,017$
SO ₃ *	$3,\!171 \pm 0,\!082$	$3,\!948 \pm 0,\!076$	$3,345 \pm 0,114$
Cl*	$0{,}085\pm0{,}003$	$0,\!058\pm0,\!005$	$0,\!038\pm0,\!004$
K_2O^*	$0,\!625 \pm 0,\!030$	$0,533 \pm 0,024$	$0,384 \pm 0,013$
CaO*	$61,957 \pm 0,386$	$60,747 \pm 0,508$	$75,\!619\pm0,\!883$
TiO ₂ *	$0,\!481 \pm 0,\!041$	$0,\!470\pm0,\!060$	$0,231 \pm 0,059$
V_2O_5	$0,\!052 \pm 0,\!046$	$0,\!050\pm0,\!030$	$0,\!020\pm0,\!036$
Cr_2O_3*	$0{,}039 \pm 0{,}018$	$0,\!037\pm0,\!010$	$0,\!059\pm0,\!16$
MnO	$0,068 \pm 0,015$	$0,\!070\pm0,\!014$	$0,063 \pm 0,010$
Fe ₂ O ₃ *	$4,\!638 \pm 0,\!371$	$4,\!482 \pm 0,\!171$	2,324 ±0,188
NiO*	$0{,}019\pm0{,}010$	$0{,}009\pm0{,}009$	$0,\!006 \pm 0,\!010$
CuO*	$0,045 \pm 0,004$	$0,\!052\pm0,\!010$	$0,021 \pm 0,006$
ZnO	$0,\!081 \pm 0,\!006$	$0,072 \pm 0,011$	$0,\!072\pm0,\!008$
SrO*	$0,\!138\pm0,\!010$	$0,\!110\pm0,\!017$	$0,304 \pm 0,040$
Ι	$0{,}009\pm0{,}026$	$0,032 \pm 0,045$	$0,017 \pm 0,030$
BaO*	$0,031 \pm 0,058$	$0,056 \pm 0,056$	$0,\!199 \pm 0,\!078$

Tabela 15 - Composição química das amostras coletadas na CDC K no mês 7

Tabela 16 - Composição química das amostras coletadas na CDC K no mês 8

Óvidos -		Amostras	
Oxidos –	K8A (%)	K8B (%)	K8C (%)
Na ₂ O	$0{,}088 \pm 0{,}069$	$0,132 \pm 0,061$	$0,114 \pm 0,071$
MgO*	$1,904 \pm 0,126$	$2,832 \pm 0,124$	$0,\!640 \pm 0,\!049$
Al ₂ O ₃ *	$4,\!476\pm0,\!048$	$4,908 \pm 0,166$	$3,285 \pm 0,054$
SiO ₂ *	$20,\!157 \pm 0,\!126$	$20,\!299 \pm 0,\!373$	$13,\!392\pm0,\!077$
P_2O_5*	$0,207 \pm 0,009$	$0,200 \pm 0,007$	$0,220 \pm 0,015$
SO ₃ *	$3,751 \pm 0,047$	$4,195 \pm 0,067$	$3,614 \pm 0,044$

Cl*	$0,055 \pm 0,004$	$0,056 \pm 0,006$	$0,025 \pm 0,002$
K_2O^*	$0,\!624 \pm 0,\!020$	$0,666 \pm 0,019$	$0,\!470\pm0,\!014$
CaO*	$62,922 \pm 0,246$	$61,122 \pm 0,432$	$74,100 \pm 0,291$
TiO ₂ *	$0,505 \pm 0,059$	$0{,}526 \pm 0{,}069$	$0,267 \pm 0,022$
V_2O_5	$0,032 \pm 0,033$	$0,\!047\pm0,\!038$	$0,064 \pm 0,040$
Cr_2O_3*	$0,047 \pm 0,023$	$0,031 \pm 0,022$	$0,\!059\pm0,\!012$
MnO	$0,\!077 \pm 0,\!015$	$0,\!074\pm0,\!008$	$0,\!076\pm0,\!016$
Fe ₂ O ₃ *	$4,756 \pm 0,189$	$4,537 \pm 0,290$	$3,\!017\pm0,\!185$
NiO	$0,\!017 \pm 0,\!010$	$0{,}012\pm0{,}007$	$0,011 \pm 0,009$
CuO*	$0,\!059\pm0,\!005$	$0,\!058\pm0,\!005$	$0,021 \pm 0,006$
ZnO*	$0,073 \pm 0,004$	$0,074 \pm 0,006$	$0,\!081 \pm 0,\!007$
As_2O_3	$0,\!006\pm0,\!007$	$0,006 \pm 0,006$	$0,011 \pm 0,009$
SrO*	$0,\!137\pm0,\!016$	$0,125 \pm 0,019$	$0,300 \pm 0,033$
Ι	$0,033 \pm 0,033$	$0,032 \pm 0,045$	$0,023 \pm 0,041$
BaO*	$0,\!074 \pm 0,\!058$	$0,068 \pm 0,068$	$0,210 \pm 0,154$

Cont. Tabela 16 – Composição química das amostras coletadas na CDC K no mês 8

Tabela 17 - Composição química das amostras coletadas na CDC K no mês 9

<u> </u>	Amostras				
Oxidos -	K9A (%)	K9B (%)	K9C (%)		
Na ₂ O	$0,165 \pm 0,111$	$0,175 \pm 0,045$	$0,109 \pm 0,095$		
MgO*	$2,320 \pm 0,633$	$1,864 \pm 0,067$	$0,\!678\pm0,\!050$		
Al_2O_3*	$4,\!642 \pm 0,\!266$	$4,527 \pm 0,117$	$2,\!833\pm0,\!135$		
SiO ₂ *	$20,912 \pm 0,742$	$19,856 \pm 0,287$	$10,\!698 \pm 0,\!358$		
P_2O_5*	$0,\!202\pm0,\!015$	$0,\!199\pm0,\!010$	$0,\!182\pm0,\!015$		
SO ₃ *	$3,\!672 \pm 0,\!052$	$4,759 \pm 0,092$	$3,170 \pm 0,141$		
Cl*	$0,061 \pm 0,006$	$0,060 \pm 0,003$	$0,029 \pm 0,003$		
K_2O^*	$0,592 \pm 0,019$	$0,775 \pm 0,020$	$0,\!422 \pm 0,\!028$		
CaO*	$61,\!611 \pm 1,\!482$	$62,168 \pm 0,373$	$78,\!283 \pm 0,\!667$		
TiO_2*	$0{,}559 \pm 0{,}088$	$0,515 \pm 0,049$	$0,\!295 \pm 0,\!041$		
V_2O_5	$0,\!078\pm0,\!013$	$0,039 \pm 0,040$	$0,053 \pm 0,049$		
Cr_2O_3	$0,035 \pm 0,018$	$0,031 \pm 0,021$	$0,033 \pm 0,023$		
MnO*	$0,080 \pm 0,010$	$0,076 \pm 0,011$	$0,055 \pm 0,027$		
Fe ₂ O ₃ *	$4,749 \pm 0,231$	$4,575 \pm 0,113$	$2,\!476 \pm 0,\!135$		
NiO*	$0,015 \pm 0,013$	$0,015 \pm 0,009$	-		
CuO*	$0,054 \pm 0,008$	$0,062 \pm 0,006$	$0,033 \pm 0,009$		
ZnO	$0,\!067\pm0,\!005$	$0,\!070\pm0,\!008$	$0{,}069 \pm 0{,}008$		
As_2O_3	$0,008 \pm 0,009$	$0,010 \pm 0,011$	$0,007 \pm 0,019$		
SrO*	$0,\!110\pm0,\!019$	$0,136 \pm 0,013$	$0,374 \pm 0,038$		
Ι	$0,022 \pm 0,031$	$0,011 \pm 0,032$	$0,038 \pm 0,053$		

Cont. Tabela 17 - Composição química das amostras coletadas na CDC K no mês 9

Óridag		Amostras	mostras			
Oxidos -	P7A (%)	P7B (%)	P7C (%)			
Na ₂ O*	$0,\!055 \pm 0,\!076$	$0,054 \pm 0,058$	$0,183 \pm 0,029$			
MgO*	$1,581 \pm 0,083$	$1,551 \pm 0,087$	$1,\!429 \pm 0,\!061$			
Al_2O_3*	$\textbf{7,085} \pm \textbf{0,094}$	$7,\!848\pm0,\!108$	$8,\!478\pm0,\!103$			
SiO ₂ *	$25,\!377 \pm 0,\!278$	$28,\!679 \pm 0,\!133$	$30,214 \pm 0,262$			
P_2O_5*	$0,\!192\pm0,\!017$	$0,\!173\pm0,\!015$	$0,\!180\pm0,\!008$			
SO ₃ *	$2{,}249 \pm 0{,}028$	$2{,}698 \pm 0{,}038$	$1,917 \pm 0,027$			
Cl*	$0,019 \pm 0,002$	$0,025 \pm 0,003$	$0,026 \pm 0,004$			
K_2O^*	$0,241 \pm 0,008$	$0,208 \pm 0,013$	$0,\!489 \pm 0,\!016$			
CaO*	$56,\!818 \pm 0,\!242$	$52,\!218 \pm 0,\!139$	$48,\!936 \pm 0,\!329$			
TiO_2^*	$0{,}643 \pm 0{,}067$	$0{,}596 \pm 0{,}081$	$0,\!747\pm0,\!108$			
V_2O_5*	$0,\!022\pm0,\!041$	$0,\!076\pm0,\!025$	$0,033 \pm 0,036$			
Cr_2O_3*	$0,113 \pm 0,013$	$0,\!105 \pm 0,\!029$	$0,070 \pm 0,019$			
MnO*	$0,\!191 \pm 0,\!071$	$0,\!188\pm0,\!017$	$0,267 \pm 0,076$			
Fe ₂ O ₃ *	$5,\!143\pm0,\!121$	$5,\!394 \pm 0,\!054$	$6,854 \pm 0,186$			
NiO*	$0,030 \pm 0,005$	$0,031 \pm 0,006$	$0,016 \pm 0,011$			
CuO	$0,\!017 \pm 0,\!012$	$0,025 \pm 0,003$	$0,020 \pm 0,004$			
ZnO*	$0,\!047 \pm 0,\!009$	$0,\!032\pm0,\!005$	$0,030 \pm 0,009$			
SrO*	$0,\!080\pm0,\!006$	$0,\!040\pm0,\!006$	$0{,}047\pm0{,}004$			
Sb_2O_3	$0,036 \pm 0,040$	$0,021 \pm 0,029$	$0,021 \pm 0,030$			
Ι	$0,023 \pm 0,033$	$0,023 \pm 0,032$	$0,026 \pm 0,036$			
BaO	$0,038 \pm 0,070$	$0,018 \pm 0,052$	$0,015 \pm 0,042$			

Tabela 18 - Composição química das amostras coletadas na CDC P no mês 7

Tabela 19 - Composição química das amostras coletadas na CDC P no mês 8

Óxidos -	Amostras		
	P8A (%)	P8B (%)	P8C (%)
Na ₂ O*	$0,\!179\pm0,\!081$	$0,\!082 \pm 0,\!076$	$0,\!124 \pm 0,\!058$
MgO*	$2,961 \pm 0,459$	$1,515 \pm 0,085$	$2,340 \pm 0,353$
Al_2O_3*	$8,\!038\pm0,\!218$	$7{,}847 \pm 0{,}086$	$8,\!259\pm0,\!161$
SiO ₂ *	$28,\!207 \pm 0,\!409$	$28,\!626 \pm 0,\!312$	$29,381 \pm 0,451$
P_2O_5*	$0,\!185\pm0,\!016$	$0,\!183 \pm 0,\!013$	$0,\!160\pm 0,\!014$
SO ₃ *	$2,356 \pm 0,052$	$2,596 \pm 0,034$	$2,760 \pm 0,042$
Cl*	$0,015 \pm 0,002$	$0,026 \pm 0,002$	$0,037 \pm 0,003$
K_2O^*	$0,\!254 \pm 0,\!016$	$0,\!209\pm0,\!012$	$0,\!224 \pm 0,\!012$
----------------------------------	-----------------------	-------------------------------------	------------------------
CaO*	$51,\!856\pm1,\!036$	$52,\!557 \pm 0,\!256$	$50{,}099 \pm 0{,}839$
TiO ₂	$0,\!616\pm0,\!66$	$0{,}582 \pm 0{,}064$	$0{,}632 \pm 0{,}072$
V_2O_5	$0,031 \pm 0,034$	$0,\!033\pm0,\!035$	$0{,}013\pm0{,}022$
Cr ₂ O ₃ *	$0{,}094\pm0{,}018$	$0,101 \pm 0,025$	$0,064 \pm 0,013$
MnO*	$0,\!153 \pm 0,\!021$	$0,\!205\pm0,\!109$	$0,241 \pm 0,011$
Fe ₂ O ₃ *	$4,\!885\pm0,\!290$	$5{,}284 \pm 0{,}173$	$5,524 \pm 0,184$
NiO	$0,025 \pm 0,007$	$0,\!027\pm0,\!008$	$0,\!017 \pm 0,\!011$
CuO	$0,021 \pm 0,006$	$0,\!023\pm0,\!002$	$0{,}017\pm0{,}008$
ZnO*	$0,038 \pm 0,003$	$0,032 \pm 0,005$	$0,027 \pm 0,005$
SrO*	$0{,}061\pm0{,}008$	$0,033 \pm 0,004$	$0{,}026 \pm 0{,}007$
Sb_2O_3	$0{,}006\pm0{,}016$	$0,\!012\pm0,\!023$	$0,021 \pm 0,032$
Ι	$0{,}020\pm0{,}029$	$\textbf{0,}027 \pm \textbf{0,}038$	$0,033 \pm 0,036$

Cont. Tabela 19 - Composição química das amostras coletadas na CDC P no mês 8

Tabela 20 - Composição química das amostras coletadas na CDC P no mês 9

<u> </u>		Amostras	
Oxidos -	P9A (%)	P9B (%)	P9C (%)
Na ₂ O	$0,\!115 \pm 0,\!055$	$0,135 \pm 0,062$	$0,171 \pm 0,026$
MgO*	$1,743 \pm 0,090$	$2,758 \pm 0,097$	$2,534 \pm 0,122$
Al_2O_3*	$7,\!984\pm0,\!083$	$8,347 \pm 0,099$	$8,578 \pm 0,116$
SiO ₂ *	$29,\!478 \pm 0,\!256$	$30,188 \pm 0,159$	$30,216 \pm 0,515$
P_2O_5*	$0,\!195\pm0,\!013$	$0,\!181\pm0,\!014$	$0,\!173\pm0,\!012$
SO ₃ *	$2,535 \pm 0,071$	$2,611 \pm 0,024$	$2,552 \pm 0,034$
Cl	$0,\!027\pm0,\!003$	$0,\!029\pm0,\!002$	$0,028 \pm 0,004$
K_2O^*	$0,265 \pm 0,014$	$0,\!195\pm0,\!012$	$0,234 \pm 0,007$
CaO*	$51,244 \pm 0,261$	$49,659 \pm 0,255$	$49,380 \pm 0,452$
TiO_2^*	$0{,}694 \pm 0{,}049$	$0,\!585\pm0,\!054$	$0,632 \pm 0,038$
V_2O_5	$0,046 \pm 0,034$	$0,\!019\pm0,\!028$	$0,030 \pm 0,032$
Cr_2O_3	$0,\!122\pm0,\!017$	$0,\!104 \pm 0,\!026$	$0,097 \pm 0,044$
MnO	$0,\!173\pm0,\!055$	$0,153 \pm 0,020$	$0,781 \pm 1,713$
Fe ₂ O ₃	$5,\!188\pm0,\!237$	$4,\!897\pm0,\!199$	$4,\!448 \pm 1,\!810$
NiO	$0,031 \pm 0,031$	$0,025 \pm 0,007$	$0,023 \pm 0,006$
CuO	$0,\!022\pm0,\!005$	$0,\!020\pm0,\!004$	$0,\!017\pm0,\!012$
ZnO*	$0,\!035\pm0,\!004$	$0,032 \pm 0,004$	$0,\!026\pm0,\!005$
SrO	$0,\!036\pm0,\!007$	$0,025 \pm 0,003$	$0,030 \pm 0,013$
Sb_2O_3	$0,029 \pm 0,033$	$0,005 \pm 0,015$	$0,013 \pm 0,025$

	1 5 1		
Á 🗤		Amostras	
Oxidos -	S7A (%)	S7B (%)	S7C (%)
Na ₂ O*	$0,\!125 \pm 0,\!066$	$0,067 \pm 0,058$	$0,166 \pm 0,023$
MgO*	$1,\!998\pm0,\!123$	$1,255 \pm 0,076$	$0,875 \pm 0,115$
Al_2O_3	$6,211 \pm 0,059$	$5,722 \pm 0,111$	$\textbf{5,}\textbf{483} \pm \textbf{1,}\textbf{087}$
SiO ₂ *	$23,707 \pm 0,178$	$23,142 \pm 0,143$	$20,041 \pm 3,107$
P_2O_5*	$0,\!754\pm0,\!028$	$0,\!756\pm0,\!019$	$0,\!250 \pm 0,\!021$
SO ₃ *	$1,891 \pm 0,035$	$2,792 \pm 0,055$	$2,830 \pm 0,324$
Cl	$0,021 \pm 0,003$	$0,\!026\pm0,\!002$	$0,022 \pm 0,013$
K_2O^*	$0,\!376\pm0,\!014$	$0,374 \pm 0,013$	$0,\!470\pm0,\!058$
CaO*	$59,394 \pm 0,229$	$60,\!410 \pm 0,\!183$	$64,512 \pm 4,876$
TiO ₂	$0{,}558 \pm 0{,}098$	$0{,}508 \pm 0{,}063$	$0,\!496\pm0,\!102$
V_2O_5	$0{,}022\pm0{,}031$	$0,\!022\pm0,\!032$	$0,\!044 \pm 0,\!048$
Cr_2O_3	$0,\!045 \pm 0,\!016$	$0,057 \pm 0,019$	$0,072 \pm 0,037$
MnO	$0{,}058 \pm 0{,}017$	$0,062 \pm 0,005$	$0,069 \pm 0,019$
Fe ₂ O ₃	$4,\!550\pm0,\!207$	$4,560 \pm 0,181$	$4,304 \pm 0,875$
CuO	$0{,}028 \pm 0{,}007$	$0,\!029\pm0,\!004$	$0,038 \pm 0,014$
ZnO*	$0,\!056\pm0,\!007$	$0,054 \pm 0,006$	$0,078 \pm 0,027$
As_2O_3	$0,001 \pm 0,004$	$0,005 \pm 0,008$	$0,009 \pm 0,025$
SrO*	$0,\!064\pm0,\!005$	$0,046 \pm 0,006$	$0,\!100\pm0,\!069$
Sb_2O_3	$0{,}026 \pm 0{,}028$	$0,014 \pm 0,027$	$0{,}029 \pm 0{,}058$
Ι	$0,035 \pm 0,038$	$0,023 \pm 0,033$	$0,021 \pm 0,039$
BaO	$0{,}08\pm0{,}068$	$0,073 \pm 0,061$	$0,092 \pm 0,108$

Cont. Tabela 20 - Composição química das amostras coletadas na CDC P no mês 9

 $0,038 \pm 0,070$

BaO

-

Tabela 21 - Composição química das amostras coletadas na CDC S no mês 7

 $0{,}031 \pm 0{,}058$

 $0,036 \pm 0,069$

Tabela 22 - Composição química das amostras coletadas na CDC S no mês 8

Óxidos -		Amostras	
	S8A (%)	S8B (%)	S8C (%)
Na ₂ O*	$0,169 \pm 0,028$	$0,136 \pm 0,019$	$0,\!123 \pm 0,\!013$
MgO*	$1,\!239\pm0,\!073$	$1,\!318\pm0,\!050$	$1,\!356\pm0,\!092$
Al_2O_3	$6{,}279 \pm 0{,}121$	$7,313 \pm 0,113$	$5{,}518 \pm 0{,}144$
SiO ₂ *	$25,941 \pm 0,200$	$23,\!045 \pm 0,\!294$	$23,\!613\pm0,\!612$
P_2O_5*	$0,\!838\pm0,\!028$	$0,\!438\pm0,\!020$	$0,\!271 \pm 0,\!014$
SO ₃ *	$1,943 \pm 0,022$	$2,005 \pm 0,032$	$2,594 \pm 0,068$

Cl*	$0{,}020\pm0{,}001$	$0,\!015\pm0,\!002$	$0,\!014\pm0,\!004$
K_2O^*	$0{,}591\pm0{,}013$	$0,\!472\pm0,\!014$	$0{,}508 \pm 0{,}021$
CaO*	$56{,}977 \pm 0{,}359$	$59,556 \pm 0,377$	$60,\!300\pm0,\!502$
TiO_2*	$0{,}489 \pm 0{,}102$	$0,\!611 \pm 0,\!092$	$0{,}518 \pm 0{,}047$
V_2O_5*	$0,\!055\pm0,\!023$	$0,\!023\pm0,\!032$	$0,\!069\pm0,\!030$
Cr_2O_3	$0{,}042\pm0{,}029$	$0,\!056\pm0,\!012$	$0,\!066\pm0,\!029$
MnO	$0,\!066\pm0,\!008$	$0{,}068 \pm 0{,}015$	$0,069 \pm 0,014$
Fe ₂ O ₃ *	$5{,}093 \pm 0{,}181$	$4,737\pm0,172$	$4,696 \pm 0,311$
NiO	-	$0,\!014 \pm 0,\!010$	$0,006 \pm 0,009$
CuO*	$0,\!015 \pm 0,\!010$	$0,030 \pm 0,004$	$0,\!042 \pm 0,\!005$
ZnO*	$0,\!033\pm0,\!005$	$0,\!060\pm0,\!007$	$0,\!080\pm0,\!009$
SrO	$0,\!076\pm0,\!010$	$0,\!064\pm0,\!008$	$0,063 \pm 0,016$
Sb_2O_3	$0{,}009\pm0{,}025$	$0,\!015\pm0,\!028$	$0,014 \pm 0,026$
Ι	$0,039 \pm 0,033$	$0,007 \pm 0,020$	$0,023 \pm 0,032$
BaO	$0{,}029\pm0{,}050$	$0,\!017 \pm 0,\!047$	$0,\!059\pm0,\!085$

Cont. Tabela 22 – Composição química das amostras coletadas na CDC S no mês 8

Tabela 23 - Composição química das amostras coletadas na CDC S no mês 9

ó_::1		Amostras	
Oxidos -	S9A (%)	S9B (%)	S9C (%)
Na ₂ O	$0,\!117 \pm 0,\!040$	$0,\!090 \pm 0,\!059$	$0,\!119 \pm 0,\!026$
MgO*	$1,222 \pm 0,064$	$1,\!478\pm0,\!042$	$1,577 \pm 0,055$
Al_2O_3*	$5{,}309\pm0{,}094$	$5,\!691 \pm 0,\!130$	$5,784 \pm 0,066$
SiO ₂ *	$22,\!158 \pm 0,\!226$	$22,666 \pm 0,278$	$22,730 \pm 0,207$
P_2O_5*	$0,\!840\pm0,\!037$	$0,\!275 \pm 0,\!018$	$0{,}290\pm0{,}017$
SO ₃ *	$2,\!277\pm0,\!021$	$2,083 \pm 0,034$	$2{,}760\pm0{,}038$
Cl*	$0,\!019\pm0,\!002$	$0,013 \pm 0,002$	$0,014 \pm 0,001$
K_2O^*	$0,534 \pm 0,017$	$0,\!564 \pm 0,\!020$	$0{,}507 \pm 0{,}015$
CaO*	$61,939 \pm 0,252$	$61,\!442 \pm 0,\!356$	$60,148 \pm 0,201$
TiO_2^*	$0,\!498\pm0,\!082$	$0{,}552\pm0{,}077$	$0,\!650\pm0,\!130$
V_2O_5	$0,044 \pm 0,043$	$0,\!020\pm0,\!038$	$0,\!050\pm0,\!032$
Cr_2O_3	$0,042 \pm 0,020$	$0,046 \pm 0,021$	$0,\!041 \pm 0,\!019$
MnO	$0,060 \pm 0,013$	$0,\!058\pm0,\!008$	$0,065 \pm 0,011$
Fe ₂ O ₃ *	$4,\!642\pm0,\!170$	$4,\!678 \pm 0,\!244$	$4,977 \pm 0,126$
NiO	$0,013 \pm 0,011$	$0,013 \pm 0,009$	$0,013 \pm 0,012$
CuO*	$0,\!037\pm0,\!004$	$0,046 \pm 0,009$	$0,046 \pm 0,005$
ZnO*	$0,\!058 \pm 0,\!010$	$0,074 \pm 0,011$	$0,072 \pm 0,006$

As_2O_3	$0{,}004\pm0{,}007$	$0,\!007\pm0,\!009$	$0,006 \pm 0,009$
SrO*	$0,\!076\pm0,\!012$	$0{,}088 \pm 0{,}017$	$0,068 \pm 0,009$
Sb_2O_3	$0,\!037\pm0,\!041$	$0,\!009\pm0,\!025$	$0{,}007 \pm 0{,}019$
Ι	$0{,}028 \pm 0{,}038$	$0,053 \pm 0,048$	$0,034 \pm 0,038$
BaO	$0,\!047\pm0,\!065$	$0,\!055 \pm 0,\!077$	$0,040 \pm 0,074$

Cont. Tabela 23 – Composição química das amostras coletadas na CDC S no mês 9

Tabela 24 - Médias mensais da composição química das amostras coletadas na CDC K

Óridag		Amostras	
Oxidos	K7	K8	К9
Na ₂ O	$0,\!149\pm0,\!075$	$0,111 \pm 0,071$	$0,150 \pm 0,090$
MgO	$2,191 \pm 1,004$	$1{,}792\pm0{,}924$	$1,621 \pm 0,789$
Al_2O_3	$4,\!396\pm0,\!891$	$4,\!223\pm0,\!709$	$4,001 \pm 0,863$
SiO ₂	$18,\!090 \pm 3,\!777$	$17,\!949 \pm 3,\!301$	$17,155 \pm 4,710$
P_2O_5*	$0{,}220\pm0{,}018$	$0{,}209\pm0{,}014$	$0,\!194\pm0,\!016$
SO ₃ *	$3,\!488 \pm 0,\!353$	$3,854 \pm 0,259$	$3,867 \pm 0,684$
Cl*	$0,\!060\pm0,\!020$	$0,045 \pm 0,016$	$0,\!050 \pm 0,\!016$
K_2O^*	$0,514 \pm 0,104$	$0{,}586 \pm 0{,}088$	$0,596 \pm 0,149$
CaO	$66,108 \pm 6,918$	$66,048 \pm 5,874$	$67,354 \pm 7,951$
TiO ₂	$0,\!394\pm0,\!130$	$0,\!433\pm0,\!132$	$0,\!456\pm0,\!132$
V_2O_5	$0{,}041\pm0{,}040$	$0{,}048 \pm 0{,}040$	$0,\!057\pm0,\!039$
Cr_2O_3	$0{,}045\pm0{,}018$	$0,046 \pm 0,023$	$0,034 \pm 0,020$
MnO	$0,067 \pm 0,013$	$0,076 \pm 0,013$	$0,070 \pm 0,020$
Fe ₂ O ₃	$3,815 \pm 1,108$	$4,103 \pm 0,823$	$3,933 \pm 1,067$
NiO	$0,011 \pm 0,011$	$0,013 \pm 0,009$	$0,010 \pm 0,011$
CuO	$0{,}039 \pm 0{,}015$	$0,\!046 \pm 0,\!019$	$0{,}049 \pm 0{,}014$
ZnO*	$0{,}075\pm0{,}010$	$0,\!076\pm0,\!007$	$0,\!069\pm0,\!007$
SrO	$0,\!184\pm0,\!092$	$0,\!187\pm0,\!187$	$0,\!206\pm0,\!124$
Ι	$0{,}020\pm0{,}036$	$0,\!029\pm0,\!041$	$0,\!024\pm0,\!040$
BaO	$0,\!095\pm0,\!100$	$0,\!118\pm0,\!125$	$0,\!095\pm0,\!081$
Outros	<1	<1	<1

Tabela 25 - Médias mensais da composição química das amostras coletadas na CDC P

Óxidos -		Amostras	
	P7	P8	P9
Na ₂ O	$0,097 \pm 0,083$	$0,\!128\pm0,\!080$	$0,\!140 \pm 0,\!053$
MgO*	$1{,}520 \pm 0{,}100$	$2,272 \pm 0,686$	$2,345 \pm 0,456$

Al_2O_3*	$7{,}804 \pm 0{,}590$	$\textbf{8,048} \pm \textbf{0,233}$	$8,\!303\pm0,\!267$
SiO ₂ *	$\textbf{28,090} \pm \textbf{2,074}$	$28{,}738 \pm 0{,}624$	$29,961 \pm 0,480$
P_2O_5	$0,\!182\pm0,\!016$	$0,\!176\pm0,\!018$	$0,\!183\pm0,\!016$
SO ₃ *	$2{,}288 \pm 0{,}328$	$2,571 \pm 0,175$	$2{,}566 \pm 0{,}056$
Cl	$0,\!024\pm0,\!004$	$0,\!026\pm0,\!010$	$0,028 \pm 0,003$
K_2O^*	$0,313 \pm 0,129$	$0,\!229\pm0,\!023$	$0,231 \pm 0,031$
CaO*	$52,657 \pm 3,311$	$51,\!504 \pm 1,\!295$	$50{,}095 \pm 0{,}898$
TiO ₂	$0,\!662\pm0,\!105$	$0,\!610\pm0,\!068$	$0,637 \pm 0,065$
V_2O_5	$0,\!044\pm0,\!041$	$0,\!025\pm0,\!031$	$0,\!032\pm0,\!032$
Cr ₂ O ₃ *	$0,\!096\pm0,\!028$	$0,\!086\pm0,\!025$	$0,\!108\pm0,\!032$
MnO	$0,\!215 \pm 0,\!069$	$0,\!200\pm0,\!072$	$0,369 \pm 0,991$
Fe ₂ O ₃ *	$5{,}797 \pm 0{,}781$	$5,231 \pm 0,343$	$4,845 \pm 1,060$
NiO	$0{,}026\pm0{,}010$	$0,023 \pm 0,010$	$0,026 \pm 0,007$
CuO	$0,021 \pm 0,008$	$0,\!020\pm0,\!006$	$0{,}020\pm0{,}008$
ZnO	$0,036 \pm 0,011$	$0,033 \pm 0,006$	$0,031 \pm 0,005$
SrO*	$0,\!056\pm0,\!019$	$0,\!040\pm0,\!017$	$0,030 \pm 0,009$
Sb_2O_3	$0,\!026\pm0,\!032$	$0,\!013\pm0,\!024$	$0,\!016\pm0,\!026$
Outros	<1	<1	<1

Cont. Tabela 25 – Médias mensais da composição química das amostras coletadas na CDC P

Tabela 26 – Médias mensais da composição química das amostras coletadas na CDC S

ó		Amostras	
Oxidos -	S7	S8	S9
Na ₂ O	$0,\!120\pm0,\!065$	$0,143 \pm 0,032$	$0,109 \pm 0,044$
MgO	$1,376 \pm 0,487$	$1,304 \pm 0,086$	$1,\!426 \pm 0,\!161$
Al_2O_3*	$5{,}806 \pm 0{,}678$	$6,\!370\pm0,\!761$	$5,595 \pm 0,231$
SiO_2^*	$22,\!297 \pm 2,\!380$	$24,199 \pm 1,338$	$22,518 \pm 0,347$
P_2O_5	$0{,}587 \pm 0{,}244$	$0,516 \pm 0,244$	$0,\!468 \pm 0,\!270$
SO ₃ *	$2{,}505\pm0{,}479$	$2,181 \pm 0,303$	$2,373 \pm 0,293$
Cl*	$0,\!023\pm0,\!008$	$0,016 \pm 0,003$	$0,015 \pm 0,003$
K_2O^*	$0,\!407\pm0,\!057$	$0,\!524 \pm 0,\!053$	$0,535 \pm 0,029$
CaO*	$61,\!438 \pm 3,\!517$	$58,944 \pm 1,508$	$61,\!176 \pm 0,\!815$
TiO ₂	$0,521 \pm 0,090$	$0{,}539 \pm 0{,}096$	$0,\!567 \pm 0,\!114$
V_2O_5	$0{,}029 \pm 0{,}038$	$0{,}049 \pm 0{,}034$	$0{,}038 \pm 0{,}038$
Cr_2O_3	$0,\!058\pm0,\!027$	$0,055 \pm 0,026$	$0,043 \pm 0,019$
MnO	$0,063 \pm 0,015$	$0,\!068\pm0,\!012$	$0,061 \pm 0,011$
Fe ₂ O ₃ *	$4,\!471 \pm 0,\!520$	$4,\!842\pm0,\!286$	$4,766 \pm 0,235$
CuO*	$0,\!032\pm0,\!010$	$0,035 \pm 0,007$	$0,043 \pm 0,007$

ZnO	$0,063 \pm 0,019$	$0,\!066\pm0,\!012$	$0,068 \pm 0,011$
SrO	$0,\!070\pm0,\!045$	$0,068 \pm 0,013$	$0,\!077 \pm 0,\!015$
Sb_2O_3	$0,\!023\pm0,\!039$	$0{,}013\pm0{,}025$	$0{,}018\pm0{,}032$
Ι	$0,\!027\pm0,\!036$	$0{,}023\pm0{,}030$	$0{,}038 \pm 0{,}041$
BaO	$0,\!081\pm0,\!078$	$0,035 \pm 0,063$	$0,\!047 \pm 0,\!069$
Outros	<1	<1	<1

Cont. Tabela 26 – Médias mensais da composição química das amostras coletadas na CDC S

Tabela 27 - Média total da composição química das amostras coletadas nas CDC K, P e S

Óxidos -	Amostras		
	K	Р	S
Na ₂ O	$0,\!137\pm0,\!080$	$0,\!122 \pm 0,\!075$	$0,124 \pm 0,050$
MgO*	$1,\!868\pm0,\!929$	$2,046 \pm 0,603$	$1,369 \pm 0,300$
Al_2O_3*	$\textbf{4,206} \pm \textbf{0,829}$	$8,\!052\pm0,\!442$	$5,923 \pm 0,680$
SiO ₂ *	$17,731 \pm 3,938$	$28,929 \pm 1,485$	$23,\!005 \pm 1,\!785$
P_2O_5*	$0,\!208\pm0,\!019$	$0,\!180\pm0,\!017$	$0{,}523\pm0{,}254$
SO ₃ *	$3,736 \pm 0,495$	$2,\!475 \pm 0,\!252$	$2,353 \pm 0,387$
Cl*	$0,\!052\pm0,\!018$	$0,\!026\pm0,\!007$	$0,018 \pm 0,006$
K_2O^*	$0,\!566\pm0,\!121$	$0,\!258\pm0,\!086$	$0,\!488 \pm 0,\!075$
CaO*	$66,503 \pm 6,894$	$51,\!419 \pm 2,\!339$	$60,520 \pm 2,496$
TiO_2*	$0,\!428\pm0,\!132$	$0{,}636 \pm 0{,}083$	$0,542 \pm 0,101$
V_2O_5	$0,\!048\pm0,\!040$	$0,\!034\pm0,\!035$	$0{,}039\pm0{,}037$
Cr_2O_3*	$0,041 \pm 0,021$	$0,\!097 \pm 0,\!029$	$0,\!052 \pm 0,\!025$
MnO*	$0,\!071 \pm 0,\!016$	$0,\!261\pm0,\!572$	$0,064 \pm 0,013$
Fe ₂ O ₃ *	$3,951 \pm 1,000$	$5,\!291 \pm 0,\!869$	$4,693 \pm 0,397$
CuO*	$0,\!045\pm0,\!017$	$0,\!020\pm0,\!007$	$0,036 \pm 0,009$
ZnO*	$0,\!073\pm0,\!008$	$0,033 \pm 0,008$	$0,065 \pm 0,015$
SrO*	$0,\!193\pm0,\!101$	$0,042 \pm 0,019$	$0,\!072\pm0,\!028$
Outros	<1	<1	<1

Figura 45 - Curva granulométrica da fonte de cálcio

Distribuição Cumulativa (volume) - Tamanho inferior

