UNIVERSIDADE FEDERAL DO AMAZONAS PROGRAMA DE PÓS-GRADUAÇÃO EM BIOTECNOLOGIA

SINERGISMO ENTRE CEPAS DE UM CONSÓRCIO BACTERIANO DEGRADADOR DE DIESEL ISOLADO DO RIO NEGRO

JEFFERSON FERREIRA DOS SANTOS

Orientador: Edmar Vaz de Andrade

Co-orientadora: Isabelle Bezerra Cordeiro

MANAUS – AM 2021

JEFFERSON FERREIRA DOS SANTOS

SINERGISMO ENTRE CEPAS DE UM CONSÓRCIO BACTERIANO DEGRADADOR DE DIESEL ISOLADO DO RIO NEGRO

Tese de Doutorado, orientada pelo Prof. Dr. Edmar Vaz de Andrade e Co-orientada pela Profa. Dra. Isabelle Bezerra Cordeiro, apresentada ao Programa de Pós-Graduação em Biotecnologia – PPGBiotec, como requisito para obtenção do título de doutor em Biotecnologia pela Universidade Federal do Amazonas – UFAM.

MANAUS – AM 2021

Ficha Catalográfica

Ficha catalográfica elaborada automaticamente de acordo com os dados fornecidos pelo(a) autor(a).

S237s	Santos, Jefferson Ferreira dos Sinergismo entre cepas de um consórcio bacteriano degradador de diesel isolado do rio negro / Jefferson Ferreira dos Santos . 2021 197 f.: il. color; 31 cm.
	Orientador: Edmar Vaz de Andrade Coorientadora: Isabelle Bezerra Cordeiro Tese (Doutorado em Biotecnologia) - Universidade Federal do Amazonas.
	 Proteômica. 2. Consórcio microbiano. 3. Degradação de diesel. Biorremediação. 5. Xenobiótico. I. Andrade, Edmar Vaz de. II. Universidade Federal do Amazonas III. Título

RESUMO		12
A	BSTRACT	13
1.	INTRODUÇÃO	14
2.	REFERENCIAL TEÓRICO	16
	2.1 ÓLEO DIESEL: CARACTERISTICAS GERAIS	16
	2.1.1. Compostos tóxicos e perigosos no diesel	17
	2.1.2. Principais efeitos tóxicos dos hidrocarbonetos do diesel	18
	2.2. POLUICÃO CAUSADA POR DIESEL	20
	2.2.1. Acidentes com óleo na Amazônia	21
	2.3. BIODEGRADAÇÃO DO ÓLEO DIESEL	
	2.3.1. Biorremediação	
	2.3.2. Biorremediação do diesel por bactérias	27
	2.3.3. Uso de consórcios bacterianos na biorremediação do diesel	29
	2.3.4. Principais rotas catabólicas para diesel em microrganismos	31
	2.4. PROTEÔMICA E BIORREMEDIAÇÃO	34
3.	OBJETIVOS	
	3.1 GERAL	37
	3.2 ESPECÍFICOS	37
1		
4.		
	4.1. COLETA E ANALISE MORFOLOGICA DOS CONSORCIOS BACTERIANOS	38
	4.1.1. Coleta	38
	4.1.2. Isolamento de Colomas Dacter lanas	40 40
	$A = A \times A = A = B = B = B = B = B = B = B = B =$	40
	4.2. ANALISE DE BIODEGRADAÇÃO DO DIESEL	40
	4.2.1. Condições de cultivo Dacteriano	40 41
	4.2.3. Curva de redução do DCPIP	
	4.2.4. Teste da atividade emulsificante	43
	4.2.5. Teste de Hidrofobicidade Celular	43
	4.2.6. Determinação da biodegradação do óleo diesel por gravimetria	44
	4.3. TOXICIDADE DO SOBRENADANTE DE CULTURA	44
	4.3.1. Toxicidade em <i>Artemia salina</i>	44
	4.3.2. Toxicidade em <i>Lactuca sativa</i>	45
	4.4. ANÁLISE PROTEÔMICA	45
	4.4.1. Obtenção das proteínas intracelulares	45
	4.4.2. Obtenção de proteínas extracelulares	46
	4.4.3. Eletroforese unidimensional (SDS-PAGE)	46
	4.4.4. Preparo de amostras para digestão triptica	47
	4.4.6. Esnectrometria de massas	
	4.4.7. Buscas em bancos de dados de proteína	тu
	4.4.8. Critérios para identificação de proteínas	49
	4.4.9. Construção dos mapas metabólicos	49
	4.4.10. Análise da abundância de proteínas associadas a biorremediação	50

SUMÁRIO

4.5. 5. 5.1. ANÁLISE DE BIODEGRADAÇÃO DO DIESEL......53 5.2. 5.2.1. 5.2.2. 5.2.3. 5.2.4. 5.3. 5.3.1. 5.3.2. CONSÓRCIO A3 COMO O MAIS PROMISSOR PARA A BIORREMEDIAÇÃO 72 5.4. ANÁLISE PROTEÔMICA DO CONSÓRCIO A3......73 5.5. 5.5.1. 5.5.2. 5.6. 5.6.1. 5.6.2. 5.6.3. MODELO DE DEGRADAÇÃO DE XENOBIÓTICOS PARA O CONSÓRCIO A3 103 5.7. MAPAS METABÓLICOS DAS ESPÉCIES DO CONSÓRCIO A3 109 5.8. 5.9. ABUNDÂNCIA DAS PROTEÍNAS ASSOCIADAS A BIORREMEDIACÃO......114 6. REFERÊNCIAS......121 7. 8.

5

LISTA DE FIGURAS

Figura 01. Fluxograma dos experimentos.

- Figura 02. Área de coleta dos consórcios bacterianos. Porto do Ceasa, Rio Negro, Manaus-AM. Consórcios A1, A2, A3 e A4 coletados em 31 de agosto de 2018 (após derramamento de óleo na região). Consórcio A5 coletado em 15 de novembro de 2015.
- Figura 03: Seleção de consórcios com indicador redox DCPIP. A Ensaio em escala piloto (0h); B Ensaio em escala piloto (48h). C - Curva de redução de DCPIP. C1 – Controle 1 (BH + DCPIP); C2 – Controle 2 (BH + DCPIP + Diesel); C3 – Controle 3 (BH + DCPIP + Pré-Inóculo). A1, A2, A3, A4, A5 – Respectivos consórcios cultivados em BH + Diesel + DCPIP.
- Figura 04: Emulsão formada pelo consórcio A3. Sobrenadante de cultura e solvente orgânico (xileno e hexano) ou diesel (1:1) vortexado por 120 s, deixado em repouso por 24 h em temperatura ambiente.
- Figura 05: Comparação do tamanho do das plântulas de *L. sativa* tratadas com sobrenadantes de cultura dos consórcios. Controle (+) Controle positivo com água destilada; Diesel (1%) Controle com meio BH + diesel não degradado (1% v/v); A1, A2, A3, A4, A5 Sobrenadante dos respectivos consórcios. Condições de cultivo dos consórcios: 150 rpm, 30° C, 7 dias.
- Figura 06: Representação das quantidades totais de proteínas identificadas em diagrama de Venn.
 (a) Proteínas identificadas nas amostras intracelular (A3In) e extracelular (A3Ex). (b) Proteínas identificadas por espécie (AB A. baumannii; BC B. cenocepacia; CT C. taiwanensis (CT). O software utilizado para fazer as buscas foi Mascot (Matrix Science, versão 2.5.1). Banco de dados pesquisado foram "A. baumannii", "B. cenocepacia" e "C. taiwanensis" do Uniprot. Pesquisado em 20/03/2020.
- Figura 07: Anotação funcional das proteínas do consórcio A3 com base no componente celular, função molecular e processo biológico. Informações obtidas no *Gene Ontology* (GO), bancos de dados *Uniprot* e *Kyoto Encyclopedia of Genes and Genomes (KEGG)*. Destaques em vermelho indicam função molecular ou processo biológico considerados importantes para esse trabalho. Pesquisado em 20/03/2020.
- **Figura 08: Vias metabólicas nas quais as proteínas do consórcio A3 podem atuar.** Informações obtidas no *Kyoto Encyclopedia of Genes and Genomes (KEGG)*. Pesquisado em 20/03/2020. Destaques em laranja representam as vias relacionadas ao metabolismo energético central. Os destaques em vermelho indicam via associadas com a degradação de xenobióticos.
- **Figura 09: Via de degradação do benzoato (map00362)**. Modificada a partir do *KEGG*. I Amostra intracelular; E Amostra extracelular; AB A. baumannii; BC B. cenocepacia; CT C. taiwanensis. Caixas de *EC number* na cor verde indicam enzimas detectadas no consórcio A3, e amarela ou laranja, enzimas importantes não encontradas. Linhas de contorno vermelho são as principais rotas de quebra do xenobiótico. Pontos vermelhos são compostos importantes na via. Espaço entre duas setas verdes indicam uma reação de quebra de um anel aromático.
- Figura 10: Ampliação de partes da via degradação do benzoato (map00362) Destaque *Catechol 1,2 dioxygenase* (EC: 1.13.11.1). Modificada a partir do *KEGG*.

- Figura 11: Ampliação de partes da via degradação do benzoato (map00362) destaque *Catechol 2, 3 dioxygenase (EC: 1.13.11.2)*. Modificada a partir do *KEGG*.
- Figura 12: Ampliação de partes da via degradação do benzoato (map00362) destaque quebra anaeróbica. Modificada a partir do *KEGG*.
- **Figura 13: Esquema das rotas de quebra do benzoato pelo consórcio A3**. Verde enzimas-chave da via (identificadas); Azul mecanismo de quebra e produto final da via; Amarelo enzima-chave da via (não identificadas), seguido da reação e produtos finais (em branco).
- Figura 14: Via de degradação do tolueno (map00623). Modificada a partir do KEGG. I Amostra intracelular; E Amostra extracelular; AB A. baumannii; BC B. cenocepacia; CT C. taiwanensis. Caixas de EC number na cor verde indicam enzimas encontradas, e amarela ou laranja, enzimas importantes não encontradas. Linhas de contorno vermelho são as principais rotas de quebra do xenobiótico. Pontos vermelhos são compostos importantes na via. Espaço entre duas setas verdes indicam uma reação de quebra de um anel aromático.
- Figura 15: Ampliação de partes da via degradação do tolueno (map00623) destaque formação de benzoato. Modificada a partir do *KEGG*.
- Figura 16: Via de degradação do etilbenzeno (map00642). Modificada a partir do KEGG. I Amostra intracelular; E Amostra extracelular; CT C. taiwanensis. Caixas de EC number na cor verde indicam enzimas encontradas, e amarela ou laranja, enzimas importantes não encontradas. Linhas de contorno vermelho são as principais rotas de quebra do xenobiótico. Pontos vermelhos são compostos importantes na via.
- Figura 17: Via de degradação de p-, o-, e m-xileno (map00622). Modificada a partir do KEGG. I Amostra intracelular; E – Amostra extracelular; AB – A. baumannii; CT – C. taiwanensis. Caixas de EC number na cor verde indicam enzimas encontradas, e amarela ou laranja, enzimas importantes não encontradas. Linhas de contorno vermelho são as principais rotas de quebra do xenobiótico. Pontos vermelhos são compostos importantes na via. Espaço entre duas setas verdes indicam uma reação de quebra de um anel aromático.
- Figura 18: Ampliação de partes da via degradação do xileno (map00623) destaque formação de metilbenzoato. Modificada a partir do *KEGG*
- **Figura 19: Via de degradação de clorociclohexano e clorobenzeno (map00361)**. Modificada a partir do *KEGG*. I Amostra intracelular; E Amostra extracelular; BC *B. cenocepacia*. Caixas de *EC number* na cor verde indicam enzimas encontradas. Pontos vermelhos são compostos importantes na via. Espaço entre duas setas verdes indicam uma reação de quebra de um anel aromático.
- **Figura 20: Via de degradação de fluorobenzoato (map00364)**. Modificada a partir do *KEGG*. I Amostra intracelular; E Amostra extracelular; BC *B. cenocepacia*. Caixas de *EC number* na cor verde indicam enzimas encontradas. Pontos vermelhos são compostos importantes na via. Espaço entre duas setas verdes indicam uma reação de quebra de um anel aromático.
- Figura 21: Via de degradação de aminobenzoato (map00627). Modificada a partir do KEGG. I Amostra intracelular; E – Amostra extracelular; AB – A. baumannii; BC – B. cenocepacia; CT – C. taiwanensis. Caixas de EC number na cor verde indicam enzimas encontradas. Pontos vermelhos são compostos importantes na via.
- **Figura 22: Via de degradação de naftaleno (map00627)**. Modificada a partir do *KEGG*. I Amostra intracelular; E Amostra extracelular; AB *A. baumannii*; Caixas de *EC number* na cor verde

indicam enzimas encontradas. Linhas de contorno vermelho são as principais rotas de quebra do xenobiótico. Pontos vermelhos são compostos importantes na via.

- Figura 23: Via de degradação ácidos graxos (map00071). Modificada a partir do *KEGG*. I Amostra intracelular; E Amostra extracelular; AB *A. baumannii*; BC *B. cenocepacia*; CT *C. taiwanensis*. Caixas de *EC number* na cor verde indicam enzimas encontradas, e amarela ou laranja, enzimas importantes não encontradas. Linhas de contorno vermelho representa a via de β -oxidação dos ácidos graxos. Pontos vermelhos são compostos importantes na via.
- Figura 24: Via de degradação de Degradação de cloroalcano e cloroalceno (map00625). Modificada a partir do KEGG. I Amostra intracelular; E Amostra extracelular; AB A. baumannii; BC B. cenocepacia. Caixas de EC number na cor verde indicam enzimas encontradas. Pontos vermelhos são compostos importantes na via.
- Figura 25. Relação das proteínas de A. baumannii, B. cenocepacia e C. taiwanensis associadas à degradação dos xenobióticos. (1) Aromáticos; (2) Ácidos graxos; (3) Alifáticos e (4) Outros compostos. Números associados aos compostos xenobióticos representam a quantidade de proteínas identificadas nas vias e degradação.
- **Figura 26. Mecanismo geral de degradação de compostos aromáticos pelo consórcio A3.** Caixas de *EC number* na cor verde indicam enzimas encontradas e amarela enzimas importantes não encontradas. AB *A. baumannii*; BC *B. cenocepacia*; CT *C. taiwanensis*. As cores diferentes das setas tracejadas indicam as diferentes rotas de degradação de um determinado xenobiótico.
- **Figura 27. Mecanismo geral de degradação hidrocarbonetos alifáticos pelo consórcio A3.** Caixas de *EC number* na cor verde indicam enzimas encontradas e amarela enzimas importantes não encontradas. AB *A. baumannii*; BC *B. cenocepacia*; CT *C. taiwanensis*
- **Figura 28.** *Heatmap* de abundância das proteínas associadas com a degradação de xenobióticos. Baseado nos *spectral counts* totais observados nos dados de espectrometria de massas. AB-Ex – *spectral counts* de *A. baumannii* amostra extracelular; BC-Ex – *spectral counts* de *B. cenocepacia* amostra extracelular; CT-Ex *spectral counts* de *C. taiwanensis* amostra extracelular; A3-Ex – somatória de todos os *spectral counts* do consórcio A3 amostra extracelular; AB-In – *spectral counts* de *A. baumannii* da amostra intracelular; BC-In – *spectral counts* de *B. cenocepacia* amostra intracelular; CT-In *spectral counts* de *C. taiwanensis* amostra intracelular; A3-In – somatória de todos os *spectral counts* de *C. taiwanensis* amostra intracelular; A3-In – somatória de todos os *spectral counts* de *C. taiwanensis* amostra intracelular; A3-In – somatória de todos os *spectral counts* do consórcio A3 amostra intracelular; A3-In – somatória de todos os *spectral counts* do consórcio A3 amostra intracelular; A3-In – somatória de todos os *spectral counts* do consórcio A3 amostra intracelular; A3-In – somatória de todos os *spectral counts* do consórcio A3 amostra intracelular; A3-In – somatória de todos os *spectral counts* do consórcio A3 amostra intracelular.

LISTA DE MAPAS METABÓLICOS

- Mapas A e B Mapas de vias metabólicas de A. baumannii e B. cenocepacia. A 510 proteínas de A. baumannii. B 496 proteínas de B. cenocepacia. Códigos dos mapas no KEGG: vias metabólicas (abc01100) e (bmj01100). Em vermelho (A) e roxo (B) vias onde atuam as proteínas identificadas, em verde todas as proteínas anotadas no KEGG para a espécie.
- Mapas C Mapas de vias metabólicas de *C. taiwanensis* C 290 proteínas de *C. taiwanensis*. Códigos dos mapas no KEGG: vias metabólicas (cti01100) Em azul indicam as vias onde atuam as proteínas identificadas, em verde todas as proteínas anotadas no *KEGG* para a espécie.
- Mapa D e E Mapas de sinergismos entres as espécies do consócio A3 nas diferentes vias metabólicas. 890 proteínas do consórcio A3, com seleção automática no KEGG para "metabolismo microbiano em diversos ambientes" (mapa D) e sem restrição por via metabólica (mapa E). Código dos mapas no KEGG: metabolismo microbiano em diversos ambientes (map01120); vias metabólicas (map01100). Vias na cor Vermelha Proteínas exclusiva de *A. baumannii*; Verde exclusiva de *B. cenocepacia*; Azul exclusiva de *C. taiwanensis*; Laranja Comum a *A. baumannii* e *B. cenocepacia*; Roxo Comum a *B. cenocepacia* e *C. taiwanensis*; Amarelo Comum a *A. baumannii* e *C. taiwanensis*; Preto Proteínas comuns a todas as espécies.

LISTA DE TABELAS

- **Tabela 01. Pontos de coleta dos consórcios bacterianos.** A1, A2, A3, A4, A5 Respectivos consórcios coletados.
- Tabela 02. Composição dos ensaios para determinação da curva de redução do DCPIP.
- Tabela 03. Características morfológicas de colônias isoladas dos consórcios bacterianos
- **Tabela 04. Concentração média de DCPI reduzido pelos consórcios.** A1, A2, A3, A4, A5 Respectivos consórcios cultivados em BH + diesel + DCPIP. C1 Controle 1 (BH + DCPIP); C2 Controle 2 (BH + DCPIP + diesel); C3 Controle 3 (BH + DCPIP + Pré-Inóculo). Letras diferentes indicam diferenças estatísticas significativas entre os tratamentos. Análise de variância e teste *Tukey* com significância de 0,05.
- **Tabela 05. Pontos de coleta dos consórcios bacterianos e seleção com DCPIP.** A1, A2, A3, A4, A5 Respectivos consórcios cultivados em BH + Diesel + DCPIP, a 30° C, sem agitação, por 48. Descoloração do DCPIP variando de mais intenso (+++) ao menos intenso (+), observado visualmente.
- Tabela 06: Índices de emulsificação (E24h). Letras diferentes indicam diferenças estatísticas significativas entre os tratamentos. Análise de variância e teste Tukey com significância de 0,05. A1, A2, A3, A4, A5 Consórcios bacterianos testados; SDS (0,5%) Controle positivo; BH Controle negativo.
- **Tabela 07: Índices de hidrofobicidade celular dos consórcios.** A1, A2, A3, A4, A5 Consórcios bacterianos testados. Letras diferentes indicam diferenças estatísticas significativas entre os tratamentos. Análise de variância e teste *Tukey* com significância de 0,05.
- **Tabela 08. Biodegradação do óleo diesel pelos consórcios.** C Controle abiótico; A1, A2, A3, A4, A5 Consórcios bacterianos testados. Letras diferentes indicam diferenças estatísticas significativas entre os tratamentos. Análise de variância e teste *Tukey* com significância de 0,05.
- Tabela 09. Toxicidade dos sobrenadantes de cultura dos consórcios para A. salina. CBH controle com meio BH; CD Controle com meio BH + diesel (1% v/v); A1, A2, A3, A4, A5 Sobrenadantes dos respectivos consórcios. Cultivo a 30° C, por 24 h. Diluição em solução salina (2 % NaCl, pH 8,5). O sinal "-" indica que o valor de porcentagem e desvio padrão é igual zero. Valores sombreados indicam DL50 ou intervalo onde ela acontece.
- **Tabela 10. Toxicidade dos sobrenadantes de cultura dos consórcios para** *L. sativa.* CD Controle com diesel não biodegradado; A1, A2, A3, A4, A5 Consórcios bacterianos testados. Letras diferentes indicam diferenças estatísticas significativas entre os tratamentos. Análise de variância e teste *Tukey* com significância de 0,05.
- **Tabela 11. Comparação entre os consórcios em relação aos melhores resultados dos testes realizados.** X – Xileno; H – Hexano; D – Diesel; Biod. – Teste de biodegradação do diesel.
- **Tabela 12. Proteínas envolvidas na degradação de xenobióticos.** # Sequência em que aparece na lista do apêndice 02; Esp. Espécie na qual foi identificada; MM kDa Massa molecular em kDa; Am. Amostra onde foi identificada.

LISTA DE GRÁFICOS

- **Gráfico 01: Curva padrão para determinação das concentrações de DCPIP.** Concentrações de 0,5, 5 e 25mg.L⁻¹ de DCPIP foram usadas. Absorbância medida em espectrofotômetro (λ=600nm).
- Gráfico 02: Índices de emulsificação em 24 h. A1, A2, A3, A4, A5 Consórcios bacterianos testados. SDS (0,5 %) – Controle positivo; BH – Controle negativo. Letras diferentes indicam diferenças estatísticas significativas entre os tratamentos. Análise de variância e teste *Tukey* com significância de 0,05.
- **Gráfico 03: Índices de hidrofobicidade celular.** A1, A2, A3, A4, A5 Consórcios bacterianos testados. Letras diferentes indicam diferenças estatísticas significativas entre os tratamentos. Análise de variância e teste *Tukey* com significância de 0,05.
- **Gráfico 04: Taxas de biodegradação do óleo diesel pelos consórcios.** A1, A2, A3, A4, A5 Consórcios bacterianos testados. Cultivo a 30° C, 150rpm, por 7 dias. Letras diferentes indicam diferenças estatísticas significativas entre os tratamentos. Análise de variância e teste *Tukey* com significância de 0,05.
- Gráfico 05: Toxicidade dos sobrenadantes de cultura dos consórcios para *A. salina*. CBH Meio BH; CD Meio BH + diesel (1% v/v); A1, A2, A3, A4, A5 Sobrenadantes dos respectivos consórcios. Cultivo a 30° C, por 24h. Diluição em solução salina (2% NaCl, pH 8,5).
- **Gráfico 06: Toxicidade dos sobrenadantes de cultura dos consórcios para** *L. sativa* CD Meio BH + diesel não degradado (1% v/v); A1, A2, A3, A4, A5 Sobrenadante dos respectivos consórcios. Condições de cultivo dos consórcios: 150 rpm, 30° C, 7 dias. Condições de cultivo das sementes: 27° C, por 7 dias, no escuro. Letras diferentes indicam diferenças estatísticas significativas entre os tratamentos. Análise de variância e teste *Tukey* com significância de 0,05.
- Gráfico 07. Identificação dos gêneros constituintes do consórcio A3 baseada no perfil de proteínas ribossomais. No gráfico é apresentada a distribuição das proteínas ribossomais entre os gêneros bacterianos identificados através da busca no banco de dados *Uniprot*. O *software* utilizado para fazer as buscas foi *Mascot* (*Matrix Science*, London, UK; versão 2.5.1). Banco de dados pesquisado foi "*Bacteria*" do *Uniprot*. Pesquisado em 20/03/2020.
- Gráfico 08. Identificação das espécies constituintes do consórcio A3 baseada no perfil de proteínas ribossomais. No gráfico é apresentada a distribuição de proteínas ribossomais entre as espécies de cada um dos três gêneros mais prevalentes. O *software* utilizado para fazer as buscas foi *Mascot* (*Matrix Science*, London, UK; versão 2.5.1). Banco de dados pesquisado foi "*Bacteria*" do Uniprot. Pesquisado em 20/03/2020.
- Gráfico 09. Distribuição de proteínas ribossomais entre todas as espécies dos três gêneros mais prevalentes. O *software* utilizado para fazer as buscas foi *Mascot (Matrix Science,* London, UK; versão 2.5.1). Banco de dados pesquisado foi "*Bacteria*" do *Uniprot*. Assumiu-se a tripsina como enzima de digestão proteolítica. Pesquisado em 20/03/2020.

RESUMO

A poluição causada pelos hidrocarbonetos tem sido relatada como um dos principais problemas ambientais no mundo há algumas décadas. As fontes de contaminação por hidrocarbonetos são as mais variadas possíveis, como vazamentos de óleo, vazamentos de tanques de combustível subterrâneos, águas produzidas por petróleo e gás, entre outras. Essas atividades podem causar sérios problemas ambientais e econômicos para os ecossistemas terrestres e marinhos. Os efeitos dessas atividades dependem do volume de contaminação, localização do acidente e, principalmente, das condições ambientais da época. O diesel é um combustível derivado do petróleo e está entre os mais consumidos. Na região amazônica, seu consumo é certamente mais elevado devido à grande quantidade de embarcações movidas a óleo diesel, o que pode ser um agravante para problemas ambientais na região. Alternativas que sejam capazes de promover a degradação de hidrocarbonetos, sem agravar ainda mais o problema ambiental, é de extrema importância diante do cenário atual. Entre as técnicas mais utilizadas nesse processo de descontaminação, a biorremediação tem ganhado destaque. É consenso na literatura que nenhum microrganismo tem capacidade de metabolizar totalmente o petróleo. Daí a busca constante para o isolamento de consórcios que promovam a degradação de uma maior quantidade de xenobióticos presentes no petróleo e seus derivados. Diante disso, o objetivo desse trabalho foi selecionar um consórcio bacteriano capaz de degradar efetivamente hidrocarbonetos presentes no diesel e em seguida fazer uma análise proteômica desse consórcio bacteriano selecionado. Os consórcios foram coletados nas proximidades do porto do Ceasa na cidade de Manaus. No total 5 consórcios foram coletados, e todos eles se mostraram capazes de utilizar o diesel como fonte de carbono, em especial o A3, que se destacou em relação aos demais. Os resultados apresentados para esse consórcio foram os melhores para redução de DCPIP, emulsificação (em xileno, hexano e diesel), hidrofobicidade celular (em xileno, hexano e diesel), solubilização do diesel e no teste de toxicidade em L. sativa. A taxa de degradação do diesel pelo consórcio A3, em apenas 7 dias, foi superior a 70 %. A partir da análise do proteoma desse consórcio foram identificadas 890 proteínas pertencentes às espécies Acinetobacter baumannii, Burkholderia cenocepacia e Cupriavidus taiwanensis. Foram encontradas evidências para degradação de 11 compostos xenobióticos presentes no diesel, distribuídos entre compostos alifáticos e aromáticos. A análise detalhada da participação das proteínas identificadas nas rotas metabólicas utilizadas por cada espécie, possibilitou a proposição de ação sinérgica entre as três cepas constituintes do consórcio A3 para a metabolização do diesel. Dessa forma, o consórcio A3 tem um enorme potencial para a recuperação de áreas afetadas por diesel ou outros hidrocarbonetos de petróleo.

Palavras-chave: proteômica; consórcio microbiano; degradação de diesel; biorremediação; xenobiótico

ABSTRACT

Over the last few decades, pollution caused by hydrocarbons has been reported as one of the main environmental problems in the world. The sources of hydrocarbon contamination are as varied as possible, such as oil leaks, underground fuel tank leaks, waters contaminated by the production of oil and gas, among others. These activities can cause serious environmental and economic problems for terrestrial and marine ecosystems. The effects of these activities depend on the level of contamination, location of the accident and, above all, the environmental conditions at the time o the accident. Diesel is a fuel derived from oil and is among the most consumed of all fuels. In the Amazon region, its consumption is certainly higher due to the large amount of vessels powered by diesel oil, which can be an aggravating factor for environmental problems in the region. Alternatives that are able to promote the degradation of hydrocarbons, without further aggravating the environmental problem, is of extreme importance in the current scenario. Among the most used techniques in this decontamination process, bioremediation has gained prominence. There is, however, a consensus in the literature that no microorganism has the capacity to fully metabolize oil. Hence, the constant search for the isolation of consortia that promote the degradation of a greater amount of xenobiotics present in oil and its derivatives. Therefore, the objective of this work was to select a bacterial consortium capable of effectively degrading hydrocarbons present in diesel and then make a proteomic analysis of this selected bacterial consortium. The consortia were collected in the vicinity of the Port of Ceasa in the city of Manaus, Brazil. In total 5, consortia were collected, and all of them were able to use diesel as a carbon source, especially A3, which was superior to the others. The results presented for this consortium were the best for DCPIP reduction, emulsification (in xylene, hexane and diesel), cellular hydrophobicity (in xylene, hexane and diesel), diesel solubilization and in the toxicity test with L. sativa. The diesel degradation rate by the A3 consortium, in just 7 days, was higher than 70%. From the analysis of the proteome of this consortium, 890 proteins were identified. These proteins all belong to the species Acinetobacter baumannii, Burkholderia cenocepacia and Cupriavidus taiwanensis. Evidence was found for the degradation of 11 xenobiotic compounds present in diesel, distributed between aliphatic and aromatic compounds. The detailed analysis of the participation of proteins identified in the metabolic routes used by each species, enabled the proposition of a synergistic action between the three strains that make up the A3 consortium for the metabolism of diesel. Thus, the A3 consortium has a huge potential for the recovery of areas affected by diesel or other petroleum hydrocarbons.

Keywords: proteomics; microbial consortium; diesel degradation; bioremediation; xenobiotic

1. INTRODUÇÃO

A produção mundial de petróleo ultrapassa os 88 milhões barris por dia. A produção brasileira é de aproximadamente 2,9 milhões de barris por dia, o que coloca o Brasil no 8º lugar no cenário mundial. Esse volume de óleo produzido corresponde a aproximadamente 32 % da demanda energética mundial. No século atual, com o progresso da civilização humana, há um aumento gradual na demanda global de energia de petróleo como fonte de combustível para aquecimento, combustível para transporte e produto de partida para indústrias químicas. Toda essa demanda aumenta as possibilidades de derramamentos e perdas. Entre os derivados de petróleo o óleo diesel é amplamente usado em todo o mundo como combustível. Devido à sua grande demanda como fonte de energia, a contaminação por esse combustível em específico ocorre muitas vezes como resultado da produção, manutenção, transporte, armazenamento e liberação acidental, levando a impactos ecológicos significativos.

A poluição causada pelos hidrocarbonetos tem sido relatada como um dos principais problemas ambientais no mundo há algumas décadas. A contaminação por hidrocarbonetos tornouse uma questão ambiental mundial devido aos potenciais efeitos tóxicos em animais, seres humanos, plantas e microrganismos. Um derramamento de óleo na costa brasileira no final de agosto de 2019 mostrou que não estamos preparados para responder de modo rápido e efetivo diante de um cenário envolvendo o derramamento de óleo em grandes proporções. Nesse caso em específico, onde uma grande quantidade de petróleo bruto começou a se espalhar afetando mais de 2.000 km de costa brasileira, impactando mais de 40 áreas protegidas, a reação do governo brasileiro se mostrou muito lenta. Só após dois meses desde que os primeiros sinais de derramamento foram registrados é que o governo iniciou um plano de contingência do óleo. Na ausência de ações coordenadas do governo, membros da sociedade civil coletaram mais de 1000 toneladas de óleo de praias e manguezais, muitas vezes com equipamentos de segurança inadequados e, portanto, expondo-se a possíveis danos à saúde.

A Amazônia legal concentra vários campos de exploração e refino de petróleo, e isso tem cobrado seu preço. Diversos incidentes envolvendo o derramamento de óleo na região foram relatados nas últimas décadas. Para minimizar ou remediar o impacto causado na região, assim como em qualquer outra área afetada, são necessárias medidas para fornecer alertas às autoridades ambientais e às comunidades locais. O processo na tomada de decisão para recuperação de uma área que foi afetada tem que se basear em informações úteis e atuais. Essas decisões precisam ser

tomadas com informações sobre a avaliação dos impactos ambientais e sociais na área, bem como dos mecanismos capazes de promover a recuperação ou a minimização dos problemas gerados.

Diante do cenário posto, ações que visem a preservação e manutenção da floresta amazônica se mostram cada vez mais importantes. Buscar soluções que visem recuperar áreas impactadas com hidrocarbonetos de petróleo, tem se tornado quase que uma busca incessante pela comunidade científica. Existe a compreensão de que o petróleo é um "mal" necessário e que não estamos dispostos a abandoná-lo, e nem temos alternativas para tal, dada a nossa dependência atual. A alternativa então, é avançar na minimização dos riscos e dos impactos ambientais ocasionados pela exploração e comercialização do petróleo. A utilização de técnicas moleculares modernas como a proteômica, na elucidação vias metabólicas de degradação de compostos xenobióticos, pode apresentar resultados importantes para a identificação mais aprofundada dos processos relacionados a biodegradação dos hidrocarbonetos presentes no petróleo. Os resultados aqui obtidos irão contribuir para o entendimento dos processos de biorremediação, gerando subsídios para a comunidade científica e órgãos técnicos ligados a entidades governamentais e indústria petrolífera, para o aprimoramento na recuperação de áreas contaminadas por petróleo, óleo diesel ou outros derivados.

2. REFERENCIAL TEÓRICO

2.1. ÓLEO DIESEL: CARACTERISTICAS GERAIS

Entre os combustíveis derivados de petróleo o óleo diesel é usado principalmente em motores com alta velocidade de rotação (acima de 1000 rpm), como em carros e navios (Ahmed e Fakhruddin, 2018). Os motores a diesel são amplamente utilizados no transporte, bem como em sistemas estacionários (geradores, etc.) para a produção de eletricidade. Além disso, é reconhecido que óleo diesel estará em uso comercial como a principal fonte de energia por pelo menos mais duas décadas (Yaqoob *et al.*, 2021). O consumo global de diesel aumentou em 23 % durante 2000 – 2008, enquanto o aumento da demanda de gasolina foi de apenas 7% no período correspondente (IEA, 2008). As demandas esperadas de diesel entre 2012 e 2035 são > 5 milhões de barris/dia (Ramadass *et al.*, 2017).

De um modo geral os hidrocarbonetos de petróleo e seus derivados são subdivididos com base nas faixas específicas de número ou fração de carbono. As frações contendo número de carbono de C₆ a C₁₀ são classificadas como frações voláteis (Fração 1). A fração 2 é semivolátil e inclui o número de carbono acima de C₁₀ (C₁₀-C₁₆). A fração 3 compreende o número de carbono > C₁₆ a C₃₄, sendo denominados como uma fração não volátil. A fração 4, considerada a de mais baixa volatilidade e solubilidade de todas as outras frações, possui um número de carbono > C₃₅ (Logeshwaran *et al.*, 2018). O número de cadeias carbônicas no diesel é variável (Imron *et al.*, 2020). Além disso, o teor de carbono normalmente está na faixa de 83-87 %, e o teor de hidrogênio varia entre 10 e 14 %, e ainda podem ser encontradas pequenas quantidades variáveis de nitrogênio, oxigênio, enxofre, como substâncias não metálicas, e Ni, Fe e V, como substâncias metálicas, que às vezes são adicionadas como aditivos (Imron *et al.*, 2020; Ahmed e Fakhruddin, 2018).

A composição molecular dos hidrocarbonetos no diesel é dividida em três classes diferentes que são saturadas, insaturadas e aromáticas (Ahmed e Fakhruddin, 2018). Nos hidrocarbonetos saturados, todos os átomos de C têm ligação simples, enquanto nos hidrocarbonetos não saturados um ou mais átomos de C têm ligação dupla ou tripla. Essas classes são divididas novamente em grupos diferentes com base em sua forma, como alcanos, alquenos, aromáticos (mono-aromáticos), tiol e forma polar (Logeshwaran *et al.*, 2018).

O diesel contém de 2.000 a 4.000 hidrocarbonetos com aproximadamente 24 % de *n*-alcano, 46 % de isoalcanos + cicloalcanos e 30 % de aromáticos (Imron *et al.*, 2020; Imron *et al.*, 2019;

Logeshwaran *et al.*, 2018; Titah *et al.*, 2018), que são destilados em temperaturas que variam de 130 a 380 °C (Kebria *et al.*, 2009; Menezes *et al.*, 2006). Além disso, os hidrocarbonetos do diesel possuem baixa solubilidade em água, alto coeficiente de adsorção e alta estabilidade do anel aromático (Ziabari *et al.*, 2016; Kebria *et al.*, 2009). Por essas características, o diesel tem sido considerado também um poluente prioritário, que exerce efeitos bioquímicos nos seres humanos e em outros organismos vivos (Ziabari *et al.*, 2016). Seus componentes são potencialmente carcinogênicos, tóxicos (Imron *et al.*, 2019; Titah *et al.*, 2018) e contêm uma longa cadeia de hidrocarbonetos de difícil degradação (Imron *et al.*, 2019; Ramasamy *et al.*, 2017).

Os hidrocarbonetos presentes no diesel podem ser agrupados ainda em alifáticos ou aromáticos, de acordo como a estrutura da cadeia carbônica. Por essa outra classificação os hidrocarbonetos presentes no diesel são compostos por 74 % de hidrocarbonetos alifáticos, 24 % de hidrocarbonetos aromáticos e 2 % de outros compostos. Os *n*-alcanos representam a maior porção dos hidrocarbonetos alifáticos presentes no diesel, e possuem cadeias lineares com vários comprimentos/números de átomos de carbono saturados (Logeshwaran *et al.*, 2018). A quantidade de cadeias carbônicas de alifáticos presentes no diesel é variável; entre C₁₁ e C₂₅ (Ramasamy *et al.* 2017) e entre C₁₀ a C₂₀ (Bhuvaneswar *et al.* (2012).

Já os hidrocarbonetos aromáticos podem ser classificados com base no arranjo do anel de benzeno. Baseado nessa classificação, os compostos aromáticos são agrupados em duas categorias: hidrocarbonetos monoaromáticos (MAHs) que contêm um único anel aromático e hidrocarbonetos aromáticos policíclicos (PAHs) que contêm dois ou mais anéis aromáticos. Existem ainda aqueles que apresenta em suas estruturas químicas átomos diferentes de H/C (por exemplo, nitrogênio, enxofre). Esses compostos são chamados de aromáticos heterocíclicos, podendo ser da mesma forma, monoaromáticos ou policíclicos aromáticos (Morya *et al.*, 2020).

2.1.1. Compostos tóxicos e perigosos no diesel

De acordo com a EPA/US a indústria de refino de petróleo é uma das dez principais fontes de liberação/emissão de produtos químicos tóxicos para o meio ambiente. Nos últimos anos, a poluição por hidrocarbonetos de petróleo tornou-se uma das preocupações globais mais sérias devido à sua toxicidade para microrganismos, bem como para formas superiores de vida, incluindo humanos. Entre os hidrocarbonetos associados ao petróleo, dezesseis PAHs estão listados como poluentes prioritários devido à alta estabilidade no meio ambiente (Varjani e Upasani, 2017). Estes

incluem: acenafteno, benzo[ghi]perileno, criseno, acenaftileno, benzo[a]antraceno, benzo[b]fluoranteno, antraceno, benzo[k]fluoranteno, benzo[a]pireno, fluoranteno, indeno[1,2, 3-cd]pireno, naftaleno, fenantreno, dibenzo[a, h]antraceno, fluoreno e pireno (Mojiri *et al.*, 2019). Muitos desses compostos podem ser encontrados no diesel (Claxton, 2015).

Além dos HPAs, alguns dos hidrocarbonetos monoaromáticos também estão listados pela EPA/US como compostos prejudiciais e importantes, que devem ser eliminadas dos efluentes industriais antes de seu lançamento no meio ambiente (Khalid *et al.*, 2021). Entre eles o benzeno, tolueno, etilbenzeno e xileno, coletivamente chamados de BTEX, são os principais componentes do petróleo que são contaminantes ambientais prevalentes devido a derramamentos acidentais frequentes (Duan *et al.*, 2019). Em contraste com os hidrocarbonetos de cadeia longa, esses compostos têm peso molecular relativamente baixo. Uma vez que os BTEXs são expostos ao meio ambiente, eles se transformam em vapor, enquanto alguns compostos se dissolvem na água (Khalid *et al.*, 2021). A análise de água contaminada com diesel tem indicado a presença de compostos orgânicos voláteis, principalmente os BTEXs, os benzenos alquilados e naftaleno, sendo que a maioria desses compostos apresentam concentrações acima dos níveis de limites seguros (Ramadass *et al.*, 2017).

Os compostos alifáticos também são classificados como tóxicos. Entre eles, os hidrocarbonetos alifáticos clorados, representados pelo tricloroetileno, que foi classificado como o principal contaminante em águas subterrâneas, isso devido a sua resistência à degradação, toxicidade e natureza carcinogênica (Li *et al.*, 2017). Embora em pequenas quantidades, compostos clorados estão presentes no diesel. Além disso, os dispersantes, adicionados ao óleo para reter a sujeira em suspensão, também contêm cloro (Jin *et al.*, 2020).

2.1.2. Principais efeitos tóxicos dos hidrocarbonetos do diesel

Os PAHs são considerados a principal fonte de toxicidade entre os hidrocarbonetos. Entre os vários efeitos relatados, alguns dos PAHs levam à produção de espécies reativas de oxigênio (ROS) como subproduto do metabolismo. Essas substâncias permanecem persistentes no sedimento ou substratos lipofílicos e algumas delas apresentam propriedades carcinogênicas e mutagênicas (Breitwieser *et al.*, 2018). Entre todos os PAHs conhecidos, o benzo[a]pireno é reconhecido como o poluente mais perigoso, pois é extremamente cancerígeno (Gupte *et al.*, 2016).

Os PAHs são contaminantes orgânicos amplamente difundidos no meio ambiente, reconhecidos por terem efeitos carcinogênicos e mutagênicos, e por bioacumular no tecido humano e animal. Os PAHs também têm impactos prejudiciais sobre a fauna e a flora dos habitats afetados, resultando na absorção e acumulação de produtos químicos tóxicos por meio de cadeias alimentares (biomagnificação) e, em alguns casos, problemas graves de saúde e/ou defeitos genéticos em humanos (Mojiri *et al.*, 2019).

Entre os BTEXs, o benzeno é listado como um carcinógeno do Grupo 1 pela Agência Internacional de Pesquisa sobre o Câncer (IARC), e o etilbenzeno foi classificado como um possível carcinógeno para humanos (Grupo 2B). Além disso, todos os quatro componentes do grupo BTEX tem influências bem documentadas no sistema nervoso central e nas funções imunológicas, como tontura, atopia, eczema, asma, irritação aguda nos olhos e na pele (Ran *et al.*, 2018). Além desses efeitos já citados, o benzeno afeta adversamente a produção de sangue, o sistema nervoso central e o sistema linfático. O etilbenzeno é um potente carcinógeno e um de seus efeitos em humanos inclui perda auditiva (Morya *et al.*, 2020).

Os efeitos desses compostos sobre os animais aquáticos, também tem sido documentado, principalmente nos peixes. Entre os principais efeitos colaterais são citados comprometimento na capacidade respiratória, bem como, o equilíbrio iônico e o comportamento das espécies estudadas (Matsuo *et al.*, 2006; Brauner *et al.*, 1999). Há relatos ainda de que peixes expostos ao petróleo e derivados, ou apenas à fração solúvel em água destes compostos, podem ter sua a eficiência alimentar diminuída (Olsen *et al.*, 2007) e consequentemente redução no crescimento desses peixes em decorrência da exposição aos compostos do petróleo. Foram relatados ainda distúrbios na habilidade respiratória, alterações hematológicas e prejuízos ao sistema imunológico (Cohen *et al.*, 2005). Alterações morfológicas, mensuradas por meio de técnicas histopatológicas, já foram descritas em animais coletados após a ocorrência de derramamento de derivados de petróleo (Katsumiti *et al.*, 2009).

No solo os hidrocarbonetos bloqueiam a difusão do ar através dos poros, modificando também propriedades físicas e a condutividade hidráulica da umidade do solo. A modificação das características químicas e físicas do solo devido à poluição por hidrocarbonetos pode, portanto, afetar negativamente o crescimento das plantas (Grifoni *et al.*, 2020). Estudos tem indicado que contato direto de plantas com óleo pode causar uma série de efeitos adversos que incluem: murcha e senescência foliar, perda de folhas, raízes deformadas, redução das taxas de sobrevivência das

mudas por inibir a germinação das sementes, diminuição da eficiência da fotossíntese, efeitos ecotoxicológicos e mutações (Naidoo *et al.*, 2010).

Os animais marinhos também são diretamente afetados pela contaminação por hidrocarbonetos. Um estudo sobre comunidades de corais após o vazamento de óleo na plataforma *Deepwater Horizon* no ano de 2010, relatou os impactos significativos do óleo na superfície dos corais, resultando em morte e esqueletos cobertos de hidrozoários a 1370 m de profundidade (Fisher *et al.*, 2014). As aves marinhas são extremamente vulneráveis e sensíveis a derramamentos de óleo. A inalação ou ingestão de PAHs e outros constituintes oleosos pelas aves pode resultar na perda da capacidade de impermeabilização de suas penas, levando ao afogamento e hipotermia (Tran *et al.*, 2014). Os répteis incluindo tartarugas, crocodilos e cobras marinhas também são vulneráveis aos efeitos nocivos do petróleo na superfície ou em águas rasas. O óleo pode afetar a troca gasosa normal em tartarugas marinhas, levando ao sufocamento e danificando os ovos de tartaruga à medida que componentes tóxicos penetram nos embriões em crescimento (Putman *et al.*, 2015).

2.2. POLUIÇÃO CAUSADA POR DIESEL

Embora o óleo diesel seja uma das principais fontes de energia, ele desempenha um papel fundamental na poluição ambiental global (Bhuvaneswar *et al.*, 2012). A poluição causada por hidrocarbonetos do diesel, causa grave poluição ambiental e prejudica ecossistemas inteiros (Imron *et al.*, 2019; Titah *et al.*, 2018; Isiodu *et al.*, 2016). A quantidade de diesel liberada nos ecossistemas terrestres e aquáticos é estimada em 1,7 a 8,8 milhões de toneladas por ano (Imron *et al.*, 2019; Titah *et al.*, 2018). Além dos impactos ambientais causados pelos derrames de óleo durante o processo de exploração, transporte e refino (Logeshwaran *et al.*, 2018; Bao *et al.*, 2012) a comercialização dos produtos refinados (essencialmente os combustíveis) também causa impactos ambientais relevantes. Esses produtos oferecem riscos de contaminação dos solos pela forma como são distribuídos ao consumidor e como são armazenados (Liang *et al.*, 2011). Há evidências indicando que em algumas áreas os riscos de derrames são mais acentuados do que em outras áreas do mundo. Isso devido ao aumento do consumo do petróleo e de seus subprodutos nessas áreas (Bowen e Depledge, 2006; Kirby e Law, 2010). Tais riscos estão relacionados, por exemplo, a vazamentos de tanques de armazenamento nos postos de combustíveis e pequenos derrames no processo de carga e descarga desses produtos (Logeshwaran *et al.*, 2018; Bao *et al.*, 2012).

Acidentes envolvendo o derramamento de óleo diesel tem sido reportado em vária partes do mundo. Como por exemplo o que aconteceu em 14 de dezembro de 2013, que envolveu o derramamento de 180.000 L de óleo diesel no porto de *Skjervøy*, localizado no norte da Noruega. A análise da composição desse óleo derramado, revelou a presença de HAPs de baixo peso molecular, como fenantreno, pireno e antraceno, entre as principais substâncias liberadas no meio ambiente (Breitwieser *et al.*, 2018).

Em fevereiro de 2001, o rompimento de um oleoduto na Serra do Mar, cidade de Morretes, estado do Paraná, sul do Brasil, causou um vazamento de aproximadamente 52.000 litros de óleo diesel. O óleo se espalhou por vários rios locais, incluindo os rios Carambuí, Meio, Sagrado, Neves e Nhundiaquara. Cinco barreiras de contenção foram instaladas como um esforço para minimizar a propagação de óleo. Porém, a contaminação por óleo se estendeu por aproximadamente 28 km do local do derramamento ao longo desses rios, cruzando ambientes com geomorfologia e características geológicas distintas, o que acarretou em mudanças no transporte e persistência no ambiente desse óleo derramado (Horodesky *et al.*, 2015).

E mais recentemente, em março de 2019, em um município do Paraná-Brasil, ocorreu um acidente envolvendo um caminhão transportando óleo diesel resultando no vazamento de aproximadamente 40.000 L de combustível, o que resultou na interrupção do abastecimento de água em algumas cidades (Martins *et al.*, 2020). Em dezembro de 2019, ocorreu um derramamento de óleo diesel nas Ilhas Galápagos, no Equador, após o naufrágio de um navio de transporte com 600 galões de diesel (Martins *et al.*, 2020).

2.2.1. Acidentes com óleo na Amazônia

A notável biodiversidade Amazônica é frequentemente atacada por um número crescente de ameaças, como a expansão da energia hidrelétrica (Val *et al.*, 2016), desmatamento (Soares-Filho *et al.*, 2014), mineração (Meira *et al.*, 2016) e poluição direta por atividades petrolíferas (Kimerling, 2013). Esta última ameaça, é ainda mais grave quando se considera que o risco de poluição por óleo é notavelmente alto em áreas tropicais e subtropicais, pois essa áreas concentram cerca de 60 % da produção de petróleo global. Só no Brasil, a produção de petróleo cresceu, em média, 5 % ao ano desde 2000 (Sardi *et al.*, 2017).

A perfuração de petróleo na bacia amazônica começou entre 1980 e 1990 e aumentou nas últimas décadas. O campo de exploração de petróleo mais importante da região está localizado na cidade de Coari-AM às margens do rio Urucu (afluente do rio Negro), a 600 km de Manaus (Duarte e Val, 2020). A bacia do Urucu é conhecida por produzir óleo de alta qualidade, principalmente para a produção de diesel e nafta no Brasil. O gás natural também é um importante produto da região (Campeão *et al.*, 2017). O risco de contaminação das massas de água amazônicas por hidrocarbonetos é uma grande ameaça devido ao aumento da exploração de petróleo naquela região nas últimas décadas. O risco de derramamento de óleo e contaminação é particularmente alto em torno das áreas de exploração e da rota de transporte percorrida por barcaças de Coari a Manaus, onde o petróleo é refinado (Duarte *et al.*, 2010; Duarte e Val, 2020). Na verdade, já foram reportados alguns acidentes que resultaram na liberação de quantidades significativas de óleo e seus derivados em corpos d'água.

Foi relatado, por exemplo o vazamento, em 2016, de aproximadamente 477.000 L de petróleo o rio Marañon, na porção peruana da Amazônia, um dos principais afluentes do rio Amazonas (Azevedo-Santos, 2016; Mega, 2016). Em 30 de junho de 2014, um derramamento de óleo do oleoduto do Norte do Peru liberou 2.358 barris de petróleo bruto para o meio ambiente, cobrindo mais de 87.000 m² do território da comunidade indígena de Cuninico. Poucos meses depois, em 16 de novembro de 2014, um derramamento de óleo na mesma região liberou cerca de 7.800 barris de óleo cru afetando o território da comunidade indígena de San Pedro (O'Callaghan-Gordo *et al.*, 2018).

Também existem relatos de incidentes no Equador. Em 1967, um consórcio de empresas estrangeiras - subsidiárias integrais da Texaco e do Golfo, ambas agora parte da Chevron – encontraram o petróleo na região equatoriana da Amazônia, perto do território de Huaorani. Os projetos de exploração de petróleo pela Texaco/Chevron no Equador têm derramado petróleo por mais de 30 anos naquela região (Azevedo-Santos, 2016; Kimerling, 2006). Durante as primeiras décadas da produção de petróleo, bilhões de galões de água de formação tóxica foram dispostos em poços abertos sem tratamento ou monitoramento ambiental. Ao longo dos anos, o lixo tóxico se infiltrou no ambiente natural, causando poluição da água, do solo e da vegetação. Além disso, derramamentos de óleo acidentais e liberados das redes de dutos resultaram em aproximadamente 16,8 milhões de galões de petróleo bruto vazando para o meio ambiente. Mais de 800 derrames de óleos detectados e mais de 1200 poços abertos foram fontes de poluição durante as últimas décadas

(Arellano *et al.*, 2017). Em 2013, cerca de 11.480 barris de petróleo vazaram de um oleoduto danificado no rio Coca, no Equador. O vazamento atingiu a região amazônica peruana de Loreto (BBC News, 2013). O rio Coca é um dos afluentes do rio Amazonas no Equador. Grandes áreas estão programadas para o futuro desenvolvimento de exploração de petróleo na região amazônica, indicando que os distúrbios por essas atividades aumentarão na região, particularmente em bacias altas e cabeceiras de rios (Azevedo-Santos, 2016).

A porção brasileira da Amazônia também tem sofrido desastres ambientais ocasionados por derrame de óleo nos rios da região. Um oleoduto foi quebrado em agosto de 1999, liberando óleo cru no córrego Cururu, localizado em Manaus. Após o acidente, o óleo espalhou-se lateralmente na superfície da água, cobrindo a zona bentônica e os sedimentos ao longo da beira do riacho, deixando uma espessa camada de resíduos. Grande parte do óleo derramado foi removido no mês seguinte ao acidente. No entanto, uma pequena quantidade continuou a entrar no sistema do riacho, vindo do fundo do riacho, cobrindo esporadicamente o solo adjacente durante as estações de enchente e cheia (Couceiro *et al.*, 2006)

Em 2013, um acidente com uma barcaça de transporte de cimento asfáltico de petróleo (CAP) lançou cerca de 60 mil litros de CAP nas águas do rio Negro, próximo ao porto de São Raimundo, em Manaus. Embora alguns protocolos de mitigação tenham sido empregados a fim de reduzir o impacto da liberação de CAP, a concentração total de PAHs na água foi substancialmente elevada 45 dias após o derramamento. Um estudo envolvendo duas espécies de peixes ciclídeos *Satanoperca jurupari* (Acará-catitu) e *Acarichthys heckelii* (Acará Heckeli) detectou a presença de metabólitos de hidrocarbonetos do tipo pireno, benzo[a]pireno e naftaleno na bile desses peixes (Duarte e Val, 2020).

E mais recentemente, entre agosto de 2018 e fevereiro de 2019, dois incidentes foram registrados em portos da cidade de Manaus, de acordo como Instituto de Proteção Ambiental do Amazonas - IPAAM. O primeiro envolveu o naufrágio de uma embarcação próximo ao porto da CEASA, que espalhou mais de 1,8 mil litros de vazamento de óleo combustível marítimo (OCM) (IPAAM, 2018). Uma extensão de aproximadamente 10 km do Rio Negro foi atingida. De acordo com o órgão de controle ambiental, o acidente aconteceu após o naufrágio de uma embarcação no porto da empresa pertencente ao grupo Chibatão. O óleo, segundo o IPAAM, atingiu áreas de vegetação natural no igarapé do Mauazinho, considerada uma Área de Preservação Permanente (APP). No segundo acidente, aproximadamente 30 toneladas de emulsão asfáltica se espalharam

por uma extensão de 1,5 quilômetros, nas proximidades do Porto do São Raimundo, zona oeste de Manaus. Uma carreta que transportava a emulsão asfáltica vazou após uma tentativa de furto ao tanque, e a substância tóxica acabou sendo despejada no local e atingindo também o rio Negro (IPAAM, 2019).

Existe ainda o problema relacionado aos meios de transporte na região. As embarcações fluviais tradicionalmente utilizadas na região amazônica brasileira utilizam principalmente óleo diesel como combustível, reconhecidamente poluentes devido à formação de material particulado e outros compostos orgânicos provenientes da combustão do combustível (Koslowski *et al.*, 2020). E tem ainda a risco ambiental relacionado a possibilidade do combustível armazenado no tanque das máquinas, ou mesmo estocado para reabastecimento, ir parar nos rios e lagos da região. Dada a grande extensão territorial percorrida por essas embarcações, a quantidade de combustível transportado é da ordem de centenas a milhares de litros. Acidentes na região são pouco relatados, porém acontecem, principalmente aqueles envolvendo embarcações de pequeno e médio porte. Segundo estimativas da Diretoria de Portos e Costas – DPC, da Marinha do Brasil, somente no estado do Amazonas, foram instaurados 94 Inquéritos Administrativos sobre Acidentes e Fatos da Navegação (IAFNs) devido a acidentes fluviais em 2020 (DPC, 2021).

Nos casos de derramamento de óleo em rios da Amazônia o vento facilita a dispersão do óleo até as margens dos rios, acabando por contaminar mais de um ambiente. Registra-se ainda o caso dos ciclos de cheia e seca, que contribuem para que as proporções de um derramamento sejam ainda mais negativas, principalmente durante a cheia, época em que parte da floresta está submersa (Val, 1997).

A ocorrência de um derramamento de óleo na região afeta principalmente os peixes, provocando uma série de distúrbios. Inicialmente as brânquias, principal rota de absorção de poluentes aquáticos, seriam afetadas. Os hidrocarbonetos de petróleo promovem danos estruturais no epitélio respiratório branquial, afetando os processos de troca gasosa e limitando a transferência de oxigênio em organismos aquáticos. Com o comprometimento das funções das guelras, são induzidos distúrbios respiratórios, de regulação iônica e inibição da absorção de Na⁺ (Duarte *et al.,* 2010). Além disso, entre os peixes da Amazônia há uma miríade de espécies que desenvolveram adaptações para explorar a interface água-ar, o que traz outra dimensão para os efeitos da interação peixe/óleo. Além de respirar, muitas dessas espécies também se alimentam de frutos flutuantes que

caem das árvores, o que torna o derramamento de óleo, formando uma camada no topo da coluna d'água, uma preocupação real (Kochhann *et al.*, 2015).

2.3. BIODEGRADAÇÃO DO ÓLEO DIESEL

As metodologias utilizadas para remediação de áreas contaminadas com óleo são classificadas em métodos mecânicos ou físicos, químicos e biológicos, dependendo dos tipos de insumos usados para promover a separação ou mesmo recuperação do óleo. Cada um deles terá suas vantagens, desvantagens e cenários específicos da aplicação, não sendo absolutos para todos os casos (Ajona e Vasanthi, 2021; Oliveira *et al.*, 2021). As técnicas clássicas física, química, térmica e biológicas que estão disponíveis incluem barreiras de contenção, uso de adsorventes, surfactantes, dispersantes, queima *in situ* e biorremediação para remoção desses contaminantes (Singh *et al.*, 2020).

Os métodos mecânicos ou físicos são aqueles que incluem barreiras flutuantes de contenção para mitigar o processo de expansão do óleo ou direcionar seu fluxo para regiões de menor dano. Barras também são responsáveis por concentrar o óleo para que a parte dele possa ser recuperada por meio da aplicação de materiais absorventes ou de equipamentos coletores flutuantes chamados *skimmers* (Al-Majed *et al.* 2012). Um método físico aplicado para o controle imediato e remediação de derramamentos é a combustão *in situ*, que consiste na queima da camada de óleo na superfície em que foi derramado (Al-Majed *et al.* 2012).

Os métodos químicos são aqueles baseados na aplicação de agentes que visam modificar a interação do óleo com a água, como coagulantes, floculantes, dispersantes ou agentes de solidificação, facilitando sua posterior remoção (Bazargan *et al.*, 2015).

Os métodos biológicos são aqueles que visam a aplicação de sistemas de microrganismos, ou mesmo geram cenários convenientes para o desenvolvimento destes, inserindo nutrientes ou oxigênio no meio afetado, de forma que a ação bacteriana resulte na biodegradação do óleo derramado (Doshi *et al.*, 2018). Os métodos biológicos incluem a biorremediação e a biodegradação do óleo por microrganismos naturais que são amplamente distribuídos na ecologia global. A biorremediação visa estimular a taxa de biodegradação natural, sem causar nenhum impacto adverso. Vários gêneros de bactérias e fungos comedores de óleo são responsáveis pela decomposição e metabolismo dos hidrocarbonetos e outros contaminantes químicos presentes nos óleos (Singh *et al.*, 2020).

Vários métodos, como tratamentos físicos, químicos e biológicos, estão disponíveis para remediação de áreas contaminadas com diesel. Entre esses métodos, um tratamento biológico que utiliza microrganismos é considerado econômico, ecológico e alcança bons resultados na degradação do diesel (Imron *et al.*, 2019; Logeshwaran *et al.*, 2018). O tratamento biológico utilizando bactérias isoladas de áreas contaminadas com diesel é considerado eficiente. Esses microrganismos podem produzir enzimas que os tornam capazes de utilizar o diesel como fonte de carbono e energia (Imron *et al.*, 2019; Patil *et al.*, 2012).

O desastre envolvendo a plataforma de petróleo *Deepwater Horizon* liberou cerca de 4,9 milhões de barris de petróleo bruto da Louisiana do Sul no Golfo do México de 20 de abril a 15 de julho de 2010. É a maior liberação não intencional de óleo para o ambiente marinho na história dos Estados Unidos. Foram afetados cerca de 1.773 km da costa do Golfo do México, dos quais 45% eram pântanos costeiros. A mitigação ou limpeza do óleo envolveu queima controlada *in situ*, uso de 1,84 milhões de galões de dispersantes, uso de navios *skimmer*, barreiras de contenção flutuantes e remoção manual na Louisiana (Singh *et al.*, 2020). Isso tudo a um custo total de \$ 65 bilhões, incluindo limpeza e custos legais em multas criminais e acordos judiciais (Little *et al.*, 2021). Apesar de todos os esforços empregados, a remediação não atingiu totalmente todas as áreas afetadas. No caso em específico dos pântanos costeiros, por exemplo, mitigação ou limpeza do óleo ocorreu em apenas 8,9% das áreas impactadas (Turner *et al.*, 2014).

2.3.1. Biorremediação

A biodegradação é um processo pelo qual pequenos organismos como bactérias, leveduras e fungos quebram compostos complexos em compostos menores para seus alimentos (Al-Majed *et al.* 2012). É um processo natural que ocorre sem interferência humana (Pant *et al.*, 2021). A biorremediação é o processo de aplicação da biodegradação para limpeza de derramamento de óleo envolvendo a introdução artificial de agentes biológicos, como fertilizantes e nutrientes, em microrganismos nativos no local contaminado para que eles proliferem (bioestimulação) ou a introdução de microrganismos não nativos (bioaumentação) para acelerar o processo natural de biodegradação de forma a recuperar áreas contaminadas (Al-Majed *et al.* 2012). A biorremediação pode envolver bactérias, algas e fungos, plantas etc. para degradar uma substância (Pant *et al.*, 2021).

A biodegradação é um processo lento, enquanto a biorremediação é um processo mais rápido. A interferência humana é usada para regular a taxa de biorremediação, pela regulação da temperatura, disponibilidade de alimentos ou nutrientes etc. Por outro lado, a biodegradação é regulada pela natureza. A biodegradação ocorre em toda parte e em qualquer lugar, enquanto em um local poluído, a biorremediação é esperada. A biodegradação (como a corrosão de um metal, por exemplo) pode ser benéfica ou prejudicial, enquanto a biorremediação sempre se destina a ser benéfica (Pant *et al.*, 2021).

Os microrganismos possuem a capacidade de se adaptarem a situações extremas, o que consequentemente os tornam fisiologicamente versáteis. Isso faz com que uma mesma espécie consiga se desenvolver em ambientes totalmente diferentes. Essa característica torna-os aptos a metabolizar e, frequentemente, a mineralizar um grande número de moléculas orgânicas, fato que contribui significativamente para seu emprego em processos de biorremediação de áreas contaminadas (Campeão *et al.*, 2017). Em ambientes aquáticos, por exemplo, os microrganismos podem transformar quimicamente por meio da ação de enzimas específicas compostos contaminantes. Nesse processo, energia ou outro receptor de elétron do meio é liberado e oxigênio consumido. Consequente a presença desses receptores de elétrons, além de outros nutrientes tais como nitrogênio, fósforo, minerais traços, e é claro, a fonte de carbono, que nesse caso são os poluentes orgânicos, possibilitam o crescimento microbiano, o que culmina na conversão dos poluentes a produtos de oxidação que geralmente terminam em dióxido de carbono e água (Singh *et al.*, 2020). Os constantes vazamentos de hidrocarbonetos (ao longo de milhões de anos), principalmente os advindos do petróleo, tem provocado nas comunidades microbianas adaptações que as tornam capazes de quebrar esses hidrocarbonetos (Little *et al.*, 2021).

2.3.2. Biorremediação do diesel por bactérias

A fácil adaptabilidade aos mais diferentes tipos de ambientes faz das bactérias os microrganismos mais empregados na biorremediação de ambientes contaminados. Existem diversos trabalhos envolvendo bactérias na degradação de hidrocarbonetos (Hasanuzzaman *et al.*, 2007; Al-Saleh *et al.*, 2009; Das e Chandran, 2011; Bhasheer *et al.*, 2014; Mnif *et al.*, 2015; Imron e Titah, 2018; Karlapudi *et al.*, 2018; Lee *et al.*, 2018; Logeshwaran *et al.*, 2018; Tiralerdpanich *et al.*, 2018; Imron *et al.*, 2019; Imron *et al.*, 2020; Adetunji e Olaniran, 2021).

Estudos recentes demonstraram a presença comum de bactérias degradadoras de óleo em diversas áreas geográficas pelo mundo todo (Campeão *et al.*, 2017). Vários desses trabalhos tem demostrado a capacidade desses microrganismos de decompor a estrutura de hidrocarbonetos presentes no diesel (Bhuvaneswar *et al.*, 2012; Bhasheer *et al.*, 2014; Cruz *et al.*, 2014; Horel a Schiewer, 2014; Ayed *et al.*, 2015; Auffret *et al.*, 2015; Maddela *et al.*, 2015; Nkem *et al.*, 2016; Mnif *et al.*, 2017; Morales-Guzmán *et al.*, 2017; Imron e Titah, 2018; Lee *et al.*, 2018; Mohammed *et al.*, 2018; Chen *et al.*, 2019; García-Cruz *et al.*, 2019; Imron *et al.*, 2019; Sowani *et al.*, 2020). Bactérias isoladas de ambientes contaminados, como *Pseudomonas sp.*, *Bacillus sp.* e *Acinetobacter sp.*, são consideradas eficazes na degradação do diesel devido à sua adaptabilidade, resistência, tolerância e sobrevivência quando expostas ao poluente. Elas têm um metabolismo especial que já se adaptou para prevenir sua morte, alterando ou contornando certas reações metabólicas e enzimáticas (Imron *et al.*, 2020).

Vias metabólicas de degradação dos PAHs foram identificadas em diferentes espécies de bactérias. Esses estudos mostram ainda que a quebra de tais compostos aromáticos pode ser promovida de forma aeróbica e de forma anaeróbica (Ghosal et al., 2016; Isiodu et al., 2016; Gurav et al., 2017; Liu et al., 2017; Oyehan e Al-Thukair, 2017; Logeshwaran et al., 2018; Li et al., 2020b). Embora essa degradação aconteça de forma satisfatória nos dois casos, existe relato indicando que tal processo ocorre mais rapidamente quando na presença de oxigênio (Díaz, 2004; Logeshwaran et al., 2018). Já em relação aos alcanos, também existem muitas bactérias capazes utilizá-los como fonte de carbono (Hasanuzzaman et al., 2007; Liu et al., 2011; Gurav et al., 2017; Li et al., 2017; Kadri et al., 2018; Imron et al., 2020; Liu et al., 2021). Existem inclusive aquelas espécies altamente especializadas na degradação de hidrocarbonetos, que utilizam preferencial os hidrocarbonetos à qualquer outra fonte de energia. Tais espécies são chamadas hidrocarbonoclásticas e desempenham um papel fundamental na remoção de hidrocarbonetos de ambientes poluídos (Kadri et al., 2018; Rodrigues et al., 2020). Um exemplo interessante a esse respeito é a espécie Alcanivorax borkumensis. Essa espécie metaboliza uma grande quantidade de hidrocarbonetos lineares e ramificados (Kadri et al., 2018).

O gênero *Acinetobacter* é um dos mais bem caracterizados em relação ao seu envolvimento em processos de biorremediação (Mnif *et al.*, 2015; Imron e Titah, 2018; Karlapudi *et al.*, 2018; Lee *et al.*, 2018; Logeshwaran *et al.*, 2018; Tiralerdpanich *et al.*, 2018; Imron *et al.*, 2019; Adetunji e Olaniran, 2021). Também existem vários relatos da participação do gênero

Burkholderia nesses processos (Guazzaroni *et al.*, 2013; Sarkar *et al.*, 2017; Varjani, 2017; Lee *et al.*, 2018; Logeshwaran *et al.*, 2018; Mohammed *et al.*, 2018; Morya *et al.*, 2020). Outro gênero que também tem sido bastante empregado na degradação de hidrocarbonetos é o *Cupriavidus* (Tiwari *et al.*, 2017; Li *et al.*, 2019; Min *et al.*, 2019; Ibrar e Zhang, 2020; Li *et al.*, 2020; Min *et al.*, 2020; Tiwari *et al.*, 2020; Yi *et al.*, 2020; Deng e Zhou, 2021).

Mais recentemente, as técnicas de engenharia genética para "construir bactérias" com uma capacidade de degradação aprimorada, tem aberto o caminho e as possibilidades para a desintoxicação mais eficiente desses poluentes persistentes do meio ambiente. Tanto a estratégia *in vitro*, quanto a *in vivo*, isto é, clonagem de genes e transferência de um plasmídeo inteiro para uma cepa podem ser usadas para construir esses microrganismos modificados (Liu *et al.*, 2021; Pant *et al.*, 2021).

2.3.3. Uso de consórcios bacterianos na biorremediação do diesel

Dada a complexidade dos hidrocarbonetos, é necessária a cooperação sinérgica entre espécies diferentes de microrganismos para a completa degradação e a mineralização dos compostos (Gurav *et al.*, 2017). A associação de microrganismos é conhecida como consórcio microbiano, podendo envolver uma variedade microrganismos. Cada uma das espécies presentes no consócio, metaboliza individualmente, um número limitado de hidrocarbonetos. Nos processos aeróbicos, o oxigênio é requerido para o processo de biodegradação, envolvendo o catabolismo dos hidrocarbonetos por ação de oxidases (Ghazali *et al.*, 2004).

A seleção de consórcios microbianos com capacidade de degradação de hidrocarbonetos é mais comum a partir de áreas contaminadas com esses compostos (Reyes-Sosa *et al.*, 2018). Desse modo, o solo tem se mostrado promissor quando se trata da prospecção de microrganismos, principalmente no que diz respeito à degradação de compostos xenobióticos. Ambientes costeiros também abrigam diversas comunidades microbianas, que podem conter gêneros com potencial atividade de biorremediação. Esses locais abrigam gêneros bacterianos comumente relatados em áreas poluídas por hidrocarbonetos e reservatórios de petróleo, bem como especialistas na degradação de hidrocarbonetos como *Alcanivorax* e *Cycloclasticus*. O local onde os microrganismos são coletados favorece ampliação da quantidade de xenobióticos que podem ser quebrados por esses microrganismos (Reyes-Sosa *et al.*, 2018). Os locais contaminados são ambientes tipicamente hostis onde as bactérias podem evoluir para desenvolver mecanismos

catabólicos extraordinários para sua sobrevivência e para superar o estresse da toxicidade (Morya *et al.*, 2020).

Os consórcios bacterianos com um espectro maior de enzimas hidrolíticas, quando comparados aos isolados, exibem a possibilidade de usar uma quantidade também maior de substrato. A maior diversidade de enzimas favorece habilidades metabólicas que se complementam, contribuindo assim, para a adaptação dos constituinte do consórcio aos ambientes contaminados, o que os leva a receberem mais atenção do que uma única cepa (Jia *et al.*, 2016). Mariano *et al.* (2008), comparou a biodegradação de óleos diesel comerciais e intemperizados e concluiu que os consórcios tinham melhor potencial de biodegradação do que as culturas puras, uma vez que isolados individuais podem não exibir degradação.

Bhuvaneswar et al. (2012) avaliaram cepas de Pseudomonas sp., Micrococcus sp., Staphylococcus sp., Bacillus sp., Flavobacterium sp., Achromobacter sp., Klebsiella sp., Actinomicetes sp., Acetobacter sp. e Rhodococcus sp. que foram isolados de ambientes contaminados com diesel. O consórcio dessas bactérias teve processos sinérgicos para quebrar os hidrocarbonetos do diesel e utilizá-lo como fonte de carbono. Almeida et al. (2017) testou vários consórcios capazes de degradar um tipo de combustível naval (MF-380), e o consórcio mais promissor alcançou biodegradação de 93,5% no desenho experimental e atingiu níveis de degradação otimizados em ensaio no biorreator para os constituintes do combustível. Outro consórcio bacteriano (Mix3) composto por microrganismos oriundos de diferentes ambientes (solos e águas residuais) foi obtido após enriquecimento na presença de uma mistura de 16 hidrocarbonetos, além de gasolina e óleo diesel. Foram isoladas 14 bactérias com capacidades de degradação dos hidrocarbonetos (Auffret et al., 2015).

Um consórcio microbiano nativo para a biorremediação de solo contaminado com óleo diesel na Coréia foi construído e sua capacidade de biodegradação foi avaliada. Cepas microbianas isoladas de ambientes terrestres coreanos, com potencial para biodegradar hidrocarbonetos alifáticos, PAHs e resinas, foram investigadas. Sete cepas microbianas, *Acinetobacter oleivorans* DR1, *Corynebacterium sp.* KSS-2, *Pseudomonas sp.* AS1, *Pseudomonas sp.* Neph5, *Rhodococcus sp.* KOS-1, *Micrococcus sp.* KSS-8 e *Yarrowia sp.* KSS-1 foram selecionados para a construção de um consórcio microbiano com base em sua capacidade de biodegradação, hidrofobicidade e atividade emulsificante. Os testes de biodegradação em escala laboratorial e em massa mostraram que em solo contaminado com óleo diesel suplementado com nutrientes (nitrogênio e fósforo), o

consórcio microbiano melhorou claramente a biodegradação dos hidrocarbonetos, e todas as cepas microbianas que constituem o consórcio microbiano, o que sugere que o consórcio microbiano pode ser usado para a biorremediação de solo contaminado com óleo diesel (Lee *et al.*, 2018).

Muitas espécies, como *Acinetobacter sp., Vibrio sp., Moraxella sp.*, e *Bacillus sp.*, podem, por exemplo, degradar hidrocarbonetos (Imron *et al.*, 2019; Das e Chandran, 2011). Esses microrganismos podem produzir biossurfactantes para aumentar a solubilidade do diesel, facilitando assim o processo de assimilação dos hidrocarbonetos pelos microrganismos (Imron *et al.*, 2019).

A etapa inicial de interação entre os poluentes do óleo e o microrganismo envolve um contato direto entre eles. Essa interação direta é dependente da estrutura da parede celular, ou seja, da hidrofobicidade de sua superfície. Durante o contato direto, os hidrocarbonetos penetram na célula como gotas submicroscópicas. A atividade do surfactante e a hidrofobicidade favorecem a interação entre o microrganismo e o substrato insolúvel, superando a limitação da difusão durante o transporte do substrato para a célula (Karlapudi *et al.*, 2018). Bactérias que possuem capacidade de degradação de óleo juntamente com produção de agente tensoativos sob condições anóxicas são mais eficazes para metanogênese *in situ* em reservatórios de petróleo (Zhao *et al.*, 2016). As bactérias que degradam hidrocarbonetos produzem uma variedade de biossurfactantes que permanecem ligados à superfície celular ou podem ser liberados como moléculas extracelulares (Karlapudi *et al.*, 2018). Os biossurfactantes podem reduzir efetivamente as tensões interfaciais de óleo e água *in situ*, bem como a viscosidade do óleo (Adetunji e Olaniran, 2021). Waigi *et al.* (2015) relataram a produção de biossurfactante como característica autecológica que aumenta a biodisponibilidade de hidrocarbonetos, o contato de células microbianas e substratos e o transporte de massa em microrganismos.

2.3.4. Principais rotas catabólicas para diesel em microrganismos

Locais poluídos com óleo diesel são difíceis de remediar porque têm características menos voláteis e menos biodegradáveis em comparação com a gasolina, por exemplo (Wang *et al.*, 2016). A tendência de biodegradação dos compostos diesel segue uma ordem decrescente: *n*-alcanos > alcanos ramificados > monoaromáticos > cicloalcanos > poliaromáticos. Os *n*-alcanos são considerados instáveis, menos tóxicos e facilmente usados pelas bactérias como fonte de carbono. São identificados como mais suscetíveis e vulneráveis ao ataque de bactérias do que outras formas

de hidrocarbonetos (Imron *et al.*, 2020). Para a biorremediação de xenobióticos orgânicos do local poluído, os micróbios adotam vários mecanismos, incluindo oxidação, redução, clivagem hidrolítica, desalogenação etc. (Pant *et al.*, 2021).

A degradação de hidrocarbonetos por microrganismos ocorre como resultado da catálise por enzimas intracelulares que envolve quatro etapas importantes. A primeira etapa crucial do processo começa com os microrganismos absorvendo poluentes e secretando surfactantes para facilitar a emulsificação. Em uma segunda etapa, os poluentes emulsificados são adsorvidos na superfície da membrana celular. Em uma terceira etapa, eles entrarão diretamente na membrana celular por endocitose na forma de transporte ativo ou passivo e sofrerão uma reação enzimática (quarta etapa) com as respectivas enzimas como catalisadores para completar o processo geral (Khalid *et al.*, 2021).

Os microrganismos utilizam os hidrocarbonetos por meio de três tipos principais de vias metabólicas, como fototrófica (anoxigênica), quimiotrófica (aeróbia) e quimiotrófica (anaeróbica). Vias como a oxidação terminal, oxidação sub-terminal, ω -oxidação e β -oxidação estão envolvidas na degradação de uma diversidade de compostos de hidrocarbonetos. Os alcanos geralmente sofrem oxidação terminal ou subterminal mediada por diversos sistemas de alcano hidroxilase, incluindo metano monooxigenases (genes *mmO*, *pmoA*), alcano hidroxilases (ou alcano monooxigenases, *alkB*) e citocromo P450 - tipo alcano hidroxilases (genes CYP153). Os produtos de oxidação são posteriormente oxidados por álcool e aldeido desidrogenases, enquanto os ácidos graxos resultantes entram no ciclo do ácido tricarboxílico (Al-Hawash *et al.*, 2018; Logeshwaran *et al.*, 2018; Imron *et al.*, 2020; Khalid *et al.*, 2021). A biossíntese da biomassa celular ocorre a partir dos metabólitos dos precursores centrais, como o acetil-CoA, o piruvato e o succinato (Al-Hawash *et al.*, 2018). Uma degradação completa de compostos de hidrocarbonetos produz ATP usado para metabolismo bacteriano e, finalmente, produz CO₂ e H₂O como subprodutos das reações do metabolismo aeróbio (Imron *et al.*, 2020; Ajona e Vasanthi *et al.*, 2021).

Os sistemas enzimáticos microbianos desempenham um papel vital nas vias de degradação de hidrocarbonetos alifáticos. As monooxigenases presentes nos microrganismos catalisam a oxidação inicial dos *n*-alcanos em álcoois. Uma monooxigenase ligada à membrana, uma rubredoxina e um complexo rubredoxina redutase medeiam troca de elétrons através de NADH na conversão do alcano em álcool (Logeshwaran *et al.,* 2018; Imron *et al.,* 2020). Hidroxilases codificadoras do gene *alkB* foram relatadas como amplamente distribuídas em gêneros bacterianos

pertencentes a Burkholderia, Acinetobacter, Pseudomonas, Alcanivorax, Oleiphilus, Mycobacterium, Rhodococcus, Nocardia e Prauserella (Logeshwaran et al., 2018).

As vias de degradação anaeróbia em ambientes terrestres têm recebido menos atenção. Na oxidação anaeróbica de alcanos, o sulfato ou nitrato atua como um aceptor de elétrons (Khalid *et al.*, 2021). Algumas espécies microbianas anaeróbias também podem degradar os hidrocarbonetos em certas circunstâncias. Por exemplo, uma cepa de resistente ao benzeno, *Flavobacterium sp.*, isolada de profundidades de 1945 m degradou até 90% dos *n*-alcanos proveniente de uma amostra de querosene (Ajona e Vasanthi *et al.*, 2021). Contudo, a degradação rápida e total da maioria dos contaminantes orgânicos ocorre em condições aeróbias, que é principalmente influenciada pela natureza e quantidade dos contaminantes presentes (Al-Hawash *et al.*, 2018; Khalid *et al.*, 2021).

Os hidrocarbonetos aromáticos são o segundo principal composto do diesel. A degradação desses compostos ocorre por meio de vias mais complexas em comparação com alcanos. O processo de degradação dos hidrocarbonetos aromáticos é mais complexo do que os hidrocarbonetos alifáticos devido as numerosas enzimas envolvidas (Imron *et al.*, 2020). As enzimas microbianas, como a oxigenase, a desidrogenase e enzimas ligninolíticas são relatadas como capazes de degradar compostos aromáticos. Inicialmente, os PAHs sofrem ataque no anel aromático pelas dioxigenases. O metabolismo aeróbio e anaeróbico de compostos aromáticos foi relatado. No entanto, a biodegradação anaeróbia é considerada mais lenta do que a aeróbia, com menos mecanismos bioquímicos elucidados (Logeshwaran *et al.*, 2018).

A maioria dos compostos aromáticos é formado pela união de vários anéis benzênicos. A primeira etapa da degradação aeróbica do benzeno envolve a união de dois átomos de oxigênio com um anel de benzeno pela enzima dioxigenase. Isso requer a presença de oxigênio molecular para iniciar a quebra enzimática dos anéis de hidrocarbonetos. A enzima serve para catalisar a união do oxigênio com a molécula do substrato, resultando na hidroxilação do benzeno e produzindo um composto menos estável, o cis-benzeno di-hidro-diol. Este composto será desidrogenado pela enzima cis-diol desidrogenase para produzir catecol. O próximo passo é quebrar o anel do catecol pela adição de moléculas de oxigênio pela enzima dioxigenase intra-diol (ortoclivagem) ou extra-diol (metaclivagem). A dioxigenase intra-diol (catecol 1,2 -dioxigenase) converte o catecol em ácido *cis, cis*-mucônico, enquanto a enzima extra-diol dioxigenase (catecol 2,3-dioxigenase) converte o catecol em semialdeído 2-hidroximucônico. Como o produto dessa reação é um

hidrocarboneto linear, os ácidos carboxílicos ou aldeídos produzidos por essa via passarão por um processo semelhante ao do hidrocarboneto alifático (Imron *et al.*, 2020).

Na degradação anaeróbica os compostos aromáticos são inicialmente oxidados em fenóis / ácidos orgânicos e transformados em ácidos graxos (voláteis, de cadeia longa) que posteriormente são metabolizados em metano e dióxido de carbono (Logeshwaran *et al.*, 2018). Compostos aromáticos estruturalmente diversos são processados por bactérias por meio de vias de degradação periférica para formar benzoil coenzima A (benzoil-CoA), que não necessita de oxigênio para sofrer a quebra o anel aromático (Hirakawa *et al.*, 2015). O benzoil-CoA é um intermediário central no catabolismo anaeróbico da maioria dos compostos aromáticos (Leuthner e Heider, 2000).

2.4. PROTEÔMICA E BIORREMEDIAÇÃO

Estima-se que um grama de solo contenha até 18.000 genomas de procariotos, o que representa uma grande quantidade de informação a ser decifrada (Daniel, 2005). Porém, o estudo desses procariotos não é simples. Isso por que cerca de 95 a 99% dos microrganismos presentes no ambiente não são cultiváveis (Cowan *et al.*, 2005). Sem contar que a maioria das espécies microbianas vivem em comunidades complexas nas quais elas têm que competir ou cooperar umas com as outras, e entender o funcionamento dessas comunidades microbianas é importante (Heyer *et al.*, 2017).

A metaproteômica tem sido empregada no estudo dessas comunidades. Estudos metaproteômicos têm sido usados para caracterizar a composição taxonômica e funcional de comunidades microbianas complexas em seu ambiente específico (Heyer *et al.*, 2017). A metaproteômica envolve a caracterização em grande escala de complexos enzimáticos inteiros, a partir de um conjunto de microrganismos coletados do ambiente natural em um determinado momento. As proteínas produzidas por essa microbiota podem ser caracterizadas por técnicas bastante difundidas em proteômica, como por exemplo, eletroforese bidimensional e espectrometria de massas (Wilmes e Bond, 2004 e Simon e Daniel, 2011). Essa abordagem pode ser usada para explorar de forma mais ampla o que o ambiente tem a oferecer, e levar a um crescente entendimento dos processos investigados, de forma a acessar de modo direto a potencial metabólico/catalítico das comunidades microbianas complexas (Wilmes e Bond, 2004 e Simon e Daniel, 2011). Além do que, a associação da metaproteômica com as novas tecnologias de sequenciamento de DNA, combinadas com o desenvolvimento de bioinformática e de bancos de

dados públicos, tem mudado ainda mais nossa percepção das comunidades microbianas (Ferrer *et al.*, 2009; Simon e Daniel, 2009).

A metaproteômica, por exemplo, já foi utilizada como ferramenta para caracterização de diversas comunidades complexas como: rumem de ovelha (Toyoda *et al.*, 2009), saliva humana (Rudney *et al.*, 2010), amostras marinhas (Sowell *et al.*, 2009), fezes humanas (Verberkmoes *et al.*, 2009), matéria orgânica de lagos e solos de floresta (Schulze *et al.*, 2005), solos e águas subterrâneas contaminadas (Benndorf *et al.*, 2007). A metaproteômica pode investigar a composição proteica total em grande escala, identificar as proteínas verdadeiramente funcionais e adquirir evidências imediatas para analisar as mudanças nos processos metabólicos, e, portanto, também é amplamente utilizada em áreas ambientais (An *et al.*, 2020).

Recentemente, metaproteômica e metabolômica, têm sido utilizadas para desdobrar vários aspectos da microbiologia ambiental e têm se mostrado como uma promessa no campo da biorremediação (Ghosal *et al.*, 2016). Um estudo conduzido por Bozinovski *et al.*, (2014) teve como objetivo verificar as relações funcionais e filogenéticas dentro de uma cultura que havia sido mantida por vários anos em laboratório com *m*-xileno como única fonte de carbono e energia. Em outro estudo um consórcio bacteriano composto de microrganismos provenientes de diferentes ambientes obtido após o enriquecimento na presença de uma mistura de 16 aditivos de hidrocarbonetos, gasolina e óleo diesel foi avaliado (Auffret *et al.*, 2015). A metaproteômica também foi aplicada para entender os papéis da biodiversidade e de rearranjos genéticos e metabólicos em solo contaminado com hidrocarbonetos poliaromáticos (Guazzaroni *et al.*, 2013).

Na biorremediação a proteômica pode ser empregada em várias abordagens, podendo ser aplicada de modo isolado ou combinada como outras "ômicas". Por exemplo, em Burkholderia xenovorans LB400 foi utilizada para estudar não apenas a degradação do p-cimeno e do p-cumato, mas também os mecanismos para lidar com o estresse oxidativo. As análises multiômicas diferenciais sugeriram que as dioxigenases desempenhavam papéis importantes na degradação desses compostos. Além disso, as análises proteômicas de LB400 cultivadas na presença de p-cimeno mostraram que numerosas proteínas de resposta ao estresse também foram superexpressas, como chaperonas, hidroperóxido redutase, proteínas de resistência e cobre oxidase, para reduzir o dobramento incorreto de proteínas e o estresse oxidativo, eliminando os peróxidos (Morya et al., 2020).

Um método metaproteômico quantitativo, juntamente com a metagenômica, foi utilizado para identificar as proteínas funcionais envolvidas na quebra de *Direct Black G* (DBG), que é um corante azo tóxico. Os possíveis mecanismos moleculares co-metabólicos de degradação de DBG por genes candidatos e proteínas funcionais da microflora termofílica foram detectados. A combinação de metagenômica e metaproteômica para investigar a degradação do corante forneceu uma visão mais aprofundada sobre o mecanismo de degradação molecular de poluentes corantes pela microflora natural (An *et al.*, 2020).

Não é fácil detectar e identificar tudo que é produzido por uma comunidade complexa de microrganismos em uma determinada condição ambiental. Isso por que os organismos se apresentam em distribuição desigual, níveis diferentes de expressão de proteínas e a grande variabilidade dos genomas presentes nessas comunidades microbianas (Schneider e Riedel, 2010). Ainda assim, a metaproteômica apresenta-se como uma importante ferramenta para identificação da diversidade genética e determinação da atividade microbiana relacionando sua função e impacto sobre os ecossistemas locais.

Diante de tudo que foi apresentado, e principalmente dos recentes impactos ambientais ocasionados por derramamento de óleo na Amazônia, fica evidente a necessidade de ações que visem reduzir os impactos ambientais ocasionado pela exploração e consumo de petróleo e seus derivados. Estudo de comunidades microbianas com potencial para degradação de hidrocarbonetos tem grande relevância nesse cenário. Informações relacionadas às vias catalíticas responsáveis pelos processos de degradação de petróleo e seus de derivados podem ser úteis para implementação de ações para recuperação de uma área afetada. A utilização de técnicas moleculares modernas, como a proteômica, pode ser empregada para a elucidação das vias metabólicas de degradação de compostos xenobióticas, e consequentemente pode servir para um entendimento mais aprofundada dos processos relacionados a biodegradação dos hidrocarbonetos presentes no petróleo.
3. OBJETIVOS

3.1. GERAL

Analisar o proteoma de um consórcio bacteriano com capacidade de degradação do diesel.

3.2. ESPECÍFICOS

- a) Selecionar consórcios bacterianos com capacidade de biodegradar óleo diesel
- b) Isolar cepas bacterianas presente nos consórcios
- c) Caracterizar os aspectos relacionados a biodegradação do óleo diesel pelos consórcios bacterianos selecionados.
- d) Avaliar a toxicidade dos consórcios bacterianos isolados
- e) Analisar o proteoma do consórcio bacteriano mais promissor
- f) Identificar proteínas e vias metabólicas envolvidas nos processos de biodegradação do óleo diesel.

4. METODOLOGIA

A metodologia empregada para execução desse trabalho foi organizada em quatro etapas distintas de conforme apresentado na figura 01.

 COLETA E ANÁLISE MORFOLÓGICA DOS CONSÓRCIOS BACTERIANOS a) Coleta b) Isolamento de colônias 	 2. ANÁLISE DE BIODEGRADAÇÃO DO DIESEL a) Seleção de consórcios com DCPIP b) Curva de redução do 	 3. TOXICIDADE DO SOBRENADANTE DE CULTURA a) Toxicidade em <i>Artemia</i> <i>salina</i> b) Toxicidade em <i>Lactuca</i> 	4. ANÁLISE PROTEÔMICA a) Obtenção das proteínas b) Eletroforese unidimensional (SDS-PAGE)
bacterianas c) Coloração de Gram e Cápsula	DCPIP c) Teste da atividade emulsificante d) Teste de Hidrofobicidade Celular e) Determinação da biodegradação do óleo diesel por gravimetria	sauva	 c) Preparo de amostras para digestão tríptica d) Digestão tríptica e) Espectrometria de massas f) Processamento de dados e identificação de proteína

Figura 01. Fluxograma dos experimentos.

4.1. COLETA E ANÁLISE MORFOLÓGICA DOS CONSÓRCIOS BACTERIANOS

4.1.1. Coleta

Para realização desse trabalho, foram coletadas 5 amostras de água contaminada com óleo nas proximidades do porto do Ceasa, Rio Negro, na Cidade de Manaus (figura 02) em cinco pontos distintos. A primeira amostra (consórcio A5) foi coletada no ano de 2015, em uma área do Rio Negro contendo os vestígios de óleo. As demais amostras (consórcios A1, A2, A3 e A4) foram coletadas em 2018 em 4 pontos distintos em uma área onde ocorreu de fato um vazamento de óleo combustível marítimo (OCM) no Rio Negro (IPAAM, 2018), enquanto ainda se observava uma grande quantidade de óleo na superfície água. Para cada ponto de coleta foram determinadas as coordenadas geográficas de acordo com o Sistema de Posicionamento Global (GPS) (tabela 01).

Figura 02. Área de coleta dos consórcios bacterianos. Porto do Ceasa, Rio Negro, Manaus-AM. Consórcios A1, A2, A3 e A4 coletados em 31 de agosto de 2018 (após derramamento de óleo na região). Consórcio A5 coletado em 15 de novembro de 2015.

Consórcio	Coordenadas
A1	S 03°08′12.0 e W59°56′25.0
A2	S 03°08′07.0 e W 59°56′20.0
A3	S 03°08′06.0 e W 59°56′20.0
A4	S 03°08′04.0 e W 59°56′18.0
A5	S 03°08′09.0 e W 59°56′18.0.

Tabela 01. Pontos de coleta dos consórcios bacterianos. A1, A2, A3, A4, A5 – Respectivos consórcios coletados.

Para cada amostra, o volume de 100 mL de água da superfície contaminada foi coletado em frascos Erlenmeyer (250 mL), que foram diretamente submetidas à aclimatação durante 24 h à 30° C e agitação constante de 150 rpm. Finalizada a fase de aclimatação, o volume de 1 mL da água coletada foi inoculado em meio Bushnell Haas (BH) (Bushnell e Haas, 1941) líquido, acrescido de 1 % de diesel (S10, adquirido em posto de gasolina, produzido pela Petrobras) como única fonte de carbono, e foi então incubado a 30° C (Das e Chandran, 2010), 150 rpm durante sete dias. Em seguida, 1 mL da cultura crescida foi inoculada em novo frasco contendo 100 mL de meio BH com 1 % de diesel e incubado nas mesmas condições por mais 7 dias. Esse procedimento foi repetido 5 vezes no total, para todas as amostras, visando a avaliação da estabilidade dos consórcios coletados.

Os consórcios foram então preservados em meio BH/Ágar (0,75 %) contendo diesel (1 %) e mantidas em temperatura ambiente.

4.1.2. Isolamento de colônias bacterianas

A partir das amostras preservadas, foi preparado um pré-inóculo (5 mL) de meio BH/diesel (1 %) e incubado a 30° C, a 150 rpm, por 48 h. Após esse período foram feitas diluições sucessivas das culturas na ordem de 10⁻¹, 10⁻², 10⁻³, 10⁻⁴, 10⁻⁵ e 10⁻⁶ e as três últimas foram inoculadas em placas de *petri* (150 mm) contendo meio LB/Ágar. As placas foram incubadas à 30° C por 48 h. Em seguida, colônias bacterianas foram selecionadas baseadas em sua morfologia. Elas foram transferidas simultaneamente para uma nova placa contendo LB/Ágar e um tubo de ensaio contendo 5 mL de meio BH/diesel (1%). Amostras que apresentaram crescimento simultâneo em BH/diesel (1%) e em meio LB foram selecionadas, e aquelas cujo crescimento foi observado apenas em meio LB, foram descartadas. Cada colônia selecionada foi então preservada em meio BH/Ágar (0,75 %) e diesel (1 %) e mantidas em temperatura ambiente.

4.1.3. Coloração de Gram e Cápsula

A partir dos preservados das colônias isoladas foi preparado um pré-inóculo (5 mL) de meio BH/diesel (1 %) e incubado a 30° C, a 150 rpm, por 48 h. Na etapa seguinte, 50 μ L da cultura bacteriana foi inoculado em placas de *petri* (90 mm) contendo LB/ágar e incubados por 24 h à 30° C. Colônias isoladas foram então fixadas por calor em lâminas de vidro (76x26 mm), seguido de coloração com violeta genciana por aproximadamente 15 s e logo após, lavagem com água destilada. Em seguida as lâminas foram cobertas com lugol por 1 min, seguido de nova lavagem com água destilada. As lâminas foram então descoradas com acetona (50 % v/v), seguido por lavagem com água destilada. Para finalizar, foi feita coloração com fucsina por 30 s. As lâminas foram então lavadas com água destilada e secas à temperatura ambiente. A coloração para visualização de cápsula consistiu em misturar sobre a lâmina de vidro (76x26 mm) uma colônia isolada e 2 μ L de água destilada, seguido de adição de 2 μ L de tinta Nanquim. A mistura foi então espalhada com o auxílio de uma lamínula e deixada para secar, e em seguida coradas com fucsina por 2 min. As lâminas foram então visualizadas em microscópio óptico com aumento de 1000 vezes.

4.2. ANÁLISE DE BIODEGRADAÇÃO DO DIESEL

4.2.1. Condições de cultivo bacteriano

Pré-inóculos de cada consórcio foram preparados em tubos de ensaio contendo 5 mL de meio BH/diesel (1% v/v) e cultivados por 24 h, a 30° C e 150 rpm. Após esse período, um volume dessas culturas bacterianas foi utilizado para inocular 100 mL meio BH/diesel (1% v/v) para atingir uma absorbância igual a 0,01 (λ =600nm). Os frascos foram então incubados por 7 dias a 30° C em agitação constante de 150 rpm. Após esse período todo o volume era centrifugado por 30 min a 4000 rpm e então o *pellet* de células e o sobrenadante da cultura eram utilizados imediatamente após a coleta para realização dos ensaios. Todos os cultivos foram sempre realizados em triplicata.

4.2.2. Seleção de consórcios com DCPIP

Para confirmar a capacidade dos consórcios bacterianos de utilizarem o diesel como fonte de carbono e energia empregou-se a técnica do indicador redox 2,6-diclorofenol indofenol (DCPIP) (Hanson *et al.*, 1993). Para esse experimento, foram produzidos pré-inóculos em 5 mL de meio BH/diesel (1 % v/v) para cada consórcio; estes foram cultivamos a 30° C, 150 rpm, por 48 h. Em seguida, células foram transferidas para uma placa de microtitulação contendo volume final de 2 mL de meio BH/diesel (1 % v/v)/DCPIP (0,1 g.L⁻¹) em cada poço. Para cada consórcio, foi utilizado um volume suficiente para absorbância inicial de 0,01 (λ =600nm). Três controles também foram preparados: C1) BH + DCPIP; C2) BH + DCPIP + diesel; C3) BH + DCPIP + Pré-Inóculo. A placa foi então incubada a 30° C por 48 h sem agitação. O padrão de descoloração foi avaliado visualmente comparando a descoloração do indicador DCPIP obtida nos poços contendo os consórcios e o nos poços contendo os controles. Todos os ensaios e controles foram realizados em triplicata.

4.2.3. Curva de redução do DCPIP

Para determinar quais dentre os consórcios bacterianos apresentam melhores taxas de redução do indicador DCPIP, implicando consequentemente em uma melhor taxa de degradação dos hidrocarbonetos presentes no diesel, decidiu-se por quantificar o padrão de descoloração do indicador DCPIP. Para isso seguiu-se o protocolo descrito por Montagnolli *et al.* (2015), com algumas adaptações. Um pré-inóculo para cada consórcio foi obtido nas condições já descritas, seguida de uma diluição em meio BH para uma absorbância igual a 0,8 (λ =600nm). Em seguida, em um tubo de ensaio com tampa de rosca (15x150 mm), foram adicionados meio BH, diesel (1% v/v), 100 µL de pré-inóculo e DCPIP necessário para uma concentração final de 0,5 g.L⁻¹. Os controles foram preparados nas seguintes condições: C1 – BH + DCPIP; C2 – BH + DCPIP +

diesel; C3 – BH + DCPIP + Pré-Inóculo. Os sistemas foram preparados como mostrado na tabela 02 e incubadas a 30° C, 150 rpm, por 7 dias.

Para verificar os índices de descoloração do meio de cultura, medições sucessivas foram realizadas a cada 24 h, durante 7 dias. Um volume de 100 μ L de amostra era diluído em 900 μ L de meio BH estéril, e a absorbância do meio de cultura era medida em espectrofotômetro em comprimento de onda a 600 nm. Essas medições aconteceram a cada 24 h por 7 dias. O DCPIP foi considerado completamente reduzido quando a concentração diminuiu a 0,030 g.L⁻¹. De acordo com Montagnolli *et al.* (2015), valores inferiores a esta concentração não podem ser medidos por método espectrofotométrico.

Tabela 02. Composição dos ensaios para determinação da curva de redução do DCPIP.

Grupo	DCPIP [10g. L ⁻¹]	Meio BH	Inóculo (OD = 0,8)	Diesel	Volume Final
Controle 01 (C1)	400 µL	7,6 mL	-	-	8 mL
Controle 02 (C2)	400 µL	7,52 mL	-	80 µL	8 mL
Controle 03 (C3)	400 μL	7,5 mL	100 µL	-	8 mL
Consórcio A1	400 µL	7,42 mL	100 µL	80 µL	8 mL
Consórcio A2	400 μL	7,42 mL	100 µL	80 µL	8 mL
Consórcio A3	400 µL	7,42 mL	100 µL	80 µL	8 mL
Consórcio A4	400 µL	7,42 mL	100 µL	80 µL	8 mL
Consórcio A5	400 μL	7,42 mL	100 µL	80 µL	8 mL

Para correlacionar a concentração de DCPIP não reduzido (cor azul) com a absorbância medida em espectrofotômetro (λ =600nm) foi necessário o estabelecimento de uma curva padrão, e com isso foi possível determinar as concentrações de DCPIP ao longo do experimento. Para tanto, três concentrações conhecidas do indicador DCPIP (0,5; 5 e 25 mg.L⁻¹) diluído em meio BH foram usadas para obtenção dos valores de absorbância de cada uma delas. A correlação entre os valores de absorbância obtidos, a equação da reta e a concentração de DCPIP pode ser observado no gráfico 01. Os valores de absorbância definidos na curva correspondem à média aritmética de triplicatas de cada concentração.

Gráfico 01: Curva padrão para determinação das concentrações de DCPIP. Concentrações de 0,5, 5 e 25mg.L⁻¹ de DCPIP foram usadas. Absorbância medida em espectrofotômetro (λ =600nm).

4.2.4. Teste da atividade emulsificante

Para esse teste foram utilizados 4 mL de sobrenadante da cultura obtidos como descrito, que foram adicionados em um tubo de vidro de rosca (15 x 150 mm). Sobre este, foram adicionados 4 mL de solvente orgânico (hexano e xileno) ou diesel. A mistura foi vortexada vigorosamente por 5 min e deixada em repouso em temperatura ambiente. As medidas da altura da fase oleosa, aquosa e emulsificada foram medidas após 24 h para obtenção dos índices de emulsificação. O índice de emulsificação foi calculado usando a fórmula: E (%) = (He/Ht) x 100, (He - altura da fase emulsificada; Ht - altura total). As análises foram realizadas em triplicata experimental de três réplicas biológicas. Como controle negativo e positivo foram utilizados, respectivamente, meio de cultura BH estéril e dodecil sulfato de sódio 0,5% (SDS).

4.2.5. Teste de Hidrofobicidade Celular

Células recuperadas como descrito foram ressuspendidas em meio BH estéril para uma absorbância igual a 0,50 (λ =600nm) e 1,2 mL foi transferido para um tubo de ensaio (13x100 mm). Em seguida, foram adicionados 500 µL de solvente orgânico ou diesel sobre a suspensão e vortexada por 2 min. Os tubos foram deixados em repouso por 1 h em temperatura ambiente para a completa separação das fases e toda a fase aquosa foi recuperada com auxílio de uma pipeta *Pasteur*. A absorbância da fase aquosa recuperada foi novamente avaliada em espectrofotômetro (λ =600nm). A hidrofobicidade celular foi expressa como porcentagem de aderência celular no composto hidrofóbico, calculada usando a fórmula: BA(%) = (1 - (Abs/0,5)) x 100. (BA-aderência celular; Abs - absorbância da suspensão após a agitação; 0,5 é a absorbância inicial da suspensão). Os solventes orgânicos utilizados foram hexano e xileno. As análises foram realizadas em triplicata experimental de três réplicas biológicas.

4.2.6. Determinação da biodegradação do óleo diesel por gravimetria

Análise gravimétrica foi utilizada para determinar o nível de biodegradação do óleo diesel, conforme indicado por Ayed *et al.*, 2015. Após o processo de biodegradação (7 dias de cultivo), todo o sobrenadante de cultura (100 mL) foi centrifugado para separar a biomassa como descrito. Em seguida, o sobrenadante de cultura livre de células foi transferido para um funil de separação para extração do óleo diesel residual (não degradado). A extração foi feita com a adição de 100 mL de *n*-hexano ao funil de separação seguido de agitação por 15 s. O funil foi mantido em repouso por 5 min, e em seguida as fases orgânica e aquosa foram separadas. A fração orgânica foi deixada para evaporar em capela de exaustão em temperatura ambiente. Controles abióticos foram realizados nas mesmas condições e o óleo diesel residual recuperado foi usado para estimar as perdas por evaporação e manipulação. A porcentagem de óleo diesel biodegradado foi calculada pela fórmula: Biodegradação (%) = [(PCA – PC) /PD]x100. Onde: PCA: peso do diesel recuperado no controle abiótico; PC: peso do diesel recuperado das culturas bacterianas; PD: peso original do diesel introduzido. Todos os ensaios, incluindo os controles abióticos foram realizados em triplicata com três réplicas biológicas.

4.3. TOXICIDADE DO SOBRENADANTE DE CULTURA

A toxicidade de hidrocarbonetos residuais ou dos subprodutos de degradação microbiana presentes nas amostras dos diferentes consórcios foram testados a fim de se obter a Dose Letal 50 % em 24 h ($DL_{50} - 24$ h), usando *A. salina* (Maddela *et al.*, 2017; Rocha e Silva *et al.*, 2015) e também em ensaio envolvendo a germinação de sementes de alface (*L. sativa*) (adaptado de Montagnolli *et al.*, 2015). O cultivo dos consórcios bacterianos para obtenção dos sobrenadantes de cultura foi feito nas condições e período já descritos (7 dias, 30° C, 150 rpm).

4.3.1. Toxicidade em Artemia salina

Os sobrenadantes das culturas bacterianas separados por centrifugação (30 min, 400 rpm, 4º C) foram ainda filtrados em papel *Whatman* Nº 1. Logo após, as amostras foram preparadas em 10 diluições seriais (1:1; 1:2; 1:4; 1:8; 1:16: 1:32; 1:64; 1:128; 1:256; 1:512) em solução salina

estéril (2 % NaCl, pH 8,5). Alíquotas (2 mL) de cada diluição foram adicionados nos poços de uma placa de poliestireno estéril (placa para cultura de células – 24 Poços, *Kasvi*), e 10 náuplios de *A. salina* foram adicionados aos poços em seguida. As placas foram então incubadas a 30° C por 24 h. Finalmente, náuplios mortos foram contados e foi utilizado para determinar as concentrações DL₅₀ – 24 h para os sobrenadantes das culturas bacterianas. Solução salina estéril (2 % NaCl, pH 8,5) foi utilizada como controle negativo. Cada experimento foi realizado em triplicata e três réplicas biológicas. A toxicidade do meio BH sem diesel (CBH) e com diesel (CD) também foram testadas, e, para tanto, controles abióticos foram preparados nas mesmas condições de cultivo dos demais ensaios.

4.3.2. Toxicidade em Lactuca sativa

O ensaio foi realizado em placas de *petri* esterilizadas (90 mm) contendo papel filtro *Whatman* N° 1. Foram adicionados 4,0 mL de sobrenadante de cultura para embeber o papel filtro. As sementes foram então adicionadas às placas de Petri sobre o papel embebido. Um total de 10 sementes de alface foram colocadas em cada placa, sendo os experimentos realizados em triplicatas para cada amostra testada. O controle negativo de toxicidade, usando água destilada, foi realizado nas mesmas condições. Após 7 dias de incubação no escuro, a 27° C, a germinação das sementes foi avaliada e o índice de germinação calculado utilizando a fórmula: Índice de Germinação (%) = (Número de sementes germinadas no extrato / Número de sementes germinadas no controle) x 100 (Rocha e Silva *et al.*, 2014). As sementes foram compradas todas do mesmo lote/fornecedor. A toxicidade do meio BH com diesel também foi testada (meio BH estéril + diesel [1 % v/v]).

4.4. ANÁLISE PROTEÔMICA

Todos os ensaios anteriores serviram como parâmetros para seleção do consórcio mais promissor para biorremediação, de modo que as etapas seguintes de identificação de proteínas de amostras intra e extracelular foram realizadas apenas para esse único consórcio selecionado.

4.4.1. Obtenção das proteínas intracelulares

A partir de um pré-inóculo, três cultivos do consórcio foram feitos em 100 mL de meio mínimo BH com diesel 1% como fonte de carbono e as células coletadas por centrifugação (4000 rpm, 30min, 4º C) após 7 dias de cultivo. O *pellet* das células foi lavado com 3 mL de tampão TrisHCl (50 mM; pH 7,5) e centrifugado novamente (4000 rpm, a 4° C, por 15 min). Em seguida, 1 mL de tampão de lise (7M uréia, 2M tiouréia e 4 % CHAPS, 50 mM DTT) acrescido de 1 % de solução tampão de anfólitos (IPG, pH 3-11) e 1 mM inibidor de serino e cisteíno-proteases (PMSF – fluoreto de fenilmetilsulfonila), foram adicionados ao sedimento. As células foram lisadas em banho de gelo utilizando disruptor ultrassônico (*Fisher 100 Sonic Dismembrator*) com três pulsos de 30 s na potência 1. As amostras foram incubadas no gelo por 1 h e centrifugadas (30 min, a 12000 rpm, a 4° C) em seguida. O sobrenadante foi distribuído em volumes de 100 μ L em microtubos de 1,5 mL e adicionados 5V de solução gelada de clorofórmio/metanol (1:4). Em seguida, os tubos foram agitados em vórtice por 30 s, centrifugados (15 min, a 12000 rpm, a 4° C) e o sobrenadante descartado. O sedimento foi ressuspendido em 1 mL de metanol e centrifugado (15 min, a 12000 rpm, a 4° C) e o sobrenadante descartado novamente. Esse procedimento de lavagem com metanol foi repetido mais duas vezes. O sedimento foi seco à temperatura ambiente e estocado a -20° C. O extrato seco foi solubilizado em 300 μ L de ureia (3M) e quantificado utilizado o *kit* BCA (*Protein Assay Reagent, Pierce*) seguindo-se as recomendações do fabricante.

4.4.2. Obtenção de proteínas extracelulares

A combinação da precipitação ácida e a técnica de extração por solvente foi empregada para extrair proteínas dos respectivos sobrenadantes de cultura de cada consórcio bacteriano livres de células (Sharma *et al.*, 2018). As extrações foram feitas em triplicata para o consórcio cultivado como descrito no item 4.2.1. As células bacterianas foram removidas do meio contendo por centrifugação (10.000 rpm, 30 min a 4° C). O sobrenadante foi submetido a precipitação ácida por adição de 6N HCl até atingir um pH final de 2,0 e depois incubados a 4° C durante a noite. Os precipitados recolhidos por centrifugação (10.000 rpm durante 30 min a 4° C) foram dissolvidos em metanol puro. As frações não dissolvidas foram separadas por filtração (membrana 0,22 μm). Por fim, as proteínas foram recuperados por evaporação dos extratos metanólicos sob vácuo, utilizando evaporador rotativo. O extrato seco foi solubilizado em 300 μL de ureia (3M) e quantificado utilizado o *kit* BCA (*Protein Assay Reagent, Pierce*) seguindo-se as recomendações do fabricante.

4.4.3. Eletroforese unidimensional (SDS-PAGE)

Um tubo com *pellet* de proteínas (intracelular e extracelular) foi solubilizado em 100 μ L de tampão desnaturante (Tris-HCl 0,2 M pH 6,8; 4 % (v/v) SDS; 4 % (v/v) β -mercaptoetanol; 20

% (v/v) glicerol; 0,1 % (p/v) azul de bromofenol) e colocados por 5 min a 100° C em banho maria. Após este procedimento, 15 µg de proteínas totais foram analisadas por eletroforese em gel de poliacrilamida (12 %), utilizando tampão Tris-Glicina 1x (pH 8,3; Tris 0,025 M; Glicina 0,192 M, SDS 0,1 %), sob uma tensão de 200V e corrente constante de 50 mA por gel no sistema *Mini-PROTEAN Electrophoresis System – (Bio-Rad)*. Foram analisadas proteínas intra e extracelular em triplicata. O tempo de eletroforese foi de aproximadamente 10 min, apenas para eliminação de possíveis contaminantes que poderiam interferir na espectrometria de massas. Em seguida as proteínas foram coradas *overnight* com azul de Comassie R-350, e descoradas em seguida com solução descorante (etanol 25 % e ácido acético 8 %) e água deionizada.

4.4.4. Preparo de amostras para digestão tríptica

A porção do gel contendo o *pool* de proteínas totais foi recortada manualmente do gel e colocadas em microtubos *eppendorf* (1,5 mL). Proteínas intracelulares e extracelulares foram mantidas separadas para análises, assim como as triplicatas de cada amostra. Aos tubos contendo as bandas dos géis foram adicionados 500 μ L de solução descorante (50 % (v/v) de metanol; 2,5 % (v/v) de ácido acético) e incubados por 2 h a temperatura ambiente. Este procedimento foi repetido até a completa descoloração dos géis.

Após a descoloração, as bandas recortadas do gel foram então submetidas a duas etapas de desidratação com 200 μ L de acetonitrila por 5 min cada. Após evaporação da acetonitrila (3 a 5 min), os géis foram reduzidos com 30 μ L de solução de DTT (Ditiotreitol 10 mM; bicarbonato de amônio 100 mM) por 30 min. A solução de DTT foi então descartada e as amostras alquiladas com 30 μ L de solução IAA (Iodoacetamida 50 mM; bicarbonato de amônio 100 mM) por 30 min em câmara escura a temperatura ambiente. Após a remoção da solução de IAA as amostras foram lavadas com 100 μ L de bicarbonato de amônio (100 mM) e incubadas por 10 min. Após o descarte o gel foi desidratado com 200 μ L de acetonitrila durante 5 min e então reidratado com 200 μ L de bicarbonato de amônio (100 mM) e incubadas por 10 min. Após o descarte o gel foi desidratado com 200 μ L de acetonitrila durante 5 min e então reidratado com 200 μ L de bicarbonato de amônio (100 mM) e incubadas por 10 min. Após o descarte o gel foi desidratado com 200 μ L de acetonitrila durante 5 min e então reidratado com 200 μ L de bicarbonato de amônio (100 mM) e incubadas por 10 min. Após o descarte o gel foi desidratado com 200 μ L de acetonitrila durante 5 min e então reidratado com 200 μ L de bicarbonato de amônio (100 mM) por 10 min. Duas desidratações com acetonitrila aconteceram novamente, seguido de evaporação da acetonitrila residual em temperatura ambiente.

4.4.5. Digestão tríptica

Para a digestão proteolítica *in gel*, as bandas dos géis foram reidratadas em 50 μL de solução de tripsina (Promega) [tripsina (20 ng/μL); bicarbonato de amônio (50 mM)] durante 30 min em

banho de gelo. O excesso da solução de tripsina foi descartado seguido de adição de 20 μ L de bicarbonato de amônio (50 mM). As amostras foram incubadas a 37° C por 16 h. A extração dos peptídeos foi realizada adicionando-se 20 μ L de solução de extração I (ácido fórmico 5 %) mantido por 5 min a temperatura ambiente. Todo o volume foi recuperado para um novo tubo e ao gel foram adicionados 15 μ L de solução de extração II (ácido fórmico 5 %) sendo incubado por 10 min a temperatura ambiente. Novamente houve a recuperação de todo o volume e o último passo repetido mais uma vez. As amostras foram então liofilizadas e armazenadas a -20° C até sua aplicação no espectrômetro de massas.

4.4.6. Espectrometria de massas

Os experimentos de espectrometria de massas foram realizados pela *Proteomics platform* of the CHU de Quebec Research Center, em Quebec no Canadá. As amostras foram analisadas por nano LC/MS/MS usando um sistema de cromatografia *Dionex UltiMate 3000 nanoRSLC (Thermo Fisher Scientific*) conectado a um espectrômetro de massas Orbitrap Fusion (Thermo Fisher *Scientific*, San Jose, CA, EUA). Os peptídeos foram presos a 20 µL/min em solvente de carga (2 % de acetonitrila, 0,05 % de TFA) em uma pré-coluna de cartucho de *pepmap* C18 de 5 mm x 300 µm (*Thermo Fisher Scientific / Dionex Softron GmbH*, Germering, Alemanha) durante 5 min. Em seguida, a pré-coluna foi ligada com uma coluna de separação *Pepmap Acclaim (ThermoFisher*, 50 cm x 75 µm de diâmetro interno) e os peptídeos foram eluídos com um gradiente linear de 5-40 % de solvente B (80 % de acetonitrila, 0,1 % de ácido fórmico) em 200 min, a 300 nL/min. Os espectros de massas foram adquiridos usando um modo de aquisição dependente de dados com o *software Thermo XCalibur (versão 4.3.73.11*).

4.4.7. Buscas em bancos de dados de proteína

Os arquivos *MGF* da lista de picos foram criados utilizando o *software Proteome Discoverer 2.3 (Thermo)*. Esses arquivos foram então analisados usando o *Mascot (Matrix Science,* London, UK; versão 2.5.1). O *Mascot* foi configurado para pesquisar um banco de dados de contaminantes e um banco de dados de proteínas, e assumindo a tripsina como enzima de digestão proteolítica. A tolerância de massa de íon de fragmento foi de 0,60 Da e a tolerância de íon parental foi de 10 ppm. Como modificação fixa foi especificado a carbamidometilação da cisteína e, a desamidação de asparagina e glutamina e oxidação de metionina foram especificadas no *Mascot* como modificações variáveis. E ainda foi definido que duas clivagens perdidas seriam permitidas.

Tanto as proteínas intracelulares do consórcio A3 (A3In) quanto as extracelulares do consórcio A3 (A3Ex) foram submetidas às análises para identificação de proteínas do consórcio A3. Como não havia definição prévia de quais eram as espécies que compunham o consórcio A3, a busca inicial se deu no banco de dados *Uniprot (Bacteria*, com 334.584 proteínas anotadas), para obtenção de proteínas ribossomais. Foram identificadas 143 proteínas ribossomais. Para verificação de quais seriam as três espécies com maior prevalência de proteínas ribossomais foram realizadas duas análises. Na primeira análise considerou-se a distribuição dessas proteínas ribossomais por gênero, ou seja, todas as proteínas de cada gênero foram contabilizadas e considerou-se essa quantidade como sendo o 100% de proteínas para o gênero. Em seguida foi avaliada a distribuição dessas proteínas entre as espécies de cada gênero. As três espécies com maior prevalência de proteínas ribossomais ribossomais identificadas foram: *A. baumannii, B. cenocepacia* e *C. taiwanensis*.

Com a definição das espécies, os dados brutos do sequenciamento de proteínas de A3In e A3Ex foram utilizados novamente para novas buscas em banco de dados, agora nos bancos de cada espécie. As buscas foram realizadas nos bancos "*A. baumannii*" (3.263 entradas), "*B. cenocepacia*" (6.040 entradas) e "*C. taiwanensis*" (6.614 entradas) todos do *Uniprot*.

4.4.8. Critérios para identificação de proteínas

O *software Scaffold* (versão 4.8.4, *Proteome Software Inc., Portland, OR*) foi usado para validar as identificações de peptídeos e proteínas baseadas em MS/MS. Uma taxa de descoberta falsa (FDR – *False Discovery Rate*) de 1 % foi utilizada para peptídeo e proteína. As proteínas que continham peptídeos semelhantes e não podiam ser diferenciadas sozinhas com base na análise de MS/MS foram agrupadas para satisfazer os princípios de parcimônia.

4.4.9. Construção dos mapas metabólicos

Reunimos todas as informações relacionadas às proteínas encontradas para as espécies do consórcio A3 e montamos 05 mapas metabólicos no *KEGG*. Foram utilizadas 510 proteínas de *A*. *baumannii* para determinação do mapa de vias metabólicas (código no KEEG: abc01100) para essa espécie. O mesmo procedimento foi adotado para a determinação de mapa semelhante (código no

KEEG: bmj01100) para *B. cenocepacia* com suas 496 proteínas encontradas, e do mapa (código no KEEG: cti01100) de *C. taiwanensis* com 290 proteínas.

Além desses três mapas, dois mapas de sinergismo entre as espécies foram gerados. Para o primeiro, restringimos a abrangência das vias metabólicas para englobar apenas o "metabolismo microbiano em diversos ambientes" (código no KEEG: map01120). Um mapa mais abrangente das vias metabólicas combinadas dos três microrganismos (código no KEEG: map01100), que chamamos de mapa metabólico do consórcio A3, foi determinado pela combinação de 890 proteínas identificadas. Para obtenção desses dois últimos mapas tivemos que reunir informação sobre a homologia de todas as proteínas encontradas e analisá-las individualmente para obtenção de um código único em que o *KEGG* agrupa proteínas ortólogas, pois o sistema de entrada de dados para geração de mapas metabólicos em que inclui mais de uma espécie é baseado nesse tipo de código (K0xxx). De posse dessas informações, conseguimos gerar os mapas metabólicos de sinergismo do consórcio A3.

4.4.10. Análise da abundância de proteínas associadas a biorremediação

Os peptídeos identificados para cada uma das proteínas envolvidas na degradação de xenobióticos foram usados para determinação de um mapa da abundância de proteínas presentes nas amostras intracelular e extracelular quando analisadas por espécies. Utilizou-se o método de contagem espectral total (spectral count), contando o número total de espectros analisados associados a uma única proteína (Luyten et al., 2020). Foi considerado a somatória de todos os spectral count presentes nas três amostras como sendo a abundância de determinada proteína no consórcio. Em princípio, o número de espectros in tandem correspondentes a peptídeos relacionados a uma determinada proteína está positivamente associado à abundância de uma proteína (Liu et al., 2004). Em técnicas de contagem espectral, espectros brutos ou normalizados são usados como substitutos para a abundância de proteínas. Os métodos de contagem espectral têm sido moderadamente bem-sucedidos na quantificação da abundância de proteínas e na identificação de proteínas significativas em vários ambientes (Dicker et al., 2010). Os nossos dados foram normalizados empregando-se o logaritmo de base 10 nas médias de spectral count - [Log (μSC)] - observados paras cada proteína associada aos xenobióticos. Nos casos na qual a contagem espectral foi zero atribuiu-se valor 1, para resolver a indefinição log (0) (Dicker et al., 2010). A construção do hitmap foi feita no software Microsoft Excel (versão 16.16.27).

4.5. ANÁLISE ESTATÍSTICA

O *software Minitab Express*TM (versão 1.5.2) foi utilizado para análises estatísticas nos experimentos relacionados com a biorremediação. Análise de variância (ANOVA) foi realizada para verificar diferenças significativas entre os tratamentos. Comparações por pares foram feitas usando o método de *Tukey* com 95 % de confiança, e o teste para significância entre as médias foi inferido em P <0,05.

5. RESULTADOS E DISCUSSÃO

5.1. ANÁLISE MORFOLÓGICA DOS CONSÓRCIOS BACTERIANOS

A partir dos cinco consórcios coletados, foram isoladas colônias bacterianas com aspectos morfológicos distintos, sugerindo a ocorrência de diferentes espécies. Ao todo foram isoladas dezoito colônias bacterianas, sendo: três do consórcio A1, quatro do consórcio A2, três do consórcio A3, duas do consórcio A4 e seis do consórcio A5 (tabela 03).

Ord.	Consórcio	Amostra	Gram	Forma	Arranjo	Cápsula
1		A12	-	Bacilo	Individual	Sim
2	A1	A13	-	Bacilo	Individual	Sim
3		A16	-	Bacilo	Individual	Sim
4		A21	-	Bacilo	Individual	Sim
5	4.2	A25	+	Coco	Diplococo	Sim
6	A2	A27	-	Bacilo	Individual	Sim
7		A211	-	Bacilo	Individual	Sim
8		A313	-	Coco	Estreptococo	Sim
9	A3	A314	-	Bacilo	Individual	Sim
10		A316	-	Bacilo	Individual	Sim
11		A418	-	Bacilo	Individual	Sim
12	A4	A419	-	Cocobacilo	Diplococo	Sim
13		A509	+	Bacilo	Individual	Sim
14		A510	-	Bacilo	Individual	Sim
15		A538	-	Bacilo	Individual	Sim
16	AS	A520	+	Bacilo	Individual	Sim
17		A522	-	Bacilo	Individual	Sim
18		A549	+	Coco	Diplococo	Sim

Tabela 03. Características morfológicas de colônias isoladas dos consórcios bacterianos

Aspectos importantes quanto a forma da célula, o arranjo estrutural, presença ou ausência de cápsula e a coloração em Gram estão indicados na tabela 03. Em sua grande maioria, as amostras se apresentam na forma de bacilo (14 cepas). As outras quatro amostras eram coco (3 cepas) e cocobacilo (1 cepa) (A25, A313, A549 e A419 respectivamente). Quanto à coloração, a grande maioria foi classificada como Gram negativa, sendo apenas 04 amostras identificadas como Gram

positivas. Em relação a formação de arranjos bacterianos, foi observado que as amostra A25, A419 e A549 se apresentam na forma de diplococos, enquanto a amostra A313 como estreptococo. As demais amostras não formam arranjos, ou seja, foram visualizadas de forma individual. Todas as amostras foram identificadas positivamente quanto a presença de cápsula.

A presença de bactérias degradadoras de hidrocarbonetos em todos os locais de coleta indica que os ecossistemas aquáticos escolhidos contêm populações bacterianas que podem metabolizar componentes do petróleo ou compostos relacionados. No caso das nossas amostras, coletadas em ambiente poluído com derivados de petróleo, isso acaba se tornando uma vantagem em relação as espécies que nunca foram expostas a hidrocarbonetos. As chances de se isolar um microrganismo com potencial para biorremediação é bem maior nesse caso. A presença de bactérias em locais onde houve um derramamento de óleo é um indicador importante para avaliar o potencial de degradação por bactérias em áreas contaminadas com óleo bem como avaliar o nível de poluição por óleo ocorrido (Varjani *et al.*, 2013).

A contagem de bactérias presentes em amostras coletadas varia bastante. Por exemplo, Marchand *et al.* (2017) trabalhou com 781 cepas bacterianas e 279 cepas fúngicas que foram isoladas de solos usando meios padrão e seletivos. Desses isolados, 95 cepas bacterianas e 160 fúngicas foram selecionadas por uma triagem de verificação da capacidade desses microrganismos degradarem hidrocarbonetos. Já Souza *et al.* (2016) coletou amostras de água em três locais no porto às margens do lago Guaíba (Porto Alegre, RS, Brasil), tendo conseguido isolar apenas uma espécie bacteriana com capacidade de degradar hidrocarbonetos. A natureza do material coletado pode apresentar uma explicação para essas diferenças em relação à quantidade de espécies isoladas. De acordo com Youssef *et al.* (2010) a contagem bacteriana em sedimento é maior do que a contagem na água nos mesmos locais de coleta, e a explicação para tanto é devido ao acúmulo de bactérias que tendem a se prender à superfície do sedimento. Os consórcios bacterianos isolados em águas poluídas por óleo combustível do Rio Negro, poderão contribuir para a proposição de alternativas para recuperação áreas impactadas.

5.2. ANÁLISE DE BIODEGRADAÇÃO DO DIESEL

5.2.1. Seleção de consórcios e curva de redução de DCPIP

O resultado de seleção dos consórcios utilizando DCPIP pode ser observado na figura 03, em que está representado também a curva de redução do indicador redox utilizado. Todos os consórcios bacterianos testados apresentaram um padrão de descoloração do meio de cultura (figura 03B), embora em intensidades diferentes. Comparando visualmente os resultados é possível notar que o consórcio A3 apresenta um padrão de descoloração (redução de DCPIP) mais elevado que os demais. Não foi verificado visualmente diferenças entre os consórcios A2 e A4, porém existe uma leve diferença na descoloração apresentada em A5 se comparada com A1. Ainda observado a figura 03B não é possível fazer distinção na descoloração apresentada nos controles utilizados, bem como também não é possível diferenciar esses controles, após 48h de cultivo, do seu correspondente na placa inicial (0h de cultivo).

Figura 03: Seleção de consórcios com indicador redox DCPIP. A – Ensaio em escala piloto (0h); **B** – Ensaio em escala piloto (48h). **C** - Curva de redução de DCPIP. C1 – Controle 1 (BH + DCPIP); C2 – Controle 2 (BH + DCPIP + Diesel); C3 – Controle 3 (BH + DCPIP + Pré-Inóculo). A1, A2, A3, A4, A5 – Respectivos consórcios cultivados em BH + Diesel + DCPIP.

A curva de redução do indicador redox DCPIP (figura 3C) mostra diferenças acentuadas nos padrões de descoloração apresentados pelos consórcios e ainda entre os consórcios e os controles. Os valores mostrados indicam que os controles apresentam uma descoloração natural ao longo do tempo de experimento. Em média 158,2 mg.L⁻¹ do indicador redox foi reduzido naturalmente nas três condições de controle. Isso pode ter relação com a presença de íons H⁺ provenientes do meio de cultura (sem microrganismos) ou do diesel, que são facilmente

incorporados pelo indicador redox (Isola *et al.*, 2013). A desintegração natural da estrutura química DCPIP ao longo do tempo também pode justificar a redução observada (Montagnolli *et al.*, 2015). No entanto, essa pequena instabilidade molecular foi adequada para o intervalo de tempo do experimento.

Fazendo uma comparação numérica, por exemplo, a descoloração apresentada pelo consórcio que foi mais eficiente (A3 – 455,7 mg.L⁻¹) em reduzir o DCPIP é quase o triplo daquela descoloração natural que foi observada nos controles (μ =158,2mg.L⁻¹). Isso indica, portanto, a capacidade desses microrganismos em crescer no meio de cultivo contendo diesel, e consequentemente degradarem os hidrocarbonetos ali presentes, convertendo-os em fonte de carbono e energia utilizável.

Assim como foi observado no teste descrito anteriormente (figura 3B), nesse teste também o melhor resultado dentre os consórcios avaliados foi observado para A3, sendo esse o único consórcio em que a descoloração avançou abaixo da faixa visível da cor azul (descoloriu totalmente). Isso se deu a partir do 6º dia. Os demais consórcios, mesmo apresentando significativa descoloração do meio de cultura, não conseguiram descolorir totalmente o DCPIP no intervalo de realização do experimento. Analisando os dados da curva é possível observar também uma leve tendência de estabilização (pouca variação) no padrão de descoloração do meio de cultura de A1 a partir do 4º dia de experimento e de A2, A4 e A5 a partir do 5º dia. Uma maior tendência de descoloração do meio de cultura é observada em A5 nas primeiras 24 h de experimento, o que pode indicar uma melhor adaptação dos microrganismos presentes nesse consórcio para utilizarem o diesel como fonte de carbono e energia nessas horas iniciais de experimentação.

Na tabela 04 são apresentadas as diferenças estatísticas para as médias de concentrações de DCPIP que foi reduzida ao final dos 7 dias de experimento. A análise de variância e teste *Tukey* indicaram diferenças significativas (α =0,05) entre os tratamentos. Essas diferenças estatísticas foram observadas entre alguns consórcios, e ainda entre consórcios e controles. O teste indicou que A3 diferiu de todos os demais consórcios, sendo indicado estatisticamente como o melhor consórcio capaz de reduzir DCPIP ao longo de sete dias. Não houve diferença significativa entre A4 e A5, assim como A1 e A2. Em relação aos controles empregados no teste, não houve diferença estatística significativa observada entre eles, o que reforça a hipótese tese inicial de perda natural de coloração ao longo do experimento. Estes dados corroboram os resultados obtidos para a triagem

dos consórcios na presença de DCPIP (figura 03B), na qual o consórcio A3 apresentou a maior descoloração do indicador colorimétrico.

Tabela 04. Concentração média de DCPI reduzido pelos consórcios. A1, A2, A3, A4, A5 – Respectivos consórcios cultivados em BH + diesel + DCPIP. C1 – Controle 1 (BH + DCPIP); C2 – Controle 2 (BH + DCPIP + diesel); C3 – Controle 3 (BH + DCPIP + Pré-Inóculo). Letras diferentes indicam diferenças estatísticas significativas entre os tratamentos. Análise de variância e teste *Tukey* com significância de 0,05.

	Redução de DCPIP					
Amostra	Média (mg.L ⁻¹)	DP				
A1	323,8 ^C	±4,782				
A2	338,4 ^C	±8,282				
A3	455,7 ^A	±10,97				
A4	373,3 ^B	±7,251				
A5	388,5 ^B	±4,782				
C1	166,7 ^D	±6,108				
C2	154,6 ^D	±2,902				
C3	153,4 ^D	±6,108				

Na tabela 05 são mostrados os resultados da seleção com DCPIP e associados com o ambiente onde o material foi coletado. Baseado no padrão de descoloração adotou-se (+++) para descoloração mais intensa do meio de cultura e (+) para o menos intenso, baseado na estatística empregada (tabela 04). O consórcio A3, como já mencionado, foi aquele que teve a maior capacidade em redução do DCPIP do meio de cultura, sendo este coletado de em área onde houve um derramamento de óleo, seguido por A2 e A4, ambos também coletados de área onde houve derramamento de óleo. Os consórcios A5 e A1 foram os que apresentaram os piores resultados quando comparados aos demais, com a diferença que A5 foi coletado de área com indício de contaminação por óleo, onde não era possível precisar com exatidão a fonte e nem o tipo de óleo.

O tempo necessário para a descoloração do DCPIP azul (oxidado) para a forma incolor (reduzida) é um dos parâmetros adotados para seleção das cepas bacterianas. Aquelas que conseguem descolorir o DCPIP mais rapidamente, são escolhidas como as melhores degradadoras de óleo (Roy *et al.*, 2002), e, portanto, são aquelas aptas para continuação dos estudos envolvendo a degradação de hidrocarbonetos.

Tabela 05. Pontos de coleta dos consórcios bacterianos e seleção com DCPIP. A1, A2, A3, A4, A5 – Respectivos consórcios cultivados em BH + Diesel + DCPIP, a 30° C, sem agitação, por 48. Descoloração do DCPIP variando de mais intenso (+++) ao menos intenso (+), observado visualmente.

Consórcio	Ambiente	Seleção com DCPIP	Ano da coleta
A1	Derramamento de óleo	+	2018
A2	Derramamento de óleo	+	2018
A3	Derramamento de óleo	+++	2018
A4	Derramamento de óleo	++	2018
A5	Indício de contaminação	++	2015
	com óleo		

Embora em intensidades diferente, todos os consórcios foram capazes de descolorir o meio de cultura. Isso indica que os poluentes contidos nos locais de coleta atuaram como um mecanismo de seleção, favorecendo o isolamento de microrganismos capazes de degradar hidrocarbonetos, corroborando com Horel e Schiewer (2014). A presença do diesel como fonte única de carbono selecionou apenas aqueles microrganismos capazes de crescer na presença do xenobiótico.

Eliminar vários poluentes do ambiente natural é necessário para melhorar o desenvolvimento sustentável do ecossistema e reduzir o impacto ecológico. Os microrganismos usam sua extensa atividade catabólica para degradar ou converter esse composto em substâncias inofensivas, desempenhando um papel importante na remoção de poluentes (Balogun *et al.*, 2015). A remediação microbiana de locais contaminados por hidrocarbonetos é realizada com a ajuda de um grupo diverso de microrganismos, particularmente as bactérias endógenas presentes no solo (Sebiomo *et al.*, 2010). A primeira linha de defesa contra a poluição por óleo no meio ambiente é a população microbiana (Youssef *et al.*, 2010). Vários estudos têm aplicado com sucesso DCPIP para triagem de bactérias degradadoras de hidrocarbonetos (Roy *et al.* (2002); Habib *et al.* (2017); Marchand *et al.* (2017). Como demonstrado, os consórcios isolados de água do Rio Negro são promissores para investigação quanto ao potencial no uso de processos de biorremediação.

5.2.2. Teste da atividade emulsificante

O aspecto da emulsão formada pelo consórcio A3 pode ser visualizado na figura 04. A emulsão em xileno, tem um aspecto mais denso e, está mais compactada, do que aquelas observadas em hexano e diesel. Estas últimas, apresentam um aspecto mais disperso ao longo da fase orgânica

(porção superior), chegando em alguns caso a ocupar toda a fase orgânica, porém, sem emulsionar totalmente todo o volume do solvente.

Figura 04: **Emulsão formada pelo consórcio A3.** Sobrenadante de cultura e solvente orgânico (xileno e hexano) ou diesel (1:1) vortexado por 120 s, deixado em repouso por 24 h em temperatura ambiente.

Os resultados apresentados no gráfico 02 demonstram que o SDS foi capaz de emulsionar totalmente xileno e hexano, assim como o diesel. Em relação ao controle negativo, como já era esperado, não foram verificados quaisquer índices de emulsificação nos solventes e combustível testados. Os índices de emulsificação apresentados pelos consórcios variaram de acordo com o solvente testado, assim como também foram observadas diferenças para o mesmo solvente tratado com consórcios diferentes.

Gráfico 02: Índices de emulsificação em 24 h. A1, A2, A3, A4, A5 – Consórcios bacterianos testados. SDS (0,5%) – Controle positivo; BH – Controle negativo. Letras diferentes indicam diferenças estatísticas significativas entre os tratamentos. Análise de variância e teste *Tukey* com significância de 0,05.

Foi confirmado estatisticamente (tabela 06) que o consórcio A3 apresentou os melhores resultados de emulsificação entre os consórcios testados, com a indicação de que não foram detectadas diferenças significativas nas emulsões em xileno e hexano produzidas por esse consórcio. Mesmo a emulsão em diesel sendo o pior resultado para A3, esta, foi estatisticamente superior àquelas produzidas pelos demais consórcios no mesmo solvente.

O melhor índice de emulsificação para A2 foi observado em diesel (16,67 % \pm 1,110), diferindo entre as duas outras condições testadas para esse consórcio. O consórcio A4 se destaca emulsificando xileno (17,42 % \pm 1,933), que difere estatisticamente das demais condições testadas. Já o melhor índice de A1, foi observado no tratamento evolvendo xileno (10,82 % \pm 0,904), que também apresentou diferença significativa em relação aos demais tratamentos daquele consórcio. Em A5 não foram observadas diferenças significativas entre xileno e diesel, apenas em relação a condição hexano. Comparável ao controle negativo, temos as emulsificações apresentada por A1 em diesel e A5 também diesel, indicando que esses foram os piores resultados observados. Nenhum dos tratamentos apresentou resultado estatisticamente semelhante ao controle positivo empregado nesse ensaio.

Tabela 06: Índices de emulsificação (E24h). Letras diferentes indicam diferenças estatísticas significativas entre os tratamentos. Análise de variância e teste Tukey com significância de 0,05. A1, A2, A3, A4, A5 – Consórcios bacterianos testados; SDS (0,5%) – Controle positivo; BH – Controle negativo.

	Índice de Emulsificação (%)						
	Xi	leno	Н	Iexano	Di	Diesel	
A1	10,82 ^{E, F}	±0,904	5,45 ^{G, H}	±0,000	$0,00^{I}$	±0,000	
A2	12,18 ^E	±2,221	12,74 ^E	±1,110	16,67 ^D	±1,110	
A3	36,60 ^B	±1,132	37,58 ^B	±2,129	20,79 ^C	±2,380	
A4	17,42 ^{C, D}	±1,933	13,07 ^E	±1,132	11,73 ^{E, F}	±1,069	
A5	3,95 ^H	±0,045	8,50 ^{F, G}	±1,132	1,95 ^{H, I}	±0,022	
BH (Controle -)	0,00 I	$\pm 0,000$	$0,00^{I}$	±0,000	$0,00^{I}$	±0,000	
SDS (Controle +)	100 ^A	±0,000	100 ^A	±0,000	100 ^A	±0,000	

A mensuração dos índices de emulsificação é uma das técnicas empregadas para determinar a capacidade dos microrganismos em produzir biossurfactantes (Morales-Guzmán *et al.*, 2017). A literatura sugere que os biossurfactantes produzidos a partir de bactérias marinhas são capazes de destruir as manchas de óleo que flutuam na superfície da água, promovendo a dispersão do óleo na água pela formação de uma emulsão estável, aumentando assim a taxa de biodegradação (Karlapudi *et al.*, 2018). A formação de emulsões é uma das propriedades mais importantes relacionadas a moléculas frente aos processos de biorremediação. Os biossurfactantes desempenham seu papel na biorremediação aumentando a área de superfície dos substratos. Microrganismos produtores de biossurfactante criam seu próprio microambiente e promovem a emulsificação pela liberação de certos compostos por meio de vários mecanismos (Karlapudi *et al.*, 2018).

A capacidade de produção de emulsão, e por associação, produção de biossurfactantes, varia bastante entre as espécies de bactérias. Por exemplo, Morales-Guzmán *et al.* (2017), avaliou populações bacterianas de solos não contaminados ou contaminados com hidrocarbonetos de petróleo visando estimar suas propriedades emulsificantes e degradadoras de diesel. Os valores de E24% das cepas bacterianas mostraram variação de 74,2 à 10%. Ainda assim, todas as cepas foram usadas na formação de um consórcio que conseguiu degradar 97 % do diesel.

A capacidade de A3 emulsionar entre 20 e 40%, aproximadamente, os solventes orgânicos testados e o diesel, bem como o seu destaque em todas as condições frente aos demais consórcios que foram testados, reforça ainda mais o potencial de A3 para uso em processos de biorremediação.

5.2.3. Teste de hidrofobicidade celular

A hidrofobicidade celular dos microrganismos formadores dos consórcios foi testada quanto à sua capacidade de aderência em solventes orgânicos e em diesel (gráfico 03).

Gráfico 03: Índices de hidrofobicidade celular. A1, A2, A3, A4, A5 – Consórcios bacterianos testados. Letras diferentes indicam diferenças estatísticas significativas entre os tratamentos. Análise de variância e teste *Tukey* com significância de 0,05.

Os dados que estão representados no gráfico 03, indicam que os maiores índices de hidrofobicidade celular foram verificados para o consórcio A3 em todos os solventes testados, atingindo valores próximos de 100 % nos solventes orgânicos e superior a 75 % em diesel. Os resultados da análise de variância e teste *Tukey* dos índices de hidrofobicidade celular estão apresentados na tabela 07. A análise estatística confirmou que os melhores resultados de hidrofobicidade celular foram observados para o consórcio A3 em todas as condições, com a ressalva de que para a condição xileno não houve diferença estatística significativa em relação ao consórcio A5.

Ainda avaliando xileno como solvente, os resultados apresentados pelos consórcios A1, A2, A4 e A5 também não apresentaram diferença estatística significativa. Em hexano, o consórcio A3 não foi comparável a nenhum dos outros consórcios, assim como A1, que teve o segundo maior valor de hidrofobicidade celular nesse solvente. Apenas os consórcios A4 e A5 não diferiram estatisticamente nessa condição. E finalmente, em diesel, os consórcios A2 e A4 foram os únicos que não apresentaram diferenças significativas a nível estatístico, todos os demais resultados foram diferentes.

Tabela 07: Índices de hidrofobicidade celular dos consórcios. A1, A2, A3, A4, A5 – Consórcios bacterianos testados. Letras diferentes indicam diferenças estatísticas significativas entre os tratamentos. Análise de variância e teste *Tukey* com significância de 0,05.

Hidrofobicidade celular (%)							
	Xileno		Hexano		Diesel		
A1	89,7 ^B	±1,102	57,1 ^D	±1,848	20,8 ^G	±1,908	
A2	90,5 ^в	±2,485	29,6 ^F	±0,600	2,2 ^H	±0,200	
A3	98,9 ^A	±0,115	98,1 ^A	±0,416	76,9 ^C	±2,053	
A4	90,4 ^B	±0,200	42,7 ^E	±2,730	8,3 ^H	±4,937	
A5	92,2 ^{A, B}	±1,249	48,7 ^E	±0,808	29,7 ^F	±5,353	

A hidrofobicidade da superfície celular microbiana é reconhecida como um dos fatores determinantes na adesão microbiana a superfícies de biorremediação (Wang *et al.*, 2007). A posse de hidrofobicidade da superfície celular por microrganismos contribui para compatibilidade química e física entre os organismos e os substratos hidrofóbicos, resultando assim em uma interação aprimorada entre eles. Essa interação aumentada levaria a uma maior disponibilidade de substrato e utilização aprimorada. Assim, a ocorrência generalizada de caráter hidrofóbico da superfície celular entre membros da população de microrganismos que degradam hidrocarbonetos,

seria uma característica favorável para a atividade de biorremediação da poluição por hidrocarbonetos em qualquer ambiente (Obuekwe *et al.*, 2009).

A hidrofobicidade nativa das superfícies de uma ampla gama de microrganismos foi atribuída a certas proteínas e lipídios presentes na parede celular. A adição de compostos ativos de superfície provavelmente leva a mudanças fenotípicas na superfície microbiana durante o crescimento. Assim, a hidrofobicidade de uma célula microbiana, que pode ser resumida como a afinidade das células microbianas aos poluentes relacionados ao óleo, pode ser alterada dramaticamente (Kaczorek *et al.*, 2008). Avaliando o emprego de outras técnicas de remediação de áreas contaminadas com hidrocarbonetos, fica evidenciado a importância das superfícies hidrofóbicas para remoção do óleo dessas áreas (Catania *et al.*, 2020), nesse sentido os altos índices de hidrofobicidade celular observados em A3, por exemplo, é uma característica desejável quando se trata do emprego desses microrganismos em processos de biorremediação.

Resultados de hidrofobicidade celular em torno dos 70%, comparáveis aos descritos neste trabalho para a condição diesel, foi observado por Poddar *et al.* (2019), ao avaliar a adesão ao diesel das espécies isoladas de seu consórcio bacteriano. O isolado *Pantoea sp.* SHC5 apresentou 72,9% de hidrofobicidade celular, enquanto outros isolados como *Enterobacter sp.* SHC6, *Klebsiella spp.* SHC7 e SHC1 apresentaram resultados abaixo disso. Bactérias degradadoras de óleo têm sido caracterizadas por sua afinidade com o hidrocarboneto, no qual um aumento na adesão bacteriana à capacidade do hidrocarboneto permite que a bactéria se separe da fase aquosa e se associe à fase orgânica, interagindo assim com o hidrocarboneto (Poddar *et al.*, 2019). Os compostos super-hidrofóbicos geralmente mostram um grau de afinidade em uma faixa de 80-97 %, enquanto os compostos super-hidrofílicos mostram o mesmo em uma faixa de 1-20 % (Rizzo *et al.*, 2018; Zhou *et al.*, 2018).

Com isso é possível sugerir que as cepas bacterianas presentes no consórcio A3 possuem um grau alto de afinidade com hidrocarbonetos, uma vez que o índice geral de hidrofobicidade para o consórcio foi de quase 77% em diesel.

5.2.4. Biodegradação do óleo diesel pelos consórcios

A biodegradação do óleo diesel pelos consórcios bacterianos testados foi avaliada por gravimetria. Os resultados estão apresentados no gráfico 04, no qual é possível observar que o consórcio A3 foi o que mais degradou os hidrocarbonetos do óleo diesel. Após 7 dias de cultivo,

ficou evidenciado que o consórcio A3 conseguiu consumir/biodegradar 73,7 % ($\pm 2,767$) dos hidrocarbonetos de diesel, enquanto o consórcio A4 consumiu 66,6 % ($\pm 3,729$). As análises indicam que o percentual de óleo degradado pelo consórcio A3 não difere estatisticamente do valor obtido para A4, mas difere de todo o resto. Também não foram encontradas diferenças estatísticas significativas para a degradação observada para os consórcios A4 e A5 (tabela 08).

Gráfico 04: Taxas de biodegradação do óleo diesel pelos consórcios. A1, A2, A3, A4, A5 – Consórcios bacterianos testados. Cultivo a 30° C, 150rpm, por 7 dias. Letras diferentes indicam diferenças estatísticas significativas entre os tratamentos. Análise de variância e teste *Tukey* com significância de 0,05.

Os consórcios A1 e A5 foram responsáveis pela degradação de aproximadamente 56 % do diesel, e A2, que apresentou a menor porcentagem de degradação do óleo, teve uma taxa de biodegradação de 53,7 % (\pm 1,728). Contudo, o teste estatístico indicou não haver diferença significativa entre os três consórcios. Por outro lado, no controle abiótico, foi detectado aproximadamente 19 % de perda do óleo diesel. Essas perdas podem ser em função da evaporação durante o experimento ou mesmo relacionadas as etapas de manipulação. A fórmula utilizada para o cálculo das porcentagens de biodegradação do óleo diesel pelos consórcios leva em consideração a perda atribuída ao controle abiótico, de modo que as taxas apresentadas no gráfico refletem exatamente as porcentagens de degradação de cada consórcio testado.

Consórcio	Degradação (%)				
С	19,8 ^D	±2,553			
A1	56,3 ^c	±3,681			
A2	53,9 ^c	±1,728			
A3	73,7 ^A	±2,767			
A4	66,0 ^{A, B}	±3,729			
A5	57,4 ^{B, C}	±3,994			

Tabela 08. Biodegradação do óleo diesel pelos consórcios. C – Controle abiótico; A1, A2, A3, A4, A5 – Consórcios bacterianos testados. Letras diferentes indicam diferenças estatísticas significativas entre os tratamentos. Análise de variância e teste *Tukey* com significância de 0,05.

Resultados comparáveis aos descritos neste trabalho foram encontrados por García-Cruz *et al.* (2019) ao avaliar um consórcio microbiano, dominado por membros dos gêneros *Marinobacter* e *Alcanivorax*, isolado de sedimentos marinhos do sul do Golfo do México. Seu crescimento, porém, foi avaliado em biorreator de coluna de bolha usando 13 g.L⁻¹ de diesel como única fonte de carbono. O crescimento microbiano foi detectável até o 8º dia de cultivo, sendo que no dia 6º de operação, 74,61% do diesel já havia sido consumido. O estudo indicou ainda que o consórcio microbiano era composto por mais de 20 filos, sem precisar exatamente quantas espécies havia ali presentes.

Tiralerdpanich *et al.* (2018), investigou as taxas de biodegradação de diesel, hexadecano e fenantreno, em sedimentos de manguezais contaminados. Os resultados apresentados para a degradação do diesel foram relativamente próximos aos descritos aqui, sendo que a eficiência desse consórcio na remoção do diesel foi 88 %, com a ressalva, porém, de que o tempo de cultivo empregado pelos autores foi de 28 dias.

A eficiência de culturas puras e consórcio bacteriano na biodegradação do diesel foi avaliada por Rizzo *et al.* (2017) para três espécies. A maior eficiência individual de biodegradação do diesel foi obtida para a cepa *Alcanivorax sp.* A53 com uma porcentagem média de 52,7 %, seguida pela de *Pseudomonas sp.* A6 (38,2 %) e *Joostella* sp. A8 (26,8 %). Quando combinados na forma de consórcio a eficiência de biodegradação atingiu valores acima de 99 %. O tempo de experimento foi definido em 20 dias, utilizando 2 % (v/v) de diesel como única fonte de carbono. Chen *et al.* (2019) observaram índices de degradação de 80-99% em uma abordagem de

biorremediação de solo com vários percentuais de contaminação causada por misturas dieselbiodiesel, ao longo de 200 dias de experimentação.

A taxa de biodegradação de hidrocarbonetos é uma consideração importante que determina a escala de tempo para biorremediação em ambientes contaminados com óleo. Ao avaliar os trabalhos mencionados, fica clara a variação nas taxas de degradação em função do tempo de experimentação. Resultados próximos da degradação total do óleo quase sempre demandam um tempo superior de crescimento bacteriano, ou então, condições altamente controladas dos parâmetros que podem afetar a taxa de degradação (pH, temperatura, O_2), como o caso de cultivo em biorreator. Outros parâmetros também interferem diretamente na eficiência dessas taxas de biodegradação de hidrocarbonetos. Como por exemplo, a natureza do local a ser recuperado. A relação tempo/taxa de degradação é afetada, por exemplo, se a recuperação for solo em vez de água, demandando no primeiro caso um tempo bem maior para degradação. E ainda temos eficiência do microrganismo em si. Como foi citado no exemplo das culturas puras, as taxas de degradação podem variar bastante em função do microrganismo, embora quando juntas em consórcio apresentem relativa superioridade na taxa de degradação. E por fim, a quantidade de espécies presentes nos consórcios. Vimos o caso em que dois microrganismos degradavam com eficiência o diesel e casos de consórcios com um número maior de microrganismo com taxa menor de degradação. Isso tudo só evidencia a complexidade de parâmetros que devem ser avaliados na construção de um consórcio bacteriano com reais chances de emprego efetivo para biorremediação de áreas contaminadas com hidrocarbonetos.

Comparando os consórcios apresentados nesses trabalhos em função da eficiência *versus* tempo de cultivo, convém que o consórcio A3 é promissor para aplicação em processos de biorremediação. Este consórcio com três cepas bacterianas isoladas, apresentou capacidade de degradar mais que 70 % do óleo em apenas 7 dias de experimentação.

5.3. TOXICIDADE DO SOBRENADANTE DE CULTURA

5.3.1. Toxicidade em Artemia salina

A toxicidade dos sobrenadantes de cada consórcio foi testada em *A. salina* e os resultados são mostrados no gráfico 05. O teste DL_{50} indica a presença de substâncias tóxicas no meio. Ao expor um determinado organismo a um composto, espera-se que pelo menos 50 % da população

de indivíduos expostos responda de maneira quantitativamente idêntica ao longo de um determinado período (Koslowski *et al.*, 2020).

Os resultados indicam que em meio BH (controle de viabilidade) a taxa de sobrevivência dos náuplios de *A. salina* ultrapassa 70 % na sua menor diluição (1:1), e com tendências crescentes de sobrevivência nas demais diluições, evidenciando assim, uma pequena influência do meio de cultura na morte dos náuplios ao longo do ensaio. Tendo em vista que todos os sobrenadantes de cultura têm como base esse mesmo meio de cultivo, deve-se levar em consideração esses dados ao analisar os demais resultados.

O sobrenadante de cultura do consórcio A2 e o controle de toxicidade (meio BH + diesel) não degradado (CD) alcançou taxa de sobrevivência de 50 % dos náuplios de *A. salina* na diluição 1:16, sendo essa a menor DL₅₀ dentre os consórcios testados. É interessante frisar, que para os demais consórcios, essa foi a diluição a partir do qual começou a se observar a sobrevivência dos náuplios. A DL₅₀ para A1 foi de \cong 1:48, e os consórcios A3, A4 e A5 apresentaram DL₅₀ relativamente próxima, com A3 \cong 1:80, A4 \cong 1:96 e A5 \cong 1:112. Foi possível, portanto, determinar diluições onde se observou sobrevivência de mais de 50% dos indivíduos para todos os consórcios testados. A tabela 09 apresenta todas as taxas de sobrevivência dos náuplios de *A. salina* em cada diluição para os respectivos consórcios, bem como os desvios padrões observados. **Tabela 09. Toxicidade dos sobrenadantes de cultura dos consórcios para** *A. salina*. CBH – controle com meio BH; CD – Controle com meio BH + diesel (1% v/v); A1, A2, A3, A4, A5 – Sobrenadantes dos respectivos consórcios. Cultivo a 30° C, por 24 h. Diluição em solução salina (2 % NaCl, pH 8,5). O sinal "-" indica que o valor de porcentagem e desvio padrão é igual zero. Valores sombreados indicam DL50 ou intervalo onde ela acontece.

Diluiaão	% de sobreviv	vência dos ná	iuplios de 2	4. salina						
Difuição	СВН	CD	A1	A2	A3	A4	A5			
1:1	74 ±2,3	-	-	-	-	-	-			
1:2	77 ±5,8	-	-	13 ±5,8	-	-	-			
1:4	80 ±0,0	-	-	20 ±0,0	-	-	-			
1:8	83 ±5,8	-	-	43 ±5,8	-	-	-			
1:16	87 ±5,8	53 ±5,8	-	50 ±10	-	-	-			
1:32	90 ±0,0	67 ±3,5	47 ±5,8	60 ±10	13 ±5,8	7 ±5,8	17 ±5,8			
1:64	90 ±0,0	70 ±0,0	53 ±5,8	60 ±10	43 ±5,8	40 ±0,0	40 ±10			
1:128	90 ±0,0	70 ±0,0	63 ±5,8	67 ±5,8	63 ±5,8	60 ± 10	53 ±5,8			
1:256	93 ±5,8	73 ±2,3	63 ±5,8	67 ±5,8	67 ±5,8	63 ±5,8	60 ±0,0			
1:512	97 ±5,8	73 ±5,8	77 ±5,8	70 ±0,0	83 ±5,8	67 ±5,8	80 ±10			

É possível observar que para a maior diluição testada (1:512) houve sobrevivência de 83 % ($\pm 5,8$) dos náuplios em A3, sendo essa a maior taxa de sobrevivência alcançada entre os consórcios, superando inclusive o controle com diesel não degradado (CD). Nessa mesma diluição, A5 registou 80% (± 10) de sobrevivência, seguido por A1 (76% $\pm 5,8$), A2 (70% $\pm 0,0$) e A4 (66% $\pm 5,8$). Os valores de porcentagem, assim como os desvios padrões foram mantidos com uma casa decimal após a vírgula.

Abordagem baseada em testes de bioensaio usando organismos vivos mais sensíveis a poluentes, como *Lactuca sativa*, *Artemia salina* e *Danio rerio*, para a avaliação de toxicidade é preferível para avaliar os reais efeitos biológicos e outros fatores (Módenes *et al.*, 2018). Além desses organismos, *Daphnia magna* (Koslowski *et al.*, 2020), *Poecilia vivipara* e *Anomalocardia brasiliana* (Durval *et al.*, 2020) podem ser empregados em teste de toxicidade. O valor da concentração letal média (CL₅₀) é usado como um critério de avaliação, fornecendo uma resposta biológica eficaz relacionada a poluentes tóxicos (De Pauli *et al.*, 2018).

A ecotoxicidade dos hidrocarbonetos de petróleo é o seu principal perigo para o meio ambiente. Com a biorremediação, a ecotoxicidade dos hidrocarbonetos de petróleo residuais diminui gradualmente (Zhang *et al.*, 2021). Um estudo conduzido por Maddela *et al.* (2017) testou a eficiência na degradação dos hidrocarbonetos de petróleo por um consórcio de fungos e bactérias. A toxicidade residual dos hidrocarbonetos e produtos do consórcio foi testada para determinação da DL₅₀ em *A. salina* pós 90 dias de degradação. A diluição da amostra com hidrocarbonetos não tratados necessária para produzir um DL₅₀ foi de 1:133, e 1:8 para as amostras de solo inoculados com microrganismo.

A toxicidade de um sobrenadante de cultura foi testada em *A. salina* por Rocha e Silva *et al.* (2014). Nesse trabalho, buscavam-se estabelecer uma espécie e o melhor meio de cultivo para produção de biossurfactante, na qual foi escolhido a *Pseudomonas cepacia* CCT6659 cultivada em 100 mL de meio mineral suplementado com 2,0 % de óleo de fritura de resíduo de soja como fonte de carbono e 2,0 % de macerado de milho como fonte de nitrogênio. O caldo livre de células apresentou DL₅₀ na concentração de 156 mg/L, sendo o biossurfactante nesse caso considerado de baixíssima toxicidade. Porém, o trabalho faz a análise da toxicidade unicamente de um biossurfactante produzido em caldo sem adição de hidrocarbonetos de petróleo. No estudo apresentado aqui, foi avaliada a toxicidade do sobrenadante de cultura (proteínas/biossurfactantes) e ainda dos resíduos de diesel não degradado.

Quanto à toxicidade do diesel não degradado, os resultados obtidos são próximos aos encontrados por Khan *et al.* (2007) sobre *Oncorhynchus mykiss* e *Daphnia magna*. Nesse trabalho eles determinaram a concentração letal média (LC₅₀) em diferentes tempos de exposição e foi desenvolvida uma classificação de toxicidade para o diesel. Os valores médios de LC₅₀ para diesel variaram de um mínimo de 133,5 ppm a um máximo de 578,1 ppm. Os resultados apresentados aqui estão dentro dessa margem para toxicidade com diesel não tratado. Considerando que os testes neste trabalho são realizados sempre com diesel 1 % (v/v), e sua densidade é 0,865g/cm³ (Malik *et al.*, 2020), uma diluição de 1:16 (onde foi observado DL₅₀ para CD) nos daria algo em torno de 508 ppm, portanto, dentro da faixa de toxicidade estabelecida por Khan *et al.* (2007).

5.3.2. Toxicidade em Lactuca sativa

A toxicidade dos sobrenadantes de cultura dos consórcios também foram testados em sementes de alface (*L. sativa*). Os resultados estão representados no gráfico 06, que indica a

porcentagem de germinação das sementes de alface após incubação com o sobrenadante de cultura dos consórcios e ainda com diesel não tratado com consórcio.

Gráfico 06: Toxicidade dos sobrenadantes de cultura dos consórcios para *L. sativa* CD – Meio BH + diesel não degradado (1% v/v); A1, A2, A3, A4, A5 – Sobrenadante dos respectivos consórcios. Condições de cultivo dos consórcios: 150 rpm, 30° C, 7 dias. Condições de cultivo das sementes: 27° C, por 7 dias, no escuro. Letras diferentes indicam diferenças estatísticas significativas entre os tratamentos. Análise de variância e teste *Tukey* com significância de 0,05.

Os resultados indicam taxa de germinação de 96,3 % (\pm 6,41) das sementes nos extratos do consórcio A3, a maior taxa de germinação observada entre os consórcios. As taxas de germinação observadas para os extratos dos consórcios A1 e A5 foram exatamente as mesmas (77,8 % \pm 0,0). De acordo com a análise estatística empregada o resultado obtido para A3 não apresentou diferença estatística significativa em relação aos tratamentos com A1 e A5 (tabela 10). Para A4 a taxa de germinação foi de 59,3 % (\pm 6,41). O único extrato onde não se observou taxa de germinação maior que 50 % foi em A2 (48,1 % \pm 6,41). Apenas A1, A3 e A5 conseguiram superar a taxa de germinação do controle (CD) (74,1 % \pm 12,83), em que foi utilizado diesel não biodegradado. O teste estatístico indicou ainda que os extratos de A1, A4, A5 e CD não apresentaram diferença estatística significativa quanto as taxas de germinação, assim com A4 e A2 também não diferiram estatisticamente.

A diferença mais acentuada em relação a CD, foi observada em A3, onde a germinação foi de quase 100 % das sementes após a biodegradação do óleo diesel. A3 diferiu estatisticamente do controle com diesel não degradado (CD). As taxas germinação em A1 e A5 foram muito parecidas

com as de CD. Comparando os desvios padrões das amostras, foi observado uma variação de mais de 12 % nas germinações de semente tratadas em CD, indicando portando uma instabilidade maior nas germinações das triplicatas tratadas com diesel não degradado.

Tabela 10. Toxicidade dos sobrenadantes de cultura dos consórcios para *L. sativa*. CD – Controle com diesel não biodegradado; A1, A2, A3, A4, A5 – Consórcios bacterianos testados. Letras diferentes indicam diferenças estatísticas significativas entre os tratamentos. Análise de variância e teste *Tukey* com significância de 0,05.

Amostra	% de Germinação			
CD	74,1 ^B	±12,83		
A1	77,8 ^{A, B}	±0,00		
A2	48,1 ^C	±6,41		
A3	96,3 ^A	±6,41		
A4	59,3 ^{B, C}	±6,41		
A5	77,8 ^{A, B}	±0,00		

Na figura 05 é possível visualizar todas as plântulas de alface germinadas após os 07 dias de experimentos. É possível observar que, além de A2 ter tido os piores índices de germinação, também foram observados os menores tamanhos de plântulas, indicando uma possível interferência do sobrenadante de cultura desse consórcio na germinação e crescimento das plântulas.

Figura 05: Comparação do tamanho do das plântulas de *L. sativa* tratadas com sobrenadantes de cultura dos consórcios. Controle (+) - Controle positivo com água destilada; Diesel (1%) – Controle com meio BH + diesel não degradado (1% v/v); A1, A2, A3, A4, A5 – Sobrenadante dos respectivos consórcios. Escala apresentada: 3,5 cm. Condições de cultivo dos consórcios: 150 rpm, 30° C, 7 dias.

O tratamento com diesel, como já indicamos, teve a maior variação de germinação de sementes, porém o crescimento delas se manteve praticamente na mesma proporção nas triplicatas. Ainda em relação a esse tratamento, quando comparado ao controle positivo, percebe-se que há pouca variação em relação aos tamanhos das plântulas. Os tratamentos envolvendo os consórcios A3 e A5 foram aqueles que a apresentaram as maiores plântulas, chegando em alguns casos a ultrapassarem 3 cm, resultados esses que não foram observados nem no controle positivo. Isso indica uma possível influência positiva dos sobrenadantes dessas culturas no crescimento das plântulas. Os tratamentos usando sobrenadante de cultura dos consórcios A1 e A4 apresentaram variações com tamanhos similares.

Muitas plantas têm sido utilizadas para avaliar a fitotoxicidade de contaminantes no meio ambiente. O trigo (*Triticum aestivum*), grama (*Lolium spp.*), alface (*Lactuca sativa*), couve chinesa (*Brassica chinensis*) são vários organismos de teste terrestres recomendados por organizações reguladoras ambientais para avaliar os efeitos crônicos de contaminantes do solo (Khan *et al.*, 2018). O teste de germinação tem sido empregado para medir a fitotoxicidade devido ao seu baixo custo de execução (Chandankere *et al.*, 2014). Além da germinação das sementes, o comprimento do caule e o número de ramos podem ser usados também como critérios para avaliação de fitotoxicidade envolvendo hidrocarbonetos (Maddela *et al.*, 2017). O crescimento da planta é inibido tanto pela natureza dos hidrocarbonetos quanto pela concentração de hidrocarbonetos presentes no solo. As propriedades hidrofóbicas dos hidrocarbonetos limitam a capacidade das plantas de absorver água e nutrientes do solo (Khan *et al.*, 2018).

Montagnolli *et al.* (2015) avaliou a fitotoxicidade em *L. sativa* de vários compostos, inclusive do diesel, antes e depois de um processo de biodegradação. Foram observadas taxas de germinação em torno de 80 %, porém, as taxas de germinação em diesel biodegradado foram menores que 80 %, indicando que houve piora no nível de toxicidade após a degradação do diesel. Neste trabalho, no caso do diesel não degradado obteve-se resultados muito próximos a esses (77,8 %), indicando a reprodutibilidade do teste. Em relação aos consórcios, apenas o consórcio A3 apresentou índice de germinação estatisticamente superior ao diesel não tratado, sendo, portanto, o único consórcio que conseguiu diminuir a toxicidade do diesel após 7 dias de degradação. Os demais consórcios, ou apresentaram índices de germinação sem diferença estatística significativa (A1 e A5) em relação ao diesel não tratado, ou inferior a esse (A2 e A4).

A produção de metabólitos tóxicos pode ter ocorrido durante a biodegradação do óleo o que pode influenciar diretamente nos índices de germinação. Isso pode ser um indicativo do aparecimento de inibidores de crescimento (Montagnolli *et al.*, 2015). Conforme os resultados observados para os ensaios envolvendo A2, percebeu-se diferença significativa ao tamanho das plântulas em relação ao controle positivo, evidenciando a hipótese de piora nos níveis de toxicidade. Em A3 e A5, porém, foi observado que algumas plântulas apresentavam crescimento superior ao controle positivo, com a diferença de que em A5 a toxicidade do sobrenadante foi comparável ao diesel não tratado. A avaliação do efeito inibitório no alongamento da raiz e do hipocótilo de mudas pode refletir a toxicidade de compostos solúveis presentes em baixa concentração que não são suficientes para inibir a germinação, mas podem atrasar ou inibir o processo de alongamento da raiz ou do hipocótilo (Cruz *et al.*, 2014). Os dados obtidos reforçam ainda mais o potencial promissor para emprego do consórcio A3 em processos de biorremediação.

5.4. CONSÓRCIO A3 COMO O MAIS PROMISSOR PARA A BIORREMEDIAÇÃO

Os testes realizados serviram para indicar um consórcio bacteriano para as análises de proteômica. Na tabela 11 é apresentado o melhor resultado de cada teste realizado. Nos casos em que não há diferença estatística significativa entre os melhores resultados, foram incluídos dois ou mais consórcios. O emprego de diferentes técnicas combinadas para selecionar o melhor consórcio para biorremediação reforça a eficiência do consórcio selecionado. A escolha do consórcio mais eficiente deve, obviamente, ser baseado nos resultados que mais se destacam entre aqueles testes empregados. No presente trabalho, os resultados relacionados à biodegradação e ecotoxicidade mostrados sugerem que as cepas de bactérias do consórcio A3 têm grande potencial na degradação do óleo diesel, e, portanto, este consórcio é o indicado para análise por proteômica.

Tabela 11. Comparação	entre os consórcios	em relação aos	melhores result	ados dos
testes realizados. X – Xileno; H -	- Hexano; D – Diese	l; Biod. – Teste d	e biodegradação	do diesel.

Cons.	DCPIP	Emulsificação			Hidrofobicidade			Diad	Toxicidade	
		Х	Н	D	Х	Н	D	Divu.	A. salina	L. sativa
A1									•	
A2									•	•
A3	•	ullet	•	ullet	●	ullet	•	•	•	•
A4								•		•
A5					•					●
5.5. ANÁLISE PROTEÔMICA DO CONSÓRCIO A3

5.5.1. Definição dos gêneros e espécies do consórcio por espectrometria de massa

Para definição de gêneros e espécies presentes no consórcio A3, foram identificadas 754 proteínas, sendo que 143 dessas proteínas foram identificadas como proteínas ribossomais. Uma análise detalhada das proteínas ribossomais presentes nas amostras indicou que elas eram, de acordo com os resultados para as buscas naquele banco de dados utilizado, semelhantes às proteínas ribossomais de 27 gêneros bacterianos diferentes (gráfico 07).

Gráfico 07. Identificação dos gêneros constituintes do consórcio A3 baseada no perfil de proteínas ribossomais. No gráfico é apresentada a distribuição das proteínas ribossomais entre os gêneros bacterianos identificados através da busca no banco de dados *Uniprot*. O *software* utilizado para fazer as buscas foi *Mascot (Matrix Science,* London, UK; versão 2.5.1). Banco de dados pesquisado foi "*Bacteria*" do *Uniprot*. Pesquisado em 20/03/2020.

O gênero *Acinetobacter* concentrou 37,1 % de todas as proteínas ribossomais, seguido por *Burkholderia* com 25,9 % e *Cupriavidus* com 14 %. Os demais gêneros somaram juntos 23 % das proteínas avaliadas. Entre esses gêneros restantes, nenhum deles superou individualmente os 2,1 %, sendo que em termos de quantidades, apenas 07 deles apresentaram mais que 01 proteína e os outros 17 apresentaram uma única ocorrência de proteína ribossomal dentre todas as que foram analisadas. Vale lembrar que foram isoladas três cepas bacterianas morfologicamente distintas do consórcio A3 (tabela 03). Entre os três gêneros mais prevalentes mostrados no gráfico 07, o gênero *Acinetobacter* foi o que apresentou maior quantidade de proteínas ribossomais. E de um total de

53 proteínas ribossomais encontradas para esse gênero, 84,9% (45 proteínas) foram identificadas como pertencentes à *A. baumannii*, e apenas 15,1% (8 proteínas) pertencentes a *A. baylyi*.

Gráfico 08. Identificação das espécies constituintes do consórcio A3 baseada no perfil de proteínas ribossomais. No gráfico é apresentada a distribuição de proteínas ribossomais entre as espécies de cada um dos três gêneros mais prevalentes. O *software* utilizado para fazer as buscas foi *Mascot* (*Matrix Science*, London, UK; versão 2.5.1). Banco de dados pesquisado foi "*Bacteria*" do *Uniprot*. Pesquisado em 20/03/2020.

O gênero *Burkholderia* foi o que apresentou o maior número de espécies. De um total 37 de proteínas ribossomais avaliadas nesse gênero, 73,3% (26 proteínas) foram relacionadas a *B. cenocepacia*, as demais espécies não ultrapassaram os 8% cada (3 proteínas no máximo). E finalmente, para o gênero *Cupriavidus*, com 20 proteínas ribossomais analisadas, 55% (11 proteínas) foram indicadas como pertencentes a *C. taiwanensis*, 25% (5 proteínas) à *C. metallidurans* e os 20% restantes pertencentes a duas outras espécies. As porcentagens de distribuição de proteínas entre os gêneros estão representadas no gráfico 08. Também avaliamos se haveria a possibilidade de um dos três gêneros apresentar mais de uma espécie no consórcio A3. Os resultados dessa análise confirmaram a prevalência de três espécies pertencentes a três gêneros distintos no consórcio A3, conforme pode ser observado gráfico 09. Os resultados indicam que

41% (45 proteínas) dessas proteínas ribossomais analisadas (110) pertenciam a *A. baumannii*, seguido de 24% (26 proteínas) para *B. cenocepacia* e 10% (11 proteínas) para *C. taiwanesis*.

A identificação de espécies microbianas com base em espectrometria de massa surgiu como uma alternativa aos métodos tradicionais de identificação baseados em fenótipo ou genótipo (Karlsson *et al.*, 2020). Muitos estudos têm mostrado que os picos massa/carga (m/z) mais usados para identificação de espécies de bactérias são os de proteínas ribossomais (Ryzhov e Fenselau, 2001; Pineda *et al.*, 2003; Teramoto *et al.*, 2007; Suarez *et al.*, 2013). Isso por que as proteínas ribossomais são universais na vida celular e a maioria dessas proteínas são altamente conservadas dentro de uma espécie bacteriana (Suarez *et al.*, 2013).

Gráfico 09. Distribuição de proteínas ribossomais entre todas as espécies dos três gêneros mais prevalentes. O *software* utilizado para fazer as buscas foi *Mascot* (*Matrix Science*, London, UK; versão 2.5.1). Banco de dados pesquisado foi "*Bacteria*" do *Uniprot*. Assumiu-se a tripsina como enzima de digestão proteolítica. Pesquisado em 20/03/2020.

Quanto a utilização desses gêneros bacterianos em processos de biorremediação, existem alguns trabalhos mostrando o envolvimento deles na degradação de hidrocarbonetos. O gênero *Acinetobacter* é um dos mais bem caracterizados em relação ao seu envolvimento em processos de biorremediação (Logeshwaran *et al.*, 2018; Imron *et al.*, 2019; Imron *et al.*, 2020; Adetunji e Olaniran, 2021). Também existem relatos da participação do gênero *Burkholderia* nesses processos (Mohanty e Mukherji, 2008; Morlett-Chávez *et al.*, 2010; Mohammed *et al.*, 2018; Morya *et al.*,

2020). E finalmente o gênero *Cupriavidus* também tem sido empregado em processos de biorremediação nos últimos anos (Min *et al.*, 2020; Tiwari *et al.*, 2020; Yi *et al.*, 2020; Deng e Zhou, 2021). E por fim, o envolvimento direto de *A. baumannii* (Gupta *et al.*, 2020; Zhang *et al.*, 2021), *B. cenocepacia* (Obuekwe *et al.*, 2009; Nguyen *et al.*, 2021) e *C. taiwanensis* (Oyehan e Al-Thukair, 2017; Obruca *et al.*, 2018) em processos de biorremediação também tem sido relatado.

5.5.2. Proteínas identificadas

As buscas nos bancos de dados das três espécies mais prevalentes no consórcio A3 resultaram na identificação de 890 proteínas no total (figura 06a), sendo 816 delas comuns às duas amostras, 23 exclusivas de A3In (totalizando 839) e 51 exclusiva de A3Ex (totalizando 867).

Figura 06: Representação das Quantidades totais de proteínas identificadas em Diagrama de Venn. (a) – Proteínas identificadas nas amostras intracelular (A3In) e extracelular (A3Ex). (b) – Proteínas identificadas por espécie (AB – *A. baumannii;* BC – *B. cenocepacia;* CT – *C. taiwanensis* (CT). O *software* utilizado para fazer as buscas foi *Mascot* (*Matrix Science*, versão 2.5.1). Banco de dados pesquisado foram "*A. baumannii*", "*B. cenocepacia*" e "*C. taiwanensis*" do *Uniprot*. Pesquisado em 20/03/2020.

Quanto à identificação de proteínas por espécies, foram identificadas 510 proteínas para *A. baumannii* (AB), sendo 246 exclusivas para essa espécie, 496 para *B. cenocepacia* (BC), com 277 exclusivas, e 290 para *C. taiwanensis* (CT) sendo 104 exclusivas para a espécie. Comuns a todas as espécies, foram identificadas 143 proteínas, e outras foram identificadas como sendo comuns a duas espécies apenas, de acordo com a figura 06b. AB e BC compartilham 77 proteínas, BC e CT, 30 proteínas e AB e CT, apenas 13. Uma lista completa com todas essas proteínas foi incluída no apêndice 02.

A determinação do "componente celular" onde elas atuam, bem como sua "função molecular" e "processo biológico" que desempenham nas células foram obtidas no *Gene Ontology* (*GO*), *Uniprot e Kyoto Encyclopedia of Genes and Genomes (KEGG*). Para 361 (40,5 %) de proteínas identificadas não foi possível obter informações acerca de componente celular do qual essas proteínas fazem parte, uma vez que essas informações não foram conclusivas nas bases de dados pesquisadas. Para aquelas em que foi possível definir essa informação, verificou-se que a maioria tem como componente celular o citoplasma (253) e a membrana plasmática (141). Mitocôndria e ribossomos foram associados a aproximadamente 50 proteínas cada, seguidos por membrana externa/parede celular (22), ácidos nucleicos (7) e citoesqueleto (3) (figura 07). Quanto as proteínas associadas à mitocôndria, o *Gene Ontology* não limita as busca apenas para procarioto, e como a busca é feita pelo nome da proteína e suas variações de nome, é possível que em eucariotos essas proteínas estejam na mitocôndria e em procariotos no ribossomo.

Em relação à função molecular, a grande maioria das proteínas identificadas foram classificadas como enzimas das classes oxidorredutase (169), transferase (144) e hidrolase (75), outras 04 classes somaram 154 proteínas. Merece destaque também a quantidade de proteínas identificadas como estando associadas ao transporte (86) e ligação aos ácidos nucleicos (77) (figura 07). O número expressivo de oxidorredutases e hidrolases identificadas nas amostras pode ter alguma relação com capacidade de biorremediação dos microrganismos da amostra. Existem vários tipos de enzimas como oxidorredutases, lacases, hidrolases e peroxidases ativamente envolvidas em processos de biorremediação (Kadri *et al.*, 2017).

As oxidorredutases são produzidas por várias espécies de microrganismos e plantas para neutralizar composto por oxidação, envolvendo transferência de elétrons dos redutores para os oxidantes, resultando na liberação de íons cloreto, CO₂ e metanol. Calor ou energia são gerados como resultado da degradação dos poluentes por oxidorredutases, sendo utilizado pelos microrganismos para suas atividades metabólicas. As oxidorredutases têm sido utilizadas na degradação de muitos poluentes naturais e artificiais. Por exemplo, uma bactéria Gram positiva *Bacillus safensis* CFA-06 produz oxidorredutase para degradar os compostos de petróleo (Sharma *et al.*, 2018).

Figura 07: Anotação funcional das proteínas do consórcio A3 com base no componente celular, função molecular e processo biológico. Informações obtidas no *Gene Ontology* (GO), bancos de dados *Uniprot* e *Kyoto Encyclopedia of Genes and Genomes (KEGG)*. Destaques em vermelho indicam função molecular ou processo biológico que podem ter relação com a degradação de xenobiótico. Pesquisado em 20/03/2020.

As hidrolases são mais comumente usadas para a biorremediação de pesticidas, inseticidas e redução de sua toxicidade (Sharma *et al.*, 2018). As principais ligações químicas, como ésteres, ligações peptídicas, ligações de haleto de carbono, etc., são quebradas por diferentes enzimas hidrolíticas. As hidrolases extracelulares secretadas por alguns microrganismos catalisam a biodegradação de polímeros orgânicos, compostos tóxicos com massas moleculares inferiores a

600 Da que podem passar pelos poros celulares. A biorremediação de derramamento de óleo, inseticidas organofosforados e carbamatos usando enzimas hidrolíticas também é muito eficaz (Sharma *et al.*, 2018).

Em relação aos processos biológicos (figura 07) anotados a partir do *GO*, *Uniprot* e *KEEG*, as proteínas foram agrupadas em 23 processos biológicos. Foram agrupados como "indefinido" 138 proteínas que não apresentaram com clareza as informações pertinentes aos processos biológicos nos quais atuam, e por isso foram categorizados como "indefinido". Para as demais proteínas identificadas, o "metabolismo de aminoácidos" foi o que mais agrupou proteínas (104), seguido por "sinalização e processo celular" (70), transcrição (61) e tradução (53).

"Degradação de xenobióticos" incorporou 34 das 890 proteínas, o que representa aproximadamente 4 % de todas as proteínas identificadas do consórcio A3. Proteínas relacionadas a "resposta ao estresse" e "recombinação e reparo do DNA" somaram 19 no total. A quantidade de proteínas envolvidas com o metabolismo energético, mais especificamente o "ciclo do ácido tricarboxílico" somaram 20 proteínas, destacando-se a identificação de todas as proteínas do ciclo. Vale ressaltar que muitos dos produtos finais das vias de degradação de xenobióticos tem como destino final o ciclo de *Krebs*. "Metabolismos de ácidos graxos/lipídeos" (33) também foram destacados na figura devido ao envolvimento de uma parte uma grande parte dessas proteínas no metabolismo de *n*-alcanos, embora não exista, no *KEGG*, uma categoria específica de "degradação de alcanos". As vias metabólicas das quais essas proteínas estão envolvidas também foram anotadas com base no banco de dados *KEGG*. Um total de 110 vias metabólicas foram parcialmente identificadas. A figura 08 resume as principais vias encontradas. Vale ressaltar que existe sobreposição de proteínas entre as vias metabólicas, ou seja, uma mesma proteína pode atuar em duas, três ou mais vias.

As diferentes vias anotadas com foco na degradação de xenobióticos inclui a degradação do aminobenzoato (map00627), degradação do benzoato (map00362), degradação de caprolactama (map00930), degradação de cloroalcano e cloroalceno (map00625), degradação de clorociclohexano e clorobenzeno (map00361), degradação de compostos aromáticos (map01220), degradação de etilbenzeno (map00642), degradação do fluorobenzoato (map00364), degradação do naftaleno (map00626), degradação do tolueno (map00623) e degradação do xileno (map00622). A via de degradação dos ácidos graxos (map00071) também foi destacada, uma vez que a

degradação de *n*-alcanos consiste inicialmente na conversão desses compostos à ácido graxo, para então entrarem na via de degradação de ácidos graxos (Imron *et al.*, 2020).

Figura 08: Vias metabólicas nas quais as proteínas do consórcio A3 podem atuar. Informações obtidas no *Kyoto Encyclopedia of Genes and Genomes (KEGG)*. Pesquisado em 20/03/2020. Destaques em laranja representam as vias relacionadas ao metabolismo energético central. Os destaques em vermelho indicam via associadas com a degradação de xenobióticos.

Além das 34 proteínas que atuam diretamente na degradação de xenobióticos, outras 13 proteínas que atuam de modo indireto para o favorecimento da degradação desses compostos foram incluídas na tabela 12. Essas incluem aquelas associadas na degradação de *n*-alcanos (degradam

ácidos graxos), envolvidas no transporte de xenobióticos ou ainda aquelas que tenham relação com redução ao estresse celular associado aos hidrocarbonetos. Portanto, foram destacadas 47 proteínas que foram associadas de modo direto ou indireto na degradação de xenobióticos. Essas proteínas foram identificadas em vias de degradação de 13 compostos xenobióticos, que incluem anéis aromáticos e compostos alifáticos. A maior quantidade dessas proteínas foi associada à via de degradação do benzoato (25), as demais vias tiveram 06 proteínas identificadas, ou menos, cada uma. A quantidade de proteínas da via degradação de ácidos graxos somaram 29 no total, onde foi possível identificar todas as proteínas da β-oxidação. A lista com as 47 proteínas agrupadas como envolvidas na degradação de xenobióticos está representada na tabela 12.

Tabela 12. Proteínas envolvidas na degradação de xenobióticos. # - Sequência em que aparece na lista do apêndice 02; Esp. – Espécie na qual foi identificada; MM kDa – Massa molecular em kDa; Am. – Amostra onde foi identificada.

#	Proteínas (49)	Esp	Código de acesso	EC Number	MM kDa	Via Metabólicas	Am.
1	1,4-dihydroxy-2- naphthoyl-CoA synthase	СТ	Q0K0J4	3.1.2	29	Deg. Benzoato; Deg. Comp. Aromáticos	In/Ex
10	2-Hydroxymuconic semialdehyde dehydrogenase	СТ	Q0K3T0	1.2.1.85	53	Deg. Benzoato; Deg. Xileno; Deg. Comp. Aromáticos	Ex
26	3-Hydroxyacyl-CoA dehydrogenase	СТ	Q0KCM8	1.1.1.157	53	Deg. Benzoato	In/Ex
28	3-hydroxyacyl-CoA dehydrogenase	BC	A0A0H3KM46	1.1.1.35	88	Deg. A. Graxos; Deg. Benzoato;	In/Ex
30	3-hydroxybutyryl-CoA dehydrogenase	BC	A0A0H3KDT9	1.1.1.157	33	Deg. Benzoato	In/Ex
31	3-hydroxybutyryl-CoA epimerase	BC	A0A0H3KFK5	1.1.1.35	75	Deg. A. Graxos; Deg. Benzoato	In/Ex
36	3-ketoacyl-CoA thiolase	AB	Q6FF69	2.3.1.16	41	Deg. A. Graxos; Deg. Benzoato	In/Ex
43	3-Oxoadipate CoA-Transf. subunit A	СТ	Q0K4S5	2.8.3.6	24	Deg. Benzoato	In/Ex
	Acetyl-CoA acetyl transferase	СТ	P14611	2.3.1.9	41	Deg. A. Graxos; Deg. Benzoato	
		СТ	Q0KBG1				
130		СТ	Q0KF99				
		СТ	Q0K368				
		СТ	Q0K469				In/Ex
131	Acetyl-CoA acyl transferase	BC	A0A0H3KHB1	2.3.1.16	42	Deg. A. Graxos; Deg. Benzoato;	
151		BC	A0A0H3KGJ9		42		In/Ex
	Acetyl-CoA C-acetyl transferase	BC	A0A0H3KNW7	2.3.1.9	40	Deg. A. Graxos; Deg. Benzoato	
132		BC	A0A0H3KRS2		41		
		BC	A0A0H3KS85		41		In/Ex
133	Acetyl-CoA C-acyl transferase	СТ	Q0KEF9	2.3.1.16	42	Deg. A. Graxos; Deg. Benzoato; Deg. Etilbenzeno	In/Ex
	Acyl-CoA dehydrogenase	AB	Q6F7U0	1.3.8.8	44	Deg. A. Graxos	
		СТ	Q0KEG1		65		
		СТ	Q0KCR3		45		
146		СТ	Q0KCR2		40		
		СТ	Q0KBF9		68		
		СТ	Q0K376		45		
		AB	Q6FEG4		65		
		AB	Q6FEG3		69		In/Ex

147	Acyl-CoA dehydrogenase, short-chain specific	CT CT	Q0K3Z2 Q0K3F2	1.3.99	43 40	Deg. Caprolactama	In/Ex
148	Acyl-CoA synthetase (Long-chain-fatty- kodCoA ligase)	AB	Q6FFF5	6.2.1.3	62	Deg. A. Graxos	In/Ex
214	Beta-ketoadipyl CoA thiolase	СТ	Q0K4S3	2.3.1.16	42	Deg. A. Graxos; Deg. Benzoato; Deg. Etilbenzeno	In/Ex
215	Beta-ketothiolase BktB	СТ	Q0KBP1	2.3.1.9	41	Deg. A. Graxos; Deg. Benzoato	In/Ex
237	Carboxymethylenebutenolidase	BC	A0A0H3KU99	3.1.1.45	26	Deg. Clorobenzeno e Clorociclohexano; Deg. Fluorobenzoato; Deg. Tolueno	In/Ex
242	Catechol 1,2-dioxygenase	BC	A0A0H3KXJ8	1.13.11.1	33	Deg. Clorobenzeno e Clorociclohexano; Deg. Benzoato; Deg. Fluorobenzoato; Deg. Tolueno; (map01220) Deg. Comp. Aromáticos	In/Ex
		СТ	Q0K5D5		113	-	
316	Efflux pump membrane transporter	BC	A0A0H3KHJ6	-	115		
		AB	Q6F8F6		115		In/Ex
		СТ	Q0K371		31	Deg. A. Graxos; Deg. Benzoato;	
		BC	A0A0H3KKC0		28	Deg. Aminobenzoato; Deg.	
328	Enoyl-CoA hydratase	BC	A0A0H3KWE1	4.2.1.17	28	Caprolactama	
		BC	A0A0H3KMI5		30		
		BC	A0A0H3KPA1		28		In/Ex
329	Enoyl-CoA hydratase/carnithine racemase	ст	Q0KAI1	4.2.1.17	27	Deg. A. Graxos; Deg. Benzoato; Deg. Aminobenzoato; Deg. Caprolactama	Ex
330	Enoyl-CoA hydratase/Delta(3)-cis- delta(2)-trans-enoyl-CoA isomerase	СТ	Q0KBG3	1.1.1.35	75	Deg. A. Graxos; Deg. Benzoato	In/Ex
334	FadE2-like Acyl-CoA dehydrogenase (ACAD)	СТ	Q0KCN9	1.3.8.7	47	Deg. A. Graxos	In/Ex
335	Fatty kod oxidation complex subunit alpha	AB	Q6FF68	1.1.1.35	78	Deg. A. Graxos; Deg. Benzoato; Deg. Caprolactama;	In/Ex
366	Glutamine synthetase	СТ	Q0K990	5.4.4.3	52	Deg. Aminobenzoato	In/Ex
271	Glutary CoA debudrogenase	СТ	Q0K7X5	1296	44	Deg. A. Graxos; Deg. Benzoato	
371	Glutal yi-coA deliyul ogenase	BC	A0A0H3KH47	1.3.8.0	43		In/Ex
392	Haloacetate dehalogenase	BC	АОАОНЗКВГО	3.8.1.3	33	Deg. Clorobenzeno e Clorociclohexano; Deg. Cloroalcano e cloroalceno	In/Ex
440	Long-chain fatty-kod-CoA ligase	BC	A0A0H3KBP1	6.2.1.3	61	Deg. A. Graxos	In/Ex
468	NAD-dependent aldehyde dehydrogenase	ст	Q0KCL6	1.2.1.28	49	Deg. Xileno; Deg. Tolueno; Deg. Aminobenzoato; Deg. Comp. Aromáticos	In/Ex
470	NAD-dependent aldehyde dehydrogenase	BC	A0A0H3KNU6	1.2.1.3	51	Deg. A. Graxos; Deg. Cloroalcano e cloroalceno	In/Ex
591	Probable FAD-binding monooxygenase AlmA	AB	Q6F7T9	1.14.13	56	Deg. Aminobenzoato;	In/Ex
606	Putative 2-nitropropane dioxygenase	СТ	Q7WWU7	1.13.12.16	35	-	In/Ex
607	Putative 3-hydroxybutyryl-CoA epimerase	AB	Q6F8B7	1.1.1.35 4.2.1.17 5.1.2.3	77	Deg. A. Graxos; Deg. Benzoato; Deg. Caprolactama;	In/Ex
612	Putative acetyl-CoA acetyl transferase (Acetoacetyl-CoA thiolase)	AB	Q6FEA0	2.3.1.9	41	Deg. A. Graxos; Deg. Benzoato	In/Ex

614	Putative acyl coenzyme A dehydrogenase (HcaD-like)	AB	Q6FA91	1.3.8.8	42	Deg. A. Graxos	In/Ex
616	Putative acyl-CoA dehydrogenase	AB	Q6FBV5	1.3.8.1	41	Deg. A. Graxos	In/Ex
619	Putative acyl-CoA dehydrogenase	AB	031251	1.3.8.7	44	Deg. A. Graxos	In/Ex
624	Putative acyl-CoA thiolase	AB	Q6FAW1	2.3.1.9	45	Deg. A. Graxos; Deg. Benzoato	In/Ex
625		AB		1.1.1.1	42	Deg. A. Graxos; Deg. Cloroalcano e cloroalceno; Deg. Naftaleno; Deg. Comp.	
	Putative alcohol dehydrogenase		Q6F8H1			Aromáticos	In/Ex
689	Putative thiolase putative acyl-CoA thiolase	AB	Q6F8B8	2.3.1.9	42	Deg. A. Graxos; Deg. Benzoato	In/Ex
691	Putative toluene tolerance protein (Ttg2D)	AB	Q6F7P1	-	23	Transporte ABC	In/Ex
720	Benzaldehyde dehydrogenase II	AB	Q6FCB6	1.2.1.28	55	Deg. Xileno; Deg. Tolueno; Deg. Aminobenzoato; Deg. Comp. Aromáticos	In/Ex
757	Rubredoxin-NAD(+) reductase	AB	P42454	1.18.1.1	42	Deg. A. Graxos	In/Ex
817	Toluene tolerance efflux transporter (ABC superfamily, peri-bind)	AB	Q6F7P0	-	24	Transporte ABC	In/Ex
845	Two domain protein: 3-hydroxyacyl-CoA dehydrogenase	СТ	Q0KEG0	1.1.1.35	86	Deg. A. Graxos; Deg. Benzoato;	In/Ex
886	Xenobiotic reductase	AB	Q6F723	-	39	-	In/Ex

5.6. DEGRADAÇÃO DE XENOBIÓTICOS PELO CONSÓRCIO A3

As diferentes proteínas associadas com a degradação de xenobióticos foram analisadas de acordo com as vias de degradação onde atuam e as reações químicas que catalisam nessas vias. Analisaremos inicialmente a degradação de compostos monoaromáticos, em seguida os poliaromáticos e por fim a degradação dos compostos alifáticos. Toda análise está fundamentada nas proteínas que foram identificadas e incluídas na tabela 12. Informações sobre os microrganismos na qual a proteína foi identificada, bem como o tipo de amostra da qual ela foi encontrada também é mencionada.

5.6.1. Degradação de hidrocarbonetos aromáticos monocíclicos

Foram encontradas proteínas envolvidas na degradação de 11 compostos monoaromáticos, o que é uma forte evidência da capacidade do consórcio A3 em degradar esses compostos. São eles: aminobenzoato, benzoato, caprolactama, clorociclohexano e clorobenzeno, etilbenzeno, fluorobenzoato, tolueno, *o*-xileno, *m*-xileno e *p*-xileno. A via de degradação do benzoato, inclui também uma etapa de degradação do benzeno. Note-se, portanto, que entre esses compostos aromáticos temos os quatro compostos que constituem o grupo conhecido por BTEX, acrônimo que dá nome ao grupo de compostos formado pelos hidrocarbonetos: benzeno, tolueno, etilbenzeno e os xilenos (*o*-xileno, *m*-xileno e *p*-xileno).

5.6.1.1. Degradação de BTEX pelo consórcio A3

Para as análises sobre as vias de degradação de xenobióticos, a via esquemática de degradação do composto (obtidas a partir do *KEGG*) será apresentada, acrescentando-se algumas modificações quando necessário. Para padronizar as apresentações na figura esquemática da via, todas as enzimas representadas nas caixas de *EC number* na cor verde representam as proteínas que foram identificadas pelas análises proteômicas do consórcio A3. As em cores amarela ou laranja representam algum destaque sobre alguma enzima que não foi encontrada no consórcio A3. As linhas de contorno vermelho indicam as principais rotas de quebra do xenobiótico em questão. Pontos vermelhos representam compostos intermediários que se pretende destacar. A reação entre duas setas verdes indica a quebra de um anel aromático (figura 09). Todos os esquemas ampliados foram incluídos no apêndice 01.

Figura 09: Via de degradação do benzoato (map00362). Modificada a partir do *KEGG*. I – Amostra intracelular; E – Amostra extracelular; AB – *A. baumannii*; BC – *B. cenocepacia*; CT – *C. taiwanensis*. Caixas de *EC number* na cor verde indicam enzimas detectadas no consórcio A3, e amarela ou laranja, enzimas importantes não encontradas. Linhas de contorno vermelho são as principais rotas de quebra do xenobiótico. Pontos vermelhos são compostos importantes na via. As setas verdes indicam a formação de um produto a partir da quebra de um anel aromático (substrato) ao longo da via.

Foram encontradas 28 proteínas envolvidas na degradação dos BTEXs. A via em que concentrou o maior número delas foi a do benzoato, que inclui a degradação de benzeno. Para essa via foram descritas 25 proteínas, sendo que algumas delas receberam código *Uniprot* ou nomes diferentes, porém na triagem junto ao *KEGG* aparecem executando a mesma função nessa via. Essas 25 proteínas participam em 11 reações químicas na via do benzoato (figura 09).

Seguindo a reação a partir do qual o benzoato/benzeno gera catecol (setas laranja) na figura 11, foi identificada uma importante enzima envolvida na degradação de aromático: *Catechol 1,2-dioxygenase (EC: 1.13.11.1)*. Ela é responsável pela abertura do anel aromático, e é classificada como uma dioxigenase, uma das mais importantes classes de enzimas relacionadas a degradação de compostos aromáticos (figura 10).

Figura 10: Ampliação de partes da via degradação do benzoato (map00362) - Destaque *Catechol 1,2 dioxygenase* (EC: 1.13.11.1). Modificada a partir do *KEGG*.

De acordo com a literatura, duas enzimas são responsáveis pela quebra do catecol: dioxigenase intra-diol (catecol 1,2 -dioxigenase – EC: 1.13.11.1) e dioxigenase extra-diol (catecol 2,3-dioxigenase – EC: 1.13.11.2). Elas promovem a quebra do anel aromático pela adição de moléculas de oxigênio. A dioxigenase catecol 1,2 -dioxigenase converte o catecol em ácido *cis, cis*-mucônico, enquanto a catecol 2,3-dioxigenase converte o catecol em semialdeído 2hidroximucônico. O produto dessas duas reações será um hidrocarboneto linear, (ácidos carboxílicos e/ou aldeídos) que será convertido nas etapas seguintes a acetil-CoA, e em seguida, entra no sistema metabólico central da bactéria, como o ciclo de *Krebs*. A degradação completa dos compostos de hidrocarbonetos pela bactéria produzirá ATP como fonte de energia para o metabolismo da bactéria. Essas vias também produzem CO₂ e H₂O como subprodutos, uma vez que ocorrem sob a condição aeróbia (Imron *et al.*, 2020).

Os passos seguintes a partir da abertura intra-diol do anel aromático pela catecol 1,2 dioxigenase (EC 1.13.11.1), baseado nas demais proteínas identificadas para essa rota, parecem indicar que o composto entra no ciclo de *Krebs* a partir da formação de Succinil – CoA e Acetil – CoA. Tal conclusão se baseia na identificação de 05 proteínas (36, 43, 131, 133 e 214 na tabela 12) que atuam em 02 reações (EC: 2.8.3.6 e 2.3.1.16) que antecedem a formação Succinil – CoA e Acetil – CoA a partir de reações originadas a partir de *cys-cys*-muconato.

A enzima *Catechol 1,2-dioxygenase* (EC: 1.13.11.1) foi identificada apenas em *B. cenocepacia*, nas amostras intra e extracelular. Porém, a presença de *2-Hydroxymuconic semialdehyde dehydrogenase (EC: 1.2.1.85)*, identificada apenas para *C. taiwanensis* (figura 11), que reage sobre o 2-hidroximuconato semialdeído (produto da quebra extra-diol do catecol) sugere que *C. taiwanensis* seja capaz de produzir também a outra dioxigenase, a *Catechol 2,3-dioxygenase (EC: 1.13.11.2)* (caixas amarelas, figura 11). Seguindo esse raciocínio o catecol seria processado pela *2,3*-dioxigenase (EC: 1.13.11.2) e convertido em 2-Hidroximuconato semialdeído, que seria por sua vez, convertido em 2-Hidroximuconate pela *2-Hidroxmuconic semialdehyde dehydrogenase* (EC: 1.2.1.85), a enzima que foi encontrada em *C. taiwanensis*.

Figura 11: Ampliação de partes da via degradação do benzoato (map00362) - destaque *Catechol 2, 3 dioxygenase (EC: 1.13.11.2)*. Modificada a partir do *KEGG*.

Um isolado bacteriano degradador de fenol, *C. taiwanensis* R186, foi usado para degradar fenol em solução aquosa. A primeira etapa da biodegradação do fenol envolve a oxidação do catecol pela catecol dioxigenase, seguida por sua metaclivagem para produzir 2-hidroximuconato semialdeído como intermediário (Chen *et al.*, 2008). A metaclivagem do catecol é realizada pela

catecol 2,3-dioxigenase (Van Schie *et al.*, 2000). Essa evidência torna ainda mais forte a hipótese de que *C. taiwanensis* do consórcio A3 também é capaz de produzir a catecol 2,3-dioxigenase. O que tornaria o consórcio A3 capaz de produzir as duas mais importantes dioxigenases envolvidas na quebra de anéis aromáticos.

A segunda parte da via (a partir de benzoil-CoA, seta roxa, figura 09) consiste na via de degradação anaeróbia do benzoato. Compostos aromáticos estruturalmente diversos são processados por bactérias por meio de vias de degradação periférica para formar benzoil coenzima A (benzoil-CoA), que não necessita de oxigênio para sofrer a quebra o anel aromático (Hirakawa *et al.*, 2015). A benzoil-CoA é um intermediário central no catabolismo anaeróbico da maioria dos compostos aromáticos (Leuthner e Heider, 2000).

Para essa parte da via foram identificadas 21 proteínas (1, 26, 28, 30, 31, 36, 130, 131,132, 133, 214, 215, 328, 329, 330, 335, 607, 612, 624, 689, 845 na tabela 12) que atuam em 07 reações diferentes na etapa que degradação do benzoato. A reação de quebra do anel aromático, na ausência de oxigênio nessa via, é realizada por uma enzima que foi encontrada apenas em *C. taiwanensis* (intra e extracelular). Tal reação converte 2-*Ketocyclohexane-1-carboxyl-CoA* em *Pimeloil-CoA*, e é catalisada pela *1,4-dihydroxy-2-naphthoyl-CoA synthase (EC: 3.1.2.-)* (figura 12).

Figura 12: Ampliação de partes da via degradação do benzoato (map00362) - destaque quebra anaeróbica. Modificada a partir do *KEGG*.

As demais reações da via convertem o pimeloil-CoA em acetil-CoA e CO₂, que são catalisadas por enzimas encontradas em pelo menos duas bactérias do consórcio, nas amostras intra e extracelular. A via de degradação anaeróbica do benzoato envolve uma desaromatização de benzoil-CoA pela benzoil-CoA redutase seguida por uma β -oxidação do produto reduzido,

ciclohex-1-enecarboxil-CoA. Isso culmina em uma clivagem do anel que gera pimeloil-CoA que é posteriormente degradado em três unidade de acetil-CoA e um CO₂ (Hirakawa *et al.*, 2015).

Portanto, a quebra de benzoato/benzeno pelo consórcio A3 parece seguir duas rotas (figura 13): 1^a) Aeróbica, que envolve a ortoclivagem do catecol – e uma possível metaclivagem por C. taiwanenses – e termina com a formação succinil – CoA e acetil – CoA, dois intermediários do clico de Krebs; 2^a) Anaeróbica, com a quebra do anel aromático para formação pimeloil-CoA e culmina na formação acetil - CoA. Evidências encontradas sugerem a existência de uma terceira rota (metaclivagem), porém a enzima-chave nessa rota não foi identificada. Quanto aos microrganismos, C. taiwanensis aparece realizando 10 das 11 reações encontradas para essa via, sendo 3 delas exclusivas para essa espécie, que inclui a própria clivagem do anel aromático na ausência de oxigênio. A B. cenocepacia aparece em 8 reações, sendo 1 delas exclusiva, e envolve a quebra do anel aromático na presença de oxigênio. E finalmente, A. baumannii envolvida em 5 reações, nenhuma exclusiva. Além disso, é possível perceber o sinergismo entre as espécies presentes no consórcio. A exemplo disso podemos citar as quebras de anel aromático. A quebra do anel é realizada por uma única bactéria, porém as reações seguintes podem catalisadas por enzimas que foram encontradas para duas ou três espécies. Isso sugere a capacidade das espécies atuarem de modo conjunto para degradar completamente um determinado composto ou torna-lo menos tóxico.

Figura 13: Esquema das rotas de quebra do benzoato pelo consórcio A3. Verde - enzimas-chave da via (identificadas); Azul – mecanismo de quebra e produto final da via; Amarelo – enzima-chave da via (não identificadas), seguido da reação e produtos finais (em branco).

Para via de degradação do tolueno, foram identificadas 04 proteínas que atuam em 05 reações na via de degradação desse composto (figura 14). A ocorrência dessas enzimas, sugerem dois caminhos para a degradação do tolueno, de acordo como o microrganismo que estamos tratando.

Figura 14: Via de degradação do tolueno (map00623). Modificada a partir do *KEGG*. I – Amostra intracelular; E – Amostra extracelular; AB – A. baumannii; BC – B. cenocepacia; CT – C. taiwanensis. Caixas de EC number na cor verde indicam enzimas encontradas, e amarela ou laranja, enzimas importantes não encontradas. Linhas de contorno vermelho são as principais rotas de quebra do xenobiótico. Pontos vermelhos são compostos importantes na via. As setas verdes indicam a formação de um produto a partir da quebra de um anel aromático (substrato) ao longo da via.

Em *A. baumannii* e *C. taiwanensis*, a identificação de *Benzaldehyde dehydrogenase II (EC: 1.2.1.28)* e *NAD-dependent aldehyde dehydrogenase (EC: 1.2.1.28)*, sugere que o tolueno tende a sofrer quebras até se tornar 3-hidroxibenzoato ou o próprio benzoato, que seguiriam direto para via de degradação do benzoato (figura 15). Já em *B. cenocepacia*, a presença da *Catechol 1,2-dioxygenase (EC: 1.13.11.1)* sugere que o tolueno irá formar de 4-Metil-3-oxoadipato, produto que não interage com mais nenhuma via metabólica descrita no *KEGG* (figura 14). Porém, é sabido que o 3-oxoadipato na presença de NAD+ é convertido em maleilacetato, intermediário da via do benzoato. Contudo, não se tem evidências de que o mesmo acontece para o oxoadipato metilado, bem como a perda da metilação e como essa reação ocorreria.

Figura 15: Ampliação de partes da via degradação do tolueno (map00623) - destaque formação de benzoato. Modificada a partir do *KEGG*.

A presença de *Carboxymethylenebutenolidase* (EC: 3.1.1.45), também em *B. cenocepacia* (últimas reação na parte inferior da figura 14) sugere a conversão do tolueno em outros dois produtos que não são intermediários de outras vias metabólicas, de acordo com o *KEGG*. Temos, portanto, *A. baumannii* e *C. taiwanensis* provendo a transformação dos intermediários da via do tolueno em produtos que vão prosseguir para via de degradação aeróbica do benzoato, e *B. cenocepacia* formando compostos que não tem relação com outras vias metabólicas descritas. Outro aspecto chama atenção para essa via. *A. baumannii* e *C. taiwanensis* aparecem atuando diretamente na degradação do tolueno, enquanto que *B. cenocepacia* aparece atuando apenas nas vias mais periféricas onde o tolueno aparece sulfonado ou clorado (tolueno-4-sulfonato e 2,4 dicloro-tolueno).

Ainda em relação a essa via do tolueno, uma única monooxigenase com *EC*:1.14.13.236 e 1.14.13.- aparece realizando 3 reações da quebra do tolueno (figura 14, caixas laranjas). As monooxigenases são enzimas que catalisam a inserção de um único átomo de oxigênio do O₂ em um substrato orgânico. Entre as enzimas que tem relação como a degradação de xenobióticos foi identificada para *A. baumannii* uma provável monooxigenase de mesmo *EC number* (1.14.13.-), porém dependente de flavina, a *Probable FAD-binding monooxygenase AlmA* com 56 kDa. Essa provável monooxigenase está intimamente envolvida na oxidação de alcanos de cadeia longa (Throne-Holst *et al.*, 2007; Liu *et al.*, 2021). A ação dessa enzima em específico envolvendo a degradação de tolueno não foi relatada. Isso provavelmente seja explicado pelo fato das monooxigenases serem altamente quimio-, regio- e/ou enantiosseletivas (Pazmiño *et al.*, 2010).

Para degradação de etilbenzeno foram identificadas duas enzimas da última etapa da via de degradação, todas em *C. taiwanensis* em amostra intra e extracelular. A *Acetyl-CoA C-acyltransferase* (*EC: 2.3.1.16*) e a *Beta-ketoadipyl CoA thiolase* (*EC: 2.3.1.16*) executam o mesmo passo via de degradação do etilbenzeno. Ambas convertem o benzoilacetil-CoA em benzoil-CoA e acetil-CoA. O primeiro, entra na via de degradação anaeróbica do benzoato (2ª rota proposta aqui anteriormente na via do benzoato), que conta com a ação de 21 proteínas envolvidas, e o segundo, é intermediário do metabolismo central (figura 16). Por essa via, o benzoil-CoA é clivado em hidrocarbonetos de cadeia curta seguido por mineralização passo a passo para CO₂ (Li *et al.,* 2021).

00642 11/1/17 (c) Kanehisa Laboratories

Figura 16: Via de degradação do etilbenzeno (map00642). Modificada a partir do *KEGG*. I – Amostra intracelular; E – Amostra extracelular; CT – *C. taiwanensis*. Caixas de *EC number* na cor verde indicam enzimas encontradas, e amarela ou laranja, enzimas importantes não encontradas. Linhas de contorno vermelho são as principais rotas de quebra do xenobiótico. Pontos vermelhos são compostos importantes na via.

E fechando a degradação dos BTEXs, analisaremos a via de degradação dos xilenos (*o*-, *m*e *p*-xileno) (figura 17). Foram identificadas 3 enzimas para degradação do xileno, duas delas podem executar um dos primeiros passos da reação de quebra das três formas de xileno.

Figura 17: Via de degradação de p**-, o-, e**m**-xileno (map00622)**. Modificada a partir do *KEGG.* I – Amostra intracelular; E – Amostra extracelular; AB – A. *baumannii*; CT – C. *taiwanensis.* Caixas de *EC number* na cor verde indicam enzimas encontradas, e amarela ou laranja, enzimas importantes não encontradas. Linhas de contorno vermelho são as principais rotas de quebra do xenobiótico. Pontos vermelhos são compostos importantes na via. As setas verdes indicam a formação de um produto a partir da quebra de um anel aromático (substrato) ao longo da via.

Em *A. baumannii* foi encontrado a *Benzaldehyde dehydrogenase II (EC: 1.2.1.28)*, com 49 kDa, e em *C. taiwanensis* foi identificada a *NAD-dependent aldehyde dehydrogenase (EC: 1.2.1.28)*, com 55 kDa. Essas duas enzimas estão envolvidas também na degradação do tolueno como já foi citado. Em xileno, ambas reagem sobre seus respectivos substratos para formação de *o-, m-* e *p*-metilbenzoato (figura 18). Embora identificadas com nomes diferentes, o KEGG *Orthology* classifica as duas enzimas com o mesmo código (K00141) benzaldeído desidrogenase (NAD).

Figura 18: Ampliação de partes da via degradação do xileno (map00623) - destaque formação de metilbenzoato. Modificada a partir do *KEGG*

A terceira enzima identificada para degradação de xileno, foi a 2-Hydroxymuconic semialdehyde dehydrogenase (EC 1.2.1.85), encontrada apenas em C. taiwanensis. Na via de degradação do p-xileno, a 2-Hydroxymuconic semialdehyde dehydrogenase realiza a reação imediatamente posterior à executada pela catecol 2,3 dioxigenase (caixas amarelas, figura 14), que promove a quebra do anel aromático. Ou seja, catecol 2,3 dioxigenase produz o substrato para a reação da 2-Hydroxymuconic semialdehyde dehydrogenase. Isso reforça nossa hipótese, quando tratávamos da via do benzoato, que a catecol 2,3 dioxigenase também é produzida por C. taiwanensis. Podendo ser, inclusive, as duas codificadas em um único operon, a exemplo do que acontece em Paenibacillus sp. Essa mesma desidrogenase encontrada é codificada em Paenibacillus sp. JJ-1b pelo gene praB presente em um operon que codifica 6 outras enzimas envolvidas na degradação do xileno. Um dos genes desse operon é o praA, que codifica a catecol 2,3 dioxigenase (Kasai et al., 2009). Os produtos finais da via de degradação do xileno podem ser o piruvato, intermediário da via glicolítica, e propanoil – CoA, que entra na via do propanoato.

Em resumo, temos *C. taiwanensis e A. baumannii* produzindo proteína capazes de realizar um passo inicial na via de degradação de todas as isoformas de xileno. Em um passo posterior, *C. taiwanensis* produz enzima que reage com o produto da reação catalisada por catecol 2,3 dioxigenase, reforçando que a presença dessa enzima na espécie. *B. cenocepacia* parece não ter envolvimento nessa via.

5.6.1.2. Degradação de outros compostos monoaromáticos pelo consórcio A3

Além dos BTEXs, o consórcio A3 consegue metabolizar outros compostos aromáticos, entre eles clorociclohexano e clorobenzeno. Esses compostos aromáticos clorados, são em sua maioria derivados dos inseticidas organoclorados usados na agricultura. Embora proibidos na maioria dos países nos últimos 20 anos, os métodos avançados para o tratamento eficaz de seus resíduos em águas naturais ainda são motivo de interesse devido à sua grande persistência. Os produtos de degradação intermediários desses inseticidas são classificados nas seguintes categorias químicas: clorociclohexanos, clorociclohexenos, clorobenzenos, clorofenóis, cloropropanos, cloropropanonas e o isômero pentaclorociclohexanora (Konstantinou e Albanis, 2003).

Para a via de degradação desses dois compostos foram identificadas 3 enzimas, todas em *B. cenocepacia,* amostra intra e extracelular. Uma delas, a *Carboxymethylenebutenolidase (EC:* 3.1.1.45), aparece executando 5 reações nas vias de degradação dos mais variados aromáticos clorados (figura 19). Todas as reações dessa enzima, independente do substrato que esteja convertendo, leva a formação de maleilacetato, que é um intermediário, da via de degradação aeróbica do benzoato (figura 09). E isso é um indicativo de que a degradação desses compostos aromáticos clorados pelo consórcio A3 pode resultar na formação de succinil-CoA e acetil-CoA, gerando com isso carbono e energia para as células. Mais uma vez o sinergismo entre as espécies do consórcio pode ser observado: *B. cenocepacia* atua sobre os organoclorados, que são convertidos em subprodutos da via do benzoato, e lá eles podem ser convertidos pela ação das enzimas das outras espécies, como já descrito anteriormente.

Figura 19: Via de degradação de clorociclohexano e clorobenzeno (map00361). Modificada a partir do *KEGG*. I – Amostra intracelular; E – Amostra extracelular; BC – *B. cenocepacia*. Caixas de *EC number* na cor verde indicam enzimas encontradas Pontos vermelhos são compostos importantes na via. As setas verdes indicam a formação de um produto a partir da quebra de um anel aromático (substrato) ao longo da via.

A *Catechol 1,2-dioxygenase (EC: 1.13.11.1)* também aparece nessa via executando duas reações de quebra de anéis aromáticos do 4-Clorocatecol e do Tetraclorocatecol. As etapas seguintes de quebra do primeiro composto levam à formação de maleilacetato, como já mencionado, e para o segundo composto o ocorre a formação de 2,4-Dicloro-3-oxoadipato e CO₂. E finalmente, a terceira enzima identificada, a *Haloacetate dehalogenase (EC: 3.8.1.3)* catalisa a

última reação na quebra do 1,2,4-Triclorobenzeno. Por essa reação, o cloroacetato é convertido em glicolato, que entra na via do glioxilato. O ciclo glioxilato permite que as células convertam duas unidades de acetil-CoA geradas por vários processos catabólicos em unidades C4 (succinato) que podem ser usadas para repor o ciclo de *Krebs* ou para funcionar como precursores da biossíntese de aminoácidos ou biossíntese de carboidratos. Assim, o ciclo de glioxilato serve como um elo entre as atividades catabólicas e as capacidades biossintéticas, permitindo que as células utilizem ácidos graxos ou unidades de C2, como etanol ou acetato, como única fonte de carbono (Kunze *et al.*, 2006). Algumas bactérias quando cultivadas na presença de xenobióticos utilizam preferencialmente a via do glioxilato para obtenção de energia, como é o caso da *P. putida* KT2440 quando cultivada na presença de fenol (Guazzaroni *et al.*, 2013).

Pelos resultados obtidos, sugere-se que o consórcio A3 é capaz de degradar fluorobenzoatos (Figura 20). A reação principal de quebra dessa molécula é também a abertura do anel benzênico. A catecol dioxigenase (EC: 1.13.11.1) encontrada em *B. cenocepacia* consegue realizar essa quebra. A ação da enzima é demandada em dois pontos da via. No primeiro, promove a abertura intra-diol do anel aromático de 3 – fluorocatecol, proveniente das modificações de 2-fluorbenzoato ou 3-fluorbenzoato. Sua outra ação é converter o 4 – fluorocatecol advindo de fluorobenzoato ou 4-fluorbenzoato. Os produtos dessas duas quebras são 2- ou 3-fluoro-*cis, cis*-muconato. No final da via foi encontrada também outra enzima. *Carboxymethylenebutenolidase (EC: 3.1.1.45)*, capaz de produzir o maleilacetato, o qual entra na via do benzoato que, como já descrito, poderá ser convertido em energia para célula. A *Carboxymethylenebutenolidase (EC: 3.1.1.45)* também foi identificada apenas em *B. cenocepacia*. Não foram encontradas enzimas de *A. baumannii* e *C. taiwanensis* participando nessa via (figura 20).

Os produtos químicos fluorados são xenobióticos proeminentes utilizados em aplicações farmacêuticas, agrícolas e outras aplicações industriais devido à sua estabilidade térmica, lipofilicidade aprimorada e capacidade de suprimir a desintoxicação metabólica, aumentando assim o tempo de permanência *in vivo* (Natarajan *et al.*, 2005). A presença de compostos orgânicos fluorados no meio ambiente aumentou drasticamente como resultado do aumento significativo na produção de uma ampla gama de produtos farmacêuticos e agroquímicos fluorados desenvolvidos devido às propriedades únicas e desejáveis do flúor (Misiak *et al.*, 2011).

Figura 20: Via de degradação de fluorobenzoato (map00364). Modificada a partir do *KEGG*. I – Amostra intracelular; E – Amostra extracelular; BC – *B. cenocepacia*. Caixas de *EC number* na cor verde indicam enzimas encontradas. Pontos vermelhos são compostos importantes na via. As setas verdes indicam a formação de um produto a partir da quebra de um anel aromático (substrato) ao longo da via.

Também foi verificada a presença de enzimas capazes de degradar aminobenzoatos no consórcio A3. Para essa classe de compostos foram identificadas 6 enzimas atuando em 7 reações na via de degradação (figura 21). A primeira delas, a *Probable FAD-binding monooxygenase AlmA (EC: 1.14.13.-),* enzima da classe das monooxigenases que realiza os dois passos iniciais para quebra da tiobenzamida. As oxidações seguidas transformam esse composto em benzonitrila, que sofre algumas reações até se tornar benzoato.

Figura 21: Via de degradação de aminobenzoato (map00627). Modificada a partir do *KEGG*. I – Amostra intracelular; E – Amostra extracelular; AB – A. baumannii; BC – B. cenocepacia; CT – C. taiwanensis. Caixas de *EC number* na cor verde indicam enzimas encontradas. Pontos vermelhos são compostos importantes na via.

Ação da *NAD-dependent aldehyde dehydrogenase (EC:1.2.1.28)* de *C. taiwanensis* e *A. baumannii*, ou *Benzaldehyde dehydrogenase II (EC:1.2.1.28)* de *A. baumannii* na rota de (S) – Mandelato produz benzoato, na rota de (S)-4-Hidroxi-mandelato produz 4-Hidroxi-benzoato, e ambos entram na via de quebra do benzoato. Pela via do cloropropano-carboxilato foram encontradas as enzimas *Enoyl-CoA hydratase (EC: 4.2.1.17)* e *Enoyl-CoA hydratase/carnithine racemase (EC: 4.2.1.17)*, de *C. taiwanensis* e *B. cenocepacia*, que tem ação sobre o crotonoil-CoA, intermediário da via de degradação do benzoato. Finalmente, pela via do 3-nitrofenol, a *Glutamine*

synthetase (EC: 5.4.4.3) de C. taiwanensis modifica o 3-hidroxiaminofenol. Produto final nessa via é o 1,2,4 – benzenotriol, também intermediário na via de degradação do benzoato.

5.6.2. Degradação de hidrocarbonetos aromáticos policíclicos

Para a classe de hidrocarbonetos poliaromáticos, uma única enzima foi encontrada para a via de degradação do naftaleno. Uma álcool desidrogenase encontrada em *B. cenocepacia* atua na via de degradação desse composto, a *Putative alcohol dehydrogenase (EC: 1.1.1.1)* (figura 22).

c) Kanehisa Laboratories

Figura 22: Via de degradação de naftaleno (map00627). Modificada a partir do *KEGG*. I – Amostra intracelular; E – Amostra extracelular; AB – *A. baumannii*; Caixas de *EC number* na cor verde indicam enzimas encontradas. Linhas de contorno vermelho são as principais rotas de quebra do xenobiótico. Pontos vermelhos são compostos importantes na via.

Essa enzima participa em duas vias distintas que geram produtos intermediários diferentes e entram em outras vias metabólicas também distintas. Por exemplo, na reação em que essa álcool desidrogenase atua na via de 1 – metilnaftaleno, ela converte 1 – hidroximetil-naftaleno em 1naftaldeído. O produto final dessa via é o catecol, que pode ser quebrado aerobiamente na via do benzoato, ou gentisato que entra para o metabolismo da tirosina. Já na outra via do 2 – metilnaftaleno, converte 2 – hidroximetil-naftaleno em 2 -naftaldeído, e o produto final da via é o 1-hidrox-2-naftanoato que entra na via degradação do xileno.

O naftaleno é o composto de PAH mais simples e biodegradável que consiste em dois anéis aromáticos fundidos. Por ser o composto de PAH mais simples, também é encontrado em abundância devido aos processos de degradação natural de compostos de PAH mais complexos encontrados em óleos crus. É a molécula de PAH mais solúvel e pode ser encontrada adsorvida ao solo e em solução em áreas úmidas contaminadas por derramamentos industriais ou de transporte. É um poluente prioritário de acordo com o EPA/US devido à sua conhecida toxicidade para formas superiores de vida. *P. putida* pode metabolizar prontamente o naftaleno começando com uma reação mediada por dioxigenase para formar *cis*-naftaleno dihidrodiol e eventualmente catecol (Purwaningsih *et al.*, 2004).

5.6.3. Degradação de hidrocarbonetos alifáticos

Considerando então que a degradação de hidrocarbonetos alifáticos está intimamente relacionada à β -oxidação de ácidos graxos, incluímos na nossa análise todas as proteínas desta via. Foram identificadas 29 proteínas que estão relacionadas com degradação de ácidos graxos (figura 23), e podem realizar as quatro reações da via que se repetem até a completa degradação da cadeia carbônica do ácido graxo. Considerando as três espécies do consórcio, todas as proteínas da via de β -oxidação foram encontradas. Separadamente, apenas em *B. cenocepacia* não foi identificada a proteína da primeira reação da via (EC: 1.3.8.7 ou 1.3.8.8 ou 1.3.99.-). Essa reação inicial envolve uma das acil-coA desidrogenase que introduz uma ligação dupla na posição C2 do ácido graxo, produzindo ésteres 2-enoil-coA (Adeva-Andany *et al.*, 2019).

A quantidade de proteínas encontradas para as três espécies, considerando toda a via de degradação, foi de 15 para *C. taiwanensis*, 14 para *A. baumannii* e 09 para *B. cenocepacia*. O esquema representativo das proteínas encontradas e sua procedência em relação às amostras e aos organismos onde foram rastreadas estão indicados na figura 23.

Além das proteínas que atuam diretamente na β -oxidação dos ácidos graxos, outras proteínas diretamente envolvidas na conversão de alcanos foram identificadas. A primeira reação da etapa de conversão dos alcanos é sua conversão a um álcool (Imron *et al.*, 2020). Essa etapa é catalisada por uma alcano 1-monooxigenase (EC: 1.14.15.3) (caixas *EC* amarelas, figura 23) e duas

outras proteínas acessórias, a rubredoxina (EC: 1.18.1.3) (caixa *EC* laranja, figura 23) e rubredoxina redutase (EC: 1.18.1.1). As duas primeiras não foram encontradas em nossas análises, apenas a *Rubredoxin-NAD(+) reductase (EC:1.18.1.1)*. O papel dessa enzima em específico é reduzir a rubredoxina por oxidação de NADPH, e a rubredoxina reduzida, por sua vez transfere os elétrons para a alcano monooxigenase.

Figura 23: Via de degradação ácidos graxos (map00071). Modificada a partir do *KEGG*. I – Amostra intracelular; E – Amostra extracelular; AB – *A. baumannii*; BC – *B. cenocepacia*; CT – *C. taiwanensis*. Caixas de *EC number* na cor verde indicam enzimas encontradas, e amarela ou laranja, enzimas importantes não encontradas. Linhas de contorno vermelho representa a via de β -oxidação dos ácidos graxos. Pontos vermelhos são compostos importantes na via.

Existem dois genes de alcano monooxigenase anotados, chamados *alkB1* e *alkB2*, no genoma de *Alcanivorax borkumensis* (Schneiker *et al.*, 2006). Alcano hidroxilase-1 (AlkB1) oxida eficientemente alcanos de cadeia média entre C5-C12, enquanto alcano hidroxilase-2 (AlkB2)

oxida alcanos de cadeia entre C8-C16. Ambos AlkB1 e AlkB2 são monooxigenases diferro e atuam na membrana das células. Essas enzimas têm potencialmente inúmeras aplicações na transformação de hidrocarbonetos (Eidani *et al.*, 2011). Duas proteínas acessórias, rubredoxina e rubredoxina redutase, fornecem o equivalente redutor da nicotinamida adenina dinucleotídeo fosfato reduzido (NADPH) para as hidroxilases. A rubredoxina redutase catalisa a redução da rubredoxina por oxidação de NADPH, e a rubredoxina transfere os elétrons para a hidroxilase de alcano. Essas proteínas todas assumem o papel na hidroxilação de diferentes alcanos lineares ou ramificados (Miri *et al.*, 2010).

Apesar do sistema AlkB não ter sido encontrado completo, as demais proteínas encontradas para via dos alcanos sugerem fortemente a capacidade de *A. baumannii* do consórcio A3 em metabolizar alcanos. A *Putative alcohol dehydrogenase (EC: 1.1.1.1)* é uma enzima que realiza a etapa seguinte de degradação de alcanos nesse sistema. Ela foi encontrada também apenas em *A. baumannii*. É responsável pela transformação do álcool formado em aldeído. E a proteína responsável por converter o aldeído em ácido graxo é uma aldeído desidrogenase (EC: 1.2.1.3). Foi encontrada uma única *NAD-dependent aldehyde dehydrogenase* (EC: 1.2.1.3) em *B. cenocepacia* capaz de realizar essa última reação no sistema.

Outra enzima encontrada que tem ligação direta com a degradação de alcanos foi a *Probable FAD-binding monooxygenase AlmA (EC: 1.14.13.-)*. Essa é uma monooxigenase relacionada à família *AlmA* de ligação à flavina que está envolvida na degradação de uma ampla gama de alcanos de cadeia longa (Zadjelovic *et al.*, 2020). O gene *almA* de *Alcanivorax dieselolei* B-5 foi expresso de maneira heteróloga em *P. fluorescens* KOB2 Δ 1 e os níveis de expressão de mRNA *almA* aumentaram na presença de *n*-alcanos de cadeia longa (C₂₂-C₃₆) e além disso, alcanos ramificados (pristano e fitano) elevaram significativamente os níveis de expressão *almA* (Liu *et al.*, 2011).

Vários sistemas alcano hidroxilases podem coexistir em uma única bactéria. Pelo menos duas alcano hidroxilases do tipo *AlkB* (AlkMa e AlkMb) e um do tipo *AlmA* estão presentes em *Acinetobacter sp.* estirpe DSM17874 e são responsáveis pela degradação de alcanos com diferentes comprimentos de cadeia. *Alcanivorax dieselolei* B-5 pode degradar uma ampla gama de alcanos (C5-C36), com quatro alcano hidroxilases, *AlkB1, AlkB2, CYP153 e AlmA* que podem ser co-expressos na presença de alcanos (Liu *et al.*, 2021). Nossos resultados sugerem a presença de pelo

menos dois sistemas de alcano hidroxilase, *AlkB* e *AlmA*, garantindo a utilização de *n*-alcanos de uma ampla faixa de comprimento de cadeia, inclusive os ramificados.

E finalizando a análise de degradação compostos alifáticos, foram encontradas evidências da utilização de cloroalcanos e cloroacenos por essas bactérias. As formas *cis* e *trans* do Dicloropropeno podem sofrer ação de duas enzimas encontradas, as já citadas *Putative alcohol dehydrogenase* (EC: 1.1.1.1), de *A. baumannii*, e a *NAD-dependent aldehyde dehydrogenase (EC: 1.2.1.3)* de *B. cenocepatia*. O produto final da via é o acetaldeído que entra para o metabolismo do piruvato. O 1,2 -dicloroetano também sofre a ação pela aldeído desidrogenase e também pela *Haloacetate dehalogenase (EC: 3.8.1.3)*, também de *B. cenocepatia* (figura 24). O produto final da via é o glicolato, que entra para via do glioxilato.

Figura 24: Via de degradação de Degradação de cloroalcano e cloroalceno (map00625). Modificada a partir do *KEGG*. I – Amostra intracelular; E – Amostra extracelular; AB – A. *baumannii*; BC – *B. cenocepacia*. Caixas de *EC number* na cor verde indicam enzimas encontradas. Pontos vermelhos são compostos importantes na via.

5.7. MODELO DE DEGRADAÇÃO DE XENOBIÓTICOS PARA O CONSÓRCIO A3

Na figura 25 é representada a associação entre as proteínas identificadas em cada espécie e a sua atuação na degradação nos grupos de xenobióticos e dos ácidos graxos. Os grupos foram categorizados dessa forma: (1) – aromáticos; (2) – ácidos graxos; (3) – alifáticos e (4) – outros compostos. Associado a cada composto xenobiótico ou ácidos graxos é indicado o número total de proteínas que foram encontradas participando na via de degradação para cada uma das três espécies do consórcio A3.

Figura 25. Relação das proteínas de *A. baumannii, B. cenocepacia e C. taiwanensis* **associadas à degradação dos xenobióticos.** (1) – Aromáticos; (2) – Ácidos graxos; (3) – Alifáticos e (4) – Outros compostos. Números associados aos compostos xenobióticos representam a quantidade de proteínas identificadas nas vias e degradação.

Entre os microrganismos, *A. baumannii* e *B. cenocepacia* foram associados à degradação de todos os quatro grupos de compostos. Apenas em *C. taiwanensis* não foram encontradas proteínas que tenham relação direta com a degradação de compostos alifáticos. No grupo dos aromáticos, entretanto, essa espécie teve destaque. Para o benzoato, as quantidades de proteínas por microrganismo indicam que *C. taiwanensis* é a que tem mais proteínas associadas a essa via de

degradação, com 13 proteínas no total, contra 6 em *A. baumannii* e 8 em *B. cenocepacia. C. taiwanensis* se destaca ainda nas vias do tolueno com 1 proteína, 2 para etilbenzeno, 2 para xileno e 4 para aminobenzoato, totalizando, 22 proteínas com atuação direta em compostos aromáticos. Já *A. baumannii* aparece, além do benzoato, nas vias do tolueno (1), xileno, aminobenzoato (2) e naftaleno (1), totalizando 10 proteínas atuando em aromáticos. *B. cenocepacia* também tem atuação em tolueno (1), clorociclohexano e clorobenzeno (3), aminobenzoato (1) e fluorobenzoato (2), totalizando 15 proteínas que atuam nas vias dos compostos aromáticos.

Na degradação dos ácidos graxos, *A. baumannii* e *C. taiwanensis* têm as maiores quantidades de proteínas, 13 e 11, respectivamente, contra 8 de *B. cenocepacia*. Entre os *n*-alcanos, *A. baumannii* tem pequena vantagem em relação a *B. cenocepacia*, e a vantagem se inverte nos alifáticos clorados. *C. taiwanensis* não apresentou enzimas nesses dois últimos grupos. E finalmente, no grupo quatro, que inclui degradação/atuação junto a outros compostos, e cuja atuação não se encontra plenamente estabelecida, temos *A. baumannii* com 4 proteínas, *C. taiwanensis* com 3 e *B. cenocepacia* com 1 proteína.

Observa-se uma tendência de preferência por determinada classe de compostos. A espécie C. taiwanensis aparece com uma quantidade maior de proteínas envolvidas na degradação dos compostos aromáticos, principalmente benzoato, enquanto que não foram encontradas proteínas com a associação à hidroxilação de *n*-alcanos ou ainda na etapa de conversão desses compostos em ácidos graxos. A via de *B*-oxidação desse, além de estar completa, aparece com uma quantidade alta (comparada as demais) de proteínas identificadas. Os resultados sugerem que A. baumannii está mais associada com a degradação de alcanos/ácidos graxos. Pois, apresentou as maiores quantidades de proteínas envolvidas na degradação de ácidos graxos e foi a única bactéria em que foram encontradas proteínas responsáveis pela hidroxilação de *n*-alcanos, etapa essencial para degradação desses compostos. Em relação aos aromáticos, embora apresente certa quantidade de proteínas envolvidas na degradação desses compostos, não foram encontradas nenhuma delas atuando em funções-chave, como por exemplo a quebra de um anel aromático. Sua atuação se dá mais nas vias periféricas, onde acontece a conexão dessa via como a via do metabolismo energético central, com a formação de acetil-CoA, por exemplo. E finalmente, B. cenocepacia aparece ter boa atuação tanto em aromáticos quanto alifáticos. Foi encontrada uma importante dioxigenase nessa espécie para via de degradação de aromáticos e também uma enzima capaz de transformar um aldeído em ácido graxo na via de n-alcanos.

Baseados nas enzimas que conectam as diferentes rotas metabólicas propusemos uma rota geral pelo qual o consórcio A3 degrada os xenobióticos aromáticos discutidos até agora. Destacamos as enzimas que foram encontradas e que são responsáveis por reações enzimáticas capazes de fazer a transição de composto entre uma via metabólica e outra, e também algumas enzimas importantes que não foram encontradas. Dessa maneira conseguimos relacionar 05 vias metabólicas convergindo para o metabolismo energético central, na maioria dos casos pela via do benzoato (figura 26). Baseado, principalmente nos produtos de chegada na via do benzoato, propusemos 5 rotas distintas para degradação dos xenobióticos. As três primeiras rotas, intimamente relacionadas com a via do benzoato, a 4^a e a 5^a rotas, ou não se conectam com a via do benzoato ou não foram encontradas na amostra as enzimas que fazem a conexão.

Figura 26. Mecanismo geral de degradação de compostos aromáticos pelo consórcio A3. Caixas de *EC number* na cor verde indicam enzimas encontradas e amarela enzimas importantes não encontradas. AB – *A. baumannii*; BC – *B. cenocepacia*; CT – *C. taiwanensis*. As cores diferentes das setas tracejadas indicam as diferentes rotas de degradação de um determinado xenobiótico. A identificação das rotas (1^a a 5^a) estão indicadas com as mesmas cores.

Pela 1^a rota (setas brancas, figura 26), o produto de chegada é o próprio benzoato, proveniente das vias do tolueno e do aminobenzoato. A enzima que conecta essas duas vias com a via do benzoato é a aldeído desidrogenase (EC: 1.2.1.28), responsável por transformar benzaldeído

em benzoato. O benzoato vai ser convertido em catecol nas etapas seguintes. Não foram encontradas as enzimas responsáveis para estas etapas. Entretanto, o passo seguinte à formação de catecol, é a quebra do anel aromático por uma dioxigenase (EC: 1.13.11.1). A enzima responsável por essa reação promove a quebra por entre os grupos hidroxilas do catecol (quebra intra-diol). Propusemos a existência no consórcio A3 da enzima que também realiza a quebra extra-diol (EC: 1.13.11.2), devido ao fato da presença de enzimas que reagem ao produto dessa quebra. A última reação dessa rota proposta é a formação de 3-oxoadipil-CoA que vai ser convertido, pela ação de uma acetiltransferase (EC: 2.3.1.16), em succinil-CoA e acetil-CoA que se conectam diretamente com o metabolismo energético.

Pela segunda rota (setas em vermelho, figura 26), são conectados os produtos resultantes da quebra de fluorobenzoato e de clorociclohexano e clorobenzeno com a via do benzoato. A enzima responsável por isso é uma hidrolase (EC:1.1.1.35), que converte os subprodutos das vias em questão em maleilacetato. Já na via do benzoato, o maleilacetato sofre apenas duas reações antes de se tornar 3-oxoadipil-CoA e seguir os passos já descritos para formar succinil-CoA e acetil-CoA. Pela terceira rota (setas em laranja, figura 26) o etilbenzeno se conecta com a via do benzoato. A reação de uma aciltransferse transforma o benzoacetil - CoA em benzoil - CoA e acetil – CoA. Já na via do benzoato, o benzoil – CoA perde as duplas ligações do anel aromático e ganha um átomo de oxigênio ligado duplamente a um dos carbonos do anel de hexano. As enzimas responsáveis por essas reações não foram encontradas nas amostras analisadas, porém a reação que quebra do anel de hexano foi identificada. Essa reação é catalisada por uma hidrolase (EC: 3.1.2.-), que vai gerar pimeloil-CoA. A reação catalisada por essa enzima acontece sem a necessidade de oxigênio, o que caracteriza essa rota como anaeróbica. Nas sete reações seguintes para transformar o pimeloil-CoA em acetoacetil-CoA apenas duas enzimas não foram encontradas. A última reação que conecta a via do benzoato com o metabolismo energético é catalisada por uma acetil transferase que vai produzir duas moléculas de acetil – CoA.

A quarta rota conecta diretamente a via de degradação de clorociclohexano e clorobenzeno com o metabolismo energético. A ação de uma desalogenase (EC: 3.8.1.3) transforma o cloroacetato em glicolato, que participa diretamente da via do glioxilato. Finalmente, a quinta rota que propomos, tem como plano de fundo a via de degradação do xileno. Essa é a única rota em que não foram encontradas as enzimas que conectam xileno/benzoato/metabolismos energético. Foram encontradas dentro da via de degradação do xileno duas enzimas. A primeira delas uma aldeído

desidrogenase (EC: 1.2.1.28), que tem ação sobre as três isoformas de xileno. A reação de abertura do anel benzênico se dá pela ação de uma dioxigenase (EC: 1.13.11.2), que como já mencionado quando tratamos da 1ª rota (quebra do benzoato), não foi detectada, porém com alta probabilidade de ser produzida no consórcio A3. O produto da ação dessa enzima pode seguir caminhos diferentes dependendo de qual isoforma de xileno está sendo convertido. Se forem as isoformas *o*- e *m*-xileno, o produto irá seguir sofrendo reações sucessivas até se conectar com o metabolismo energético pela ação de uma aldolase (EC: 4.1.3.43), que irá converter, em última etapa, o 4-Hidroxi-2-oxohexanoato em piruvato e propanal. O primeiro entra no metabolismo central pela via glicolítica e o segundo pela via do propanoato. Essa aldolase também não foi encontrada na amostra. Se a quebra pela dioxigenase for em produto advindo de *p*-xileno, teríamos uma ligação com a via do benzoato. Uma hidratase (EC: 4.1.2.80) faria essa conexão ao produzir o 4-Hidroxi-2-oxopentanoato, que se conecta com a via do benzoato pela rota de quebra extra-diol do catecol. A conexão com o metabolismo central se daria pela ação de uma outra aldolase (EC: 4.1.3.43) também não encontrada, que iria produzir piruvato e acetaldeído, intermediários do metabolismo energético.

Definimos também uma rota pela qual o consórcio A3 consegue metabolizar compostos alifáticos. Basicamente essa rota segue o que já foi descrito anteriormente quando tratamos de degradação de alifáticos. Pelo esquema representativo da rota proposta (figura 27), os *n*-alcanos sofreriam a hidroxilação inicial por dois sistemas, A*lkB* e *AlmA*. O primeiro seria o responsável pela hidroxilação de alcanos de cadeias carbônicas menores, enquanto *AlmA* seria responsável pela hidroxilação de cadeias de hidrocarbonetos maiores.

Para o sistema *AlkB*, foi encontrada apenas uma das enzimas, uma rubredoxina redutase (EC: 1.18.1.1). São necessárias outras duas para hidroxilação dos alcanos por esse sistema. A rubredoxina redutase é um dos cofatores necessários para fornecer os elétrons para o correto funcionamento da enzima responsável pela reação principal (Ramu *et al.*, 2011). Após a hidroxilação, os *n*-alcanos seguiriam as etapas de conversão a aldeído e a ácido graxo, e entrariam em seguida na via de β -oxidação com a formação de acetil – CoA em sequência. O processo também acontece com as alcanos de cadeia longa, diferindo apenas na hidroxilação inicial (Wentzel *et al.*, 2007). Para esses tipos de alcanos, estamos propondo a hidroxilação pelo sistema *AlmA*.

Figura 27. Mecanismo geral de degradação hidrocarbonetos alifáticos pelo consórcio A3. Caixas de *EC number* na cor verde indicam enzimas encontradas e amarela enzimas importantes não encontradas. AB – *A. baumannii*; BC – *B. cenocepacia*; CT – *C. taiwanensis*

O gene *almA* codifica uma monooxigenase putativa da família de ligação à flavina. Este gene foi analisado em mais detalhes e encontrado para estar envolvido na utilização de *n*-alcanos com um comprimento de cadeia longa. *almA* representa o primeiro gene clonado que codifica uma enzima especificamente envolvida na degradação de *n*-alcanos com cadeias de carbono maiores que C_{30} . Genes homólogos a *almA* foram identificados e clonados de *Acinetobacter sp.* RAG-1 Além disso, a análise de homologia de sequência sugeriu a presença de enzimas semelhantes também em outras espécies (Wentzel *et al.*, 2007).

O processo exato de como as flavoproteínas monooxigenases codificadas especificamente pelo gene *almA* oxidam os *n*-alcanos de cadeia longa permanece ainda obscuro. Entretanto, sabese que essa família de proteínas está envolvida em uma variedade de processos biológicos que vão desde a degradação da lignina até a biossíntese de produtos naturais e desintoxicação de compostos xenobióticos. Em termos gerais, essas são enzimas redox que usam um cofator de mononucleotídeo de flavina (FMN) ou dinucleotídeo de flavina adenina (FAD) para ativar o dioxigênio (O₂). Elas catalisam a incorporação de um átomo de O₂ em um substrato e a redução do outro átomo de oxigênio em água (Paul *et al.*, 2021).

A ocorrência de microrganismos capazes de degradar uma ampla gama de compostos xenobiótico, como descrito para o consórcio A3, não é incomum. A análise metabólica das
sequências do genoma de *Ancylobacter aquaticus* UV5 revelou as vias catabólicas para a degradação do benzoato, 2,4-diclorobenzozato, fluorobenzoato, flúor, naftaleno e antraceno, caprolactama, tetracloroeteno muito tóxico, atrazina, 1,4-diclorobenzeno, bifenil, tolueno e xileno, carbazol, etilbenzeno, 1,1,1-tricloro-2,2-bis (4-clorofenil) etano (DDT), estireno, gama-hexaclorociclohaxano e bisfenol. A maioria dos produtos finais das vias acima são direcionados para o ciclo de Krebs (Kumar *et al.*, 2020), corroborando os resultados descritos para o consórcio A3.

5.8. MAPAS METABÓLICOS DAS ESPÉCIES DO CONSÓRCIO A3

Do mapa de *A. baumannii* observa-se uma boa cobertura nas identificações de proteínas para essa espécie. Foram identificadas todas as proteínas do metabolismo energético central, (parte mais central no mapa A), e biossíntese e degradação de ácidos graxos. É possível perceber ainda as conexões que as vias de degradação de xenobiótico (parte inferior do lado esquerdo) fazem com metabolismo energético central, principalmente ciclo de *Krebs* e via glicolítica. As vias relacionadas ao metabolismo dos aminoácidos (lado direito do mapa A) apresentaram também boa cobertura de proteínas, indicando que esse microrganismo está conseguindo desenvolver suas funções básicas. O metabolismo de aminoácidos indica que a síntese de proteínas está acontecendo mesmo na presença unicamente do diesel como fonte de carbono e energia.

A análise do mapa B (*B. cenocepacia*) é possível perceber algumas lacunas nas vias glicolítica, ciclo de *Krebs* e biossíntese e degradação de ácidos graxos. Essa última, como já comentado anteriormente, encontra-se incompleta por não ter sido identificada uma enzima que inicia da via de β-oxidação dos ácidos graxos. Já em relação do ciclo de *Krebs*, apenas uma enzima responsável por fazer a ligação da via glicolítica com o ciclo não foi encontrada, responsável pela conversão do piruvato em acetil-CoA. É possível perceber ainda, que para a espécie *B. cenonocepacia*, não existe até o momento, proteína anotada no *KEGG* capaz de realizar a penúltima reação do ciclo de *Krebs*, responsável por converter o malato em oxaloacetato. Pela via é possível identificar que o malato é convertido por uma malato sintase em glioxilato. Essa é a via alternativa ao ciclo de Krebs.

Mapas A e B – Mapas de vias metabólicas de *A. baumannii* e *B. cenocepacia.* A – 510 proteínas de *A. baumannii*. B – 496 proteínas de *B. cenocepacia*. Códigos dos mapas no KEGG: vias metabólicas (abc01100) e (bmj01100). Em vermelho (A) e roxo (B) vias onde atuam as proteínas identificadas, em verde todas as proteínas anotadas no KEGG para a espécie.

Algumas bactérias, quando cultivadas na presença de xenobiótico utilizam vias alternativas ao ciclo de *Krebs* para obtenção de energia. Kurbatov *et al.* (2006) perceberam que algumas enzimas do ciclo do TCA se mantinham em nível de expressão normal, enquanto enzimas de outras vias metabólicas tinham a sua taxa de expressão alterada, quando *P. putida* era cultivada com fenol como fonte de carbono. Concluíram que no crescimento com fenol, o acetil-CoA estava sendo metabolizado via glioxilato ao invés do ciclo TCA utilizando os produtos finais da degradação do fenol para fornecer metabólitos (oxaloacetato, malato, piruvato e fosfoenolpiruvato) para as vias anabólicas. No caso da *B. cenonocepacia* essa também é a hipótese mais plausível. As conexões do metabolismo energético e degradação de xenobióticos também é perceptível após análise do mapa B, assim como a boa cobertura de proteínas relacionadas ao metabolismo de aminoácidos.

Mapas C – Mapas de vias metabólicas de *C. taiwanensis* C – 290 proteínas de *C. taiwanensis.* Códigos dos mapas no KEGG: vias metabólicas (cti01100). Em azul indicam as vias onde atuam as proteínas identificadas, em verde todas as proteínas anotadas no *KEGG* para a espécie.

O mapa metabólico para *C. taiwanensis* (mapa C) foi o que apresentou a menor cobertura das vias metabólicas se comparada aos mapas das outras duas espécies, afinal foi a espécie que teve a menor quantidade de proteínas identificadas. Aproximadamente 206 proteínas a menos que

as outras espécies. Apesar disso, é possível perceber muitas proteínas das vias glicolítica e ciclo de *Krebs*, esse último completo. É perceptível também que a via do glioxilato também está ativa nesse microrganismo. A biossíntese de ácidos graxos teve menor cobertura entre as três espécies, porém a de degradação via β-oxidação está completa. Sobre as conexões das vias de degradação de xenobióticos com o metabolismo energético, temos algumas considerações. As conexões estão presentes, e ainda é possível perceber que essa bactéria tem mais proteínas identificadas relacionadas com as vias de degradação de xenobióticos que as duas outras bactérias, mesmo com a diferença expressiva no total de proteínas identificadas. Além desse fato, é possível perceber que existem mais proteínas anotadas no KEGG (vias em verde) para degradar xenobióticos nessa espécie que nas outras duas.

O mapa D é um dos mapa de sinergismos entre as espécies do consórcio A3 que representa de forma ampliada a seção de proteínas identificadas que foram relacionadas com xenobióticos, via glicolítica e clico de Krebs, além de outras vias que o *KEGG* inclui na categoria "metabolismo microbiano em diversos ambientes". Todas as reações nas vias de degradação de xenobióticos somam aproximadamente 50 reações para o total de proteínas que foram identificadas no consórcio A3. A via do metabolismo energético central aparece completa e com as conexões bem explícitas com a degradação de xenobióticos. Essas conexões se formam a partir da geração de acetil-CoA ou outros produtos intermediários do ciclo de Krebs, especialmente succinil-CoA e glioxilato. Das proteínas que aparecem exclusivas por espécie é possível perceber uma maior quantidade delas para *A. baumannii* seguido de *B. cenocepacia*. Aquelas comuns a todas as espécies aparecem principalmente relacionas as via glicolítica e ao ciclo de Krebs.

A construção do mapa de sinergismo das espécies para o consórcio A3 (mapa E) resultou na definição de várias vias metabólicas completas, como por exemplo via glicólica, ciclo de Krebs e metabolismos de ácidos graxos. Em todas elas é possível perceber o sinergismo entre as espécies na formação dessas vias metabólicas. Como é possível analisar pelo mapa, em alguns casos as vias aparecem incompletas para a espécie, porém quando analisadas na forma de consórcio a via si torna completa. Essa complementação de vias já era esperada, em virtude do efeito colaborativo entre as cepas constituindo o consórcio. Os consórcios bacterianos com um espectro maior de enzimas exibem a possibilidade de utilizar uma quantidade também maior de substratos, além do que as espécies exibem habilidades metabólicas que se complementam e conseguem assim, melhor adaptação aos ambientes, como também foi demonstrando por Jia *et al.*, (2016).

Mapa D e E – Mapas de sinergismos entres as espécies do consócio A3 nas diferentes vias metabólicas. 890 proteínas do consórcio A3, com seleção automática no KEGG para "metabolismo microbiano em diversos ambientes" (mapa D) e sem restrição por via metabólica (mapa E). Código dos mapas no KEGG: metabolismo microbiano em diversos ambientes

(map01120); vias metabólicas (map01100). Vias na cor Vermelha – Proteínas exclusiva de *A. baumannii*; Roxo – exclusiva de *B. cenocepacia*; Azul – exclusiva de *C. taiwanensis*; Laranja – Comum a *A. baumannii* e *B. cenocepacia*; Verde – Comum a *B. cenocepacia* e *C. taiwanensis*; Amarelo – Comum a *A. baumannii* e *C. taiwanensis*; Preto – Proteínas comuns a todas as espécies.

Vale ressaltar que esse último mapa engloba todas as vias metabólicas descritas no KEGG, algumas delas, inclusive, não são observadas em muitos microrganismos. A coberturas de vias metabólicas ativas pelas enzimas que foram identificadas indicam que as principais funções celulares desse microrganismo estão plenamente funcionando nas condições de cultivo em xenobióticos.

Além disso a análise individual realizada de cada espécie do consórcio é importante para a compreensão do papel que cada uma desempenha no processo de biorremediação do diesel. Muitos consórcios bacterianos foram construídos para melhorar a remoção de óleo bruto (Gurav *et al.*, 2017; Yuan *et al.*, 2018), isso depois de exaustiva pesquisa sobre as espécies componentes do consórcio, a fim de que as principais qualidades de uma determinada espécie fosse devidamente empregada no consórcio. Na biorremediação, a divisão metabólica do trabalho é uma abordagem poderosa para processar substratos complexos (Roell *et al.*, 2019). Os hidrocarbonetos podem ser degradados naturalmente por microrganismos que produzem biossurfactantes para facilitar a absorção de hidrocarbonetos (Beal e Betts, 2000). O conceito foi imitado na formulação de consórcios bacterianos para aumentar a degradação do petróleo bruto (Xia *et al.*, 2019). Outros tipos de divisão metabólica têm sido usados em substratos complexos que requerem a participação de várias enzimas, que dividem um ou mais processos para fazer diferentes cepas executarem tarefas distintas, mas complementares (Li *et al.*, 2020b).

5.9. ABUNDÂNCIA DAS PROTEÍNAS ASSOCIADAS A BIORREMEDIAÇÃO

Um *heatmap* (figura 28) com a abundância das proteínas por espécies e amostra foi construído, sendo as proteínas categorizadas de acordo com o tipo de xenobiótico que elas interagem. Agrupadas em primeiro lugar estão relacionadas apenas as proteínas que foram associadas exclusivamente às vias metabólicas de compostos aromáticos. Em seguida aparecem as proteínas associadas exclusivamente às vias de compostos alifáticos e ácidos graxos, seguido das proteínas que foram observadas participando nas duas categorias. E, por fim foram agrupadas em "outras funções" as proteínas que parecem ter um envolvimento com a degradação de xenobiótico,

porém com informações pouco claras a respeito de sua real função da remediação desses compostos.

Para o grupo dos compostos aromáticos foram incluídas 10 proteínas que apresentaram apenas atividade relacionada a essa classe de compostos. Dessas proteínas é possível identificar entre a amostra extracelular uma maior abundância delas em *C. taiwanensis* (6 proteínas), seguido por *B. cenocepacia* (3 proteínas) e apenas uma para *A. baumannii*. O destaque para esse primeiro grupo analisado é da proteína *3-hydroxybutyryl-CoA dehydrogenase* (30) de *B. cenocepacia* que apresenta contagem maior no número de espectros e está ausente nas duas outras espécies. Essa enzima é responsável por uma das últimas reações da via anaeróbia do benzoato.

Ainda para esse primeiro grupo de proteínas, de maneira geral, a abundância na amostra extracelular é maior que na intracelular, tanto em quantidade no número de proteínas quanto na quantidade de *spectral counts* por proteína. Um exemplo disso é que em alguns casos se pode perceber a ausência da proteína na amostra intracelular. Por exemplo, a proteína *2-Hydroxymuconic semialdehyde dehydrogenase* (10) não aparece para a *C. taiwanensis* intracelular. Essa enzima é responsável por reagir na via do xileno. A enzima *Catechol 1,2-dioxygenase* (242) de *B. cenocepacia*, responsável pela quebra do catecol, aparece com uma baixa abundância quando comparada à outras enzimas desse grupo, assim como a *NAD-dependent aldehyde dehydrogenase* (468) (ambas as amostras), de *C. taiwanensis* e *Benzaldehyde dehydrogenase II* (720) (ambas as amostras) de *A. baumannii*, que são enzimas responsáveis por reações importantes na via do xileno. A enzima responsável pela abertura anaeróbica do benzoato (proteína 1), de *C. taiwanensis*, aparece com uma abundância maior na amostra extracelular do que na intracelular.

Para as proteínas que degradam exclusivamente ácidos graxos/alcanos (09 no total), o destaque é para *A. baumannii*, em ambas as amostras (06 proteínas em cada). As duas proteínas de *B. cenocepacia* e as duas de *C. taiwanensis* que aparecem com uma quantidade maior de espectros, demostram praticamente o mesmo desempenho nas duas amostras. Entre as proteínas desse grupo o destaque é para *Acyl-CoA dehydrogenase* (146) de *A. baumannii* e *C. taiwanensis*, estando ausente em *B. cenocepacia*. Essa proteína é uma das responsáveis pela reação inicial da via de β -oxidação dos ácidos graxos. A proteína *Acyl-CoA synthetase (Long-chain-fatty-acid--CoA ligase)* (148) também se destaca, porém foi encontrada apenas para *A. baumannii*. Essa proteína está envolvida na ligação de CoA com ácidos graxos de cadeia longa. A rubredoxina (757) importante enzima de hidroxilação inicial de *n*-alcanos, vista apenas em *A. baumannii*, aparece com baixa

abundância em ambas as amostras. E também a *NAD-dependent aldehyde dehydrogenase* (470), de *B. cenocepacia*, que faz a última transformação na via dos *n*-alcanos, transformando-os em ácidos graxos.

Figura 28. Heatmap de abundância das proteínas associadas com a degradação de xenobióticos. Baseado nos spectral counts totais observados nos dados de espectrometria de massas. AB-Ex – A. baumannii amostra extracelular; BC-Ex – B. cenocepacia amostra extracelular; CT-Ex – C. taiwanensis amostra extracelular; A3-Ex – consórcio A3 amostra extracelular; AB-In – A. baumannii da amostra intracelular; BC-In – B. cenocepacia amostra intracelular; CT-In – C. taiwanensis amostra intracelular; A3-In – consórcio A3 amostra intracelular. Sequência numérica após o EC number representam a sequência dessas proteínas na tabela 12 e no apêndice 02.

O grupo que reúne proteínas que atuam tanto nas vias de aromáticos quanto de alifáticos, além de ser o maior (22 proteínas), é também o que tem maior abundância de proteínas entre as condições analisadas. Para a amostra extracelular a quantidade de proteínas que se destacam entre as espécies é praticamente a mesma, 07 em *A. baumannii*, 07 em *B. cenocepacia* e 05 em *C. taiwanensis*. Esses dados praticamente se repetem para as mesmas proteínas nas amostras extracelular, exceto para *C. taiwanensis* onde aparecem apenas duas proteínas com abundância maior. Também aqui se percebe uma maior abundância de proteínas na amostra extracelular que na intracelular, isso é mais evidente quando comparado apenas A3-In e A3-Ex.

Algumas proteínas aparecem com nomes diferentes e abundância relativamente diferente dependendo da espécie, entretanto, algumas delas apresentam o mesmo número EC. Nesse caso analisamos a abundância delas baseado no número EC. Por exemplo, para as de EC: 1.1.1.35 (6 proteínas) tem sempre duas proteínas por espécie com abundância alta, se comparada às demais proteínas do grupo. Isso é visto para ambas as amostras, exceto em C. taiwanensis na amostra intracelular. As de EC: 2.3.1.16, tem pelo menos uma proteína por bactéria que destaca nas amostras extracelular e intracelular, com exceção novamente para CT-In. Já as de EC: 2.3.1.9 são mais abundantes em C. taiwanensis e A. baumannii do que em B. cenocepacia em ambas as condições. Essas duas enzimas participam da última reação da via de β -oxidação, na liberação de acetil-CoA e um ácido graxo com dois carbonos a menos. Entretanto a EC: 2.3.1.16 aparece em todas as reações finais da via, enquanto que a EC: 2.3.1.9, aparece apenas nas reações onde os ácidos graxos possuem cadeias carbônicas menores ($C_6 e C_4$). Considerando as duas enzimas e suas respectivas abundâncias em cada bactéria, uma leve tendência de maior abundância em A. baumannii do que nas outras espécies, é vista. As duas enzimas que participam ativamente na conversão de n-alcanos à ácidos graxos, e foram encontradas apenas em A. baumannii, sendo que a Putative alcohol dehydrogenase (625) tem maior abundância que a Probable FAD-binding monooxygenase AlmA (591), como um desempenho um pouco melhor da 625 em AB-Ex.

No grupo de proteínas associadas com outras funções relacionadas à xenobióticos, foram incluídas 6 proteínas que tem atuação em processos pouco claros ou que degradam outros compostos. Como é o caso da proteína *Acyl-CoA dehydrogenase, short-chain specific* (147), incluída nesse grupo por atuar na degradação de caprolactama, que é um composto orgânico (ácido 6-aminohexanóico) monômero na produção de *nylon* (Lai *et al.,* 2019). Essa proteína foi encontrada em *C. taiwanensis* e apresenta baixa abundância nas amostras intra e extracelular. As

proteínas *Toluene tolerance efflux transporter (ABC superfamily, peri-bind)* (817), *Putative toluene tolerance protein (Ttg2D)* (691) e *Efflux pump membrane transporter* (316), são proteínas de transporte do tipo ABC, e parecem estar envolvidas de certa forma como a tolerância de tolueno em *A. baumannii* onde foram encontradas. No geral, as três apresentam baixa abundância nas amostras, com exceção de 316 em *AB-In*. As proteínas *Putative 2-nitropropane dioxygenase* (606) de *C. taiwanensis* e *Xenobiotic reductase* (886) de *A. baumannii* são as que têm atuação ainda menos clara em relação aos seus papeis na degradação de xenobióticos. A primeira é uma enzima da classe das dioxigenases, e a segunda um redutase que parece ter atuação direta sobre compostos xenobióticos.

Setorizando a relação das enzimas exclusivas de aromático e exclusivas de alcanos/ácidos graxos de acordo com a abundância delas nas espécies, somos levados a concluir que as espécie *C. taiwanensis* aparece mais intimamente relacionado com as enzimas exclusivas de aromáticos, enquanto que *A. baumannii* parece estar mais associada com alcanos/ácidos graxos, e *B. cenocepacia* não se destaca em nenhum desse dois grupos de enzima, embora apresente enzima nos dois grupos.

Nkem *et al.*, (2016) testaram uma cepa *A. baumannii* para a degradação de hidrocarbonetos usando óleo diesel como única fonte de carbono. Os resultados analisados usando GC-MS, mostraram que alcanos de óleo diesel foram degradados em média 58,1%. A cepa degradou de forma mais eficiente (68,3% -95,9%) os alcanos de óleo diesel de C₁₁, C₁₂, C₁₃, C₁₅, C₁₇, C₁₈, C₁₉, C₂₂ e C₂₄, enquanto outros (C₁₀, C₁₄, C₁₆, C₂₀, C₂₃, C₂₅, C₂₆, C₂₇, C₂₈ e C₂₉) foram menos degradados (0,2% – 46,2%). O estudo concluiu que a cepa é degradadora de hidrocarbonetos com potencial para biorremediação de ambiente marinho poluído por óleo. Trabalhos anteriores também mostraram que essa espécie tem relação com degradação de hidrocarbonetos, principalmente os alcanos. Uma cepa de *A. baumannii* isolada de petróleo bruto exibiu 62,8% de biodegradação de hidrocarbonetos totais após 7 dias (Phan *et al.*, 2013). Mishra *et al.* (2004) relataram que os alcanos foram degradados preferencialmente por *A. baumannii* em comparação com outros hidrocarbonetos durante os experimentos de biodegradação de petróleo bruto. Ijah (1998) relatou que os alcanos do petróleo bruto foram degradados principalmente em relação a outros hidrocarbonetos em 52%, usando bactérias isoladas de solos tropicais em 16 dias.

Já os trabalhos envolvendo a degradação de hidrocarbonetos tem associado a espécie *C*. *taiwanensis* com a degradação de compostos aromáticos e poliaromáticos. A cepa LA mostrou degradação de aproximadamente 60% e 80% para pireno e fenantreno, respectivamente, após 15 dias de cultivo (Oyehan e Al-Thukair, 2017) e a cepa R186 tem sido associada a degradação de fenol (Chen *et al.*, 2008).

6. CONCLUSÃO E PERSPECTIVAS

A partir dos resultados descritos neste trabalho conclui-se que foi obtido um consórcio bacteriano promissor para aplicação em processos de biorremediação. Sua eficiência, avaliada em 74 % de degradação de diesel em apenas 7 dias, é forte evidência disso, além de todos os dados relacionados a biorremediação que foram avaliados.

O consórcio A3 demostrou ter envolvimento na degradação de 11 compostos xenobióticos presentes no diesel. A análise de todas as proteína identificadas e associadas principalmente com essas vias metabólicas nos levaram a concluir as espécies presentes no consórcio podem estar atuando de modo sinérgico para favorecer a degradação desses compostos.

Quando se avalia a contribuição individual de cada espécie para o consórcio A3, é possível identificar que *C. taiwanensis* aparece com uma quantidade maior de proteínas envolvidas na degradação dos compostos aromáticos, principalmente o benzoato. Embora a via de β-oxidação, estivesse completa e em quantidade alta de proteínas identificadas, não foram encontradas proteínas associação à hidroxilação de *n*-alcanos ou ainda na etapa de conversão desses compostos em ácidos graxos nessa espécie. Já *A. baumannii* apresentou as maiores quantidades de proteínas proteínas responsáveis pela hidroxilação de *n*-alcanos. Quanto aos aromáticos, embora apresente 11 proteínas envolvidas na degradação desses compostos, não foram encontradas atuando em funções-chave, tais como a quebra de um anel aromático. Sua atuação se dá mais nas vias periféricas, onde acontece a conexão dessa via como o metabolismo energético central. E finalmente, *B. cenocepacia* parece ter boa atuação tanto em aromáticos quanto alifáticos. Foi encontrada uma importante dioxigenase nessa espécie para via de degradação de aromáticos e uma enzima capaz de transformar um aldeído em ácido graxo na via de *n*-alcanos.

Dando continuidade para a validação do consórcio A3 como ferramenta em processos de biorremediação, este terá a sua eficiência avaliada após ser imobilizado em substrato lignocelulósico. Outro aspecto a ser investigado será o genoma das espécies que constituem o consórcio A3. Estas atividades futuras estão em fase de planejamento e integram os objetivos de um projeto aprovado recentemente no âmbito do Edital 007/2021-BIODIVERSA/FAPEAM (em fase de implementação). A obtenção destes resultados contribuirão para o desenvolvimento de um produto biotecnológico que pode ser amplamente empregado na recuperação de áreas impactadas como hidrocarbonetos de petróleo.

7. REFERÊNCIAS

- Adetunji, A. I., e Olaniran, A. O. (2020). Production and potential biotechnological applications of microbial surfactants: An overview. Saudi Journal of Biological Sciences. doi:10.1016/j.sjbs.2020.10.058
- Adeva-Andany, M. M., Carneiro-Freire, N., Seco-Filgueira, M., Fernández-Fernández, C., & Mouriño-Bayolo, D. (2018). *Mitochondrial β-oxidation of saturated fatty acids in humans*. *Mitochondrion*. doi:10.1016/j.mito.2018.02.009
- Ahmed, F., Fakhruddin, A. N. M. A Review on Environmental Contamination of Petroleum Hydrocarbons and its Biodegradation. Int J Environ Sci Nat Res. 2018; 11(3): 555811. doi: 10.19080/IJESNR.2018.11.555811.
- Ajona, M., Vasanthi, P. (2021). Bioremediation of petroleum contaminated soils A review, Materials Today: Proceedings. doi:10.1016/j.matpr.2021.01.949
- Al-Majed, A. A., Adebayo, A. R., Hossain, M. E. (2012). A sustainable approach to controlling oil spills. Journal of Environmental Management, 113, 213–227. doi:10.1016/j.jenvman.2012.07.034
- AL-Saleh, E., Drobiova, H., & Obuekwe, C. (2009). Predominant culturable crude oil-degrading bacteria in the coast of Kuwait. International Biodeterioration & Biodegradation, 63(4), 400–406. doi:10.1016/j.ibiod.2008.11.004
- Almeida, D. G. de, Silva, M. da, G. C. da, Barbosa, R. do N., Silva, D. de S. P., Silva, R. O. da, Lima, G. M. de S, Sousa, M. de F. V de Q. (2017). *Biodegradation of marine fuel MF-380 by microbial consortium isolated from seawater near the petrochemical Suape Port, Brazil. International Biodeterioration & Biodegradation, 116, 73–82.* doi:10.1016/j.ibiod.2016.09.028
- Ampelli, C., Centi, G., Passalacqua, R., & Perathoner, S. (2016). Electrolyte-less design of PEC cells for solar fuels: Prospects and open issues in the development of cells and related catalytic electrodes. Catalysis Today, 259, 246–258. doi:10.1016/j.cattod.2015.07.020
- An, X., Chen, Y., Chen, G., Feng, L., & Zhang, Q. (2020). Integrated metagenomic and metaproteomic analyses reveal potential degradation mechanism of azo dye-Direct Black G by thermophilic microflora. Ecotoxicology and Environmental Safety, 196, 110557. doi:10.1016/j.ecoenv.2020.110557
- Arellano, P., Tansey, K., Balzter, H., & Tellkamp, M. (2017). Plant Family-Specific Impacts of Petroleum Pollution on Biodiversity and Leaf Chlorophyll Content in the Amazon Rainforest of Ecuador. PLOS ONE, 12(1), e0169867. doi:10.1371/journal.pone.01698
- Auffret, M. D., Yergeau, E., Labbé, D., Fayolle-Guichard, F., & Greer, C. W. (2015). Importance of Rhodococcus strains in a bacterial consortium degrading a mixture of hydrocarbons, gasoline, and diesel oil additives revealed by metatranscriptomic analysis. Applied Microbiology and Biotechnology, 99(5), 2419–2430. doi:10.1007/s00253-014-6159-8

- Ayed, H. B., Jemil, N., Maalej, H., Bayoudh, A., Hmidet, N., e Nasri, M. (2015). Enhancement of solubilization and biodegradation of diesel oil by biosurfactant from Bacillus amyloliquefaciens An6. International Biodeterioration & Biodegradation, 99, 8– 14. doi:10.1016/j.ibiod.2014.12.00
- Azevedo-Santos, V. M., Garcia-Ayala, J. R., Fearnside, P. M., Esteves, F. A., Pelicice, F. M., Laurance, W. F., & Benine, R. C. (2016). Amazon aquatic biodiversity imperiled by oil spills. Biodiversity and Conservation, 25(13), 2831–2834. doi:10.1007/s10531-016-1192-9
- Balogun, S. A., Shofola, T. C., Okedeji, A. O. e Ayangbenro, A. S. (2015). Screening of hydrocarbonoclastic bacteria using redox indicator 2, 6-dichlorophenol indophenol, Global NEST Journal, 17(3), 565-573.
- Bao, M., Wang, L., Sun, P., Cao, L., Zou, J., & Li, Y. (2012). Biodegradation of crude oil using an efficient microbial consortium in a simulated marine environment. Marine Pollution Bulletin, 64(6), 1177–1185. doi:10.1016/j.marpolbul.2012.03.020
- Bazargan, A., Tan, J., McKay, G., (2015). *Standardization of oil sorbent performance testing*. *Journal of Testing and Evaluation 43, 1–8.* doi:10.1520/JTE20140227.
- BBC News (2013) Brazil 'on alert' over an oil spill from Ecuador. BBC News. http://www.bbc.com/news/ world-latin-america-22836975. Acesso em: 10 abril 2018.
- Beal, R., & Betts, W. B. (2000). Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. Journal of Applied Microbiology, 89(1), 158–168. doi:10.1046/j.1365-2672.2000.01104.x
- Benndorf, D., Balcke, G. U., Harms, H., e von Bergen, M. (2007). Functional metaproteome analysis of protein extracts from contaminated soil and groundwater. The ISME Journal, 1(3), 224–234. doi:10.1038/ismej.2007.39
- Bhasheer, S.K., Umavathi, S., Banupriya, D., Thangavel, M., Thangam, Y. (2014). Diversity of diesel degrading bacteria from a hydrocarbon contaminated soil. Int. J. Curr. Microbiol. Appl. Sci. 3(11), 363–369.
- Bhuvaneswar, C., Swathi, G., Bhaskar, B.V., Munichandrababu, T., Rajendra, W. (2012). *Effective* synergetic biodegradation of diesel oil by bacteria. Int. J. Environ. Biol. 2, 195-199.
- Bhuvaneswar, C., Swathi, G., Vijaya Bhaskar, B., Munichandrababu, T., Rajendra, W. (2012). *Effective synergetic biodegradation of diesel oil by bacteria. International Journal of Environmental Biology, 2, 195–199.*
- Bowen, R. E., e Depledge, M. H. (2006). *Rapid Assessment of Marine Pollution (RAMP). Marine Pollution Bulletin, 53(10-12), 631–639.* doi:10.1016/j.marpolbul.2006.09.002
- Bozinovski, D., Taubert, M., Kleinsteuber, S., Richnow, H.-H., von Bergen, M., Vogt, C., e Seifert, J. (2014). *Metaproteogenomic analysis of a sulfate-reducing enrichment culture reveals*

genomic organization of key enzymes in the m-xylene degradation pathway and metabolic activity of proteobacteria. Systematic and Applied Microbiology, 37(7), 488–501. doi:10.1016/j.syapm.2014.07.005.

- Brauner, C., Ballantyne, C. ., Vijayan, M. ., & A.L, V. (1999). Crude oil exposure affects airbreathing frequency, blood phosphate levels and ion regulation in an air-breathing teleost fish, Hoplosternum littorale. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 123(2), 127–134. doi:10.1016/s0742-8413(99)00018-3
- Breitwieser, M., Thomas-Guyon, H., Huet, V., Sagerup, K., & Geraudie, P. (2018). Spatial and temporal impacts of the Skjervøy harbour diesel spill on native population of blue mussels: A sub-Arctic case study. Ecotoxicology and Environmental Safety, 153, 168–174. doi:10.1016/j.ecoenv.2018.01.033
- Brouk, M., Derry, N.-L., Shainsky, J., Zelas, Z. B.-B., Boyko, Y., Dabush, K., Fishman, A. (2010). The influence of key residues in the tunnel entrance and the active site on activity and selectivity of toluene-4-monooxygenase. Journal of Molecular Catalysis B: Enzymatic, 66(1-2), 72–80. doi:10.1016/j.molcatb.2010.03.006
- Bushnell L. D. e Haas H. F. (1941). *The Utilization of Certain Hydrocarbons By Microorganisms*'. *J Bacteriol*, n. 199, p. 653–673. doi:10.1128/jb.41.5.653-673.1941
- Campeão, M. E., Reis, L., Leomil, L., de Oliveira, L., Otsuki, K., Gardinali, P., Pelz, O., Valle, R., Thompson, F. L., Thompson, C. C. (2017). *The Deep-Sea Microbial Community from the Amazonian Basin Associated with Oil Degradation. Frontiers in Microbiology*, 8, 1019. doi:10.3389/fmicb.2017.01019
- Catania, V., Lopresti, F., Cappello, S., Scaffaro, R., e Quatrini, P. (2020). *Innovative, ecofriendly* biosorbent-biodegrading biofilms for bioremediation of oil- contaminated water. New Biotechnology. doi:10.1016/j.nbt.2020.04.001
- Chandankere, R., Yao, J., Cai, M., Masakorala, K., Jain, A. K., e Choi, M. M. F. (2014). Properties and characterization of biosurfactant in crude oil biodegradation by bacterium Bacillus methylotrophicus USTBa. Fuel, 122, 140–148. doi:10.1016/j.fuel.2014.01.023
- Chen, B.-Y., You, J.-W., Hsieh, Y.-T., e Chang, J.-S. (2008). Feasibility study of exponential feeding strategy in fed-batch cultures for phenol degradation using Cupriavidus taiwanensis. Biochemical Engineering Journal, 41(2), 175–180. doi:10.1016/j.bej.2008.04.012
- Chen, Y.-A., Liu, P.-W. G., Whang, L.-M., Wu, Y.-J., & Cheng, S.-S. (2019). *Biodegradability* and microbial community investigation for soil contaminated with diesel blending with biodiesel. Process Safety and Environmental Protection. doi:10.1016/j.psep.2019.07.001
- Claxton, L. D. (2015). The history, genotoxicity, and carcinogenicity of carbon-based fuels and their emissions. Part 3: Diesel and gasoline. Mutation Research/Reviews in Mutation Research, 763, 30–85. doi:10.1016/j.mrrev.2014.09.002

- Cohen, A., Gagnon, M., Nugegoda, D. (2005). Alterations of metabolic enzymes in Australian Bass, Macquaria novemaculeata, efter exposure to petroleum hydrocarbons. Archives of Environmental Contamination and Toxicology, 49(2):200-205. doi: 10.1007/s00244-004-0174-1
- Couceiro, S. R. M., Hamada, N., Ferreira, R. L. M., Forsberg, B. R., & da Silva, J. O. (2006). Domestic Sewage and Oil Spills in Streams: Effects on Edaphic Invertebrates in Flooded Forest, Manaus, Amazonas, Brazil. Water, Air, and Soil Pollution, 180(1-4), 249–259. doi:10.1007/s11270-006-9267-y
- Cowan, D., Meyer, Q., Stafford, W., Muyanga, S., Cameron, R., & Wittwer, P. (2005). *Metagenomic gene discovery: past, present and future. Trends in Biotechnology,* 23(6), 321–329. doi:10.1016/j.tibtech.2005.04.001
- Cruz, J. M., Tamada, I. S., Lopes, P. R. M., Montagnolli, R. N., & Bidoia, E. D. (2014). Biodegradation and Phytotoxicity of Biodiesel, Diesel, and Petroleum in Soil. Water, Air, & Soil Pollution, 225(5). doi:10.1007/s11270-014-1962-5
- Daniel, R. (2005). The metagenomics of soil. Nature Reviews Microbiology, v. 3, n. 6, p. 470–478.
- Das, N., & Chandran, P. (2011). *Microbial Degradation of Petroleum Hydrocarbon Contaminants: An Overview. Biotechnology Research International, 2011, 1– 13.* doi:10.4061/2011/941810
- David I. Little, D. I., Sheppard, S. R. J., Hulme, D. (2021). A perspective on oil spills: What we should have learned about global warming. Ocean and Coastal Management 202 (2021) 105509. doi: https://doi.org/10.1016/j.ocecoaman.2020.105509
- De Pauli, A. R., Espinoza-Quiñones, F. R., Dall'Oglio, I. C., Trigueros, D. E. G., Módenes, A. N., Ribeiro, C., ... Kroumov, A. D. (2017). New insights on abatement of organic matter and reduction of toxicity from landfill leachate treated by the electrocoagulation process. Journal of Environmental Chemical Engineering, 5(6), 5448– 5459. doi:10.1016/j.jece.2017.10.017
- Deng, S. -K. ; Zhou, N. -Y. (2021). The genetic determinants of 4-chloro-2-nitrophenol degradation in Cupriavidus sp. strain NyZ417. International biodeterioration & biodegradation,158, 105170. doi: 10.1016/j.ibiod.2020.105170
- Díaz, E. (2004). Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. International Microbiology, 7:173–180.
- Dicker, L., Lin, X., & Ivanov, A. R. (2010). Increased Power for the Analysis of Label-free LC-MS/MS Proteomics Data by Combining Spectral Counts and Peptide Peak Attributes. Molecular & Cellular Proteomics, 9(12), 2704–2718. doi:10.1074/mcp.m110.002774
- Doshi, B., Sillanpää, M., & Kalliola, S. (2018). A review of bio-based materials for oil spill treatment. Water Research, 135, 262–277. doi:10.1016/j.watres.2018.02.034

- DPC Diretoria de Portos e Costas, Marinha do Brasil. (2021). *Inquéritos Administrativos sobre Acidentes e Fatos da Navegação (IAFNs) - Quadros Estatísticos de IAFNs*. Disponível em: https://www.marinha.mil.br/dpc/acidentes-de-navegacao2. Acesso: 17 de março de 2021.
- Duan, W., Meng, F., Peng, X., Lin, Y., Wang, G., & Wu, J. (2019). Kinetic analysis and degradation mechanism for natural attenuation of xylenes under simulated marine conditions. Ecotoxicology and Environmental Safety, 168, 443–449. doi:10.1016/j.ecoenv.2018.10.103
- Duarte, R. M., & Val, A. L. (2020). Water-related problem with special reference to global climate change in Brazil. Water Conservation and Wastewater Treatment in BRICS Nations, 3–21. doi:10.1016/b978-0-12-818339-7.00001-1
- Duarte, R. M., Honda, R. T., & Val, A. L. (2010). Acute effects of chemically dispersed crude oil on gill ion regulation, plasma ion levels and haematological parameters in tambaqui (Colossoma macropomum). Aquatic Toxicology, 97(2), 134– 141. doi:10.1016/j.aquatox.2009.12.020
- Durval, I. J. B., Mendonça, A. H. R., Rocha, I. V., Luna, J. M., Rufino, R. D., Converti, A., & Sarubbo, L. A. (2020). Production, characterization, evaluation and toxicity assessment of a Bacillus cereus UCP 1615 biosurfactant for marine oil spills bioremediation. Marine Pollution Bulletin, 157, 111357. doi:10.1016/j.marpolbul.2020.111357
- Eidani, S. Z., Shahraki, M. K., Gasemisakha, F., Hashemi, M., & Bambai, B. (2011). Cloning and expression of alkane hydroxylase-1 from Alcanivorax borkumensis in Escherichia coli. Toxicology and Industrial Health, 28(6), 560–565. doi:10.1177/0748233711416953
- Errampalli, D. (1999). Bacterial survival and mineralization of p-nitrophenol in soil by green fluorescent protein-marked Moraxella sp. G21 encapsulated cells. FEMS Microbiology Ecology, 30(3), 229–236. doi:10.1016/s0168-6496(99)00059-8
- Ferrer, M., Beloqui, A., Timmis, K. N., & Golyshin, P. N. (2009). Metagenomics for Mining New Genetic Resources of Microbial Communities. Journal of Molecular Microbiology and Biotechnology, 16(1-2), 109–123. doi:10.1159/000142898
- Fisher, C. R., Hsing, P.-Y., Kaiser, C. L., Yoerger, D. R., Roberts, H. H., Shedd, W. W., Cordese, E. E., Shankf, T. M., Berleta, S. P., Saundersa, M. G., Larcoma, E. A., Brooks, J. M. (2014). Footprint of Deepwater Horizon blowout impact to deep-water coral communities. Proceedings of the National Academy of Sciences, 111(32), 11744–11749. doi:10.1073/pnas.1403492111
- García-Cruz, N. U., Valdivia-Rivera, S., Narciso-Ortiz, L., García-Maldonado, J. Q., Uribe-Flores, M. M., Aguirre-Macedo, M. L., & Lizardi-Jiménez, M. A. (2019). Diesel uptake by an indigenous microbial consortium isolated from sediments of the Southern Gulf of Mexico: Emulsion characterisation. Environmental Pollution. doi:10.1016/j.envpol.2019.04.109

- Ghazali, F. M., Rahman, R. N. Z. A., Salleh, A. B., & Basri, M. (2004). Biodegradation of hydrocarbons in soil by microbial consortium. International Biodeterioration & Biodegradation, 54(1), 61–67. doi:10.1016/j.ibiod.2004.02.002
- Ghosal, D., Ghosh, S., Dutta, T. K., & Ahn, Y. (2016). Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review. Frontiers in Microbiology, 7. doi:10.3389/fmicb.2016.01369.
- Govindasamy, B., Pecoraro, L., Velramar, B., Tamilselvan, S., Ayyasamy Pudukadu Munusamy,
 A. P., Chinnasamy, R., Pachiappan, P. (2019). Evaluation of Salmonella bongori derived biosurfactants and its extracellular protein separation by SDS-PAGE using petridishes: A simply modified approach. International Journal of Biological Macromolecules. doi:10.1016/j.ijbiomac.2019.08.034
- Grifoni, M., Rosellini, I., Angelini, P., Petruzzelli, G., & Pezzarossa, B. (2020). The effect of residual hydrocarbons in soil following oil spillages on the growth of Zea mays plants. Environmental Pollution, 265, 114950. doi:10.1016/j.envpol.2020.114950
- Guazzaroni, M.-E., Herbst, F.-A., Lores, I., Tamames, J., Peláez, A. I., López-Cortés, N., ... Ferrer, M. (2013). Metaproteogenomic insights beyond bacterial response to naphthalene exposure and bio-stimulation. The ISME Journal, 7(1), 122–136. doi:10.1038/ismej.2012.82
- Gupta, B., Puri, S., Thakur, I. S., & Kaur, J. (2020). Enhanced pyrene degradation by a biosurfactant producing Acinetobacter baumannii BJ5: Growth kinetics, toxicity and substrate inhibition studies. Environmental Technology & Innovation, 100804. doi:10.1016/j.eti.2020.100804
- Gupte, A., Tripathi, A., Patel, H., Rudakiya, D., Gupte, S. (2016). Bioremediation of Polycyclic Aromatic Hydrocarbon (PAHs): A Perspective. The Open Biotechnology Journal, 10, 2, 363-378. doi: 10.2174/1874070701610010363
- Gurav, R., Lyu, H., Ma, J., Tang, J., Liu, Q., & Zhang, H. (2017). Degradation of n-alkanes and PAHs from the heavy crude oil using salt-tolerant bacterial consortia and analysis of their catabolic genes. Environmental Science and Pollution Research, 24(12), 11392–11403. doi:10.1007/s11356-017-8446-2
- Hanson, K. G., Desai, J. D., & Desai, A. J. (1993). A rapid and simple screening technique for potential crude oil degrading microorganisms. Biotechnology Techniques, 7(10), 745– 748. doi:10.1007/bf00152624
- Hasanuzzaman, M., Ueno, A., Ito, H., Ito, Y., Yamamoto, Y., Yumoto, I., & Okuyama, H. (2007). Degradation of long-chain n-alkanes (C36 and C40) by Pseudomonas aeruginosa strain WatG. International Biodeterioration & Biodegradation, 59(1), 40–43. doi:10.1016/j.ibiod.2006.07.010

- Heyer, R., Schallert, K., Zoun, R., Becher, B., Saake, G., & Benndorf, D. (2017). Challenges and perspectives of metaproteomic data analysis. Journal of Biotechnology, 261, 24– 36. doi:10.1016/j.jbiotec.2017.06.1201
- Hirakawa, H., Hirakawa, Y., Greenberg, E. P., & Harwood, C. S. (2015). BadR and BadM Proteins Transcriptionally Regulate Two Operons Needed for Anaerobic Benzoate Degradation by Rhodopseudomonas palustris. Applied and Environmental Microbiology, 81(13), 4253– 4262. doi:10.1128/aem.00377-15
- Hlordzi, V., Kuebutornye, F. K. A., Afriyie, G., Abarike, E. D., Lu, Y., Chi, S., & Anokyewaa, M. A. (2020). The use of Bacillus species in maintenance of water quality in aquaculture: A review. Aquaculture Reports, 18, 100503. doi:10.1016/j.aqrep.2020.100503
- Hlordzi, V., Kuebutornye, F. K. A., Afriyie, G., Abarike, E. D., Lu, Y., Chi, S., & Anokyewaa, M. A. (2020). The use of Bacillus species in maintenance of water quality in aquaculture: A review. Aquaculture Reports, 18, 100503. doi:10.1016/j.aqrep.2020.100503
- Horel, A., & Schiewer, S. (2014). Influence of inocula with prior hydrocarbon exposure on biodegradation rates of diesel, synthetic diesel, and fish-biodiesel in soil. Chemosphere, 109, 150–156. doi:10.1016/j.chemosphere.2014.01.073
- Horodesky, A., Abilhoa, V., Zeni, T. de O., Montanhini Neto, R., Castilho-Westphal, G. G., Ostrensky, A. (2015). Ecological analysis of the ichthyofaunal community ten years after a diesel oil spill at Serra do Mar, Paraná state, Brazil. Global Ecology and Conservation, 4, 311–320. doi:10.1016/j.gecco.2015.07.010
- Ibrar, M., e Zhang, H. (2020). Construction of a hydrocarbon-degrading consortium and characterization of two new lipopeptides biosurfactants. Science of The Total Environment, 136400. doi:10.1016/j.scitotenv.2019.136400
- Ijah, U. J. (1998). Studies on relative capabilities of bacterial and yeast isolates from tropical soil in degrading crude oil. Waste Management, 18(5), 293–299. doi:10.1016/s0956-053x(98)00037-3
- Imron, M. F., Kurniawan, S. B., & Titah, H. S. (2019). Potential of bacteria isolated from dieselcontaminated seawater in diesel biodegradation. Environmental Technology & Innovation, 14, 100368. doi:10.1016/j.eti.2019.100368
- Imron, M. F., Kurniawan, S. B., Ismail, N. 'Izzati, & Abdullah, S. R. S. (2020). Future challenges in diesel biodegradation by bacteria isolates: A review. Journal of Cleaner Production, 251, 119716. doi:10.1016/j.jclepro.2019.119716
- Imron, M. F., Titah, H. S. (2018). *Optimization of diesel biodegradation by Vibrio alginolyticus using Box-Behnken design. Environ. Eng. Res.* 23(4), 374e382. doi:10.4491/eer.2018.015.
- Inès, M., e Dhouha, G. (2015). *Lipopeptide surfactants: Production, recovery and pore forming capacity. Peptides, 71, 100–112.* doi:10.1016/j.peptides.2015.07.006

- Inomata, S., Fushimi, A., Sato, K., Fujitani, Y., & Yamada, H. (2015). 4-Nitrophenol, 1nitropyrene, and 9-nitroanthracene emissions in exhaust particles from diesel vehicles with different exhaust gas treatments. Atmospheric Environment, 110, 93– 102. doi:10.1016/j.atmosenv.2015.03.043
- Inoue, J., Shaw, J. P., Rekik, M., & Harayama, S. (1995). Overlapping substrate specificities of benzaldehyde dehydrogenase (the xylC gene product) and 2-hydroxymuconic semialdehyde dehydrogenase (the xylG gene product) encoded by TOL plasmid pWW0 of Pseudomonas putida. Journal of Bacteriology, 177(5), 1196–1201. doi:10.1128/jb.177.5.1196-1201.1995
- IPAAM Instituto de Proteção Ambiental do Amazonas. (2018). Disponível em:http://www.ipaam.am.gov.br/ipaam-aplica-multa-de-r-25-milhoes-em-empresa-por-vazamento-de-oleo-no-mauazinho/. Acesso: 17 de março de 2021.
- IPAAM Instituto de Proteção Ambiental do Amazonas. (2019). Disponível em: http://www.ipaam.am.gov.br/ipaam-acompanha-medidas-para-contencao-de-vazamentono-rio-negro/. Acesso: 17 de março de 2021.
- Isiodu, G. G., Stanley, H. O., Ezebuiro, V., Okerentugba, P. O. (2016). Role of Plasmid-Borne Genes in the Biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) by Consortium of Aerobic Heterotrophic Bacteria. Journal of Petroleum & Environmental Biotechnology, 07(01). doi:10.4172/2157-7463.1000264
- Isola, D., Selbmann, L., de Hoog, G. S., Fenice, M., Onofri, S., Prenafeta-Boldú, F. X., & Zucconi, L. (2013). Isolation and Screening of Black Fungi as Degraders of Volatile Aromatic Hydrocarbons. Mycopathologia, 175(5-6), 369–379. doi:10.1007/s11046-013-9635-2.
- Jia, X., Liu, C., Song, H., Ding, M., Du, J., Ma, Q., & Yuan, Y. (2016). Design, analysis and application of synthetic microbial consortia. Synthetic and Systems Biotechnology, 1(2), 109–117. doi:10.1016/j.synbio.2016.02.001
- Jin, R., Zheng, M., Lammel, G., Benjamin A., Bandowe, M., Liu, G. Chlorinated and brominated polycyclic aromatic hydrocarbons: Sources, formation mechanisms, and occurrence in the environment. Progress in Energy and Combustion Science 76 (2020) 100803. doi:10.1016/j.pecs.2019.100803.
- Joo, M. H., & Kim, J. Y. (2013). Characteristics of crude oil biodegradation by biosurfactantproducing bacterium Bacillus subtilis JK-1. Journal of the Korean Society for Applied Biological Chemistry, 56(2), 193–200. doi:10.1007/s13765-012-3269-9
- Juhasz, A. L., Britz, M. L., & Stanley, G. A. (1997). Degradation of fluoranthene, pyrene, benz[a]anthracene and dibenz[a,h]anthracene by Burkholderia cepacia. Journal of Applied Microbiology, 83(2), 189–198. doi:10.1046/j.1365-2672.1997.00220.x
- Kaczorek, E., Chrzanowski, Ł., Pijanowska, A., & Olszanowski, A. (2008). Yeast and bacteria cell hydrophobicity and hydrocarbon biodegradation in the presence of natural surfactants:

Rhamnolipides and saponins. Bioresource Technology, 99(10), 4285–4291. doi:10.1016/j.biortech.2007.08.049

- Kadri, T., Magdouli, S., Rouissi, T., Brar, S. K., Daghrir, R., & Lauzon, J.-M. (2018). Bench-scale production of enzymes from the hydrocarbonoclastic bacteria Alcanivorax borkumensis and biodegradation tests. Journal of Biotechnology, 283, 105–114. doi:10.1016/j.jbiotec.2018.07.039
- Kadri, T., Rouissi, T., Kaur Brar, S., Cledon, M., Sarma, S., & Verma, M. (2017). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. Journal of Environmental Sciences, 51, 52–74. doi:10.1016/j.jes.2016.08.023
- Karlapudi, A. P., Venkateswarulu, T. C., Tammineedi, J., Kanumuri, L., Ravuru, B. K., Dirisala, V. ramu, & Kodali, V. P. (2018). *Role of biosurfactants in bioremediation of oil pollutiona review. Petroleum*, 4(3), 241–249. doi:10.1016/j.petlm.2018.03.007
- Karlsson, R., Thorsell, A., Gomila, M., Salvà-Serra, F., Jakobsson, H. E., Gonzales-Siles, L., ... Moore, E. (2020). Discovery of species-unique peptide biomarkers of bacterial pathogens by tandem mass spectrometry-based proteotyping. Molecular & Cellular Proteomics, mcp.RA119.001667. doi:10.1074/mcp.ra119.001667
- Katsumiti, A., Domingos, F., Azevedo, M., da Silva, M., Damian, R., Almeida, M., de Assis, H., Cestari, M., Randi, M., Ribeiro, C., Freire, C. (2009). An assessment of acute biomarker responses in the demersal catfish (Cathorops spixii) after the Vicuña Oil Spill in a harbour estuarine area in Southern Brazil. Environmental Monitoring and Assessment, 152,(1):209-222. doi:10.1007/s10661-008-0309-3
- Kebria, D. Y., Khodadadi, A., Ganjidoust, H., Badkoubi, A., & Amoozegar, M. A. (2009). Isolation and characterization of a novel native Bacillus strain capable of degrading diesel fuel. International Journal of Environmental Science & Technology, 6(3), 435–442. doi:10.1007/bf03326082
- Khalid, F. E., Lim, Z. S., Sabri, S., Gomez-Fuentes, C., Zulkharnain, A., Ahmad, S. A. (2021). Bioremediation of Diesel Contaminated Marine Water by Bacteria: A Review and Bibliometric Analysis. Journal of Marine Science and Engineering, 9, 155. https://doi.org/10.3390/jmse9020155
- Khan, N., Warith, M. A., & Luk, G. (2007). A Comparison of Acute Toxicity of Biodiesel, Biodiesel Blends, and Diesel on Aquatic Organisms. Journal of the Air & Waste Management Association, 57(3), 286-296. doi:10.1080/10473289.2007.10465333
- Kimerling, J. (2006). Indigenous Peoples and the Oil Frontier in Amazonia: The Case of Ecuador, Chevrontexaco, and Aguinda v. Texaco. New York University Journal of International Law and Policy, v. 38, p. 413.
- Kimerling, J. (2013). Oil, Contact, and Conservation in the Amazon: Indigenous Huaorani, Chevron, and Yasuni. Colorado Journal of International Environmental Law and Policy, v. 24, n. 1, p. 43–115.

- Kirby, M. F., & Law, R. J. (2010). Accidental spills at sea Risk, impact, mitigation and the need for co-ordinated post-incident monitoring. Marine Pollution Bulletin, 60(6), 797– 803. doi:10.1016/j.marpolbul.2010.03.015
- Kochhann, D., Meyersieck Jardim, M., Valdez Domingos, F. X., & Luis Val, A. (2015). Biochemical and behavioral responses of the Amazonian fish Colossoma macropomum to crude oil: The effect of oil layer on water surface. Ecotoxicology and Environmental Safety, 111, 32–41. doi:10.1016/j.ecoenv.2014.09.016
- Konstantinou, I. K., Albanis, T. A. (2003). Photocatalytic transformation of pesticides in aqueous titanium dioxide suspensions using artificial and solar light: intermediates and degradation pathways. Applied Catalysis B: Environmental, 42(4), 319–335. doi:10.1016/s0926-3373(02)00266-7
- Koslowski, L. A. D., Licodiedoff, S., Simionatto, E. L., Scharf, D. R., Vaz, C., & Riella, H. G. (2020). Assessment of the formation of aromatic polycyclic hydrocarbons and acute toxicity using diesel/butanol in a wet discharge pilot system for river boats. Journal of Environmental Chemical Engineering, 103532. doi:10.1016/j.jece.2019.103532
- Kunze, M., Pracharoenwattana, I., Smith, S. M., & Hartig, A. (2006). A central role for the peroxisomal membrane in glyoxylate cycle function. Biochimica et Biophysica Acta (BBA) Molecular Cell Research, 1763(12), 1441–1452. doi:10.1016/j.bbamcr.2006.09.009
- Kurbatov, L., Albrecht, D., Herrmann, H., & Petruschka, L. (2006). Analysis of the proteome of Pseudomonas putida KT2440 grown on different sources of carbon and energy. Environmental Microbiology, 8(3), 466–478. doi:10.1111/j.1462-2920.2005.00913.x
- Lai, C.-C., Chen, S.-Y., Chen, M.-H., Chen, H.-L., Hsiao, H.-T., Liu, L.-C., & Chen, C.-M. (2019). Preparation and characterization of heterocyclic polyamide 6 (PA 6) with high transparencies and low hygroscopicities. Journal of Molecular Structure, 1175, 836–843. doi:10.1016/j.molstruc.2018.08.032
- Lee, Y., Jeong, S. E., Hur, M., Ko, S., & Jeon, C. O. (2018). Construction and Evaluation of a Korean Native Microbial Consortium for the Bioremediation of Diesel Fuel-Contaminated Soil in Korea. Frontiers in Microbiology, 9. doi:10.3389/fmicb.2018.02594
- Leung, K. T., Moore, M., Lee, H., & Trevors, J. T. (2005). Effect of carbon starvation on pnitrophenol degradation by a Moraxella strain in buffer and river water. FEMS Microbiology Ecology, 51(2), 237–245. doi:10.1016/j.femsec.2004.08.007
- Leuthner, B., & Heider, J. (2000). Anaerobic Toluene Catabolism of Thauera aromatica: the bbs Operon Codes for Enzymes of beta Oxidation of the Intermediate Benzylsuccinate. Journal of Bacteriology, 182(2), 272–277. doi:10.1128/jb.182.2.272-277.2000
- Li, C.-M., Wu, H.-Z., Wang, Y.-X., Zhu, S., & Wei, C.-H. (2020b). Enhancement of Phenol Biodegradation: Metabolic Division of Labor in Co-culture of Stenotrophomonas sp. N5 and Advenella sp. B9. Journal of Hazardous Materials, 400, 123214. doi:10.1016/j.jhazmat.2020.123214

- Li, C., Wang, H., Zhou, L., Zhang, Y., Song, F., & Zhang, J. (2009). Quantitative measurement of pH influence on SalR regulated gene expression in Acinetobacter baylyi ADP1. Journal of Microbiological Methods, 79(1), 8–12. doi:10.1016/j.mimet.2009.07.004
- Li, J., de Toledo, R. A., & Shim, H. (2017). Multivariate optimization for the simultaneous bioremoval of BTEX and chlorinated aliphatic hydrocarbons by Pseudomonas plecoglossicida. Journal of Hazardous Materials, 321, 238–246. doi:10.1016/j.jhazmat.2016.09.020.
- Li, Q., Li, J., Jiang, L., Sun, Y., Luo, C., & Zhang, G. (2020a). Diversity and structure of phenanthrene degrading bacterial communities associated with fungal bioremediation in petroleum contaminated soil. Journal of Hazardous Materials, 123895. doi:10.1016/j.jhazmat.2020.123895
- Li, Y.-Y., Liu, H., Xu, Y., & Zhou, N.-Y. (2019). A two-component monooxygenase initiates a novel 2-bromo-4-nitrophenol catabolic pathway in newly isolated Cupriavidus sp. strain NyZ375. International Biodeterioration & Biodegradation, 140, 99–105. doi:10.1016/j.ibiod.2019.03.013
- Li, Y., Wu, S., Wang, S., Zhao, S., Zhuang, X. (2021). Anaerobic degradation of xenobiotic organic contaminants (XOCs): The role of electron flow and potential enhancing strategies. Journal of Environmental Sciences, 101, 397–412. doi:10.1016/j.jes.2020.08.030
- Liang, S. H., Kao, C. M., Kuo, Y. C., Chen, K. F., & Yang, B. M. (2011). In situ oxidation of petroleum-hydrocarbon contaminated groundwater using passive ISCO system. Water Research, 45(8), 2496–2506. doi:10.1016/j.watres.2011.02.005
- Liu, C., Wang, W., Wu, Y., Zhou, Z., Lai, Q., & Shao, Z. (2011). Multiple alkane hydroxylase systems in a marine alkane degrader, Alcanivorax dieselolei B-5. Environmental Microbiology, 13(5), 1168–1178. doi:10.1111/j.1462-2920.2010.02416.x
- Liu, H., Sadygov, R. G., & Yates, J. R. (2004). A Model for Random Sampling and Estimation of Relative Protein Abundance in Shotgun Proteomics. Analytical Chemistry, 76(14), 4193– 4201. doi:10.1021/ac0498563
- Liu, J., Zhao, B., Lan, Y., Ma, T. (2021). Enhanced degradation of different crude oils by defined engineered consortia of Acinetobacter venetianus RAG-1 mutants based on their alkane metabolism Bioresource Technology, 327, 124787. doi:10.1016/j.biortech.2021.124787
- Liu, S.-H., Zeng, G.-M., Niu, Q.-Y., Liu, Y., Zhou, L., Jiang, L.-H., Cheng, M. (2017). Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review. Bioresource Technology, 224, 25–33. doi:10.1016/j.biortech.2016.11.095
- Logeshwaran, P., Megharaj, M., Chadalavada, S., Bowman, M., & Naidu, R. (2018). Petroleum hydrocarbons (PH) in groundwater aquifers: An overview of environmental fate, toxicity, microbial degradation and risk-based remediation approaches. Environmental Technology & Innovation, 10, 175–193. doi:10.1016/j.eti.2018.02.001

- Luyten, L. J., Dieu, M., Demazy, C., Fransolet, M., Nawrot, T. S., Renard, P., & Chainiaux, F. D. (2020). Optimization of label-free nano LC-MS/MS analysis of the placental proteome. Placenta, 101, 159-162. doi:10.1016/j.placenta.2020.09.013
- Maddela, N. R., Masabanda, M., & Leiva-Mora, M. (2015). Novel diesel-oil-degrading bacteria and fungi from the Ecuadorian Amazon rainforest. Water Science and Technology, 71(10), 1554–1561. doi:10.2166/wst.2015.142
- Maddela, N. R., Scalvenzi, L., & Venkateswarlu, K. (2017). Microbial degradation of total petroleum hydrocarbons in crude oil: a field-scale study at the low-land rainforest of Ecuador. Environmental Technology, 38(20), 2543– 2550. doi:10.1080/09593330.2016.1270356
- Malik, S., Jangra Darolia, P., Garg, S. K., & Sharma, V. K. (2020). Densities and excess molar volumes of mixtures containing diesel, biodiesel and alkanols at temperatures from 288.15 to 313.15 K. Chinese Journal of Chemical Engineering. doi:10.1016/j.cjche.2020.09.065
- Marchand, C., St-Arnaud, M., Hogland, W., Bell, T. H., & Hijri, M. (2017). Petroleum biodegradation capacity of bacteria and fungi isolated from petroleum-contaminated soil. International Biodeterioration & Biodegradation, 116, 48–57. doi:10.1016/j.ibiod.2016.09.030
- Mariano, A. P., Bonotto, D. M., Angelis, D. F., Pirollo, M. P. S., Contiero, J. (2008). Biodegradability of commercial and weathered diesel oils. Braz. J. Microbiol. 39 (1), 133-142.
- Martins, L. S., Monticelli, F. M., & Mulinari, D. R. (2020). *Influence of the granulometry and fiber* content of palm residues on the diesel S-10 oil sorption in polyurethane /palm fiber biocomposites. Results in Materials, 8, 100143. doi:10.1016/j.rinma.2020.100143
- Matsuo, A. Y. O., Woddin, B. R., Reddy, C. M., Val, A. L., Stegeman, J. J. (2006). Humic substances and crude oil induce cytochrome P450 1A expression in the Amazonian fish species Colossoma macropomum (tambaqui). Environmental Science & Technology, 40:2851-2858. doi:10.1021/es052437i
- Mega, E. R. (2016). *Oil spills stain Peruvian Amazon. Scientific American.* http://www.scientificamerican.com/article/oil-spills-stain-peruvian-amazon/.
- Meira, R. M. S. A., Peixoto, A. L., Coelho, M. A. N., Ponzo, A. P. L., Esteves, V. G. L., Silva, M. C., ... Meira-Neto, J. A. A. (2016). Brazil's mining code under attack: giant mining companies impose unprecedented risk to biodiversity. Biodiversity and Conservation, 25(2), 407–409. doi:10.1007/s10531-016-1050-9
- Menezes, E. W., Silva, R. da, Cataluna, R., & Ortega, R. (2006). Effect of ethers and ether/ethanol additives on the physicochemical properties of diesel fuel and on engine tests. Fuel, 85(5-6), 815–822. doi:10.1016/j.fuel.2005.08.027

- Min, J., Chen, W., & Hu, X. (2019). Biodegradation of 2,6-dibromo-4-nitrophenol by Cupriavidus sp. strain CNP-8: Kinetics, pathway, genetic and biochemical characterization. Journal of Hazardous Materials. doi:10.1016/j.jhazmat.2018.08.063
- Min, J., Xu, L., Fang, S., Chen, W., & Hu, X. (2020). Microbial degradation kinetics and molecular mechanism of 2,6-dichloro-4-nitrophenol by a Cupriavidus strain. Environmental Pollution, 113703. doi:10.1016/j.envpol.2019.113703
- Miri, M., Bambai, B., Tabandeh, F., Sadeghizadeh, M., & Kamali, N. (2009). Production of a recombinant alkane hydroxylase (AlkB2) from Alcanivorax borkumensis. Biotechnology Letters, 32(4), 497–502. doi:10.1007/s10529-009-0177-0
- Mishra, S., Sarma, P. M., Lal, B., 2004. Crude oil degradation efficiency of a recombinant Acinetobacter baumannii strain and its survival in crude oil contaminated soil micro- cosm. FEMS Microbiol. Lett. 235, 323–331. doi:10.1016/j.femsle.2004.05.002
- Misiak, K., Casey, E., & Murphy, C. D. (2011). Factors influencing 4-fluorobenzoate degradation in biofilm cultures of Pseudomonas knackmussii B13. Water Research, 45(11), 3512–3520. doi:10.1016/j.watres.2011.04.020
- Mnif, I., Mnif, S., Sahnoun, R., Maktouf, S., Ayedi, Y., Ellouze-Chaabouni, S., & Ghribi, D. (2015). Biodegradation of diesel oil by a novel microbial consortium: comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants. Environmental Science and Pollution Research, 22(19), 14852– 14861. doi:10.1007/s11356-015-4488-5
- Mnif, I., Sahnoun, R., Ellouz-Chaabouni, S., & Ghribi, D. (2017). Application of bacterial biosurfactants for enhanced removal and biodegradation of diesel oil in soil using a newly isolated consortium. Process Safety and Environmental Protection, 109, 72– 81. doi:10.1016/j.psep.2017.02.002
- Módenes, A. N., Sanderson, K., Trigueros, D. E. G., Schuelter, A. R., Espinoza-Quiñones, F. R., Neves, C. V., ... Kroumov, A. D. (2018). Insights on the criteria of selection of vegetable and mineral dielectric fluids used in power transformers on the basis of their biodegradability and toxicity assessments. Chemosphere, 199, 312– 319. doi:10.1016/j.chemosphere.2018.02.033
- Mohammed, A. B. A., Tayel, A. A., & Elguindy, N. M. (2018). Production of new rhamnolipids Rha C16-C16 by Burkholderia sp. through biodegradation of diesel and biodiesel. Beni-Suef University Journal of Basic and Applied Sciences. doi:10.1016/j.bjbas.2018.05.003
- Mohanty, G., & Mukherji, S. (2008). Biodegradation rate of diesel range n-alkanes by bacterial cultures Exiguobacterium aurantiacum and Burkholderia cepacia. International Biodeterioration & Biodegradation, 61(3), 240–250. doi:10.1016/j.ibiod.2007.06.011
- Mojiri, A., Zhou, J. L., Ohashi, A., Ozaki, N., & Kindaichi, T. (2019). Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. Science of The Total Environment, 133971. doi:10.1016/j.scitotenv.2019.133971

- Montagnolli, R. N., Lopes, P. R. M., & Bidoia, E. D. (2015). Screening the Toxicity and Biodegradability of Petroleum Hydrocarbons by a Rapid Colorimetric Method. Archives of Environmental Contamination and Toxicology, 68(2), 342–353. doi:10.1007/s00244-014-0112-9
- Morales-Guzmán, G., Ferrera-Cerrato, R., Rivera-Cruz, M. del C., Torres-Bustillos, L. G., Arteaga-Garibay, R. I., Mendoza-López, M. R., ... Alarcón, A. (2017). Diesel degradation by emulsifying bacteria isolated from soils polluted with weathered petroleum hydrocarbons. Applied Soil Ecology, 121, 127–134. doi:10.1016/j.apsoil.2017.10.003
- Morlett-Chávez, J. A., Ascacio-Martínez, J. Á., Rivas-Estilla, A. M., Velázquez-Vadillo, J. F., Haskins, W. E., Barrera-Saldaña, H. A., & Acuña-Askar, K. (2010). *Kinetics of BTEX biodegradation by a microbial consortium acclimatized to unleaded gasoline and bacterial strains isolated from it. International Biodeterioration & Biodegradation, 64(7), 581– 587.* doi:10.1016/j.ibiod.2010.06.010
- Morya, R., Salvachúa, D., & Thakur, I. S. (2020). Burkholderia: An Untapped but Promising Bacterial Genus for the Conversion of Aromatic Compounds. Trends in Biotechnology. doi:10.1016/j.tibtech.2020.02.008
- Mouafi, F. E., Abo Elsoud, M. M., & Moharam, M. E. (2016). Optimization of biosurfactant production by Bacillus brevis using response surface methodology. Biotechnology Reports, 9, 31–37. doi:10.1016/j.btre.2015.12.003
- Naidoo, G., Naidoo, Y., & Achar, P. (2010). Responses of the mangroves Avicennia marina and Bruguiera gymnorrhiza to oil contamination. Flora - Morphology, Distribution, Functional Ecology of Plants, 205(5), 357–362. doi:10.1016/j.flora.2009.12.033
- Natarajan, R., Azerad, R., Badet, B., & Copin, E. (2005). *Microbial cleavage of CF bond. Journal* of Fluorine Chemistry, 126(4), 424–435. doi:10.1016/j.jfluchem.2004.12.001
- Nguyen, B.-A. T., Hsieh, J.-L., Lo, S.-C., Wang, S.-Y., Hung, C.-H., Huang, E., Hung, S.-H., Chin, W.-C., Huang, C.-C. (2020). *Biodegradation of dioxins by Burkholderia cenocepacia strain* 869T2: Role of 2-haloacid dehalogenase. Journal of Hazardous Materials, 123347. doi:10.1016/j.jhazmat.2020.123347
- Nkem, B. M., Halimoon, N., Yusoff, F. M., Johari, W. L. W., Zakaria, M. P., Medipally, S. R., & Kannan, N. (2016). Isolation, identification and diesel-oil biodegradation capacities of indigenous hydrocarbon-degrading strains of Cellulosimicrobium cellulans and Acinetobacter baumannii from tarball at Terengganu beach, Malaysia. Marine Pollution Bulletin, 107(1), 261–268. doi:10.1016/j.marpolbul.2016.03.060
- O'Callaghan-Gordo, C., Flores, J. A., Lizárraga, P., Okamoto, T., Papoulias, D. M., Barclay, F., Orta-Martínez, M., Kogevinas, M., Astete, J. (2018). *Oil extraction in the Amazon basin and exposure to metals in indigenous populations. Environmental Research, 162, 226–230.* doi:10.1016/j.envres.2018.01.013

- Obruca, S., Sedlacek, P., Koller, M., Kucera, D., & Pernicova, I. (2018). Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applications. Biotechnology Advances, 36(3), 856–870. doi:10.1016/j.biotechadv.2017.12.006
- Obuekwe, C. O., Al-Jadi, Z. K., & Al-Saleh, E. S. (2009). Hydrocarbon degradation in relation to cell-surface hydrophobicity among bacterial hydrocarbon degraders from petroleumcontaminated Kuwait desert environment. International Biodeterioration & Biodegradation, 63(3), 273–279. doi:10.1016/j.ibiod.2008.10.004
- Oliveira, L. M. T. M., Saleem, J., Bazargan, A., Duarte, J. L. da S., McKay, G., & Meili, L. (2021). Sorption as a rapidly response for Oil Spill accidents: a material and mechanistic approach. Journal of Hazardous Materials, 407, 124842. doi:10.1016/j.jhazmat.2020.124842
- Olsen, G. H., Sva, E., Carroll, J., Camus, L., De Coen, W., Smolders, R., Øveraas, H., Hylland, K. (2007). Alterations in the energy budget of Arctic benthic species exposed to oil-related compounds. Aquatic Toxicology, 83(2), 85–92. doi:10.1016/j.aquatox.2007.03.012
- Oyehan, T. A., & Al-Thukair, A. A. (2017). Isolation and characterization of PAH-degrading bacteria from the Eastern Province, Saudi Arabia. Marine Pollution Bulletin, 115(1-2), 39– 46. doi:10.1016/j.marpolbul.2016.11.007
- Pant, G., Garlapati, D., Agrawal, U., Prasuna, R. G., Mathimani, T., Pugazhendhi, A. (2021). Biological approaches practised using genetically engineered microbes for a sustainable environment: A review. Journal of Hazardous Materials, 405, 124631. doi:10.1016/j.jhazmat.2020.124631
- Paul, C. E., Eggerichs, D., Westphal, A. H., Tischler, D., van Berkeld, W. J. H. Flavoprotein monooxygenases: Versatile biocatalysts. Biotechnology Advances. https://doi.org/10.1016/j.biotechadv.2021.107712
- Pazmiño, D. E. T., Winkler, M., Glieder, A., Fraaije, M. W. (2010). Monooxygenases as biocatalysts: Classification, mechanistic aspects and biotechnological applications. Journal of Biotechnology, 146(1-2), 9–24. doi:10.1016/j.jbiotec.2010.01.021
- Peres, C., Russ, R., Lenke, H., Agathos, S. N. (2001). Biodegradation of 4-nitrobenzoate, 4aminobenzoate and their mixtures: new strains, unusual metabolites and insights into pathway regulation. FEMS Microbiology Ecology, 37(2), 151–159. doi:10.1016/s0168-6496(01)00156-8
- Phan, C.-W., Abu Bakar, N. F., & Hamzah, A. (2013). A Comparative Study on Biosurfactant Activity of Crude Oil–Degrading Bacteria and Its Correlation to Total Petroleum Hydrocarbon Degradation. Bioremediation Journal, 17(4), 240–251. doi:10.1080/10889868.2013.827621
- Pineda, F. J., Antoine, M. D., Demirev, P. A., Feldman, A. B., Jackman, J., Longenecker, M., & Lin, J. S. (2003). *Microorganism Identification by Matrix-Assisted Laser/Desorption*

Ionization Mass Spectrometry and Model-Derived Ribosomal Protein Biomarkers. Analytical Chemistry, 75(15), 3817–3822. doi:10.1021/ac034069b

- Poddar, K., Sarkar, D., & Sarkar, A. (2019). Construction of potential bacterial consortia for efficient hydrocarbon degradation. International Biodeterioration & Biodegradation, 144, 104770. doi:10.1016/j.ibiod.2019.104770
- Purwaningsih, I. S., Hill, G. A., & Headley, J. V. (2004). Mass transfer and bioremediation of naphthalene particles in a roller bioreactor. Water Research, 38(8), 2027–2034. doi:10.1016/j.watres.2004.01.035
- Putman, N. F., Abreu-Grobois, F. A., Iturbe-Darkistade, I., Putman, E. M., Richards, P. M., & Verley, P. (2015). Deepwater Horizon oil spill impacts on sea turtles could span the Atlantic. Biology Letters, 11(12), 20150596. doi:10.1098/rsbl.2015.0596
- Ramadass, K., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2017). Toxicity of diesel water accommodated fraction toward microalgae, Pseudokirchneriella subcapitata and Chlorella sp. MM3. Ecotoxicology and Environmental Safety, 142, 538–543. doi:10.1016/j.ecoenv.2017.04.052
- Ramasamy, S., Arumugam, A., & Chandran, P. (2017). Optimization of Enterobacter cloacae (KU923381) for diesel oil degradation using response surface methodology (RSM). Journal of Microbiology, 55(2), 104–111. doi:10.1007/s12275-017-6265-2
- Ramu, R., Chang, C.-W., Chou, H.-H., Wu, L.-L., Chiang, C.-H., & Yu, S. S.-F. (2011). Regioselective hydroxylation of gem-difluorinated octanes by alkane hydroxylase (AlkB). Tetrahedron Letters, 52(23), 2950–2953. doi:10.1016/j.tetlet.2011.03.101
- Ran, J., Qiu, H., Sun, S., & Tian, L. (2018). Short-term effects of ambient benzene and TEX (toluene, ethylbenzene, and xylene combined) on cardiorespiratory mortality in Hong Kong. Environment International, 117, 91–98. doi:10.1016/j.envint.2018.04.049
- Reyes-Sosa, M. B., Apodaca-Hernández, J. E., & Arena-Ortiz, M. L. (2018). Bioprospecting for microbes with potential hydrocarbon remediation activity on the northwest coast of the Yucatan Peninsula, Mexico, using DNA sequencing. Science of The Total Environment, 642, 1060–1074. doi:10.1016/j.scitotenv.2018.06.097
- Rizzo, C., Rappazzo, A. C., Michaud, L., De Domenico, E., Rochera, C., Camacho, A., & Lo Giudice, A. (2018). *Efficiency in hydrocarbon degradation and biosurfactant production* by Joostella sp. A8 when grown in pure culture and consortia. Journal of Environmental Sciences, 67, 115–126. doi:10.1016/j.jes.2017.08.007
- Rocha e Silva, N. M. P., Rufino, R. D., Luna, J. M., Santos, V. A., & Sarubbo, L. A. (2014). Screening of Pseudomonas species for biosurfactant production using low-cost substrates. Biocatalysis and Agricultural Biotechnology, 3(2), 132– 139. doi:10.1016/j.bcab.2013.09.005

- Rodrigues, E. M., Cesar, D. E., Santos de Oliveira, R., de Paula Siqueira, T., & Tótola, M. R. (2020). Hydrocarbonoclastic bacterial species growing on hexadecane: Implications for bioaugmentation in marine ecosystems. Environmental Pollution, 267, 115579. doi:10.1016/j.envpol.2020.115579
- Roell, G. W., Zha, J., Carr, R. R., Koffas, M. A., Fong, S. S., & Tang, Y. J. (2019). Engineering microbial consortia by division of labor. Microbial Cell Factories, 18(1). doi:10.1186/s12934-019-1083-3
- Roy, S., Hens, D., Biswas, D., Biswas, D., & Kumar, R. (2002). World Journal of Microbiology and Biotechnology, 18(6), 575–581. doi:10.1023/a:1016362819746
- Rudney, J. D., Xie, H., Rhodus, N. L., Ondrey, F. G., & Griffin, T. J. (2010). A metaproteomic analysis of the human salivary microbiota by three-dimensional peptide fractionation and tandem mass spectrometry. Molecular Oral Microbiology, 25(1), 38– 49. doi:10.1111/j.2041-1014.2009.00558.x
- Ryzhov, V., & Fenselau, C. (2001). Characterization of the Protein Subset Desorbed by MALDI from Whole Bacterial Cells. Analytical Chemistry, 73(4), 746– 750. doi:10.1021/ac0008791
- San Miguel, V., Peinado, C., Catalina, F., & Abrusci, C. (2009). Bioremediation of naphthalene in water by Sphingomonas paucimobilis using new biodegradable surfactants based on poly (ε-caprolactone). International Biodeterioration & Biodegradation, 63(2), 217–223. doi:10.1016/j.ibiod.2008.09.005
- Sardi, A. E., Renaud, P. E., Morais, G. C., Martins, C. C., da Cunha Lana, P., Camus, L. (2017). *Effects of an in situ diesel oil spill on oxidative stress in the clam Anomalocardia flexuosa. Environmental Pollution, 230, 891–901.* doi:10.1016/j.envpol.2017.07.040
- Sarkar, P., Roy, A., Pal, S., Mohapatra, B., Kazy, S. K., Maiti, M. K., & Sar, P. (2017). Enrichment and characterization of hydrocarbon-degrading bacteria from petroleum refinery waste as potent bioaugmentation agent for in situ bioremediation. Bioresource Technology, 242, 15– 27. doi:10.1016/j.biortech.2017.05.010
- Schneider, T., & Riedel, K. (2010). Environmental proteomics: Analysis of structure and function of microbial communities. PROTEOMICS, 10(4), 785–798. doi:10.1002/pmic.200900450
- Schneiker, S., dos Santos, V. A. M., Bartels, D., Bekel, T., Brecht, M., Buhrmester, J., ... Golyshin,
 P. N. (2006). Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nature Biotechnology, 24(8), 997–1004. doi:10.1038/nbt1232
- Schulze, W. X., Gleixner, G., Kaiser, K., Guggenberger, G., Mann, M., & Schulze, E.-D. (2005). A proteomic fingerprint of dissolved organic carbon and of soil particles. Oecologia, 142(3), 335–343. doi:10.1007/s00442-004-1698-9

- Sharma, R., Singh, J., & Verma, N. (2018). Production, characterization and environmental applications of biosurfactants from Bacillus amyloliquefaciens and Bacillus subtilis. Biocatalysis and Agricultural Biotechnology, 16, 132–139. doi:10.1016/j.bcab.2018.07.028
- Shimazu, M., Mulchandani, A., & Chen, W. (2001). Simultaneous degradation of organophosphorus pesticides and p-nitrophenol by a genetically engineered Moraxella sp. with surface-expressed organophosphorus hydrolase. Biotechnology and Bioengineering, 76(4), 318–324. doi:10.1002/bit.10095
- Silva, D. de S. P., Cavalcanti, D. de L., Melo, E. J. V. de, Santos, P. N. F. dos, Luz, E. L. P. da, Gusmão, N. B. de, Sousa, M. de F. V. de Q. (2015). *Bio-removal of diesel oil through a microbial consortium isolated from a polluted environment. International Biodeterioration* & *Biodegradation*, 97, 85–89. doi:10.1016/j.ibiod.2014.09.021
- Simon, C., & Daniel, R. (2009). Achievements and new knowledge unraveled by metagenomic approaches. Applied Microbiology and Biotechnology, 85(2), 265–276. doi:10.1007/s00253-009-2233-z
- Singh C. and Lin J. (2010). Bioagumentation efficiency of diesel degradation by Bacillus pumilus JL and Acinatobacter calcoacetics LT in contaminated soils, African Journal of Biotechnology, 9(41), 6881-6888.
- Singh, H., Bhardwaj, N., Arya, S. K., & Khatri, M. (2020). Environmental impacts of oil spills and their remediation by magnetic nanomaterials. Environmental Nanotechnology, Monitoring & Management, 14, 100305. doi:10.1016/j.enmm.2020.100305
- Smith, P. T. (1996). Toxic effects of blooms of marine species of Oscillatoriales on farmed prawns (Penaeus monodon, Penaeus japonicus) and brine shrimp (Artemia salina). Toxicon, 34(8), 857–869. doi:10.1016/0041-0101(96)00048-7
- Soares-Filho, B., Rajao, R., Macedo, M., Carneiro, A., Costa, W., Coe, M., ... Alencar, A. (2014). *Cracking Brazil's Forest Code. Science*, 344(6182), 363–364. doi:10.1126/science.1246663
- Souza, M. M., Colla, T. S., Bücker, F., Ferrão, M. F., Huang, C. T., Andreazza, R., ... Bento, F. M. (2016). Biodegradation potential of Serratiamarcescens for diesel/biodiesel blends. International Biodeterioration & Biodegradation, 110, 141–146. doi:10.1016/j.ibiod.2016.03.006
- Sowani, H., Kulkarni, M., & Zinjarde, S. (2020). Uptake and detoxification of diesel oil by a tropical soil Actinomycete Gordonia amicalis HS-11: Cellular responses and degradation perspectives. Environmental Pollution, 263, 114538. doi:10.1016/j.envpol.2020.114538
- Sowell, S. M., Wilhelm, L. J., Norbeck, A. D., Lipton, M. S., Nicora, C. D., Barofsky, D. F., ... Giovanonni, S. J. (2009). Transport functions dominate the SAR11 metaproteome at lownutrient extremes in the Sargasso Sea. The ISME Journal, 3(1), 93– 105. doi:10.1038/ismej.2008.83

- Studts, J. M., Mitchell, K. H., Pikus, J. D., McClay, K., Steffan, R. J., & Fox, B. G. (2000). Optimized Expression and Purification of Toluene 4-Monooxygenase Hydroxylase. Protein Expression and Purification, 20(1), 58–65. doi:10.1006/prep.2000.1281
- Suarez, S., Ferroni, A., Lotz, A., Jolley, K. A., Guérin, P., Leto, J., ... Armengaud, J. (2013). Ribosomal proteins as biomarkers for bacterial identification by mass spectrometry in the clinical microbiology laboratory. Journal of Microbiological Methods, 94(3), 390– 396. doi:10.1016/j.mimet.2013.07.021
- Suganthi, S. H., Murshid, S., Sriram, S., & Ramani, K. (2018). Enhanced biodegradation of hydrocarbons in petroleum tank bottom oil sludge and characterization of biocatalysts and biosurfactants. Journal of Environmental Management, 220, 87– 95. doi:10.1016/j.jenvman.2018.04.120
- Syahir Habib,S., Johari, W. L.W., Shukor, M. Y. A., Yasid, N. Y. (2017). Screening of *Hydrocarbon-degrading Bacterial Isolates Using the Redox Application of 2,6-DCPIP. BSTR*, v. 5, n. 2, 13-16
- Tariq, A.L., S. Sudha and Reyaz, A.L. (2016). Isolation and Screening of Bacillus Species from Sediments and Application in Bioremediation.Int.J.Curr.Microbiol.App.Sci. 5(6): 916-924. doi:10.20546/ijcmas.2016.506.099
- Teramoto, K., Sato, H., Sun, L., Torimura, M., & Tao, H. (2007). A Simple Intact Protein Analysis by MALDI-MS for Characterization of Ribosomal Proteins of Two Genome-Sequenced Lactic Acid Bacteria and Verification of Their Amino Acid Sequences. Journal of Proteome Research, 6(10), 3899–3907. doi:10.1021/pr0702181
- Throne-Holst, M., Wentzel, A., Ellingsen, T. E., Kotlar, H.-K., & Zotchev, S. B. (2007). Identification of Novel Genes Involved in Long-Chain n-Alkane Degradation by Acinetobacter sp. Strain DSM 17874. Applied and Environmental Microbiology, 73(10), 3327–3332. doi:10.1128/aem.00064-07
- Tiralerdpanich, P., Sonthiphand, P., Luepromchai, E., Pinyakong, O., & Pokethitiyook, P. (2018). Potential microbial consortium involved in the biodegradation of diesel, hexadecane and phenanthrene in mangrove sediment explored by metagenomics analysis. Marine Pollution Bulletin, 133, 595–605. doi:10.1016/j.marpolbul.2018.06.015
- Titah, H. S., Pratikno, H., Moesriati, A., Imron, M. F., Putera, R. I., (2018). Isolation and Screening of Diesel Degrading Bacteria from Ship Dismantling Facility at Tanjungjati, Madura, Indonesia. Journal of Engineering and Technological Sciences, v. 50, n. 1, p. 99. doi:10.5614/j.eng.technol.sci.2018.50.1.7
- Tiwari, J., Gandhi, D., Sivanesan, S., Naoghare, P., & Bafana, A. (2020). Remediation of different nitroaromatic pollutants by a promising agent of Cupriavidus sp. strain a3. Ecotoxicology and Environmental Safety, 205, 111138. doi:10.1016/j.ecoenv.2020.111138

- Tiwari, J., Naoghare, P., Sivanesan, S., & Bafana, A. (2017). Biodegradation and detoxification of chloronitroaromatic pollutant by Cupriavidus. Bioresource Technology, 223, 184– 191. doi:10.1016/j.biortech.2016.10.043
- Toyoda, A., Iio, W., Mitsumori, M., & Minato, H. (2009). Isolation and Identification of Cellulose-Binding Proteins from Sheep Rumen Contents. Applied and Environmental Microbiology, 75(6), 1667–1673. doi:10.1128/aem.01838-08
- Tran, T., Yazdanparast, A., & Suess, E. A. (2014). Effect of Oil Spill on Birds: A Graphical Assay of the Deepwater Horizon Oil Spill's Impact on Birds. Computational Statistics, 29(1-2), 133–140. doi:10.1007/s00180-013-0472-z
- Tresse, O., Errampalli, D., Kostrzynska, M., Leung, K. T., Lee, H., Trevors, J. T., & Elsas, J. D. (1998). Green fluorescent protein as a visual marker in ap-nitrophenol degradingMoraxellasp. FEMS Microbiology Letters, 164(1), 187– 193. doi:10.1111/j.1574-6968.1998.tb13084.x
- Turner, R. E., Overton, E. B., Meyer, B. M., Miles, M. S., & Hooper-Bui, L. (2014). Changes in the concentration and relative abundance of alkanes and PAHs from the Deepwater Horizon oiling of coastal marshes. Marine Pollution Bulletin, 86(1-2), 291–297. doi:10.1016/j.marpolbul.2014.07.003
- Val, A. L. (1997). Efeitos do petróleo sobre a respiração de peixes da Amazônia. In: MARTOS, H. L.; MAIA, N. B. (Eds). Indicadores Ambientais. Sorocaba, São Paulo: Pontificia Universidade Católica, p.109-119.
- Val, A. L., Fearnside, P. M., & Almeida-Val, V. M. F. (2016). Environmental disturbances and fishes in the Amazon. Journal of Fish Biology, 89(1), 192–193. doi:10.1111/jfb.12896
- Van Schie, P. M., & Young, L. Y. (2000). Biodegradation of Phenol: Mechanisms and Applications. Bioremediation Journal, 4(1), 1–18. doi:10.1080/10588330008951128
- Varjani S.J., Rana D.P., Bateja S. and Upasani V.N. (2013). Isolation and screening for Hydrocarbon Utilizing Bacteria (HUB) from petroleum Samples, International Journal of Current Microbiology and Applied Sciences, 2, 48-60.
- Varjani, S. J. (2017). *Microbial degradation of petroleum hydrocarbons. Bioresource Technology*, 223, 277–286. doi:10.1016/j.biortech.2016.10.037
- Varjani, S. J., & Upasani, V. N. (2017). A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. International Biodeterioration & Biodegradation, 120, 71–83. doi:10.1016/j.ibiod.2017.02.006
- Verberkmoes, N. C., Russell, A. L., Shah, M., Godzik, A., Rosenquist, M., Halfvarson, J., ... Jansson, J. K. (2008). Shotgun metaproteomics of the human distal gut microbiota. The ISME Journal, 3(2), 179–189. doi:10.1038/ismej.2008.108

- Viggor, S., Juhanson, J., Jõesaar, M., Mitt, M., Truu, J., Vedler, E., & Heinaru, A. (2013). Dynamic changes in the structure of microbial communities in Baltic Sea coastal seawater microcosms modified by crude oil, shale oil or diesel fuel. Microbiological Research, 168(7), 415–427. doi:10.1016/j.micres.2013.02.006
- Waigi, M. G., Kang, F., Goikavi, C., Ling, W., & Gao, Y. (2015). Phenanthrene biodegradation by sphingomonads and its application in the contaminated soils and sediments: A review. International Biodeterioration & Biodegradation, 104, 333–349. doi:10.1016/j.ibiod.2015.06.008
- Wang, S.-Y., Kuo, Y.-C., Hong, A., Chang, Y.-M., & Kao, C.-M. (2016). Bioremediation of diesel and lubricant oil-contaminated soils using enhanced landfarming system. Chemosphere, 164, 558–567. doi:10.1016/j.chemosphere.2016.08.128
- Wang, X., Wang, X., Liu, M., Bu, Y., Zhang, J., Chen, J., & Zhao, J. (2015). Adsorption-synergic biodegradation of diesel oil in synthetic seawater by acclimated strains immobilized on multifunctional materials. Marine Pollution Bulletin, 92(1-2), 195– 200. doi:10.1016/j.marpolbul.2014.12.033
- Wang, Y.-B., & Han, J.-Z. (2007). *The role of probiotic cell wall hydrophobicity in bioremediation of aquaculture. Aquaculture, 269(1-4), 349–354.* doi:10.1016/j.aquaculture.2007.04.010
- Wentzel, A., Ellingsen, T. E., Kotlar, H.-K., Zotchev, S. B., & Throne-Holst, M. (2007). Bacterial metabolism of long-chain n-alkanes. Applied Microbiology and Biotechnology, 76(6), 1209–1221. doi:10.1007/s00253-007-1119-1
- Wilmes, P., & Bond, P. L. (2004). The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environmental Microbiology, 6(9), 911–920. doi:10.1111/j.1462-2920.2004.00687.x
- Xia, M., Fu, D., Chakraborty, R., Singh, R. P., & Terry, N. (2019). Enhanced Crude Oil Depletion by Constructed Bacterial Consortium Comprising Bioemulsifier Producer and Petroleum Hydrocarbon Degraders. Bioresource Technology, 282, 456–463. doi:10.1016/j.biortech.2019.01.131
- Yaqoob, H., Teoh, Y. H., Jamil, M. A., M. Gulzar, M. (2021). Potential of tire pyrolysis oil as an alternate fuel for diesel engines: A review. Journal of the Energy Institute, 863. doi: 10.1016/j.joei.2021.03.002.
- Yi, T., Shan, Y., Huang, B., Tang, T., Wei, W., & Quinn, N. W. T. (2020). An efficient Chlorella sp.-Cupriavidus necator microcosm for phenol degradation and its cooperation mechanism. Science of The Total Environment, 140775. doi:10.1016/j.scitotenv.2020.140775
- Youssef M., El-Taweel G.E. e El-Naggar A.Y. (2010). Hydrocarbon degrading bacteria as indicator of petroleum pollution in Ismailia canal, Egypt, World Applied Sciences Journal, 8(10), 1226-1233.

- Yuan, X., Zhang, X., Chen, X., Kong, D., Liu, X., & Shen, S. (2018). Synergistic degradation of crude oil by indigenous bacterial consortium and exogenous fungus Scedosporium boydii. Bioresource Technology, 264, 190–197. doi:10.1016/j.biortech.2018.05.072
- Zadjelovic, V., Gibson, M. I., Dorador, C., & Christie-Oleza, J. A. (2020). Genome of Alcanivorax sp. 24: A hydrocarbon degrading bacterium isolated from marine plastic debris. Marine Genomics, 49, 100686. doi:10.1016/j.margen.2019.05.00
- Zhang, Q., Xie, X., Liu, Y., Zheng, X., Wang, Y., Cong, J., Yu, C., Liu, N., Sand, W., Liu, J. (2020). Co-metabolic degradation of refractory dye: A metagenomic and metaproteomic study. Environmental Pollution, 113456. doi:10.1016/j.envpol.2019.113456
- Zhang, X., Kong, D., Liu, X., Xie, H., Lou, X., Zeng, C. (2021). Combined microbial degradation of crude oil under alkaline conditions by Acinetobacter baumannii and Talaromyces sp. Chemosphere, 273, 129666. doi: 10.1016/j.chemosphere.2021.129666
- Zhao, F., Zhou, J.-D., Ma, F., Shi, R.-J., Han, S.-Q., Zhang, J., & Zhang, Y. (2016). Simultaneous inhibition of sulfate-reducing bacteria, removal of H2S and production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl: Applications for microbial enhanced oil recovery. Bioresource Technology, 207, 24–30. doi:10.1016/j.biortech.2016.01.126
- Zhou, J.-F., Gao, P.-K., Dai, X.-H., Cui, X.-Y., Tian, H.-M., Xie, J.-J., Ma, T. (2018). *Heavy* hydrocarbon degradation of crude oil by a novel thermophilic Geobacillus stearothermophilus strain A-2. International Biodeterioration & Biodegradation, 126, 224–230. doi:10.1016/j.ibiod.2016.09.031
- Zhou, Z., Li, X., Chen, L., Li, B., Wang, C., Guo, J., Shi, P., Yang, L., Liu, B., Song, B. (2019). Effects of diesel oil spill on macrobenthic assemblages at the intertidal zone: A mesocosm experiment in situ. Marine Environmental Research, 104823. doi:10.1016/j.marenvres.2019.104823
- Ziabari, S.-S. H., Khezri, S.-M., & Kalantary, R. R. (2016). Ozonation optimization and modeling for treating diesel-contaminated water. Marine Pollution Bulletin, 104(1-2), 240– 245. doi:10.1016/j.marpolbul.2016.01.017

APÊNDICE 01

Esquema 01: Via de degradação do benzoato (map00362). Modificada a partir do *KEGG*. I – Amostra intracelular; E – Amostra extracelular; AB - A. *baumannii*; BC - B. *cenocepacia*; CT - C. *taiwanensis*. Caixas de *EC number* na cor verde indicam enzimas detectadas no consórcio A3, e amarela ou laranja, enzimas importantes não encontradas. Linhas de contorno vermelho são as principais rotas de quebra do xenobiótico. Pontos vermelhos são compostos importantes na via. Espaço entre duas setas verdes indicam uma reação de quebra de um anel aromático.

Esquema 02: Via de degradação do tolueno (map00623). Modificada a partir do *KEGG*. I – Amostra intracelular; E – Amostra extracelular; AB – *A. baumannii*; BC – *B. cenocepacia*; CT – *C. taiwanensis*. Caixas de *EC number* na cor verde indicam enzimas encontradas, e amarela ou laranja, enzimas importantes não encontradas. Linhas de contorno vermelho são as principais rotas de quebra do xenobiótico. Pontos vermelhos são compostos importantes na via. Espaço entre duas setas verdes indicam uma reação de quebra de um anel aromático.

00623 6/16/20 (c) Kanehisa Laboratories
Esquema 03: Via de degradação do etilbenzeno (map00642). Modificada a partir do *KEGG*. I – Amostra intracelular; E – Amostra extracelular; CT – *C. taiwanensis*. Caixas de *EC number* na cor verde indicam enzimas encontradas, e amarela ou laranja, enzimas importantes não encontradas. Linhas de contorno vermelho são as principais rotas de quebra do xenobiótico. Pontos vermelhos são compostos importantes na via.

00642 11/1/17 (c) Kanehisa Laboratories Esquema 04: Via de degradação de *p*-, *o*-, e *m*-xileno (map00622). Modificada a partir do *KEGG*. I – Amostra intracelular; E – Amostra extracelular; AB - A. *baumannii*; CT - C. *taiwanensis*. Caixas de *EC number* na cor verde indicam enzimas encontradas, e amarela ou laranja, enzimas importantes não encontradas. Linhas de contorno vermelho são as principais rotas de quebra do xenobiótico. Pontos vermelhos são compostos importantes na via. Espaço entre duas setas verdes indicam uma reação de quebra de um anel aromático.

^{00622 7/2/19} (c) Kanehisa Laboratories

Esquema 05: Via de degradação de clorociclohexano e clorobenzeno (map00361). Modificada a partir do *KEGG*. I – Amostra intracelular; E – Amostra extracelular; BC – *B. cenocepacia*. Caixas de *EC number* na cor verde indicam enzimas encontradas. Pontos vermelhos são compostos importantes na via. Espaço entre duas setas verdes indicam uma reação de quebra de um anel aromático.

Esquema 06: Via de degradação de fluorobenzoato (map00364). Modificada a partir do *KEGG*. I – Amostra intracelular; E – Amostra extracelular; BC – *B. cenocepacia*. Caixas de *EC number* na cor verde indicam enzimas encontradas. Pontos vermelhos são compostos importantes na via. Espaço entre duas setas verdes indicam uma reação de quebra de um anel aromático.

Esquema 07: Via de degradação de aminobenzoato (map00627). Modificada a partir do *KEGG*. I – Amostra intracelular; E – Amostra extracelular; AB – *A. baumannii*; BC – *B. cenocepacia*; CT – *C. taiwanensis*. Caixas de *EC number* na cor verde indicam enzimas encontradas. Pontos vermelhos são compostos importantes na via.

Esquema 08: Via de degradação de naftaleno (map00627). Modificada a partir do *KEGG*. I – Amostra intracelular; E – Amostra extracelular; AB – *A. baumannii*; Caixas de *EC number* na cor verde indicam enzimas encontradas. Linhas de contorno vermelho são as principais rotas de quebra do xenobiótico. Pontos vermelhos são compostos importantes na via.

Esquema 09: Via de degradação ácidos graxos (map00071). Modificada a partir do KEGG. I – Amostra intracelular; E – Amostra extracelular; AB – A. baumannii; BC – B. cenocepacia; CT - C. taiwanensis. Caixas de EC number na cor verde indicam enzimas encontradas, e amarela ou laranja, enzimas importantes não encontradas. Linhas de contorno vermelho representa a via de β -oxidação dos ácidos graxos. Pontos vermelhos são compostos importantes na via.

Esquema 10: Via de degradação de Degradação de cloroalcano e cloroalceno (map00625). Modificada a partir do *KEGG*. I – Amostra intracelular; E – Amostra extracelular; AB – *A. baumannii*; BC – *B. cenocepacia*. Caixas de *EC number* na cor verde indicam enzimas encontradas. Pontos vermelhos são compostos importantes na via.

00625 12/28/17 (c) Kanehisa Laboratories

#	Proteínas Identificadas (890)	Esp	Código de Uniprot	EC Number	PM (kDa)	Vias metabólicas	РВ	сс	FM	Am.
1	1,4-dihydroxy-2-	ст	Q0K0J4	3.1.2	29	Benzoate degradatio Metabolic pathways Mic.metab. in diverse	Degradação de Ácidos graxos	Citoplasma	Hidrolase	In./Ex.
						Deg. aromatic compo	Xenobióticos			
	1-(5-phosphoribosyl)-5-	ВС	Q845U8		27	Histidine metabolism				
2	[(5- nhosnhoribosylamino)m			5.3.1.16		Metabolic pathways	Metab. de	Citoplasma	Isomerase	In./Ex.
	ethylideneamino]	AB	Q6F7A5	0.012120	26	Bios. second. metabo	Aminoácidos	encepiaerna		,
	imidazole-4-carboxamide					Biosynthesis of amin				
3	1-deoxy-D-xylulose 5-	AB	Q6FCG9	1.1.1.267	43	Terpenoid backbone	Bios. Metab.	Indofinido	Ovidorrodutaso	In /Ev
	reductoisomerase					Bios. second. metabo	secundários	muermuo	Oxidoffedutase	111./LX.
4	1-deoxy-D-xylulose-5- phosphate synthase	вС	АОАОНЗККОЭ	2.2.1.7	68	-	Bios. Metab. secundários	Indefinido	Transferase	In./Ex.
5	10 chaperonin	ВС	АОАОНЗКНВ2	-	10	-	Bios./Metab. Proteínas	Membrana externa da célula	Ligação/Síntese de ATP	In./Ex.
6	16S rRNA (cytosine(967)- C(5))-methyltransferase	АВ	Q6F6P8	2.1.1.176	49	-	Regulação/Pro cessamento	Citoplasma	Transferase	In./Ex.
7	2-dehydro-3- deoxyphosphogluconate aldolase	вС	АОАОНЗКВХ2	4.1.2.14	22	Pentose phosphate p Glyoxylate metabolis. Metabolic pathways Mic.metab. in diverse Carbon metabolism	Metab. de Carbo.	Citoplasma	Liase	In./Ex.
	2-dehydro-3-	вС	A9AGW1		31	Lipopolysaccharide b	Metabolismo			
8	deoxyphosphooctonate aldolase	AB	Q6FAT8	2.5.1.55	32	Metabolic pathways	de Ácidos graxos/Lipídeo	Citoplasma	Transferase	In./Ex.
9	2-deoxy-D-gluconate 3-	вС	A0A0H3KER1	1.1.1.125	28	-	Indefinido	Indefinido	Oxidorredutase	In./Ex.
10	2-Hydroxymuconic semialdehyde dehydrogenase	ст	QOK3TO	1.2.1.85	53	Benzoate degradatio Tryptophan metaboli Xylene degradation Metabolic pathways Mic.metab. in diverse Deg. gromatic compo	Degradação de Ácidos graxos e Xenobióticos	Indefinido	Oxidorredutase	Ex.
		СТ	Q0KCT8	2.3.3.13	56	Val., leuc. and isol. bi				
	2 is a manufactor	ВС	A9AJN4		56	Pyruvate metabolism				
11	2-isopropyimalate	AB	Q6FEQ2		63	Metabolic pathways Bios second metabo	Aminoácidos	Citoplasma	Transferase	In./Ex.
	synthuse					2-Oxocarboxylic acid	7411110401405			
						Biosynthesis of amin				
12	2-methylisocitrate Liase	AB	Q6F8W3	4.1.3.30	32	Propanoate metabol Metabolic pathways	Metab. de	Mitocondria	Liase	In./Ex.
13	2-nitropropane dioxygenase	вС	A0A0H3KBR8	1.13.12.16	34	Nitrogen metabolism Metabolic pathways	Metabolismo Energético	Mitocondria	Oxidorredutase	In./Ex.
	2-octaprenylphenol							Membrana		
14	hydroxylase of	AB	Q3V7H2	-	62		Indefinido	plasmática	Transporte	In./Ex.
	2-oxoglutarate					Citrate cycle (TCA cyc				
	decarboxylase,					Metabolic pathways	Ciclo do Ácido			
15	component of the 2-	AB	Q6F8L1	1.2.4.2	106	Bios. second. metabo	Tricarboxílico	Mitocondria	Oxidorredutase	In./Ex.
	oxogiutarate debydrogenase complex					Carbon metabolism				
		СТ	Q59106	1.2.4.2	106	Citrate cycle (TCA cyc				
16	2-oxoglutarate	ВС	A0A0H3KEJ0		107	Metabolic pathways	Ciclo do Ácido	Mitocondria	Ovidorradutas	In /Ev
10	component					ыоз. secona. metabo Mic.metab. in diverse	Tricarboxílico	willocondria	Oxidorredutase	111./EX.
						Carbon metabolism				
						Glycolysis / Gluconeo				
	2.2 hisphasphashashasta					Methane metabolism	Glicolico /			
17	independent	ΔR	OGFEDS	51717	57	Metabolic pathways	Gliconeogênec	Citonlasma	lenmerace	In /Fv

1	macpenaent	70	201105	J.7.2.12	، د	Dias second motaba	Unconcogenes	Споріазтна	13011101030	<i>,</i> сл.
	phosphoglycerate mutase					BIOS. SECOND. MELUDO	е			
						Carbon motabolism				
						Carbon metabolism				
	2245		00// 405			Biosynthesis of amin				
	2,5,4,5-	CT	QUKAU5		30	Lysine biosynthesis	Motah da			
18	tetrahydropyridine-2,6-	ВС	A9AHT0	2.3.1.117	30	Metabolic pathways	ivietab. de	Citoplasma	Transferase	In./Ex.
	dicarboxylate N-	AB	Q6F9A5		30	Mic.metab. in diverse	Aminoacidos	-		
	succinvltransferase					Biosynthesis of amin				
							Metabolismo			
10	2,4-dienoyl-CoA	ΛD		1 2 1 2 /	74		de Ácidos	Citoplasma	Ovidorrodutaço	In /Ev
15	reductase	AD	QUEBRS	1.5.1.54	74		graxos/Lipídeo	Citopiasina	Oxidoffedulase	111./LX.
							s			
	2.4-dienovl-CoA						Metabolismo			
	roductoso [NADBH] (2.4						do Ácidos			
20	leductase [NADFT] (2,4-	AB	Q6FD25	1.3.1.34	75			Citoplasma	Oxidorredutase	In./Ex.
	dienoyi coenzyme A						graxos/Lipideo			
	reductase)						S			
21	23S rRNA (guanosine-2'-	ВС	A0A0H3KJD0	2.1.1.185	26		Metabolismo	Citoplasma	Transferase	In./Ex.
	O-)-methyltransferase	AB	Q6FF50		27		de RNA			,
						Phenylalanine, tyrosi				
22	3-dehydroquinate	BC	ΑΟΑΟΗ3ΚΒΤ/	4,2 1 10	16	Metabolic pathways	Metab. de	Citonlasma	Liase	In /Fx
	dehydratase	DC	//0//0115//014	4.2.1.10	10	Bios. second. metabo	Aminoácidos	citopiasina	EldSC	<i>ш.у</i> <u>с</u> х.
						Biosynthesis of amin				
	3-deoxy-D-manno-					Linonolysaccharide h	Metabolismo			
23	octulosonate 8-	AB	Q6FC69	3.1.3.45	20		de Ácidos	Indefinido	Hidrolase	In./Ex.
	nhosnhate nhosnhatase					Metabolic pathways	gravos /Linídeo			
	3-deoxy-manno-						Metabolismo			
24			065083	27720	20	Lipopolysaccharideb	do Ásidos	Citanlasma	Transforme	In ITY
24	occurosonale	АВ	QOF9XZ	2.7.7.38	28	Metabolic nathways	de Acidos	Citopiasma	Industretase	111./EX.
	cytidylyltransferase						graxos/Lipideo			
	3-hydroxyacyl-[acyl-	ВС	A9AIM5	4.2.1.59	17	Fatty acid biosynthes	Metabolismo			
25	carrier-protein]	AB	Q6FCG4		17	Biotin metabolism	de Acidos	Citoplasma	Liase	In /Fx
	debydratase Eab7					Metabolic pathways	graxos/Lipídeo	ercepideind	2.000	,
						Fatty acid metabolisr	S			
						Phenylalanine metab				
						Benzoate degradatio	Degradação de			
26	3-Hydroxyacyl-CoA	ст	OOKCMA	1 1 1 1 5 7	E 2	Butanoate metabolis	Ácidos graxos	Mitocondria	Ovidorrodutação	In /Ex
20	dehydrogenase	CI	QUKCIVI8	1.1.1.157	55	Metabolic pathways	е	Willoconuna	Oxidorredutase	111./EX.
	, 0					Mic.metab. in diverse	Xenobióticos			
						Carbon metabolism				
							Degradação de			
27	3-hydroxyacyl-CoA	BC	4040H3K7P0	1 1 1 35	26		Ácidos gravos	Mitocondria	Ovidorredutase	In /Fy
	dehydrogenase	DC		1.1.1.55	20			Witteeonana	Oxidoffcddtasc	, LA.
<u> </u>						Fatty acid degradatic	е			
		ĺ				Renzoate dearadatio	1			
1						Butanoate metrik - "-	Degradação de			
20	3-hydroxyacyl-CoA		40401121010	4 4 4 9 5		Butanoate metabolis	Ácidos graxos	N4:+	Outida mad	10 15
28	dehydrogenase	BC	ΑυΑυΗ3ΚΜ46	1.1.1.35	88	ivietabolic pathways	e	iviitocondria	Oxidorredutase	ın./EX.
1	, 5					iviic.metab. in diverse	Xenobióticos			
		ĺ				Carbon metabolism				
<u> </u>		L	ļ		ļ	Fatty acid metabolisr				
	3-hydroxybutyrate	ВС	A0A0H3KJ53		27	Synthesis/deg. ketone	Metab. de			
29	dehydrogenase	AB	Q6F9I7	1.1.1.30	27	Butanoate metabolis	Carbo	Citoplasma	Oxidorredutase	In./Ex.
L	acityarogenase					Metabolic pathways	carbo.			
						Phenylalanine metab	Degradação de			
	3-hydroxybutypyl CoA					Benzoate degradatio	Ácidos gravas			
30	debudro genera	ВС	A0A0H3KDT9	1.1.1.157	33	Butanoate metabolis	ACIONS ELONOS	Mitocondria	Oxidorredutase	In./Ex.
	denydrogenase					Metabolic pathways	е			
		l				Mic.metab. in diverse	Xenobióticos			
		İ				Fatty acid dearadatic				
1						Benzoate dearadatio				
		l				Butanoate metaholis	Degradação de			
31	3-hydroxybutyryl-CoA	вс	ΔΟΔΟΗ3ΚΕΚ5	11125	75	Metabolic nathways	Acidos graxos	Mitocondria	Oxidorredutase	In /Fv
	epimerase			1.1.1.55	, , ,	Mic metab in diverse	е	inteconuna	Chiaon Cuutase	, LA.
		l				Carbon motabolism	Xenobióticos			
		l				Eatty acid metabolism	1			
<u> </u>	2 hudenseder - huden i		<u> </u>			rutty uciu metabolisi	Martala I			
32	3-nydroxylsobutyrate	ВС	A0A0H3KN85	1.1.1.31	30	vai., ieuc. and isol. de	ivietab. de	Mitocondria	Oxidorredutase	In./Ex.
1	dehvdrogenase		1		1	ivietabolic pathways	Aminoácidos			

		СТ	Q0K8G8		51	Val., leuc. and isol. bi				
		ВС	A0A0H3KQ48		51	C5-Branched dibasic				
33	3-isopropylmalate	AB	Q6FEW0	4.2.1.33	52	Metabolic pathways	Metab. de	Citoplasma	Liase	In./Fx.
	dehydratase large subunit			1.2.12.000		Bios. second. metabo	Aminoácidos	citopiasina	Liuse	, באני
						2-Oxocarboxylic acid				
						Biosynthesis of amin				
						Val., leuc. and isol. bi				
	3-isopropylmalate					C5-Branched dibasic				
34	dehydratase small	ΔR	O6FFV8	4 2 1 33	24	Metabolic pathways	Metab. de	Citoplasma	Liase	In /Fx
	subupit	, (5	001200	4.2.1.55	27	Bios. second. metabo	Aminoácidos	citopiasina	Liuse	ш., <u>с</u> х.
	Subunit					2-Oxocarboxylic acid				
						Biosynthesis of amin				
		СТ	Q0K8H0		38	Val., leuc. and isol. bi				
		ВС	Q845W3		38	C5-Branched dibasic				
35	3-isopropylmalate	AB	Q6FEV6	11105	39	Metabolic pathways	Metab. de	Citoplasma	Ovidorredutase	In /Ev
55	dehydrogenase			1.1.1.05		Bios. second. metabo	Aminoácidos	Citopiasina	Oxidoffedutase	111.7 LA.
						2-Oxocarboxylic acid				
						Biosynthesis of amin				
						Fatty acid degradatio				
						Val., leuc. and isol. de				
						Geraniol degradatior	Dogradação do			
						Benzoate degradatio				
36	3-ketoacyl-CoA thiolase	AB	Q6FF69	2.3.1.16	41	alpha-Linolenic acid	Acidos graxos	Citoplasma	Transferase	In./Ex.
						Metabolic pathways	e			
						Bios. second. metabo	Xenobióticos			
						Mic.metab. in diverse				
						Fatty acid metabolisr				
						Synthesis/dea.ketone				
	3-oxoacid CoA-					Val., leuc, and isol, de	Metab. de			
37	transferase subunit A	ВС	A0A0H3KEG4	2.8.3.5	25	Butanoate metabolis	Aminoácidos	Mitocondria	Transferase	In./Ex.
						Metabolic pathways				
						Fatty acid biosynthes				
						Biotin metabolism	Metabolismo			
38	3-oxoacyl-[acyl-carrier	вC	алалнзконо	1 1 1 100	27	Metabolic nathways	de Acidos	Citoplasma	Oxidorredutase	In /Fx
	protein] reductase	be	/ lon lon lon lon lon lon	1.1.1.100	27	Bios second metabo	graxos/Lipídeo	citopiasina	Oxidon cadase	ш., <u>с</u> х.
						Fatty acid metabolisr	s			
						Fatty acid hiosynthes				
						Riotin metabolism	Metabolismo			
39	3-oxoacyl-[acyl-carrier	RC	алалнаката	1 1 1 1 0 0	27	Metabolic nathways	de Ácidos	Citoplasma	Ovidorredutase	In /Fy
•••	protein] reductase	be	AUAUIISKUIU	1.1.1.100	27	Bios second metabo	graxos/Lipídeo	Citopiasina	Oxidoffcddtasc	, LX.
						Eatty acid metabolis	s			
		CT	00K8M1		26	Fatty acid hiosynthes				
					20	Riotin metabolism	Metabolismo			
40	3-oxoacyl-[acyl-carrier-			1 1 1 1 0 0	20	Metabolic nathways	de Ácidos	Citoplasma	Ovidorredutase	In /Ev
40	protein] reductase	AD	QOFDIO	1.1.1.100	20	Bios second metabo	graxos/Lipídeo	Citopiasina	Oxidoffedutase	,LX.
						Fatty acid metabolisr	s			
						Fatty acid hiosynthes	Metabolismo			
	3-oxoacyl-[acyl-carrier-					Piotin metabolism	do Ácidos			
41	protoinl synthese 2	ВС	A0A0H3KDP0	2.3.1.179	43	Motabolic pathways		Indefinido	Transferase	In./Ex.
	proteinj synthase z					Fatty acid matabalis	graxos/Lipideo			
						Fully uclu metabolist	S Metabolismo			
42	3-oxoacyl-[acyl-carrier-			2 2 4 4 0 0	25	Fatty acia biosynthes		Citerelesees	Treneformere	1
42	protein] synthase 3	вс	AUAUHSKUHS	2.3.1.180	35	Fatty a sid matabalian	de Acidos	Citopiasma	Transferase	111./EX.
						Fully uclu melabolist	graxos/Lipideo			
	3-Oxoadipate CoA-	ст	0.01/ 4.05	2 2 2 2		Benzoate degradatio			- (
43	transferase subunit A	CI	QUK455	2.8.3.6	24	Metabolic pathways	Acidos graxos	Mitocondria	Transferase	In./EX.
				4 2 4 4 2		Mic.metab. in alverse	е			
				1.3.1.43		Phenylalanine, tyrosi				
	3-phosphoshikimate 1-			1.3.1.12		Novobiocin biosynth	Metab. de		Oxidorredutase	
44	carboxyvinyltransferase	AB	Q6FA95	2.5.1.19	80	Metabolic pathways	Aminoácidos	Citoplasma	: Transferase	In./Ex.
					ł	Bios. second. metabo			,	
<u> </u>		<u> </u>	ļ		ļ	Biosynthesis of amin				ļ
	3,4-dihydroxy-2-			4.1.99.12	ļ	Riboflavin metabolisi				
45	butanone 4-phosphate	AB	Q6F6V4	3.5.4.25	41	Folate biosynthesis	Bios. Metab.	Mitocondria	Hidrolase [,] Liase	In./Fx
	synthase		~0.011		l '-	Metabolic pathways	secundários			
	Synthase					Bios. second. metabo				
		СТ	Q0KDH6		62	l	Reg /Proces		Ligação ao	

46	205 ribosomal protain S1	DC.		,	62	ī	NCB./FIUCC3.	Pibossomo	ιιβαγαυ αυ	In /Ev
40	sos hoosoniai protein si	BC	AUAUH3KDC2	-	62		da Tradução	RIDUSSUIIU	DNA/RNA	111./LX.
		AB	Q6F9Y/		61				Cooptit Estrut	
	30S ribosomal protein	CI	QUK613		12		Reg./Proces.	5.1		
47	S10	ВС	A9ADJ2	-	12		da Tradução	Ribossomo	de	In./Ex.
		AB	Q6F7R1		12				Rebossomos	
	30S ribosomal protein	СТ	Q0K643		14		Reg./Proces.		Cosntit. Estrut.	
48	S11	ВС	A9ADL7	-	14		da Tradução	Ribossomo	de	In./Ex.
	511	AB	Q6F7T5		14		ua nauuçao		Rebossomos	
	205 ribosomal protoin	СТ	Q0K609		14		Pog /Procos		Cosntit. Estrut.	
49		ВС	A9ADI8	-	14		de Treduciõe	Ribossomo	de	In./Ex.
	512	AB	Q6FDS8		14		da Tradução		Rebossomos	
		СТ	Q0K642		14		D		Cosntit. Estrut.	
50	305 ribosomai protein	BC	A9ADI 6	-	14		Reg./Proces.	Ribossomo	de	In./Ex.
	S13	AR	06F7T4		13		da Tradução		Rehossomos	,
		СT	00K632		12				Cosntit. Estrut.	
51	30S ribosomal protein	BC		_	12		Reg./Proces.	Ribossomo	de	In /Fx
	S14				11		da Tradução	Ribessenie	Behassamas	ш., <u>с</u> х.
	205 ribocomol protoin	AB			11		Bog /Drocos		Cooptit Estrut	
52	sos hoosomai protein	BC	A9AJN9		10		Reg./Ploces.	Ribossomo		In./Ex.
	\$15	AB	Q6FF13		10		da Iraduçao		de Coontit Estrut	
	30S ribosomal protein	СТ	QUKD81		9		Reg./Proces.		Cosnut. Estrut.	
53	S16	ВС	A9ADT1	-	9		da Tradução	Ribossomo	de	In./Ex.
		AB	Q6F7H9		9				Rebossomos	
	30S ribosomal protein	СТ	Q0K9E7		11		Reg./Proces.		Cosntit. Estrut.	
54	\$18	ВС	A9AJW3	-	11		da Tradução	Ribossomo	de	In./Ex.
	318	AB	Q6F9Q9		9		ua Hauuçao		Rebossomos	
	205 ribosomal protain	СТ	Q0K623		10		Bog /Brocos		Cosntit. Estrut.	
55	sos hoosomai protein	ВС	A9ADJ7	-	10		Reg./Ploces.	Ribossomo	de	In./Ex.
	\$19	AB	O6F7R6		10		da Iraduçao		Rebossomos	-
		СТ	Q0KA16		27				Cosntit. Estrut.	
56	30S ribosomal protein S2	BC	ΔΟΔΟΗ3ΚΕΙΙ1	_	27		Reg./Proces.	Ribossomo	de	In./Ex.
		AR	066453		27		da Tradução		Rehossomos	,
		ΑD	QUIAJS		20		- 1-		Cosntit. Estrut.	
57	30S ribosomal protein	BC	A0A0H3KKM1	-	9		Reg./Proces.	Ribossomo	de	In./Fx.
	S21	20					da Tradução		Rehossomos	,
	205 ribosomal protoin	PC			0		Pog /Procos		Cosntit. Estrut.	
58	sos hoosoniai protein	БС	AUAUITSKII/	-	0		Reg./Floces.	Ribossomo	de	In./Ex.
	521	AB	Q6FCL0		8		da Traduçao		Rebossomos	
		СТ	Q0K625	-	30		Bog /Brocos		Cosntit. Estrut.	
59	30S ribosomal protein S3	ВС	A9ADJ9		30		Reg./Proces.	Ribossomo	de	In./Ex.
		AB	O6F7R8		28		da Iraduçao		Rebossomos	
		СТ	Q0K644		23				Cosntit. Estrut.	
60	30S ribosomal protein S4	BC		_	23		Reg./Proces.	Ribossomo	de	In./Ex.
		ΔR	065776		23		da Tradução		Rehossomos	,
		CT	00K636		10				Cosntit. Estrut.	
61	30S ribosomal protein S5	PC		_	10		Reg./Proces.	Rihossomo	de	In /Fx
	sos hoosoniai protein ss			,	17		da Tradução	1100330110	Debessemes	ш., <u>с</u> л.
		AD			17				Cosntit Estrut	
67	205 ribocomol protoin S6		QURJEJ		14		Reg./Proces.	Bibossomo	do	In /Ex
02	sos hoosoniai protein so	BC	A9AJW1	-	14		da Tradução	RIDUSSUIIU	ue Daharanan	111./LX.
		AB	Q6F9R0		15				Rebossomos	
							Reg./Proces.		Cosntit. Estrut.	
63	30S ribosomal protein S7	СТ	Q0K610	-	18		da Tradução	Ribossomo	de	In./Ex.
							ua Hauuçao		Rebossomos	
		ВС	A9ADI9		18		Pog /Procos		Cosntit. Estrut.	
64	30S ribosomal protein S7	4.0	065067		10		Reg./Floces.	Ribossomo	de	In./Ex.
		AB	Q6FDS7		18		da Traduçao		Rehossomos	
		BC	A9ADK7		14		Reg./Proces.		Ligação ao	. /-
65	30S ribosomal protein S8	ΔR	06F7S6		14		da Traducão	Ribossomo		In./Ex.
		СТ	Q0KED8		14				Cosntit. Estrut.	
66	30S ribosomal protein SQ	BC	Δάδηδυ	_	1/	† I	Reg./Proces.	Ribossomo	de	In /Fx
		ΛD	065007		11	† I	da Tradução		Rehossomos	, LA.
	4-hvdroxy-3-methylhut-2-	AB AC		1 17 7 7	14	Ternenoid hackhono			REDOSSOMOS	
67	on 1 yd dinhoanhata	BC	AUAUH3KJV8	1 1 7 7 1	40	Matabalic nathur	Bios. Metab.	Citoplasma	Ovidorrodutora	In In
, °,	en-T-Al albuoshilare	АВ	QOFEIVI3	1.1/./.1	41	Rios socond motals	secundários	Citopiasilia	UNICOTTECULASE	/EX.
		-				ыйз. secona. metabo				
	synthase (flavodoxin)					Manahastan hiss				
	synthase (flavodoxin)					Monobactam biosyn				
	synthase (flavodoxin) 4-hydroxy-					Monobactam biosyn Lysine biosynthesis	Match da			
68	synthase (flavodoxin) 4-hydroxy- tetrahydrodipicolinate	АВ	Q6F6R2	1.17.1.8	29	Monobactam biosyn Lysine biosynthesis Metabolic pathways	Metab. de	Citoplasma	Oxidorredutase	In./Ex.

I	reducidse	1	Í.			Mic motab in divorce		1	1	1
						NIC.metab. In alverse				
						Biosynthesis of amini				
		ВС	A0A0H3KG09		32	Monobactam biosyn				
	4-hvdroxy-	AB	Q6F6U2		35	Lysine biosynthesis				
60	totrobudro dinicolinato			4227		Metabolic pathways	Metab. de	Citanlasma	Oviderredutere	In In
09	tetranyuroupicolinate			4.3.3.7		Bios. second. metabo	Aminoácidos	Citopiasma	Oxidorredutase	111./EX.
	synthase					Mic metab in diverse				
						Riosynthesis of amin				
						biosynthesis of unnin				
	4-					Ubiquinone and othe	Massala ala			
70	Hydroxyphenylpyruvate	СТ	O0K2A0	1.13.11.27	40	Tyrosine metabolism	Metab. de	Citoplasma	Oxidorredutase	In./Fx.
	diawyganaca	0,	QUILLING	1.10.11.27	10	Phenylalanine metab	Aminoácidos	citopiasina	ondonicultuse	<i>,</i> <u>_</u> /
	uloxygenase					Metabolic pathways				
	5-					Cvsteine and methior				
	methyltetrahydropteroylt					Selenocomnound me				
71	riglutamata	A.D.	065679	21114	20	Motabolic pathways	Metab. de	Citanlasma	Transforme	In IT.
/1	Inglutamate-	AD	QOFOZO	2.1.1.14	29	Nielubolic pulliwuys	Aminoácidos	Citopiasina	Indifsterase	<i>III./EX.</i>
	homocysteine					Bios. second. metabo				
	methyltransferase					Biosynthesis of amin				
		СТ	Q0K603		24		Bog /Drocos		Cosntit. Estrut.	
72	50S ribosomal protein L1	ВС	A9ADI2	-	24		Reg./Proces.	Ribossomo	de	In./Ex.
		ΔR	065593		24	1	da Tradução		Rehossomos	-
		CT	00K604		10				Cosntit Estrut	
72	50S ribosomal protein				18		Reg./Proces.	Dihassama	do	In In
/3	L10	BC	A9ADI3	-	18		da Tradução	RIDOSSOMO	de	In./EX.
		AB	Q6FF92		18				Rebossomos	
74	50S ribosomal protein	٨D	065504		15		Reg./Proces.	Pibossomo	Cosntit. Estrut.	In /Ev
/4	L11	AD	QUFF94	-	15		da Traducão	RIDOSSOIIIO	de	<i>III./LX</i> .
		СТ	Q0KED9		16				Cosntit. Estrut.	
75	505 ribosomai protein	BC	A0A0H3KCA6	-	16		Reg./Proces.	Ribossomo	de	In./Ex.
	L13	ΛD	065909		16		da Tradução		Pohossomos	,
		AD	001630		10				Cosptit Estrut	
	50S ribosomal protein	CI	QUK029		13		Reg./Proces.	D ''		. /=
76	114	ВС	A9ADK3	-	13		da Tradução	Ribossomo	de	In./Ex.
		AB	Q6F7S2		13		aa maaaçao		Rebossomos	
	EQS ribosomal protain	СТ	Q0K638		15		Bog /Drocos		Cosntit. Estrut.	
77	sus ribusomai protein	ВС	A9ADL2	-	15		Reg./Proces.	Ribossomo	de	In./Ex.
	L15	ΛR	06571		15		da Tradução		Rehossomos	,
	50S ribosomal protein	CT	00K626		10		Reg /Proces		Cosptit Estrut	
78			QUKUZU	-	16		Reg./FIUCES.	Ribossomo	Cosnut. Estiut.	In./Ex.
	L16	BC	A9ADK0		16		da Iraduçao		de Countit Fotout	
	50S ribosomal protein	СТ	Q0K646		15		Reg /Proces		Cosntit. Estrut.	
79	117	ВС	A9ADM0	-	15		do Tradução	Ribossomo	de	In./Ex.
	L17	AB	Q6F7T8		14		ua fradução		Rebossomos	
	50S ribosomal protein	BC	A9ADK9		13		Reg./Proces.		Cosntit, Estrut,	
80	110	ΛD	065759	-	12		da Tradução	Ribossomo	do	In./Ex.
	118	AD			12		ua Hauuçao		Cosntit Estrut	
	50S ribosomal protein	CI	QUKD78		14		Reg./Proces.	D ''		. /=
81	119	ВС	A9ADS8	-	15		da Tradução	Ribossomo	ae	In./EX.
		AB	Q6F7I2		14		uu muuuyuo		Rebossomos	
		СТ	Q0K622		30		Pog /Procos		Cosntit. Estrut.	
82	50S ribosomal protein L2	ВС	A9ADJ6	-	30		Reg./FIUCES.	Ribossomo	de	In./Ex.
	,	AR	06F7R5		30	1	da Iradução		Rebossomos	
	50S ribosomal protein	PC			14		Reg /Proces		Cosntit Estrut	
83				-	10	t l		Ribossomo		In./Ex.
		AB	Q6F868		13				de	
84	sus ribosomai protein	CT	QUK6P4	-	11	Į I	Reg./Proces.	Ribossomo	Cosntit. Estrut.	In./Ex.
	L21	AB	Q6F8G1		11		da Tradução		de	,
95	50S ribosomal protein	СТ	Q0K624		12		Reg./Proces.	Pibossomo	Cosntit. Estrut.	In /Ev
05	L22	AB	Q6F7R7	-	12		da Tradução	RIDUSSUIIU	de	111./LX.
	50S ribosomal protein	СТ	O0K621		12		Reg./Proces.		Cosntit, Estrut,	
86	123	BC		-	12	t l	da Traducão	Ribossomo	do	In./Ex.
	EAS ribos amal protein	DC DC			14				Cosptit Estrut	
87	sos nuosomai protein	BC	AJAUK4		11	ł	reg./Pioces.	Ribossomo	Cosnut. Estrut.	In./Ex.
	L24	AB	Q6F7S3		11		da Tradução		de	
88	50S ribosomal protein	СТ	Q0KEP9	_	22	ļ	Reg./Proces.	Ribossomo	Cosntit. Estrut.	In /Fv
	L25	ВС	A9AEY7	-	22		da Traducão	1100330110	de	
~	50S ribosomal protein	BC	A9AI61		9		Reg./Proces.	Dile	Cosntit. Estrut.	1
89	127	ΔR	065862		Q	1	da Traducão	Ribossomo	de	In./Ex.
<u> </u>	L <i>L 1</i>	<u>70</u>	001002		3				Cosntit Estrut	
	50S ribosomal protein				9	ł	Reg./Proces.	Dihesser		10 15
90	L28	ВĊ	A9AHD5	-	9	ł	da Tradução	KIDOSSOMO	ae	IN./EX.
L	-	AB	Q6FES9		9				Rebossomos	
		СТ	Q0K619		23		Reg /Procos		Cosntit. Estrut.	
91	50S ribosomal protein L3	ВС	A9ADJ3	-	23			Ribossomo	de	In./Ex.

		AB	Q6F7R2		22	l	ua mauuçao		Rebossomos	
	50S ribosomal protein L3						Recombinação			
92	glutamine	AB	Q6FAR1		38		e Reparo de	Citoplasma	Transferase	In./Ex.
	methyltransferase						DNA			,
		СТ	Q0K637		7		- /-		Cosntit. Estrut.	
93	50S ribosomal protein	BC	A9ADI 1	-	7	+	Reg./Proces.	Ribossomo	de	In./Ex.
	L30	AB	06F7T0		7		da Tradução		Rebossomos	,
	50S ribosomal protein	CT	Q0K929		10		Reg./Proces.	51	Cosntit. Estrut.	. /=
94	L31 type B	BC	A9AG80	-	10	1	da Tradução	Ribossomo	de	In./Ex.
	50S ribosomal protein	CT	Q0K7B1		6		Reg./Proces.	D'h e e e e e e	Cosntit. Estrut.	1. /F.
95	L33	ВС	A9AHD4	-	6		da Tradução	RIDOSSOMO	de	In./EX.
96	50S ribosomal protein	ВС	A0A0H3KE59		7		Reg./Proces.	Pibossomo	Cosntit. Estrut.	In /Ex
50	L35	AB	Q6F867		7		da Tradução	RIDOSSOIIIO	de	<i>III./EX</i> .
		СТ	Q0K620		23		Reg /Proces		Cosntit. Estrut.	
97	50S ribosomal protein L4	ВС	A9ADJ4	-	23		da Tradução	Ribossomo	de	In./Ex.
		AB	Q6F7R3		22		ua Hauuçao		Rebossomos	
		СТ	Q0K631		20		Reg /Proces		Cosntit. Estrut.	
98	50S ribosomal protein L5	ВС	A9ADK5	-	20		da Tradução	Ribossomo	de	In./Ex.
		AB	Q6F7S4		20		ua mauuçao		Rebossomos	
		СТ	Q0K634		19		Reg./Proces.		Cosntit. Estrut.	
99	50S ribosomal protein L6	ВС	A9ADK8	-	19		da Tradução	Ribossomo	de	In./Ex.
		AB	Q6F7S7		19		uu muuuçuo		Rebossomos	
	50S ribosomal protein	СТ	Q0K605		13	+	Reg./Proces.		Cosntit. Estrut.	
100	L7/L12	ВС	A9ADI4	-	13	+	da Tradução	Ribossomo	de	In./Ex.
	,	AB	Q6FF91		13				Rebossomos	
101	50S ribosomal protein L9	BC	A9AJW4	-	16		Reg./Proces.	Ribossomo	Cosntit. Estrut.	In./Ex.
		AB	Q6F9Q8	1 1 1 4 4	16	Dentessisheseketsi	da Tradução		de	
				1.1.1.44	ł	Pentose phosphate p				
	6-phosphogluconate			1.1.1.343	ł	Giutatnione metabol	Motab do			
102	dehydrogenase,	ВС	A0A0H3KKE2		51	Nietabolic pathways	Wieldb. ue	Citoplasma	Oxidorredutase	In./Ex.
	decarboxylating				4	BIOS. Second. metabo	Carbo.			
					4	Carbon motabolism				
						curbon metabolism				
		СТ			10	Rihoflavin metaholisi				
103	6,7-dimethyl-8-	CT PC	Q0K7T9	25178	18	Riboflavin metabolisi Metabolic pathways	Metab. Cofat.	Mitocondria	Transferase	In /Fy
103	6,7-dimethyl-8- ribityllumazine synthase	CT BC	Q0K7T9 A9AF24	2.5.1.78	18 19	Riboflavin metabolisi Metabolic pathways Bios second metabo	Metab. Cofat. e Vitaminas	Mitocondria	Transferase	In./Ex.
103	6,7-dimethyl-8- ribityllumazine synthase	CT BC AB CT	Q0K7T9 A9AF24 Q6F6V3 Q0KDB7	2.5.1.78	18 19 16 57	Riboflavin metabolisi Metabolic pathways Bios. second. metabo	Metab. Cofat. e Vitaminas	Mitocondria	Transferase	In./Ex.
103	6,7-dimethyl-8- ribityllumazine synthase	CT BC AB CT BC	Q0K7T9 A9AF24 Q6F6V3 Q0KDR7 40A0H3KCN9	2.5.1.78	18 19 16 57 57	Riboflavin metabolisi Metabolic pathways Bios. second. metabo	Metab. Cofat. e Vitaminas Bios./Metab.	Mitocondria	Transferase Ligação/Síntese	In./Ex.
103 104	6,7-dimethyl-8- ribityllumazine synthase 60 chaperonin	CT BC AB CT BC BC	Q0K7T9 A9AF24 Q6F6V3 Q0KDR7 A0A0H3KCN9 A0A0H3KSP8	2.5.1.78	18 19 16 57 57 57	Riboflavin metabolisi Metabolic pathways Bios. second. metabo	Metab. Cofat. e Vitaminas Bios./Metab. Proteínas	Mitocondria Citoplasma	Transferase Ligação/Síntese de ATP	In./Ex. In./Ex.
103 104	6,7-dimethyl-8- ribityllumazine synthase 60 chaperonin	CT BC AB CT BC BC AB	Q0K7T9 A9AF24 Q6F6V3 Q0KDR7 A0A0H3KCN9 A0A0H3KSP8 Q6F8P6	2.5.1.78	18 19 16 57 57 57 57	Riboflavin metabolisı Metabolic pathways Bios. second. metabo	Metab. Cofat. e Vitaminas Bios./Metab. Proteínas	Mitocondria Citoplasma	Transferase Ligação/Síntese de ATP	In./Ex. In./Ex.
103 104	6,7-dimethyl-8- ribityllumazine synthase 60 chaperonin	CT BC AB CT BC BC AB	Q0K7T9 A9AF24 Q6F6V3 Q0KDR7 A0A0H3KCN9 A0A0H3KSP8 Q6F8P6	2.5.1.78 -	18 19 16 57 57 57 57 57	Riboflavin metabolisı Metabolic pathways Bios. second. metabo	Metab. Cofat. e Vitaminas Bios./Metab. Proteínas Sinalização e	Mitocondria Citoplasma	Transferase Ligação/Síntese de ATP	In./Ex. In./Ex.
103 104 105	6,7-dimethyl-8- ribityllumazine synthase 60 chaperonin Outer membrane protein	CT BC AB CT BC BC AB	Q0K7T9 A9AF24 Q6F6V3 Q0KDR7 A0A0H3KCN9 A0A0H3KSP8 Q6F8P6 A0A0H3KFT7	2.5.1.78	18 19 16 57 57 57 57 85	Riboflavin metabolisı Metabolic pathways Bios. second. metabo	Metab. Cofat. e Vitaminas Bios./Metab. Proteínas Sinalização e Processo	Mitocondria Citoplasma Membrana	Transferase Ligação/Síntese de ATP Transporte	In./Ex. In./Ex. In./Ex.
103 104 105	6,7-dimethyl-8- ribityllumazine synthase 60 chaperonin Outer membrane protein assembly factor BamA	CT BC AB CT BC AB BC BC	Q0K7T9 A9AF24 Q6F6V3 Q0KDR7 A0A0H3KCN9 A0A0H3KSP8 Q6F8P6 A0A0H3KFT7	-	18 19 16 57 57 57 57 85	Riboflavin metabolisi Metabolic pathways Bios. second. metabo	Metab. Cofat. e Vitaminas Bios./Metab. Proteínas Sinalização e Processo Celular	Mitocondria Citoplasma Membrana plasmática	Transferase Ligação/Síntese de ATP Transporte	In./Ex. In./Ex. In./Ex.
103 104 105	6,7-dimethyl-8- ribityllumazine synthase 60 chaperonin Outer membrane protein assembly factor BamA	CT BC AB CT BC AB BC BC	Q0K7T9 A9AF24 Q6F6V3 Q0KDR7 A0A0H3KCN9 A0A0H3KSP8 Q6F8P6 A0A0H3KFT7	2.5.1.78 - -	18 19 16 57 57 57 57 85	Riboflavin metabolisi Metabolic pathways Bios. second. metabo	Metab. Cofat. e Vitaminas Bios./Metab. Proteínas Sinalização e Processo Celular	Mitocondria Citoplasma Membrana plasmática	Transferase Ligação/Síntese de ATP Transporte	In./Ex. In./Ex. In./Ex.
103 104 105 106	6,7-dimethyl-8- ribityllumazine synthase 60 chaperonin Outer membrane protein assembly factor BamA Usp domain-containing	CT BC AB CT BC AB BC BC	Q0K7T9 A9AF24 Q6F6V3 Q0KDR7 A0A0H3KCN9 A0A0H3KSP8 Q6F8P6 A0A0H3KFT7 A0A0H3KMQ7	2.5.1.78 - - -	18 19 16 57 57 57 85 85	Riboflavin metabolisi Metabolic pathways Bios. second. metabo	Metab. Cofat. e Vitaminas Bios./Metab. Proteínas Sinalização e Processo Celular Indefinido	Mitocondria Citoplasma Membrana plasmática Indefinido	Transferase Ligação/Síntese de ATP Transporte Indefinido	In./Ex. In./Ex. In./Ex. In./Ex.
103 104 105 106	6,7-dimethyl-8- ribityllumazine synthase 60 chaperonin Outer membrane protein assembly factor BamA Usp domain-containing protein	CT BC AB CT BC AB BC BC BC	Q0K7T9 A9AF24 Q6F6V3 Q0KDR7 A0A0H3KCN9 A0A0H3KSP8 Q6F8P6 A0A0H3KFT7 A0A0H3KMQ7	2.5.1.78 - - -	18 19 16 57 57 57 85 85	Riboflavin metabolisi Metabolic pathways Bios. second. metabo	Metab. Cofat. e Vitaminas Bios./Metab. Proteínas Sinalização e Processo Celular Indefinido	Mitocondria Citoplasma Membrana plasmática Indefinido	Transferase Ligação/Síntese de ATP Transporte Indefinido	In./Ex. In./Ex. In./Ex. In./Ex.
103 104 105 106 107	6,7-dimethyl-8- ribityllumazine synthase 60 chaperonin Outer membrane protein assembly factor BamA Usp domain-containing protein ATP synthase subunit b	CT BC AB CT BC AB BC BC BC	Q0K7T9 A9AF24 Q6F6V3 Q0KDR7 A0A0H3KCN9 A0A0H3KSP8 Q6F8P6 A0A0H3KFT7 A0A0H3KMQ7 A9AJG0	2.5.1.78 - - - -	18 19 16 57 57 85 15 17	Riboflavin metabolisi Metabolic pathways Bios. second. metabo	Metab. Cofat. e Vitaminas Bios./Metab. Proteínas Sinalização e Processo Celular Indefinido Metabolismo Energético	Mitocondria Citoplasma Membrana plasmática Indefinido Membrana plasmática	Transferase Ligação/Síntese de ATP Transporte Indefinido Ligação/Síntese	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
103 104 105 106 107	6,7-dimethyl-8- ribityllumazine synthase 60 chaperonin Outer membrane protein assembly factor BamA Usp domain-containing protein ATP synthase subunit b	CT BC CT BC BC AB BC BC BC	Q0K7T9 A9AF24 Q6F6V3 Q0KDR7 A0A0H3KCN9 A0A0H3KSP8 Q6F8P6 A0A0H3KFT7 A0A0H3KMQ7 A9AJG0	2.5.1.78 - - - -	18 19 16 57 57 85 15 17	Riboflavin metabolisi Metabolic pathways Bios. second. metabo	Metab. Cofat. e Vitaminas Bios./Metab. Proteínas Sinalização e Processo Celular Indefinido Metabolismo Energético	Mitocondria Citoplasma Membrana plasmática Indefinido Membrana plasmática	Transferase Ligação/Síntese de ATP Transporte Indefinido Ligação/Síntese de ATP	In./Ex. In./Ex. In./Ex. In./Ex.
103 104 105 106 107 108	6,7-dimethyl-8- ribityllumazine synthase 60 chaperonin Outer membrane protein assembly factor BamA Usp domain-containing protein ATP synthase subunit b AAA domain-containing	CT BC AB CT BC AB BC BC BC BC BC AB	Q0K7T9 A9AF24 Q6F6V3 Q0KDR7 A0A0H3KCN9 A0A0H3KSP8 Q6F8P6 A0A0H3KFT7 A0A0H3KMQ7 A9AJG0 Q6FA22	2.5.1.78 - - - -	18 19 16 57 57 57 85 15 17 33	Riboflavin metabolisi Metabolic pathways Bios. second. metabo	Metab. Cofat. e Vitaminas Bios./Metab. Proteínas Sinalização e Processo Celular Indefinido Metabolismo Energético Indefinido	Mitocondria Citoplasma Membrana plasmática Indefinido Membrana plasmática Indefinido	Transferase Ligação/Síntese de ATP Transporte Indefinido Ligação/Síntese de ATP Indefinido	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
103 104 105 106 107 108	6,7-dimethyl-8- ribityllumazine synthase 60 chaperonin Outer membrane protein assembly factor BamA Usp domain-containing protein ATP synthase subunit b AAA domain-containing protein	CT BC AB CT BC AB BC BC BC BC BC	Q0K7T9 A9AF24 Q6F6V3 Q0KDR7 A0A0H3KCN9 A0A0H3KSP8 Q6F8P6 A0A0H3KFT7 A0A0H3KMQ7 A9AJG0 Q6FA22	2.5.1.78 - - - - - -	18 19 16 57 57 57 85 15 17 33	Riboflavin metabolisi Metabolic pathways Bios. second. metabo	Metab. Cofat. e Vitaminas Bios./Metab. Proteínas Sinalização e Processo Celular Indefinido Metabolismo Energético	Mitocondria Citoplasma Membrana plasmática Indefinido Membrana plasmática Indefinido	Transferase Ligação/Síntese de ATP Transporte Indefinido Ligação/Síntese de ATP Indefinido	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
103 104 105 106 107 108	6,7-dimethyl-8- ribityllumazine synthase 60 chaperonin Outer membrane protein assembly factor BamA Usp domain-containing protein ATP synthase subunit b AAA domain-containing protein ABC-2 type transport	CT BC AB CT BC AB BC BC BC BC BC	Q0K7T9 A9AF24 Q6F6V3 Q0KDR7 A0A0H3KCN9 A0A0H3KSP8 Q6F8P6 A0A0H3KFT7 A0A0H3KMQ7 A9AJG0 Q6FA22	2.5.1.78 - - - - -	18 19 16 57 57 57 85 15 17 33	Riboflavin metabolisi Metabolic pathways Bios. second. metabo	Metab. Cofat. e Vitaminas Bios./Metab. Proteínas Sinalização e Processo Celular Indefinido Metabolismo Energético Indefinido Sinalização e	Mitocondria Citoplasma Membrana plasmática Indefinido Membrana plasmática Indefinido	Transferase Ligação/Síntese de ATP Transporte Indefinido Ligação/Síntese de ATP Indefinido	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
103 104 105 106 107 108 109	6,7-dimethyl-8- ribityllumazine synthase 60 chaperonin Outer membrane protein assembly factor BamA Usp domain-containing protein ATP synthase subunit b AAA domain-containing protein ABC-2 type transport system ATP-binding	CT BC AB CT BC AB BC BC AB BC BC BC	Q0K7T9 A9AF24 Q6F6V3 Q0KDR7 A0A0H3KCN9 A0A0H3KSP8 Q6F8P6 A0A0H3KFT7 A0A0H3KMQ7 A9AJG0 Q6FA22 A0A0H3KRV5	2.5.1.78 - - - - - -	18 19 16 57 57 85 15 17 33 34	Riboflavin metabolisi Metabolic pathways Bios. second. metabo	Metab. Cofat. e Vitaminas Bios./Metab. Proteínas Sinalização e Processo Celular Indefinido Metabolismo Energético Indefinido Sinalização e Processo Celular	Mitocondria Citoplasma Membrana plasmática Indefinido Membrana plasmática Indefinido	Transferase Ligação/Síntese de ATP Transporte Indefinido Ligação/Síntese de ATP Indefinido Transporte	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
103 104 105 106 107 108 109	6,7-dimethyl-8- ribityllumazine synthase 60 chaperonin Outer membrane protein assembly factor BamA Usp domain-containing protein ATP synthase subunit b AAA domain-containing protein ABC-2 type transport system ATP-binding protein	CT BC AB CT BC AB BC BC AB BC BC BC	Q0K7T9 A9AF24 Q6F6V3 Q0KDR7 A0A0H3KCN9 A0A0H3KSP8 Q6F8P6 A0A0H3KFT7 A0A0H3KMQ7 A9AJG0 Q6FA22 A0A0H3KRV5	2.5.1.78 - - - - - -	18 19 16 57 57 85 15 17 33 34	Riboflavin metabolisi Metabolic pathways Bios. second. metabo	Metab. Cofat. e Vitaminas Bios./Metab. Proteínas Sinalização e Processo Celular Indefinido Metabolismo Energético Indefinido Sinalização e Processo Celular	Mitocondria Citoplasma Membrana plasmática Indefinido Membrana plasmática Indefinido	Transferase Ligação/Síntese de ATP Transporte Indefinido Ligação/Síntese de ATP Indefinido Transporte	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
103 104 105 106 107 108 109	6,7-dimethyl-8- ribityllumazine synthase 60 chaperonin Outer membrane protein assembly factor BamA Usp domain-containing protein ATP synthase subunit b AAA domain-containing protein ABC-2 type transport system ATP-binding protein ABC-type sugar	CT BC AB CT BC AB BC BC BBC BC BBC BC BC BC BC BC BC BC	Q0K7T9 A9AF24 Q6F6V3 Q0KDR7 A0A0H3KCN9 A0A0H3KSP8 Q6F8P6 A0A0H3KFT7 A0A0H3KMQ7 A9AJG0 Q6FA22 A0A0H3KRV5	2.5.1.78 - - - - - -	18 19 16 57 57 85 15 17 33 34	Riboflavin metabolisi Metabolic pathways Bios. second. metabo	Metab. Cofat. e Vitaminas Bios./Metab. Proteínas Sinalização e Processo Celular Indefinido Metabolismo Energético Indefinido Sinalização e Processo Celular Proc. de Info.	Mitocondria Citoplasma Membrana plasmática Indefinido Membrana plasmática Membrana plasmática	Transferase Ligação/Síntese de ATP Transporte Indefinido Ligação/Síntese de ATP Indefinido Transporte	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
103 104 105 106 107 108 109 110	6,7-dimethyl-8- ribityllumazine synthase 60 chaperonin Outer membrane protein assembly factor BamA Usp domain-containing protein ATP synthase subunit b AAA domain-containing protein ABC-2 type transport system ATP-binding protein ABC-type sugar transporter, periplasmic	CT BC AB CT BC AB BC BC BBC BC BC BC BC BC BC BC BC CT	Q0K7T9 A9AF24 Q6F6V3 Q0KDR7 A0A0H3KCN9 A0A0H3KSP8 Q6F8P6 A0A0H3KFT7 A0A0H3KMQ7 Q6FA22 A0A0H3KRV5 Q0K8T5	2.5.1.78 - - - - - - - -	18 19 16 57 57 85 15 17 33 34 64	Riboflavin metabolisi Metabolic pathways Bios. second. metabo	Metab. Cofat. e Vitaminas Bios./Metab. Proteínas Sinalização e Processo Celular Indefinido Metabolismo Energético Indefinido Sinalização e Processo Celular Proc. de Info. Ambiental	Mitocondria Citoplasma Membrana plasmática Indefinido Membrana plasmática Membrana plasmática	Transferase Ligação/Síntese de ATP Transporte Indefinido Ligação/Síntese de ATP Indefinido Transporte Transporte	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
103 104 105 106 107 108 109 110	6,7-dimethyl-8- ribityllumazine synthase 60 chaperonin Outer membrane protein assembly factor BamA Usp domain-containing protein ATP synthase subunit b AAA domain-containing protein ABC-2 type transport system ATP-binding protein ABC-type sugar transporter, periplasmic component	CT BC AB BC BC AB BC BC BBC BC BC BC BC CT	Q0K7T9 A9AF24 Q6F6V3 Q0KDR7 A0A0H3KCN9 A0A0H3KSP8 Q6F8P6 A0A0H3KFT7 A0A0H3KMQ7 A9AJG0 Q6FA22 A0A0H3KRV5 Q0K8T5	2.5.1.78 - - - - - - - -	18 19 16 57 57 85 15 17 33 34 64	Riboflavin metabolisi Metabolic pathways Bios. second. metabo	Metab. Cofat. e Vitaminas Bios./Metab. Proteínas Sinalização e Processo Celular Indefinido Metabolismo Energético Indefinido Sinalização e Processo Celular Proc. de Info. Ambiental	Mitocondria Citoplasma Membrana plasmática Indefinido Membrana plasmática Membrana plasmática	Transferase Ligação/Síntese de ATP Transporte Indefinido Ligação/Síntese de ATP Indefinido Transporte Transporte	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
103 104 105 106 107 108 109 110	6,7-dimethyl-8- ribityllumazine synthase 60 chaperonin Outer membrane protein assembly factor BamA Usp domain-containing protein ATP synthase subunit b AAA domain-containing protein ABC-2 type transport system ATP-binding protein ABC-type sugar transporter, periplasmic component ABC-type transport	CT BC AB CT BC BC BC BC BC BC BC BC BC CT CT CT	Q0K7T9 A9AF24 Q6F6V3 Q0KDR7 A0A0H3KCN9 A0A0H3KKP8 Q6F8P6 A0A0H3KFT7 A0A0H3KMQ7 A9AJG0 Q6FA22 A0A0H3KRV5 Q0K8T5	2.5.1.78	18 19 16 57 57 85 15 17 33 34 64	Riboflavin metabolisi Metabolic pathways Bios. second. metabo	Metab. Cofat. e Vitaminas Bios./Metab. Proteínas Sinalização e Processo Celular Indefinido Metabolismo Energético Indefinido Sinalização e Processo Celular Proc. de Info. Ambiental Sinalização e	Mitocondria Citoplasma Membrana plasmática Indefinido Membrana plasmática Membrana plasmática	Transferase Ligação/Síntese de ATP Transporte Indefinido Ligação/Síntese de ATP Indefinido Transporte Transporte	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
103 104 105 106 107 108 109 110 111	6,7-dimethyl-8- ribityllumazine synthase 60 chaperonin Outer membrane protein assembly factor BamA Usp domain-containing protein ATP synthase subunit b AAA domain-containing protein ABC-2 type transport system ATP-binding protein ABC-type sugar transporter, periplasmic component ABC-type transport system ATPase	CT BC AB CT BC BC BC BC	Q0K7T9 A9AF24 Q6F6V3 Q0KDR7 A0A0H3KCN9 A0A0H3KSP8 Q6F8P6 A0A0H3KFT7 A0A0H3KMQ7 A9AJG0 Q6FA22 A0A0H3KRV5 Q0K8T5 A0A0H3KI06	2.5.1.78	18 19 16 57 57 85 15 17 33 34 64 28	Riboflavin metabolisi Metabolic pathways Bios. second. metabo	Metab. Cofat. e Vitaminas Bios./Metab. Proteínas Sinalização e Processo Celular Indefinido Metabolismo Energético Indefinido Sinalização e Processo Celular Proc. de Info. Ambiental Sinalização e Processo	Mitocondria Citoplasma Membrana plasmática Indefinido Membrana plasmática Membrana plasmática	Transferase Ligação/Síntese de ATP Transporte Indefinido Ligação/Síntese de ATP Indefinido Transporte Transporte Transporte	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
103 104 105 106 107 108 109 110 111	6,7-dimethyl-8- ribityllumazine synthase 60 chaperonin Outer membrane protein assembly factor BamA Usp domain-containing protein ATP synthase subunit b AAA domain-containing protein ABC-2 type transport system ATP-binding protein ABC-type sugar transporter, periplasmic component ABC-type transport system ATPase component	CT BC AB CT BC BC BC BC BC BC AB BC CT BC	Q0K7T9 A9AF24 Q6F6V3 Q0KDR7 A0A0H3KCN9 A0A0H3KSP8 Q6F8P6 A0A0H3KFT7 A0A0H3KMQ7 A9AJG0 Q6FA22 A0A0H3KRV5 Q0K8T5 A0A0H3KI06	2.5.1.78	18 19 16 57 57 85 15 17 33 34 64 28	Riboflavin metabolisi Metabolic pathways Bios. second. metabo	Metab. Cofat. e Vitaminas Bios./Metab. Proteínas Sinalização e Processo Celular Indefinido Metabolismo Energético Indefinido Sinalização e Processo Celular Proc. de Info. Ambiental Sinalização e Processo Celular	Mitocondria Citoplasma Membrana plasmática Indefinido Membrana plasmática Membrana plasmática Membrana plasmática	Transferase Ligação/Síntese de ATP Transporte Indefinido Ligação/Síntese <u>de ATP</u> Indefinido Transporte Transporte Transporte	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
103 104 105 106 107 108 109 1110	6,7-dimethyl-8- ribityllumazine synthase 60 chaperonin Outer membrane protein assembly factor BamA Usp domain-containing protein ATP synthase subunit b AAA domain-containing protein ABC-2 type transport system ATP-binding protein ABC-type sugar transporter, periplasmic component ABC-type transport system ATPase component ABC-type transporter,	CT BC AB CT BC BC	Q0K7T9 A9AF24 Q6F6V3 Q0KDR7 A0A0H3KCN9 A0A0H3KSP8 Q6F8P6 A0A0H3KFT7 A0A0H3KMQ7 A9AJG0 Q6FA22 A0A0H3KRV5 Q0K8T5 A0A0H3KI06	2.5.1.78	18 19 16 57 57 57 85 15 17 33 34 64 28	Riboflavin metabolisi Metabolic pathways Bios. second. metabo	Metab. Cofat. e Vitaminas Bios./Metab. Proteínas Sinalização e Processo Celular Indefinido Metabolismo Energético Indefinido Sinalização e Processo Celular Proc. de Info. Ambiental Sinalização e Processo Celular	Mitocondria Citoplasma Membrana plasmática Indefinido Membrana plasmática Membrana plasmática Membrana plasmática	Transferase Ligação/Síntese de ATP Transporte Indefinido Ligação/Síntese <u>de ATP</u> Indefinido Transporte Transporte Transporte	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
103 104 105 106 107 108 109 110 1111	6,7-dimethyl-8- ribityllumazine synthase 60 chaperonin Outer membrane protein assembly factor BamA Usp domain-containing protein ATP synthase subunit b AAA domain-containing protein ABC-2 type transport system ATP-binding protein ABC-type sugar transporter, periplasmic component ABC-type transport system ATPase component ABC-type transporter, duplicated ATPase	CT BC AB CT BC AB BC BC AB BC BC BC BC CT BC BC CT BC CT CT CT CT	Q0K7T9 A9AF24 Q6F6V3 Q0KDR7 A0A0H3KCN9 A0A0H3KSP8 Q6F8P6 A0A0H3KFT7 A0A0H3KMQ7 Q6FA22 A0A0H3KRV5 Q0K8T5 A0A0H3KI06 Q0K6E2	2.5.1.78	18 19 16 57 57 57 85 15 17 33 34 64 28 62	Riboflavin metabolisi Metabolic pathways Bios. second. metabo	Metab. Cofat. e Vitaminas Bios./Metab. Proteínas Sinalização e Processo Celular Indefinido Metabolismo Energético Indefinido Sinalização e Processo Celular Proc. de Info. Ambiental Sinalização e Processo Celular	Mitocondria Citoplasma Membrana plasmática Indefinido Membrana plasmática Membrana plasmática Membrana plasmática	Transferase Ligação/Síntese de ATP Transporte Indefinido Ligação/Síntese de ATP Indefinido Transporte Transporte Transporte Hidrolase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
103 104 105 106 107 108 109 110 111 111	6,7-dimethyl-8- ribityllumazine synthase 60 chaperonin Outer membrane protein assembly factor BamA Usp domain-containing protein ATP synthase subunit b AAA domain-containing protein ABC-2 type transport system ATP-binding protein ABC-type sugar transporter, periplasmic component ABC-type transport system ATPase component ABC-type transporter, duplicated ATPase domains:Drug RA1 family	CT BC AB CT BC AB BC BC BBC BC BC BC BC CT BC BC CT BC CT CT CT CT	Q0K7T9 A9AF24 Q6F6V3 Q0KDR7 A0A0H3KCN9 A0A0H3KSP8 Q6F8P6 A0A0H3KFT7 A0A0H3KMQ7 Q6FA22 A0A0H3KRV5 Q0K8T5 A0A0H3KI06 Q0K6E2	2.5.1.78	18 19 16 57 57 85 15 17 33 34 64 28 62	Riboflavin metabolisi Metabolic pathways Bios. second. metabo	Metab. Cofat. e Vitaminas Bios./Metab. Proteínas Sinalização e Processo Celular Indefinido Metabolismo Energético Indefinido Sinalização e Processo Celular Proc. de Info. Ambiental Sinalização e Processo Celular Reg./Proces. da Tradução	Mitocondria Citoplasma Membrana plasmática Indefinido Membrana plasmática Membrana plasmática Membrana plasmática Ribossomo	Transferase Ligação/Síntese de ATP Transporte Indefinido Ligação/Síntese de ATP Indefinido Transporte Transporte Transporte Hidrolase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
103 104 105 106 107 108 109 110 111 112	6,7-dimethyl-8- ribityllumazine synthase 60 chaperonin Outer membrane protein assembly factor BamA Usp domain-containing protein ATP synthase subunit b AAA domain-containing protein ABC-2 type transport system ATP-binding protein ABC-type sugar transporter, periplasmic component ABC-type transport system ATPase component ABC-type transporter, duplicated ATPase domains:Drug RA1 family	CT BC AB CT BC AB BC BC BBC BC BC BC BC CT BC BC CT BC CT CT CT CT	Q0K7T9 A9AF24 Q6F6V3 Q0KDR7 A0A0H3KCN9 A0A0H3KSP8 Q6F8P6 A0A0H3KFT7 A0A0H3KMQ7 Q6FA22 A0A0H3KRV5 Q0K8T5 A0A0H3KI06 Q0K6E2	2.5.1.78	18 19 16 57 57 85 15 17 33 34 64 28 62	Riboflavin metabolisi Metabolic pathways Bios. second. metabo	Metab. Cofat. e Vitaminas Bios./Metab. Proteínas Sinalização e Processo Celular Indefinido Metabolismo Energético Indefinido Sinalização e Processo Celular Proc. de Info. Ambiental Sinalização e Processo Celular Reg./Proces. da Tradução	Mitocondria Citoplasma Membrana plasmática Indefinido Membrana plasmática Membrana plasmática Membrana plasmática Ribossomo	Transferase Ligação/Síntese de ATP Transporte Indefinido Ligação/Síntese de ATP Indefinido Transporte Transporte Transporte Hidrolase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
103 104 105 106 107 108 109 110 111 112 112	6,7-dimethyl-8- ribityllumazine synthase 60 chaperonin Outer membrane protein assembly factor BamA Usp domain-containing protein ATP synthase subunit b AAA domain-containing protein ABC-2 type transport system ATP-binding protein ABC-type sugar transporter, periplasmic component ABC-type transport system ATPase component ABC-type transporter, duplicated ATPase domains:Drug RA1 family ABC-type transporter,	CT BC AB CT BC BC BC BC BC BC BC BC BC CT BC BC CT BC CT CT CT CT	Q0K7T9 A9AF24 Q6F6V3 Q0KDR7 A0A0H3KCN9 A0A0H3KKP8 Q6F8P6 A0A0H3KFT7 A0A0H3KMQ7 A9AJG0 Q6FA22 A0A0H3KRV5 Q0K8T5 A0A0H3KI06 Q0K6E2 Q0KBT6	2.5.1.78	18 19 16 57 57 85 15 17 33 34 64 28 62 34	Riboflavin metabolisi Metabolic pathways Bios. second. metabo	Metab. Cofat. e Vitaminas Bios./Metab. Proteínas Sinalização e Processo Celular Indefinido Metabolismo Energético Indefinido Sinalização e Processo Celular Proc. de Info. Ambiental Sinalização e Processo Celular Reg./Proces. da Tradução	Mitocondria Citoplasma Membrana plasmática Indefinido Membrana plasmática Membrana plasmática Membrana plasmática Ribossomo Membrana	Transferase Ligação/Síntese de ATP Transporte Indefinido Ligação/Síntese de ATP Indefinido Transporte Transporte Hidrolase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
103 104 105 106 107 108 109 110 111 111 112 113	6,7-dimethyl-8- ribityllumazine synthase 60 chaperonin Outer membrane protein assembly factor BamA Usp domain-containing protein ATP synthase subunit b AAA domain-containing protein ABC-2 type transport system ATP-binding protein ABC-type sugar transporter, periplasmic component ABC-type transport system ATPase component ABC-type transporter, duplicated ATPase domains:Drug RA1 family ABC-type transporter, periplasmic component	CT BC AB BC BC BC BC BC BC BC BC BC BC CT BC BC CT CT BC CT CT CT	Q0K7T9 A9AF24 Q6F6V3 Q0KDR7 A0A0H3KCN9 A0A0H3KKP8 Q6F8P6 A0A0H3KFT7 A0A0H3KMQ7 A9AJG0 Q6FA22 A0A0H3KRV5 Q0K8T5 A0A0H3KI06 Q0K6E2 Q0KBT6	2.5.1.78	18 19 16 57 57 57 85 15 17 33 34 64 28 62 34	Riboflavin metabolisi Metabolic pathways Bios. second. metabo	Metab. Cofat. e Vitaminas Bios./Metab. Proteínas Sinalização e Processo Celular Indefinido Metabolismo Energético Indefinido Sinalização e Processo Celular Proc. de Info. Ambiental Sinalização e Processo Celular Reg./Proces. da Tradução Sinalização e Processo Celular	Mitocondria Citoplasma Membrana plasmática Indefinido Membrana plasmática Indefinido Membrana plasmática Membrana plasmática Ribossomo Membrana plasmática	Transferase Ligação/Síntese de ATP Transporte Indefinido Ligação/Síntese de ATP Indefinido Transporte Transporte Hidrolase Transporte	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.

r	100	1				4564	D L L L L			
114	ABC-type transporter,	ст	Q0K7B6	-	41	ABC transporters	Proc. de into.	Membrana	Transporte	In./Ex.
	periplasmic component:					Quorum sensing	Ambiental	plasmática		
	ABC-type transporter,						Sinalização e			
115	periplasmic component:	ст	O0KDU6	-	27	ABC transporters	Processo	Mitocondria	Transporte	In./Ex.
	MolT family						Colular			,
116	ABC-type transporter,	СТ	Q0KEE9	-	33	ABC transporters	Proc. de Info.	iviembrana	Transporte	In./Ex.
	periplasmic component:					Two-component system	Ambiental	plasmática		
117	ABC1 domain-containing		000000		50		المعاملات تعام	ابه وا ملانیه : وا م	ابه وا م£نه : وا م	1
117	protein	AB	Q6FCD2	-	53		indefinido	indefinido	Indefinido	In./EX.
	ABC1 domain containing									
118	ABCI domain-containing	AB	Q6F9S9	-	49		Indefinido	Indefinido	Indefinido	In./Ex.
	protein									
		СТ	P46368		55	Glycolysis / Gluconeo				
	Acataldabuda	AB	Q6FAS2		56	Pyruvate metabolism	Glicolise /			
119	Acetaldenyde			1.2.1.3		Metabolic pathways	Gliconeogênes	Citoplasma	Oxidorredutase	In./Ex.
	dehydrogenase 2					Bios. second. metabo	e			-
						Mic metah in diverse	c			
		ст	D14607		20	Glyovylate metabolic				
		CI	P14097		26	Giyoxyiate metabolisi				
	Acetoacetyl-CoA	ВС	A0A0H3KFH8		26	Butanoate metabolis	Metab. de			
120	, reductase			1.1.1.36		Metabolic pathways	Carbo	Citoplasma	Oxidorredutase	In./Ex.
	reductase					Mic.metab. in diverse	carbo.			
						Carbon metabolism				
						Synthesis/deg.ketone				
	Acetoacetyi-CoA					Val leuc and isol de	Metab. de			
121	transferase, alpha	AB	Q6F9I4	2.8.3.5	25	Putanoato motabolio	Aminoácidos	Citoplasma	Transferase	In./Ex.
	subunit					Butanoute metabolis	Aminoacidos			
						Metabolic pathways				
122	Acetoin dehydrogenase	BC	A0A0H3KFM6	1.1.1.304	27	Butanoate metabolism	Metab. de	Citoplasma	Oxidorredutase	In./Fx.
				1.1.1.76			Carbo.			,
	Acetoin:2,6-									
	dichlorophenolindophen									
123		СТ	P27745	2.3.1.190	35		Indefinido	Indefinido	Oxidorredutase	In./Ex.
	of Oxidorredutase									
	subunit alpha									
	Acetoin:2,6-									
	dichlorophenolindophen	CT.	D2774 <i>6</i>		26				o · i · i ·	. /=
124	ol Ovidorredutase	CI	P27746	2.3.1.190	36		Indefinido	Indefinido	Oxidorredutase	In./Ex.
-	subunit beta		00//01/4	2246						
		СТ	QUKCU4	2.2.1.6	64	Val., leuc. and isol. bi				
		ВС	A0A0H3KGS1		65	Butanoate metabolis				
		AB	Q6F819		63	C5-Branched dibasic				
175	A actal actata aventhas a					Pantothenate and Co	Metab. de	Mitocondria	Transforme	In In
125	Acetolactate synthase					Metabolic pathways	Aminoácidos	Mitocondria	Transferase	In./EX.
						Bios, second, metabo				
						2-Ovocarbovylic acid				
						2 Oxocarboxylic acia				
			00//01/2			Nel Java and isal hi				
		СТ	QUKCU3		18	val., leuc. and isol. bl				
		AB	Q6F820		18	Butanoate metabolis				
						C5-Branched dibasic				
120	Acetolactate synthase III			2210		Pantothenate and Co	Metab. de		Turnefourse	1
120	small subunit			2.2.1.0		Metabolic pathways	Aminoácidos	WIILOCONUNA	Industretase	111./EX.
						Bios. second. metabo				
						2-Ovocarbovylic acid				
						2 Oxocarboxylic acia				
						Biosynthesis of unline				
						val., leuc. and isol. bl				
						Butanoate metabolis				
						C5-Branched dibasic				
127	Acetolactate synthase	DC		2216	61	Pantothenate and Co	Metab. de	Mitocondria	Transforme	In IT.
12/	large subunit	вс	AUAUH3KJIN5	2.2.1.0	01	Metabolic pathways	Aminoácidos	Milloconuna	Industretase	111./EX.
	5					Bios, second, metabo				
						2-Ovocarbovylic acid				
						2-Oxocurboxylic uciu				
						Biosynthesis of amine				
						Val., leuc. and isol. bi				
						Butanoate metabolis				
						C5-Branched dibasic				
170	Acetolactate synthase	DC	A0A0U2KK72	2216	10	Pantothenate and Co	Metab. de	Mitocondria	Transforaço	In /Ev
-20	small subunit		AUAUTISKKZZ	2.2.1.0	10	Metabolic pathways	Aminoácidos	wittoconuna	TIGHTSTELDSE	/ĽX.
		-	-		-					

Image: second problem in the second problem	I							2-Oxocarboxylic acid				
139 Acetyl-Joropionyl- comtyme A carbonylsse ajba chan Ad O6990 6.3.4.14 63								Biosynthesis of amin				
139 Acetyl-foropionyl- comryme A carboxylase alpha chain AB 0,6F910 6.3.4.14 63 Figurata retabolis Givoylate metabolis Micmedol, milwas Micmedol, milwas Micmilwas Micmilwas Micmedol, milwas Micmedol, milwas Micmedol, milw	ſ							Fatty acid biosynthes	ō			
129 Acetyl-forapionyl- coenyme A carbonylase alpha chain AB Q6F910 6.3.4.14 63 Pyrustem metabolism (Graphate metabolism) (Graphate metabolism (Graphate metabolism (Graphate metabolism (Graphate metabolism (Graphate metabolism) (Graphate metabolism (Graphate metabolism (Graphate metabolism) (Graphate metabolism) (Graphate metabolism) (Graphate metabolism (Graphate metabolism (Graphate metabolism) (Graphate metabolism) (Graphate metabolism) (Graphate metabolism (Graphate metabolism) (Graphate meta								Val., leuc. and isol. de				
128 Coety-(projony)- coenzyme A carboxyluse apha chain AB Q6F9D 6.3.4.14 63 Gloposter metabolis progenoar metabolis Mic.metab. in diverse Carbon metabolism Metab. dc Carbo. Indefinitio Transferase In/E 130 Activi-CoA activitransferase CT P14611. CT 41 Statuset Mic.metab. in diverse Carbon metabolism Metab. dc Carbo. Carbo.								Pyruvate metabolism				
129 Contyme A Carboylse apha chain AB Q6F9I0 6.3.4.14 6.3 Progenate metabolis Mitrobio grants Indeb. de Carbon metabolism Indeb. de Carbon 130 Acetyl-CoA CT P14611 CT P14611 CT CT P14611 CT P14611 CT P14611 CT P14611 CT P146			Acetyl-/propionyl-					Glyoxylate metabolis				
Image: Second metabolism Carbon Metabolis pathways Carbon Metabolism 130 Activi-CoA CT P14611 64 Social second metabolism Carbon Carbon </td <td></td> <td>120</td> <td></td> <td>٨D</td> <td></td> <td>62111</td> <td>62</td> <td>Propanoate metabol</td> <td>Metab. de</td> <td>Indofinido</td> <td>Transforaço</td> <td>In /Ex</td>		120		٨D		62111	62	Propanoate metabol	Metab. de	Indofinido	Transforaço	In /Ex
apha chain Image: Second metabolis apha chain Image: Second metabolis apha chain Cit cit P14611 cit QOKK99		129		AD	QOF910	0.5.4.14	05	Metabolic pathways	Carbo.	indennido	THATSTELASE	<i>III./EX.</i>
130 Acetyl-CoA CI P14611 CT Acetyl-CoA Acetyl-CoA 131 Acetyl-CoA CI P14611 CT Acetyl-CoA CI P14611 CT Acetyl-CoA 131 Acetyl-CoA CI D0KISD CT CI D0KISD CT CI D0KISD CT 131 Acetyl-CoA CI D0KISD CT CI D0KISD CT CI D0KISD CT 131 Acetyl-CoA CI D0KISD CT CI D0KISD CT CI D0KISD CT 131 Acetyl-CoA CI Acetyl-CoA CI CI D0KISD CT CI 132 Acetyl-CoA C CI AdADH3KHB1 CI CI Acetyl-CoA 132 Acetyl-CoA CI CI AdADH3KKP1 CI CI CI 133 Acetyl-CoA CI CI CI CI CI CI 134 Acetyl-CoA C- CI CI CI CI CI CI 135 Acetyl-CoA C- CI CI CI CI CI 134 Acetyl-CoA C- CI CI CI CI CI 135 Acetyl-CoA C- CI CI CI CI <td></td> <td></td> <td>aipna chain</td> <td></td> <td></td> <td></td> <td></td> <td>Bios. second. metabo</td> <td></td> <td></td> <td></td> <td></td>			aipna chain					Bios. second. metabo				
130 Acetyl-CoA acetyl/transferase Cr P14611 Cr Cr Cr P14611 Cr Cr P14611 Cr Cr Cr Cr P14611 Cr Cr Cr P14611 Cr Cr Cr P14611 Cr Cr Cr Cr P14611 Cr Cr Cr P14611 Cr Cr Cr P14611 Cr Cr Cr Cr P14611 Cr Cr Cr Cr P14611 Cr Cr								Mic.metab. in diverse	2			
Image: constraint of period constraints of the second se								Carbon metabolism				
130 Acetyl-CoA CT 044511 CT 00K861 CT 00K869 CT								Fatty acid metabolis				
130 Acetyl-CoA acetyltransferase CT QOKR61 (C)	ſ			СТ	P14611		41	Fatty acid degradation				
130 Acetyl-CoA acetyl-CoA 2.3.1.9 131 Acetyl-CoA acetyl-CoA 2.3.1.9 132 Acetyl-CoA 133 Acetyl-CoA C- 134 Acetyl-CoA C- 135 Acetyl-CoA C- 136 Acetyl-CoA C- 137 Acetyl-CoA C- 138 Acetyl-CoA C- 131 Acetyl-CoA C- 132 Acetyl-CoA C- 133 Acetyl-CoA C- 134 Acetyl-CoA C- 135 Acetyl-CoA C- 136 Acetyl-CoA C- 137 Acetyl-CoA C- 138 Acetyl-CoA C- 139 Acetyl-CoA C- 131 Acetyl-CoA C- 132 Acetyl-CoA C- 133 Acetyl-CoA C- 134 Acetyl-CoA C- 135 Acetyl-CoA C- 136 CADA0H3KRS2 137 Acetyl-CoA C- 138 Acetyl-CoA C- 139 Acetyl-CoA C- 131 Acetyl-CoA C- 132				СТ	Q0KBG1		41	Synthesis/deg. keton				
130 Acetyl-CoA acetyltransferase 2.3.1.9 Acetyl-CoA acetyltransferase 2.3.1.9 2.3.1.9 Citypic base acetyltransferase Citypiasma Transferase In /E 131 Acetyl-CoA acetyltransferase 2.3.1.9 Biotistockone acetyltransferase Citypiasma Transferase In /E 132 Acetyl-CoA acytransferase Biotistockone acytransferase Citypiasma Transferase In /E 133 Acetyl-CoA C- acytransferase Biotistockone acetyltransferase 2.3.1.6 Acetyl-CoA C- acytransferase Citypiasma Transferase In /E 133 Acetyl-CoA C- acytransferase Biotistockone acetyltransferase Citypiasma Transferase In /E 133 Acetyl-CoA C- acytransferase Biotistockone acetyltransferase Citypiasma Transferase In /E 134 Acetyl-CoA C- acytransferase Biotistockone acetyltransferase Citypiasma Transferase In /E 133 Acetyl-CoA C- acetyltransferase Biotistockone acetyltransferase Citypiasma Transferase In /E 134 Acetyl-CoA C- acetyltransferase Citypiasma Transferase In /E 135 Acetyl-CoA C- acetyltransferase Citypiasma Transferase In /E 136 Acetyl-CoA C- acetyltransferase				СТ	Q0KF99		41	Val., leuc. and isol. de				
130 Acetyl-CoA 130 Acetyl-CoA 130 Acetyl-CoA 131 Acetyl-CoA 132 Acetyl-CoA 133 Acetyl-CoA 134 BC 135 Acetyl-CoA 136 BC 137 Acetyl-CoA 138 Acetyl-CoA 131 Acetyl-CoA 132 Acetyl-CoA 133 Acetyl-CoA 134 Acetyl-CoA 135 Acetyl-CoA 136 BC 137 Acetyl-CoA 138 Acetyl-CoA 139 Acetyl-CoA 131 Acetyl-CoA 132 Acetyl-CoA C- 133 Acetyl-CoA C- 134 Acetyl-CoA C- 135 Acetyl-CoA C- 136 CADADH3KRS2 137 BC 138 Acetyl-CoA C- 139 Acetyl-CoA C- 131 Acetyl-CoA C- 132 Acetyl-CoA C- 133 Acetyl-CoA C-				СТ	Q0K368		41	Lysine degradation				
130 Acetyl-CoA 2.3.1.9 Tryptophon metabolis Degradação de Acetos graxos e Citoplasma Transferase n./ 131 Acetyl-CoA 2.3.1.9 Degradação de Acetos graxos e e n./ e n./ N./.E 131 Acetyl-CoA 2.3.1.9 Degradação de Acetos graxos e n./ e n./ n./ e n./ n./ n./ e n./ n./ e n./ n./ n./ e n./ n./ e n./ n.				СТ	Q0K469		41	Benzoate degradatio				
130 Acetyl-CoA Degradação de Giyoyyita metabolism acetyltransferase Degradação de Giyoyyita metabolism Propanoate metabolism Propanoate metabolism Propanoate metabolism Propanoate metabolism Propanoate metabolism Propanoate metabolism Citoplasma Transferase 131 Acetyl-CoA acetyl-CoA acyltransferase BC ADADH3KE(3) BC 42 Fatty acid metabolism Propanoate metabolism Propanoate metabolism Degradação de Acidos graxos Bios.secont. metabolism Propanoate metabolism Citoplasma Transferase 131 Acetyl-CoA acyltransferase BC ADADH3KE(3) BC 42 Fatty acid metabolism Propanoate metabolism Degradação de Acidos graxos Bios.secont. metabolism Propanoate metabolism Citoplasma Transferase 132 Acetyl-CoA C- acetyltransferase BC ADADH3KRS7 BC 40 Fatty acid degradatid Propanoate metabolism Propanoate metabolism Degradação de Reisond metabolism Propanoate metabolism 133 Acetyl-CoA C- acetyltransferase C QOKEF9 2.3.1.16 42 Acetyl-CoA C- acetyltransferase C C 133 Acetyl-CoA C- acetyltransferase C C QOKEF9 2.3.1.16 42 Calman metabolism Propanoate metabolism Degradação de Reito acid degradatid Degradação de Reito acid degradatid Degradação de Reitoplicato acid degradatid Degradação de Reitoplication de degrada								Tryptophan metabol	i			
130 Acetyl-CoA acetyltransferase Calobian (Component metabolis) Calobian (Component metabolis) Calobian (Component metabolis) Calobian (Component metabolis) Calobian (Component system)								Pyruvate metabolism	Dogradação do			
130 ACERYI-LOA 2.3.1.9 Progenoate metabol ACCOS gracos Citoplasma Transferase in ,/E 131 Acetyl-transferase Image: Construction of the constructio								Glyoxylate metabolis	Degradação de			
acetyltransferase Butanoate metabolis Trepenoid buckbons Bios. second. metabolis Corbon metabolism Fetty acid metabolism Fetty aci		130	Acetyl-COA			2.3.1.9		Propanoate metabol	Acidos graxos	Citoplasma	Transferase	In./Ex.
131 Acetyl-CoA BC A0A0H3KHB1 42 Fatty acid metabolisy 133 Acetyl-CoA BC A0A0H3KHB1 42 Fatty acid metabolisy 134 Acetyl-CoA BC A0A0H3KHB1 42 Fatty acid metabolisy 134 Acetyl-CoA BC A0A0H3KHB1 42 Fatty acid metabolisy 135 Acetyl-CoA BC A0A0H3KHB1 42 Fatty acid degradatici 136 CADA0H3KKS1 BEC ADA0H3KHB1 42 Fatty acid degradatici 136 CADA0H3KKS1 BEC Acetyl-CoA Benzoate degradatici Citoplasma 137 BC ADA0H3KNW7 BC Acetyl-CoA Citoplasma Transferase 138 Acetyl-CoA C- C Citoplasma Transferase In /E 139 Acetyl-CoA C- Citoplasma Transferase In /E 131 Acetyl-CoA C- Citoplasma Transferase In /E 132 Acetyl-CoA C- Citoplasma Transferase In /E 133 Acetyl-CoA C- Citoplasma Transferase			acetyltransferase					Butanoate metabolis	e	•		
133 Acetyl-CoA BC A0A0H3KH31 Acetyl-CoA Acetyl-CoA Bios.secod.metabolism 134 Acetyl-CoA BC A0A0H3KH31 Acetyl-CoA Carbon metabolism Degradagão de gradatio 135 Acetyl-CoA BC A0A0H3KN52 ACEVI-CoA Citoplasma Transferase 134 Acetyl-CoA BC A0A0H3KN52 Acetyl-CoA Citoplasma Transferase 135 Acetyl-CoA C- acetyltransferase BC A0A0H3KN52 Acetyl-CoA C- acetyltransferase Citoplasma Transferase In /E 138 Acetyl-CoA C- acetyltransferase C Citoplasma Transferase In /E 138 Acetyl-CoA C- acetyltransferase Citoplasma Citoplasma Transferase In /E 138 Acetyl-CoA C- acetyltransferase Citoplasma Citoplasma Transferase In /E 139 Acetyl-CoA C- acetyltransferase Citoplasma Citoplasma Transferase In /E 133 Acetyl-CoA C- acetyltransferase Citoplasma Transferase In /E 133 Acetyl-CoA C- acetyltransferase Citoplasma Transfer								Terpenoid backbone	Xenobióticos			
131 Acetyl-CoA 131 Acetyl-CoA 132 Acetyl-CoA 133 Acetyl-CoA 134 Acetyl-CoA 135 Acetyl-CoA 136 Acetyl-CoA 137 Acetyl-CoA 138 Acetyl-CoA 139 Acetyl-CoA 131 Acetyl-CoA 132 Acetyl-CoA 133 Acetyl-CoA 134 Acetyl-CoA 135 Acetyl-CoA 136 AcoAOH3KNWT 137 Acetyl-CoA C- 138 Acetyl-CoA C- 139 Acetyl-CoA C- 131 Acetyl-CoA C- 132 Acetyl-CoA C- 133 Acetyl-CoA C- 134 Cetyl-CoA C- 135 Acetyl-CoA C- 136 Acetyl-CoA C- 137 Acetyl-CoA C- 138 Acetyl-CoA C- 139 Acetyl-CoA C- 131 Acetyl-CoA C- 132 Acetyl-CoA C- 133 Acetyl-CoA C- <								, Metabolic pathways				
131 Acetyl-CoA 131 Acetyl-CoA 131 Acetyl-CoA 131 Acetyl-CoA 132 Acetyl-CoA 133 Acetyl-CoA 134 Acetyl-CoA 135 Acetyl-CoA 136 Acetyl-CoA 137 Acetyl-CoA 138 Acetyl-CoA 139 Acetyl-CoA C- 130 Acetyl-CoA C- 131 Acetyl-CoA C- 132 Acetyl-CoA C- 133 Acetyl-CoA C- 134 Acetyl-CoA C- 135 Acetyl-CoA C- 136 Acetyl-CoA C- 137 Acetyl-CoA C- 138 Acetyl-CoA C- 139 Acetyl-CoA C- 131 Acetyl-CoA C- 132 Acetyl-CoA C- 133 Acetyl-CoA C- 134 Acetyl-CoA C- 135 Acetyl-CoA C- 136 Acetyl-CoA C- 137 Acetyl-CoA C- 138 Acetyl-CoA C- 139 Acetyl-CoA C-								Bios. second. metabo				
131 Acetyl-CoA acyltransferase 2.3.1.16 Carbon metabolism Faty acid metabolism Faty acid metabolism Faty acid metabolism Faty acid metabolism Faty acid metabolism Benzoate degradatio Al Geraniol degradatio Al Geraniol degradatio Al Geraniol degradatio Al Geraniol degradatio Benzoate degradatio Al Geraniol degradatio Benzoate degradatio Al Geraniol degradatio Al Geraniol degradatio Benzoate degradatio Al Geraniol degradatio Al Geraniol degradatio Benzoate degradatio Al Synthesis/deg. keton Benzoate degradatio Benzoate degradatio Al Synthesis/deg. keton Benzoate degradatio Al Synthesis/deg. keton Benzoate degradatio Citoplasma								Mic.metab. in diverse				
131 Acetyl-CoA 131 Acetyl-CoA acyltransferase 2.3.1.16 BC AOAOH3KKP1 42 Vol., leuc. and isol. di Berzoate degradation alpha-Linolenic acid begradação de Acidos graxos e Renobióticos BC AOAOH3KNW7 BC AOAOH3KS2 BC Aoaoh3KNY7 BC								Carbon metabolism				
131 Acetyl-CoA BC A0A0H3KHB1 42 Fatty acid degradatii 133 Acetyl-CoA 2.3.1.16 2.3.1.16 Geraniol degradatii Degradação de Beccoate degradatii 134 Acetyl-CoA 2.3.1.16 BC A0A0H3KNV7 Acetyl-CoA Citoplasma 134 Acetyl-CoA C- acyltransferase BC A0A0H3KNV7 A0A0H3KNV7 Citoplasma Citoplasma 132 Acetyl-CoA C- acyltransferase BC A0A0H3KNV7 A0A0H3KNV7 A0A0H3KNV7 Citoplasma Citoplasma 133 Acetyl-CoA C- acyltransferase BC A0A0H3KNS2 A1 Synthesis/deg.ketoni Degradação de Acidos gravos Giposylate metabolis 133 Acetyl-CoA C- acyltransferase C 2.3.1.9 Propanoate metabolis Trepenoid backhonej Degradação de Acidos gravos Butanoate metabolis 134 Acetyl-CoA C- acyltransferase C C Citoplasma Transferase 133 Acetyl-CoA C- acyltransferase C C Citoplasma Transferase 133 Acetyl-CoA C- acyltransferase C C Citoplasma Transferase 133 Acetyl-CoA C- acyltransferase C C Citoplasma Transferase 135 Acetyl-CoA C- acyltransferase C								Fatty acid metabolisi				
BC A0A0H3KHB1 BC 42 Fatty acid degradatid 42 Petty acid degradatid 42 Petty acid degradatid 42 131 Acetyl-CoA acyltransferase 2.3.1.16 2.3.1.16 Degradação de Benzoate degradatid alpho-Linolenic acid benzoate degradatid alpho-Linolenic acid benzoate degradatid alpho-Linolenic acid benzoate degradatid alpho-Linolenic acid benzoate degradatid alpho-Linolenic acid benzoate degradatid alpho-Linolenic acid benzoate degradatid benzoate degradatid alpho-Linolenic acid benzoate degradatid benzoate degradatid b								Two-component syst				
133 Acetyl-CoA	ľ			BC	A0A0H3KHB1		42	Fatty acid dearadatio	-			
131 Acetyl-CoA BC A0A0H3KFY1 Acetyl-CoA BC A0A0H3KFY1 Acetyl-CoA Citoplasma Transferase In /E 132 Acetyl-CoA C- acetyltransferase BC A0A0H3KKS2 Acetyl-CoA C- acetyltransferase BC A0A0H3KKS2 Acetyl-CoA C- acetyltransferase Citoplasma Transferase In /E 132 Acetyl-CoA C- acetyltransferase C Q0KEF9 2.3.1.16 Acetyl-CoA C- acetyltransferase Citoplasma Transferase In /E 133 Acetyl-CoA C- acetyltransferase C Q0KEF9 2.3.1.16 Catoplastic pathways Bios. second. metabolis Teppenoid backbone Metabolis pathways Bios. second. metabolis Teppenoid backbone Carbon metabolis Fatty acid degradatio Degradação de Acidos graxos Citoplasma Citoplasma Transferase In /E 133 Acetyl-CoA C- acetyltransferase C Q0KEF9 2.3.1.16 Transferase Carbon metabolis Teppenoid backbone Carbon metabolism Citoplasma Transferase In /E 133 Acetyl-CoA C- acyltransferase C Q0KEF9 2.3.1.16 Carbon metabolism Citoplasma Transferase In /E 133 Acetyl-CoA C- acyltransferase C Q0KEF9 2.3.1.16 <td></td> <td></td> <td></td> <td>BC</td> <td>A0A0H3KG19</td> <td></td> <td>42</td> <td>Val., leuc. and isol. de</td> <td></td> <td></td> <td></td> <td></td>				BC	A0A0H3KG19		42	Val., leuc. and isol. de				
133 Acetyl-CoA 2.3.1.16 Benzoate degradatia Acidos graxos Citoplasma Transferase In./E 134 acyltransferase 2.3.1.16 Metabolic pathways e Xenobióticos Citoplasma Transferase In./E 132 Acetyl-CoA C- acetyltransferase 2.3.1.16 Acetyl-CoA C- E Acetyl-CoA C- Citoplasma Transferase In./E 133 Acetyl-CoA C- 2.3.1.16 Z.3.1.16 E Benzoate degradatio Acidos graxos Citoplasma Transferase In./E 133 Acetyl-CoA C- 2.3.1.9 Acetyl-CoA C- E Citoplasma Transferase In./E 133 Acetyl-CoA C- E E Citoplasma Transferase In./E 133 Acetyl-CoA C- E E Citoplasma Transferase In./E 133 Acetyl-CoA C- E Citoplasma Transferase In./E E E E Citoplasma Transferase In./E 133 Acetyl-CoA C- E Citoplasma Citoplasma Transferase In./E				BC	A0A0H3KEY1		41	Geraniol dearadation	Desma de eño de			
131 Acetyl-CoA acyltransferase 2.3.1.16 alpha-Linolenic acid Acidos grasos Citoplasma Transferase In./E 131 acyltransferase BC AOAOH3KNW7 Ao Fatty acid metabolisr Acidos grasos Citoplasma Transferase In./E 132 Acetyl-CoA C- BC AOAOH3KNS5 AO Fatty acid degradatid Acidos grasos Citoplasma Transferase In./E 132 Acetyl-CoA C- BC AOAOH3KS55 41 Synthesis/deg.ketona Benzoate degradatio Begradação de Acidos grasos Citoplasma Transferase In./E 133 Acetyl-CoA C- 2.3.1.9 Butanoate metabolism Degradação de Acidos grasos Citoplasma Transferase In./E 133 Acetyl-CoA C- 2.3.1.9 Butanoate metabolism Propanoate metabolism Propanoate metabolism Citoplasma Transferase In./E 133 Acetyl-CoA C- CT Q0KEF9 2.3.1.16 Two-component syst Entyl bergradação de Kicidos grasos Citoplasma Transferase In./E 133 Acetyl-CoA C-				20				Benzoate dearadatio	Degradação de			
acyltransferase Image: Constraint of the second metabolic pathways Bios.second.metabolis Mic.metab.indiverse e Renobióticos BC A0A0H3KNW7 BC A0A0H3KNS2 A0A0H3KNS2 A0A0H3KNS2 Fatty acid degradatio Tryptophan metabolis Propanoate degradatio Benzoate degradatio Butanoate metabolis Bios.second.metabolis Bios.second.metabolis Bios.second.metabolis Fatty acid degradatio Bios.second.metabolis Fatty acid degradatio Benzoate degradatio Bios.second.metabolis Fatty acid degradatio Benzoate degradatio Bios.second.metabolis Fatty acid metabolis Fatty acid degradatio Benzoate degradatio Bios.second.metabolis Fatty acid degradatio Benzoate degradatio Acidos graxos Ethylkenzen degrad Acidos graxos Bios.second.metabolis Acidos graxos Bios.second.metabolis		131	Acetyl-CoA			2.3.1.16		alpha-Linolenic acid	Acidos graxos	Citoplasma	Transferase	In./Ex.
132 Acetyl-CoA C- acetyltransferase 2.3.1.16 2.3.1.16 2.3.1.16 2.3.1.16 Bios. second. metabol Mic.metab. in diverse Fatty acid degradatio Bei and the second. metabolish Mic.metab. in diverse Second. metabolish Mic.metab. in diverse Citoplasma Transferase 133 Acetyl-CoA C- acetyltransferase C Q0KEF9 2.3.1.16 Z Second. metabolish Mic.metab. in diverse Mic.metab. in diverse Citoplasma Citoplasma Transferase In./E 133 Acetyl-CoA C- acyltransferase C Q0KEF9 2.3.1.16 Z Fatty acid degradatio Propanate metabolish Mic.metab. in diverse Carbon metabolish Acidos graxos Bios. second. metabolish Mic.metab. in diverse Carbon metabolish Acidos graxos Citoplasma Transferase In./E			acyltransferase					, Metabolic pathways	е	•		,
132 Acetyl-CoA C- acetyltransferase 2.3.1.9 Acetyl-CoA C- acetyltransferase 2.3.1.16 Mic.metab. in diverse Fatty acid metabolisr 41 Degradação de Giyoxylate metabolisr 9 Citoplasma Transferase 133 Acetyl-CoA C- acetyltransferase 2.3.1.16 2.3.1.16 Yath cid degradatio 1 Degradação de Giyoxylate metabolisr 9 Citoplasma Transferase 133 Acetyl-CoA C- acyltransferase 2.3.1.16 2.3.1.16 Yath cid metabolisr 9 Degradação de Giyoxylate metabolisr 1 Citoplasma Transferase 133 Acetyl-CoA C- acyltransferase C C C C C 133 Acetyl-CoA C- acyltransferase C C C C C 134 C C C C C C C 135 C C C C C C C 136 C C C C C C C 137 C C C C C C C C 138 C C C C C C C <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Bios. second. metabo</td><td>Xenobióticos</td><td></td><td></td><td></td></td<>								Bios. second. metabo	Xenobióticos			
132 Acetyl-CoA C- acetyltransferase CT Q0KEF9 2.3.1.16 40 Fatty acid metabolisr Fatty acid degradatio 41 Synthesis/deg. keton 41 Citoplasma Transferase <								Mic.metab. in diverse				
132 Acetyl-CoA C- acetyltransferase 2.3.1.9 40 Fatty acid degradatic 41 Synthesis/deg.ketone 41								Fattv acid metabolisi				
BC A0A0H3KRS2 BC Acetyl-CoA C- Cactyltransferase Cactor BC Carbon metabolis Mic.metab.in diverse Carbon metabolis Carbon metabolism Fatty acid metabolism Fatty acid garadatio Acetyl-CoA C- Carbon metabolism Fatty acid garadatio Val.leuc.and isol. de Geraniol degradatio Val.leuc.and isol. de Citoplasma Carbon metabolism Fatty acid garadatio Val.leuc.and isol. de Geraniol degradatio Val.leuc.and isol. de Acetyl-CoA C- acyltransferase CT Q0KEF9 2.3.1.16 42 <tr< td=""><td>ľ</td><td></td><td></td><td>BC</td><td>A0A0H3KNW7</td><td></td><td>40</td><td>Fatty acid degradatio</td><td></td><td></td><td></td><td></td></tr<>	ľ			BC	A0A0H3KNW7		40	Fatty acid degradatio				
Image: Section of the section of th				BC	A0A0H3KRS2		41	Synthesis/deg. keton				
132 Acetyl-CoA C- acetyltransferase 2.3.1.9 Image: Construction of the second se				BC	A0A0H3K585		41	Val., leuc, and isol, de				
132 Acetyl-CoA C- acetyltransferase 2.3.1.9 Benzoate degradatio Tryptophan metabolis Pyruate metabolis Pyruate metabolis Propanoate metabolis Terpenoid backbone Metabolic pathways Bios. second. metabolis Mic.metab. in diverse Carbon metabolism Citoplasma Transferase In./E 133 Acetyl-CoA C- acyltransferase C QOKEF9 2.3.1.16 Fatty acid metabolis Mic.metab. in diverse Carbon metabolism Citoplasma Transferase In./E 133 Acetyl-CoA C- acyltransferase CT QOKEF9 2.3.1.16 422 Fatty acid degradatio Olipha-Linolenic acid Mic.metab. in diverse Bios. second. metabolism Citoplasma Transferase In./E 133 Acetyl-CoA C- acyltransferase CT QOKEF9 2.3.1.16 422 Fatty acid degradatio Olipha-Linolenic acid Mic.metab. in diverse Bios. second. metabolis Citoplasma Transferase In./E				20	7.67.611316363			Lysine dearadation				
132 Acetyl-CoA C- acetyltransferase 2.3.1.9 Tryptophan metaboli Pyruvate metabolis Acidos graxos Propanoate metabolis Terpenoid backbone Metabolic pathways Bios. second. metabolis Tervenoid backbone Metabolis Tervenoid backbone Metabolis Metabolis Transferase Citoplasma Transferase 133 Acetyl-CoA C- acyltransferase CT Q0KEF9 2.3.1.16 42 Fatty acid metabolis Geraniol degradatio Bios. second. metabolis Hyblenzene degrad Mic.metab.lin diverse Bios. second. metabolis Mic.metab.lin diverse Bios. second. metabolis Citoplasma Transferase In./Ei								Benzoate dearadatio				
132 Acetyl-CoA C- acetyltransferase 2.3.1.9 Pruvate metabolism Glyoxylate metabolis Butanoate metabolis Butanoate metabolis Butanoate metabolis Bios. second. metabolism Grave Carbon metabolism Fatty acid degradatio Berzadação de Metabolic pathways Citoplasma Transferase In./E 133 Acetyl-CoA C- acetyltransferase C QOKEF9 2.3.1.16 Yuruste metabolism Bios. second. metabolism Fatty acid degradatio Berzade degradatio Citoplasma Transferase In./E								Trvptophan metabol				
132 Acetyl-CoA C- acetyltransferase 2.3.1.9 Citoplasma Transferase 133 Acetyl-CoA C- acetyltransferase 2.3.1.9 Propanoate metabolis Butanoate metabolis Terpenoid backbone Metabolic pathways Bios. second. metabolism Citoplasma Transferase In./E 133 Acetyl-CoA C- acyltransferase C Q0KEF9 2.3.1.16 Yestion for the formation of the								Pvruvate metabolism	Deservato e 🏹 e de			
132 Acetyl-CoA C- acetyltransferase 2.3.1.9 Propanoate metabolis Butanoate metabolis Terpenoid backbone Metabolic pathways Bios. second. metabolism Acidos graxos e Citoplasma Transferase In./E 133 Acetyl-CoA C- acyltransferase CT Q0KEF9 2.3.1.16 Fatty acid degradatio Backbone Metabolic pathways Bios. second. metabolism Citoplasma Transferase In./E 133 Acetyl-CoA C- acyltransferase CT Q0KEF9 2.3.1.16 42 Fatty acid degradatio Bacsate degradatio Bactor acid Acidos graxos Ethylbenzene degrad Bios. second. metabolism Citoplasma Transferase In./E								Glvoxvlate metabolis	Degradação de			
acetyltransferase Butanoate metabolis Terpenoid backbone e Xenobióticos Metabolic pathways Bios. second. metabolism Bios. second. metabolism Mic.metab. in diverse Mic.metab. in diverse Carbon metabolism Two-component syst Fatty acid metabolism Two-component syst Fatty acid degradatic Val., leuc. and isol. de Geraniol degradation Acetyl-CoA C- acyltransferase CT Q0KEF9 2.3.1.16 42 Geraniol degradation Benzoate degradation Bios. second. metabolism Degradação de Acidos graxos Ethylbenzene degrad Mic.metab. in diverse Citoplasma Transferase In./Ex O0K281 Fo Component syst Ethylbenzene degradation Bios. second. metabolism		132	Acetyl-CoA C-			2.3.1.9		Propanoate metabol	Acidos graxos	Citoplasma	Transferase	In./Ex.
Image: Second metabolic pathways Xenobióticos Image: Second metabolic pathways Bios. second. metabolic Image: Second metabolic pathways Bios. second. metabolic Image: Second metabolic pathways Second. metabolis Image: Second metabolis Second. metabolis Image: Second metabolis Second. metabolis Image: Second metabolis Second metabolis <			acetyltransferase					Butanoate metabolis	e			,
Image: Second								Terpenoid backbone	Xenobióticos			
Image: Second metabolis of the second metabolis	l							Metabolic pathways	1			
Image: Second metabolism Mic.metab.in diverse Image: Second metabolism Mic.metab.in diverse Image: Second metabolism Fatty acid metabolism Image: Second metabolism Fatty acid degradatic Image: Second metabolism Second metabolism Image: Second metabolism Image: Second metabolism Image: Second metabolism Second metabolism	l							Bios. second. metaho				
Image: Construction of the construc	ļ					h		Mic.metab. in diverse				
Image: style styl								Carbon metabolism				
133 Acetyl-CoA C- acyltransferase CT Q0KEF9 2.3.1.16 42 Fatty acid degradatio Val., leuc. and isol. de Geraniol degradation Benzoate degradatio Benzoate degradatio Benzoate degradatio Benzoate degradatio Benzoate degradatio Benzoate degradatio Benzoate degradatio Benzoate degradatio Benzoate degradatio Metabolic pathways Bios. second. metabo Mic.metab. in diverse Fatty acid metabolisr Citoplasma Transferase In./Ex								Fatty acid metabolisi				
133 Acetyl-CoA C- acyltransferase CT Q0KEF9 2.3.1.16 42 Fatty acid degradatio Geraniol degradatio Benzoate degradatio Acidos graxos Ethylbenzene degrad Metabolic pathways Bios. second. metabo Mic.metab. in diverse Fatty acid metabolisr Degradação de Ácidos graxos e Xenobióticos Citoplasma Transferase In./Ei								Two-component syst				
133 Acetyl-CoA C- acyltransferase CT Q0KEF9 2.3.1.16 42 Val., leuc. and isol. de Geraniol degradation Benzoate degradatio Acidos graxos Ethylbenzene degrad Metabolic pathways Bios. second. metabo Mic.metab. in diverse Fatty acid metabolisr Degradação de Ácidos graxos e Xenobióticos Citoplasma Transferase In./Ei	ŀ			1				Fatty acid dearadatio				1
133 Acetyl-CoA C- acyltransferase CT Q0KEF9 2.3.1.16 42 Geraniol degradatior Benzoate degradatio alpha-Linolenic acid Metabolic pathways Degradação de Ácidos graxos e Xenobióticos Citoplasma Transferase In./Ex	ļ							Val., leuc. and isol. de				
133 Acetyl-CoA C- acyltransferase CT Q0KEF9 2.3.1.16 42 Benzoate degradatio Benzoate degradatio Ethylbenzene degrad Metabolic pathways Bios. second. metabo Mic.metab. in diverse Fatty acid metabolisr Degradação de Ácidos graxos e Xenobióticos Citoplasma Transferase In./Ex	l							Geraniol dearadation	1			
133 Acetyl-CoA C- acyltransferase CT Q0KEF9 2.3.1.16 42 <i>alpha-Linolenic acid</i> <i>Ethylbenzene degrad</i> <i>Metabolic pathways</i> <i>Bios. second. metabo</i> <i>Mic.metab. in diverse</i> <i>Fatty acid metabolisr</i> Citoplasma Transferase In./Ei	l							Benzoate dearadatio	Degradação de			
133 acyltransferase CT QOKEF9 2.3.1.16 42 Ethylbenzene degrad Metabolic pathways e Citoplasma Transferase In./E. 133 acyltransferase CT QOKEF9 2.3.1.16 42 Ethylbenzene degrad Metabolic pathways e Xenobióticos Citoplasma Transferase In./E. 133 CT QOKEF9 C.I.16 42 Ethylbenzene degrad Metabolic pathways e Xenobióticos Citoplasma Transferase In./E.	l		Acetyl-CoA C-					alpha-Linolenic acid	Ácidos graxos			
Metabolic pathways Xenobióticos Bios. second. metabo Mic.metab. in diverse Fatty acid metabolisr Glycolysis / Glycolysis	l	133	acvltransferase	СТ	Q0KEF9	2.3.1.16	42	Ethylbenzene dearad	e	Citoplasma	Transferase	In./Ex.
Bios. second. metabo Mic.metab. in diverse Fatty acid metabolisr	l							Metabolic pathways	Xenobióticos			
Mic.metab. in diverse Fatty acid metabolisn	l							Bios. second. metaho				
Fatty acid metabolisn	l							Mic.metab. in diverse				
CT OOK281 50 Glycolysis/Glyconed	l							Fatty acid metabolis	1			
	ţ			СТ	Q0K281		59	Glycolysis / Gluconed	8			1

1		DC.			62	Puruvate metabolism	7	1		1
		DC DC			60	Glyovylate metabolis				
		ы	AUAUHSKKU4		00	Bronanoate metabo	Glicolise /			
124	Apotul Co A synthetics			6211		Mothano motabolion	Clicon co côn co	Citoplasma	Ligaça	In ITY
154	ACELYI-COA SYNTHELASE			0.2.1.1		Methane metabolish	Gilconeogenes	Citopiasma	Ligase	III./EX.
						Nietabolic pathways	е			
						Bios. second. metabo				
						Mic.metab. in diverse				
						Carbon metabolism				
		СТ	Q0KCA7	2.1.3.15	36	Fatty acid biosynthe	S			
		ВС	A9AHN8	6.4.1.2	36	Pyruvate metabolism	7			
	Acetyl-coenzyme A	AB	Q6F879		30	Propanoate metabo	Metabolismo			
125						Metabolic pathways	de Ácidos	Citereleaner	1.1	1.4 15.
135	carboxylase carboxyl					Bios. second. metabo	graxos/Lipídeo	Citopiasma	Llase	In./EX.
	transferase subunit alpha					Mic.metab. in diverse	с с			
						Carbon metabolism	5			
						Eatty acid metabolis				
				2 1 2 1 E		Fatty acid hiocyntho				
				2.1.5.15	ł	Putty uclu biosynthe				
				6.4.1.2	ł	Pyruvate metabolism	Metabolismo			
	Acetyl-coenzyme A				ļ	Propanoate metabol				
136	carboxylase carboxyl	ВС	A9AMA4		32	Metabolic pathways	de Acidos	Mitocondria	Transferase	In./Ex.
	transferase subunit beta				ļ	Bios. second. metabo	graxos/Lipídeo			,
					ļ	Mic.metab. in diverse	S			
						Carbon metabolism				
						Fatty acid metabolis	r			
		СТ	P31638		73	Glycolysis / Gluconed	7			
		ВС	A0A0H3KQ14		72	Pyruvate metabolism	7			
		AB	O6F741		73	Glyoxylate metabolis				
		7.0	Q01711	e		Propanoate metabo	Glicolise /			
137	Acetyl-coenzyme A			6211		Methane metabolisn	Gliconeogênes	Citoplasma	Ligase	In /Fx
	synthetase			0.2.1.1		Metabolic nathways	onconcogenes	citopiasina	LIBUSC	ш., <u>с</u> л.
						Riccubolic puthways	e			
						Mic motoh in divora				
		-				Carbon matched				
			0.01/1504			Carbon metabolism				
		СТ	QUKF61		33	Arginine biosynthesi	S			
		AB	Q6FDQ8		32	Metabolic pathways	Metab. de			
138	Acetylglutamate kinase			2.7.2.8		Bios. second. metabo	Aminoácidos	Citoplasma	Transferase	In./Ex.
						2-Oxocarboxylic acid	Ammodeluos			
						Biosynthesis of amin				
120	Acetylornithine	PC		7 6 1 91	4.4	Arginine and proline	Metab. de	Citaplacma	Transforaço	In /Ex
139	aminotransferase	вс	AUAUH3KDU4	2.0.1.81	44	Metabolic pathways	Aminoácidos	Citopiasma	Transferase	111./EX.
						Arginine biosynthesi	s			
						Metabolic pathways	1			
140	Acetylornithine	ВC	ΔΟΔΟΗ3KEN9	35116	44	Bios second metabo	Metab. de	Citoplasma	Hidrolase	In /Fx
	deacetylase	20		01012120		2-Ovocarbovylic acid	Aminoácidos	encopidonia		,
						2-0x0curboxylic ucit				
						Chechucis (Chuconor				
						Giycolysis / Glucolled				
	Acotultransforaça					Citrate cycle (TCA cyc	Clicalica /			
	Acetyltiansterase			2 2 4 4 2		Pyruvate metabolism			- (. /-
141	component of pyruvate	BC	A0A0H3KFX4	2.3.1.12	57	Metabolic pathways	Gliconeogénes	Mitocondria	Iransferase	In./Ex.
	dehydrogenase complex					Bios. second. metabo	e e			
						Mic.metab. in diverse				
						Carbon metabolism				
		СТ	Q0K8F1		98	Citrate cycle (TCA cyc				
		СТ	Q0KAG3		95	Glyoxylate metabolis				
1		ВС	A0A0H3KKF8		99	Metabolic pathways				
		AB	O6F827	4242	100	Bios. second. metabo	Ciclo do Ácido		1.1	
142	Aconitate hydratase	<u> </u>		4.2.1.3		Mic.metab. in diverse	Tricarboxílico	iviitocondria	Liase	In./Ex.
1		—				Carbon metabolism				
				u -		2_{-} Oxocarboxylic acid	1			
1		┣──	<u> </u>		┝───	Z ONOCULDOXYIIC UCIC	-			
┣			<u> </u>		<u> </u>	umin ט מושאוונוופטוש	1			+
1		L			_		Ciclo do Ácido			
143	Aconitate hydratase 1	ВС	A0A0H3KPT4	4.2.1.3	94		Tricarboxílico	Mitocondria	Liase	In./Ex.
		СТ	Q0K3Q9		93	Citrate cycle (TCA cyc				
1		BC.	A0A0H3KJL7	4.2.1.3	93	Glyoxylate metabolis				
1		AB	Q6F9U3		95	Propanoate metabo	/			
										-

				4.2.1.99		Metabolic pathways	Ciclo do Ácido			
144	Aconitate hydratase B					Bios. second. metabo		Mitocondria	Liase	In./Ex.
						Mic.metab. in diverse	IIICal DOXIIICO			
						Carbon metabolism				
						2-Oxocarboxylic acid				
						Biosynthesis of amin	NA stals a l'anna a			
		СТ	Q0K8M2		9	Metabolic pathways	ivietabolismo	Citerral	la definida	1. /F.
145	Acyl carrier protein	BC	A9ADE8	. –	9	BIOS. SECONA. METADO	de Acidos	Citopiasma	indefinido	In./EX.
		AB	Q6FD17		9	Eatty acid dogradatio	graxos/Lipideo			
		AB	Q6F700		44	Metabolic nathways				
		СТ	OOKCB3		45	Fatty acid metabolisr	Degradação de			
		СТ	OOKCR2		40		Ácidos graxos			
146	Acyl-CoA dehydrogenase	CT	Q0KBF9	1.3.8.8	68	İ	e	Citoplasma	Oxidorredutase	In./Ex.
		CT	Q0K376		45	İ	Xenobióticos			
		AB	Q6FEG4		65	l				
		AB	Q6FEG3		69					
	Acul-CoA debudrogenase	СТ	Q0K3Z2		43	Caprolactam degrad	Degradação de			
147	short chain specific	СТ	Q0K3F2	1.3.99	40	Metabolic pathways	Ácidos graxos	Indefinido	Oxidorredutase	In./Ex.
	short-chain specific					Mic.metab. in diverse	e			
						Fatty acid biosynthes	Degradação de			
	Acyl-CoA synthetase					Fatty acid degradation	Ácidos graxos	Membrana		
148	(Long-chain-fatty-acid	AB	Q6FFF5	6.2.1.3	62	Metabolic pathways	P	nlasmática	Ligase	In./Ex.
	CoA ligase)					Fatty acid metabolisr	- Xenobióticos	plasmatica		
			0.01/525			Quorum sensing	Xenobioticos			
140	Adapasulhamasustainasa	CT	QUKF25	2211	52	Cysteine and methior	Metab. de	Citanlacma	Llidrolaco	In In
149	Adenosylnomocysteinase	BC	A0A0H3K112	3.3.1.1	52	Metabolic pathways	Aminoácidos	Citopiasma	Hidrolase	In./EX.
	Adenosylmethionine-8-	AB	Q6FA43		51					
150	amine 7 exenenancete	РC		261112	E 2	Arginine and proline	Metab. de	Mitocondria	Transforaço	In /Ev
150	aminotronsforms	БС	AUAUHSKG45	2.0.1.115	52	Metabolic pathways	Aminoácidos	wittoconuna	Indifsterase	111./EX.
	dillillotidisteldse	ст	006520		24	Purine metabolism				
		BC			24	Thiamine metabolism	Metabolismo			
151	Adenylate kinase	ΔR	06FD71	2.7.4.3	24	Metabolic pathways	de	Citoplasma	Transferase	In./Ex.
		ΛD	QUIDTI		27	Bios. second. metabo	Nucleotídeos			
		СТ	Q0K722		51	Purine metabolism	Matabalisma			
152		BC	A0A0H3KBX6	4222	52	Alanine, aspartate ar	IVIELADOIISTIIO	Citereleanne	Linna	10 15.
152	Adenylosuccinate Llase	AB	Q6FCW4	4.3.2.2	51	Metabolic pathways	ae	Citopiasma	Llase	In./EX.
						Bios. second. metabo	Nucleotideos			
	Adenvlosuccinate	СТ	Q0K972	1	47	Purine metabolism	de			
153	synthetase	ВС	A0A0H3KF93	6.3.4.4	48	Alanine, aspartate ar	Nucleotídeos	Citoplasma	Ligase	In./Ex.
	Synthetase	AB	Q6FCS7		47	Metabolic pathways	Nucleotideos			
154	ADP-L-glycero-D-manno-	вС	A9ADU8	5.1.3.20	37	Lipopolysaccharide b	Metabolismo	Citoplasma	Isomerase	In./Ex.
	heptose-6-epimerase	-			_	Metabolic pathways	de Ácidos			,
	Aerobic-type carbon									
155	monoxide dehydrogenase	СТ	Q0KEI3	1.2.7.4	85		Indefinido	Indefinido	Oxidorredutase	Ex.
	homolog, large subunit									
						Alanine, aspartate ar	Metab. de			
156	Alanine dehydrogenase	ВС	A0A0H3KLS4	1.4.1.1	38	Taurine and hypotau	Aminoácidos	Citoplasma	Oxidorredutase	In./Ex.
		<u> </u>	00//022			ivietabolic pathways	Pioceínteco de			
157	Alapina +DNA lices	CT	QUK823	6117	95	noacul +DNIA bio our +b	DIUSSINTESE de	Citoplasme	Ligona	10 /5.
157	Alaminetriva ligase	BC	A9AC16	0.1.1./	95	noucyi-triva biosynth	Aminoacii-	Citopiasma	Ligase	111./EX.
		AB	Q6FC12		97	Glutathione metabol	EKINA Pentidases e			
158	Alanyl aminopeptidase N	СТ	Q0KCX9	3.4.11.2	100	Metabolic nathways	inihidores	Citoplasma	Hidrolase	In./Ex.
							Inductes			
150	Aldehyde dehydrogenaes	۸D		1 7 1 6 0	E /		Bios. Metab.	Citoplasma	Ovidorrodutoro	In /Ev
135	Aluenyue denyulogenase	AD	QUELSO	1.2.1.08	54		secundários	Citopiasina	Oxidorredutase	111./LX.
	Aldehyde reductase									
160	related to diketogulanata	СТ	OOKEWO	1 1 1 7 1	21		Indefinida	Indefinido	Ovidorredutaça	Fv
100	reductase			1.1.1.21	21		maeriniuu	maeriniuu	UNIGOTEGULASE	LA.
	Alkyl hydroneroxide									
161	reductase AhnD	СТ	Q0KBM7	1.11.1.28	18		Resp. Estresse	Citoplasma	Oxidorredutase	Ex.
	Alkyl hydroneroxide					1				
162	reductase AhnD	ВС	A0A0H3KG12	1.11.1.24	19		Resp. Estresse	Citoplasma	Oxidorredutase	In./Ex.
L									1	

162	Alkyl hydroperoxide	DC		1 1 1 1 2 1	11		Doop Estroso	Citoplasma	Oviderredutese	In ITV
103	reductase AhpD	вс	AUAUH3KCJ5	1.11.1.24	11		Resp. Estresse	Citopiasma	Oxidorredutase	111./EX.
164	Alkyl hydroperoxide	AB	Q6FAK2	1.11.1.26	21		Resp. Estresse	Citoplasma	Oxidorredutase	In./Ex.
	reductase C	ВС	A0A0H3KK97		20			•		
	Alkyl hydroperoxide									
	reductase subunit,									
165	FAD/NAD(P)-binding,	AB	Q6FCV0	1.11.1.24	56		Resp. Estresse	Citoplasma	Oxidorredutase	In./Ex.
	detoxification of									
	hydroperoxides									
	Alpha-2-macroglobulin-						Peptidases e	Membrana		
166	like large extracellular	ВС	A0A0H3KRP4	-	217		inibidores	externa da	Hidrolase	In./Ex.
	alpha-helical protein							célula		
	Amidanhacnharihacultra					Purine metabolism	Motob do			
167	Anidophosphonbosyltra	AB	Q6FCL7	2.4.2.14	57	Alanine, aspartate ar		Indefinido	Transferase	In./Ex.
	listerase					Rios second metabo	Aminoacidos			
	Amino, oxidase domain-							Membrana		
168	containing protein	AB	Q6F770	-	50		Indefinido	nlasmática	Oxidorredutase	In./Ex.
160		D C		2 4 4 4 2	70	Glutathione metabol	Peptidases e	Membrana		1.0. 15.
109	Aminopeptidase	вс	AUAUH3KBK5	3.4.11.2	79	Metabolic pathways	inibidores	externa da	Hidrolase	In./EX.
170	Aminopentidase N	AB	O6FAT2	3 4 11 2	99	Glutathione metabol	Peptidases e	Membrana	Hidrolase	In /Fx
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Metabolic pathways	inibidores	externa da		, 2
		СТ	Q0KCH9	,	43	Cysteine and methior	1			
		BC	A0A0H3KGN7		43	Tyrosine metabolism				
		BC	A0A0H3KUU5	I.	44	Phenylalanine metab	Motah da			
171	Aminotransferase	AB		2.6.1.57	44	Novohiocin hiosynth	Aminoácidos	Citoplasma	Transferase	In./Ex.
		AB	QOFFR7		45	Metabolic nathways	Ammoacidos			
				L.		Bios. second. metabo				
						Biosynthesis of amin				
		_				, <u>,</u>	Ivietabolismo			
172	AMP nucleosidase	ВС	A0A0H3KJX3	3.2.24	57		de	Citoplasma	Hidrolase	In./Ex.
		ВС	A0A0H3KKA5		55	Phenylalanine, tyrosi	<u></u>			
	Anthranilate synthase	AB	Q6FF98		55	Metabolic pathways	Metab de			
173	component 1			4.1.3.27		Bios. second. metabo	Aminoácidos	Indefinido	Liase	In./Ex.
						Biosynthesis of amin	, annouclass			
						Quorum sensing				
						Metabolic nathways				
174	Anthranilate synthase	AB	P00902	4.1.3.27	22	Bios. second. metabo	Metab. de	Indefinido	Liase	In./Ex.
	component 2			<u></u>		Biosynthesis of amin	Aminoácidos			,
						Quorum sensing				
						Arginine biosynthesis				
	Arginine biosynthesis					Metabolic pathways	Metab. de			
175	bifunctional protein ArgJ	ВС	A0A0H3KC00	2.3.1.35	43	Bios. second. metabo	Aminoácidos	Mitocondria	Transferase	In./Ex.
						2-Oxocurboxyiic acia Biosynthesis of amin				
	Arginine N-					Arainine and proline	Metab. de			. (-
176	succinvltransferase	ВС	A0A0H3KDN3	2.3.1.109	38	Metabolic pathways	Aminoácidos	Indefinido	Transferase	In./Ex.
		СТ	Q0KFB0		65		Biossíntese de			
177	ArgininetRNA ligase	ВС	A9AE58	6.1.1.19	65	Aminoacyl-tRNA bios	Aminoacil-	Citoplasma	Ligase	In./Ex.
		AB	Q6FFM0		67		tRNA			
		CT	Q0K7M0		51	Arginine biosynthesis				
170	Argininosussinato Liaso	BC	P59615	1221	51	Alanine, aspartate ar	Metab. de	Citoplasma	Linco	In /Ex
1/8	Argininosuccinate Liase	AB	Q6FFB2	4.3.2.1	53	Rios second metabo	Aminoácidos	Citopiasma	LIdSe	III./EX.
						Biosynthesis of amin				
		СТ	Q0JY61		49	Arginine biosynthesis				
	Argininosussinato	BC	P59608		49	Alanine, aspartate ar	Motah da			
179	Arginnosuccinate	AB	Q6FD28	6.3.4.5	50	Metabolic pathways		Citoplasma	Ligase	In./Ex.
	synthiose					Bios. second. metabo	Ammoacidos			
						Biosynthesis of amin				
	Aspartate	СТ	Q0K7N2		35	Pyrimidine metabolis	de			
180	carbamoyltransferase	BC	A9AFI4	2.1.3.2	37	Alanine, aspartate ar	Nucleotídeos	Indefinido	Iransterase	In./Ex.
1	-	IAB	Q6FCR5		37	ivietabolic pathways	1			1

	Asportato	СТ	Q0KEG8		68		Biossíntese de			
182	Aspartate	BC	Δ9ΔFC7	6.1.1.12	68	Aminoacvl-tRNA bios	Aminoacil-	Citoplasma	Ligase	In./Ex.
I	tRNA(Asp/Asn) ligase				67		†RNIA			.,
<u> </u>					44	Glucine corino and th				
			QUNOTI		41	Manak settine und th				
I		ВĊ	AUAUH3KU20		40	ivioriobactam biosyn	1			
		AB	Q6FEU9		41	Cysteine and methior				
	Aspartate-semialdobudo					Lysine biosynthesis	Metah da			
183	nspartate-semialuenyue			1.2.1.11		Metabolic pathways		Mitocondria	Oxidorredutase	In./Ex.
I	dehydrogenase					Bios, second metabo	Aminoácidos			
1						Mic metab in diverse	1			
					-	2 Our card and in uiverse				
						2-Oxocarboxylic acia				
						Biosynthesis of amin				
		СТ	Q0KCA5		45	Glycine, serine and th				
		BC	A0A0H3KF70		45	Monobactam biosyn				
		ΛR			46	, Cysteine and methior				
		AD	QUECTS		40	Lycing biosynthesis				
						Lysine biosynthesis	Metab. de			
184	Aspartokinase			2.7.2.4		Metabolic pathways	Aminoácidos	Citoplasma	Transferase	In./Ex.
						Bios. second. metabo	Ammodeluos			
						Mic.metab. in diverse				
						2-Oxocarboxylic acid				
						Piosynthesis of amin				
			101050	6256		Biosyntinesis of uninin	Dia a síota sa sis			
185	Aspartyi/glutamyl-	ВС	AYAC50	6.3.5.6	53	AMINOACYI-tRNA bios	BIOSSINTESE DE	Mitocondria	Ligase	In./Ex.
	tRNA(Asn/Gln)	AB	Q6FDY4	6.3.5.7	54	Metabolic pathways	Aminoacil-			.,
	ATD	СТ	Q0K971		42	Histidine metabolism				
		BC	Δ9ΔΗ05		42	Metabolic pathways	Metab. de			
186	phosphoribosyltransfera	10		-	12	Bios second metabo	Aminoácidos	Citoplasma	Indefinido	In./Ex.
	se regulatory subunit	АВ	UDFC38		43	Dios. second. metabo	Ammodeluos			
						Biosynthesis of amin				
	ATP synthase beta						Metabolismo	Mombrono	Lizzaño (Cíntoco	
187	subunit/transription	СТ	Q0K118	-	126		de	Iviendrana	Ligação/sintese	In./Ex.
	termination factor rho						Nucleatideas	plasmática	de ATP	,
			404105			O idati sa kasaka sa	Nucleotideos	N 4 avera la visa a		
188	AIP synthase epsilon	ВС	A9AJG5	-	15	Oxidative phosphory	Metabolismo	Membrana	Transporte	In./Ex.
	chain	AB	Q6FFJ9		15	Metabolic pathways	Energético	plasmática		,
	ATD synthese gamma	СТ	Q0K5M6		32	Oxidative phosphory	Matabalisma	Mombrana		
189	ATP synthase gamma	RC	494163	-	32	Metabolic pathways	Nietabolismo	Membrana	Transporte	In./Fx.
	chain				22		Energético	plasmática	nunoporte	,
		AB	QOFFNI	7422	32	O idati sa kasaka sa				
	ATP synthase subunit	CT	QUK5IVI5	7.1.2.2	55	Oxidative phosphory	Metabolismo	Membrana		
190	alaba	ВС	A9AJG2	7.2.2.1	56	Metabolic pathways	Enorgótico	nlacmática	Translocase	In./Ex.
	aipila	AB	Q6FFK2		56		Lifeigetico	plasmatica		
		4.0	0.000		17	Oxidative phosphory	Metabolismo	Membrana	<b>-</b> .	. /=
191	ATP synthase subunit b	AB	Q6FFK4	-	-1/	Metabolic nathways	Enorgótico	nlasmática	Iransporte	In./Ex.
		CT		7122	F 4	Ovidative phoenhory	Litergetico	plasifiatica		
4.0.0	ATP synthase subunit	CI	QUK5IVI7	7.1.2.2	51		Metabolismo	Membrana		. /=
192	heta	ВС	A9AJG4	7.2.2.1	51	Metabolic pathways	Energético	nlasmática	Iranslocase	In./Ex.
		AB	Q6FFK0		50		Encigetieo	plasmatica		
102	ATP synthase subunit	ВС	A9AJG1		19	Oxidative phosphory	Metabolismo	Membrana	Tuenenente	10 15.
193	, delta	ΔR	OGEEK3	-	20	Metabolic pathways	Energético	nlasmática	Transporte	In./EX.
	ATD hinding protoco		QUITICS		20		Dentidação	Mombrono		
194	ATP-billuing protease	AB	Q6FCI1	-	84		Peptiuases e	Wellipiana	Hidrolase	In./Ex.
	component						inibidores	plasmática		
	ATP-dependent Clp									
195	protesse ATD-binding	RC	ΔΟΔΟΗ3ΚΙΚΕ	_	Q /I		Peptidases e	Membrana	Hidrolaso	In /Ev
1.75		DC	AUAUTOKLKO	-	04		inibidores	plasmática	Thurblase	/LX.
L	subunit				ļ					L
1	ATP-dependent Clp						Dontides	Morehart		
196	protease ATP-hinding	BC	A0A0H3K7H7		104		Peptidases e	Membrana	Hidrolase	In /Fx
		20	, lon lon lon Linn		101		inibidores	plasmática	marolase	<i>miy</i> <u>E</u> x.
<u> </u>		<u> </u>	0.000							I
	AIP-dependent Cip	СТ	QOKBK3		47	1	Bios /Metab			
197	protease ATP-binding	ВС	A9AJR1	-	46	1	Drotair	Citoplasma	Chaperona	In./Ex.
1	subunit CloX	AB	O6FFP7		48	]	Proteinas			
	ATP-dependent Clp	CT			22					1
100				2 4 2 1 0 2	23	ł	Peptidases e	Citoplasme	Lidroloss	In 15.
198	protease proteolytic	BC	AUAUH3KFL9	3.4.21.92	24	ł	inibidores	Citopiasma	niorolase	111./EX.
L	subunit	AB	Q6FEP8		23					I
100	ATP-dependent DNA	ΛD	065707	26117	77	Homologous recomb	Replicação e	DNA/Cromo	Hidrolaco	In /Ev
1.75	helicase RecG		QUEIPI	5.0.4.12	//	nomologous recomb	Reparo de	ssomo	Thurbidse	/ĽX.
200	ATP-dependent DNA	40	0650.04	26442	70		Recombinação	العرا م1:	Llidestees	10 /5.
200	helicase Rep	АВ	Q0FDR1	3.0.4.12	78		e Reparo de	indefinido	Hidrolase	ITT./EX.
201	ATP-dependent helicase	AB	Q6FAK3	3.6.4.13	148		Metabolismo	Indefinido	Hidrolase	In./Ex.
	ATP-dependent protease	CT	OUKE69	-	10		Bios /Metah			
202	acpendent protease			-	43	1	2.00., 10.00.	Citonlacma	Chanerona	In /Fv

	ATPase subunit HslU	ВС	A0A0H3KB45	-	50	I	Proteínas	Споріазтна	Спарегопа	ш., Lл.
203	ATP-dependent protease	СТ	Q0K1F3	-	102		Bios./Metab.	Citoplasma	Chaperona	In./Ex.
204	ATP-dependent protease	СТ	Q0K794	-	84		Bios./Metab.	Citoplasma	Chaperona	Ex.
205	ATP-dependent RNA	вС	A0A0H3KQ92	3.6.4.13	53	RNA degradation	Metabolismo	Citoplasma	Hidrolase	In./Ex.
206	ATP-dependent RNA	AB	Q6FCM5	3.6.4.13	44	RNA degradation	Metabolismo	Citoplasma	Hidrolase	In./Ex.
	ATP-dependent zinc	СТ	Q0K8Y5		69		Peptidases e			. /=
207	metalloprotease FtsH	BC AB	A0A0H3KME9 Q6F8N2	3.4.24	<u>69</u> 70		inibidores	Mitocondria	Hidrolase	IN./EX.
208	ATP-NAD/AcoX kinase	ВС	A0A0H3KP21	-	37		Metab. Cofat.	Mitocondria	Transferase	In./Ex.
209	Bacterial DNA-binding protein, histone-like	ст	Q0K1T6	-	16		Indefinido	Indefinido	Ligação ao DNA/RNA	In./Ex.
		СТ	Q0KEU2		18			Membrana		
210	Bacterioferritin	ВС	A0A0H3KGK0	1.16.3.1	19	Porphyrin and chloro	Metab. Cofat.	externa da	Oxidorredutase	In./Ex.
		AB	Q6FDV6		18		e Vitaminas	célula		,
	Bacterioferritin co-	AB	Q6F/G5 Δ0Δ0H3KK17		17			Membrana		
211	migratory protein	AB	Q6F9A1	1.11.1.24	18		Indefinido	plasmática	Oxidorredutase	In./Ex.
		СТ	Q0KFR7		41	DNA replication	Replicação e			
212	Beta sliding clamp	ВС	A0A0H3KFM3	2.7.7.7	41	Mismatch repair	Reparo de	Indefinido	Transferase	In./Ex.
	Data katagayi ACD	AB	Q6FG20		42	Homologous recomb	DNA			
	Beta-ketoacyi-ACP					Fatty acid biosynthes				
213	[acyl-carrier-protein]	AB	Q6FDT0	2.3.1.41	43	Metabolic nathways	gravos /Lipídeo	Citoplasma	Transferase	In./Ex.
	(acyl-carrier-protein)					Fatty acid metabolism	giax03/Lipideo			
	Svitenase n					Fatty acid degradatio				
						Val., leuc. and isol. de				
						Geraniol degradation	De sur de são de			
	Data kata adimul Ca A					Benzoate degradatio	Degradação de			
214	thiologo	СТ	Q0K4S3	2.3.1.16	42	alpha-Linolenic acid		Mitocondria	Transferase	In./Ex.
	tilloldse					Metabolic nathways	e Xenobióticos			
						Bios. second. metabo	Xenobioticos			
						Mic.metab. in diverse				
						Fatty acid metabolism				
						Fatty acid degradatio				
						Synthesis/deg. ketone				
						Val., leuc. and isol. de				
						Renzoate dearadatio				
						Tryptophan metaboli				
						Pyruvate metabolism	Degradação de			
						Glyoxylate metabolis	Ácidos graxos			
215	Beta-ketothiolase BktB	СТ	Q0KBP1	2.3.1.9	41	Propanoate metaboli	e	Citoplasma	Transferase	In./Ex.
						Butanoate metabolis Ternenoid hackhone	Xenobióticos			
						Metabolic pathways				
						Bios. second. metabo				
						Mic.metab. in diverse				
						Carbon metabolism				
						Fatty acid metabolism				
				4 2 1 5 1		Phenylalanine tyrosi				
	Differentia en al la constitución	4.5	0.550.0	5.4.99.5		Metabolic pathwavs	Metab. de	Citeral	Liase;	1. / <del>-</del>
216	Biructional protein	АВ	Q6FA94		41	Bios. second. metabo	Aminoácidos	Citoplasma	Isomerase	ın./EX.
						Biosynthesis of amin				
	Bifunctional glutamine									
217	synthetase	AB	Q6FEI9	2.7.7.89	106		Metab. de	Citoplasma	Transferase	In./Ex.
	adenylyltransferase/aden						Aminoacidos			
	ylyl-removing enzyme			41214		Pentose nhosnhate n			┟────┦	
				4.1.3.42		Glyoxylate metabolis				
218	Bifunctional protein	AB	Q6FEN9		22	Metabolic pathways	Metab. de	Citoplasma	Liase	In./Ex.

l		I			ľ	Mic.metab. in diverse	Carbo.	I		
						Carbon metabolism				
						Fructose and manno.				
210	Rifunctional protoin	AD	OFFE	E 1 2 0	E 1	Amino sugar and nuc	Metab. de	Citoplasma	la omoração	In /Ev
219	Birufictional protein	AD	QUFF35	5.4.2.0	51	Metabolic pathways	Carbo.	Citopiasina	isonierase	111./EX.
						Bios. second. metabo				
				1.5.1.5		One carbon pool by f				
220	Bifunctional protein FolD	AD		3.5.4.9	20	Metabolic pathways	Metab. de	Citoplasma	Hidrolase;	In /Ev
220	2	АВ	QOF8N7		30	Mic.metab. in diverse	Aminoácidos	Citopiasma	Oxidorredutase	111./EX.
						Carbon metabolism				
221	Bifunctional protein	AD	OFFELIO	2.7.7.23	49	Amino sugar and nuc	Metab. de	Citoplasma	Transforaço	In /Ex
221	GlmU	AD	QUFUUS	2.3.1.157		Metabolic pathways	Carbo.	Citopiasina	Transferase	111./LX.
	Bifunctional nurine	СТ	Q0KEC0	2.1.2.3	56	Purine metabolism	Metabolismo			
222	biosynthesis protein	ВС	A9AH70	3.5.4.10	56	One carbon pool by f	do	Citoplasma	Transferase;	In /Ev
		AB	Q6F9P5		56	Metabolic pathways	ue Nucleatídeac	Citopiasina	Hidrolase	111.7 LA.
	Pulh					Bios. second. metabo	Nucleotideos			
223	Biotin carboxylase	ст	006685	63414	73	Val., leuc. and isol. de	Metab. de	Indefinido	Ligase	In /Ev
	bloth carboxylase	07	QUILIDS	0.3.4.14		Metabolic pathways	Aminoácidos	macimiao	Ligase	ш., LX.
		СТ	Q0K6X4		50	Fatty acid biosynthes				
		ВС	A0A0H3KKG4	6.3.4.14	50	Pyruvate metabolism				
		AB	Q6FBI5		51	Propanoate metabol				
224	Biotin carboxylase			6.4.1.2		Metabolic pathways	Metab. de	Indefinido	Ligase	In /Fx
	blotin carboxylase					Bios. second. metabo	Carbo.	inaciinao	Liguide	111. J EX.
						Mic.metab. in diverse				
						Carbon metabolism				
						Fatty acid metabolisr				
	Branched-chain amino					ABC transporters	Proc de Info	Membrana		
225	acid transport system	ВС	A0A0H3KQQ7	-	28	Quarum concina	Ambiontal	placmática	Transporte	In./Ex.
	ATP-binding protein					Quorum sensing	Amplenta	plasmatica		
	Branched-chain amino					ABC transporters	Proc. de Info	Membrana		
226	acid transport system	ВС	A0A0H3KN00	-	40	Quarum concina	Ambiontal	placmática	Transporte	In./Ex.
	substrate-binding protein					Quorum sensing	Amplenta	plasmatica		
	Branched-chain amino					ABC transporters	Proc. do Info	Mombrana		
227	acid transport system	ВС	A0A0H3KII3	-	43	Quarum consing	Ambientel	placmática	Transporte	In./Ex.
	substrate-binding protein					Quorum sensing	Amplental	plasmatica		
	Branched-chain amino					ABC transporters				
228	acid transport system	BC	ΑΟΑΟΗ3ΚΝΟΟ	-	39		Proc. de Info.	Membrana	Transporte	In./Fx.
	substrate-binding protein					Quorum sensing	Ambiental	plasmática	inditoporte	,
						ADC transportors				
	Branched-chain amino					ABC transporters	Proc. de Info.	Membrana		
229	acid transport system	ВС	A0A0H3KIM0	-	40	Ouorum sensina	Ambiental	plasmática	Transporte	In./Ex.
	substrate-binding protein					g		P		
		ВС	A0A0H3KHA8		34	Cysteine and methior				
		AB	Q6FEI8		35	Val., leuc. and isol. de				
						Val., leuc. and isol. bi				
230	Branched-chain-amino-			26142		Pantothenate and Co	Metab. de	Mitocondria	Transferase	In /Fv
	acid aminotransferase			2.0.1.42		Metabolic pathways	Aminoácidos	Wittocontanta	Transferase	111.7 LX.
						Bios. second. metabo				
						2-Oxocarboxylic acid				
						Biosynthesis of amin				
	Carbamovl-nhosnhate	СТ	Q0K8Y0		118	Pyrimidine metabolis	Metabolismo			
231	synthase large chain	ВС	A0A0H3KDV9	6.3.5.5	119	Alanine, aspartate ar	de	Citoplasma	Ligase	In./Ex.
	synthase large chain	AB	Q6F8M6		118	Metabolic pathways	Nucleotídeos			
	Carbamovl-phosphate	ВС	A0A0H3KE39		41	Pyrimidine metabolis	Metabolismo			
232	synthase small chain	AB	Q6F8M7	6.3.5.5	41	Alanine, aspartate ar	de	Citoplasma	Ligase	In./Ex.
L						Metabolic pathways	Nucleotídeos			
233	Carbon monoxide	ст	ΟΟΚΕΙΔ	1,253	28		Indefinido	Indefinido	Oxidorredutase	In /Fx
	dehydrogenase homolog,	ζ,		1.2.3.3	20		inacimuo	indefinido	exia on cautase	, LA.
224	Carboxy-terminal	pr		2 / 21 102	EC		Peptidases e	Membrana	Hidrolasa	In IT.
234	protease	BL		3.4.21.102	סכ		inibidores	plasmática	niuroiase	111./EX.
	Carboxy-terminal									
235	protease for penicillin-	AB	Q6FEN1	3,4,21,102	80		Peptidases e	Membrana	Hidrolase	In./Fx
	hinding protein		~~· L. 11	5			inibidores	plasmática		, _/.
<u> </u>						Val leur and isol de	Metah da			
236	Carboxyltransferase	СТ	Q0KF92	6.4.1.4	58	Metabolic nathways	Aminoácidoc	Indefinido	ligase	In./Ex.
	1	1						1		

					26	Chlorocyclohexane a	Desma de eño de			
					20	Fluorobenzoate degr	Degradação de			
237	Carboxymethylenebuteno	вС	A0A0H3KU99	3.1.1.45		Toluene dearadation	Acidos graxos	Citoplasma	Hidrolase	In./Ex.
	lidase					Metabolic pathways	е			,
						Mic.metab. in diverse	Xenobióticos			
							Peptidases e			
238	Carboxypeptidase C	ВС	A0A0H3KC37	-	57		inibidores	Indefinido	Hidrolase	In./Ex.
							Peptidases e			
239	Carboxypeptidase C	ВС	АОАОНЗКХОЗ	-	60		inibidores	Indefinido	Hidrolase	In./Ex.
	Catabolite repression						Replicação e			
240	control protein	AB	Q6F6Z5	3.1.11.2	33	Base excision repair	Renaro de	Citoplasma	Hidrolase	In./Ex.
		СТ	00K815		01	Phenylalanine metah	Reparo de			
					02	Tryptophan metaboli	Metab de			
241	Catalase-peroxidase	ы	ASAGES	1.11.1.21	80	Motabolic pathways	Aminoácidos	Indefinido	Oxidorredutase	In./Ex.
						Bios second metabo	Ammoacidos			
						Chlorocycloboyano a				
						Chiorocycionexune un				
						Benzoate degradatio	Degradação de			
242			101011210110		22	Fluorobenzoate degri	Ácidos graxos	Charles		
242	Catechol 1,2-dioxygenase	вс	AUAUH3KXJ8	1.13.11.1	33	Toluene degradation	e	Citoplasma	Oxidorredutase	In./Ex.
						Metabolic pathways	Xenobióticos			
						Mic.metab. in diverse	Actionation			
						Deg. aromatic compo				
	Cation/multidrug efflux						Proc de Info	Membrana		
243	system outer membrane	СТ	Q0JYI3	-	44		Ambiental	nlacmática	Transporte	In./Ex.
	porin						Amplentai	plasmatica		
244	CDP-6-deoxy-delta-3,4-	PC	A0A0H2K002	1 1 7 1 1	20	Amino sugar and nuc	Metab. de	Indofinido	Ovidorrodutaça	In /Ex
244	glucoseen reductase	ы	AUAUHSKUUZ	1.1/.1.1	50	Metabolic pathways	Carbo.	indennido	Oxidorredutase	111./EX.
	Cell division inhibitor						Sinalização e	Membrana	Proteínas do	
245	MinD	СТ	Q0KFI4	-	29		Processo	nlasmática	Citoesqueleto	In./Ex.
	Coll division inhibitor						Colular Sinalização o	Mombrana	Drotoínas do	
246		AB	Q6FDR6	-	31				Cite es muslete	In./Ex.
	membrane Al Pase.						Sinalização e	Membrana	Citoesqueieto Proteínas do	
247	Cell division protein FtsA	ВС	A0A0H3KKD1	-	44			placmática	Citoos qualata	In./Ex.
							Sinalização e	Membrana	Proteínas do	
248	Cell division protein FtsZ	AB	Q6F708	-	42		Drocosco	nlacmática	Citoosquelete	In./Ex.
							Sinalização e	Membrana	Proteínas do	
249	Cell division protein ZapE	AB	Q6F9Z7	-	44			nlasmática	Citoesqueleto	In./Ex.
		СТ	OOK EIS		0		Sinalização e	plasmatica	Citocsqueieto	
250	Cell division topological				9		Processo	Membrana	Proteínas do	In /Ev
	specificity factor			. –	9		Colular	plasmática	Citoesqueleto	111./LA.
	Coll shape determining	AD	QOFDR7		10		Celuial Singlização o	Mombrana	Brotoínas do	
251		AB	Q6FDY0	-	32				Cite es muslete	In.
	protein Mirec		00//01/5				Processo	plasmatica	Citoesqueieto	
		CT	QUK9H5		96		Bios./Metab.			. /-
252	Chaperone protein CIPB	ВС	A0A0H3KFC8	-	96		Proteínas	Citoplasma	Chaperona	In./Ex.
┣───		AB	Q6FCS0		95					
252	Change and the state	CT	QUK/5/		70	DALA de sur de ti	Deen 5-t	Citerala	Character	1
253	Chaperone protein DhaK	ВС	A9AGB8	-	70	кіNA aegradation	кеsp. Estresse	Citoplasma	Cnaperona	in./Ex.
┝──		AB	Q6F6N3	4 2 4 4 2 0	69	Dumunata se state d'				
a	Chaperone protein hchA		0.000	4.2.1.130	~~	Pyruvate metabolism	Metab. de			, ,
254	(Hsp31)	AB	Q6FD16	3.5.1.124	32	ivietabolic pathways	Carbo.	inaefinido	Hidrolase; Liase	in./Ex.
						wiic.metab. in alverse				
255	Chaperone protein HscA	ВС	A9AGU7	-	66		Bios./Metab.	Citoplasma	Chaperona	In./Ex.
	homolog	_					Proteínas			,
256	Chaperone protein HtpG	ВС	A0A0H3KL50	-	71	ļ	Bios./Metab.	Citoplasma	Chaperona	In./Ex.
L		AB	Q6FF82		72		Proteínas			,
257	Chaperone SurA	ВС	A0A0H3KM21	5,2.1.8	49	ļ	Bios./Metab.	Indefinido	Isomerase	In./Fx
		AB	Q6F9W3	0.2.11.0	50		Proteínas			,
258	Chloride peroxidase	ВС	A0A0H3KJC0	1.11.1.10	30		Indefinido	Indefinido	Oxidorredutase	In./Ex.
		СТ	Q0KC14		39	Phenylalanine, tyrosi				
259	Chorismate synthese	ВС	A9ABG9	4235	39	Metabolic pathways	Metab. de	Citonlasma	Liase	In /Fv
	sisinate synthase	AB	Q6FAR2	2.3.3	39	Bios. second. metabo	Aminoácidos	citopiasina	LIUSC	, LA.
						Biosynthesis of amin				
260	Chromosomal replication	ΔR	06FG21	-	52	Two-component sust	Replicação e	Citonlasma	Ligação ao	In /Fv
	initiator protein DnaA		201021		52	wo component syste	Reparo de	citopiasina	DNA/RNA	, LA.

<b>F</b>	Chromosome partitioning						Sinalização e			1
261		AB	Q6F9W8	-	28			Indefinido		In./Ex.
	Drotein Chromosome partitioning						Processo Sinalização e		DINA/RINA	
262		AB	Q6F9W9	-	33		Sillalização e	Indefinido		In./Ex.
-	protein	_	00//000				Processo		DNA/RNA	
		СТ	QUK8G2		49	Citrate cycle (TCA cyc				
		ВС	A0A0H3KKG6		49	Glyoxylate metabolis				
		AB	Q6F8K6		47	Metabolic pathways				
						Bios. second. metabo	Ciclo do Ácido			
263	Citrate synthase			2.3.3.1		Mic metab in diverse	Tricarboxílico	Citoplasma	Iransferase	In./Ex.
						Carbon metabolism				
						2 Overside and				
						2-Oxocarboxylic acia				
						Biosynthesis of amin				
		СТ	Q0KAG4		43	Propanoate metabol	Ciclo do Ácido			
264	Citrate synthase	ВС	A0A0H3KXF7	2.3.3.5	43	Metabolic pathways		Citoplasma	Transferase	In./Ex.
		AB	O6F8W4		40		Tricarboxilico			
	Cohalamin biosynthesis	/ .2	Q010111							
265	n ratain	ВС	A0A0H3KB05	-	47		Indefinido	Indefinido	Indefinido	In./Ex.
	Cohalamin biosynthesis									
266		ВС	A0A0H3KBC9	-	40		Indefinido	Indefinido	Indefinido	In./Ex.
	protein Cald ab a du gratain DNA						Deculação /Dra		1:	
267	Cold-shock protein, DNA-	СТ	Q0K5B6	-	7		Regulação/Pro	Citoplasma	Ligação ao	Ex.
	binding						cessamento		DNA/RNA	
		СТ	Q0KCE5		61	Pyrimidine metabolis	Metabolismo			
268	CTP synthase	ВС	A9AGW0	6.3.4.2	61	Metabolic pathways	de	Citoplasma	Ligase	In./Ex.
		ΔR	Ο6ΕΔΤΖ		61		Nucleotídeos		-	-
					16	Thiamine metabolism	Nucleotideos			
200		DC		2017	40	Mataka lia wathuwaya	Metab. Cofat.	Citereleaner	Tropofores	1
209	Cysteine desulturase iscs	AB	Q6FCE2	2.8.1.7	45	wietabolic pathways	e Vitaminas	Citopiasma	Transferase	In./EX.
						Sulfur relay system				
		СТ	Q0KAG7		36	Cysteine and methior				
		AB	Q6FBQ5		35	Sulfur metabolism				
		ΔR	06F845		34	Metabolic pathways				
270	Cysteine synthese	ΠD	01045	25147	54	Bios second metabo	Metab. de	Citoplasma	Transferaço	In /Ex
270	Cystellie synthase			2.3.1.47		Dios. second. metabo	Aminoácidos	Citopiasina	TIAIISTEIASE	<i>/LX</i> .
						Mic.metab. in diverse				
						Carbon metabolism				
						Biosynthesis of amin				
							Biossíntese de			
271	CysteinetRNA ligase	AB	Q6FC71	6.1.1.16	54	Aminoacyl-tRNA bios	Aminoacil	Citoplasma	Ligase	In./Ex.
-			40451/5				Aminoacii-			
272	Cytidylate kinase	ВС	A9ADV5	2.7.4.25	24	Pyrimidine metabolis	Metabolismo	Citoplasma	Transferase	In./Fx.
		AB	Q6F9Y6		25	Metabolic pathways	de	entepideina		,
272	Cytochrome c oxidase	DC		7110	ГC	Oxidative phosphory	Metabolismo	Membrana	Translassa	In In
2/3	subunit 2	вс	AUAUH3KHS6	7.1.1.9	50	Metabolic pathways	Energético	plasmática	Translocase	In./EX.
	Cytochrome d terminal						Energettee	plasmatica		
274		10	065427	7117	FO	Oxidative phosphory	Metabolismo	Membrana	Translassa	In ITY
2/4	oxidase, polypeptide	АВ	QOFA37	/.1.1./	59	Two component syst	Energético	plasmática	Translocase	111./EX.
	subunit l					Two-component syst		P		
275	Cytochrome D-lactate	DC		1124	50	Pyruvate metabolism	Metab. de	Mitocondria	Ovidorrodutaço	In /Ev
2/5	dehydrogenase	ы	AUAUHSKUDZ	1.1.2.4	50	Metabolic pathways	Carbo.	wittoconuna	Oxidorredutase	111./EX.
				11195		Glycine serine and th				
				1 1 1 200		Cystoine and methior				
				1.1.1.399		Cystellie und methol				
						wietnane metabolism				
276	D-3-phosphoglycerate	AR	06F710		44	Metabolic pathways	Metab. de	Indefinido	Oxidorredutase	In /Fx
	dehydrogenase	10	001730			Bios. second. metabo	Aminoácidos	indennido	Oxidon cultuse	<i>, L</i> X.
						Mic.metab. in diverse				
						Carhon metaholism				
						Piosynthesis of amin				
						Diosyntinesis of uninin				
						D-Alanine metabolisr	Biossíntese de			
277	D-alanineD-alanine	ΔR	06F705	6324	22	Peptidoglycan biosyr	Pentidoglican	Citonlasma	ligase	In /Fx
	ligase	10	001705	0.5.2.4	55	Metabolic pathways	reptidoglican	citopiasina	inguise	<i>,</i> EX.
1						Vancomycin resistan	0		1	
Ι.	D-alanyl-D-alanine					Peptidoalvcan hinsvr	Biossíntese de			
278	carboyypontidaca	ВС	A0A0H3KHQ5	3.4.16.4	44	Metabolic nathways	Pontidoclicor	Citoplasma	Hidrolase	In./Ex.
	ται νυχγμεμτιάδε					Durimidia - mataka "				<u> </u>
279	dCTP deaminase	AB	Q6FE29	3.5.4.13	21	r yr inniu metabolis	IVIELADOIISMO	Citoplasma	Hidrolase	In./Ex.
						Metabolic pathways	de		ļ'	<u> </u>
280	Deacylase	RC	ΔΠΔΠΗΣΚΡΕ1	3.5.1.87	16	Pyrimidine metabolis	Metabolismo	Indefinida	Hidrolaso	In /Ev
1	Deacylase		AUAUIISKKEI	3.5.1.6	+0	Metabolic pathways	de	maenniuu	Thurblase	, <i>L</i> X.
1	Dehydrogenase with					. ,				
-		-			27	1	مامد (مدار	مامد (به الم		
281	different energificities	СТ	Q0K1U4	-	27		indefinido	indefinido	Oxidorredutase	Ex.
281	different specificities	СТ	QOK1U4	-	27		Indefinido	indefinido	Oxidorredutase	Ex.

282	different specificities (Related to short-chain alcohol dehydrogenases)	ст	Q0KD44	1.1.1.100	27	Biotin metabolism Metabolic pathways Bios. second. metabo Fatty acid metabolisi	de Ácidos graxos/Lipídeo s	Indefinido	Oxidorredutase	Ex.
283	Dehydrogenase, PQQ dependent	ст	Q0KAI6	1.1.9.1	73		Indefinido	Membrana plasmática	Oxidorredutase	In./Ex.
		ВС	A0A0H3KI72	1	37	Porphyrin and chloro	Sinalização e			
284	Delta-aminolevulinic acid	AB	Q6FDN9	4.2.1.24	39	Metabolic pathways	Processo	Membrana	Liase	In./Ex.
	dehydratase			i.		Bios. second. metabo	Celular	plasmática		
	Diaminohutyrate2-					NIC.metab. In alverse	-			
						Glycine, serine unu tr	4			
285	aminotransferase (I -	AB	O6FCX2	26176	49	Mic metab in diverse	Metab. de	Citoplasma	Transferase	In /Fx
	diaminobutyric acid	/ 12	QUICKE	2.0.1.70	15	2-Oxocarboxylic acid	Aminoácidos	encopiasina	Tunoreruse	, באני
	transaminase)					, Biosynthesis of amin				
						Lysine biosynthesis				
	Diaminonimelate					Metabolic pathways	Metab de			
286	enimerase	AB	Q6F950	5.1.1.7	31	Bios. second. metabo	Aminoácidos	Citoplasma	lsomerase	In./Ex.
	cpiniciuse					Mic.metab. in diverse				
						Biosynthesis of amin				
						Citrate cycle (TCA cyc				
	Dihydrolipoamide					Pyruvate metabolism	Glicolise /			
287	acetyltransferase	AB	O6F713	2.3.1.12	69	Metabolic pathways	Gliconeogênes	Mitocondria	Transferase	In./Ex.
	component of pyruvate					Bios. second. metabo	e e			,
	dehydrogenase complex					Mic.metab. in diverse	- -			
						Carbon metabolism				
		СТ	P52992	I.	50	Glycolysis / Gluconec				
		СТ	Q0KBV8		62	Citrate cycle (TCA cyc	4			
		BC	A0A0H3KJ85		51	Glycine, serine and th	2			
		BC	A0A0H3KG46		62	Val., leuc. and isol. ad				
		АВ	QOF8L3	u	51	Tryntonhan metahol	Glicolise /			
288	Dihydrolipoyl			1.8.1.4		Pyruvate metabolism	Gliconeogênes	Citoplasma	Oxidorredutase	In./Ex.
	dehydrogenase					Glyoxylate metabolis	e			-
						Propanoate metabol				
						Metabolic pathways				
						Bios. second. metabo	2			
						NIC.metab. In alverse				
						Glycolysis / Gluconed	1			
	Dibudaelia eullusia e					Citrate cycle (TCA cyc				
						Pyruvate metabolism	Glicolise /			
289	component of nyruvate	СТ	Q59098	2.3.1.12	57	Metabolic pathways	Gliconeogênes	Mitocondria	Transferase	In.
	dehydrogenase complex					Bios. second. metabo	e e			
						NIC.metab. In alverse	2			
290	Dila das listas directors	СТ	P52993		13	Citrate cycle (TCA cyc				
	rosiduo	BC	A0A0H3KE84		45	Lysine degradation				
	sussinultransforaso	AB	Q6F8L2		43	Tryptophan metabol	Ciclo do Ácido			
	component of 2-			2.3.1.61		Metabolic pathways		Citoplasma	Transferase	In./Ex.
	oxoglutarate					Bios. second. metabo				
	dehydrogenase complex					Mic.metab. in diverse	2			
		PC			20	Curbon metabolism Pyrimidine metabolis	Metabolismo			
291	Dihydroorotase	AB	Q6FD29	3.5.2.3	30	Metabolic pathways	de	Indefinido	Hidrolase	In./Ex.
202	Dihydroorotate	BC	A9AJX4	1252	37	Pyrimidine metabolis	Metabolismo	Citereleaner		1
292	dehydrogenase (quinone)	AB	Q6FCL9	1.3.5.2	36	Metabolic pathways	de	Citopiasma	Oxidorredutase	111./EX.
		СТ	Q0K4J3		66	Val., leuc. and isol. bi	<u> </u>			
	Dihudaaaa	AB	Q6FCR9	,	65	Pantothenate and Co	Nastala I			
293	Dinydroxy-acid	ВС	A0A0H3KL02	4.2.1.9	67	Metabolic pathways	Metab. de	Indefinido	Liase	In./Ex.
	uenyuratase					ыоз. secona. metabo	Aminoacidos			
						2-OxocurboxyIIC dCla Biosynthesis of amin	H			
<u> </u>		СТ	Q0K7F8		59	Val., leuc. and isol. bi				
		BC	A0A0H3KQK2		59	Pantothenate and Co				

294	Dihydroxy-acid dehydratase			4.2.1.9		Metabolic pathways Bios. second. metabo	Metab. de Aminoácidos	Indefinido	Liase	In./Ex.
						2-Oxocarboxylic acid	,			
						Biosynthesis of amin				
		СТ	Q0KDI5		99		Replicação e			
295	DNA gyrase subunit A	ВС	A0A0H3KD24	5.99.1.3	96		Reparo de	Citoplasma	lsomerase	In./Ex.
		AB	Q6F956		100		DNA			
		СТ	Q0KFR6		93		Replicação e			
296	DNA gyrase subunit B	ВС	A0A0H3KAZ1	5.99.1.3	91		Reparo de	Citoplasma	lsomerase	In./Ex.
		AB	Q6FG18		92		DNA			
					76	DNA replication	Replicação e			
297	DNA ligase	AB	O6FDW0	6.5.1.2		Base excision repair	Reparo de	Indefinido	Ligase	In./Ex.
						Nucleotide excision re	DNA		8	,
						Mismatch repair	2			
	DNA mismatch renair						Replicação e		Ligação ao	
298	protoin Mutl	AB	Q6F9W0	-	74	Mismatch repair	Reparo de	Indefinido		In./Ex.
							DNA		DINAJKINA	
		ВС	A0A0H3KK24		101	DNA replication	Renlicação e			
299		AB	Q6F883	2777	103	Base excision repair	Roparo do	Indofinido	Transforaço	In /Ex
200	DivA polymerase i			2.7.7.7		Nucleotide excision re		indennido	Transferase	, LA.
						Homologous recomb	DNA			
						DNA replication	Replicação e	DNA/Cromo	Ligação ao	
300	gamma and tau subunit	ВС	A0A0H3KF42	2.7.7.7	85	Mismatch repair	Reparo de	scomo		In./Ex.
	gainina anu tau suburnt					Homologous recomb	DNA	3301110	DNAJKNA	
202		4.0	065046		40		Recombinação	la definida	Ligação ao	6.
302	DNA repair protein RadA	AB	Q6F946	-	49		e Reparo de	indefinido	DNA/RNA	ın.
	DNA cogregation ATPace						Sinalização e	Mombrana		
303	ftal. /an a IIIE anotaina	СТ	Q0KDL9	-	84		Processo			In./Ex.
	ftsk/spollie proteins						Colular	plasmatica	DNA/RNA	
304	DNA topoisomerase 1	ВС	A0A0H3KFQ6	5.6.2.1	97		Replicação e	DNA/Cromo	lsomerase	In./Ex.
		AB	Q6FET8		98		Reparo de	ssomo		,
305	DNA topoisomerase 4	СТ	Q0K8C4	5.6.2.2	85		Replicação e	Membrana	Isomerase	In./Ex.
	subunit A	ВС	A0A0H3KQD1		84		Reparo de	plasmática		
	DNA topoisomerase 4						Replicação e	DNA/Cromo		
306	subunit B	ВС	A0A0H3KGM0	5.6.2.2	73		Reparo de	ssomo	Isomerase	In./Ex.
	Suburne B						DNA	550110		
							Replicação e			
307	DNA topoisomerase III	СТ	Q0K5G1	5.6.2.1	98		Reparo de	Indefinido	lsomerase	In./Ex.
							DNA			
308	DNA-binding protein HU-	ВС	A0A0H3KFG7	_	10		Replicação e	Indefinido	Ligação ao	In /Ex
300	beta	AB	Q6FCD8		9		Reparo de	indennido	DNA/RNA	,LX.
	DNA hinding						Dogulação /Dro			
200	DINA-DINUINg	4.0	OCTOUC			T	Regulação/Pro	Citerral	Ligação ao	1. /F.
309	transcriptional regulator	AB	QOFCHO	-	55	Two-component syst	cessamento	Citopiasma	DNA/RNA	In./EX.
	NtrC						da Transcrição			
	DNA directed DNA	СТ	Q0K645		36		Regulação/Pro			
310		ВС	A9ADL9	2.7.7.6	36	RNA polymerase	cessamento	Citoplasma	Transferase	In./Ex.
	polymerase subunit alpha	AB	Q6F7T7		37		da Transcrição			
	DNA directed BNA	СТ	Q0K606		153		Regulação/Pro			
311	nalymarasa subunit hata	ВС	A9ADI5	2.7.7.6	153	RNA polymerase	cessamento	Citoplasma	Transferase	In./Ex.
	polymerase subunit beta	AB	Q6FF90		151		da Transcrição			
	DNA-directed RNA	СТ	Q0K607		156		Regulação/Pro			
312	polymerase subunit beta'	ВС	A9ADI6	2.7.7.6	156	RNA polymerase	cessamento	Citoplasma	Transferase	In./Ex.
	polymerase subunit beta	AB	Q6FF89		155		da Transcrição			
313	dTDP-glucose 4-6-	ст	006007	12116	30		Indefinido	Indefinido	Liaco	In /Ex
515	dehydratase	C1	QURUP 7	4.2.1.40	29		Indefinido	indennido	LIASE	,LX.
24.5	DUF2059 domain-	<b>D</b> C	40401121/1174		2.1		المراجة: ٢٠٠٠		In a aftin ! -! -	10 /5
314	containing protein	вС	ΑυΑυΗ3ΚΗΖ4	-	21		indefinido	indefinido	indefinido	ITI./EX.
	DUF2760 domain-									
315	containing protein	ВС	A0A0H3KNX1	-	20		Indefinido	Indefinido	Indefinido	In./Ex.
		СТ	Q0K5D5		113	beta-Lactam resistan	Degradação de			
316	Ettlux pump membrane	BC	АОАОНЗКНІЕ	-	115	Cationic antimicrohid	Ácidos graxos	Membrana	Transporte	In./Ex.
	transporter	AB	Q6F8F6		115		e	plasmática		,
	Electron transfer	СТ	Q0KDF9		31		Sinalização e			
317	flavoprotein alpha	ВС	A0A0H3KLU6	-	32		Processo	Citoplasma	Indefinido	In./Ex.
		-								

I	subunit	ΔR	065954	ľ	32	1	Celular			
	Subulit	RC RC			27		Sinalização e			
318	Electron transfer	CT		-	27	+	Processo	Citonlasma	Indefinido	In /Fx
	flavoprotein beta subunit	ΔR	06F953		27		Celular	ereplasma	indefinido	<i>,</i> <u>_</u> ,
	Electron transfer	СT	008007		62		Celulai			
319	flavonrotein-uhiquinone	BC	4040H3K154	1.5.5.1	61	+	Indefinido	Indefinido	Oxidorredutase	In./Ex.
		DC	AUAUIISKJJ4		01		Bios /Metab	Membrana		
320	Elongation factor 4	AB	Q6F9B9	3.6.5.n1	67		Brotoínas	plasmática	Hidrolase	In./Ex.
		ст	00K611		77		FIOLEIIIds	plasmatica		
		CT	00K474		77	÷			Fator de	
321	Flongation factor G				77	+	Bios./Metab.	Citoplasma	Tradução/Flong	In /Fy
		BC BC			77	÷	Proteínas	Citopiasina	2007 210118	111.7 LX.
					70	÷			açau	
		AD	Q0FD30		79				Eator do	
222	Flag gation factor D		005440		21		Bios./Metab.	Citereleaner	Traducão /Flores	1.0 15.
522	Elongation ractor P	АВ	QOFAA9	-	21		Proteínas	Citopiasma	Traduçao/Elong	III./EX.
			00// 117						açao Estor do	
	Flag and an factor To	СТ	QUKA17		31		Bios./Metab.	Citerrate	Falor de	
323	Elongation factor is	BC	A9AIL5	-	31	+	Proteínas	Citopiasma	Traduçao/Elong	In./EX.
		AB	Q6FA54		31				açao Estor do	
224	Flag gation factor To	CT	QUK529		43	+	Bios./Metab.	Citereleaner		1.0 15.
324	Elongation factor Tu	BC	A0A0H3K180	. –	43	+	Proteínas	Citopiasma	raduçao/Elong	In./EX.
		AB	Q6FF97		43				açao	
325	Endopeptidase La	AB	Q6FAA1	3.4.21.53	98		Peptidases e	Indefinido	Hidrolase	In./Ex.
			0.014.070				inibidores			-
		СТ	QOKCE2		46	Glycolysis / Gluconeo				
		ВС	A9AGW2		46	Methane metabolism				
		AB	Q6FAT9		46	Metabolic pathways	Glicolise /			
326	Enolase			4.2.1.11		BIOS. Secona. metabo	Gliconeogênes	Citoplasma	Liase	In./Ex.
						NIC.metab. In alverse	е			
						Carbon metabolism				
						BIOSYNTHESIS OF AMIN				
		20	4041-01			KINA degradation				
		BC	AGALQI		44	Puttanoato motabolio				
	Enovl-[acvl-carrier-	AB	Q6F807		31	Motabolic nathways	Metabolismo			
327	protoinl roductoro			1210		Rios second metabo	de Ácidos	Mitocondria	Ovidorrodutaça	In /Ev
527				1.5.1.5		Mic metah in diverse	graxos/Lipídeo	wittoconuna	Oxidoffedutase	111.7 LX.
	[NADH]					Carbon metabolism	s			
						Eatty acid metabolish				
		СТ	O0K371		21	Fatty acid dearadatic				
		BC	A0A0H3KKC0		28	Val., leuc, and isol, de				
		BC			28	Geraniol dearadation				
		BC			30	Lysine dearadation				
		BC	A0A0H3KPA1		28	Phenylalanine metab				
		20				, Benzoate degradatio				
						Tryptophan metaboli	Dogradação do			
						beta-Alanine metabo	Degradação de			
328	Enoyl-CoA hydratase			4.2.1.17		Aminobenzoate degr	Acidos graxos	Mitocondria	Liase	In./Ex.
						Propanoate metabol	e			
						Butanoate metabolis	Xenobióticos			
						Limonene and pinene				
						Caprolactam degrad				
						Metabolic pathways				
						Bios. second. metabo				
						Mic.metab. in diverse				
						Fatty acid metabolisr				
		l				Fatty acid degradation	1			
		l				Val., leuc. and isol. de				
						Geraniol degradatior				
		l				Lysine degradation	4			
		l				Phenylalanine metab	1			
		l				Benzoate degradatio	1			
	En evil Co A					Iryptophan metaboli	Degradação de			
222			0.01/11/1	4 2 4 1 -	~-	peta-Alanine metabo	Ácidos graxos	Cite 1		_
329	nydratase/carnithine	CT	Q0KAI1	4.2.1.17	27	Aminobenzoate degr	e	Citoplasma	Liase	Ex.
1	racemase					rropanoate metabol				

I		1			I	Butanoate metabolis	xenoploticos			I
						Limonene and pinene				
						Caprolactam degrad				
						Metabolic pathways				
						Bios. second. metabo				
						Mic.metab. in diverse				
						Fatty acid metabolis				
						Fatty acid degradation				
	Enoyl-CoA					Benzoate degradatio	Degradação de			
	hvdratase/Delta(3)-cis-					Butanoate metabolis	Ácidos graxos			
330	delta(2)-trans-enovl-CoA	СТ	Q0KBG3	1.1.1.35	75	Metabolic pathways	e	Mitocondria	Oxidorredutase	In./Ex.
	isomerase					Mic.metab. in diverse	Xenobióticos			
	is officiase					Carbon metabolism				
	5 I.O.A					Fatty acia metabolisi	1			
221	EIIOyI-COA	CT	00/216		20		Indefinide	Indofinida	la o moracio	In ITY
331	nydratase/isomerase	CI	QUKZJ6	-	28		indefinido	indefinido	isomerase	In./EX.
	Frankly protein					Puring matcholism	Motabolismo			
332		AB	Q6F878	3.6.1.11	56	Metabolic nathways	do	Citoplasma	Hidrolase	In./Ex.
	EAD (EMN-containing						de			
333	dehydrogenase	ВС	A0A0H3KHI7	-	149		Indefinido	Indefinido	Oxidorredutase	In./Ex.
	denyarogenase					Fatty acid dearadatio				
						Val., leuc, and isol, de	Degradação de			
334	FadE2-like Acyl-CoA	СТ	Q0KCN9	1.3.8.7	47	Metabolic pathways	Acidos graxos	Mitocondria	Oxidorredutase	In./Ex.
	dehydrogenase (ACAD)					Bios. second. metabo	е			
						Fatty acid metabolis	Xenobióticos			
				1.1.1.35		Fatty acid degradation				
				4.2.1.17	Ι	Val., leuc. and isol. de				
				5.1.2.3	Ι	Geraniol degradation	r			
				5.3.3.8	I	Lysine degradation				
					ļ	Benzoate degradatio	)			
					ļ	Tryptophan metabol				
					ļ	beta-Alanine metabo	Degradação de		Oxidorredutase	
335	Fatty acid oxidation	AB	06FF68		78	Propanoate metabol	Acidos graxos	Mitocondria	s: Liases:	In./Fx.
	complex subunit alpha					Butanoate metabolis	e		Isomerases	,
					ļ	Limonene and pinene	Xenobióticos		10 0 11 10 10 00	
					ļ	Caprolactam degrad				
					ł	Metabolic pathways	4			
					ł	Bios. second. metabo				
					ł	Mic.metab. In alverse	2			
					ł	Eatty acid metabolism				
	Fe/S higgenesis protein						Bios (Metab			
336	Nfu A	AB	Q6FDB8	-	23		Bios./Ivietab.	Indefinido	Indefinido	In./Ex.
	Ferredovin-NADP+	PC	ΔΟΔΟΗ3ΚΒ99	1 1 0 1 7	20		FIOTEILIAS			
337	reductase	AB	06FA76	1.19.1.1	29	1	Indefinido	Indefinido	Oxidorredutase	In./Ex.
		1				Alanine, aspartate ar	1			
1		1				Nitrogen metabolism	2			
220	Ferredoxin-dependent	PC		1 / 1 1 2	172	Metabolic pathways	Metab. de	Mitocondria	Ovidorrodutaça	In /Ex
330	glutamate synthase	ЫС	AUAUNSKIVIPS	1.4.1.15	1/2	Bios. second. metabo	Aminoácidos	MILOCOTIUNA	Oxidoffedulase	<i>III./EX.</i>
						Mic.metab. in diverse				
						Biosynthesis of amin	•			
339	Ferric uptake regulation	ВС	A9AHB4		16	1	Regulação/Pro	Citoplasma	Ligação ao	In./Ex.
<b> </b>	protein	AB	Q6FDQ2		17		cessamento		DNA/RNA	-
	Flp pilus assembly ATPase						Sinalização e			. (-
340	CpaF	СТ	Q0K4T6	7.4.2.8	48		Processo	Indefinido	Translocase	In./Ex.
<b> </b>		<u> </u>				Duration of the start of the	Celular			
1	Formate-dependent	1				Purine metabolism	Metabolismo			
341	phosphoribosylglycinami	AB	Q6FAM6	2.1.2.2	44	Metabolic nother	de	Indefinido	Transferase	In./Ex.
1	de formyltransferase	1				Bios second metabo	Nucleotídeos			
<b> </b>	Formyltetrahydrofolate		1			Glyoxylate metabolic	Metah de			
342	deformulase	AB	Q6FES6	3.5.1.10	34	One carbon nool by t	Carbo	Citoplasma	Hidrolase	In./Ex.
<u> </u>		BC	A9AEN5		37	Glycolysis / Gluconec				
1		СТ	QOKCYO		38	Pentose phosphate r	5			
	•	-	-	-				•	•	

343	Fructose-1,6- bisphosphatase class 1			3.1.3.11		Fructose and manno Methane metabolism Carbon fixation in ph Metabolic pathways Bios. second. metabo Mic.metab. in diverse Carbon metabolism	Glicolise / Gliconeogênes e	Citoplasma	Hidrolase	In./Ex.
344	Fructose-1,6- bisphosphate aldolase	<u>СТ</u> ВС АВ	Q0KE54 A0A0H3KHA3 Q6FB10	4.1.2.13	38 39 37	Glycolysis / Gluconec Pentose phosphate p Fructose and manno Methane metabolism Carbon fixation in ph Metabolic pathways Bios. second. metabol Mic.metab. in diverse Carbon metabolism Biosynthesis of amin	Glicolise / Gliconeogênes e	Citoplasma	Liase	In./Ex.
345	protein	ВС	A0A0H3KNT5	-	16		Carbo.	Indefinido	Isomerase	In./Ex.
346	Fumarate hydratase class I	CT BC AB	Q0K8Q6 A0A0H3KKU5 Q6FEP4	4.2.1.2	55 55 55	Citrate cycle (TCA cyc Pyruvate metabolism Metabolic pathways Bios. second. metabo Mic.metab. in diverse Carbon metabolism	Ciclo do Ácido Tricarboxílico	Citoplasma	Liase	In./Ex.
347	Fumarate hydratase class Il	BC AB	A0A0H3KI30 Q6FB44	4.2.1.2	50 50	Citrate cycle (TCA cyc Pyruvate metabolism Metabolic pathways Bios. second. metabo Mic.metab. in diverse Carbon metabolism	Ciclo do Ácido Tricarboxílico	Citoplasma	Liase	In./Ex.
348	GacS-like sensor kinase protein	AB	Q6F844	2.7.13.3	107	Two-component syst	Proc. de Info. Ambiental	Membrana plasmática	Transferase	In./Ex.
349	Gamma-glutamyl phosphate reductase	AB	Q6FEN5	1.2.1.41	46	Arginine and proline Carbapenem biosynt Metabolic pathways Bios. second. metabo Biosynthesis of amin	Metab. de Aminoácidos	Citoplasma	Oxidorredutase	In./Ex.
350	Gamma- glutamyltranspeptidase	вС	A0A0H3KL34	2.3.2.2 3.4.19.13	62	Taurine and hypotau Cyanoamino acid me Glutathione metabol Metabolic pathways	Metab. de Aminoácidos	Citoplasma	Transferase; Hidrolase	In./Ex.
351	Glucokinase	ВС	A0A0H3KLD8	2.7.1.2	69	Glycolysis / Gluconec Galactose metabolis Starch and sucrose n Amino sugar and nu Streptomycin biosynt Metabolic pathways Bios. second. metabo Mic.metab. in diverse Carbon metabolism	Glicolise / Gliconeogênes e	Citoplasma	Transferase	In./Ex.
352	Glucosamine-6- phosphate isomerase	вС	АОАОНЗКМВ8	2.6.1.16	35	Alanine, aspartate an Amino sugar and nu Metabolic pathways	Metab. de Carbo.	Citoplasma	Transferase	In./Ex.
353	Glucose-6-phosphate 1- dehydrogenase	CT BC BC	Q0JY26 A0A0H3KNY2 A0A0H3KCQ6	<u>1.1.1.49</u> <u>1.1.1.363</u>	54 55 55	Pentose phosphate p Glutathione metabol Metabolic pathways Bios. second. metabo Mic.metab. in diverse Carbon metabolism	Metab. de Carbo.	Citoplasma	Oxidorredutase	In./Ex.
354	Glucose-6-phosphate isomerase	вс	A9AJR8	5.3.1.9	59	Glycolysis / Gluconec Pentose phosphate p Starch and sucrose n Amino sugar and nu Metabolic pathways Bios. second. metabo	Glicolise / Gliconeogênes e	Citoplasma	lsomerase	In./Ex.

						Mic.metab. in diverse				
						Carbon metabolism				
						Arginine and proline				
						Carbapenem biosynt	Matab da			
355	Glutamate 5-kinase	AB	Q6F9D9	2.7.2.11	41	Metabolic pathways		Citoplasma	Transferase	In./Ex.
						Bios. second. metabo	Aminoacidos			
						Biosynthesis of amin				
		СТ	Q0JZU7		48	Arginine biosynthesis	ō			
	Clutamata	AB	Q6FD67		49	Alanine, aspartate ar	Matab da			
356				1.4.1.4		Nitrogen metabolism		Citoplasma	Oxidorredutase	In./Ex.
	denydrogenase					Metabolic pathways	Aminoacidos			
						Mic.metab. in diverse				
	Glutamate						Metab. de			. /=
357	dehydrogenase	ВС	A0A0H3KM91	1.4.1.4	179		Aminoácidos	Citoplasma	Oxidorredutase	In./Ex.
	, , ,					Alanine, aspartate ar				
						Nitrogen metabolism				
	Glutamate synthase	CT	00%670	4 4 4 4 2	5.2	Metabolic pathways	Metab. de	Charles		<b>F</b> .
358	[NADPH] small chain	CI	QUK673	1.4.1.13	53	Bios. second. metabo	Aminoácidos	Citopiasma	Oxidorredutase	EX.
						Mic.metab. in diverse				
						Biosynthesis of amin				
						Alanine, aspartate ar				
	Glutamate synthase					Nitrogen metabolism				
250	[NADPH], Glutamate	CT	00/(72	1 1 1 1 2	175	Metabolic pathways	Metab. de	Citeralesme	Ouiderredutees	<b>F</b>
359	synthase	CI	QUK672	1.4.1.13	175	Bios. second. metabo	Aminoácidos	Citopiasma	Oxidorredutase	EX.
	amidotransferase domain					Mic.metab. in diverse				
						Biosynthesis of amin				
						Alanine, aspartate ar				
						Nitrogen metabolism				
260	Glutamate synthase large		0007777	1 4 1 1 2	100	Metabolic pathways	Metab. de	Citereleaner	Ouidemadutees	10 15.
360	chain	AB	Q6F7E7	1.4.1.13	163	Bios. second. metabo	Aminoácidos	Citopiasma	Oxidorredutase	In./EX.
						Mic.metab. in diverse				
						Biosynthesis of amin				
						Alanine, aspartate ar				
						Nitrogen metabolism				
261	Glutamate synthase small	٨D	065759	1 / 1 1 2	50	Metabolic pathways	Metab. de	Citoplasma	Ovidorrodutaso	In /Ev
301	chain	AD	QUF7Lo	1.4.1.15	52	Bios. second. metabo	Aminoácidos	Citopiasina	Oxidoffedulase	111./LX.
						Mic.metab. in diverse				
						Biosynthesis of amin				
		СТ	Q0K926		52	Porphyrin and chloro				
		ВС	A9AHQ3		52	Aminoacyl-tRNA bios	Biossíntese de			
362	GlutamatetRNA ligase	AB	Q6F7C8	6.1.1.17	58	Metabolic pathways	Aminoacil-	Citoplasma	Ligase	In./Ex.
						Bios. second. metabo	tRNA			
<u> </u>		<u> </u>				Mic.metab. in diverse				
	Glutamate-1-	ВС	A9AEU0		45	Porphyrin and chloro				
363	semialdehyde 2,1-	AB	Q6FCY1	5.4.3.8	46	Metabolic pathways	Bios. Metab.	Citoplasma	Transferase	In./Ex.
	aminomutase	<u> </u>				Bios. second. metabo	secundários	1		,,
<u> </u>						Mic.metab. in diverse				
364	Giutamate/aspartate	AB	Q6FAP2	7.4.2.1	28	ABC transporters	Proc. de Into.	Membrana	Translocase	In./Ex.
	transport protein (ABC					IWO-component syst	Ambiental	plasmática		
365	Giutamate/aspartate	AB	Q6FAN9	-	32	ABC transporters	Proc. de Into.	iviembrana	Transporte	In./Ex.
┣──	transport protein (ABC	<b>CT</b>	00//000			iwo-component syst	Ambiental	plasmática		
360	Glutamina synthetese		QUK99U	5112	52	Ammoberizoate aegr		Citoplasme	komoraca	In ITY
300	Giutanine synthetase	BC	AUAUH3KKR5	5.4.4.3	52	which metab. In alverse	Aciuos graxos	Citopiasma	isomerase	ш./EX.
	Glutamine-fructose-6	AB			52	Alanino acnostato -	е			
367	nhocnhato			26116	66	Amino sugar and pur	Metab. de	Citoplasma	Transferaço	In /Fv
307	aminotransforaça	BC	AUAUH3KBQ2	2.0.1.10	60 60	Metabolic nathways	Aminoácidos	Citopiasilid	TIGITSTELDSE	/ĽX.
<u> </u>	Glutamine-dependent	АВ	<u>υ</u> σγουδ		80	Nicotingte and nicot	Metab Cofat			
368	NAD(+) cynthotoso	AB	Q6F8K4	6.3.5.1	61	Metabolic nathways	o Vitaminas	Citoplasma	Ligase	In./Ex.
	$Glutamyl+tRN\Delta(Gln)$			6257		Aminoacyl_tRNA bios	Biossíntese do			
369	amidatransforaça cubunit	ВС	A9AC51	6356	53	Metabolic nathway	Aminoacil	Citoplasma	Ligase	In./Ex.
	amuotransferase subunit			0.5.5.0			Rios Motob			
370	Glutaredoxin	AB	Q6FCV2	-	13		Drotoir	Citoplasma	Chaperona	In./Ex.
┣───		CT	004745			Eatty acid doorodatio	Proteinas			
				,	44	rutty utilu uegradatio	1			
		вС	AUAUH3KH47	,	43	Lysine degradation	Degradação de			
I	Glutan/LCoA	L		,		benzoute degradatio	Áridas gravas		l	

371	dehydrogenase			1.3.8.6		Tryptophan metaboli	Αυίους βιάλος Α	Indefinido	Oxidorredutase	In./Ex.
	uchydrogenuse					Metabolic pathways	Xenobióticos			
						Bios. second. metabo				
						Glutathione metabol				
372	Glutathione peroxidase	AB	O6FAL9	1.11.1.9	18	Arachidonic acid met	Resp. Estresse	Indefinido	Oxidorredutase	In./Fx.
			0,017,120			Metabolic pathways				,
		ВС	A0A0H3KRK7		35	Cysteine and methior	Mataka da			
373	Glutathione synthetase	AB	Q6F702	6.3.2.3	35	Glutathione metabol	Metab. de	Citoplasma	ligase	In./Ex.
						Metabolic pathways	Aminoacidos			
		СТ	Q0K700		36	Glycolysis / Gluconeo				
		ВС	A0A0H3KBV8		36	Carbon fixation in ph				
	Glyceraldehyde-3-	AB	Q6F9D5		53	Metabolic pathways	Glicolise /			
374	phosphate			1.2.1.12		Bios. second. metabo	Gliconeogênes	Indefinido	Ligase	In./Ex.
	dehydrogenase					Mic.metab. in diverse	е			
						Carbon metabolism				
						Biosynthesis of amin				
						Giycolysis / Glucolled				
	Glyceraldehyde-3-					Metabolic nathways	Glicolise /			
375	nhosnhate	ст	P50322	1 2 1 1 2	36	Bios second metabo	Gliconeogênes	Indefinido	Ovidorredutase	In /Fx
	dehydrogenase plasmid	01	1 30322	<u> 1.2.11.12</u>	50	Mic.metab. in diverse	A	indefinido	Oxidon cuutuse	<i>, </i>
	a ciryarogenase, plasinia					Carbon metabolism				
						Biosynthesis of amin				
						Glycerolipid metaboli	Metabolismo			
376	Glycerol-3-phosphate	٨D	065700	22115	07	Glycerophospholipid	de Ácidos	Membrana	Transforaço	In /Ex
570	acyltransferase	AD	QUF/QU	2.3.1.13	57	Metabolic pathways	graxos/Lipídeo	plasmática	Indifsterase	111./LX.
						Bios. second. metabo	S			
377	Glycerol-3-phosphate	AB	Q3V7H1	1.1.1.94	39	Glycerophospholipid	Metabolismo	Citoplasma	Oxidorredutase	In./Ex.
	dehydrogenase			-		Bios. second. metabo	de Ácidos			,
							Regulação/Pro			
378	Glycerol-3-phosphate	BC	A0A0H3KHF0	-	29		cessamento	Indefinido	Ligação ao	In./Fx.
	regulon repressor						da Transcrição		DNA/RNA	,
							aa manooniyaa			
						Glycine, serine and th				
270	Glycine dehydrogenase	CT	00//5 02	1 4 4 2	105	Glyoxylate metabolis	Metab. de	Citereleaner		5
379	(decarboxylating)	CI	QUK5P3	1.4.4.2	105	Nietabolic pathways	Aminoácidos	Citopiasma	Oxidorredutase	EX.
						Bios. second. metabolism				
	GlycinetRNA ligase	PC	ΔΟΔΟΗ3ΚΒ8Ο		20	Aminoacyl-tRNA hios	Biossíntese de			
380	alnha suhunit	$\Delta R$	06F7L9	6.1.1.14	37		Aminoacil-	Citoplasma	ligase	In./Ex.
		710	Q01725		57		Biossíntese de			
381	GlycinetRNA ligase beta	AB	06F7L8	6.1.1.14	75	Aminoacyl-tRNA bios	Aminoacil-	Citoplasma	ligase	In./Fx.
	subunit		0,017 20	01212121			tRNA	encephaema	Bas c	,
		СТ	O0KA43		60	Purine metabolism	Metabolismo			
382	GMP synthase [glutamine-	BC	A9AIP4	6.3.5.2	59	Metabolic pathways	de	Indefinido	ligase	In./Ex.
	hydrolyzing	AB	Q6FFN2		61	· · · ·	Nucleotídeos		Ũ	-
	GntR family									
	transcriptional repressor						Regulação/Pro		Ligação ao	. /=
383	for pyruvate	ВС	A0A0H3K181	-	28		cessamento	Indefinido	DNA/RNA	In./Ex.
	dehydrogenase complex						da Transcrição			
	, , , ,						Metab. Cofat.			
384	GTP cycloHidrolase 1	ВС	A0A0H3KJ71	3.5.4.16	23	Tetrahydrofolate bios	e Vitaminas	Indefinido	Hidrolase	In./Ex.
	GTP pyrophosphokinase	l								
	(ATP:GTP 3'-	l				Purine metabolism	Metabolismo			
385	pyrophosphotransferase)	AB	O6F848	2.7.6.5	88		de	Citoplasma	Transferase	In./Ex.
	(PpGpp synthetase I)					NA -t - h - l' th	Nucleotídeos			,
	((P)ppGpp synthetase)					wietabolic pathways				
<u> </u>		<b>C</b> T	00//054		67				Fator de	
386	GIP-binding elongation	CT	QUK9D1	-	67	ļ	Bios./Metab.	Indefinido	Tradução/Elong	In./Ex.
	tactor tamily protein	AB	Q6FE94		68		Proteinas		acão	
387	GTP-binding protein	ВС	A0A0H3KN51	-	68		Indefinido	Indefinido	Indefinido	In./Ex.
380	GTPase Der			_	51		Metabolismo	Indefinida	GTDaco	In /Fv
200		AD	QUELLS	-	54		de RNA	indenniuo	UIFase	/EX.

-		-								-
389	GTPase Era	BC	A0A0H3KI63	-	33		Metabolismo	Citoplasma	GTPase	In./Ex.
		AB	QOF9C3		39		<u>de KNA</u>			
		CT	QUK6P6		40		Metabolismo			
390	GTPase Obg	ВС	A9AI60	-	40		do RNA	Citoplasma	GTPase	In./Ex.
		AB	Q6F9D8		44		uenna			
204			101010101017	2740	25	Purine metabolism	Metabolismo		<b>T</b> (	. /=
391	Guanylate kinase	вс	AUAUH3KD17	2.7.4.8	25	Metabolic pathways	ab	Citopiasma	Transferase	In./EX.
						Chlorocyclohevane a	Degradação de			
392	Haloacetate dehalogenase	ВС	A0A0H3KBF0	3.8.1.3	33	Chloroalkane and ch	Acidos graxos	Indefinido	Hidrolase	In./Ex.
						Metabolic pathways	е			,
						Mic.metab. in diverse	Xenobióticos			
							Achobioticos			
	Heat-inducible						Regulação/Pro		1	
393	transcription repressor	BC	A9AGC4	-	37		cessamento	Indefinido	Ligação ao	In /Fx
					0.				DNA/RNA	,
	піса						ua franscrição			
	Hemolysin									
					60					. /-
394	activation/secretion	BC	AUAUH3KEV3	-	60		Indefinido	Indefinido	Indefinido	In./Ex.
	protein									
	Hemolysin									
395	activation (socration	pr			61		Bios./Metab.	Indofinido	Indofinido	In /Ev
355	activation/secretion	BC	AUAUTISKIVIAU	-	04		Proteínas	indennuo	indennido	<i></i>
	protein									
						Histidine metabolism				
	Histidine biosynthesis					Metabolic pathways	Metab. de			. /-
396	hifunctional protein HislF	AB	Q6FF30	3.5.4.19	29	Bios second metabo	Aminoácidos	Citoplasma	Hidrolase	In./Ex.
						Biosunthosis of amin	Aminoacidos			
						Biosynthesis of unnin				
							Biossintese de			
397	HistidinetRNA ligase	ВС	A9AGZ7	6.1.1.21	50	Aminoacyl-tRNA bios	Aminoacil-	Citoplasma	ligase	In./Ex.
	_						†RNA	-	-	
		СТ	008687		40	Histidine metabolism	critici			
		CI	000007		48		Matab da			
398	Histidinol dehydrogenase	ВС	Q845V3	1.1.1.23	47	Metabolic pathways	wielab. de	Indefinido	Oxidorredutase	In./Ex.
	, , ,	AB	Q6FEC8	-	47	Bios. second. metabo	Aminoácidos			,
						Biosynthesis of amin				
								DNA/Cromo	Ligação ao	
399	Histone H1-like protein	вС	A0A0H3KKG0	-	20		Indefinido	DNA/Cromo	Ligação ao	In./Ex.
399	Histone H1-like protein	ВС	A0A0H3KKG0	-	20		Indefinido	DNA/Cromo ssomo	Ligação ao DNA/RNA	In./Ex.
399 400	Histone H1-like protein Histone-like DNA-binding	BC BC	A0A0H3KKG0	-	20 15		Indefinido	DNA/Cromo ssomo	Ligação ao DNA/RNA Ligação ao	In./Ex. In /Ex
399 400	Histone H1-like protein Histone-like DNA-binding protein	BC BC	A0A0H3KKG0 A0A0H3KU30	-	20 15		Indefinido Indefinido	DNA/Cromo ssomo Indefinido	Ligação ao DNA/RNA Ligação ao DNA/RNA	In./Ex. In./Ex.
399 400	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing	BC BC	A0A0H3KKG0 A0A0H3KU30	-	20 15		Indefinido Indefinido	DNA/Cromo ssomo Indefinido	Ligação ao DNA/RNA Ligação ao DNA/RNA	In./Ex. In./Ex.
399 400 401	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing	BC BC AB	A0A0H3KKG0 A0A0H3KU30 Q6FCE9	-	20 15 16		Indefinido Indefinido Indefinido	DNA/Cromo ssomo Indefinido Indefinido	Ligação ao DNA/RNA Ligação ao DNA/RNA Indefinido	In./Ex. In./Ex. In./Ex.
399 400 401	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing protein	BC BC AB	A0A0H3KKG0 A0A0H3KU30 Q6FCE9	-	20 15 16		Indefinido Indefinido Indefinido	DNA/Cromo ssomo Indefinido Indefinido	Ligação ao DNA/RNA Ligação ao DNA/RNA Indefinido	In./Ex. In./Ex. In./Ex.
399 400 401	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing protein Holliday junction ATP-	BC BC AB	A0A0H3KKG0 A0A0H3KU30 Q6FCE9	-	20 15 16		Indefinido Indefinido Indefinido Recombinação	DNA/Cromo ssomo Indefinido Indefinido	Ligação ao DNA/RNA Ligação ao DNA/RNA Indefinido	In./Ex. In./Ex. In./Ex.
399 400 401 402	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing protein Holliday junction ATP- dependent DNA helicase	BC BC AB AB	A0A0H3KKG0 A0A0H3KU30 Q6FCE9 Q6F991	3.6.4.12	20 15 16 37	Homologous recomb	Indefinido Indefinido Indefinido Recombinação e Reparo de	DNA/Cromo ssomo Indefinido Indefinido	Ligação ao DNA/RNA Ligação ao DNA/RNA Indefinido Hidrolase	In./Ex. In./Ex. In./Ex. In./Ex.
399 400 401 402	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing protein Holliday junction ATP- dependent DNA helicase RuvB	BC BC AB AB	A0A0H3KKG0 A0A0H3KU30 Q6FCE9 Q6F991	3.6.4.12	20 15 16 37	Homologous recomb	Indefinido Indefinido Indefinido Recombinação e Reparo de DNA	DNA/Cromo ssomo Indefinido Indefinido Indefinido	Ligação ao DNA/RNA Ligação ao DNA/RNA Indefinido Hidrolase	In./Ex. In./Ex. In./Ex. In./Ex.
399 400 401 402	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing protein Holliday junction ATP- dependent DNA helicase RuvB	BC BC AB AB	A0A0H3KKG0 A0A0H3KU30 Q6FCE9 Q6F991	3.6.4.12	20 15 16 37	Homologous recomb	Indefinido Indefinido Indefinido Recombinação e Reparo de DNA Metab. de	DNA/Cromo ssomo Indefinido Indefinido Indefinido	Ligação ao DNA/RNA Ligação ao DNA/RNA Indefinido Hidrolase	In./Ex. In./Ex. In./Ex.
<ul> <li>399</li> <li>400</li> <li>401</li> <li>402</li> <li>403</li> </ul>	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing protein Holliday junction ATP- dependent DNA helicase RuvB Homocysteine synthase	BC BC AB AB AB	A0A0H3KKG0 A0A0H3KU30 Q6FCE9 Q6F991 Q6F7B9	- - 3.6.4.12 2.5.1.49	20 15 16 37 46	Homologous recomb	Indefinido Indefinido Indefinido Recombinação e Reparo de DNA Metab. de	DNA/Cromo ssomo Indefinido Indefinido Indefinido Citoplasma	Ligação ao DNA/RNA Ligação ao DNA/RNA Indefinido Hidrolase Transferase	In./Ex. In./Ex. In./Ex. In./Ex.
<ul> <li>399</li> <li>400</li> <li>401</li> <li>402</li> <li>403</li> </ul>	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing protein Holliday junction ATP- dependent DNA helicase RuvB Homocysteine synthase	BC BC AB AB AB	A0A0H3KKG0 A0A0H3KU30 Q6FCE9 Q6F991 Q6F7B9	- - 3.6.4.12 2.5.1.49	20 15 16 37 46	Homologous recomb Cysteine and methior Metabolic pathways	Indefinido Indefinido Indefinido Recombinação e Reparo de DNA Metab. de Aminoácidos	DNA/Cromo ssomo Indefinido Indefinido Citoplasma	Ligação ao DNA/RNA Ligação ao DNA/RNA Indefinido Hidrolase Transferase	In./Ex. In./Ex. In./Ex. In./Ex.
399 400 401 402 403	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing protein Holliday junction ATP- dependent DNA helicase RuvB Homocysteine synthase	BC BC AB AB AB BC	A0A0H3KKG0 A0A0H3KU30 Q6FCE9 Q6F991 Q6F7B9 A0A0H3KK04	- - 3.6.4.12 2.5.1.49	20 15 16 37 46 47	Homologous recomb Cysteine and methior Metabolic pathways Glycine, serine and th	Indefinido Indefinido Indefinido Recombinação e Reparo de DNA Metab. de Aminoácidos	DNA/Cromo ssomo Indefinido Indefinido Citoplasma	Ligação ao DNA/RNA Ligação ao DNA/RNA Indefinido Hidrolase Transferase	In./Ex. In./Ex. In./Ex. In./Ex.
399 400 401 402 403	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing protein Holliday junction ATP- dependent DNA helicase RuvB Homocysteine synthase	BC BC AB AB AB BC AB	A0A0H3KKG0 A0A0H3KU30 Q6FCE9 Q6F991 Q6F7B9 A0A0H3KK04 Q6FFC8	- - 3.6.4.12 2.5.1.49	20 15 16 37 46 47 47	Homologous recomb Cysteine and methior Metabolic pathways Glycine, serine and th Cysteine and methior	Indefinido Indefinido Indefinido Recombinação e Reparo de DNA Metab. de Aminoácidos	DNA/Cromo ssomo Indefinido Indefinido Citoplasma	Ligação ao DNA/RNA Ligação ao DNA/RNA Indefinido Hidrolase Transferase	In./Ex. In./Ex. In./Ex. In./Ex.
399 400 401 402 403	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing protein Holliday junction ATP- dependent DNA helicase RuvB Homocysteine synthase	BC BC AB AB AB BC AB	A0A0H3KKG0 A0A0H3KU30 Q6FCE9 Q6F991 Q6F7B9 A0A0H3KK04 Q6FFC8	- - 3.6.4.12 2.5.1.49	20 15 16 37 46 47 47	Homologous recomb Cysteine and methior Metabolic pathways Glycine, serine and th Cysteine and methior Lysine biosynthesis	Indefinido Indefinido Indefinido Recombinação e Reparo de DNA Metab. de Aminoácidos	DNA/Cromo ssomo Indefinido Indefinido Citoplasma	Ligação ao DNA/RNA Ligação ao DNA/RNA Indefinido Hidrolase Transferase	In./Ex. In./Ex. In./Ex. In./Ex.
<ul> <li>399</li> <li>400</li> <li>401</li> <li>402</li> <li>403</li> <li>404</li> </ul>	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing protein Holliday junction ATP- dependent DNA helicase RuvB Homocysteine synthase	BC AB AB AB BC AB	A0A0H3KKG0 A0A0H3KU30 Q6FCE9 Q6F991 Q6F7B9 A0A0H3KK04 Q6FFC8	3.6.4.12	20 15 16 37 46 47 47	Homologous recomb Cysteine and methior Metabolic pathways Glycine, serine and th Cysteine and methior Lysine biosynthesis Metabolic pathways	Indefinido Indefinido Recombinação e Reparo de DNA Metab. de Aminoácidos	DNA/Cromo ssomo Indefinido Indefinido Citoplasma	Ligação ao DNA/RNA Ligação ao DNA/RNA Indefinido Hidrolase Transferase	In./Ex. In./Ex. In./Ex. In./Ex.
399 400 401 402 403 404	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing protein Holliday junction ATP- dependent DNA helicase RuvB Homocysteine synthase Homoserine dehydrogenase	BC BC AB AB AB BC AB	A0A0H3KKG0 A0A0H3KU30 Q6FCE9 Q6F991 Q6F7B9 A0A0H3KK04 Q6FFC8	- - 3.6.4.12 2.5.1.49 1.1.1.3	20 15 16 37 46 47 47	Homologous recomb Cysteine and methior Metabolic pathways Glycine, serine and th Cysteine and methior Lysine biosynthesis Metabolic pathways	Indefinido Indefinido Indefinido Recombinação e Reparo de DNA Metab. de Aminoácidos	DNA/Cromo ssomo Indefinido Indefinido Citoplasma Indefinido	Ligação ao DNA/RNA Ligação ao DNA/RNA Indefinido Hidrolase Transferase Oxidorredutase	In./Ex. In./Ex. In./Ex. In./Ex.
399 400 401 402 403 404	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing protein Holliday junction ATP- dependent DNA helicase RuvB Homocysteine synthase Homoserine dehydrogenase	BC BC AB AB BC AB	A0A0H3KKG0 A0A0H3KU30 Q6FCE9 Q6F991 Q6F7B9 A0A0H3KK04 Q6FFC8	- - 3.6.4.12 2.5.1.49 1.1.1.3	20 15 16 37 46 47 47	Homologous recomb Cysteine and methior Metabolic pathways Glycine, serine and th Cysteine and methior Lysine biosynthesis Metabolic pathways Bios. second. metabo	Indefinido Indefinido Recombinação e Reparo de DNA Metab. de Aminoácidos	DNA/Cromo ssomo Indefinido Indefinido Citoplasma Indefinido	Ligação ao DNA/RNA Ligação ao DNA/RNA Indefinido Hidrolase Transferase Oxidorredutase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
399 400 401 402 403 404	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing protein Holliday junction ATP- dependent DNA helicase RuvB Homocysteine synthase Homoserine dehydrogenase	BC BC AB AB AB BC AB	A0A0H3KKG0 A0A0H3KU30 Q6FCE9 Q6F991 Q6F7B9 A0A0H3KK04 Q6FFC8	- - 3.6.4.12 2.5.1.49 1.1.1.3	20 15 16 37 46 47 47	Homologous recomb Cysteine and methior Metabolic pathways Glycine, serine and th Cysteine and methior Lysine biosynthesis Metabolic pathways Bios. second. metabo Mic.metab. in diverse	Indefinido Indefinido Indefinido Recombinação e Reparo de DNA Metab. de Aminoácidos Metab. de Aminoácidos	DNA/Cromo ssomo Indefinido Indefinido Citoplasma Indefinido	Ligação ao DNA/RNA Ligação ao DNA/RNA Indefinido Hidrolase Transferase Oxidorredutase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
399 400 401 402 403 404	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing protein Holliday junction ATP- dependent DNA helicase RuvB Homocysteine synthase Homoserine dehydrogenase	BC BC AB AB BC AB	A0A0H3KKG0 A0A0H3KU30 Q6FCE9 Q6F991 Q6F7B9 A0A0H3KK04 Q6FFC8	- - 3.6.4.12 2.5.1.49 1.1.1.3	20 15 16 37 46 47 47	Homologous recomb Cysteine and methior Metabolic pathways Glycine, serine and th Cysteine and methior Lysine biosynthesis Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amin	Indefinido Indefinido Indefinido Recombinação e Reparo de DNA Metab. de Aminoácidos Metab. de Aminoácidos	DNA/Cromo ssomo Indefinido Indefinido Citoplasma Indefinido	Ligação ao DNA/RNA Ligação ao DNA/RNA Indefinido Hidrolase Transferase Oxidorredutase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
399 400 401 402 403 404	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing protein Holliday junction ATP- dependent DNA helicase RuvB Homocysteine synthase Homoserine dehydrogenase	BC BC AB AB BC AB	A0A0H3KKG0 A0A0H3KU30 Q6FCE9 Q6F991 Q6F7B9 A0A0H3KK04 Q6FFC8	- - 3.6.4.12 2.5.1.49 1.1.1.3 2.3.1.46	20 15 16 37 46 47 47	Homologous recomb Cysteine and methior Metabolic pathways Glycine, serine and th Cysteine and methior Lysine biosynthesis Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amine Cysteine and methior	Indefinido Indefinido Indefinido Recombinação e Reparo de DNA Metab. de Aminoácidos Metab. de Aminoácidos	DNA/Cromo ssomo Indefinido Indefinido Citoplasma Indefinido	Ligação ao DNA/RNA Ligação ao DNA/RNA Indefinido Hidrolase Transferase Oxidorredutase	In./Ex. In./Ex. In./Ex. In./Ex.
399 400 401 402 403 404	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing protein Holliday junction ATP- dependent DNA helicase RuvB Homocysteine synthase Homoserine dehydrogenase	BC BC AB AB BC AB	A0A0H3KKG0 A0A0H3KU30 Q6FCE9 Q6F991 Q6F7B9 A0A0H3KK04 Q6FFC8	- - 3.6.4.12 2.5.1.49 1.1.1.3 2.3.1.46 2.3.1.31	20 15 16 37 46 47 47	Homologous recomb Cysteine and methior Metabolic pathways Glycine, serine and th Cysteine and methior Lysine biosynthesis Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amino Cysteine and methior Sulfur metabolism	Indefinido Indefinido Indefinido Recombinação e Reparo de DNA Metab. de Aminoácidos Metab. de	DNA/Cromo ssomo Indefinido Indefinido Citoplasma Indefinido	Ligação ao DNA/RNA Ligação ao DNA/RNA Indefinido Hidrolase Transferase Oxidorredutase	In./Ex. In./Ex. In./Ex. In./Ex.
399 400 401 402 403 404	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing protein Holliday junction ATP- dependent DNA helicase RuvB Homocysteine synthase Homoserine dehydrogenase	BC BC AB AB BC AB BC BC	A0A0H3KKG0 A0A0H3KU30 Q6FCE9 Q6F991 Q6F7B9 A0A0H3KK04 Q6FFC8 	- - 3.6.4.12 2.5.1.49 1.1.1.3 2.3.1.46 2.3.1.31	20 15 16 37 46 47 47 47 	Homologous recomb Cysteine and methior Metabolic pathways Glycine, serine and th Cysteine and methior Lysine biosynthesis Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amino Cysteine and methior Sulfur metabolism Metabolic pathways	Indefinido Indefinido Indefinido Recombinação e Reparo de DNA Metab. de Aminoácidos Metab. de Aminoácidos	DNA/Cromo ssomo Indefinido Indefinido Citoplasma Indefinido	Ligação ao DNA/RNA Ligação ao DNA/RNA Indefinido Hidrolase Transferase Oxidorredutase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
399 400 401 402 403 404 404	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing protein Holliday junction ATP- dependent DNA helicase RuvB Homocysteine synthase Homoserine dehydrogenase	BC AB AB BC AB BC BC	A0A0H3KKG0 A0A0H3KU30 Q6FCE9 Q6F991 Q6F7B9 A0A0H3KK04 Q6FFC8 	- - 3.6.4.12 2.5.1.49 1.1.1.3 2.3.1.46 2.3.1.31	20 15 16 37 46 47 47 47 47 47	Homologous recomb Cysteine and methior Metabolic pathways Glycine, serine and th Cysteine and methior Lysine biosynthesis Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amino Cysteine and methior Sulfur metabolism Metabolic pathways Bios second. metabo	Indefinido Indefinido Indefinido Recombinação e Reparo de DNA Metab. de Aminoácidos Metab. de Aminoácidos	DNA/Cromo ssomo Indefinido Indefinido Citoplasma Indefinido	Ligação ao DNA/RNA Ligação ao DNA/RNA Indefinido Hidrolase Transferase Oxidorredutase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
399 400 401 402 403 404 404	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing protein Holliday junction ATP- dependent DNA helicase RuvB Homocysteine synthase Homoserine dehydrogenase	BC AB AB BC AB BC BC	A0A0H3KKG0 A0A0H3KU30 Q6FCE9 Q6F991 Q6F7B9 A0A0H3KK04 Q6FFC8 	- - 3.6.4.12 2.5.1.49 1.1.1.3 2.3.1.46 2.3.1.31	20 15 16 37 46 47 47 47 47 47 42	Homologous recomb Cysteine and methior Metabolic pathways Glycine, serine and th Cysteine and methior Lysine biosynthesis Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amino Cysteine and methior Sulfur metabolism Metabolic pathways Bios. second. metabo Bios. second. metabo	Indefinido Indefinido Indefinido Recombinação e Reparo de DNA Metab. de Aminoácidos Metab. de Aminoácidos	DNA/Cromo ssomo Indefinido Indefinido Citoplasma Indefinido	Ligação ao DNA/RNA Ligação ao DNA/RNA Indefinido Hidrolase Transferase Oxidorredutase Transferase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
399 400 401 402 403 404 405	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing protein Holliday junction ATP- dependent DNA helicase RuvB Homocysteine synthase Homoserine dehydrogenase	BC AB AB BC AB BC BC BC	A0A0H3KKG0 A0A0H3KU30 Q6FCE9 Q6F991 Q6F7B9 A0A0H3KK04 Q6FFC8 A0A0H3KK04 Q6FFC8	- - 3.6.4.12 2.5.1.49 1.1.1.3 2.3.1.46 2.3.1.31	20 15 16 37 46 47 47 47 47 47	Homologous recomb Cysteine and methior Metabolic pathways Glycine, serine and th Cysteine and methior Lysine biosynthesis Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amino Cysteine and methior Sulfur metabolism Metabolic pathways Bios. second. metabo Biosynthesis of amino	Indefinido Indefinido Indefinido Recombinação e Reparo de DNA Metab. de Aminoácidos Metab. de Aminoácidos	DNA/Cromo ssomo Indefinido Indefinido Citoplasma Indefinido	Ligação ao DNA/RNA Ligação ao DNA/RNA Indefinido Hidrolase Transferase Oxidorredutase Transferase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
399 400 401 402 403 404 405 405	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing protein Holliday junction ATP- dependent DNA helicase RuvB Homocysteine synthase Homoserine dehydrogenase	BC AB AB BC AB BC BC BC	A0A0H3KKG0 A0A0H3KU30 Q6FCE9 Q6F991 Q6F7B9 A0A0H3KK04 Q6FFC8 A0A0H3KK04 Q6FFC8	- - 3.6.4.12 2.5.1.49 1.1.1.3 2.3.1.46 2.3.1.31	20 15 16 37 46 47 47 47 47 47 42 42	Homologous recomb Cysteine and methior Metabolic pathways Glycine, serine and th Cysteine and methior Lysine biosynthesis Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amine Cysteine and methior Sulfur metabolism Metabolic pathways Bios. second. metabo Biosynthesis of amine	Indefinido Indefinido Indefinido Recombinação e Reparo de DNA Metab. de Aminoácidos Metab. de Aminoácidos Metab. de	DNA/Cromo ssomo Indefinido Indefinido Citoplasma Indefinido Citoplasma	Ligação ao DNA/RNA Ligação ao DNA/RNA Indefinido Hidrolase Transferase Oxidorredutase Transferase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
399 400 401 402 403 404 405 405	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing protein Holliday junction ATP- dependent DNA helicase RuvB Homocysteine synthase Homoserine dehydrogenase Homoserine O- succinyltransferase HPr kinase/phosphorylase	BC AB AB BC AB BC BC BC	A0A0H3KKG0 A0A0H3KU30 Q6FCE9 Q6F991 Q6F7B9 A0A0H3KK04 Q6FFC8 A0A0H3KK04 A0AC42 A9AC42	- - 3.6.4.12 2.5.1.49 1.1.1.3 2.3.1.46 2.3.1.31	20 15 16 37 46 47 47 47 47 47 47 47 35	Homologous recomb Cysteine and methior Metabolic pathways Glycine, serine and th Cysteine and methior Lysine biosynthesis Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amine Cysteine and methior Sulfur metabolism Metabolic pathways Bios. second. metabo Biosynthesis of amine	Indefinido Indefinido Recombinação e Reparo de DNA Metab. de Aminoácidos Metab. de Aminoácidos	DNA/Cromo ssomo Indefinido Indefinido Citoplasma Indefinido Citoplasma	Ligação ao DNA/RNA Ligação ao DNA/RNA Indefinido Hidrolase Transferase Oxidorredutase Transferase Transferase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
399 400 401 402 403 404 405 406	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing protein Holliday junction ATP- dependent DNA helicase RuvB Homocysteine synthase Homoserine dehydrogenase Homoserine O- succinyltransferase HPr kinase/phosphorylase	BC AB AB AB BC BC BC	A0A0H3KKG0 A0A0H3KU30 Q6FCE9 Q6F991 Q6F7B9 A0A0H3KK04 Q6FFC8 A0A0H3KK04 A0AC42 A9AC42	- - 3.6.4.12 2.5.1.49 1.1.1.3 2.3.1.46 2.3.1.31	20 15 16 37 46 47 47 47 47 47 42 35	Homologous recomb Cysteine and methior Metabolic pathways Glycine, serine and th Cysteine and methior Lysine biosynthesis Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amine Cysteine and methior Sulfur metabolism Metabolic pathways Bios. second. metabo Biosynthesis of amine	Indefinido Indefinido Recombinação e Reparo de DNA Metab. de Aminoácidos Metab. de Aminoácidos	DNA/Cromo ssomo Indefinido Indefinido Citoplasma Indefinido Citoplasma Indefinido	Ligação ao DNA/RNA Ligação ao DNA/RNA Indefinido Hidrolase Transferase Oxidorredutase Transferase Transferase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
399 400 401 402 403 404 405 406	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing protein Holliday junction ATP- dependent DNA helicase RuvB Homocysteine synthase Homoserine dehydrogenase Homoserine O- succinyltransferase HPr kinase/phosphorylase	BC AB AB AB BC BC BC	A0A0H3KKG0 A0A0H3KU30 Q6FCE9 Q6F991 Q6F7B9 A0A0H3KK04 Q6FFC8 A0A0H3KK04 A0AC42 A9AC42	- - 3.6.4.12 2.5.1.49 1.1.1.3 2.3.1.46 2.3.1.31	20 15 16 37 46 47 47 47 47 47 47 47 35	Homologous recomb Cysteine and methior Metabolic pathways Glycine, serine and th Cysteine and methior Lysine biosynthesis Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amino Cysteine and methior Sulfur metabolism Metabolic pathways Bios. second. metabo Biosynthesis of amino	Indefinido Indefinido Recombinação e Reparo de DNA Metab. de Aminoácidos Metab. de Aminoácidos Metab. de Aminoácidos	DNA/Cromo ssomo Indefinido Indefinido Citoplasma Indefinido Citoplasma Indefinido	Ligação ao DNA/RNA Ligação ao DNA/RNA Indefinido Hidrolase Transferase Oxidorredutase Transferase Transferase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
399 400 401 402 403 404 405 406 407	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing protein Holliday junction ATP- dependent DNA helicase RuvB Homocysteine synthase Homoserine dehydrogenase Homoserine O- succinyltransferase HPr kinase/phosphorylase HTH-type transcriptional	BC AB AB AB BC AB BC BC AB	A0A0H3KKG0 A0A0H3KU30 Q6FCE9 Q6F991 Q6F7B9 A0A0H3KK04 Q6FFC8 A0A0H3KK04 A0AC42 A9AC42 A9AEZ6 P52667	- - 3.6.4.12 2.5.1.49 1.1.1.3 2.3.1.46 2.3.1.31	20 15 16 37 46 47 47 47 47 47 47 35 34	Homologous recomb Cysteine and methior Metabolic pathways Glycine, serine and th Cysteine and methior Lysine biosynthesis Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amine Cysteine and methior Sulfur metabolism Metabolic pathways Bios. second. metabo Biosynthesis of amine	Indefinido Indefinido Recombinação e Reparo de DNA Metab. de Aminoácidos Metab. de Aminoácidos Metab. de Aminoácidos	DNA/Cromo ssomo Indefinido Indefinido Citoplasma Indefinido Citoplasma Indefinido	Ligação ao DNA/RNA Ligação ao DNA/RNA Indefinido Hidrolase Transferase Oxidorredutase Transferase Transferase Ligação ao	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
399 400 401 402 403 404 405 406 407	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing protein Holliday junction ATP- dependent DNA helicase RuvB Homocysteine synthase Homoserine dehydrogenase Homoserine O- succinyltransferase HPr kinase/phosphorylase HTH-type transcriptional regulator EstR	BC AB AB AB BC AB BC BC AB	A0A0H3KKG0 A0A0H3KU30 Q6FCE9 Q6F991 Q6F7B9 A0A0H3KK04 Q6FFC8 A0A0H3KK04 A0AC42 A9AC42 A9AEZ6 P52667	- - 3.6.4.12 2.5.1.49 1.1.1.3 2.3.1.46 2.3.1.31 -	20 15 16 37 46 47 47 47 47 47 47 35 34	Homologous recomb Cysteine and methior Metabolic pathways Glycine, serine and th Cysteine and methior Lysine biosynthesis Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amine Cysteine and methior Sulfur metabolism Metabolic pathways Bios. second. metabo Biosynthesis of amine	Indefinido Indefinido Recombinação e Reparo de DNA Metab. de Aminoácidos Metab. de Aminoácidos Metab. de Aminoácidos Retab. de Carbo. Regulação/Pro cessamento da Transcricão	DNA/Cromo ssomo Indefinido Indefinido Citoplasma Indefinido Citoplasma Indefinido	Ligação ao DNA/RNA Ligação ao DNA/RNA Indefinido Hidrolase Transferase Oxidorredutase Transferase Transferase Ligação ao DNA/RNA	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
<ul> <li>399</li> <li>400</li> <li>401</li> <li>402</li> <li>403</li> <li>404</li> <li>405</li> <li>406</li> <li>407</li> </ul>	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing protein Holliday junction ATP- dependent DNA helicase RuvB Homocysteine synthase Homoserine dehydrogenase Homoserine O- succinyltransferase HPr kinase/phosphorylase HTH-type transcriptional regulator EstR	BC AB AB BC AB BC BC AB	A0A0H3KKG0 A0A0H3KU30 Q6FCE9 Q6F991 Q6F7B9 A0A0H3KK04 Q6FFC8 A0A0H3KK04 A0AC42 A9AC42 A9AEZ6 P52667	- - 3.6.4.12 2.5.1.49 1.1.1.3 2.3.1.46 2.3.1.31	20 15 16 37 46 47 47 47 47 47 35 34	Homologous recomb Cysteine and methior Metabolic pathways Glycine, serine and th Cysteine and methior Lysine biosynthesis Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amin Cysteine and methior Sulfur metabolism Metabolic pathways Bios. second. metabo Biosynthesis of amin	Indefinido Indefinido Recombinação e Reparo de DNA Metab. de Aminoácidos Metab. de Aminoácidos Metab. de Aminoácidos Regulação/Pro cessamento da Transcrição	DNA/Cromo ssomo Indefinido Indefinido Citoplasma Indefinido Citoplasma Indefinido	Ligação ao DNA/RNA Ligação ao DNA/RNA Indefinido Hidrolase Transferase Oxidorredutase Transferase Transferase Ligação ao DNA/RNA	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
399 400 401 402 403 404 405 406 407	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing protein Holliday junction ATP- dependent DNA helicase RuvB Homocysteine synthase Homoserine dehydrogenase Homoserine O- succinyltransferase HPr kinase/phosphorylase HTH-type transcriptional regulator EstR	BC AB AB BC AB BC BC AB	A0A0H3KKG0 A0A0H3KU30 Q6FCE9 Q6F991 Q6F7B9 A0A0H3KK04 Q6FFC8 A0A0H3KK04 A9AC42 A9AC42 A9AEZ6 P52667	- - 3.6.4.12 2.5.1.49 1.1.1.3 2.3.1.46 2.3.1.31	20 15 16 37 46 47 47 47 47 47 47 35 35 34	Homologous recomb Cysteine and methior Metabolic pathways Glycine, serine and th Cysteine and methior Lysine biosynthesis Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amin Cysteine and methior Sulfur metabolism Metabolic pathways Bios. second. metabo Biosynthesis of amin	Indefinido Indefinido Recombinação e Reparo de DNA Metab. de Aminoácidos Metab. de Aminoácidos Metab. de Aminoácidos Regulação/Pro cessamento da Transcrição Peptidases e	DNA/Cromo ssomo Indefinido Indefinido Citoplasma Indefinido Citoplasma Indefinido Indefinido	Ligação ao DNA/RNA Ligação ao DNA/RNA Indefinido Hidrolase Transferase Oxidorredutase Transferase Irransferase Ligação ao DNA/RNA	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
399 400 401 402 403 404 405 406 407 408	Histone H1-like protein Histone-like DNA-binding protein HIT domain-containing protein Holliday junction ATP- dependent DNA helicase RuvB Homocysteine synthase Homoserine dehydrogenase Homoserine O- succinyltransferase HPr kinase/phosphorylase HTH-type transcriptional regulator EstR HtrA-like serine protease	BC AB AB AB BC AB BC BC AB AB	A0A0H3KKG0 A0A0H3KU30 Q6FCE9 Q6F991 Q6F7B9 A0A0H3KK04 Q6FFC8 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0H3KK04 A0A0A0 A0A0A0 A0A0A0 A0A0A0 A0A0A0 A0A0A0 A0A0A0A0 A0A0A0 A0	- - 3.6.4.12 2.5.1.49 1.1.1.3 2.3.1.46 2.3.1.31 - -	20 15 16 37 46 47 47 47 47 47 47 35 35 34	Homologous recomb Cysteine and methior Metabolic pathways Glycine, serine and th Cysteine and methior Lysine biosynthesis Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amine Cysteine and methior Sulfur metabolism Metabolic pathways Bios. second. metabo Biosynthesis of amine	Indefinido Indefinido Recombinação e Reparo de DNA Metab. de Aminoácidos Metab. de Aminoácidos Metab. de Aminoácidos Regulação/Pro cessamento da Transcrição Peptidases e inibidores	DNA/Cromo ssomo Indefinido Indefinido Citoplasma Indefinido Citoplasma Indefinido Indefinido Membrana plasmática	Ligação ao DNA/RNA Ligação ao DNA/RNA Indefinido Hidrolase Transferase Oxidorredutase Transferase Ligação ao DNA/RNA Hidrolase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.

409	Hidrolase_4 domain- containing protein	AB	Q6FAZ3	-	40		Indefinido	Indefinido	Indefinido	In./Ex.
410	Hydroxymethylglutaryl- CoA Liase	ст	Q0KF83	4.1.3.4	33	Synthesis/deg. ketone Val., leuc. and isol. de Geraniol degradatior Butanoate metabolis Metabolic pathways Bios. second. metabo	Metab. de Aminoácidos	Indefinido	Liase	In./Ex.
411	IcIR family transcriptional regulator	BC	АОАОНЗККР8	-	30		Regulação/Pro cessamento da Transcrição	Indefinido	Ligação ao DNA/RNA	In./Ex.
		СТ	Q0K693		27	Histidine metabolism				
	initiazole giycerol	BC	0845U7		27	Metabolic pathwavs	Metab. de			
412	phosphate synthase	ΔR	06F799	4.3.2.10	27	Bios. second. metabo	o Aminoácidos	Citoplasma	Liase	In./Ex.
	subunit HisF	7.0	001755		21	Biosynthesis of amin				
		ст	00K689		22	Histidine metabolism				
	Imidazoleglycerol-				22	Metabolic nathways	Metab de			
413	nhaanhata dahudratasa	BC	Q845V1	4.2.1.19	21	Dias second motobs	Aminoácidos	Citoplasma	Liase	In./Ex.
	phosphate denydratase	AB	Q6F/A8		23	Blos. secona. metabo	Aminoacidos			
						Biosynthesis of amin				
						Phenylalanine, tyrosi				In /Fx
414	Indole-3-glycerol	AR	P00911	11118	30	Metabolic pathways	Metab. de	Indefinido	Liase	
	phosphate synthase	, 10	100511	4.1.1.40	50	Bios. second. metabo	Aminoácidos	machinao	EldSC	, LX.
						Biosynthesis of amin				
415	Indolepyruvate ferredoxin	СТ	Q0JZR2	1 2 7 0	129		المواجئية نواح	ابه وا مراثبه : وا م		1
415	Oxidorredutase	ВС	A0A0H3KIM4	1.2.7.8	130		indennido	indennido	Oxidorredutase	111./EX.
	Inorganic						Metabolismo			
416	nyrophosphataso	AB	Q6FFF2	3.6.1.1	19	Oxidative phosphory	Enorgótico	Citoplasma	Hidrolase	In./Ex.
	Inosine-5'-	ст	00/ 01		5.2	During matchelism	Metabolismo			
447			QUKA41	1 1 1 205	52	Purine metabolism	Nictabolismo	ابه وا مرائبه : وا م		1
417	monophosphate	ВС	AUAUH3KFS6	1.1.1.205	52	Nietabolic patriways	de	indefinido	Oxidorredutase	In./EX.
	dehydrogenase A	AB	Q6F716		52	Bios. second. metabo	Nucleotideos			
						Streptomycin biosynt				
418	Inositoi-1-	BC AO	АОАОНЗКРР2	3.1.3.25	30	Inositol phosphate m	BIOS. WIEtab.	Citoplasma	Hidrolase	In./Ex.
	monophosphatase					Metabolic pathways	secundários	·		,
						Bios. second. metabo				
419	Integration host factor	ВС	A0A0H3KN33	-	14		Recombinação	DNA/Cromo	Ligação ao	In /Fx
	subunit alpha	AB	Q6F874		11		e Reparo de	ssomo	DNA/RNA	ш.у <b>с</b> х.
420	Integration host factor	AB	Q6F9Y8	-	11		Recombinação	DNA/Cromo	Ligação ao	In./Ex.
421	Iron complex outer	ВС	A0A0H3KLP5	-	75		Proc. de Info.	Membrana	Receptor	In./Ex.
422	Iron-sulfur cluster	ВС	A0A0H3KG35		14		Metabolismo	Indofinido	Indefinide	In /Fv
422	assembly scaffold protein	AB	Q6FCE3	-	14		Energético	muennuu	indennido	111./EX.
423	Iron-sulfur cluster carrier	вС	A0A0H3KGM1		38		Indefinido	Indefinido	Hidrolase	In./Ex.
<b> </b>	protein	-	001714/4			Cituate engle (TCA				
		CT	QUJZWI		82	Citrate cycle (TCA cycl				
		ВС	A0A0H3KLL1		80	Glutathione metabol				
ĺ		AB	Q6FCZ5		82	ivietabolic pathways	Ciala de Árit			
424	isocitrate denydrogenase			1.1.1.42		Bios. second. metabo	<i>abo</i> Ciclo do Acido <i>erse</i> Tricarboxílico	Indefinido	Oxidorredutase In	In./Ex.
	[NADP]					Mic.metab. in diverse				,
						Carbon metabolism				
						2-Oxocarboxylic acid				
						Biosynthesis of amin				
		СТ	Q0K790		46	Citrate cycle (TCA cyc				
		ВС	A0A0H3KHD1		46	Glutathione metabol				
l		AB	Q6FCZ2	Ι	48	Metabolic pathways				
425	Isocitrate dehydrogenase			1 1 1 1 1 2		Bios. second. metabo	Ciclo do Ácido	ابه وا مرائبه : وا م		1
425	[NADP]			1.1.1.42		Mic.metab. in diverse	Tricarboxílico	muerinido	oxidorredutase	111./EX.
	-					Carbon metabolism	1			
l				1		2-Oxocarboxvlic acid				
l					-	Biosynthesis of amin				
<u> </u>		CT	006013		50	Glyoxylate metabolic				
l					70	Metabolic nathways	Metab. de Carbo.			
426		DL		L	40	metabolic putitivays		Indefinido	Liase	In./Ex.
426	lsocitrate Liase	ΔP		1121	50	Rins second metaha				
-20	Isocitrate Liase	AB	Q6FD89	4.1.3.1	59	Bios. second. metabo	Carbo.	Indefinido	Liase	In./Ex.
420	Isocitrate Liase	AB	Q6FD89	4.1.3.1	59	Bios. second. metabo Mic.metab. in diverse	Carbo.	Indefinido	Liase	In./Ex.
	Isocitrate Liase	AB	Q6FD89	4.1.3.1	59	Bios. second. metabo Mic.metab. in diverse Carbon metabolism	Carbo.	Indefinido	Liase	In./Ex.

/	debudrogenace	PC		±.J.O.4	42	Metabolic nathways	Aminoácidos	เพ่าเป็นบานเกล	UNIUUITEUULASE	<i>₩₩./⊾</i> ∧.
	denydrogenase	BC			43	Val leuc and isol hi	Aminoacidos			
					36	Pantothonato and Co	Nietab. de	•		
	Ketol-acid	вс	A9AJN1		36	Pantotnenate ana Co	DA biosynthesis			
428	reductoisomerase	AB	Q6F821	1.1.1.86	37	Metabolic pathways		Indefinido	Oxidorredutase	In./Ex.
						Bios. second. metabo	olites			
						2-Oxocarboxylic acid	metab.			
						Biosynthesis of amin	o acids	Ī		
						Glycine, serine and th				
429	L-2,4-diaminobutyrate	٨D	06501	11196	56	Motabolic nathways	Metab. de	Indofinido	Linco	In /Ev
425	decarboxylase	ΑD	QUICKI	4.1.1.80	50	Mie weetsche in diverse	Aminoácidos	indennido	LIDSE	<i>,</i> LX.
						witc.metub. in uiverse				
430	L-arabinose-binding	вC	ΔΟΔΟΗ3ΚΚΙΟ	-	35	ABC transporters	Proc. de Info.	Membrana	Transporte	In /Fx
	periplasmic protein	20			55	nde transporters	Ambiental	plasmática	nunsporte	, באני
		ВС	A0A0H3KGT3	1.4.3.16	58	Alanine, aspartate ar	Matala da			
431	L-aspartate oxidase	AB	06F9B6		61	Nicotinate and nicoti	ivietab. de	Citoplasma	Oxidorredutase	In./Ex.
		7.2	40.020		01	Metabolic nathways	Aminoácidos			,
-			1			metabolie patimays				
432	L-iditol 2-dehydrogenase	ВС	A0A0H3KV46	1.1.1.14	37		Indefinido	Indefinido	Oxidorredutase	In./Ex.
	, .									,
						Glycine, serine and th				
						Val., leuc. and isol. bi				
						Metabolic pathways	Metab. de			. /-
433	L-threonine dehydratase	AB	Q3V/H0	4.3.1.19	57	Bios second metabo	Aminoácidos	Indefinido	Liase	In./Ex.
						Carbon metabolism	7.111100000000			
						Discurthesis of amin				
-						Biosynthesis of amin				
							Biossintese de			
434	LeucinetRNA ligase	AB	Q6F817	6.1.1.14	98	Aminoacyl-tRNA bios	Aminoacil-	Citoplasma	ligase	In./Ex.
							tRNA			
-							Proc. de Info	Membrana		
435	Lipoprotein	ВС	A0A0H3KMC5	-	29	ABC transporters	PIOC. de IIIO.	Weinbrana	Transporte	In./Ex.
							Ambiental	plasmática		-
426	Linenrotoin	DC	A0 A0112K1V1		20		Proc. de Info.	Membrana	Transporta	In ITY
430	Lipoprotein	вс	AUAUH3KJXI	-	30		Ambiental	plasmática	Transporte	<i>III./EX</i> .
-							Proc de Info	Membrana		
437	Lipoprotein	ВС	АОАОНЗКММ9	-	33		Proc. de into.		Transporte	In./Ex.
							Ampientai	plasmatica		
							Sinalização e	Membrana		
438	Lipoprotein-34	ВС	A0A0H3KJ68	-	44		Processo	Weinbrana	Transporte	In./Ex.
							Celular	plasmática		
-		СТ			80		o ci u i ui			
120	Lon protoco			2 4 21 52	09		Peptidases e	Citaplacma	Hidrolaco	In /Ev
435	Lon protease	BC	AUAUH3KPDU	5.4.21.55	89	-	inibidores	Citopiasina	niuluiase	<i>III./EX</i> .
		AB	Q6FD62		90					
						Fatty acid biosynthes	Degradação de			
	Long-chain fatty-acid-					Fatty acid degradation	Ácidos gravos			
440		ВС	A0A0H3KBP1	6.2.1.3	61	Metabolic pathways		Mitocondria	ligase	In./Ex.
	COAligase					Fatty acid metabolisr	е			
						, Quorum sensina	Xenobióticos			
						2	Motabolismo			
441	Long-chain-fatty-acid-	СТ	00K578	6213	61	Fatty acid dearadatic	de Acidos	Mitocondria	ligase	In /Fx
	CoA ligase	0.	0.0010	0121210	01	r atty acra acgraaatie	graxos/Lipídeo			,
							s			
							Sinalização e	Membrana		
442	LPS-assembly protein	4.0	0050044		0.2		Dresses		Tuonon onto	10 15.
442	LptD	АВ	Q6F9W4	-	93		Processo	externa da	Transporte	<i>III./EX</i> .
	1						Celular	célula		
443	Lysine decarboxylase	BC	A0A0H3K0I1	11118	86	Arginine and proline	Metab. de	Citoplasma	Lisco	In /Ev
	Lysine decarboxylase	DC	AUAUIISKQII	4.1.1.10	00	Metabolic pathways	Aminoácidos	Citopiasina	LIUSC	<i>, LX</i> .
<b>[</b>		СТ	Q0KCG3		58		Biossíntese de			
444	I vsinetRNA ligase	BC	494GV1	6.1.1.16	58	noacyl-tRNA biosynth	Aminoacil-	Citoplasma	ligase	In./Fx.
1	,	10	043000		50		+RNIA			.,
<b> </b>	lucanhacehaliz	нĎ	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>		20					
1	Lysophospholipase,	I								
1	contains weak SAM-	I								
445	dependent	СТ	Q0K9Y0	-	65		Indefinido	Indefinido	Transferase	In./Ex.
1	methyltransferase									
1	domain									
L	uumam	<u> </u>	┥───┤							
1	Magnesium and cohalt						Sinalização e	Membrana		
446	afflux and take	AB	Q6FEZ9	-	31		Processo		Transporte	In./Ex.
1	erflux protein						Celular	piasmatica		

447	Magnesium and cobalt transport protein	AB	Q6F7P3		42		Sinalização e Processo Celular	Membrana plasmática	Transporte	In.
		СТ	Q0K8F5		35	Citrate cycle (TCA cyc				
		ВС	A9AMD5		35	Cysteine and methior				
		AB	Q6F7X1		35	Pyruvate metabolism				
						Glyoxylate metabolis				
448	Malate dehydrogenase			1.1.1.37		Methane metabolism		Citoplasma	Oxidorredutase	In./Ex.
	, -					Carbon fixation in ph	Iricarboxilico			
						Ries second metabolic				
						Mic metah in diverse				
						Carbon metabolism				
		СТ	00K9K7		59	Pvruvate metabolism				
		BC	A0A0H3KPM		59	Glvoxvlate metabolis	1			
		20				Metabolic pathways	Ciclo do Ácido	Citerrate	<b>T</b>	
449	Malate synthase			2.3.3.9		Bios. second. metabo	Tricarboxílico	Citoplasma	Iransferase	In./Ex.
						Mic.metab. in diverse				
						Carbon metabolism				
450	Malate synthase G	ВС	A0A0H3KP87	2339	79		Ciclo do Ácido	Citonlasma	Transferase	In /Fx
		AB	Q6F9Z8	2101010	80		Tricarboxílico	0.000		,
						Pyruvate metabolism				1. (5.
		ст	00//0/7	1.1.1.40		Carbon fixation in ph	Metab. de			
451	Malic enzyme (NADP)	CI	QUKCX7		83	Netabolic pathways	Carbo.	indefinido	Oxidorredutase	In./Ex.
						Carbon metabolism				
						Eatty acid hiosynthes	Metabolismo			
	Malonyl CoA-acyl carrier					Metabolic pathways	de Ácidos			
452		AB	Q6FDT9	2.3.1.39	34	Bios. second. metabo	graxos/Linídeo	Indefinido	Transferase	In./Ex.
	·····					Fatty acid metabolisr	S S S S S S S S S S S S S S S S S S S			
452	Membrane alanyl	DC	4040112/1101	2 / 11 2	100	Glutathione metabol	Peptidases e	Membrana	Llidroloco	In /Fv
455	aminopeptidase	вс	AUAUH3KHQI	3.4.11.2	100	Metabolic pathways	inibidores	plasmática	Hidrolase	In./EX.
454	Membrane fusion protein	BC	A0A0H3K074	-	44	beta-Lactam resistan	Sinalização e	Membrana	Transporte	In /Fx
		20	, lo, lo li o li o li d Li i			Cationic antimicrobic	Processo	plasmática	Transporte	
	Membrane protein		0.0701.0			Quorum sensing	Proc. de Info.	Membrana		. /-
455	insertase YidC	AB	Q6F6L0	-	66	Protein export	Ambiental	plasmática	Transporte	In./Ex.
456	MarD forsily	00			20	Bacterial secretion sy	Desulação (Dre	In definiele	lineaño eo	In /Ev
450		вс	AUAUHSKIVINS	-	30	Cysteine and methior	Regulação/Pro	indefinido	Ligação ao	III./EX.
						Selenocompound me	Metab. de			
			0.055.04			One carbon pool by f				
457	Methionine synthase	AB	Q6FDC4	2.1.1.13	136	Metabolic pathways	Aminoácidos	Indefinido	Transferase	In./Ex.
						Bios. second. metabo				
						Biosynthesis of amin				
		СТ	Q0K7K0		76	Selenocompound me	Biossíntese de			
458	MethioninetRNA ligase	ВС	A9AHJ8	6.1.1.10	80	Aminoacyl-tRNA bios	Aminoacil-	Citoplasma	ligase	In./Ex.
		AB	Q6FE36		77	Metabolic pathways	tRNA			
459	Methyl-accepting	вС	A0A0H3K105	-	60		Proc. de Info.	Membrana	Transporte	In./Fx
<u> </u>	chemotaxis protein	Ĺ					Ambiental	plasmática		.,
	Mathulan at at rah udrafa lat	BC	AUAUH3KIB2		30	Une carbon pool by f	Motob Cofet			
460		AB	Q6FA42	1.5.1.20	31	Mietabolic pathways	WieldD. Cordi.	Citoplasma	Oxidorredutase	In./Ex.
	ereduciase					Carbon metabolism	e vitaminas			
		СТ	008172	1 2 1 2 7	52	Val leuc and isol de				
		BC		12118	57	heta-Alanine metaho				
	Methylmalonate-	BC	A0A0H3KI92	1.2.1.10	54	Inositol phosphate m	Metab. de			In./Ex.
461	semialdehyde	20				Propanoate metabol	Carbo.	Indefinido	Oxidorredutase	
	dehydrogenase					Metabolic pathways				
						Carbon metabolism				
				1.2.1.18		Val., leuc. and isol. de				
	Methylmalonate-	hylmalonate- aldehyde AB Q6FBV8 54		1.2.1.27	ļ	beta-Alanine metabo				In./Ex.
462	semialdehyde		Q6FBV8		54	Inositol phosphate m	Metab. de	Indefinido	Oxidorredutase	
	dehydrogenase,		ł	Propanoate metabol	Carbo.					
	Oxidorredutase protein	l			ł	Carbon motobalian	1			
462	Molybdata transport	BC	<u> </u>		70	Curbon metabolism	Indofinido	Indofinida	Transporto	In /Fv
463				-		-				

464		СТ	Q0KCL2		34		la dafinida	lus al affinitad a	l lidro loo o	10 /5.
464	WOXR-like ATPase	BC	A0A0H3KGH9	-	32		indefinido	indefinido	Hidrolase	in./EX.
465	Multiple sugar transport system substrate-binding protein	вС	A0A0H3KHL5	-	44	ABC transporters	Proc. de Info. Ambiental	Indefinido	Transporte	In.
		ВС	A0A0H3KMX3		34	Arginine biosynthesis				
	N acatul gamma glutamul	AB	Q6FCI4		38	Metabolic pathways	Motah da			
466	N-dcelyi-gaillind-giulailiyi-			1.2.1.38		Bios. second. metabo	Ivielab. de	Citoplasma	Oxidorredutase	In./Ex.
	phosphate reductase					2-Oxocarboxylic acid	Aminoacidos			
						Biosynthesis of amin				
	N5-					Purine metabolism	Metabolismo			
467	carboxyaminoimidazole	AB	Q6F6M9	5.4.99.18	18	Metabolic pathways	de	Indefinido	Isomerase	In./Ex.
	ribonucleotide mutase					Bios. second. metabo	Nucleotídeos			
468	NAD-dependent aldehyde dehydrogenase	ст	Q0KCL6	1.2.1.28	49	Xylene degradation Toluene degradation Aminobenzoate degra Metabolic pathways Mic.metab. in diverse Deg. aromatic compo	Degradação de Ácidos graxos e Xenobióticos	Indefinido	Oxidorredutase	In./Ex.
469	NAD-dependent aldehyde dehydrogenase	вС	АОАОНЗКВУ8	1.2.1.3	60		Indefinido	Indefinido	Oxidorredutase	In./Ex.
470	NAD-dependent aldehyde dehydrogenase	BC	AOAOH3KNU6	1.2.1.3	51	Glycolysis / Gluconeo Ascorbate and aldard Fatty acid degradatio Val., leuc. and isol. de Lysine degradation Arginine and proline Histidine metabolism Tryptophan metaboli beta-Alanine metaboli beta-Alanine metabolism Chloroalkane and chl Pantothenate and Co Limonene and pinene Metabolic pathways Bios. second. metabo Mic.metab. in diverse	Degradação de Ácidos graxos e Xenobióticos	Indefinido	Oxidorredutase	In./Ex.
471	NAD-dependent aldehyde dehydrogenase	BC	A0A0H3KN41	1.2.1	56	Glycolysis / Gluconea Pyruvate metabolism Metabolic pathways Bios. second. metabo Mic.metab. in diverse	Glicolise / Gliconeogênes e	Indefinido	Oxidorredutase	In./Ex.
472	NAD-dependent aldehyde dehydrogenase	BC	A0A0H3KNS0	1.2.1.9	59	Glycolysis / Gluconea Pentose phosphate p Metabolic pathways Mic.metab. in diverse Carbon metabolism	Glicolise / Gliconeogênes e	Indefinido	Oxidorredutase	In./Ex.
473	NAD-dependent aldehyde dehydrogenase	вС	АОАОНЗКРС8	-	52		Indefinido	Indefinido	Oxidorredutase	In./Ex.
474	NAD-dependent malic enzyme	AB	Q6FFL8	1.1.1.38	63	Pyruvate metabolism Carbon metabolism Two-component system	Metab. de Carbo.	Indefinido	Oxidorredutase	In./Ex.
475	NAD-specific glutamate dehydrogenase	ст	Q0KBX7	1.4.1.2	179	Arginine biosynthesis Alanine, aspartate ar Taurine and hypotau Nitrogen metabolism Metabolic pathways Mic.metab. in diverse	Metab. de Aminoácidos	Indefinido	Oxidorredutase	Ex.
476	NADH dehydrogenase	ВС	A0A0H3KK03	7.1.1.2	48	Oxidative phosphory	Metabolismo	Indefinido	Translocase	In./Ex.
477	NADH-quinone	ВС	A0A0H3KG58	7.1.1.2	83	Oxidative phosphory	Metabolismo	Indefinido	Translocase	In./Ex.
	Oxidorredutase	AB	Q6FE66		98	Metabolic pathways	Energético			,
478	NADH-quinone	AB	Q6FE71	7.1.1.2	20	Oxidative phosphory	Metabolismo	Membrana	Translocase	In./Ex.
	Oxidorredutase subunit A					wietabolic pathways	Energético	plasmática		
479	NADH-quinone	ВС	A9AFY9	7.1.1.2	23	Uxiaative phosphory		iviembrana	Translocase	In./Ex.
1	Oxidorredutase subunit C				L	wielabolic pathways	Energetico	plasmatica		L
480 481	NADH-quinone									
----------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------
481		AB	Q6FE69	7.1.1.2	68	Oxidative phosphory	Metabolismo	Membrana	Translocase	In./Ex.
481	Oxidorredutase subunit					Metabolic pathways	Energético	plasmática		-
192	NADH-quinone	СТ	Q0KCS7	7.1.1.2	48	Oxidative phosphory	Metabolismo	Membrana	Translocase	In./Ex.
182	Oxidorredutase subunit	ВС	A9AFZ0		47	Metabolic pathways	Energético	plasmática		
402	NADH-quinone	СТ	Q0KCS5	7.1.1.2	48	Oxidative phosphory	Nietabolismo	Membrana	Translocase	In./Ex.
	Oxidorredutase subunit F		A0 A01121/1//2			Metabolic pathways	Energético	plasmática		
483	NADH-quinone	ВС	A0A0H3KKY2	7.1.1.2	48	Oxidative phosphory	Metabolismo	Membrana	Translocase	In./Ex.
	Oxidorredutase subunit F	AB	Q6FE67		49	Metabolic pathways	Energético	plasmática		
484	NADH-quinone	AB	Q6FE65	7.1.1.2	37	Oxidative phosphory	Metabolismo	Membrana	Translocase	In./Ex.
	Oxidorredutase subunit					Metabolic pathways	Energético	plasmática		-
485	NADH-quinone	AB	Q6FE64	7.1.1.2	20	Oxidative phosphory	Metabolismo	Membrana	Translocase	In./Ex.
	Oxidorredutase subunit I					Metabolic pathways	Energético	plasmática		,
486	NADP-dependent aryl-	BC		1 1 1 0 1	38		Indefinido	Indefinido	Ovidorredutase	In /Ev
	alcohol dehydrogenase	ЪС	AUAUIISKBEU	1.1.1.91	50		indefinido	Indefinido	Oxidoffedutase	, LX.
407	NADP-dependent aryl-		A0 A0112//C//F		24		hand a <b>f</b> ha talla	la definida		
487	alcohol dehydrogenase	вс	AUAUH3KSK5	1.1.1.91	34		indefinido	indefinido	Oxidorredutase	In./EX.
	NADP-dependent					Pyruvate metabolism				
						Carbon fixation in ph	Motab do			
488		ВС	A0A0H3KS55	1.1.1.40	81	Metabolic pathways	ivielab. de	Indefinido	Oxidorredutase	In./Ex.
	decarboxylating malate					Mic.metab. in diverse	Carbo.			
	dehydrogenase					Carbon metabolism				
	NADR dependent					Pyruvate metabolism				
						Carbon fixation in ph	Matel			
489	oxaloacetate-	вС	АОАОНЗККЈЗ	1.1.1.40	83	Metabolic pathways	Metab. de	Indefinido	Oxidorredutase	In./Ex.
	decarboxylating malate			_		Mic.metab. in diverse	Carbo.			,
	dehydrogenase					Carbon metabolism				
		BC	A0A0H3KY33		52	Alanine, aspartate ar				
		BC			51	I vsine dearadation				
	NADP-dependent	ΔR	06F768		52	Tyrosine metabolism				
490	succinate-semialdehyde	ΠD	Q01700	12116	52	Butanoate metabolis	Metab. de	Indefinido	Oxidorredutase	In /Fx
	dehydrogenace			1.2.1.10		Nicotinate and nicoti	Aminoácidos	maciniao	Oxidon cuuldse	, Ex.
	denydrogenase					Metabolic nathways				
						Mic metab in diverse				
	NADPH-dependent					Mic.metab. in diverse				
491	NADPH-dependent	BC	АОАОНЗКНТ8	1.1.1.184	24	Mic.metab. in diverse	Indefinido	Indefinido	Oxidorredutase	In./Ex.
491	NADPH-dependent carbonyl reductase NADPH-dependent	BC	A0A0H3KHT8	1.1.1.184	24	Mic.metab. in diverse	Indefinido Metab. de	Indefinido	Oxidorredutase	In./Ex.
491 492	NADPH-dependent carbonvl reductase NADPH-dependent glutamate synthase	BC BC	АОАОНЗКНТ8 АОАОНЗКСВ4	1.1.1.184 1.4.1.13	24 59	Mic.metab. in diverse	Indefinido Metab. de Aminoácidos	Indefinido Indefinido	Oxidorredutase Oxidorredutase	In./Ex. In.
491 492	NADPH-dependent carbonvl reductase NADPH-dependent glutamate synthase	BC BC	A0A0H3KHT8 A0A0H3KCB4	1.1.1.184 1.4.1.13	24 59	Mic.metab. in diverse Alanine, aspartate ar	Indefinido Metab. de Aminoácidos	Indefinido Indefinido	Oxidorredutase Oxidorredutase	In./Ex. In.
491 492	NADPH-dependent carbonvl reductase NADPH-dependent glutamate synthase	BC BC	A0A0H3KHT8 A0A0H3KCB4	1.1.1.184 1.4.1.13	24 59	Mic.metab.in diverse Mic.metab.in diverse Alanine, aspartate ar Nitrogen metabolism	Indefinido Metab. de Aminoácidos	Indefinido Indefinido	Oxidorredutase Oxidorredutase	In./Ex. In.
491 492	NADPH-dependent carbonvl reductase NADPH-dependent glutamate synthase NADPH-dependent	BC BC	A0A0H3KHT8 A0A0H3KCB4	1.1.1.184	24 59	Alanine, aspartate ar Nitrogen metabolism Metabolic pathways	Indefinido Metab. de Aminoácidos Metab. de	Indefinido Indefinido	Oxidorredutase Oxidorredutase	In./Ex. In.
491 492 493	NADPH-dependent carbonvl reductase NADPH-dependent glutamate synthase NADPH-dependent glutamate synthase small	BC BC BC	A0A0H3KHT8 A0A0H3KCB4 A0A0H3KI02	1.1.1.184 1.4.1.13 1.4.1.13	24 59 54	Alanine, aspartate ar Nitrogen metabolism Metabolic pathways Bios. second. metabo	Indefinido Metab. de Aminoácidos Metab. de Aminoácidos	Indefinido Indefinido Indefinido	Oxidorredutase Oxidorredutase Oxidorredutase	In./Ex. In. In./Ex.
491 492 493	NADPH-dependent carbonvl reductase NADPH-dependent glutamate synthase NADPH-dependent glutamate synthase small chain	BC BC BC	A0A0H3KHT8 A0A0H3KCB4 A0A0H3KI02	1.1.1.184 1.4.1.13 1.4.1.13	24 59 54	Alanine, aspartate ar Nitrogen metabolism Metabolic pathways Bios. second. metabo Mic.metab. in diverse	Indefinido Metab. de Aminoácidos Metab. de Aminoácidos	Indefinido Indefinido Indefinido	Oxidorredutase Oxidorredutase Oxidorredutase	In./Ex. In. In./Ex.
491 492 493	NADPH-dependent carbonvl reductase NADPH-dependent glutamate synthase NADPH-dependent glutamate synthase small chain	BC BC BC	A0A0H3KHT8 A0A0H3KCB4 A0A0H3KI02	1.1.1.184 1.4.1.13 1.4.1.13	24 59 54	Alanine, aspartate ar Nitrogen metabolism Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amino	Indefinido Metab. de Aminoácidos Metab. de Aminoácidos	Indefinido Indefinido Indefinido	Oxidorredutase Oxidorredutase Oxidorredutase	In./Ex. In. In./Ex.
491 492 493	NADPH-dependent carbonvl reductase NADPH-dependent glutamate synthase NADPH-dependent glutamate synthase small chain NADPH2-dependent 2,4-	BC BC BC	A0A0H3KHT8 A0A0H3KCB4 A0A0H3KI02	1.1.1.184 1.4.1.13 1.4.1.13	24 59 54	Alanine, aspartate ar Nitrogen metabolism Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of aming	Indefinido Metab. de Aminoácidos Metab. de Aminoácidos	Indefinido Indefinido Indefinido	Oxidorredutase Oxidorredutase Oxidorredutase	In./Ex. In. In./Ex.
491 492 493 494	NADPH-dependent carbonvl reductase NADPH-dependent glutamate svnthase NADPH-dependent glutamate synthase small chain NADPH2-dependent 2,4- dienovl-CoA reductase	BC BC BC BC	A0A0H3KHT8 A0A0H3KCB4 A0A0H3KI02 A0A0H3KJL6	1.1.1.184 1.4.1.13 1.4.1.13 1.3.1.34	24 59 54 73	Alanine, aspartate ar Nitrogen metabolism Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amine	Indefinido Metab. de Aminoácidos Metab. de Aminoácidos Indefinido	Indefinido Indefinido Indefinido Citoplasma	Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase	In./Ex. In. In./Ex.
491 492 493 494	NADPH-dependent carbonvl reductase NADPH-dependent glutamate synthase NADPH-dependent glutamate synthase small chain NADPH2-dependent 2,4- dienovl-CoA reductase NADPH2:quinope	BC BC BC BC	A0A0H3KHT8 A0A0H3KCB4 A0A0H3KI02 A0A0H3KJL6 A0A0H3KL17	1.1.1.184 1.4.1.13 1.4.1.13 1.3.1.34	24 59 54 73 34	Alanine, aspartate ar Nitrogen metabolism Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amine	Indefinido Metab. de Aminoácidos Metab. de Aminoácidos Indefinido	Indefinido Indefinido Indefinido Citoplasma	Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase	In./Ex. In. In./Ex.
491 492 493 494 495	NADPH-dependent carbonvl reductase NADPH-dependent glutamate synthase NADPH-dependent glutamate synthase small chain NADPH2-dependent 2,4- dienovl-CoA reductase NADPH2:quinone	BC BC BC BC BC	A0A0H3KHT8 A0A0H3KCB4 A0A0H3KI02 A0A0H3KJL6 A0A0H3KL17 A0A0H3KG62	1.1.1.184 1.4.1.13 1.4.1.13 1.3.1.34 1.6.5.5	24 59 54 73 <u>34</u> 36	Alanine, aspartate ar Nitrogen metabolism Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amino	Indefinido Metab. de Aminoácidos Metab. de Aminoácidos Indefinido	Indefinido Indefinido Indefinido Citoplasma Indefinido	Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase	In./Ex. In. In./Ex. In./Ex.
491 492 493 494 495	NADPH-dependent carbonvl reductase NADPH-dependent glutamate synthase NADPH-dependent glutamate synthase small chain NADPH2-dependent 2,4- dienovl-CoA reductase NADPH2:quinone reductase	BC BC BC BC BC BC	A0A0H3KHT8 A0A0H3KCB4 A0A0H3KI02 A0A0H3KI02 A0A0H3KJL6 A0A0H3KL17 A0A0H3KG62 A0A0H3KE11	1.1.1.184 1.4.1.13 1.4.1.13 1.3.1.34 1.6.5.5	24 59 54 73 34 36 34	Alanine, aspartate ar Nitrogen metabolism Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amin	Indefinido Metab. de Aminoácidos Metab. de Aminoácidos Indefinido	Indefinido Indefinido Indefinido Citoplasma Indefinido	Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase	In./Ex. In. In./Ex. In./Ex.
491 492 493 494 495 495	NADPH-dependent carbonvl reductase NADPH-dependent glutamate synthase NADPH-dependent glutamate synthase small chain NADPH2-dependent 2,4- dienovl-CoA reductase NADPH2:quinone reductase Nicotinate	BC BC BC BC BC BC AB	A0A0H3KHT8 A0A0H3KCB4 A0A0H3KI02 A0A0H3KI02 A0A0H3KJL6 A0A0H3KL17 A0A0H3KG62 A0A0H3KE11 O6F6W1	1.1.1.184 1.4.1.13 1.4.1.13 1.3.1.34 1.6.5.5	24 59 54 73 34 36 34 48	Alanine, aspartate ar Nitrogen metabolism Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amino Nicotinate and nicoti	Indefinido Metab. de Aminoácidos Metab. de Aminoácidos Indefinido Indefinido Metab. Cofat.	Indefinido Indefinido Indefinido Citoplasma Indefinido	Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase	In./Ex. In. In./Ex. In./Ex. In./Ex.
491 492 493 494 495 496	NADPH-dependent carbonvl reductase NADPH-dependent glutamate synthase NADPH-dependent glutamate synthase small chain NADPH2-dependent 2,4- dienovl-CoA reductase NADPH2:quinone reductase Nicotinate phosphoribosyltransfera	BC BC BC BC BC AB	A0A0H3KHT8 A0A0H3KCB4 A0A0H3KI02 A0A0H3KI02 A0A0H3KJL6 A0A0H3KL17 A0A0H3KG62 A0A0H3KE11 Q6F6W1	1.1.1.184 1.4.1.13 1.4.1.13 1.3.1.34 1.6.5.5 6.3.4.21	24 59 54 73 34 36 34 48	Alanine, aspartate an Nitrogen metabolism Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amina Nicotinate and nicoti Metabolic pathways	Indefinido Metab. de Aminoácidos Metab. de Aminoácidos Indefinido Indefinido Metab. Cofat. e Vitaminas	Indefinido Indefinido Indefinido Citoplasma Indefinido	Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Llgase	In./Ex. In. In./Ex. In./Ex. In./Ex.
491 492 493 494 495 496 497	NADPH-dependent carbonvl reductase NADPH-dependent glutamate synthase NADPH-dependent glutamate synthase small chain NADPH2-dependent 2,4- dienovl-CoA reductase NADPH2:quinone reductase Nicotinate phosphoribosyltransfera Nitrogen regulatory	BC BC BC BC BC AB BC	A0A0H3KHT8 A0A0H3KCB4 A0A0H3KCB4 A0A0H3KI02 A0A0H3KI02 A0A0H3KJL6 A0A0H3KL17 A0A0H3KG62 A0A0H3KE11 Q6F6W1 A0A0H3KH38	1.1.1.184 1.4.1.13 1.4.1.13 1.3.1.34 1.6.5.5 6.3.4.21	24 59 54 73 34 36 34 48 12	Alanine, aspartate an Nitrogen metabolism Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amino Nicotinate and nicoti Metabolic pathways	Indefinido Metab. de Aminoácidos Metab. de Aminoácidos Indefinido Indefinido Metab. Cofat. e Vitaminas Regulação/Pro	Indefinido Indefinido Indefinido Citoplasma Indefinido Indefinido	Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Llgase	In./Ex. In. In./Ex. In./Ex. In./Ex. In./Ex.
491 492 493 494 495 496 497	NADPH-dependent carbonvl reductase NADPH-dependent glutamate synthase NADPH-dependent glutamate synthase small chain NADPH2-dependent 2,4- dienovl-CoA reductase NADPH2:quinone reductase Nicotinate phosphoribosyltransfera Nitrogen regulatory protein P-II	BC BC BC BC BC BC AB BC CT	A0A0H3KHT8 A0A0H3KCB4 A0A0H3KCB4 A0A0H3KI02 A0A0H3KI02 A0A0H3KJL6 A0A0H3KL17 A0A0H3KG62 A0A0H3KE11 Q6F6W1 A0A0H3KH38 Q0KDM3	1.1.1.184 1.4.1.13 1.4.1.13 1.3.1.34 1.6.5.5 6.3.4.21 -	24 59 54 73 34 36 34 48 12 12	Alanine, aspartate an Nitrogen metabolism Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amino Nicotinate and nicoti Metabolic pathways	Indefinido Metab. de Aminoácidos Metab. de Aminoácidos Indefinido Indefinido Metab. Cofat. e Vitaminas Regulação/Pro cessamento	Indefinido Indefinido Indefinido Citoplasma Indefinido Indefinido	Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Llgase Indefinido	In./Ex. In. In./Ex. In./Ex. In./Ex. In./Ex.
491 492 493 494 495 496 497	NADPH-dependent carbonvl reductase NADPH-dependent glutamate synthase NADPH-dependent glutamate synthase small chain NADPH2-dependent 2,4- dienovl-CoA reductase NADPH2:quinone reductase Nicotinate phosphoribosyltransfera Nitrogen regulatory protein P-II	BC BC BC BC BC BC AB BC CT CT	A0A0H3KHT8 A0A0H3KCB4 A0A0H3KCB4 A0A0H3KI02 A0A0H3KI02 A0A0H3KI17 A0A0H3KG62 A0A0H3KE11 Q6F6W1 A0A0H3KH38 Q0KDM3 Q0K958	1.1.1.184 1.4.1.13 1.4.1.13 1.3.1.34 1.6.5.5 6.3.4.21 -	24 59 54 73 34 36 34 48 12 12 15	Mic.metabolic pathways Mic.metab. in diverse Alanine, aspartate ar Nitrogen metabolism Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amina Nicotinate and nicoti Metabolic pathways Purine metabolism	Indefinido Metab. de Aminoácidos Metab. de Aminoácidos Indefinido Indefinido Metab. Cofat. e Vitaminas Regulação/Pro cessamento Metabolismo	Indefinido Indefinido Indefinido Citoplasma Indefinido Indefinido	Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Llgase Indefinido	In./Ex. In. In./Ex. In./Ex. In./Ex. In./Ex.
491 492 493 494 495 496 497 498	NADPH-dependent carbonvl reductase NADPH-dependent glutamate synthase NADPH-dependent glutamate synthase small chain NADPH2-dependent 2,4- dienovl-CoA reductase NADPH2:quinone reductase Nicotinate phosphoribosyltransfera Nitrogen regulatory protein P-II Nucleoside diphosphate	BC BC BC BC BC BC AB BC CT CT BC	A0A0H3KHT8 A0A0H3KCB4 A0A0H3KCB4 A0A0H3KI02 A0A0H3KI02 A0A0H3KI17 A0A0H3KL17 A0A0H3KG62 A0A0H3KE11 Q6F6W1 A0A0H3KH38 Q0KDM3 Q0K958 A9AGZ3	1.1.1.184 1.4.1.13 1.4.1.13 1.3.1.34 1.6.5.5 6.3.4.21 -	24 59 54 73 34 36 34 48 12 12 15 15	Alanine, aspartate ar Nitrogen metabolism Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of aminu Nicotinate and nicoti Metabolic pathways Purine metabolism Pyrimidine metabolism	Indefinido Metab. de Aminoácidos Metab. de Aminoácidos Indefinido Indefinido Indefinido Metab. Cofat. e Vitaminas Regulação/Pro cessamento Metabolismo de	Indefinido Indefinido Indefinido Citoplasma Indefinido Indefinido	Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Llgase Indefinido	In./Ex. In. In./Ex. In./Ex. In./Ex. In./Ex.
491 492 493 494 495 496 497 498	NADPH-dependent carbonvl reductase NADPH-dependent glutamate synthase NADPH-dependent glutamate synthase small chain NADPH2-dependent 2,4- dienovl-CoA reductase NADPH2:quinone reductase Nicotinate phosphoribosyltransfera Nitrogen regulatory protein P-II Nucleoside diphosphate kinase	BC BC BC BC BC BC BC CT CT BC AB	A0A0H3KHT8 A0A0H3KCB4 A0A0H3KCB4 A0A0H3KI02 A0A0H3KI02 A0A0H3KI17 A0A0H3KL17 A0A0H3KG62 A0A0H3KE11 Q6F6W1 A0A0H3KH38 Q0KDM3 Q0K958 A9AGZ3 Q6FEM7	1.1.1.184 1.4.1.13 1.4.1.13 1.3.1.34 1.6.5.5 6.3.4.21 - 2.7.4.6	24 59 54 73 34 36 34 48 12 12 15 15 15	Alanine, aspartate ar Nitrogen metabolism Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of aminu Nicotinate and nicoti Metabolic pathways Purine metabolism Pyrimidine metabolism Metabolic pathways	Indefinido Metab. de Aminoácidos Metab. de Aminoácidos Indefinido Indefinido Metab. Cofat. e Vitaminas Regulação/Pro cessamento Metabolismo de	Indefinido Indefinido Indefinido Citoplasma Indefinido Indefinido Citoplasma	Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Llgase Indefinido Transferase	In./Ex. In. In./Ex. In./Ex. In./Ex. In./Ex.
491 492 493 494 495 496 497 498	NADPH-dependent carbonvl reductase NADPH-dependent glutamate synthase NADPH-dependent glutamate synthase small chain NADPH2-dependent 2,4- dienovl-CoA reductase NADPH2:quinone reductase Nicotinate phosphoribosyltransfera Nitrogen regulatory protein P-II Nucleoside diphosphate kinase	BC BC BC BC BC BC BC CT CT BC AB	A0A0H3KHT8 A0A0H3KCB4 A0A0H3KCB4 A0A0H3KI02 A0A0H3KI02 A0A0H3KL17 A0A0H3KG62 A0A0H3KE11 Q6F6W1 A0A0H3KH38 Q0KDM3 Q0K958 A9AGZ3 Q6FEM7	1.1.1.184 1.4.1.13 1.4.1.13 1.3.1.34 1.6.5.5 6.3.4.21 - 2.7.4.6	24 59 54 73 34 36 34 48 12 12 15 15 15	Alanine, aspartate ar Nicogen metabolism Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amino Nicotinate and nicoti Metabolic pathways Purine metabolism Pyrimidine metabolism Metabolic pathways Bios. second. metabo	Indefinido Metab. de Aminoácidos Metab. de Aminoácidos Indefinido Indefinido Indefinido Metab. Cofat. e Vitaminas Regulação/Pro cessamento Metabolismo de Nucleotídeos	Indefinido Indefinido Indefinido Citoplasma Indefinido Indefinido Citoplasma	Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Llgase Indefinido Transferase	In./Ex. In. In./Ex. In./Ex. In./Ex. In./Ex.
491 492 493 494 495 496 497 498	NADPH-dependent carbonvl reductase NADPH-dependent glutamate svnthase NADPH-dependent glutamate synthase small chain NADPH2-dependent 2,4- dienovl-CoA reductase NADPH2:quinone reductase Nicotinate phosphoribosyltransfera Nitrogen regulatory protein P-II Nucleoside diphosphate kinase	BC BC BC BC BC BC BC CT CT BC AB	A0A0H3KHT8 A0A0H3KCB4 A0A0H3KCB4 A0A0H3KI02 A0A0H3KI02 A0A0H3KI17 A0A0H3KG62 A0A0H3KE11 Q6F6W1 A0A0H3KH38 Q0KDM3 Q0K958 A9AGZ3 Q6FEM7 O6F856	1.1.1.184 1.4.1.13 1.4.1.13 1.3.1.34 1.6.5.5 6.3.4.21 - 2.7.4.6	24 59 54 73 34 36 34 48 12 12 15 15 15 15	Alanine, aspartate ar Nic.metab. in diverse Alanine, aspartate ar Nitrogen metabolism Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amino Nicotinate and nicoti Metabolic pathways Purine metabolism Pyrimidine metabolism Metabolic pathways Bios. second. metabo	Indefinido Metab. de Aminoácidos Metab. de Aminoácidos Indefinido Indefinido Indefinido Metab. Cofat. e Vitaminas Regulação/Pro cessamento Metabolismo de Nucleotídeos	Indefinido Indefinido Indefinido Citoplasma Indefinido Indefinido Citoplasma	Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Llgase Indefinido Transferase Ligação/Síntese	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
491 492 493 494 495 496 497 498 499	NADPH-dependent carbonvl reductase NADPH-dependent glutamate svnthase NADPH-dependent glutamate synthase small chain NADPH2-dependent 2,4- dienovl-CoA reductase NADPH2:quinone reductase Nicotinate phosphoribosyltransfera Nitrogen regulatory protein P-II Nucleoside diphosphate kinase Nucleotide-binding protein ACIAD3059	BC BC BC BC BC BC BC AB BC CT CT BC AB AB	A0A0H3KHT8 A0A0H3KCB4 A0A0H3KCB4 A0A0H3KCB4 A0A0H3KI02 A0A0H3KI02 A0A0H3KL17 A0A0H3KG62 A0A0H3KE11 Q6F6W1 A0A0H3KH38 Q0KDM3 Q0K958 A9AGZ3 Q6FEM7 Q6F856	1.1.1.184 1.4.1.13 1.4.1.13 1.3.1.34 1.6.5.5 6.3.4.21 - 2.7.4.6 -	24 59 54 73 34 36 34 48 12 12 15 15 15 15 33	Alanine, aspartate ar Nic.metab. in diverse Alanine, aspartate ar Nitrogen metabolism Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amino Nicotinate and nicoti Metabolic pathways Purine metabolism Pyrimidine metabolism Metabolic pathways Bios. second. metabo	Indefinido Metab. de Aminoácidos Metab. de Aminoácidos Indefinido Indefinido Indefinido Metab. Cofat. e Vitaminas Regulação/Pro cessamento Metabolismo de Nucleotídeos Metabolismo de RNA	Indefinido Indefinido Indefinido Citoplasma Indefinido Indefinido Citoplasma	Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Ligase Indefinido Transferase Ligação/Síntese de ATP	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
491 492 493 494 495 496 497 498 499 500	NADPH-dependent carbonvl reductase NADPH-dependent glutamate svnthase NADPH-dependent glutamate synthase small chain NADPH2-dependent 2,4- dienovl-CoA reductase NADPH2:quinone reductase Nicotinate phosphoribosyltransfera Nitrogen regulatory protein P-II Nucleoside diphosphate kinase Nucleotide-binding protein ACIAD3059 O-Acetylhomoserine	BC BC BC BC BC BC AB BC CT CT BC AB AB CT	A0A0H3KHT8 A0A0H3KCB4 A0A0H3KCB4 A0A0H3KI02 A0A0H3KI02 A0A0H3KI17 A0A0H3KG62 A0A0H3KE11 Q6F6W1 A0A0H3KH38 Q0KDM3 Q0K958 A9AGZ3 Q6FEM7 Q6F856 001713	1.1.1.184 1.4.1.13 1.4.1.13 1.3.1.34 1.6.5.5 6.3.4.21 - 2.7.4.6 - 2.7.4.6	24 59 54 73 34 36 34 48 12 12 15 15 15 15 33 33	Alanine, aspartate ar Nic.metab. in diverse Alanine, aspartate ar Nitrogen metabolism Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amino Nicotinate and nicoti Metabolic pathways Purine metabolism Pyrimidine metabolism Metabolic pathways Bios. second. metabo Cysteine and methior	Indefinido Metab. de Aminoácidos Metab. de Aminoácidos Indefinido Indefinido Indefinido Metab. Cofat. e Vitaminas Regulação/Pro cessamento Metabolismo de Nucleotídeos Metabolismo de RNA Metab. de	Indefinido Indefinido Indefinido Citoplasma Indefinido Indefinido Citoplasma Citoplasma	Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Ligase Indefinido Transferase Ligação/Síntese de ATP Transferase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
491 492 493 494 495 496 497 498 499 500	NADPH-dependent carbonvl reductase NADPH-dependent glutamate svnthase NADPH-dependent glutamate synthase small chain NADPH2-dependent 2,4- dienovl-CoA reductase NADPH2:quinone reductase Nicotinate phosphoribosyltransfera Nitrogen regulatory protein P-II Nucleoside diphosphate kinase Nucleotide-binding protein ACIAD3059 O-Acetylhomoserine sulfhydrylase	BC BC BC BC BC BC AB BC CT CT AB CT	A0A0H3KHT8 A0A0H3KCB4 A0A0H3KCB4 A0A0H3KCB4 A0A0H3KI02 A0A0H3KI02 A0A0H3KL17 A0A0H3KL17 A0A0H3KE11 Q6F6W1 A0A0H3KH38 Q0KDM3 Q0K958 A9AGZ3 Q6FEM7 Q6F856 Q0JZ13	1.1.1.184 1.4.1.13 1.4.1.13 1.3.1.34 1.6.5.5 6.3.4.21 - 2.7.4.6 - 2.5.1.49	24 59 54 73 34 36 34 48 12 12 15 15 15 15 33 33	Alanine, aspartate ar Nic.metab. in diverse Alanine, aspartate ar Nitrogen metabolism Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amino Micotinate and nicoti Metabolic pathways Purine metabolism Pyrimidine metabolism Metabolic pathways Bios. second. metabo Cysteine and methior Metabolic pathways	Indefinido Metab. de Aminoácidos Metab. de Aminoácidos Indefinido Indefinido Indefinido Metab. Cofat. e Vitaminas Regulação/Pro cessamento Metabolismo de Nucleotídeos Metabolismo de RNA Metab. de Aminoácidos	Indefinido Indefinido Indefinido Citoplasma Indefinido Indefinido Citoplasma Citoplasma	Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Ligase Indefinido Transferase Ligação/Síntese de ATP Transferase	In./Ex. In. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
491 492 493 494 495 496 497 498 499 500 501	NADPH-dependent carbonvl reductase NADPH-dependent glutamate synthase NADPH-dependent glutamate synthase small chain NADPH2-dependent 2,4- dienovl-CoA reductase NADPH2:quinone reductase Nicotinate phosphoribosyltransfera Nitrogen regulatory protein P-II Nucleoside diphosphate kinase Nucleotide-binding protein ACIAD3059 O-Acetylhomoserine sulfhydrylase O-acyltransferase WSD	BC BC BC BC BC BC BC CT CT AB CT AB	A0A0H3KHT8 A0A0H3KCB4 A0A0H3KCB4 A0A0H3KI02 A0A0H3KI02 A0A0H3KI17 A0A0H3KL17 A0A0H3KE11 Q6F6W1 A0A0H3KH38 Q0KDM3 Q0K958 A9AGZ3 Q6FEM7 Q6F856 Q0JZ13 086661	1.1.1.184 1.4.1.13 1.4.1.13 1.3.1.34 1.6.5.5 6.3.4.21 - 2.7.4.6 - 2.5.1.49 2.3.1.20	24 59 54 73 34 36 34 48 12 12 15 15 15 15 33 33 45	Mictabolic pathways         Mic.metab. in diverse         Alanine, aspartate ar         Nitrogen metabolism         Metabolic pathways         Bios. second. metabol         Mic.metab. in diverse         Biosynthesis of aming         Nicotinate and nicoti         Metabolic pathways         Purine metabolism         Pyrimidine metabolism         Pyrimidine metabolism         Pyrimidine metabolism         Cysteine and methior         Metabolic pathways         Glycerolipid metaboli	Indefinido Metab. de Aminoácidos Metab. de Aminoácidos Indefinido Indefinido Indefinido Metab. Cofat. e Vitaminas Regulação/Pro cessamento Metabolismo de Nucleotídeos Metabolismo de RNA Metab. de Aminoácidos	Indefinido Indefinido Indefinido Citoplasma Indefinido Indefinido Citoplasma Indefinido	Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Ligase Indefinido Transferase Ligação/Síntese de ATP Transferase	In./Ex. In. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
491 492 493 494 495 496 497 498 499 500 501	NADPH-dependent carbonvl reductase NADPH-dependent glutamate svnthase NADPH-dependent glutamate synthase small chain NADPH2-dependent 2,4- dienovl-CoA reductase NADPH2:quinone reductase Nicotinate phosphoribosyltransfera Nitrogen regulatory protein P-II Nucleoside diphosphate kinase Nucleotide-binding protein ACIAD3059 O-Acetylhomoserine sulfhydrylase O-acyltransferase WSD	BC BC BC BC BC BC BC CT CT AB CT AB	A0A0H3KHT8 A0A0H3KCB4 A0A0H3KCB4 A0A0H3KCB4 A0A0H3KI02 A0A0H3KI02 A0A0H3KI17 A0A0H3KG62 A0A0H3KE11 Q6F6W1 A0A0H3KH38 Q0KDM3 Q0K958 A9AGZ3 Q6FEM7 Q6F856 Q0JZ13 Q8GGG1	1.1.1.184 1.4.1.13 1.4.1.13 1.3.1.34 1.6.5.5 6.3.4.21 - 2.7.4.6 - 2.5.1.49 2.3.1.20 2.3.1.75	24 59 54 73 34 36 34 48 12 12 15 15 15 15 33 33 45 52	Mictabolic pathways Mic.metab. in diverse Mic.metab. in diverse Alanine, aspartate ar Nitrogen metabolism Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amino Mictabolic pathways Nicotinate and nicoti Metabolic pathways Bios. second. metabolis Metabolic pathways Bios. second. metaboli Cysteine and methior Metabolic pathways Glycerolipid metaboli Metabolic pathways	Indefinido Metab. de Aminoácidos Metab. de Aminoácidos Indefinido Indefinido Indefinido Metab. Cofat. e Vitaminas Regulação/Pro cessamento Metabolismo de Nucleotídeos Metabolismo de RNA Metab. de Aminoácidos Metabolismo de Ácidos	Indefinido Indefinido Indefinido Citoplasma Indefinido Indefinido Citoplasma Indefinido Indefinido	Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Ligase Indefinido Transferase Ligação/Síntese de ATP Transferase Transferase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
491 492 493 494 495 496 497 498 499 500 501	NADPH-dependent carbonvl reductase NADPH-dependent glutamate synthase NADPH-dependent glutamate synthase small chain NADPH2-dependent 2,4- dienovl-CoA reductase NADPH2:quinone reductase Nicotinate phosphoribosyltransfera Nitrogen regulatory protein P-II Nucleoside diphosphate kinase Nucleotide-binding protein ACIAD3059 O-Acetylhomoserine sulfhydrylase O-acyltransferase WSD	BC BC BC BC BC BC BC CT CT AB CT AB	A0A0H3KHT8 A0A0H3KCB4 A0A0H3KCB4 A0A0H3KI02 A0A0H3KI02 A0A0H3KJL6 A0A0H3KL17 A0A0H3KG62 A0A0H3KE11 Q6F6W1 A0A0H3KH38 Q0KDM3 Q0K958 A9AGZ3 Q6FEM7 Q6F856 Q0JZ13 Q8GGG1	1.1.1.184 1.4.1.13 1.4.1.13 1.3.1.34 1.6.5.5 6.3.4.21 - 2.7.4.6 - 2.5.1.49 2.3.1.20 2.3.1.75	24 59 54 73 34 36 34 48 12 12 15 15 15 15 33 33 45 52	Mictabolic pathways Mic.metab. in diverse Mic.metab. in diverse Alanine, aspartate ar Nitrogen metabolism Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amina Mictabolic pathways Nicotinate and nicoti Metabolic pathways Bios. second. metabolis Metabolic pathways Bios. second. metabolis Metabolic pathways Glycerolipid metaboli Metabolic pathways Cysteine and methior	Indefinido Metab. de Aminoácidos Metab. de Aminoácidos Indefinido Indefinido Indefinido Metab. Cofat. e Vitaminas Regulação/Pro cessamento Metabolismo de Nucleotídeos Metabolismo de Aminoácidos Metabolismo de Ácidos	Indefinido Indefinido Indefinido Citoplasma Indefinido Indefinido Citoplasma Indefinido Indefinido	Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Ligase Indefinido Transferase Ligação/Síntese de ATP Transferase Transferase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
491 492 493 494 495 496 497 498 499 500 501 502	NADPH-dependent carbonvl reductase NADPH-dependent glutamate synthase NADPH-dependent glutamate synthase small chain NADPH2-dependent 2,4- dienovl-CoA reductase NADPH2:quinone reductase Nicotinate phosphoribosyltransfera Nitrogen regulatory protein P-II Nucleoside diphosphate kinase Nucleotide-binding protein ACIAD3059 O-Acetylhomoserine sulfhydrylase O-acyltransferase WSD O-succinylhomoserine	BC BC BC BC BC BC BC CT CT AB CT AB AB	A0A0H3KHT8 A0A0H3KCB4 A0A0H3KCB4 A0A0H3KI02 A0A0H3KI02 A0A0H3KI17 A0A0H3KG62 A0A0H3KE11 Q6F6W1 A0A0H3KH38 Q0KDM3 Q0K958 A9AGZ3 Q6FEM7 Q6F856 Q0JZ13 Q8GGG1 Q6FA16	1.1.1.184 1.4.1.13 1.4.1.13 1.3.1.34 1.6.5.5 6.3.4.21 - 2.7.4.6 - 2.5.1.49 2.3.1.20 2.3.1.75 -	24 59 54 73 34 36 34 48 12 12 15 15 15 15 33 33 45 52 43	Mictabolic pathways Mic.metab. in diverse Alanine, aspartate ar Nitrogen metabolism Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amina Mictabolic pathways Nicotinate and nicoti Metabolic pathways Bios. second. metabolis Metabolic pathways Bios. second. metabolis Metabolic pathways Glycerolipid metaboli Metabolic pathways Glycerolipid metaboli Metabolic pathways Cysteine and methior Sulfur metabolism	Indefinido Metab. de Aminoácidos Metab. de Aminoácidos Indefinido Indefinido Indefinido Metab. Cofat. e Vitaminas Regulação/Pro cessamento Metabolismo de Nucleotídeos Metabolismo de RNA Metab. de Aminoácidos Metabolismo	Indefinido Indefinido Indefinido Citoplasma Indefinido Citoplasma Citoplasma Indefinido Indefinido	Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Oxidorredutase Ligase Indefinido Transferase Ligação/Síntese de ATP Transferase Transferase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.

5.02	Oligonontidaça A		0657119	2 4 2 4 7 0	70		Peptidases e	Indofinido	Hidrolaco	In /Ev
505	Oligopeptidase A	AD	Q0F708	5.4.24.70	70		inibidores	indennido	HIUTOIASE	III./EX.
504	OOP family OmpA-OmpF	вС	A0A0H3KLS5	-	24		Sinalização e	Membrana	Transporte	In./Ex.
	porin	86			25	Argining biogunthosis	Processo	plasmática		
	Ornithine	A D			35	Arginine biosynthesis Metabolic nathways	Metab. de			
505	carhamovltransferase	АВ	QOFCHO	2.1.3.3	34	Rios second metabo	Aminoácidos	Citoplasma	Transferase	In./Ex.
	carbanio yn ansierase					Biosynthesis of amin	/			
	Orotate	ВС	A0A0H3KIC1	2 4 2 4 0	26	Pyrimidine metabolis	Metabolismo		- (	. /=
506	phosphoribosyltransfera	AB	Q6F6Z6	2.4.2.10	23	Metabolic pathways	de	Indefinido	Transferase	In./Ex.
507	Orotidine 5'-phosphate	ст	001670	4 1 1 2 2	30	Pyrimidine metabolis	Metabolismo	Indofinido	Liaco	Ev
507	decarboxylase	C1	QURUTS	4.1.1.25		Metabolic pathways	de	Indefinido	LIDSE	LA.
508	Osmotically inducible	ВĊ	ΔΟΔΟΗ3ΚΙV4	1 11 1 28	15		Resn Estresse	Indefinido	Oxidorredutase	In /Fx
500	protein	ЪС	707011310314	1.11.1.20	15		Resp. Estresse	machinao	Oxidon cdutase	<i></i>
509	Outer membrane efflux	ст	O0K345	-	64	beta-Lactam resistan	Sinalização e	Membrana	Transporte	In./Ex.
	protein	_			-	Quorum sensing	Processo	externa da		,
		ВС	A0A0H3KJY8		39	•				
		BC	A0A0H3KGK2		41	+				
		BC	A0A0H3KL84		38	4	Cinalização o			
- 4 0		BC	A0A0H3KKJ1		40	+	Sinalização e	Membrana	<b>-</b> .	. /-
510	Outer membrane porin	BC	A0A0H3KLC3	-	41	+	Processo	plasmática	Transporte	In./EX.
		BC	A0A0H3KRN7		37	+	Celular	•		
		BC	A0A0H3KMM		41	+				
		BC	AUAUH3KVM		38	4				
	Outor mombrano protoin	вс	Αυαυπόκκλ7		26	hota Lactam resistan	Sinalização o	Mombrana		
511		AB	Q6F8F5	-	53	Quarum sensing			Transporte	In./Ex.
	(Adec-like) Outer membrane protein					Quorum sensing	Sinalização e	Membrana		
512	(Dorin)	СТ	Q0KFI6	-	39			placmática	Transporte	Ex.
	Outer membrane protein	RC.	Α0Α0Η3ΚΕΤ7		85		Sinalização e	Membrana		
513	assembly factor BamA	ΔR	065067	-	92	1	Processo	evterna da	Transporte	In./Ex.
		7.0	01007		52		Sinalização e	Membrana		
514	Outer membrane protein	вС	A0A0H3KFI5	-	31		Processo	externa da	Transporte	In./Ex.
	assembly factor BamD						Celular	célula		-
	Outer membrane protein						Sinalização e	Membrana		
515	or related peptidoglycan-	СТ	Q0KDI6	-	23		Processo	externa da	Transporte	In./Ex.
	associated (Lino)protein						Celular	célula		
	Oxygen-dependent					Porphyrin and chloro	Metab. Cofat.			
516	coproporphyrinogen-III	AB	Q6F7N3	1.3.3.3	37	Metabolic pathways	e Vitaminas	Indefinido	Oxidorredutase	In./Ex.
	oxidase					Bios. second. metabo				
517	PadR-like family	ВС	A0A0H3KNC9	-	27		Indefinido	Indefinido	Indefinido	In./Ex.
	transcriptional regulator						Sinalização e		Proteínas do	
518	ParA-like ATPase	ВС	A0A0H3KLB1	-	24		Processo	Indefinido	Citoesqueleto	In./Ex.
540	Paraquat-inducible	4.0	0.000		64		la deficiele	Membrana		1. /F.
519	protein	AB	Q6F8Y3	-	61		Indefinido	plasmática	indefinido	In./EX.
520	Paraquat-inducible	вC	ΔΟΔΟΗ3ΚGX9	-	59		Indefinido	Membrana	Indefinido	In /Fx
	protein B	DC	/lo/lollollollollollo		33			plasmática	indennido	ш <i>лу</i> Ех.
521	Peptide chain release	AB	Q6F721	-	38		Bios./Metab.	Citoplasma	Fator de	In.
	Tactor 2 Pentide chain release						Proteinas Bios /Motob		Iraducão/Elong	
522	factor 2	AB	Q6F823	-	60		Brotoinac	Citoplasma	Tradução /Elona	In./Ex.
							Bios./Metab			
523	Peptide deformylase	AB	Q6FFH6	3.5.1.88	20		Proteínas	Indefinido	Hidrolase	In./Ex.
524	Peptide methionine	AR		18/17	16		Bios./Metab.	Indefinido	Ovidorredutase	In /Ex
	sulfoxide reductase MsrB			1.0.4.12	10		Proteínas	machinau	Shuoneuulase	/LX.
525	Peptide/nickel transport	вС	A0A0H3KFY2	-	59	ABC transporters	Proc. de Info.	Membrana	Transporte	In./Ex.
	system ATP-binding	<u> </u>					Ambiental	plasmática		,,
526	Peptide/nickel transport	ВС	A0A0H3KJW2	-	60	ABC transporters	Proc. de Into.	Membrana	Transporte	In./Ex.
	system substrate-binding					Bacterial chemotaxis	Ambiental	plasmática		
527	Peptide/nickei transport	ВС	A0A0H3KIB7	-	57	ABC transporters	Proc. de Info.	iviemprana	Transporte	In./Ex.
	system substrate-binding	CT	004214/6		4.0	σαετεπαι chemotaxis	Ambiental	plasmatica		
528	r eptilogiytall-associated			-	10			ovtorna da	Transporte	In./Ex.
	Pentidyl-prolyl cis-trans	ы	AUAUTSKCBA		19		Bios /Metah	Membrana		
529	isomeraso	СТ	Q0K802	5.2.1.8	12		Drotoinas	nlasmática	Isomerase	Ex.
	Peptidyl-prolyl cis-trans		40401101/001	F 0 4 0		Cational at the state	Bios./Metab.	Membrana	1	1
530	isomerase	BC	AUAUH3KPN8	5.2.1.8	20	cationic antimicrobid	Proteínas	plasmática	isomerase	ın./Ex.

531	Peptidyl-prolyl cis-trans	вС	A0A0H3KFZ4	5.2.1.8	18		Bios./Metab.	Membrana	Isomerase	In./Ex.
	isomerase Pontidul prolulcis trans						Proteínas Rios (Motab	plasmática Mombrana		
532	is omerase	AB	Q6FDE0	5.2.1.8	12		BIOS./IVIELAD.	nlasmática	Isomerase	In./Ex.
5.2.2	Peptidyl-prolyl cis-trans	4.0	065604	F 2 1 0	10		Bios./Metab.	Membrana		1
533	isomerase	AB	Q6FG04	5.2.1.8	18		Proteínas	plasmática	Isomerase	In./EX.
534	Peptidyl-prolyl cis-trans	AB	O6FB14	5.2.1.8	19		Bios./Metab.	Membrana	lsomerase	In./Ex.
	isomerase						Proteínas	plasmática		,
535	Peptidyi-prolyi cis-trans	AB	Q6FCZ8	5.2.1.8	17		BIOS./IVIETAD.	Membrana	Isomerase	In./Ex.
	Isomerase						Bios./Metab.	Membrana		
536	Peptidylprolyl isomerase	ВС	АОАОНЗКРСО	5.2.1.8	29		Proteínas	plasmática	lsomerase	In./Ex.
527	Periplasmic binding	PC			24	ABC transporters	Proc. de Info.	Membrana	Transporto	In /Ex
557	protein/LacI	БС	AUAUITSKJG7	-	54	Bacterial chemotaxis	Ambiental	plasmática	nansporte	III./LX.
538	Permease of the major	вС	A0A0H3KH59	-	59		Proc. de Info.	Membrana	Transporte	In./Ex.
E 2 0	facilitator superfamily			1 1 1 1 2 1	2.4		Ambiental	plasmática	·	In /Fx
540	Peroxidase	BC		1.11.1.24	24		Indefinido	Indefinido	Oxidorredutase	III./EX. In /Ex
541	Peroxiredoxin	CT		1.11.1.20	20		Indefinido	Indefinido	Oxidorredutase	III./LX. In /Ex
542	Peroxiredoxin	СТ	00JZ03	1.11.1.24	24		Indefinido	Indefinido	Oxidorredutase	Ex.
543	Phasin family protein	BC	A0A0H3KPT7	-	20		Indefinido	Indefinido	Indefinido	In./Ex.
F 4 4	PHB domain-containing	40	065907		21		la definide	Membrana	lu d ofinid o	1
544	protein	AB	Q6F8D7	-	31		indefinido	plasmática	indefinido	In./EX.
545	PhenylalaninetRNA	AB	O6F872	6.1.1.20	37	Aminoacvl-tRNA bios	Biossíntese de	Citoplasma	Ligase	In./Ex.
	ligase alpha subunit						Aminoacil-			,
546	PhenylalaninetRNA	BC	AUAUH3KES3	6.1.1.20	89		Biossintese de	Citoplasma	Ligase	In./Ex.
	ligase beta subunit	AB	Q6F873		88		Aminoacii-		Ligação/Síntese	
547	PhoH-like ATPase	ВС	A0A0H3KFQ5	-	66			Indefinido	do ATP	In./Ex.
	Phosphate starvation-						Sinalização e		Lizzaño (Cíntero	
548	inducible protein (PhoH-	AB	Q6F7W7	-	41		Processo	Indefinido	Ligação/Sintese	In./Ex.
	like)						Celular		deATP	
549	Phosphate-binding	вС	A0A0H3KDL2	-	36	ABC transporters	Proc. de Info.	Membrana	Transporte	In./Ex.
	protein PstS					Two-component syst	Ambiental	plasmática		•
550	Phosphate-specific	٨D	OGEER4		27		Sinalização e	Citoplasma	Transporto	In /Ex
550	transport system	AD	QUFFB4	-	27		Processo	Citopiasina	nansporte	111./LX.
	accessory protein Pholi					Phenylalanine, tyrosi	<u>L'eimar</u>			
	Dhaanka 2 dahadaa 2					Metabolic pathways	N4 stals also			
551	Phospho-2-denydro-3-	СТ	Q0KCK8	2.5.1.54	39	Bios. second. metabo	ivietab. de	Indefinido	Transferase	In./Ex.
	deoxyneptonate aldolase					Biosynthesis of amin	Aminoacidos			
						Quorum sensing				
		ВС	A0A0H3KRG7		68	Glycolysis / Gluconeo				
	Dhaan haan almuu usta	AB	Q6F8P2		67	Citrate cycle (TCA cycl	Glicolise /			
552	Phosphoenoipyruvale			4.1.1.32		Pyruvate metabolism	Gliconeogênes	Citoplasma	Liase	In./Ex.
	carboxykinase [GTP]					Rios second metabo	е			
						Mic metah in diverse				
		СТ	Q0K7M4		112	Pvruvate metabolism				l
		BC	A0A0H3KOH6		110	Methane metabolism				
	Phosphoenolpyruvate	AB	Q6F6Q6	4 1 1 2 1	102	Carbon fixation in ph	Metab. de	lua al aftiva i al a	Linne	10 15.
555	carboxylase			4.1.1.31		Metabolic pathways	Carbo.	indefinido	Llase	In./EX.
						Mic.metab. in diverse				
						Carbon metabolism				
		СТ	Q0KA33	I.	87	Glycolysis / Gluconeo				
		ВС	A0A0H3KFN8		88	Pyruvate metabolism				
	Phosphoenolpyruvate	AB	Q6F9R7		87	Methane metabolism	Glicolise /		- (	
554	synthase			2.7.9.2		Metabolic pathways	Gliconeogenes	Indefinido	Transferase	In./Ex.
						ыоз. secona. metabo Mic metab in diverse	e			
						Carbon metabolism				
	Phosphoenolovruvate-	1.					Proc. de Info	Membrana		
555	protein	AB	Q6FEW8	2.7.3.9	86	Phosphotransferase	Ambiental	plasmática	Transferase	In./Ex.
		СТ	Q0JY25	4.2.1.12	66	Pentose phosphate p				
556	Phosphogluconate	AB	Q6FEP0		66	Metabolic pathways	Metab. de	Indefinido	Liase	In./Ex.
-	dehydratase	L				Mic.metab. in diverse	Carbo.			,
			00//01/7			Carbon metabolism				
l	Phoenhoducoeamine	СT	QUK8Y/		48	Amino sugar and nuc	Motah da			

557	r แบวpแบรูเนเบริสเทเท <del>ต</del>	PC		54210	47	Metabolic nathways	IVICIAN. UC	Indefinido	Isomerase	In /Fx
	mutase		AGACLS	5.4.2.10	47		Carbo.	machinao	isomerase	<i></i>
		AD DC			40	Chrobis / Chronie				
		BC	AUAUHSKLUS		41	Giveningsis / Gluconeo				
		AB	Q6FB08		41	Carbon jixation in pr	Clicalica /			
						Nietabolic pathways	Gilcolise/			. /-
558	Phosphoglycerate kinase			2.7.2.3		Bios. second. metabo	Gliconeogénes	Citoplasma	Iransferase	In./Ex.
						Mic.metab. in diverse	е			
						Carbon metabolism				
						Biosynthesis of amin				
		СТ	Q0KAM1		50	Glycolysis / Gluconeo				
		ВС	A0A0H3KHG2		50	Pentose phosphate p				
						Fructose and manno.				
						Galactose metabolisi				
						Purine metabolism	Glicolise /			
559	Phosphomannomutase			5.4.2.8		Starch and sucrose n	Gliconeogênes	Indefinido	Isomerase	In./Ex.
						Amino sugar and nuc				,
						Strentomycin hiosynt	C			
						Metabolic nathways				
						Bios second metabo				
						Mic motah in divorsa				
	Dhe each eachthadar minsidir		40.46¥0			This min a match a liam	Matah Cafat			
560	Phosphomethylpynmiain	BC	ASACXS	4.1.99.17	/1	Match a lia a ath	Wielab. Coral.	Indefinido	Liase	In./Ex.
	esynthase	AB	Q6FFB6		71	Metabolic pathways	e Vitaminas			
561	Phosphopantetheine	AB	Q6F8K0	2.7.7.3	19	Pantothenate and Co	Metab. Cofat.	Citoplasma	Transferase	In./Ex.
	adenylyltransferase					Metabolic pathways	e Vitaminas			,
	Phosphorihosylamine	СТ	Q0KD60		45	Purine metabolism	Metabolismo			
562	alueine ligese	ВС	A0A0H3KQ70	6.3.4.13	46	Metabolic pathways	de	Citoplasma	ligase	In./Ex.
	giycine ligase	AB	Q6F9P4		47	Bios. second. metabo	Nucleotídeos			
	Phosphoribosylaminoimi	СТ	Q0KE53		33	Purine metabolism	Metabolismo			
563	dazole-	ВС	A0A0H3KR09	6.3.2.6	33	Metabolic pathways	de	Citoplasma	ligase	In./Ex.
	succinocarboxamide	AB	06F6U0		27	Bios. second. metabo	Nucleotídeos	•	Ű	-
		BC	A9AGA9		37	Purine metabolism	Metabolismo			
564	Phosphoribosylformylgly	ΔR	06F973	6.3.3.1	38	Metabolic pathways	de	Citoplasma	ligase	In./Fx.
	cinamidine cyclo-ligase	710	201373	0.01012		Bios second metabo	Nucleotídeos	enepideria	Bao c	,
		PC	ΔΟΔΟΗ3ΚΕG9		146	Purine metabolism	Metabolismo			
565	Phosphoribosylformylgly	BC		6252	140	Motabolic pathways	do	Citoplasma	ligaça	In /Ev
303	cinamidine synthase	AB	Q6F994	0.5.5.5	140	Rice cocond metabo	ue	Citopiasina	ligase	111./EX.
						BIOS. SECOND. MELADO	Nucleotideos			
						Giycine, serine and th				
						Cysteine and methior				
						Methane metabolism				
	Phosphoserine					Vitamin B6 metabolis	Metab, de			
566	aminotransforação	AB	Q6F961	2.6.1.52	39	Metabolic pathways	Aminoácidos	Citoplasma	Transferase	In./Ex.
	animotransferase					Bios. second. metabo	Aminoaciuos			
						Mic.metab. in diverse				
						Carbon metabolism				
						Biosynthesis of amin				
						Glycine, serine and th				
						Methane metabolism				
						Metabolic pathways				
567	Phosphoserine	AB	O6F6V6	3.1.3.3	44	Bios, second, metabo	Metab. de	Indefinido	Hidrolase	In./Fx.
	phosphatase					Mic metah in diverse	Aminoácidos			,
						Carbon metabolism				
						Biosynthesis of amin				
	Phosphotransforaço					biosynthesis of unin	Proc do Info	Mombrana		
568		ВС	A0A0H3KHJ2	2.7.3.9	90	Phosphotransferase	Piùc. de lino.		Transferase	In./Ex.
	system enzyme i						Amplental Singlização o	Mombrana	Sistoma do	
569	Pilus assembly protein	ВС	A0A0H3KEK3	-	46		Sillalização e		Sistema de	In./Ex.
							Processo Singlização o	externa da	Secrecao	
570	Pilus assembly protein	ВС	A0A0H3KJ97	7.4.2.8	49			Wielingrafia	Translocase	In./Ex.
	RKUD type bydreyydase						Processo	externa da		
571	PKHD-type nydroxylase	AB	Q6FEQ1	-	26		Indefinido	Indefinido	Oxidorredutase	In./Ex.
	ACIAD0531									
572	PISC domain-containing	AB	Q6FDR3	-	35		Indefinido	Indefinido	Transferase	In./Ex.
┝──	protein						Dentidat			-
573	PmbA protein	ВС	A0A0H3KDK1	-	49		Peptidases e	Indefinido	Indefinido	In./Ex.
<u> </u>	Dalawani					ABC too	inibidores	N.4		
574	Polar amino acid	ВС	A0A0H3KC99	-	27	ABC transporters	Proc. de Into.	iviembrana	Transporte	In./Ex.
<u> </u>	transport system					Iwo-component syst	Ambiental	plasmática	-	
575	Polar amino acid	RC	δυσυμγκκνία	-	22	ABC transporters	Proc. de Info.	Membrana	Transnorte	In /Fv

	transport system	DC	AUAUTSIKINIS	-	55	Two-component syst	Ambiental	plasmática	Παιισμοιτε	,∟∧.
	Polar amino acid					, , , , , , , , , , , , , , , , , , ,	Proc. do Info	Mombrana		
576	transport system	ВС	A0A0H3KJH2	-	27		Ambientel	plasmática	Transporte	In./Ex.
	substrate-hinding protein						Amplentai	plasmatica		
	Polar amino acid						Proc. de Info.	Membrana		1.
577	transport system	ВС	A0A0H3KTS6	-	28		Ambiental	plasmática	Transporte	In./Ex.
	substrate-binding protein		40401128670			DNA desus deties	Dies (Metek	P		
578	Poly(A) polymerase I	BC	AUAUH3KC79	2.7.7.19	57	RNA degradation	BIOS./IVIETAD.	Indefinido	Transferase	In./Ex.
		AB	Q6F852		56	Ovidative phosphory	Proteinas Motabolismo			
579	Polyphosphate kinase	AB	Q43991	2.7.4.1	79	RNA degradation	Enorgótico	Mitocondria	Transferase	In./Ex.
		СТ	00КСТ4		70	NNA degradation	Ellergetico			
580	Polyribonucleotide	RC		2778	70	RNA dearadation	Bios./Metab.	Citoplasma	Transferase	In /Fx
	nucleotidyltransferase	AR	065512	2.7.7.0	75	nin acgradation	Proteínas	citopiasina	Transferase	111. <i>7</i> EX.
		ΠD	QUITIZ		75	Porphyrin and chloro				
	Porphobilinogen					Metabolic pathways	Metab. Cofat.			1
581	deaminase	AB	Q6FFA9	2.5.1.61	34	Bios. second. metabo	e Vitaminas	Indefinido	Transferase	In.
						Mic.metab. in diverse				1
507	PPK2 domain-containing	PC			22		Indofinida	Mitocondria	Transforme	In ITY
502	protein	ЫС	AUAUNSKBSI	-	52		muermuu	wittoconuna	TIATISTELASE	111./EX.
	Predicted membrane-						Peptidases e	Membrana		_
583	bound protease subunit	СТ	Q0K824	-	25		inibidores	plasmática	Hidrolase	Ex.
	Prodicted nucleoside							P		
504	rieulcieu nucleosiae-	pr.			22		Indofinida	Indefinide	Indofinida	In
504	uipnosphate-sugar	BC		-	22		muermuu	muermuu	maeriniao	<i></i>
	Predicted									
585	periplasmic/secreted	вС	A0A0H3KLE0	-	26		Indefinido	Indefinido	Indefinido	In.
	nrotein									
	Predicted						Metabolismo			
586	phosphoribosyltransfera	СТ	Q0K973	-	21		de	Indefinido	Transferase	Ex.
	SP						Nucleotídeos			<b> </b>
587	Probable AcnD-accessory	вС	A0A0H3KTW9	-	41	Propanoate metabol	Metab. de	Indefinido	Isomerase	In.
	protein		0.01/7-7-7			Metabolic pathways	Carbo.			
588	Probable cytosol	СТ	QUK7F5	3.4.11.1	54	Glutathione metaboli	Peptidases e	Citoplasma	Hidrolase	In./Ex.
500	aminopeptidase	BC	A9AHG9	4 5 5 4	53	Metabolic pathways	inibidores			1
589	Probable electron	AB	P94132	1.5.5.1	63		Indefinido	Indefinido	Oxidorredutase	In./EX.
590	Probable extra-	CT	QUKE31	-	34	Aminahanzaata daar	Proc. de Info.	Membrana	Receptor	In./EX.
591		AB	Q6F7T9	1.14.13	56	Mic motab in diverse	Degradação de	plasmática	Oxidorredutase	In./Ex.
	Probable potassium					witc.metub. in uiverse	Sinalização e	plasmatica		
592	transport system protein	ст	07WXK8	-	69		Processo	Membrana	Transporte	In./Fx.
	kun 2	01	Q, MARO		05		Celular	plasmática	nunsporte	<i>, </i>
	Probable transcriptional						Pogulação /Pro			
593	regulatory protein	AB	Q6FAP5				Regulação/FTO	·		
	ACIAD2052	1		-	27		cessamento	Citoplasma	Ligação ao	In./Ex.
				-	27		cessamento da Transcrição	Citoplasma	Ligação ao DNA/RNA	In./Ex.
594		СТ	Q0K6Q0	-	27 63		cessamento da Transcrição Biossíntese de	Citoplasma	Ligação ao DNA/RNA	In./Ex.
	ProlinetRNA ligase	CT BC	Q0K6Q0 A9AI56	- 6.1.1.15	27 63 64	Aminoacyl-tRNA bios	cessamento da Transcricão Biossíntese de Aminoacil-	Citoplasma Citoplasma	Ligação ao DNA/RNA Ligase	In./Ex. In./Ex.
	ProlinetRNA ligase	CT BC AB	Q0K6Q0 A9AI56 Q6FE23	- 6.1.1.15	27 63 64 63	Aminoacyl-tRNA bios	cessamento da Transcricão Biossíntese de Aminoacil- tRNA	Citoplasma Citoplasma	Ligação ao DNA/RNA Ligase	In./Ex. In./Ex.
595	ProlinetRNA ligase Propionyl-CoA	CT BC AB BC	Q0K6Q0 A9Al56 Q6FE23 A0A0H3KWX5	- 6.1.1.15 6.4.1.4	27 63 64 63 57	Aminoacyl-tRNA bios	cessamento da Transcricão Biossíntese de Aminoacil- tRNA Metab. de	Citoplasma Citoplasma Indefinido	Ligação ao DNA/RNA Ligase ligase	In./Ex. In./Ex. In./Ex.
595	ProlinetRNA ligase Propionyl-CoA carboxylase beta chain	CT BC AB BC	Q0K6Q0 A9AI56 Q6FE23 A0A0H3KWX5	- 6.1.1.15 6.4.1.4	27 63 64 63 57	Aminoacyl-tRNA bios	cessamento da Transcricão Biossíntese de Aminoacil- tRNA Metab. de Aminoácidos	Citoplasma Citoplasma Indefinido	Ligação ao DNA/RNA Ligase ligase	In./Ex. In./Ex. In./Ex.
595 596	ProlinetRNA ligase Propionyl-CoA carboxvlase beta chain Protease associated	CT BC AB BC BC	Q0K6Q0 A9AI56 Q6FE23 A0A0H3KWX5 A0A0H3KGF1	- 6.1.1.15 6.4.1.4	27 63 64 63 57 96	Aminoacyl-tRNA bios Bacterial secretion sy	cessamento da Transcricão Biossíntese de Aminoacil- tRNA Metab. de Aminoácidos Peptidases e	Citoplasma Citoplasma Indefinido Membrana	Ligação ao DNA/RNA Ligase ligase Hidrolase	In./Ex. In./Ex. In./Ex. In./Ex.
595 596	ProlinetRNA ligase Propionyl-CoA <u>carboxvlase beta chain</u> Protease associated ATPase	CT BC AB BC BC	Q0K6Q0 A9AI56 Q6FE23 A0A0H3KWX5 A0A0H3KGF1	- 6.1.1.15 6.4.1.4 -	27 63 64 63 57 96	Aminoacyl-tRNA bios Bacterial secretion sy	cessamento da Transcricão Biossíntese de Aminoacil- tRNA Metab. de Aminoácidos Peptidases e inibidores Peptidases e	Citoplasma Citoplasma Indefinido Membrana plasmática Membrana	Ligação ao DNA/RNA Ligase ligase Hidrolase	In./Ex. In./Ex. In./Ex.
595 596 597	ProlinetRNA ligase Propionyl-CoA <u>carboxvlase beta chain</u> Protease associated <u>ATPase</u> Protease HtpX	CT BC AB BC BC AB	Q0K6Q0 A9AI56 Q6FE23 A0A0H3KWX5 A0A0H3KGF1 Q6F8Q1	- 6.1.1.15 6.4.1.4 -	27 63 64 63 57 96 33	Aminoacyl-tRNA bios Bacterial secretion sy	cessamento da Transcricão Biossíntese de Aminoacil- tRNA Metab. de Aminoácidos Peptidases e inibidores Peptidases e	Citoplasma Citoplasma Indefinido Membrana plasmática nlasmática	Ligação ao DNA/RNA Ligase ligase Hidrolase Hidrolase	In./Ex. In./Ex. In./Ex. In./Ex.
595 596 597	ProlinetRNA ligase Propionyl-CoA <u>carboxvlase beta chain</u> Protease associated <u>ATPase</u> Protease HtpX	CT BC AB BC BC AB CT	Q0K6Q0 A9Al56 Q6FE23 A0A0H3KWX5 A0A0H3KGF1 Q6F8Q1 Q0KE78	- 6.1.1.15 6.4.1.4 - -	27 63 64 63 57 96 33 38	Aminoacyl-tRNA bios Bacterial secretion sy	cessamento da Transcricão Biossíntese de Aminoacil- tRNA Metab. de Aminoácidos Peptidases e inibidores Peptidases e inibidores Recombinação	Citoplasma Citoplasma Indefinido Membrana plasmática Membrana plasmática	Ligação ao DNA/RNA Ligase ligase Hidrolase Hidrolase	In./Ex. In./Ex. In./Ex. In./Ex.
595 596 597 598	ProlinetRNA ligase Propionyl-CoA <u>carboxvlase beta chain</u> Protease associated <u>ATPase</u> Protease HtpX Protein RecA	CT BC AB BC BC AB CT BC	Q0K6Q0 A9Al56 Q6FE23 A0A0H3KWX5 A0A0H3KGF1 Q6F8Q1 Q0KE78 A9AFT0	- 6.1.1.15 6.4.1.4 - -	27 63 64 63 57 96 33 38 37	Aminoacyl-tRNA bios Bacterial secretion sy Homologous recomb	cessamento da Transcricão Biossíntese de Aminoacil- tRNA Metab. de Aminoácidos Peptidases e inibidores Peptidases e inibidores Recombinação e Reparo de	Citoplasma Citoplasma Indefinido Membrana plasmática Membrana plasmática Citoplasma	Ligação ao DNA/RNA Ligase ligase Hidrolase Hidrolase Ligação ao	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
595 596 597 598	ProlinetRNA ligase Propionyl-CoA carboxvlase beta chain Protease associated ATPase Protease HtpX Protein RecA	CT BC AB BC BC AB CT BC AB	Q0K6Q0 A9Al56 Q6FE23 A0A0H3KWX5 A0A0H3KGF1 Q6F8Q1 Q0KE78 A9AFT0 P42438	- 6.1.1.15 6.4.1.4 - - -	27 63 64 63 57 96 33 38 37 38	Aminoacyl-tRNA bios Bacterial secretion sy Homologous recomb	Regulação/Pio cessamento da Transcricão Biossíntese de Aminoacil- tRNA Metab. de Aminoácidos Peptidases e inibidores Peptidases e inibidores Recombinação e Reparo de DNA	Citoplasma Citoplasma Indefinido Membrana plasmática Membrana plasmática Citoplasma	Ligação ao DNA/RNA Ligase ligase Hidrolase Hidrolase Ligação ao DNA/RNA	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
595 596 597 598	ProlinetRNA ligase Propionyl-CoA <u>carboxvlase beta chain</u> Protease associated ATPase Protease HtpX Protein RecA	CT BC AB BC BC AB CT BC AB CT	Q0K6Q0 A9Al56 Q6FE23 A0A0H3KWX5 A0A0H3KGF1 Q6F8Q1 Q0KE78 A9AFT0 P42438 Q0K6N3	- 6.1.1.15 6.4.1.4 - - -	27 63 64 63 57 96 33 38 37 38 105	Aminoacyl-tRNA bios Bacterial secretion sy Homologous recomb Quorum sensing	Regulação/Pio cessamento da Transcricão Biossíntese de Aminoacil- tRNA Metab. de Aminoácidos Peptidases e inibidores Peptidases e inibidores Recombinação e Reparo de DNA	Citoplasma Citoplasma Indefinido Membrana plasmática Membrana citoplasma	Ligação ao DNA/RNA Ligase ligase Hidrolase Hidrolase Ligação ao DNA/RNA	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
595 596 597 598 599	ProlinetRNA ligase Propionyl-CoA <u>carboxvlase beta chain</u> Protease associated ATPase Protease HtpX Protein RecA Protein translocase subunit SecA	CT BC AB BC BC AB CT BC CT BC	Q0K6Q0 A9AI56 Q6FE23 A0A0H3KWX5 A0A0H3KGF1 Q6F8Q1 Q0KE78 A9AFT0 P42438 Q0K6N3 A9AI87	- 6.1.1.15 6.4.1.4 - - - 7.4.2.8	27 63 64 63 57 96 33 38 37 38 105 105	Aminoacyl-tRNA bios Bacterial secretion sy Homologous recomb Quorum sensing Protein export	Regulação/Pio cessamento da Transcricão Biossíntese de Aminoacil- tRNA Metab. de Aminoácidos Peptidases e inibidores Peptidases e inibidores Recombinação e Reparo de DNA Proc. de Info. Ambiontal	Citoplasma Citoplasma Indefinido Membrana plasmática Membrana citoplasma Membrana	Ligação ao DNA/RNA Ligase ligase Hidrolase Ligação ao DNA/RNA Translocase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
595 596 597 598 599	ProlinetRNA ligase Propionyl-CoA <u>carboxvlase beta chain</u> Protease associated ATPase Protease HtpX Protein RecA Protein translocase subunit SecA	CT BC AB BC BC AB CT BC AB CT BC AB	Q0K6Q0 A9Al56 Q6FE23 A0A0H3KWX5 A0A0H3KGF1 Q6F8Q1 Q0KE78 A9AFT0 P42438 Q0K6N3 A9AI87 Q6FEE0	- 6.1.1.15 6.4.1.4 - - - 7.4.2.8	27 63 64 63 57 96 33 38 37 38 105 105 103	Aminoacyl-tRNA bios Bacterial secretion sy Homologous recomb Quorum sensing Protein export Bacterial secretion sy	Regulação/Fio cessamento da Transcrição Biossíntese de Aminoacil- tRNA Metab. de Aminoácidos Peptidases e inibidores Peptidases e inibidores Recombinação e Reparo de DNA Proc. de Info. Ambiental	Citoplasma Citoplasma Indefinido Membrana plasmática Citoplasma Membrana plasmática	Ligação ao DNA/RNA Ligase ligase Hidrolase Ligação ao DNA/RNA Translocase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
595 596 597 598 599 600	ProlinetRNA ligase Propionyl-CoA <u>carboxvlase beta chain</u> Protease associated <u>ATPase</u> Protease HtpX Protein RecA Protein translocase subunit SecA Protein translocase	CT BC AB BC AB CT BC AB CT BC AB AB	Q0K6Q0 A9AI56 Q6FE23 A0A0H3KWX5 A0A0H3KGF1 Q6F8Q1 Q0KE78 A9AFT0 P42438 Q0K6N3 A9AI87 Q6FEE0 Q6FFI6	- 6.1.1.15 6.4.1.4 - - 7.4.2.8	27 63 64 63 57 96 33 38 37 38 105 105 103 69	Aminoacyl-tRNA bios Bacterial secretion sy Homologous recomb Quorum sensing Protein export Bacterial secretion sy Protein export	Regulação/Fio cessamento da Transcricão Biossíntese de Aminoacil- tRNA Metab. de Aminoácidos Peptidases e inibidores Peptidases e inibidores Recombinação e Reparo de DNA Proc. de Info. Ambiental Proc. de Info.	Citoplasma Citoplasma Indefinido Membrana plasmática Citoplasma Membrana plasmática Membrana	Ligação ao DNA/RNA Ligase ligase Hidrolase Ligação ao DNA/RNA Translocase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
595 596 597 598 599 600	ProlinetRNA ligase Propionyl-CoA <u>carboxvlase beta chain</u> Protease associated ATPase Protease HtpX Protein RecA Protein translocase subunit SecA Protein translocase subunit SecD	CT           BC           AB           BC           AB           CT           BC           AB	Q0K6Q0 A9AI56 Q6FE23 A0A0H3KWX5 A0A0H3KGF1 Q6F8Q1 Q0KE78 A9AFT0 P42438 Q0K6N3 A9AI87 Q6FEE0 Q6FEJ6	- 6.1.1.15 6.4.1.4 - - 7.4.2.8	27 63 64 57 96 33 38 37 38 105 105 103 69	Aminoacyl-tRNA bios Bacterial secretion sy Homologous recomb Quorum sensing Protein export Bacterial secretion sy Protein export Bacterial secretion sy	Regulação/Fio cessamento da Transcrição Biossíntese de Aminoacil- tRNA Metab. de Aminoácidos Peptidases e inibidores Peptidases e inibidores Recombinação e Reparo de DNA Proc. de Info. Ambiental Proc. de Info.	Citoplasma Citoplasma Indefinido Membrana plasmática Citoplasma Membrana plasmática Membrana plasmática	Ligação ao DNA/RNA Ligase ligase Hidrolase Ligação ao DNA/RNA Translocase Translocase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
595 596 597 598 599 600	ProlinetRNA ligase Propionyl-CoA carboxvlase beta chain Protease associated ATPase Protease HtpX Protein RecA Protein translocase subunit SecA Protein translocase Subunit SecD Protein translocase	CT BC AB BC BC AB CT BC AB CT BC AB AB	Q0K6Q0 A9AI56 Q6FE23 A0A0H3KWX5 A0A0H3KGF1 Q6F8Q1 Q0KE78 A9AFT0 P42438 Q0K6N3 A9AI87 Q6FEE0 Q6FEJ6	- 6.1.1.15 6.4.1.4 - - 7.4.2.8 -	27 63 64 63 57 96 33 38 37 38 105 105 103 69	Aminoacyl-tRNA bios Bacterial secretion sy Homologous recomb Quorum sensing Protein export Bacterial secretion sy Protein export Bacterial secretion sy Quorum sensing	Regulação/Fio cessamento da Transcrição Biossíntese de Aminoacil- tRNA Metab. de Aminoácidos Peptidases e inibidores Peptidases e inibidores Recombinação e Reparo de DNA Proc. de Info. Ambiental Proc. de Info. Ambiental Proc. de Info.	Citoplasma Citoplasma Indefinido Membrana plasmática Citoplasma Diasmática Membrana plasmática Membrana plasmática	Ligação ao DNA/RNA Ligase ligase Hidrolase Ligação ao DNA/RNA Translocase Translocase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
595 596 597 598 599 600 601	ProlinetRNA ligase Propionyl-CoA carboxvlase beta chain Protease associated ATPase Protease HtpX Protein RecA Protein translocase subunit SecA Protein translocase subunit SecD Protein translocase subunit SecY	CT BC AB BC BC AB CT BC AB CT BC AB AB AB	Q0K6Q0 A9Al56 Q6FE23 A0A0H3KWX5 A0A0H3KGF1 Q6F8Q1 Q6F8Q1 Q0KE78 A9AFT0 P42438 Q0K6N3 A9AI87 Q6FEE0 Q6FEI6 Q6FFJ6	- 6.1.1.15 6.4.1.4 - - 7.4.2.8 -	27 63 64 63 57 96 33 38 37 38 105 105 105 103 69 49	Aminoacyl-tRNA bios Bacterial secretion sy Homologous recomb Quorum sensing Protein export Bacterial secretion sy Protein export Bacterial secretion sy Quorum sensing Protein export	Regulação/Pio cessamento da Transcrição Biossíntese de Aminoacil- tRNA Metab. de Aminoácidos Peptidases e inibidores Peptidases e inibidores Recombinação e Reparo de DNA Proc. de Info. Ambiental Proc. de Info. Ambiental	Citoplasma Citoplasma Indefinido Membrana plasmática Citoplasma Citoplasma plasmática Membrana plasmática Membrana plasmática	Ligação ao DNA/RNA Ligase ligase Hidrolase Hidrolase Ligação ao DNA/RNA Translocase Translocase Transporte	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
595 596 597 598 599 600 601	ProlinetRNA ligase Propionyl-CoA carboxvlase beta chain Protease associated ATPase Protease HtpX Protein RecA Protein translocase subunit SecA Protein translocase subunit SecD Protein translocase subunit SecY	CT BC AB BC BC AB CT BC AB CT BC AB AB AB	Q0K6Q0 A9AI56 Q6FE23 A0A0H3KWX5 A0A0H3KGF1 Q6F8Q1 Q6F8Q1 Q0KE78 A9AFT0 P42438 Q0K6N3 A9AI87 Q6FEE0 Q6FEJ6 Q6FFJ6	- 6.1.1.15 6.4.1.4 - - 7.4.2.8 - -	27 63 64 63 57 96 33 38 37 38 105 105 103 69 49	Aminoacyl-tRNA bios Bacterial secretion sy Homologous recomb Quorum sensing Protein export Bacterial secretion sy Protein export Bacterial secretion sy Quorum sensing Protein export Bacterial secretion sy	Regulação/Pio cessamento da Transcrição Biossíntese de Aminoacil- tRNA Metab. de Aminoácidos Peptidases e inibidores Peptidases e inibidores Recombinação e Reparo de DNA Proc. de Info. Ambiental Proc. de Info. Ambiental	Citoplasma Citoplasma Indefinido Membrana plasmática Citoplasma Membrana plasmática Membrana plasmática Membrana plasmática	Ligação ao DNA/RNA Ligase ligase Hidrolase Ligação ao DNA/RNA Translocase Translocase Transporte	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
595 596 597 598 599 600 601 602	ProlinetRNA ligase Propionyl-CoA carboxvlase beta chain Protease associated ATPase Protease HtpX Protein RecA Protein translocase subunit SecA Protein translocase subunit SecD Protein translocase subunit SecY Protein-export membrane	CT BC AB BC BC AB CT BC AB CT BC AB AB AB BC	Q0K6Q0 A9AI56 Q6FE23 A0A0H3KWX5 A0A0H3KGF1 Q6F8Q1 Q0KE78 A9AFT0 P42438 Q0K6N3 A9AI87 Q6FEE0 Q6FEE0 Q6FEJ6 Q6FF7T2 A0A0H3KKS1	- 6.1.1.15 6.4.1.4 - - 7.4.2.8 - - -	27 63 64 63 57 96 33 38 37 38 105 105 105 103 69 49 35	Aminoacyl-tRNA bios Bacterial secretion sy Homologous recomb Quorum sensing Protein export Bacterial secretion sy Protein export Bacterial secretion sy Quorum sensing Protein export Bacterial secretion sy Protein export	Regulação/Pio cessamento da Transcrição Biossíntese de Aminoacil- tRNA Metab. de Aminoácidos Peptidases e inibidores Peptidases e inibidores Recombinação e Reparo de DNA Proc. de Info. Ambiental Proc. de Info. Ambiental Proc. de Info.	Citoplasma Citoplasma Indefinido Membrana plasmática Citoplasma Diasmática Membrana plasmática Membrana plasmática Membrana plasmática	Ligação ao DNA/RNA Ligase ligase Hidrolase Hidrolase Ligação ao DNA/RNA Translocase Translocase Transporte	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.

	Protein-export protein		AO A 51/0		10	Quorum sensing	Bios./Metab.	Citeral	Character	1. /E.
603	SecB	ВС	Α9ΑΕΚΟ	-	18	Protein export Bacterial secretion su	Proteínas	Citoplasma	Chaperona	In./Ex.
604	Pseudouridine synthase	AB	Q6FDU7	5.4.99.22	36		Metabolismo	Indefinido	lsomerase	In./Ex.
605	PTS system N-	РC			62	Amino sugar and nuc	de RNA Metab. de	Membrana	Transforação	In /Ex
005	acetylglucosamine-	ы	AUAUHSKHQZ	-	02	Phosphotransferase	Carbo.	plasmática	Transferase	III./EX.
606	Putative 2-nitropropane	СТ	Q7WWU7	-	35		Resp. Estresse	Indefinido	Indefinido	In./Ex.
				1.1.1.35		Fatty acid degradatio				
				4.2.1.17		Val., leuc. and isol. de Geranial degradation				
				5.1.2.5		Lysine degradation				
						Benzoate degradatio				
						Tryptophan metaboli	Dogradação do			
	Putative 3-					beta-Alanine metabo Pronancate metabol	Ácidos graxos			
607	hydroxybutyryl-CoA	AB	Q6F8B7		77	Butanoate metabolis	e	Indefinido	Oxidorredutase	In./Ex.
	epimerase					Limonene and pinene	Xenobióticos			
						Caprolactam degrad				
						Metabolic pathways				
						Mic.metab. in diverse				
					İ	Carbon metabolism				
	Dutative A hudrawy A					Fatty acid metabolis				
608	Putative 4-hydroxy-4-	ΔR	OGECE4	_	18		Metabolismo	Indefinido	Liase	In /Fy
	aldolase	ΑŬ	001014		10		de RNA	indefinido	Llase	, LA.
	Putative ABC transport				_		Proc. de Info.	Membrana		
609	system auxiliary	ВС	A0A0H3KHY4	-	24	ABC transporters	Ambiental	plasmática	Transporte	In./Ex.
610	Putative ABC transport	PC			27	APC transportars	Proc. de Info.	Membrana	Transporto	In /Ex
010	svstem permease protein	ы	AUAUHSKKWI	-	27	ABC transporters	Ambiental	plasmática	Transporte	III./EX.
611	Putative ABC transport	PC			22		Sinalização e	Membrana	Transporto	In /Ex
011	system substrate-binding	БС	AUAUHSKHKU	-	55		Celular	plasmática	mansporte	III./EX.
	protein					Fatty acid degradation Synthesis/deg. ketono	Celular			
						Val., leuc. and isol. de				
						Lysine degradation				
						Tryptophan metaboli				
	Putative acetyl-CoA					Pyruvate metabolism	Degradação de			
	acetyltransferase					Glyoxylate metabolis	Ácidos graxos			
612	, (Acetoacetyl-CoA	AB	Q6FEA0	2.3.1.9	41	Propanoate metabol	e	Indefinido	Transferase	In./Ex.
	thiolase)					Terpenoid backbone	Xenobióticos			
						Metabolic pathways				
						Bios. second. metabo				
						Mic.metab. in diverse				
						Fatty acid metabolisi				
						Two-component syst				
						Glycolysis / Gluconed				
						Pyruvate metabolism Glyoxylate metabolis				
	Putative acetyl-coA					Propanoate metabol	Glicolise /			
613	synthetase/AMP-(Fatty)	AB	Q6FBV6	6.2.1.1	61	Methane metabolism	Gliconeogênes	Indefinido	Ligase	In./Ex.
	acid ligase					Metabolic pathways	e			
						Bios. second. metabo Mic metab in diverse				
L		L				Carbon metabolism				
	Putative acyl coenzyme A				42	Fatty acid degradation	Degradação de			
614	dehydrogenase (HcaD-	AB	Q6FA91	1.3.8.8		Metabolic pathways	Acidos graxos	Indefinido	Oxidorredutase	In./Ex.
<i>c</i>	Putative acyl-CoA	4.5	005050	ļ			e			1
615	, dehvdrogenase	АВ	Q6FCD3	-	48		Indefinido	Indefinido	Uxidorredutase	In./Ex.

616	Putative acyl-CoA dehydrogenase	АВ	Q6FBV5	1.3.8.1	41	Fatty acid degradatic Val., leuc. and isol. de beta-Alanine metabol Propanoate metabolis Butanoate metabolis Metabolic pathways Bios. second. metabo Mic.metab. in diverse Carbon metabolism Fatty acid metabolisr	Degradação de Ácidos graxos e Xenobióticos	Indefinido	Oxidorredutase	In./Ex.
617	Putative acyl-CoA dehydrogenase	AB	Q6FB48	-	46		Indefinido	Indefinido	Oxidorredutase	In.
618	Putative acyl-CoA debydrogenase	AB	Q6F7M4	-	67		Indefinido	Indefinido	Oxidorredutase	In./Ex.
619	Putative acyl-CoA dehydrogenase	AB	031251	1.3.8.7	44	Fatty acid degradatic Val., leuc. and isol. de Metabolic pathways Bios. second. metabo Fatty acid metabolisr	Degradação de Ácidos graxos e Xenobióticos	Indefinido	Oxidorredutase	In./Ex.
620	Putative acyl-CoA dehydrogenase family	вС	АОАОНЗККХ4	-	41		Indefinido	Indefinido	Oxidorredutase	In./Ex.
621	Putative acyl-CoA dehydrogenase family	вС	АОАОНЗКНШО	-	65		Indefinido	Indefinido	Oxidorredutase	In./Ex.
622	Putative acyl-CoA dehydrogenase family	вС	A0A0H3KNR5	-	41		Indefinido	Indefinido	Oxidorredutase	In./Ex.
623	Putative acyl-CoA dehydrogenase family	вС	A0A0H3KW68	-	64	Sulfur metabolism Metabolic pathways	Metabolismo Energético	Indefinido	Oxidorredutase	In./Ex.
624	Putative acyl-CoA thiolase	AB	Q6FAW1	2.3.1.9	45	Fatty acid degradatic Synthesis/deg. ketone Val., leuc. and isol. de Lysine degradation Benzoate degradatio Tryptophan metabolis Pyruvate metabolism Glyoxylate metabolis Propanoate metabolis Terpenoid backbone Metabolic pathways Bios. second. metabo Mic.metab. in diverse Carbon metabolism Fatty acid metabolism	Degradação de Ácidos graxos e Xenobióticos	Indefinido	Oxidorredutase	In./Ex.
625	Putative alcohol dehydrogenase	АВ	Q6F8H1	1.1.1.1	42	Glycolysis / Gluconea Fatty acid degradatic Tyrosine metabolism Chloroalkane and ch Naphthalene degrad Metabolic pathways Bios. second. metabo Mic.metab. in diverse Deg. aromatic compo	Degradação de Ácidos graxos e Xenobióticos	Indefinido	Oxidorredutase	In./Ex.
626	Putative aminotransferase	AB	Q6FAM4	2.6.1.17	44	Lysine biosynthesis Metabolic pathways Mic.metab. in diverse Biosynthesis of amin	Metab. de Aminoácidos	Indefinido	Transferase	In./Ex.
627	Putative antigen	AB	Q6FBS5	-	32		Indefinido	Membrana plasmática	Indefinido	In./Ex.
628	Putative antioxidant protein	AB	Q6FEE1	1.11.1.24	25		Indefinido	Indefinido	Indefinido	In./Ex.
629	Putative ATP-dependent RNA helicase	AB	Q6F7N7	-	72		Indefinido	Indefinido	Hidrolase	Ex.
630	Putative ATPase	AB	Q6F6T3	-	47		Replicação e Reparo de	Indefinido	Ligação ao DNA/RNA	In./Ex.
631	Putative bifunctional	ΔR	066430	111/10	<b>Q</b> 7	Pyruvate metabolism Metabolic pathways	Metab. de	Indefinido	Avidarredutace	In /Fv

	protein (MaeB)		QUI A39	1.1.1.40	02	Mic.metab. in diverse	Carbo.	muennuu	UNIUUTEUULASE	<i>,∟</i> ∧.
632	Putative biopolymer	AB	Q6FES4	-	22		Sinalização e	Membrana	Transporte	In./Ex.
633	Putative carbonic	AB	Q6FDB4	4.2.1.1	22	Nitrogen metabolism Metabolic pathways	Processo Metabolismo	plasmatica Indefinido	Liase	In./Ex.
634	Putative cold shock	AB	Q6FCM6	-	8		Regulação/Pro	Citoplasma	Ligação ao	In./Ex.
635	Putative DNA binding	AB	Q6FFA4	-	13		Regulação/Pro	Indefinido		In./Ex.
636	Putative efflux	AB	Q6F6Q9	-	116	Multidrug resistance,	Sinalização e	Membrana plasmática	Transporte	In./Ex.
637	Putative enoyl-CoA	AB	Q6F9Y3	4.2.1.17	42		Indefinido	Mitocondria	Liase; Isomerase	In./Ex.
638	Putative enoyl-CoA	AB	Q6FBV3	4.2.1.17	39		Indefinido	Mitocondria	Indefinido	In.
639	Putative enzyme contains P-loop containing	AB	Q6F7Q8	-	56		Indefinido	Indefinido	Hidrolase	In./Ex.
640	Putative FAD/FMN- containing	AB	Q6F7J1	-	52		Indefinido	Indefinido	Oxidorredutase	In./Ex.
641	Putative ferric siderophore receptor	AB	Q6FEQ0	-	80		Sinalização e Processo	Membrana plasmática	Transporte	In./Ex.
642	Putative ferrous iron transport protein B	AB	Q6FFC4	-	67		Sinalização e Processo	Indefinido	Transporte	In./Ex.
643	Putative FMN Oxidorredutase	AB	Q6FD34	-	45		Indefinido	Indefinido	Oxidorredutase	In./Ex.
644	Putative glutamine amidotransferase	ВС	АОАОНЗКСИЗ	-	40		Metab. de Aminoácidos	Indefinido	Transferase	In./Ex.
645	Putative glycosyltransferase	AB	Q6FEU6	-	42		Indefinido	Indefinido	Transferase	In./Ex.
646	Putative GTPase (G3E family)	СТ	Q0KF74	-	41		Indefinido	Indefinido	Hidrolase	Ex.
647	Putative histone-like nucleoid-structuring	ВС	A0A0H3KS87	-	11		Regulação/Pro cessamento	Indefinido	Ligação ao DNA/RNA	In./Ex.
648	Putative homoserine kinase (ThrH)	AB	Q6FDX3	3.1.3.3 2.7.1.39	23	Glycine, serine and th Methane metabolism Metabolic pathways Bios. second. metabo	Metab. de Aminoácidos	Indefinido	Transferase; Hidrolase	In./Ex.
						Mic.metab. in diverse Carbon metabolism Biosynthesis of amin			maroluse	
649	Putative Lactaldehyde dehvdrogenase	СТ	Q0KAF1	1.2.1.22	50		Indefinido	Indefinido	Oxidorredutase	In./Ex.
650	Putative lipopolysaccharide	AB	Q6FC66	-	28	ABC transporters	Proc. de Info. Ambiental	Membrana plasmática	Hidrolase	In./Ex.
651	Putative lipoprotein	ВС	A0A0H3KG38	-	23		Indefinido	Membrana externa da	Indefinido	In./Ex.
652	Putative lipoprotein	ВС	A0A0H3KBU8	-	22		Indefinido	Membrana externa da	Indefinido	In./Ex.
653	Putative lipoprotein	ВС	АОАОНЗКР94	-	20		Indefinido	Indefinido	Indefinido	In./Ex.
654	Putative lipoprotein	ВС	A0A0H3KJR7	-	20		Indefinido	Indefinido	Indefinido	In./Ex.
655	Putative long-chain fatty acid transport protein	AB	Q6FDX2	-	52		Indefinido	Indefinido	Indefinido	In./Ex.
656	Putative MarR-family transcriptional regulator	ВС	A0A0H3KIP9	-	23		Regulação/Pro cessamento	Indefinido	Ligação ao DNA/RNA	In./Ex.
657	Putative membrane fusion protein (AdeA-like)	AB	Q6F8F7	-	45	beta-Lactam resistan Cationic antimicrobio	Sinalização e Processo Celular	Membrana plasmática	Transporte	In./Ex.
658	Putative membrane protease	ВС	A0A0H3KPI8	-	34		Peptidases e inibidores	Membrana plasmática	Hidrolase	In./Ex.
659	Putative membrane- anchored cell surface	ВС	A0A0H3KWV9	-	233		Sinalização e Processo	Membrana externa da	Transporte	In./Ex.
660	Putative metalloprotease	AB	Q6FCJ0	-	110		Peptidases e inibidores	Indefinido	Hidrolase	In./Ex.
661	Putative methyl-cis-	ΔR	065810/5	4.2.1.117	٩٩	Propanoate metabol	Metab. de	Indefinido	liaco	In /Fv

~~-	(AcnM)	70	2010103		50	Metabolic pathways	Carbo.	muennuu	LIQUE	111.7 LA.
662	Putative nucleotide	вс	A0A0H3KNY1	-	23		Metabolismo	Indefinido	Transferase	Ex.
663	phosphoribosvltransfera Putative OmpA family	BC			21		de Indefinido	Membrana	Indefinido	Ev
664	transmembrane protein Putative outer membrane	DC AR			21		Indefinido	externa da Membrana	Indefinido	In /Fv
665	protein Putative outer membrane		065788	_			Sinalização e	externa da Membrana	Transporto	III./ LA.
005	protein Putative Outer membrane	АВ	QOF788	-	53		Processo Sinalização e	externa da Membrana	Transporte	III. 
666	protein (OmpA-like)	AB	Q6FE98	-	39		Processo	externa da	Transporte	In./Ex.
667	(Short chain	AB	Q6FB51	-	27		Indefinido	Indefinido	Oxidorredutase	In./Ex.
668	Putative Oxidorredutase/dehvdrog	AB	Q6F8F2	-	30		Indefinido	Indefinido	Oxidorredutase	In./Ex.
669	Putative oxoacyl-(Acyl carrier protein) reductase	AB	Q6FFY3	1.1.1.100	27		Indefinido	Indefinido	Oxidorredutase	In./Ex.
670	Putative penicillin binding protein	AB	Q9AM64	2.4.1.129 3.4.16.4	95	Peptidoglycan biosyr Metabolic pathways beta-Lactam resistan	Biossíntese de Peptidoglican	Membrana plasmática	Transferase	In./Ex.
671	Putative peptidase, S33	СТ	Q0KBF2	-	35		Indefinido	Indefinido	Hidrolase	Ex.
672	Putative periplasmic	вС	A0A0H3KHD6	-	47		Indefinido	Membrana plasmática	Oxidorredutase	In./Ex.
673	Putative	АВ	Q6F9R8	2.7.4.28	31		Bios./Metab.	Indefinido	Transferase	In./Ex.
674	Putative PLP-dependent	AB	065417	2.6.1.66 2.6.1.2	54	Arginine biosynthesis Alanine, aspartate ar Val., leuc. and isol. bi	Metab. de	Indefinido	Transferaço	In /Ev
074	aminotransferase	ΑD	QUFAL7		54	Bios. second. metabo 2-Oxocarboxylic acid Biosynthesis of amin	Aminoácidos	indennido	Transiendse	111.7 LX.
675	Putative protease	AB	Q6FCY8	-	105		Peptidases e inibidores	Membrana plasmática	Hidrolase	In.
676	Putative protease	AB	Q9EYL9	-	37		Peptidases e inibidores	Membrana plasmática	Hidrolase	In.
677	Putative protease (SohB)	AB	Q6FCW6	-	36		Peptidases e inibidores	Membrana plasmática	Hidrolase	In./Ex.
678	Putative regulatory	4.0	0.05514							In /Fx
670	protein (Nitrile hydratase	AB	Q6FBI1	-	45		Indefinido	Indefinido	Indefinido	, LA.
079	protein (Nitrile hydratase Putative response regulator (Activator) in	AB AB	Q6FBI1 Q6FE74	-	45 27	Two-component syst	Regulação/Pro	Indefinido	Indefinido Ligação ao	In./Ex.
680	protein (Nitrile hydratase Putative response regulator (Activator) in Putative RND efflux	AB AB AB	Q6FB11 Q6FE74 Q6FD22	-	45 27 113	Two-component syste Two-component syste	Regulação/Pro cessamento Proc. de Info.	Indefinido Indefinido Membrana	Indefinido Ligação ao DNA/RNA Transporte	In./Ex. In./Ex.
680 681	protein (Nitrile hydratase Putative response regulator (Activator) in Putative RND efflux transporter Putative RND type efflux	AB AB AB AB	Q6FB1 Q6FE74 Q6FD22 Q6FG14	-	45 27 113 37	Two-component syste Two-component syste	Regulação/Pro cessamento Proc. de Info. Ambiental Indefinido	Indefinido Indefinido Membrana plasmática Indefinido	Indefinido Ligação ao DNA/RNA Transporte Indefinido	In./Ex. In./Ex. In./Ex.
680 681 682	protein (Nitrile hydratase Putative response regulator (Activator) in Putative RND efflux transporter Putative RND type efflux pump involved in Putative short-chain	AB AB AB AB BC	Q6FB1 Q6FE74 Q6FD22 Q6FG14 A0A0H3KH95	-	45 27 113 37 27	Two-component syste Two-component syste	Regulação/Pro cessamento Proc. de Info. Ambiental Indefinido	Indefinido Indefinido Membrana plasmática Indefinido Indefinido	Indefinido Ligação ao DNA/RNA Transporte Indefinido Indefinido	In./Ex. In./Ex. In./Ex. In./Ex.
673 680 681 682 683	protein (Nitrile hydratase Putative response regulator (Activator) in Putative RND efflux transporter Putative RND type efflux pump involved in Putative short-chain alcohol dehydrogenase Putative short-chain	AB AB AB AB BC AB	Q6FB1 Q6FE74 Q6FD22 Q6FG14 A0A0H3KH95 Q6FBI9		45 27 113 37 27 30	Two-component syste Two-component syste	Indefinido Regulação/Pro cessamento Proc. de Info. Ambiental Indefinido Indefinido	Indefinido Indefinido Membrana plasmática Indefinido Indefinido	Indefinido Ligação ao DNA/RNA Transporte Indefinido Indefinido Oxidorredutase	In./Ex. In./Ex. In./Ex. In./Ex. Ex.
680 681 682 683 684	protein (Nitrile hydratase Putative response regulator (Activator) in Putative RND efflux transporter Putative RND type efflux pump involved in Putative short-chain alcohol dehydrogenase Putative short-chain dehydrogenase	AB AB AB BC AB AB	Q6FB1 Q6FE74 Q6FD22 Q6FG14 A0A0H3KH95 Q6FB19 Q6FAW2	- - - - 1.1.1.100	45 27 113 37 27 30 49	Two-component syste Two-component syste Fatty acid biosynthes Biotin metabolism Metabolic pathways Bios. second. metabol Fatty acid metabolisn	Indefinido Regulação/Pro cessamento Proc. de Info. Ambiental Indefinido Indefinido Indefinido	Indefinido Indefinido Membrana plasmática Indefinido Indefinido Indefinido	Indefinido Ligação ao DNA/RNA Transporte Indefinido Indefinido Oxidorredutase Oxidorredutase	In./Ex. In./Ex. In./Ex. Ex. In./Ex.
680 681 682 683 684 685	protein (Nitrile hydratase Putative response regulator (Activator) in Putative RND efflux transporter Putative RND type efflux pump involved in Putative short-chain alcohol dehydrogenase Putative short-chain dehydrogenase Putative short-chain dehydrogenase	AB AB AB AB BC AB BC BC	Q6FB1 Q6FE74 Q6FD22 Q6FG14 A0A0H3KH95 Q6FB19 Q6FAW2 A0A0H3KIL3	- - - - 1.1.1.100	45 27 113 37 27 30 49 30	Two-component syste Two-component syste Fatty acid biosynthes Biotin metabolism Metabolic pathways Bios. second. metabolisr Fatty acid metabolisr	Indefinido Regulação/Pro <u>cessamento</u> Proc. de Info. <u>Ambiental</u> Indefinido Indefinido Indefinido	Indefinido Indefinido Membrana plasmática Indefinido Indefinido Indefinido Indefinido	Indefinido Ligação ao DNA/RNA Transporte Indefinido Indefinido Oxidorredutase Oxidorredutase Indefinido	In./Ex. In./Ex. In./Ex. Ex. In./Ex. In./Ex.
680 681 682 683 684 685 686	protein (Nitrile hydratase Putative response regulator (Activator) in Putative RND efflux transporter Putative RND type efflux pump involved in Putative short-chain alcohol dehydrogenase Putative short-chain dehydrogenase Putative short-chain dehydrogenase Putative siderophore- interacting protein Putative sigma54 modulation protein	AB AB AB AB BC AB BC BC	Q6FB1 Q6FE74 Q6FD22 Q6FG14 A0A0H3KH95 Q6FB19 Q6FAW2 A0A0H3KIL3 A0A0H3KHM4	- - - - 1.1.1.100	45 27 113 37 27 30 49 30 14	Two-component syste Two-component syste Fatty acid biosynthes Biotin metabolism Metabolic pathways Bios. second. metabolisr Fatty acid metabolisr	Indefinido Regulação/Pro cessamento Proc. de Info. Ambiental Indefinido Indefinido Indefinido Indefinido Indefinido Metabolismo de RNA	Indefinido Indefinido Membrana plasmática Indefinido Indefinido Indefinido Indefinido Indefinido	Indefinido Ligação ao DNA/RNA Transporte Indefinido Oxidorredutase Oxidorredutase Indefinido Indefinido	In./Ex. In./Ex. In./Ex. Ex. In./Ex. In./Ex.
680 681 682 683 684 685 686 687	protein (Nitrile hydratase Putative response regulator (Activator) in Putative RND efflux transporter Putative RND type efflux pump involved in Putative short-chain alcohol dehydrogenase Putative short-chain dehydrogenase Putative short-chain dehydrogenase Putative siderophore- interacting protein Putative sigma54 modulation protein Putative signal transduction response	AB AB AB BC AB AB BC BC BC BC	Q6FB1 Q6FE74 Q6FD22 Q6FG14 A0A0H3KH95 Q6FB19 Q6FAW2 A0A0H3KIL3 A0A0H3KHM4 A0A0H3KPU0	- - - - 1.1.1.100	45 27 113 37 27 30 49 30 14 24	Two-component syste Two-component syste Fatty acid biosynthes Biotin metabolism Metabolic pathways Bios. second. metabolisr Fatty acid metabolisr	Indefinido Regulação/Pro <u>cessamento</u> Proc. de Info. Ambiental Indefinido Indefinido Indefinido Indefinido Metabolismo <u>de RNA</u> Regulação/Pro	Indefinido Indefinido Membrana plasmática Indefinido Indefinido Indefinido Indefinido Indefinido Indefinido	Indefinido Ligação ao DNA/RNA Transporte Indefinido Indefinido Oxidorredutase Oxidorredutase Indefinido Indefinido Ligação ao DNA/RNA	In./Ex. In./Ex. In./Ex. Ex. In./Ex. In./Ex. In./Ex.
680 681 682 683 684 685 686 687 688	protein (Nitrile hydratase Putative response regulator (Activator) in Putative RND efflux transporter Putative RND type efflux pump involved in Putative short-chain alcohol dehydrogenase Putative short-chain dehydrogenase Putative short-chain dehydrogenase Putative siderophore- interacting protein Putative sigma54 modulation protein Putative signal transduction response Putative signal- transduction protein	AB AB AB BC AB AB AB BC BC BC BC	Q6FB1           Q6FF74           Q6FD22           Q6FG14           A0A0H3KH95           Q6FB19           Q6FAW2           A0A0H3KIL3           A0A0H3KHM4           A0A0H3KPU0           A0A0H3KEG0	- - - - 1.1.1.100 - - - -	45 27 113 37 27 30 49 30 14 24 17	Two-component syste Two-component syste Fatty acid biosynthes Biotin metabolism Metabolic pathways Bios. second. metabolisn Fatty acid metabolisn	Indefinido Regulação/Pro <u>cessamento</u> Proc. de Info. Ambiental Indefinido Indefinido Indefinido Indefinido Metabolismo <u>de RNA</u> Regulação/Pro <u>cessamento</u> Indefinido	Indefinido Membrana plasmática Indefinido Indefinido Indefinido Indefinido Indefinido Indefinido Indefinido	Indefinido Ligação ao DNA/RNA Transporte Indefinido Indefinido Oxidorredutase Oxidorredutase Indefinido Indefinido Ligação ao DNA/RNA Indefinido	In./Ex. In./Ex. In./Ex. Ex. In./Ex. In./Ex. In./Ex. In./Ex.

689	Putative thiolase putative acyl-CoA thiolase	АВ	Q6F8B8	2.3.1.9	42	Lysine degradation Benzoate degradatio Tryptophan metaboli Pyruvate metabolism Glyoxylate metabolis Propanoate metabolis Butanoate metabolis Terpenoid backbone Metabolic pathways Bios. second. metabo Mic.metab. in diverse Carbon metabolism Fatty acid metabolisr Two-component syste	Degradação de Ácidos graxos e Xenobióticos	Indefinido	Transferase	In./Ex.
690	Putative thioredoxin	ВС	A0A0H3KH62	-	31		Bios./Metab. Proteínas	Indefinido	Chaperona	In./Ex.
691	Putative toluene tolerance protein (Ttg2D)	AB	Q6F7P1	-	23	ABC transporters	Indefinido	Indefinido	Indefinido	In./Ex.
692	Putative transcriptional regulator	AB	Q6FD91	-	38		Regulação/Pro cessamento	Indefinido	Ligação ao DNA/RNA	In./Ex.
693	Putative transcriptional regulator (AraC family)	AB	Q6FEV3	-	38		Regulação/Pro cessamento	Indefinido	Ligação ao DNA/RNA	In./Ex.
694	Putative transcriptional regulator (AraC family)	AB	Q6F8C0	-	40		Regulação/Pro cessamento	Indefinido	Ligação ao DNA/RNA	In./Ex.
695	Putative transcriptional	AB	Q6FDW3	-	27		Regulação/Pro	Indefinido	Ligação ao	In./Ex.
696	Putative transcriptional	AB	Q6FE56	-	33		Regulação/Pro	Indefinido	Ligação ao	In./Ex.
697	Putative transcriptional	AB	Q6FDI1	-	31		Regulação/Pro	Indefinido	Ligação ao	In./Ex.
698	Putative transcriptional	AB	Q6F8T3	-	23		Regulação/Pro	Indefinido	Ligação ao	In./Ex.
699	Putative transport	AB	Q6F7C1	-	62		Reg./Proces.	Indefinido	Transporte	In./Ex.
700	Putative transposase	вС	A0A0H3KIH5	-	27		da Iraducao Indefinido	Indefinido	Ligação ao	In./Ex.
701	Putative two-component	AB	Q6F747	-	24		Regulação/Pro	Indefinido	DNA/RNA Ligação ao	In./Ex.
702	Putative very-long-chain	AB	Q6FEY1	-	69	Geraniol degradatior	Metabolismo	Indefinido	DNA/RNA Ligase	In./Ex.
703	Acvi-CoA synthetase Putative Zn-dependent	СТ	Q0KCT3	1.6.5.5	35		de Acidos Indefinido	Indefinido	Oxidorredutase	In./Ex.
704	Oxidorredutase Putrescine-binding	вС	A0A0H3KF61	-	40	ABC transporters	Proc. de Info.	Membrana	Transporte	In./Ex.
705	Pyridine nucleotide	AB	Q6F836	1.6.1.2	40	Nicotinate and nicoti	Ambiental Metab. Cofat.	plasmática Indefinido	Oxidorredutase	In./Ex.
706	transhydrogenase Pyrimidine operon	вС	АОАОНЗКНВ8	7.1.1.1	18	Metabolic pathways Pyrimidine metabolis	e Vitaminas Metabolismo	Indefinido	; Translocase Transferase	In./Ex.
	attenuation protein /			2.4.2.2		Metabolic pathways Purine metabolism	de Mataka liana			,
707	nucleoside	AB	Q6FF51	2.4.2.1	12	Pyrimidine metabolis	de	Indefinido	Transferase	In./Ex.
	phosphorylase					Metabolic pathways Bios. second. metabo	Nucleotídeos			
						Arginine and proline				
708	Pyrroline-5-carboxylate	AB	Q6F881	1.5.1.2	29	Metabolic pathways Bios, second, metabo	Metab. de Aminoácidos	Citoplasma	Oxidorredutase	In./Ex.
						Biosynthesis of amin				
709	Pyruvate dehydrogenase	BC	A0A0H3KSS9	-	61	Churchusis / Churcomos	Indefinido	Indefinido	Indefinido	In./Ex.
		CT	0044/1		100	Citrate cycle (TCA cyc				
		BC	A0A0H3KKO4		101	Pyruvate metabolism	Glicolise /			
710	Pyruvate dehydrogenase	AB	Q6F712	1.2.4.1	102	Metabolic pathways	Gliconeogênes	Mitocondria	Oxidorredutase	In./Ex.
	E1 component					Bios. second. metabo	e			
						Mic.metab. in diverse				
		<u> </u>				Carbon metabolism				
711	Pyruvate dehydrogenase	ВС	A0A0H3KJY7	1.2.4.1	35		Glicolise /	Mitocondria	Oxidorredutase	Ex.
712	Pyruvate dehydrogenase	ВС	A0A0H3KF52	1.2.4.1	36	Characha i d'Ci	Glicolise /	Mitocondria	Oxidorredutase	In./Ex.
						Glycolysis / Gluconeo				
		1				CILIALE LYLIE (ILA CYCI				

713	Pyruvate dehydrogenase E2 component	BC	AOAOH3KFB8	2.3.1.12	39	Pyruvate metabolism Metabolic pathways Bios. second. metabo Mic.metab. in diverse Carbon metabolism	Glicolise / Gliconeogênes e	Mitocondria	Transferase	In./Ex.
714	Pyruvate kinase	вС	A0A0H3KH27	2.7.1.40	51	Glycolysis / Gluconeo Purine metabolism Pyruvate metabolism Metabolic pathways Bios. second. metabo Mic.metab. in diverse Carbon metabolism Biosynthesis of aming	Glicolise / Gliconeogênes e	Indefinido	Transferase	In./Ex.
715	NAD-dependent protein	СТ	Q0JY52	2.3.1.286	31		Indefinido	Citoplasma	Transferase	Ex.
716	Methyltransf 21 domain-	СТ	Q0K7P3	-	44		Indefinido	Indefinido	Indefinido	Ex.
717	Putative bifunctional protein (MaeB)	AB	Q6FA39	1.1.1.40	82	Pyruvate metabolism Metabolic pathways Mic.metab. in diverse Carbon metabolism	Metab. de Carbo.	Indefinido	Oxidorredutase	In.
718	ATP-dependent helicase	AB	Q6FAK3	3.6.1.15	148		Indefinido	Indefinido	Hidrolase	In./Ex.
719	Putative ferric	AB	Q6FAM2	-	80		Indefinido	Membrana	Transporte	In./Ex.
720	Benzaldehyde dehydrogenase II	AB	Q6FCB6	1.2.1.28	55	Xylene degradation Toluene degradation Aminobenzoate degr Metabolic pathways Mic.metab. in diverse Deg. aromatic compo	Degradação de Ácidos graxos e Xenobióticos	Indefinido	Oxidorredutase	In./Ex.
721	Quinolinate synthase A	AB	Q6FED7	2.5.1.72	39	Nicotinate and nicoti Metabolic pathways	Metab. Cofat. e Vitaminas	Citoplasma	Transferase	In./Ex.
722	Regulatory protein, P-II 2,	AB	Q6FFE7	-	12		Regulação/Pro	Indefinido	Indefinido	In./Ex.
723	Repressor of the iscRSUA	AB	Q6FCE1	-	16		Regulação/Pro	Indefinido	Ligação ao	In./Ex.
724	Response regulator	AB	Q6FFD1	-	23		Regulação/Pro	Indefinido	Ligação ao	In./Ex.
725	Response regulator	СТ	Q0K6Q9	-	60	Two-component syst	Regulação/Pro	Indefinido	Ligação ao	Ex.
726	Response regulator, NarL-	СТ	Q0KBW3	-	23		Regulação/Pro	Indefinido	Ligação ao	In./Ex.
727	Response regulator,	СТ	Q0KBM3	-	27	Two-component syst	Regulação/Pro	Indefinido	Ligação ao	Ex.
728	Rhodanese domain-	AB	Q6F803	-	16		Indefinido	Membrana	Indefinido	In./Ex.
729	Riboflavin biosynthesis protein	AB	Q6FG01	2.7.1.26 2.7.7.2	38	Riboflavin metabolisi Metabolic pathways Bios, second, metabo	Metab. Cofat. e Vitaminas	Citoplasma	Transferase	In./Ex.
730	Riboflavin synthase alpha chain	AB	Q6FFE2	2.5.1.9	24	Riboflavin metabolisi Metabolic pathways Bios, second, metabo	Metab. Cofat. e Vitaminas	Citoplasma	Transferase	In./Ex.
		СТ	Q0K8K8		112	RNA dearadation				
731	Ribonuclease E	BC	A0A0H3KI46	3.1.26.12		3	Metabolismo			
		4.0			114		·	Citoplasma	Hidrolase	In./Ex.
732		AB	Q6FEY0		<u>114</u> 127		de RNA	Citoplasma	Hidrolase	In./Ex.
733	Ribonuclease G	АВ ВС	Q6FEY0 A0A0H3KGU2	-	114 127 55		de RNA Metabolismo	Citoplasma Indefinido	Hidrolase Hidrolase	In./Ex. In./Ex.
734	Ribonuclease G Ribonuclease G,	АВ ВС АВ	Q6FEY0 A0A0H3KGU2 Q6FDX7		114 127 55 56		de RNA Metabolismo Metabolismo	Citoplasma Indefinido Indefinido	Hidrolase Hidrolase Hidrolase	In./Ex. In./Ex. In./Ex.
	Ribonuclease G Ribonuclease G, Ribonuclease PH	AB BC AB AB	Q6FEY0 A0A0H3KGU2 Q6FDX7 Q6FFX5	2.7.7.56	114 127 55 56 <u>26</u>		de RNA Metabolismo Metabolismo Metabolismo	Citoplasma Indefinido Indefinido Indefinido	Hidrolase Hidrolase Hidrolase Transferase	In./Ex. In./Ex. In./Ex. In./Ex.
735	Ribonuclease G Ribonuclease G, Ribonuclease PH	AB BC AB AB BC	Q6FEY0 A0A0H3KGU2 Q6FDX7 Q6FFX5 A0A0H3KEG8		114 127 55 56 26 91	RNA degradation	de RNA Metabolismo Metabolismo Metabolismo Metabolismo	Citoplasma Indefinido Indefinido Citoplasma	Hidrolase Hidrolase Hidrolase Transferase	In./Ex. In./Ex. In./Ex. In./Ex.
735	Ribonuclease G Ribonuclease G, Ribonuclease PH Ribonuclease R	AB BC AB AB BC AB	Q6FEY0 A0A0H3KGU2 Q6FDX7 Q6FFX5 A0A0H3KEG8 Q6F7U9	- - 2.7.7.56 3.1.13.1	114 127 55 56 26 91 93	RNA degradation	de RNA Metabolismo Metabolismo Metabolismo de RNA	Citoplasma Indefinido Indefinido Indefinido Citoplasma	Hidrolase Hidrolase Hidrolase Transferase Hidrolase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
735	Ribonuclease G Ribonuclease G, Ribonuclease PH Ribonuclease R	AB BC AB AB BC AB CT	Q6FEY0 A0A0H3KGU2 Q6FDX7 Q6FFX5 A0A0H3KEG8 Q6F7U9 Q0K6R1	2.7.7.56	114 127 55 56 26 91 93 108	RNA degradation Purine metabolism	de RNA Metabolismo Metabolismo Metabolismo de RNA Metabolismo	Citoplasma Indefinido Indefinido Indefinido Citoplasma	Hidrolase Hidrolase Hidrolase Transferase Hidrolase	In./Ex. In./Ex. In./Ex. In./Ex.
735 736	Ribonuclease G Ribonuclease G, Ribonuclease PH Ribonuclease R Ribonucleoside-	AB BC AB BC AB CT BC	Q6FEY0 A0A0H3KGU2 Q6FDX7 Q6FFX5 A0A0H3KEG8 Q6F7U9 Q0K6R1 A0A0H3KBS4	2.7.7.56 3.1.13.1 1.17.4.1	114 127 55 56 26 91 93 108 110	RNA degradation Purine metabolism Pyrimidine metabolisi	de RNA Metabolismo Metabolismo Metabolismo de RNA Metabolismo de	Citoplasma Indefinido Indefinido Indefinido Citoplasma Indefinido	Hidrolase Hidrolase Hidrolase Transferase Hidrolase Oxidorredutase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
735 736	Ribonuclease G Ribonuclease G, Ribonuclease PH Ribonuclease R Ribonucleoside- diphosphate reductase	AB BC AB BC AB CT BC AB	Q6FEY0 A0A0H3KGU2 Q6FDX7 Q6FFX5 A0A0H3KEG8 Q6F7U9 Q0K6R1 A0A0H3KBS4 Q6FE75	- 2.7.7.56 3.1.13.1 1.17.4.1	114 127 55 56 26 91 93 108 110 105	RNA degradation Purine metabolism Pyrimidine metabolisi Metabolic pathways	de RNA Metabolismo Metabolismo Metabolismo de RNA Metabolismo de Nucleotídeos	Citoplasma Indefinido Indefinido Citoplasma Indefinido	Hidrolase Hidrolase Hidrolase Transferase Hidrolase Oxidorredutase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
735 736	Ribonuclease G Ribonuclease G, Ribonuclease PH Ribonuclease R Ribonucleoside- diphosphate reductase	AB BC AB BC AB CT BC AB BC	Q6FEY0 A0A0H3KGU2 Q6FDX7 Q6FFX5 A0A0H3KEG8 Q6F7U9 Q0K6R1 A0A0H3KBS4 Q6FE75 A0A0H3KNB3	- 2.7.7.56 3.1.13.1 1.17.4.1	114 127 55 26 91 93 108 110 105 24	RNA degradation Purine metabolism Pyrimidine metabolis Metabolic pathways Pentose phosphate p	de RNA Metabolismo Metabolismo Metabolismo de RNA Metabolismo de Nucleotídeos	Citoplasma Indefinido Indefinido Citoplasma Indefinido	Hidrolase Hidrolase Transferase Hidrolase Oxidorredutase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
735 736	Ribonuclease G Ribonuclease G, Ribonuclease PH Ribonuclease R Ribonucleoside- diphosphate reductase	AB BC AB BC AB CT BC AB BC AB	Q6FEY0 A0A0H3KGU2 Q6FDX7 Q6FFX5 A0A0H3KEG8 Q6F7U9 Q0K6R1 A0A0H3KBS4 Q6FE75 A0A0H3KNB3 Q6FCI6	- 2.7.7.56 3.1.13.1 1.17.4.1	114 127 55 56 26 91 93 108 110 105 24 24	RNA degradation Purine metabolism Pyrimidine metabolis. Metabolic pathways Pentose phosphate p Carbon fixation in ph	de RNA Metabolismo Metabolismo Metabolismo de RNA Metabolismo de Nucleotídeos	Citoplasma Indefinido Indefinido Citoplasma Indefinido	Hidrolase Hidrolase Transferase Hidrolase Oxidorredutase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
735	Ribonuclease G Ribonuclease G, Ribonuclease PH Ribonuclease R Ribonucleoside- diphosphate reductase	AB BC AB BC AB CT BC AB BC AB	Q6FEY0 A0A0H3KGU2 Q6FDX7 Q6FFX5 A0A0H3KEG8 Q6F7U9 Q0K6R1 A0A0H3KBS4 Q6FE75 A0A0H3KNB3 Q6FC16	2.7.7.56 3.1.13.1 1.17.4.1	114 127 55 56 26 91 93 108 110 105 24 24	RNA degradation Purine metabolism Pyrimidine metabolis Metabolic pathways Pentose phosphate p Carbon fixation in ph Metabolic pathways	de RNA Metabolismo Metabolismo Metabolismo de RNA Metabolismo de Nucleotídeos	Citoplasma Indefinido Indefinido Citoplasma Indefinido	Hidrolase Hidrolase Transferase Hidrolase Oxidorredutase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
735 736 737	Ribonuclease G Ribonuclease G, Ribonuclease PH Ribonuclease R Ribonucleoside- diphosphate reductase Ribose-5-phosphate isomerase A	AB BC AB BC AB CT BC AB BC AB	Q6FEY0 A0A0H3KGU2 Q6FDX7 Q6FFX5 A0A0H3KEG8 Q6F7U9 Q0K6R1 A0A0H3KBS4 Q6FE75 A0A0H3KNB3 Q6FCI6	2.7.7.56 3.1.13.1 1.17.4.1 5.3.1.6	114 127 55 56 26 91 93 108 110 105 24 24 24	RNA degradation Purine metabolism Pyrimidine metabolis Metabolic pathways Pentose phosphate p Carbon fixation in ph Metabolic pathways Bios. second. metabo	de RNA Metabolismo Metabolismo de RNA Metabolismo de Nucleotídeos Metab. de Carbo	Citoplasma Indefinido Indefinido Citoplasma Indefinido	Hidrolase Hidrolase Transferase Hidrolase Oxidorredutase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
735 736 737	Ribonuclease G Ribonuclease G, Ribonuclease PH Ribonuclease R diphosphate reductase Ribose-5-phosphate isomerase A	AB BC AB BC AB CT BC AB BC AB	Q6FEY0 A0A0H3KGU2 Q6FDX7 Q6FFX5 A0A0H3KEG8 Q6F7U9 Q0K6R1 A0A0H3KBS4 Q6FE75 A0A0H3KNB3 Q6FCI6	2.7.7.56 3.1.13.1 1.17.4.1 5.3.1.6	114 127 55 56 26 91 93 108 110 105 24 24 24	RNA degradation Purine metabolism Pyrimidine metabolis Metabolic pathways Pentose phosphate p Carbon fixation in ph Metabolic pathways Bios. second. metabo Mic.metab. in diverse	de RNA Metabolismo Metabolismo Metabolismo de RNA Metabolismo de Nucleotídeos Metab. de Carbo.	Citoplasma Indefinido Indefinido Citoplasma Indefinido	Hidrolase Hidrolase Transferase Hidrolase Oxidorredutase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
735 736 737	Ribonuclease G Ribonuclease G, Ribonuclease PH Ribonuclease R diphosphate reductase Ribose-5-phosphate isomerase A	AB BC AB BC AB CT BC AB BC AB	Q6FEY0 A0A0H3KGU2 Q6FDX7 Q6FFX5 A0A0H3KEG8 Q6F7U9 Q0K6R1 A0A0H3KBS4 Q6FE75 A0A0H3KNB3 Q6FCI6	2.7.7.56 3.1.13.1 1.17.4.1 5.3.1.6	114 127 55 56 26 91 93 108 110 105 24 24 24	RNA degradation Purine metabolism Pyrimidine metabolis Metabolic pathways Pentose phosphate p Carbon fixation in ph Metabolic pathways Bios. second. metabo Mic.metab. in diverse Carbon metabolism	de RNA Metabolismo Metabolismo Metabolismo de RNA Metabolismo de Nucleotídeos Metab. de Carbo.	Citoplasma Indefinido Indefinido Citoplasma Indefinido	Hidrolase Hidrolase Transferase Hidrolase Oxidorredutase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
735 736 737	Ribonuclease G Ribonuclease G, Ribonuclease PH Ribonuclease R diphosphate reductase Ribose-5-phosphate isomerase A	AB BC AB BC AB CT BC AB BC AB	Q6FEY0 A0A0H3KGU2 Q6FDX7 Q6FFX5 A0A0H3KEG8 Q6F7U9 Q0K6R1 A0A0H3KBS4 Q6FE75 A0A0H3KNB3 Q6FCI6	2.7.7.56 3.1.13.1 1.17.4.1 5.3.1.6	114 127 55 56 26 91 93 108 110 105 24 24 24	RNA degradation Purine metabolism Pyrimidine metabolis Metabolic pathways Pentose phosphate p Carbon fixation in ph Metabolic pathways Bios. second. metabo Mic.metab. in diverse Carbon metabolism Biosynthesis of amin	de RNA Metabolismo Metabolismo Metabolismo de RNA Metabolismo de Nucleotídeos Metab. de Carbo.	Citoplasma Indefinido Indefinido Citoplasma Indefinido	Hidrolase <u>Hidrolase</u> <u>Transferase</u> Hidrolase Oxidorredutase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
735 736 737	Ribonuclease G Ribonuclease G, Ribonuclease PH Ribonucleoside- diphosphate reductase Ribose-5-phosphate isomerase A	AB BC AB BC AB BC AB CT BC AB BC AB BC BC	Q6FEY0 A0A0H3KGU2 Q6FDX7 Q6FDX7 A0A0H3KEG8 Q6F7U9 Q0K6R1 A0A0H3KB54 Q6FE75 A0A0H3KNB3 Q6FCI6 A0A0H3KHG5	2.7.7.56 3.1.13.1 1.17.4.1 5.3.1.6	114 127 55 56 26 91 93 108 110 105 24 24 24 24 34	RNA degradation Purine metabolism Pyrimidine metabolism Metabolic pathways Pentose phosphate p Carbon fixation in ph Metabolic pathways Bios. second. metabo Mic.metab. in diverse Carbon metabolism Biosynthesis of amin Pentose phosphate p	de RNA Metabolismo Metabolismo Metabolismo de RNA Metabolismo de Nucleotídeos Metab. de Carbo.	Citoplasma Indefinido Indefinido Citoplasma Indefinido	Hidrolase <u>Hidrolase</u> <u>Transferase</u> Hidrolase Oxidorredutase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
735 736 737	Ribonuclease G Ribonuclease G, Ribonuclease PH Ribonucleoside- diphosphate reductase Ribose-5-phosphate isomerase A	AB BC AB BC AB CT BC AB BC AB BC AB	Q6FEY0 A0A0H3KGU2 Q6FDX7 Q6FFX5 A0A0H3KEG8 Q6F7U9 Q0K6R1 A0A0H3KBS4 Q6FE75 A0A0H3KNB3 Q6FCI6 A0A0H3KHG5 Q6F8I9	2.7.7.56 3.1.13.1 1.17.4.1 5.3.1.6	114 127 55 56 26 91 93 108 110 105 24 24 24 24 	RNA degradation Purine metabolism Pyrimidine metabolis Metabolic pathways Pentose phosphate p Carbon fixation in ph Metabolic pathways Bios. second. metabo Mic.metab. in diverse Carbon metabolism Biosynthesis of amino Pentose phosphate p Purine metabolism	de RNA Metabolismo Metabolismo Metabolismo de RNA Metabolismo de Nucleotídeos Metab. de Carbo.	Citoplasma Indefinido Indefinido Citoplasma Indefinido	Hidrolase Hidrolase Transferase Hidrolase Oxidorredutase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
735 736 737	Ribonuclease G Ribonuclease G, Ribonuclease PH Ribonucleoside- diphosphate reductase Ribose-5-phosphate isomerase A Ribose-phosphate	AB BC AB BC AB CT BC AB BC AB BC AB BC AB	Q6FEY0 A0A0H3KGU2 Q6FDX7 Q6FFX5 A0A0H3KEG8 Q6F7U9 Q0K6R1 A0A0H3KBS4 Q6FE75 A0A0H3KNB3 Q6FCI6 A0A0H3KHG5 Q6F8I9	2.7.7.56 3.1.13.1 1.17.4.1 5.3.1.6	114 127 55 56 26 91 93 108 110 105 24 24 24 24 	RNA degradation Purine metabolism Pyrimidine metabolis Metabolic pathways Pentose phosphate p Carbon fixation in ph Metabolic pathways Bios. second. metabo Mic.metab. in diverse Carbon metabolism Biosynthesis of amine Pentose phosphate p Purine metabolism Metabolic pathways	de RNA Metabolismo Metabolismo Metabolismo de RNA Metabolismo de Nucleotídeos Metab. de Carbo.	Citoplasma Indefinido Indefinido Citoplasma Indefinido	Hidrolase Hidrolase Transferase Hidrolase Oxidorredutase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
735 736 737 737	Ribonuclease G Ribonuclease G, Ribonuclease PH Ribonucleoside- diphosphate reductase Ribose-5-phosphate isomerase A Ribose-phosphate pyrophosphokinase	AB BC AB BC AB CT BC AB BC AB BC AB BC AB	Q6FEY0 A0A0H3KGU2 Q6FDX7 Q6FFX5 A0A0H3KEG8 Q6F7U9 Q0K6R1 A0A0H3KBS4 Q6FE75 A0A0H3KNB3 Q6FCI6 A0A0H3KHG5 Q6F8I9	2.7.7.56 3.1.13.1 1.17.4.1 5.3.1.6 2.7.6.1	114 127 55 56 26 91 93 108 110 105 24 24 24 	RNA degradation Purine metabolism Pyrimidine metabolis Metabolic pathways Pentose phosphate p Carbon fixation in ph Metabolic pathways Bios. second. metabo Mic.metab. in diverse Carbon metabolism Biosynthesis of amine Pentose phosphate p Purine metabolism Metabolic pathways Bios. second. metabo	de RNA <u>Metabolismo</u> <u>Metabolismo</u> <u>Metabolismo</u> <u>de RNA</u> <u>Metabolismo</u> <u>de</u> <u>Nucleotídeos</u> <u>Metab. de</u> <u>Carbo</u> . <u>Metab. de</u> <u>Carbo</u>	Citoplasma Indefinido Indefinido Citoplasma Indefinido Indefinido	Hidrolase Hidrolase Transferase Hidrolase Oxidorredutase Isomerase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.
735 736 737 737	Ribonuclease G Ribonuclease G, Ribonuclease PH Ribonucleoside- diphosphate reductase Ribose-5-phosphate isomerase A Ribose-phosphate pyrophosphokinase	AB BC AB BC AB CT BC AB BC AB BC AB BC AB	Q6FEY0 A0A0H3KGU2 Q6FDX7 Q6FFX5 A0A0H3KEG8 Q6F7U9 Q0K6R1 A0A0H3KBS4 Q6FE75 A0A0H3KNB3 Q6FCI6 A0A0H3KHG5 Q6F8I9	2.7.7.56 3.1.13.1 1.17.4.1 5.3.1.6 2.7.6.1	114 127 55 56 26 91 93 108 110 105 24 24 24 	RNA degradation Purine metabolism Pyrimidine metabolis. Metabolic pathways Pentose phosphate p Carbon fixation in ph Metabolic pathways Bios. second. metabo Mic.metab. in diverse Carbon metabolism Biosynthesis of amin. Pentose phosphate p Purine metabolism Metabolic pathways Bios. second. metabo Mic.metab. in diverse	de RNA <u>Metabolismo</u> <u>Metabolismo</u> <u>Metabolismo</u> <u>de RNA</u> <u>Metabolismo</u> <u>de</u> <u>Nucleotídeos</u> <u>Metab. de</u> <u>Carbo.</u> <u>Metab. de</u> <u>Carbo.</u>	Citoplasma Indefinido Indefinido Citoplasma Indefinido Indefinido	Hidrolase Hidrolase Transferase Hidrolase Oxidorredutase Isomerase	In./Ex. In./Ex. In./Ex. In./Ex. In./Ex. In./Ex.

1				ľ		Biosynthesis of amin	1			
739	Ribosomal protein S12	AB	Q6FCH4	2.8.4.4	50	, ,	Metabolismo	Citoplasma	Transferase	In./Ex.
740	Ribosomal RNA large	AB	Q6F8N1	2.1.1.166	24		Metabolismo	Citoplasma	Transferase	In./Ex.
741	Ribosomal RNA large	AB	Q6F7X5	2.1.1.166	33		Metabolismo	Citoplasma	Transferase	In./Ex.
742	Ribosomal RNA large	AB	Q6FCR7	2.1.1.173	84		Metabolismo	Citoplasma	Transferase	In./Ex.
743	Ribosomal RNA small	AB	Q6FA41	2.1.1.193	27		Metabolismo	Citoplasma	Transferase	In./Ex.
	Ribosome-binding	СТ	Q0K6G9		39		Metabolismo			
744	ATPase YchF	ВС	A0A0H3KBM	-	39		de RNA	Indefinido	Indefinido	In./Ex.
		AB	Q6FAN1		40					. /=
745	Ribosome-binding factor	AB	Q6FF39	-	15		<u>Metabolismo</u>	Citoplasma	Indefinido	In./Ex.
746	Ribosome-recycling	BC	A9AIL7	-	21		BIOS./IVIETAD.	Citoplasma	Fator de	In./Ex.
	factor	AB	Q6FCH2		21	Dontoso nhosnhato n	Proteinas		Iraduçao/Elong	
						Pentose phosphale p				
						Motabolic pathways				
747	Ribulose-phosphate 3-	٨D	OFEAS	5121	25	Pios second metabo	Metab. de	Citoplasma	Isomoraso	In /Ev
/4/	epimerase	AD	QUFLAO	5.1.5.1	25	Mic metah in diverse	Carbo.	Citopiasina	isofficiase	111./LX.
						Carbon metabolism				
						Biosynthesis of amin				
-		СТ	00K867		91	Diosynthesis of unin	Regulação/Pro			
748	RNA polymerase sigma	BC	A0A0H3KK1/	-	89		cessamento	Citoplasma	Ligação ao	In./Fx.
	factor RpoD	AR	06F8H5		72		da Transcrição	ercepiaeina	DNA/RNA	,
749	RNA polymerase-	AB	Q6FCX8	-	109		Regulação/Pro	Indefinido	Hidrolase	In./Ex.
		CT	Q0KF75		25		Regulação/Pro		Lineaño eo	ŕ
750	RNA polymerase-binding	BC	A0A0H3KFT8	-	16		cessamento	Citoplasma	Ligação ão	In./Ex.
	transcription factor DksA	AB	Q6FFB9		20		da Transcrição		DNA/RNA	-
751	BNA hinding protoin Ufa	СТ	Q0K967		9	Quorum sensing	Regulação/Pro	Indofinido	Ligação ao	In /Ex
/51	King-binding protein my	ВС	A9AH01	-	9	RNA degradation	cessamento	indefinido	DNA/RNA	111./LX.
752	RNA-hinding protein Hfg	ВС	A0A0H3KEL1	_	21	Quorum sensing	Regulação/Pro	Indefinido	Ligação ao	In /Fy
		AB	Q6F9W2		17	RNA degradation	cessamento	machinao	DNA/RNA	111.7 E.X.
753	RND efflux system outer	ВС	A0A0H3KJ81	-	53		Sinalização e	Membrana	Transporte	In./Ex.
754	RND efflux system outer	вС	A0A0H3KLS6	-	54	beta-Lactam resistan	Sinalização e	Membrana	Transporte	In./Ex.
	membrane lipoprotein					Quorum sensing	Processo	plasmática		·
755	Rod shape-determining	BC	A0A0H3KJP2	-	37		Sinalização e	Citoesquelet		In./Ex.
756	protein	AB	Q6FDY1		37		Processo	0		In The
756	Rod shape-determining	CT	QUKFF6	-	37	Fatty acid dooradatic	Sinalização e	Citoesquelet	0.11	In./EX.
/3/	Rubredoxin-NAD(+)	AB	001620	1.10.1.1	42	Cysteine and methior	Degradação de	Citopiasma	Oxidorredutase	111./EX.
	S-adenosylmethionine				42	Metabolic nathways	Metab. de			
758	synthase	AR		2.5.1.6	43	Bios second metabo	Aminoácidos	Citoplasma	Transferase	In./Ex.
	<i>o y</i>	ΑU	QUIAQU		72	Biosynthesis of amin	/			
759	S1 motif domain-	AB	Q6F7B6	-	88		Indefinido	Indefinido	Ligação ao	In./Ex.
760	Sarcosine oxidase	ВС	A0A0H3KBA1	1.5.3.1	39		Indefinido	Indefinido	Oxidorredutase	Ex.
761	SCP2 domain-containing	AB	Q6F8Q4	-	14		Indefinido	Indefinido	Indefinido	In./Ex.
	Sec translocon accessory					Quorum sensing	Proc de Info	Membrana		
762	complex subunit VaiC	ВС	A0A0H3KC33	-	11	Protein export	Ambiontal	plasmática	Transporte	Ex.
						Bacterial secretion sy	Ambientai	plasmatica		
763	Septum site-determining	вС	A0A0H3KD05	-	30		Sinalização e	Citoesquelet	Indefinido	Ex.
┣	protein	-	00//71//0			Chusing active and tel	Processo	0		
1		CT		l	45	Givene, serine and th				
		BC	AUAUH3KH43		45	Cyunoumino uciu me				
		AB	Q6FA66		45	Giyoxyidte metabolisi				
	Serine					Mothano motabolism	Metah de			
764	hydroxymethyltransferas			2.1.2.1		Metabolic nathways	Aminoácidos	Citoplasma	Transferase	In./Ex.
	е					Rios second metabo	Ammodeluos			
						Mic metab in diverse				
						Carbon metabolism				
						Biosynthesis of amin				
						Cysteine and methior				
1						Sulfur metabolism	1			
1						Metabolic pathways	Motobolisma			
1	-	1			22		ivieranolismo	Citereleaner	Tueneferrees	In In
765	Serine O-acetyltransferase	BC	A0A0H3KIM6	2.3.1.30	33	Bios. second. metabo	En currátion	Citopiasma	Transferase	111./EX.
765	Serine O-acetyltransferase	ВС	A0A0H3KIM6	2.3.1.30	33	Bios. second. metabo Mic.metab. in diverse	Energético	Citopiasma	Transferase	111./EX.
765	Serine O-acetyltransferase	BC	A0A0H3KIM6	2.3.1.30	33	Bios. second. metabo Mic.metab. in diverse Carbon metabolism	Energético	Citopiasma	Transferase	III./EX.

-		I .	00//207							
766	Serine protein kinase	СТ	QUK3C7	-	73		Indefinido	Indefinido	Transferase	In./Ex.
		ВС	A0A0H3KF64		73					
767	SerinetRNA ligase	AB	Q6F8G5	6.1.1.11	47	Aminoacyl-tRNA bios	Biossíntese de	Citoplasma	Ligase	In./Ex.
768	Serine-glyoxylate	ВС	A0A0H3KT02	2.6.1.45	41		Indefinido	Indefinido	Transferase	In./Ex.
769	Short chain	СТ	Q0KBF8	1.1.1.69	27		Indefinido	Indefinido	Oxidorredutase	Ex.
770	Short-chain alcohol	СT	O0K3B4	_	27		Indefinido	Indefinido	Oxidorredutase	In./Fx.
771	Short chain alcohol	CT	00KE21		27		Indefinide	Indefinide	Oxidorredutase	In /Ex
772		CT		-	20		Indefinido		Oxidorredutase	111./LA.
//2	Short-chain	CI	QUK3EU	-	32		Indefinido	Indefinido	Oxidorredutase	111./EX.
773	Sigma54-dependent DNA-	ВС	A0A0H3KZE6	-	50		Regulação/Pro	Indefinido	Ligação ao	In./Ex.
774	Signal peptidase I	AB	Q6F9C0	3.4.21.89	32	Protein export	Peptidases e	Membrana	Hidrolase	In./Ex.
	Signal recognition particle	СТ	Q0K6Q5		50	Quorum sensing	Sinalização e			
775	Signal recognition particle	ВС	A0A0H3KGM	3.6.5.4	49	Protein export	Processo	Citoplasma	Transporte	In./Ex.
	protein	ΔR	O6EDW8		51	Bacterial secretion sy	Celular	•		,
			QUIDWO		51	Quorum sensing	Sinalização e			
776	Signal recognition particle	A.D.	065421		40	Quorum schäng	Dreasse	Membrana	Decenter	In ITY
//0	receptor FtsY	AB	QOFASI	-	40		Processo	plasmática	кесертог	<i>III./EX</i> .
						Bacterial secretion sy	Celular	P		
777	Signal transduction	ВС	A0A0H3KEJ5	-	27		Regulação/Pro	Indefinido	Ligação ao	In./Ex.
778	Signal transduction	ВС	A0A0H3KIP5	-	26		Regulação/Pro	Indefinido	Ligação ao	In./Ex.
		BC	A0A0H3KHE7	-	19	DNA replication	Recombinação		~	
779	Single-stranded DNA-	ΔR	06F764		21	, Mismatch renair	e Renaro de	Indefinido	Ligação ao	In /Fx
_	binding protein	ΠD	01704		21	Homologous recomb		indennao	DNA/RNA	
							DNA			
780	Small ribosomal subunit	AB	Q6F804	3.1.3.100	39	Iniamine metabolism	Netabolismo	Citoplasma	Hidrolase	In./Ex.
	biogenesis GTPase RsgA					Metabolic pathways	de RNA			,
791	Soluble pyridine	٨D	065450	1611	52	Nicotinate and nicoti	Metab. Cofat.	Indofinido	Ovidorrodutaço	In /Ev
/01	nucleotide	AD	QOFASU	1.0.1.1	55	Metabolic pathways	e Vitaminas	indennido	Oxidorredutase	<i>III./EX</i> .
782	Spermidine/putrescine	RC	A0A0H3K021	_	38	Quorum sensina	Sinalização e	Indefinido	Transnorte	Fx
783	Stross induced protein	CT			25	Quorum sensing		Indefinide	Indefinide	In /Fy
705	Stress-Induced protein			-	35		Singlização o	indefinido	indefinido	111./LA.
784	Stringent Starvation	ВС	AUAUH3KIIS	-	24		Sinalização e	Indefinido	Transporte	In./Ex.
	protein A (Glutathione S-	СТ	Q0K6A8		24		Processo			-
		СТ	Q0K8F9	1.3.5.1	65	Citrate cycle (TCA cyc				
	Succinate dehydrogenase flavoprotein subunit	ВС	A0A0H3KQ35	1.3.5.4	65	Oxidative phosphory				
		AB	O6F8K9		70	Butanoate metabolis				
785						Metabolic pathways	Ciclo do Acido	Membrana	Oxidorredutase	In./Fx.
						Rios second metabo	Tricarboxílico	plasmática		,
						Mie weetsch in diverse	e			
						witc.metab. in alverse				
						Carbon metabolism				
		СТ	Q0K8G0	1.3.5.1	27	Citrate cycle (TCA cyc				In./Ex.
		ВС	A0A0H3KV32	1.3.5.4	27	Oxidative phosphory				
		AB	O6F8L0		27	Butanoate metabolis				
786	Succinate denydrogenase					Metabolic pathways		iviembrana	Oxidorredutase	
	iron-sulfur subunit					Pios second metabo	Tricarboxílico	plasmática	Oxidoffedutase	
						Mie weetsch in diverse				
						iviic.metab. maiverse				
						Carbon metabolism				
						Citrate cycle (TCA cyc				l I
						Oxidative phosphory				
	Succinate dehydrogenase,					Butanoate metabolis				
787	cytochrome b556	AB	06F8K7	-	14	Metabolic pathways		iviembrana	Indefinido	In./Fx.
	cubunit	, 12	Q01011			Rios second metabo	Tricarboxílico	plasmática		,
	subunit				Mic motab in divorce				1	
						Carbon metabolism				
		СТ	Q0KE74		31	Citrate cycle (TCA cyc				
		ВС	A0A0H3KH54		31	Propanoate metabol				
	SuccinateCoA ligase	AB	Q6F8L5		31	C5-Branched dibasic	Ciala da Ásida			
788	[ADP-forming] subunit			6.2.1.5		Metabolic pathways	Indefinido	Ligase	In./Ex.	
	alaba					Rios second metabo	Tricarboxílico		0	,
	aipila					Mic motah in divorce				
						Carebana and table a line				
┣—					<u> </u>	Carbon metabolism			ļ'	
		СТ	Q0KE75		41	Citrate cycle (TCA cyc				
1		BC	A9AFT3	-	41	Propanoate metabol				
	SuccinateCoA ligase	AB	O6F8L4		1	41	C5-Branched dibasic			
789	[ADP-forming] subunit	-formingl subunit	6.2.1.	6.2.1.5		Metabolic pathways	Ciclo do Ácido <u>letabolic pathways</u> <u>ricarboxílico</u> <u>ricarboxílico</u> <u>ricarboxílico</u>	Indefinido	Ligase	In./Ex.
1	heta	<u> </u>			<u> </u>	Bios second metabo			.,	
1						Mic metah in diverse				
			╂────┤	ŀ		Carbon motol - "-				
┣	l				<b> </b>	Carbon metabolism			⁻	
1	1					Alanine, aspartate ar				
1	1					Lysine degradation				l

790	Succinate-semialdehyde dehydrogenase (NADP+)	ст	Q0K100	1.2.1.16	52	Tyrosine metabolism Butanoate metabolis Nicotinate and nicoti Metabolic pathways Mic.metab. in diverse	Metab. de Carbo.	Indefinido	Oxidorredutase	In./Ex.
791	Succinate-semialdehyde dehydrogenase (NADP+)	ст	Q0JZI5	1.2.1.16	52	Alanine, aspartate ar Lysine degradation Tyrosine metabolism Butanoate metabolis Nicotinate and nicoti Metabolic pathways Mic.metab. in diverse	Metab. de Carbo.	Indefinido	Oxidorredutase	Ex.
792	Succinyl-CoA:3-ketoacid- coenzyme A transferase subunit A	ст	Q0KC00	2.8.3.5	25	Synthesis/deg. ketone Val., leuc. and isol. de Butanoate metabolis Metabolic pathways	Metab. de Carbo.	Indefinido	Transferase	In./Ex.
793	Succinyl-CoA:3-ketoacid- coenzyme A transferase subunit B	ст	Q0KBZ9	2.8.3.5	22	Synthesis/deg. ketone Val., leuc. and isol. de Butanoate metabolis Metabolic pathways	Metab. de Carbo.	Indefinido	Transferase	Ex.
794	Sulfate adenylyltransferase subunit 1	CT BC AB	Q0K7F0 A0A0H3KLG8 Q6FD99	2.7.7.4	47 47 59	Purine metabolism Monobactam biosyn Selenocompound me Sulfur metabolism Metabolic pathways Bios. second. metabo Mic.metab. in diverse	Metabolismo Energético	Indefinido	Transferase	In./Ex.
795	Sulfate adenylyltransferase subunit 2	АВ	Q6FDA0	2.7.7.4	35	Purine metabolism Monobactam biosyn Selenocompound me Sulfur metabolism Metabolic pathways Bios. second. metabo Mic.metab. in diverse	Metabolismo Energético	Indefinido	Transferase	In./Ex.
796	Sulfate-transporting	ВС	A0A0H3KGI4	7.3.2.3	62		Reg./Proces.	Indefinido	Hidrolase	In./Ex.
797	Sulfite reductase	AB	Q6F8C4	1.8.1.2	62	Sulfur metabolism Metabolic pathways Mic.metab. in diverse	Metabolismo Energético	Indefinido	Oxidorredutase	In./Ex.
798	Sulfonate/nitrate/taurine	ВС	A0A0H3KS65	-	50		Sinalização e	Indefinido	Transporte	In./Ex.
799	Sulfurtransferase	ВС	A0A0H3KKL5	2.8.1.1	31		Metabolismo	Indefinido	Transferase	In./Ex.
800	Sun protein	BC	A0A0H3KGT5	2.1.1.176	46		Metabolismo	Indefinido	Transferase	In./Ex.
801	Superoxide dismutase	CT BC AB	QUKE13 A0A0H3KH36 Q6FCJ6	1.15.1.1	22 21 23		Indefinido	Indefinido	Oxidorredutase	In./Ex.
802	Tellurium resistance	AB	Q6FAY2	-	20		Indefinido	Indefinido	Indefinido	In./Ex.
803	TetR family	ВС	A0A0H3KG76	-	29		Regulação/Pro	Indefinido	Ligação ao	In./Ex.
804	TetR family	ВС	A0A0H3KGW3	-	24		Regulação/Pro	Indefinido	Ligação ao	In./Ex.
805	TetR family	ВС	A0A0H3KRA1	-	23		Regulação/Pro	Indefinido	Ligação ao	In./Ex.
806	TetR family	BC		-	23		Regulação/Pro	Indefinido	Ligação ao	In./EX.
808	Thioredoxin	BC CT BC		-	17 12 12		Bios./Metab.	Indefinido	Chaperona	In./Ex.
809	Thioredoxin reductase	BC	A0A0H3KD00	1.8.1.9	34	Selenocompound me	Metab. de	Citoplasma	Oxidorredutase	In./Ex.
810	Threonine synthase	AB	Q6FFC9	4.2.3.1	40	Glycine, serine and th Vitamin B6 metabolis Metabolic pathways Bios. second. metabo Mic.metab. in diverse Biosynthesis of amin	Metab. de Aminoácidos	Indefinido	Liase	In./Ex.
811	ThreoninetRNA ligase	ВС	A9ABF9	6113	72	Aminoacyl-tRNA bios	Biossíntese de	Citoplasma		In /Fv
812	Thymidylate synthase	AB AB	Q6F860 Q6FER7	2.1.1.45	73 32	Pyrimidine metabolis One carbon pool by f	Aminoacil- de Nucleotídeos	Citoplasma	Transferase	In./Ex.
813	Tim44 domain-containing	ΔR	Q6F945	-	36		Indefinido	Memhrana	Indefinido	In./Fx
		0					machinuu	memorana	machinuo	,

914	THD succession				<b>F</b> 4		Den tide en e	the station table	the staff of the table	In /Ev
014	TIdD protein	BC	AUAUHSKKUZ	-	51		Peptidases e	Indefinido	indefinido	111./EX.
185	Tol-Pal system protein	ВС	A9AFQ0	-	46		Sinalização e	Membrana	Transporte	In./Ex.
816	Tol-Pal system protein	ВС	A0A0H3KL03	-	25		Sinalização e	Membrana	Transporte	In./Ex.
817	Toluene tolerance efflux	AB	Q6F7P0	-	24	ABC transporters	Proc. de Info.	Membrana	Transporte	In./Ex.
		СТ	Q0K979		35	Pentose phosphate p	2			
		BC			35	Metabolic nathways				
		DC	AJAJO		35	Riccabolic pathways	Metah de			
818	Transaldolase	AB	Q6FAV8	2.2.1.1	36	BIOS. SECOND. MELUDO		Citoplasma	Transferase	In./Ex.
						Mic.metab. in diverse	Carbo.	-		
						Carbon metabolism				
						Biosynthesis of amin				
819	Transcription accessory	BC	A0A0H3KJU5	-	85		Regulação/Pro	Indefinido	Ligação ao	In./Ex.
820	Transcription	ΛR	06F6V2	_	17		Regulação /Pro	Indefinido		, In /Fx
020		AD		-	17					111./LA.
021	Iranscription elongation	AB	QOFOIVIS	-	18		Regulação/Pro	Indefinido	Ligação ão	III./EX.
	Transcription termination	СТ	Q0K931		46	RNA degradation	Regulação/Pro		Ligação ao	
822	factor Dha	ВС	A0A0H3KFL5	-	47		cessamento	Indefinido		In./Ex.
	factor kno	AB	Q6F876		48		da Transcrição		DNA/RNA	
	Transcription	СТ	00K9B8		55		Regulação/Pro			
873	termination (antiterminati				55		cossamonto	Citoplasma	Ligação ao	In /Ev
023	termination/antiterminati	BC	AUAUH3KEI8	-	55		Cessamento	Citopiasina	DNA/RNA	<i>III./EX.</i>
	on protein NusA	AB	Q6FF41		55		da Transcrição		,	
	Transcription	СТ	Q0K601		22		Regulação/Pro			
824	termination/antiterminati	ВС	A0A0H3KIK8	-	21		cessamento	Indefinido	Indefinido	In./Ex.
	on protein NusG	ΔR	06FF95		20		da Transcrição			
825	Transcriptional accessory	CT			00		Indofinido	Indofinido		In /Fy
025		07		-	65			Indefinido	Ligação ao	111./LX.
826	Transcriptional regulator	СТ	QUK224	-	21		Regulação/Pro	Indefinido	Ligação ao	EX.
827	Transcriptional regulator	AB	Q6FEG0	3.1.1.61	27	Two-component syst	Regulação/Pro	Indefinido	Ligação ao	In./Ex.
828	Transcriptional regulator,	СТ	Q0JZU3	-	26		Regulação/Pro	Indefinido	Ligação ao	In./Ex.
829	Transcriptional regulator.	СТ	Q0KBU6	-	30		Regulação/Pro	Indefinido	Ligação ao	In./Ex.
830	Transcriptional regulator	СT	O0K702	_	37	Two-component syst	Regulação /Pro	Indefinido		Fx
831			06555		10	ino componentityst		Indefinide		In /Ev
031	Transcriptional repressor	AB		-	19	Denterenterenteren	Regulação/Pro	indennido	LIgação ao	111./LX.
		ВС	AUAUH3KC72		74	Pentose phosphate p	7		do Transferase	
		AB	Q6FAQ7		72	Carbon fixation in ph				
						Metabolic pathways	Motab da			
832	Transketolase			2.2.1.1		Bios. second. metabo	ivietab. ue	Indefinido	Transferase	In./Ex.
						Mic.metab. in diverse	Carbo.			,
						Carbon metabolism				
						Curbon metabolism				
						Biosynthesis of amin				
833	Translation initiation	AB	Q6FEV4	-	9		Bios./Metab.	Citoplasma	Ligação ao	In./Ex.
	Translation initiation	СТ	Q0K9B9		104		Rios /Motab		Fator de	
834		ВС	A9ABD5	-	104		BIUS./IVIELaD.	Citoplasma	Tradução/Elong	In./Ex.
	factor IF-2	ΛR	065540		0.0		Proteínas	•	20 , E	,
925	Tropolotion initiation		065961		21		Dias /Matak	Citeralesma	açau Fatarda	In /Ex
035	Translation initiation	AB	QOFOOL	-	21		BIOS./IVIETAD.	Citopiasma	Fator de	111./EX.
836	TRAP-type transporter,	СТ	QUK5H6	-	42		Indefinido	Membrana	Transporte	EX.
837	Triacylglycerol linase	RC	<b>VUVUH3KK23</b>	2112	20	Glycerolipid metaboli	Metabolismo	Indefinido	Hidrolase	In /Fy
0.57	That yigiyter of lipase	be	AUAUIISKKZS	5.1.1.5	50	Metabolic pathways	de Ácidos	indennido	muluase	<i>,</i> LX.
		СТ	O0KBK5		51		Sinalização e			
838	Trigger factor		404100	5218	50		Processo	Citoplasma	Isomerase	In /Fy
050	ingger factor	BC	A9AJQ9	5.2.1.0	50		FIOCESSO	Citopiasina	isofficiase	<i>,</i> LX.
		AB	Q6FEP9		50		Celular			
						Glycolysis / Gluconeo				
						Fructose and manno.				
						Inositol phosphate m				1
						Carbon fixation in nh	Glicolise /			
020	Triosephosphate	DC		F 2 1 1	26	Matabalia nathwaya	Clicon co gôn co	Citanlasma	la o moracio	In
039	isomerase	ы	AUAUHSKGBO	5.5.1.1	20		Gliconeogenes	Citopiasina	Isomerase	<i>III</i> .
						Bios. second. metabo	е			
						Mic.metab. in diverse				
						Carbon metabolism				
						Biosynthesis of amin				
840	+RNA NE adopacina	٨D		2 3 1 23/	27		Motabolismo	Citoplasma	Transforaço	In
040		AD		2.3.1.234	57	Culture values as atoms	Netabolishio			111. In /Eu
841	tRNA-specific 2-	AB	Q6FCW2	2.8.1.13	42	Sulfur relay system	Metabolismo	Citoplasma	Iransferase	In./EX.
						Glycine, serine and th				
	Tryptophon synthese					Phenylalanine, tyrosi	Motab do			
842	in propriari synthase	AB	Q6FEE6	4.2.1.20	29	Metabolic pathways	Wieldb. ue	Indefinido	Liase	In./Ex.
1	alpha chain			-		Bios, second metabo	Aminoácidos			
1	1					Biosynthesis of amin	1			
<u> </u>	l	<u>c</u> -	00//01/5		40	Choing contraction	}	<u> </u>	l	
1	1	CT	QUK8H5		43	Given e, serine and th				
1	Tryptophan synthase	ВС	A0A0H3KQ52		43	Phenylalanine, tyrosi	Metab de			
843	hata ahain	AB	Q6FEF1	4.2.1.20	44	Metabolic pathways		Indefinido	Liase	In./Ex.

I	Dera Cilani			'	r	Bios second metabo	AMINUACIUUS			I
						Biosynthesis of amin				
844	Tryptophanyl-tRNA	ΔR	06F8L6	6.1.1.2	38	Aminoacyl-tRNA bios	Biossíntese de	Citoplasma	ligase	In./Fx.
		AD	01020	0.1.1.2	50	Fatty acid dearadatic	Diossintese de	Citopiasina	ligase	ш. <u>у</u> Ех.
						Renzoate dearadatio				
	Two domain protein: 3-					Butanoate metabolis	Degradação de			
945	hydroxyacyl CoA	ст	OOVECO	11125	96	Motabolic nathways	Ácidos graxos	Indofinido	Ovidorrodutaça	In /Ex
045		CI	QUREGU	1.1.1.55	00	Nie westerk in diverse	е	indennido	Oxidorredutase	<i>III./EX</i> .
	dehydrogenase					iviic.metab. in alverse	Xenobióticos			
						Carbon metabolism				
						Fatty acid metabolisr				<u> </u>
846	Two-component	AB	Q6F7B5	-	29	Two-component syst	Regulação/Pro	Indefinido	Ligação ao	In./Ex.
847	Two-component system	ВС	A0A0H3KFN4	-	27	Two-component syst	Regulação/Pro	Indefinido	Ligação ao	In./Ex.
						Cysteine and methior				
						Tyrosine metabolism				
						Phenylalanine metab				
010	Tyrosine	ст	00/242	26157		Phenylalanine, tyrosi	Metab. de	Indofinido	Transforme	In ITV
040	aminotransferase	CI	QUKZAZ	2.6.1.57	44	Novobiocin biosynth	Aminoácidos	indefinido	Transferase	In./EX.
						Metabolic pathways				
						Bios. second. metabo				
						Biosynthesis of amin				
<u> </u>		СТ			16	Aminoacyl-tRNA hins	Biossíntese de		1	
849	TyrosinetRNA ligase	PC		6111	40		Aminoacil-	Citonlasma	Ligase	In /Fx
045	Tyrosine think ligase			0.1.1.1	40			citopiasina	LIGUSC	<i>,</i> LX.
		AB	QBFG10		45	Ovidativo nhosnhoru	t KINA Matabaliama	Mambrana		ł
850	Ubiquinoi oxidase	AB	Q6F9R5	7.1.1.3	39	Oxidative phosphory		iviembrana	Translocase	In./Ex.
	subunit 2						Energético	plasmatica		
	Obiquinoi-cytochrome c					Oxidative phosphory	Metabolismo	Membrana		
851	reductase cytochrome c1	ВС	A0A0H3KHW7	-	28	Metabolic pathways	Energético	plasmática	Indefinido	In./Ex.
	subunit					Two-component syst	Energetieo	plasmatica		
	Ubiquinone/menaquinon	СТ	Q0KEH6		27	Ubiquinone and othe	Metab Cofat			
852	e biosynthesis C-	AB	Q6FF27	2.1.1.163	36	Metabolic pathways	o Vitaminas	Indefinido	Transferase	In./Ex.
	methyltransferase UbiE					Bios. second. metabo	e vitariirias			
853	UDP-glucose 4-epimerase	ВС	A0A0H3KFE1	5.1.3.2	40		Indefinido	Indefinido	Isomerase	Ex.
			065550	1 1 1 2 2		Pentose and glucuro				
0E /	UDP-glucose 6-	٨D			10	Ascorbate and aldard	Metab. de	Indofinido	Ovidorradutaça	In In
034	dehydrogenase	АВ	QOFF39	1.1.1.22	48	Amino sugar and nuc	Carbo.	indefinido	Oxidorredulase	111./EX.
						Metabolic pathways				
	UDP-N-	BC	A0A0H3KHX9		48	Amino sugar and nuc	Biossíntese de			1
855	acetylglucosamine 1-	ΔR	OGEEDO	2.5.1.7	45	Pentidoalycan biosyr	Peptidoglican	Citoplasma	Transferase	In./Fx.
	carboxwinyltransferase	7.0	Q01 20 0			Metabolic pathways	0			,
						D-Glutamine and D-c	Biossíntese de			1
856	UDP-N-acetylmuramate	BC	Δ9Δ195	6328	19	Pentidoalycan hiosyr	Pentidoglican	Citoplasma	ligase	In /Fy
	L-alanine ligase	DC	737133	0.5.2.0	75	Metabolic nathways		citopiasina	inguse	<i>,</i> LX.
857	LIDD N sectulmuramete	A.D.	OGEGM5	63245	40		U Diaccíntoco do	Citanlasma	ligaça	In /Ev
337	Mothylaconitate	АВ		0.3.2.43	49	Pronancato motokal	Motob do	Citopiasma	ligase	/EX.
858	ivietityiacomtate	СТ	Q0KAG2	-	41	Motabelia nethor	ivietab. de	Indefinido	Isomerase	In./Ex.
050	isomerase					wielabolic pathways	Carbo.			5.
859	Type VI secretion system	BC	AUAUH3KBS2	-	50		Sinalização e	Indefinido	Sistema de	EX.
860	Type VI secretion system	ВС	AUAUH3KBG8	-	19		Sinalização e	Indetinido	Sistema de	In./Ex.
861	Type VI secretion system	ВС	AUAUH3KGE8	-	55		Sinalização e	Indefinido	Sistema de	In./Ex.
862	Type VI secretion system	ВС	AUAOH3KBS7	-	18	Bacterial secretion sy	Sinalização e	Indefinido	Sistema de	EX.
863	Type VI secretion system	ВС	A0A0H3KGG4	-	36		Sinalização e	Indefinido	Sistema de	In.
864	Putative protein secretion	AB	Q6FC64	-	80	ABC transporters	Proc. de Info.	Indefinido	Transporte	Ex.
865	Type VI secretion system	AB	Q6F921	-	56		Sinalização e	Membrana	Sistema de	In./Ex.
866	Methylaconitate	ΔR	065912	-	42	Propanoate metabol	Metab. de	Indefinido	Isomerase	In
300	isomerase	, 0	201312		72	Metabolic pathways	Carbo.		13011101 030	
867	Universal stress protein,	СТ	Q0K9K4	-	16		<u>Indefin</u> ido	Indefinido	Indefinido	Ex.
868	UPF0229 protein	ВС	A0A0H3KNG4	-	49		Indefinido	Indefinido	Indefinido	Ex.
869	UPF0234 protein	AB	Q6F7Y7	-	19		Indefinido	Indefinido	Indefinido	In./Ex.
870	UPF0234 protein	ВС	A9AGJ4	-	18		Indefinido	Indefinido	Indefinido	In.
871	UPF0234 protein	СТ	Q0K786	-	18		Indefinido	Indefinido	Indefinido	Ex.
872	UPF0246 protein	AR	Q6FA99	-	30		Indefinido	Indefinido	Indefinido	In./Ex.
	Uracil					Pvrimidine metaholis	Metabolismo			
873	nhosnhorihosyltransfora	AB	Q6FE58	2.4.2.9	23	Metabolic nathways	do	Indefinido	Transferase	In./Ex.
		CT	ΟΩΚΔ1 9		25	Pyrimidine metabolic	Metabolismo			<u> </u>
874	Uridylate kinase			2.7.4.22	25	Metabolic nathways		Citoplasma	Transferase	In./Ex.
		АВ	ΑυΑυΠ3ΚΡΙ5		25	Histiding match align	ue Motob do			<u> </u>
875	Urocanate hydratase	ВС	A0A0H3KG00	4.2.1.49	62	nistiume metabolism	ivietab. de	Indefinido	Liase	In./Ex.
L		I			1	wielabolic pathways	Aminoacidos			1

876	Uroporphyrin-III C- methyltransferase	вС	A0A0H3KL94	2.1.1.107	69	Porphyrin and chloro Metabolic pathways Bios. second. metabo Mic.metab. in diverse	Metab. Cofat. e Vitaminas	Indefinido	Transferase; Liase	Ex.
877	Usp domain-containing	AB	Q6FC59	-	31		Indefinido	Indefinido	Indefinido	In./Ex.
878	UspA family universal	ВС	A0A0H3KLI9	-	16		Indefinido	Indefinido	Indefinido	In./Ex.
879	UspA family universal	ВС	A0A0H3KLJ3	-	33		Indefinido	Indefinido	Indefinido	In./Ex.
880	UspA family universal	ВС	A0A0H3KJ67	-	17		Indefinido	Indefinido	Indefinido	Ex.
881	UTPglucose-1- phosphate uridylyltransferase	ст	Q0K840	2.7.7.9	33	Pentose and glucurou Galactose metabolism Starch and sucrose m Amino sugar and nuc Metabolic pathways Bios. second. metabo	Metab. de Carbo.	Indefinido	Transferase	Ex.
882	UvrABC system protein A	AB	Q6F758	-	107	Nucleotide excision re	Resp. Estresse	Citoplasma	Ligação ao	In./Ex.
883	UvrABC system protein B	CT AB	Q0KCH8 Q6F9D2	-	79 78	Nucleotide excision re	Resp. Estresse	Citoplasma	Ligação ao DNA/RNA	In./Ex.
884	ValinetRNA ligase	BC AB	A0A0H3KEJ8 Q6F8F0	6.1.1.9	<u>107</u> 110	Aminoacyl-tRNA biosynthesis	Biossíntese de Aminoacil-	Citoplasma	ligase	In./Ex.
885	X-Pro aminopeptidase	вС	АОАОНЗКСАО	3.4.11.9	51		Peptidases e inibidores	Indefinido	Hidrolase	In./Ex.
886	Xenobiotic reductase	AB	Q6F723	-	39		Indefinido	Indefinido	Oxidorredutase	In./Ex.
887	Ycel domain-containing protein	AB	Q6FAQ8	-	21		Indefinido	Indefinido	Indefinido	In./Ex.
888	Zinc/manganese transport system ATP- binding protein	вС	A0A0H3KGY0	-	32		Sinalização e Processo Celular	Indefinido	Transporte	Ex.
889	Zinc/manganese transport system substrate-binding protein	BC	A0A0H3KH82	-	33		Sinalização e Processo Celular	Indefinido	Transporte	In./Ex.
050	Zn-dependent Hidrolase	CI	QUNFAS	-	40		inaetiniao	indefinido	Hidrolase	111./EX.