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RESUMO

A ascensão de estudos que abordam o grafeno tem sido notável nas últimas décadas, tanto por

suas estrutura bidimensional quanto para diversas aplicações em potenciais tecnológicos. Em

adição, descobertas sobre fenômenos supercondutores emergem cada vez mais nos diversos ma-

teriais quando postos a baixa temperatura, com isso este trabalho tem como enfoque principal

o estudo das fases do estado supercondutor na estrutura de rede favo de mel do grafeno.

Para isso, foi fundamentalmente apresentado o grafeno puro por aproximação tight-binding

dos elétrons e suas as bandas de energia na primeira zona de Brillouin descrito pela dispersão

linear dos férmions de Dirac. Em seguida abordou-se a teoria da supercondutividade através

da teoria de campo médio e energias de excitação.

Conciliando esse estado da matéria aplicado ao grafeno e considerando efeitos de dopagem

nós analisamos os estados de fase para energias atrativas de interação elétron-elétron.

Obtivemos além da usual onda s, uma exótica possibilidade, uma onda p + ip simétrica

devido a estrutura de simetria em torno dos pontos de Dirac e portanto uma coexistência das

fases e são obtidos grá�cos caracerísticos do parâmetro de ordem e do calor especí�co com

relação a temperatura na variação do potencial químico.

Palavras-chave: Grafeno. Supercondutividade. Parâmetro de ordem.



ABSTRACT

An increase in the number of studies involving graphene has been notable in the recent

decades, mainly due its two-dimensional structure and also for the varied applications in tech-

nological devices. Superconductivity has been observed in di�erent materials when placed under

very-low temperatures, which motivated us to the study the di�erent phases of the supercon-

ducting states in the honeycomb lattice structure of graphene.

In this work we consider pure two-dimensional single-layer graphene on a honeycomb lat-

tice. A tight-binding model of the electrons and their energy bands in the �rst Brillouin zone

described by the linear dispersion of the Dirac fermions is used to describe the graphene in its

pure form. We study the superconducting phases of the graphene using a mean �eld theory to

calculate the temperature dependencies of the order parameters and also the speci�c heat of

the system below the critical temperature.

Conciling this states of matter applied to graphene and considering doping e�ects we anal-

ized the phases states for attractive electron-electron interactions energies.

We get in addition to the usual s-wave, an exotic possibility appears in the form of a

symmetric p+ ip wave due to the symmetry structure around the Dirac points. The coexistence

of the above two phases has been of utmost importance for our study. Hence the characteristic

graphs of the order parameter and speci�c heat in the variation of the chemical potential are

studied.

Keywords: Graphene. Superconductivity. Order parameter.
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Chapter 1

Introduction

Graphene is one of the allotropes of carbon which has a two-dimensional structure, with

its atoms organized on a honeycomb lattice. The above structure leads to some interesting

and unusual physical properties. Extraordinary electrical and thermal conductivities and very

high mechanical strength make graphene a promising candidate for a host of technological

applications [5].

The peculiar electronic behavior in Graphene envisages advances in technological applica-

tions of great interest for e.g. in electronic sensor bases , LEDs, solar cells, photodetectors,

transistors that operate on radio frequency, among others [14] [15]. Evidence of superconduc-

tivity in graphene has also attracted a lot of attention in the condensed matter community.

The superconducting state in general is induced in graphene by proximity e�ects with super-

conducting contacts or by doping. Hence, the presence of superconductivity also con�rms the

presence of the Cooper pairs that can propagate coherently in graphene. However, there are

motivations to make it an intrinsic superconducting material [16]. Experimental and theoretical

researchers use the method of intercalated materials, alkali metals in the pure form of graphene

at low temperature by chemical modi�cation and by polarizing semiconductor substrates such

as Si, Sn, Pb to induce cooper pairs in graphene [12]. For this reason, in this work, we consider

we consider superconductivity in graphene and study the cases in which the chemical potential

is non-zero representing possible doping in pure graphene.

A study of spin singlet states was developed, with the emergence of the exotic state of the

p+ ip wave phase which in general is unusual. However, the above state was shown to belong to

the structure itself. It was also considered that the energies of the electron-electron interaction

potentials of the s and p + ip waves have a value whose module depends on temperature due

to their relations with the self-consistent equations.

In this work, we study the temperature dependencies of the order parameters with various

values of the interaction parameters. The dependence of the chemical potential of the system

on critical temperature and the order parameters were also studied. The normalized gap pa-

rameters for the two order parameters also demonstrate a universal nature for all values of the

interaction strengths. Moreover, speci�c heat Ces vs temperature for various chemical potential

12



CHAPTER 1. INTRODUCTION 13

values demonstrates a consonance with the experimental obtained results with doping.

This present dissertation is organized as follows:

In Chapter 2 we discuss the electronic structure of graphene. The arrangement of the

carbon atoms in the crystal lattice and also the interaction of these atoms in the hybridization

of orbitals of sp2 type were considered. The tight-binding model of the graphene single-layer

Hamiltonian is discussed in great detail to obtain the dispersion relations of the system.

In chapter 3, a historical overview of superconductivity is presented at the beginning. An

explanation of the theory of superconductivity with an emphasis on Cooper pairs, gap energies

and order parameter are discussed to provide an understanding of the phenomenon. We also

de�ne the thermodynamic quantities of interest related to the excitation energies of the fermions

along with their temperature dependencies.

In chapter 4 we discuss the model Hamiltonian considered in our work to study supercon-

ductivity in single-layer, pure graphene. The on-site and the nearest neighbor electron-electron

interactions are considered to de�ne the superconducting states of graphene. The supercon-

ducting order parameters for spin singlet symmetries are de�ned within a mean-�eld scenario

and are calculated numerically by minimizing the free energy of the system. Speci�c heat of

the superconducting states of graphene in the coexistence phase has also been calculated to

study the temperature and doping dependencies of the parameter.

Finally, a short conclusion is presented in chapter 5 with a brief discussion on the future

perspectives of the work.



Chapter 2

The Graphene

Graphene can be de�ned as a single-layer form of graphite. It is a two-dimensional material

with honeycomb structure whose structure generates a variety of peculiarities that are re�ected

in the physical properties,such as its malleability and thermal capacity, high electrical mobility,

current conduction capacity, good mechanical resistance, etc.

2.1 Historical Overview.

The twentieth century(XX) was historically remarkable in the development of techniques for

understanding the elementary structure of materials. The understanding of the highly layered

structure of thermally reduced graphite oxide in the nineteenth century by English chemist

Benjamin Collins Brodie paved the way for wondrous discoveries in material science. The

advent of the powder-di�raction methods and the formulation of Bragg di�raction and Laue

di�raction applied to crystalline solids in 1924 by J.D.Bernal paved new paths [17]. In order to

develop a theory for the electronic properties of bulk graphite, physicist Philip Russel Wallace on

behalf of National Research Council of Canada directed his attention to explore the material by

publishing in 1947 the article entitled "The Band Theory of Graphite" and showed the unusual

semimetallic behavior in this material, see Fig. (2.1) . The theory of the structure of the

electronic energy bands and Brillouin zones for graphite was developed using the tight binding

approximation where along with the overlap of the hexagonal layers of graphite, a single-layer

(called Graphene, a term originally introduced years later by H.P. Boemh) was also considered

so as to neglect the interaction of the superposition of the planes. A large anisotropy in the

electrical conductivity and the diamagnetic susceptibility was exhibited. The work also showed

the linear dispersion relation.

It is important to remember that graphene's history spans over more than a century of

chemical research. There is a vast chemical literature, literally hundreds of papers during the

second half of the twentieth century. Studies on ultra-�ne Graphite compounds using TEM

(Transmission Electron Microscopic), epitaxial graphite on solid substrates (TiC, TaC, Ni) or

chemical exfoliation were performed to understand the layered structure of the graphite. How-

14
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Figure 2.1: P.R.Wallace's article named "The Band of Graphite" published in Physical Review
Volume 37 Number 9 on May 1, 1947 [1] .

ever, success only came in 2004 with Andre Geim, Konstantin Novoselov, SV Morozov and his

collaborators in the department of the Institute of Microelectronic Technology at the Univer-

sity of Manchester, when graphene was isolated by a direct method of mechanical exfoliation

and characterized for the �rst time utilizing the `Scotch Tape' method [18]. Hence, when one

uses a pencil against a sheet of paper one might be actually producing graphene stacks and

among them the presence of the individual graphene layers are highly probable. The number of

academic publications regarding the use of graphene continue to grow along the years. Hence,

with such an enormous interest in graphene it is imperative for us to study the graphene in

more details.

Currently, new approaches are being developed which are not only cost-e�cient but also

provides secured and environmental friendly solutions to the society. At the National Institute

of Technology in India, researcher Vishnu Shanker used eucalyptus bark to extract and syn-

thesize graphene sheets [19]. The CVD (chemical vapor deposition) method, Hummer method

and liquid phase exfoliation using extracts of medicinal plants in water were presented by Bip-

inchandra K. Salunke and Beom Soo Kim [20]. In addition, recently, researchers from the São

Carlos Institute of Physics developed a cleaner and faster method to produce reduced graphene

using laser-based methods [21].

The application of graphene can be observed in a range of di�erent technologies which could

potentially be created and provide some of the many real-world bene�ts of graphene research

[22]. One of the �rst proposed real-world applications of graphene is related to the high con-

ductivity of graphene and would be ideal for high-speed electronics [23]. Ultra-thin graphene

transistors have been developed and could appear in consumer electronics within the next

decade. Reducing the size of data storage devices and thereby increasing the capacity of data

storage devices whilst maintaining the size is an area which is being considered [24]. Several

attempts of producing graphene-based supercapacitors are also being considered to create such

technologies [25]. Photovoltaic cells, or solar cells, are also considered to be a potential appli-
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cation of graphene [26]. Moreover, another application of graphene can be found in the �eld of

electroanalysis [27]. The electrothermal conduction properties in the production of transistors

that operate at low temperatures and at radio frequencies were studied to achieve cut-o� fre-

quencies of 155 Gigahertz of the graphene transistor at short wavelengths [14]. Biomolecules,

nanoparticles and surfaces in Graphene compounds for Biosensors are capable of recognizing

antibodies and organic compounds [15].

Hence, we observe that pure graphene and graphene in compounds could play fundamental

roles in the advancement of scienti�c knowledge which many call it as "The material of the

future" owing it to the diversity of its application in the real-world.

2.2 Carbon and its allotropes.

Figure 2.2: Di�erent structures arranged by carbon atoms in di�erent dimensions. a) Buckmin-
sterfulereno. b) Closed fullerene, nested or graphite rings. c) Carbon nanotubes. d) Nanocones.
e) Nanothoroids. f) Graphene Honeycomb Structure.g) 3D Graphite Crystal. h) Haeckelite
structure. i) Graphene nano�bers. j) Graphene Cluster. k) Helical Carbon Nanotube.l) Small
chains of graphene. m) 3D Schwartize crystal. n) Graphene nanostructured foam. o) 3D lattice
composed of nanotubes.p) Network of 2D nano�bers [2].

The main constituent carbon of Graphene, a chemical element with atomic number 6, non-

metallic and tetravalent, is a very abundant atom, responsible for the bonding of organic
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compounds, minerals and hydrocarbons. It is also called the materia prima for life on this

planet and the basis of all organic chemistry [2]. It allows us to connect with other substances

or even in the form of carbon chains giving rise to various allotropic forms, such as diamond,

graphite and many more.

Among the two-dimensional structures demontrated in the �gure we observe Graphene in

(2.2)(f) where the carbon atoms are organized in the form of a thin layer of carbon. It is the

basis for the understanding of the electronic properties in other allotropes. On the other hand,

Graphite in (2.2)(g) is the most stable allotrope of Carbon formed from various layers of the

graphene sheets and thereby comprising a three-dimensional (3D) crystal.

2.3 Crystalline structure

Carbon is the sixth element in the periodic table and has 6 electrons orbiting around the

nucleus in its fundamental state. According to the Pauling Diagram these electrons are arranged

in atomic orbitals in the form: 1s, 2s2 and 2p2. The spatial distribution of the s and p orbitals

are illustrated in Fig. (2.3) .

Figure 2.3: s and p orbitals o graphene [3].

The electrons of the symmetric orbitals are in the energy level of quantum number n = 1

and n = 2. The electrons in 1s orbital represent the most strongly connected ones, whereas,

the two electrons in 2s are in the outermost shell, n = 2. The electrons in 2p (with possibilities

of alignment in the three directions (x, y and z)) are in the valence shell and indicate a possible

mixtures of orbitals among them, see Fig. (2.4).

In the case of graphene, hybridization takes place exactly between the 2s, 2px and 2py

orbitals generating a coplanar and symmetrical 120o orbital of the type sp2 forming the σ

bonds. The remaining 2pz orbital remains perpendicular to the plane forming weaker π type

bonds containing the free electrons participating directly in the conduction of the material.

The representation of the above type of bondings are given in Fig. (2.5).

The wave functions of the hybrid orbitals are given in terms of the s and p orbitals and can
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Figure 2.4: Diagram of the fundamental state of carbon [3].

be written as follows:

| ψ1〉 =
1√
3

(| s〉+ | px〉+ | py〉), (2.1a)

| ψ2〉 =
1√
6

(| s〉+ | px〉 − 2 | py〉) (2.1b)

| ψ3〉 =
1√
2

(| s〉− | px〉) (2.1c)

In Fig. (2.6) we see the form of the crystalline lattice of graphene (the colored dots represent

Figure 2.5: The orbitals pz and sp
2 represented in green. The hybridization orbitals form angles

of 120o to each other in the plane (illustrated by the yellow color) x, y and are orthogonal to
pz [4].

the carbon atoms). Graphene is a one-atom-thick layer of carbon atoms arranged in a hexagonal

lattice. It and can be visualized as composed of benzene rings stripped out from their hydrogen

atoms. The structure of atoms does not form a Bravais lattice as required. In this case the points

are seen from their adjacent neighbors, only when rotated through an angle of 180o. Hence, two
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triangular sublattices (highlighted in yellow and blue) are considered. The primitive vectors

(~a1 and ~a2) and the relative vectors (~δ1, ~δ2, ~δ3) on a diatomic basis are de�ned to obtain a

symmetrical Bravais lattice in triangular forms. Therefore, the carbon-carbon distance is given

by a ' 1.42× 10−10m [5]. The primitive vectors are

Figure 2.6: Graphene honeycomb structure. The small circles with yellow colors represent
sublattice A and the blue ones represent sublattice B. We have the primitive vectors ~a1 and ~a2

and the relative vectors ~δ1,~δ2 e ~δ3.

~a1 =
√

3ax̂+ 0ŷ + 0ẑ (2.2a)

~a2 =

√
3a

2
x̂+

3

2
ŷ + 0ẑ (2.2b)

where x̂, ŷ e ẑ are unit vectors. The translational vector is given by ~R

~R = n~a1 +m~a2

where n and m are integers. The relative vectors are given by:

~δ1 = (0, a) (2.3a)

~δ2 =

(
a
√

3

2
,
a

2

)
(2.3b)

~δ3 =

(
−a
√

3

2
,−a

2

)
(2.3c)

In the reciprocal space, the Fourier transformed space of graphene is de�ned by ~b1, ~b2 and ~b1,
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which are given by the following equations:

~b1 =

(
2π
√

3

3a
,−2π

3a

)
(2.4a)

~b2 =

(
0,

4π

3a

)
(2.4b)

~b3 = (0, 0) (2.4c)

The reciprocal space is shown in Fig. 2.7. And, just like real space, in reciprocal space we can

ky

kx

~b2

~b1

k6 k1

k4 k3

k5

k2

Figure 2.7: (Primitive Wigner-Seitz cell in the reciprocal lattice).

build the entire lattice from the primitive vectors

kpq = p~b1 + q~b2

where the set (p, q) are integers. Now, in the reciprocal space let us analyze the geometric plane

formed by the points (k1,k2,k3,k4,k5,k6) which can be identi�ed as the symmetrical points

in the reciprocal lattice called Dirac points, which form the primitive cell called Wigner-Seitz

Cell. The red dashed line demonstrates the 1st Brillouin zone.

2.4 Tight-Binding model for Graphene.

In order to understand the electronic structure of graphene, we consider the tight-binding

Hamiltonian considering the nearest-neighbor hopping and also the next-nearest neighbor hop-

ping parameters [4]. The Hamiltonian is then written as: (see appendix A.7)

(Here we use units that h̄ = 1).

Ĥ = −t
∑
<ij>

∑
σ

(
â†iσ b̂jσ +H.c.

)
− t′

∑
〈〈ij〉〉

∑
σ

(
â†iσâjσ + b̂iσ b̂

†
jσ +H.c.

)
(2.5)
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where, t represents the nearest neighbor hopping parameter, t
′
is the next-nearest hopping

parameter, a†iσ, âiσ are the creation and destruction operators in sublattice A whereas b̂†iσ, biσ

are those in sublattice B. i(j) labels the sites in sublattice A(B) and σ is the spin. It is

important to state that t ∼= 2.8eV and 0.02 eV . t
′
.0.2eV [28].

The magnitude of the hopping parameter between the second neighbors is less than 0.1eV

[29]. Hence, it can be neglected when compared to t. Therefore, the next-nearest interactions

will not be considered in our following discussion. In order to understand the tight-binding

model of Hamiltonian, we can write the operators in the momentum space. The Fourier trans-

forms for the creation and annihilation operators are given by:

âiσ =
1√
N

∑
k

âkσe
ik·~ri (2.6a)

â†iσ =
1√
N

∑
k

â†kσe
−ik·~ri (2.6b)

b̂jσ =
1√
N

∑
k

b̂k′σe
ik·~ri (2.6c)

b̂†jσ =
1√
N

∑
k

b̂†kσe
−ik′·~ri (2.6d)

Substituting the above relations in Hamiltonian (2.5) we get:

Ĥ = −t
∑
<ij>,σ

[(
1√
N

∑
k

â†kσe
−ik·~ri

)(
1√
N

∑
k

b̂kσe
ik′·~rj

)

+

(
1√
N

∑
k

âkσe
ik·~ri

)(
1√
N

∑
k

b̂†kσe
−ik′·~rj

)]

Organizing the terms and substituting the position vectors of the jth atom ~rj in terms of the

relative vectors ~rj = ~ri + ~δj we obtain:

Ĥ = − t

N

∑
<ij>,σ

∑
k

∑
k′

[
â†kσe

−ik·~ri b̂kσe
ik′·(~ri+~δj)âkσe

ik·~ri b̂†kσe
−ik′·(~ri+~δj)

]
Now, de�ning the function g(k′) and its conjugate g∗(k′) as

g(k′) = −t
3∑
l=1

eik
′·~δl (2.7a)

g∗(k′) = −t
3∑
l=1

e−ik
′·~δl (2.7b)
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and using the Kronecker Delta property in the reciprocal space:

δk,k′ =
1

N
e±i(k−k

′)·~ri (2.8)

we have

Ĥ =
∑
σ

∑
k

∑
k′

[
â†kσ b̂kσδk,k′g(k′) + âkσ b̂

†
kσδk,k′g∗(k′)

]
Then:

Ĥ =
∑
σ

∑
k

∑
k′

[
â†kσ b̂kσg(k) + âkσ b̂

†
kσg
∗(k)

]
(2.9)

De�ning a pseudo-spinor and its conjugate and a matrix 2 x 2 Hn

ψkσ =

[
âkσ

b̂kσ

]
(2.10)

ψ∗kσ =
[
â†kσ, b̂

†
kσ

]
(2.11)

HN =

[
0 g(k)

g∗(k) 0

]
(2.12)

we have

ψ∗kσHNψ
∗
kσ = Ĥ =

∑
σ

∑
k

[
â†kσ b̂kσg(k) + âkσ b̂

†
kσg
∗(k)

]
(2.13)

In matrix notation we can write,[
0 g(k)

g∗(k) 0

] [
âkσ

b̂kσ

]
=E

[
âkσ

b̂kσ

]
to obtain the eigenvalues as

E = ±|g(k)|. (2.14)

As,

g(k) = −t
3∑
l=1

e(ik·
~δl) = −t

[
e(ik·

~δ1) + e(ik·
~δ2) + e(ik·

~δ3)
]

and

g(k) = −tei(aky)

1 + e
−i

3aky
2

(
cos

√
3

2
akx

) (2.15)

We can write down the eigen-values are given by

E(k)± = ±t [3 + f(k)]

1

2 (2.16)
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where

f(k) = 2 cos(
√

3kxa) + 4 cos
3

2
aky cos

√
3

2
akx (2.17)

The equation (2.16) shows we have two symmetric solutions for the energy of the system. The

positive energy E+ and the negative energy E−.

Figure 2.8: Graphene Energy Bands. Next to the Dirac points they form the Dirac cone. The
energies E+ and E− are symmetrical around the Fermi Energy EF = 0. The image is enlarged
on the right, exhibiting the band energy close to the cone [5].

The �gure (2.8) represents the energy bands in the �rst Brillouin zone described by the

equations (2.16) and (2.17). The graphs show that the two energy bands (π and π∗) intersect

at the so-called Dirac point where the energy is zero and the presence of the Dirac cones are

observed due to the linear dispersion relation of graphene.

The chemical potential of the graphene can be considered in the tight-binding Hamiltonian

as

H ′ = −µ
∑
<ij>,σ

n̂σ(Ri) (2.18)

where n̂σ(Ri) represents the number operator. Therefore eigen-energies are described by:

E(k)± = ±t [3 + f(k)]

1

2 − µ (2.19)



Chapter 3

Theory of superconductivity.

3.1 Historical background.

The study of materials and the understanding of their physical properties have always at-

tracted a lot of attention. The characterization of these materials is fundamental for its appli-

cation. The conduction of these materials, whether thermal or electrical, is a physical quantity

of great importance useful for their classi�cation and understanding. In solid-state physics, the

�rst attempt to simplify the modeling of metals was proposed by Drude. The above theory

considered a crystalline lattice formed by oscillating ions (when the temperature is non-zero)

surrounded by electrons known as free electrons. The ordered movement of these free elec-

trons is responsible for creating an electric current. However, impurities or imperfections in

the lattice that displace ions from their equilibrium positions generate the well-known electrical

resistance[6] [30].

Metallic wires have electric resistance that opposes the current �ow through the wire,

thereby losing the electrical energy by turning it into thermal energy. Superconductors are

materials with no electric resistance below a certain temperature: an electric current can �ow

through a superconductor without loosing any energy. A Fermi liquid is a theoretical model

of interacting fermions that describes the normal state of most metals at low temperatures

[31]. Electrons can move freely through a regular crystalline lattice, but any disruptions in the

regularity of the lattice will obstruct their free �ow and cause resistance, see Fig. (3.1). There

are two main causes for electric resistance in wires. The imperfections in the crystalline lattice,

such as those caused by impurity atoms or by vacancies. Each time an electron collides with

an irregularity, it loses energy. Secondly, there are lattice vibrations. The vibrations are due

to the phonons.

By early 1911 it was well known that the electric resistance in a metal decreased with

temperature. Exactly what would happen approaching absolute zero was debated. Lord Kelvin

believed that the �ow of electrons in a material, which improved with decreasing temperature

might actually stop altogether, the electrons becoming frozen in space. Thereby, the resistance

24
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Figure 3.1: Graph representing resistance of pure and impure materials with temperature [6] .

at absolute zero could be in�nitely high. Others including Onnes and Dewar argued that the

decrease in resistance would continue in an regular manner, �nally approaching a zero value

at the zero temperature point. Finally in late 1911, Kamerlingh Onnes demonstrated that

the resistance of mercury (Hg) decreased rapidly by a factor of at least 1010 at the onset of

superconductivity, see Fig. (3.2). It continues to be superconducting below 4.15 K. He chose

Hg as it could be easily puri�ed. Soon it became very clear that the resistance of some other

metals including mercury really does drop to zero below a certain temperature, known as critical

temperature. Any current introduced into the loop would thereby continue to �ow inde�nitely

[7].

Several groups continued the study in various parts of the world and years later the highest

transition temperature or critical temperature among metals was observed for Niobium at T

= 9.2k. However, more than half of the metals under the same experimental conditions, never

become superconducting, such as gold, copper, bismuth and germanium.

Meissner and Ochsenfeld demonstrated that when a sphere of the above type is cooled

below the transition temperature in a magnetic �eld it excludes the magnetic �ux [32]. The

same thing happens when the sphere is cooled �rst and then placed in a magnetic �eld. Hence

superconductors are also perfect diamagnetic substances. A perfect conductor would resist a

change of �ux, while a superconductor expels any �ux at all. Hence, a superconductor is not

a theoretical perfect conductor as described by Maxwell's laws. A superconductor is a perfect

diamagnet, a material which resists internal �ux and it is the second hallmark of superconduc-

tors. This phenomena is known as the Meissner-Ochsenfeld e�ect, or more commonly referred

to as the Meissner e�ect as illustrated in the �gure below (3.3).
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Figure 3.2: Graph of electrical resistance (in Ohm) by temperature (in Kelvin) for mercury
(Hg). Highlighting the abrupt drop in electrical resistance at T = 4.2k obtained by Gilles Holst
experimentally [7].

Figure 3.3: Illustration of the Meissner e�ect. In 1933 physicists Meissner and Ochsenfeld found
that below critical temperatures the magnetic �eld is expelled from inside the material [8] .

In summary, a material is considered superconducting if it demonstrates zero resistivity

and Meissner E�ect below the critical temperature. The existence of such a reversible Meissner

e�ect implies that superconductivity should be destroyed by a critical magnetic �eld, Hc, which

is related thermodynamically to the free-energy di�erence between the normal and supercon-

ducting states in the zero �eld, the so-called condensation energy of the superconducting state.

More precisely, thermodynamic critical �eld, Hc at temperature T is given by

H2
c (T )/8π = fN(T )− fS(T ) (3.1)

where fN and fS are the Helmholtz free energies per unit volume in the respective phases at
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zero �eld [10]. It was found empirically that Hc(T ) is quite well approximated by a parabolic

law

H2
c (T )/8π = Hc(0)[1− (T/Tc)

2] (3.2)

Various other properties deserves to be mentioned. One of them is ξ0, the coherence length at

which electrons with energy close to Fermi energy are correlated. Moreover, they are responsible

for supercurrents and provide a scale of the superconductivity wave functions . The other one

is the penetration deep λ that measures how far the magnetic �eld penetrates the material

surface, both are shown in the table below.

See in Fig. (3.4) a table that contains values of coherence length, critical temperature,

penetration length and critical �eld of some conductors and compounds [7].

Figure 3.4: Table of coherence length, Critical temperature, penetration length and critical
�eld of some conductors and compounds [7].

The transition temperature also decreases with the increase in the average isotopic mass,

called the isotope e�ect. The experimental results within each series of isotopes may be �tted

by a relation of the form

MαTc = constant (3.3)

where M is the isotopic mass, Tc the critical temperature and α is a constant.

The α exponent has an approximate value of 0.45 to 0.50. Although there are exceptions

regarding the veracity of the Isotope E�ect for this term that approaches zero for Rubidium

and Molybdenum, for example.
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3.2 Transmission systems; Cold technology

Various uses have been suggested and observed for superconducting materials. Perhaps, the

most trivial one is the transportation of electrical power from one place to another. Electricity

is usually generated in large power stations, and transmitted along power lines to consumers

who could be thousands of kilometers away. Typically, resistive heating in the metal wires

of the transmission lines, usually made of cooper and aluminum, consumes 5 percent of the

electrical power [33]. Hence, possible superconducting wires that could be able to reduce these

losses would be a valuable investment for electricity suppliers

Superconductors do have various other practical uses, especially for specialized applications

where cost is less signi�cant. Among these are superconducting magnets. Wire made from a

superconducting material is wound to form a solenoid and when high currents made to �ow

around these solenoids, it can produce strong magnetic �elds with �ux densities up to 20 Tesla's,

roughly half a million times the strength of the earth's magnetic �eld [34]. The high current

required for such enormous �elds would cause conventional electromagnets to overheat.

Superconducting magnets are useful in magnetic resonance body scanners showing up details

of the inside of a patient's body without the need for surgery or harmful radiation such as X-rays

or gamma rays. Superconducting solenoids are also functional to levitate some of the world's

fastest trains, known as �Maglev" trains.

Particle accelerators around the world also employ superconducting magnets. For example,

superconducting magnets keep protons orbiting in a circular tunnel of more than 2 kilometers

in diameter in laboratories around the world. The more energetic the particles being studied,

the faster they move and stronger the �eld needed to keep them in the curved path. Only

superconducting magnets are strong enough.

On a smaller-scale superconductors are used in electronic devices. A Josephson junction can

function as an electronic switch which can switch very fast-within a picosecond (10−12 second).

Such switches could substitute transistors to build supercomputers. The Josephson junctions

are also worthwhile in electronic applications like the superconducting quantum interference

device or SQUID. One or more junctions are formed into a loop, and when a magnetic �eld

passes through the loop it includes a current. A SQUID can be used as an extremely sensitive

device for measuring magnetic �elds [35]. It is able to detect changes that are less than a

billionth of the strength of the Earth's magnetic �eld. It is essential for various application

like geologists use SQUIDs in search for minerals, chemists use them for monitoring corrosion

and biophysicists use them for imaging activity in the human brain and heart, by detecting the

magnetic �elds arising from electric currents �owing in the body.
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3.3 BCS Theory and Pairing Theory.

After the discovery of Onnes in 1911, many more superconducting materials were discovered

in the laboratory in quick succession. Inspite of the few macroscopic theories that were put

forward by F. and H. London [36], Ginzburg and Landau [37], but no suitable microscopic

theory could explain this strange physical phenomenon. The microscopic theory that �nally

explained superconductivity was only developed after forty-six years of Onnes's discovery. In

1957, University of Illinois physicists John Bardeen, Leon Cooper and Robert Schrie�er put

forth their microscopic theory which later became known by their initials as the BCS theory

[38] . Bardeen, Cooper and Schrie�er received the Noble Prize in Physics in 1972 for their

theory that revolutionized the quality of our understanding of superconductivity.

3.3.1 Cooper pairs and the origin of the attractive interaction.

Cooper pairs form the basis of the BCS theory [38]. In 1956, Cooper demonstrated that

even a very weak attraction could bind pairs of electrons where two electrons over the full

Fermi sea spontaneously form a bound Cooper pair if the regions ionic interaction is greater

than the electron-electron repulsion [39]. Flux quantization and other experimental evidences

support the formation of Cooper pairs and their role in the BCS theory. Hence this result is a

consequence of the Fermi statistics and of the existence of the Fermi sea background.

In order to understand in detail, let us consider a simple model of two electrons added to a

Fermi sea at T=0 with the condition that the extra electrons interact with each other but not

with those in the sea, except via exclusion principle. Applying the general argument of Bloch,

we expect the lowest energy state to have zero total momentum [10], so that the two electrons

have equal and opposite momenta , see Figs. representations (3.5) .

An orbital wave function is given by

ψ0(r1, r2) =
∑
k

gke
ik.r1 e−ik.r2 (3.4)

where gk is the weighting co-e�cient, k is the momentum and r1 and r2 are the radial

vectors. Taking into account the antisymmetry of the total wavefunction with respect to the

exchange of the two electrons, ψ0 is converted either to a sum of products of cosk.(r1−r2) with

the antisymmetric singlet spin function (α1β2− β1α2) or to a sum of products of sink.(r1− r2)

with one of the symmetric triplet spin functions (α1α2, α1β2 +α2β1, β1β2). In these expressions

α1 refers to the spin up state of particle 1 and β1 refers to the down state. Due to the

existence of an attractive interaction, we expect the singlet coupling to have lower energy

because the cosinusoidal dependence of its orbital wavefunction on (r1 − r2) gives a larger
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Figure 3.5: (a)Schematic representation of a single Cooper pair, added to the ground-state of a
free-electron gas. Two "extras electrons" in the pair state (k ↑ , −k ↓) scatter freely to the pair
states (k′ ↑ , −k′ ↓), in the energy region EF < Ek, E

′
k < EF +h̄ωD, where the phonon mediated

attractive interaction is operative, and form a bond Cooper pair. (b) Schematic representation
of a scattering of two electrons with wavevectors (k,−k) into (k′,−k′) via the emission and
subsequent absorption of a phonon of momentum h̄k [9].

probability amplitude for the electrons to be near each other. Therefore,

ψ0(r1 − r2) =

[∑
k>kF

gk cosk.(r1 − r2)

]
(α1β2 − β1α2) (3.5)

where kF is the Fermi momentum. Thereby, the Cooper pair equation can be written as

(Ê − 2εk)gk =
∑
k′>kF

Vkk′g′k (3.6)

where Ê is the energy eigenvalue, εk is the quasiparticle energy and Vkk′ is the interaction

potential. Cooper binding is given by Bc = 2EF − Ê, where EF is the Fermi energy. To

understand the situation we can consider,

Vkk′ = −V, if |ζk|< h̄ωD and |ζk′|< h̄ωD;

= 0, otherwise. (3.7)

where h̄ωD is the Debye energy for photons in the lattice and ζk = εk−EF , EF being the Fermi

energy. Thereby, we can write
1

V
=
∑
k>kF

(2εk − Ê)−1 (3.8)

Hence, replacing the summation by an integration, with N(0) denoting the density of states at

the Fermi level for electrons of one spin orientation, we get:
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1

V
= N(0)

∫ EF+h̄ωD

EF

dε

2ε− Ê
=

1

2
N(0) ln

2EF − Ê + 2h̄ωD

2EF − Ê
(3.9)

In most of the superconductors, it is found that N(0)V < 0.3. This allows the use of the so

called weak-coupling approximation, valid for N(0)V � 1, in which the solution of the preceding

equation can be written as:

E ≈ 2EF − 2h̄ωD e
−2/N(0)V

≈ 2EF −Bc (3.10)

Thus indeed, there is a bound state with negative energy with respect to the Fermi surface

made up entirely of electrons with k > kF , i.e., with kinetic energy in excess of EF . The

contribution to the energy of the attractive potential outweighs this excess kinetic energy,

leading to binding regardless of how small V is.

3.3.2 BCS Equations

The Fermi sea is unstable against the formation of a bound Cooper pair when the net interaction

is attractive. Hence, the pairs tend to condense until an equilibrium point is reached. The size

of the Cooper pairs are much larger than the interparticle distance. This means that a large

number of other pairs are present in between a given pair, as many as 106 other pairs. This

large overlap of pairs contribute to a correlation of the other pairs. The collective state can be

thought of as the Fermi gas being �condensed" into a �macromolecule" that includes the entire

superconducting system. Therefore, the macromolecule remains superconducting until the gap

energy is overcome.

At the transition temperature, the superconducting state becomes more favorable, and goes

to a lower energy state. At temperatures higher than the transition temperature the Cooper

pairs tend to dissociate leading to the normal state of the material. This explains the jump

in the speci�c heat when the material moves from superconducting to normal state. Unlike

liquid and gas phases, the phase transition from the normal state to the superconducting

state is a second-order type. This means that when a material is cooled so that it becomes a

superconductor, the transition takes place almost instantaneously without any latent heat, but

nevertheless with a discontinuity in the speci�c heat. This can be seen from the abrupt drop

in resistance within a small temperature range in the Fig. (3.2) .

In the microscopic theory, BCS (Bardeen, Cooper and Schrie�er) took a variational ansatz,

designed to take maximum advantage of the Cooper condensation. In BCS theory the trial

ground state |ψg〉 is taken to be,

|ψg〉 =
∏
k

(uk + vkc
∗
k↑c
∗
−k↓)|φ0〉 (3.11)
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where |φ0〉 is the vacuum state with no particles present. The notation c∗k↑ ( ck↑) denotes

the creation (annihilation) operator of an electron with momentum k and spin up. |uk|2 is

the probability that the pair (k ↑,−k ↓) is unoccupied and |vk|2 is the probability that it is

occupied. The complex variational amplitudes satisfy,

uk = u−k (3.12)

vk = v−k (3.13)

and the normalization requirement is

|uk|2+|vk|2= 1. (3.14)

The product is over all k values allowed by box normalization conditions [40].

It should be noted that the variational state of equation (3.11) does not contain a �xed

number of particles, since only the probabilities of pair occupation are speci�ed. In the early

days this was seen as a weakness of the formalism, although, for example, a superconducting

specimen is normally probed by current leads, so that the number of electrons it contains is

genuinely variable. That exists a "number- phase uncertainty relation", δNδφ ∼ 1 where δN is

the uncertainty in the number of particles N and δφ is the uncertainty in the phase φ. It must

be noted that there exists a phase di�erence by a factor of eiφ between uk and vk, where φ is

independent of k and this is the phase for the BCS state. It can be shown that the variational

energy is independent of the phase.

The "pairing Hamiltonian" or "reduced Hamiltonian" in terms of the creation and destruc-

tion operators is given by,

H =
∑
kσ

εknkσ +
∑
kq

Vkqc
∗
k↑c
∗
−k↓c−q↓cq↑ (3.15)

where c∗kσckσ = nkσ is the particle number operator, Vkq is the matrix element of the interaction

potential. The solution can be obtained by using the variational approach as done in the original

BCS paper [38].

As the number of particles is variable we need to minimize the expectation value 〈ψg|H|ψg〉
subject to the constraint 〈ψg|N̂ |ψg〉 = N . Here N̂ is the number operator and N is the

mean number of particles in the system. Hence by the method of undetermined multipliers we

minimize the Hamiltonian

δ〈ψg | H − µN̂ | ψg〉 = 0

where µ is the chemical potential. The inclusion of −µN̂ is mathematically equivalent to taking
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zero of kinetic energy to be µ. Hence, writing more explicitly we get

δ〈ψg |
∑
kσ

ζknkσ +
∑
kq

Vkqc
∗
k↑c
∗
−k↓c−q↓cq↑ | ψg〉 = 0 (3.16)

The number operator, N̂ appears in conjunction with the kinetic energy operator, hence

e�ectively the single particle energies ζk are measured from EF . Considering the ground state

in equation (3.16) we get

〈ψg | H − µN̂ | ψg〉 =
∑
k

2ζk|vk|2+
∑
kq

Vkqukvkuqvq (3.17)

which is to be minimized subject to the condition that |uk|2+|vk|2= 1. The condition for self

consistency can be written as

∆k = −
∑
q

∆q

2Eq

Vkq = −
∑
q

∆q

2(∆2
q + ζ2

q)1/2
Vkq, (3.18)

Considering,

Vkq = −V, if |ζk|, |ζq|< h̄ωD;

= 0, otherwise. (3.19)

with V being a positive constant and Inserting this Vkq in (3.18), we �nd

∆k = ∆, if |ζk|< h̄ωD;

= 0, otherwise. (3.20)

Writing the summation in terms of an integral we can write,

1

N(0)V
=

∫ h̄ωD

0

dζ

(∆2
q + ζ2

q)1/2
= sinh−1 h̄ωD

∆
(3.21)

In the weak coupling limit we get,

∆ =
h̄ωD

sinh[1/N(0)V ]
≈ 2h̄ωDe

−1/N(0)V (3.22)

Physically, the parameter ∆ is the minimum excitation energy, or the energy gap. A supercon-

ductor behaves as if there were a gap in energy of width 2∆ centered about the Fermi energy

in the set of allowed one-electron levels.
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BCS theory at nonzero temperature

The BCS state at T = 0 is described by the wave function ψg of equation (3.23).

|ψg〉 =
∏
k

|ψk〉 (3.23)

with

|ψk〉 =
∏
k

(uk|00〉+ vk|11〉) (3.24)

where |00〉 and |11〉 represents the unoccupied and the occupied pair respectively. At T = 0

only the pair states |00〉 and |11〉 occur, but for T ≥ 0 it is required to consider the broken

pair states |01〉 and |10〉. Speci�cally, fk (Fermi function) is the probability that |01〉 and |10〉
are occupied, so that (1 − 2fk) is the probability that the pair state ψk of equation (3.24) is

occupied. Hence we can rede�ne ∆ for any value of temperature from the equation (3.18) as,

∆k = −
∑
q

Vkquqvq(1− 2fq)

= −
∑
q

Vkq
∆q

2Eq

(1− 2fq) (3.25)

As Ek is an excitation energy, shows that, just at zero temperature, |∆k| is the energy gap and

Ek must be a positive quantity ≥ |∆k|. Since fq is the thermal occupation probability, this

shows that ∆q is temperature dependent. The usual Fermi function is de�ned as

fq = (eβEq + 1)−1 (3.26)

where β = 1/kBT . Since Eq ≥ ∆, fq → 0 at T = 0 for all q.

Hence considering equations (3.25) ( 3.26) we get,

∆k = −
∑
q

Vkq
∆q

2Eq

tanh
Eq

2kBT
. (3.27)

Making use of the BCS approximation that Vkq = −V and ∆k = ∆q = ∆, the self consis-

tency condition becomes,

1

V
=

1

2

∑
k

tanh(βEk/2)

2Ek

; (3.28)

a temperature dependent form of the gap equation. See the representations f ∆ Figs. (3.6)

(3.7).
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Figure 3.6: ∆(T )/∆0 vs T/TC where ∆0 is the zero temperature order parameter. The normal
state persists for T > TC [10].

Figure 3.7: Representation of the gap around the Fermi energy comparing the superconducting
state and the normal state(T=0) [7].

3.4 Thermodynamic parameter - Speci�c heat

The temperature dependencies of the order parameter can be determined from equation (3.27).

Thereby, the electronic entropy is given by

SS(T ) = −2kB
∑
k

[(1− fk) ln(1− fk) + fk ln fk]. (3.29)

Given SS(T ), the speci�c heat can be calculated by using

CS(T ) = T
dSS
dT

= −βdSS
dβ

.
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Hence using equation (3.29) we can write

CS(T ) = 2βkB
∑
k

− ∂fk
∂Ek

(
E2

k −
1

2
β
d∆2

k

dβ

)
(3.30)

The �rst term in the above equation is the usual one coming from the redistribution of quasi

particles among the various energy states as temperature changes. The second term describes

the e�ect of the temperature-dependent gap. The normal speci�c heat CN(T ) can be obtained

from the above expression by putting ∆(T ) = 0. Replacing Ek by |ζk| in (3.30) one gets

Figure 3.8: Graph of speci�c heat normalized with respect to temperature. CS is continuous
at the critical temperature so there is a second order transition [10].

CN(T ) = γT =
2π2

3
N(0)k2

BT (3.31)

which is continuous at Tc. There is a discontinuity in the superconducting speci�c heat CS

at T = Tc due to the fact that the second term of equation (3.30) is �nite below Tc where

d∆2/dT is large, but is zero above Tc. This jump indicates that the normal superconducting

transition is a second-order phase transition. The jump in the speci�c heat ∆C = (CS−CN)|Tc
can be found to be.

∆C =
∑
q

d∆2
q

dT

∂f

∂Eq
(3.32)

See its representations in Fig. (3.8).



Chapter 4

Superconducting states of single-layer

graphene.

Superconductivity in graphene has attracted a lot of attention in recent years. Several studies

on the transport mechanism in graphene demonstrates the observation of the proximity in-

duced superconductivity in graphene [41]. The energy spectrum with linear dispersion in the

reciprocal and peculiar space and the Dirac nature of the quasiparticles allows the presence

of supercurrents in long junctions [42] [43]. Several theoretical studies has been performed on

the di�erential conductance in normal-superconductor interfaces [44] . Josephson current in

graphene SNS junction was considered in [45] [46]. The importance of the above studies lie in

the various possible applications like current switches [47], spin-current �lter [48], and many

more.

The above advancement in the tunneling processes stimulated a lot of enthusiasm in mak-

ing graphene an intrinsic superconductor. Various parent compounds like CaC6 and KC8 are

low-temperature superconductors although graphite is non-superconducting [49] [50]. How-

ever, several possibilities of observing superconductivity have been proposed till date like the

plasmon-mediate mechanism [13], proximity e�ect on adsorption of metallic atoms electronic

mechanism involving Van Hove singularity [51], presence of spin-density wave or a charge-

density wave and other competitive phases [52] [53].

Moreover, possible superconductivity in graphene was demonstrated through di�erent cal-

culations that demonstrate that for pure graphene the electron�phonon coupling constant is

very weak and phonon-mediated superconductivity does not occur [54]. Nevertheless, recently

�rst-principles calculations predicted the presence of superconductivity in chemically doped

graphene. For example, superconductivity with critical temperatures around 8k and 17k was

detected in lithium-doped graphene (LiC6 and Li2C6 , respectively) [55]. Tc around 13k and

30k were demonstrated for electron-doped and hole-doped graphene, respectively [56] [57]. Fur-

thermore, hole-doped graphene was predicted to be a high Tc superconductor with a transition

temperature above 80k [58]. Hence doping graphene seems to be a fruitful way of producing

superconductivity in graphene.

37
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Regardless of the microscopic origin, the superconducting state in graphene can be studied

considering the symmetries and the possible pairing observed in graphene. The article "Super-

conducting States of Pure and Doped Graphene" by Bruno Uchoa and A.H. Castro Neto [13]

serves as an exponent of research in this area, including for this dissertation, serving as a basis

for a concise understanding of the addressed subject. It explains how the study of the supercon-

ducting state in pure and doped graphene is carried out, with an emphasis on retarded Green

equation methods, plasmon quantizations and based on proximity e�ects to induce cooper pairs

in pure graphene making it an intrinsic superconductor [11] [5] [13].The presence of supercon-

ductivity demonstrates that Cooper pairs can propagate coherently in graphene. Graphene is

a zero-gap semiconductor, but bilayer graphene has been shown to be a tunable gap semicon-

ductor. Hence, modifying graphene it might be possible not only to obtain the gap but also

create a superconductor.

In ref. [11] they exhibit a mean-�eld phase diagram for spin-singlet superconductivity

where two types of pairing are observed. One is the s wave pairing and another of p+ ip orbital

symmetry. The s wave demonstrates an isotropic dependence on momentum k whereas the

p + ip dependence can be seen from the �gure below (4.1). From the orbital point of view of

the crystalline lattice, its composition only by carbon atoms in bonds of the type sp2, mixed

bonds of the atomic orbitals of the band s and band p form the honeycomb structure. The

resulting hybridization comprises low density sub-levels that even at the lowest temperature

close to absolute zero does not generate the need for an intraband model study related to this

phenomenon. The maximum p wave infers in the matching symmetry around the Dirac points.

Such symmetry is lost as we move away from the points.

Figure 4.1: a)Symmetry of the p wave in the space of moment near the points of Dirac.b) The
symmetry is broken away from the points of Dirac. The gray lines represent the real space and
the black the imaginary space [11].

The mean-�eld phase diagram demonstrates that both the above types can be observed

but with an substantial dependence on the chemical potential and the relative values of the
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interaction parameters. Other types of symmetry have also been proposed that could explain

the presence of superconductivity in graphene. Black Schae�er and Doniach [45] described a

pairing of the type ∆1,j = ∆1e
i(2π/3)j with j = 1, 2, 3 for the three neighbors of the site leading

to in dx2−y2 symmetry in real space and dxy in imaginary space . Despite the e�ort, this pairing

does not preserve all the translation and rotation symmetries of the lattice.

Figure 4.2: Energy band with respect to moment k for di�erent substrates. For di�erent values
of state density d1 = 0.0035, 0.0071, 0.0089, 0.107 in order to open a gap in the original energy
band of graphene [12].

When graphene is placed on substrates to induce cooper pairs in the sample, gaps of a small

order of magnitude were observed (approximately 100 meV ) and 250meV for silicone substrates

[12]. On the other hand,in the honeycomb structure with Boron Nitride (BN) atoms, excitation

energies with a gap band of 5.56eV has been observed [12]. On di�erent semiconductor surfaces

such as silicon, lead, and tin, interaction energies of the order of g0 = 3.3t = 9.34 eV and

g1 = 2.0t = 5.6eV are observed. Figure (4.2) shows the momentum dependencies of the

superconducting gaps for various values of the density of the surface.

In the next section the Model Hamiltonian is considered in our study to demonstrate the

presence of superconductivity in graphene using a mean-�eld approximation. The temperature

dependencies of the order parameter and also the dependencies on the interaction parameters

will be considered.
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4.1 Model Hamiltonian

The Hamiltonian considered to study superconductivity in Graphene can be given by:

H = Ht +Hp (4.1)

where the term Ht is the tight-binding Hamiltonian for graphene considering the hopping

parameter and the chemical potential. Ht can be written as

Ht = −t
∑

<ij>,σ=±

(a†iσbjσ + h.c.)− µ
∑
i,σ=±

(a†iσaiσ + b†iσbiσ) (4.2)

The second term Hp represents the electron-electron interaction and is given by:

HP =
g0

2

∑
i,σ

[a†iσaiσa
†
i−σai−σ + b†iσbiσb

†
i−σbi−σ] + g1

∑
<ij>

∑
σ,σ′

a†iσaiσb
†
jσ′bjσ′ (4.3)

t - is the hopping parameter, µ - Represents the chemical potential, g0 and g1 are on-site and

the nearest-neighbor electron-electron interaction energies, respectively. The operators a†iσ, âiσ

are the creation and destruction operates in sublattice A which create or destroy the electron at

points in the vicinity of its i spin ρ sublattice. The operators b̂†iσ, biσ perform the same process

of creation and destruction in sublattice B. i(j) labels the sites in sublattice A(B) and σ is

the spin. HP represents the electron-electron interaction of opposite spins. g0 and g1 are the

on-site and nearest neighbor elctron electron interaction energies.

If µ = 0 we have particle-hole symmetry around the Dirac points, otherwise this symmetry

is broken the term that surrounds it in the Hamiltonian introduces an electron surface (µ < 0)

or holes (µ > 0) around the Dirac points producing a �nite density of states.

The order parameters for the singlet spin are:

for s wave:

∆0 =< ai↓ai↑ >=< bi↓bi↑ >

and for the p+ ip wave :

∆1ij =< ai↓bj↑ − bi↑aj↓ >

where we de�ning both as a real number. Then ∆∗0 = ∆0 and ∆∗1 = ∆1.

Using the mean �eld theory (see appendix C.5) the electron-electron interaction of the same

site of sublattice A, can be written as∑
i,σ

g0a
†
iσaiσa

†
i−σai−σ =

∑
i,σ

[g0 < a†iσa
†
i−σ > aiσai−σ + g0 < aiσai−σ > a†iσa

†
i−σ

− g0 < a†iσa
†
i−σ >< aiσai−σ >].
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Hence, ∑
i,σ

g0a
†
iσaiσa

†
i−σai−σ =

∑
i,σ

[g0∆∗0aiσai−σ + g0∆0a
†
iσa
†
i−σ − g0∆2

0] (4.4)

Similary for the sublattice B we have∑
i,σ

g0b
†
iσbiσb

†
i−σbi−σ =

∑
i,σ

[g0 < b†iσb
†
i−σ > biσbi−σ + g0 < biσbi−σ > b†iσb

†
i−σ

− g0 < b†iσb
†
i−σ >< biσbi−σ >]

giving rise to ∑
i,σ

g0b
†
iσbiσb

†
i−σbi−σ =

∑
i,σ

[g0∆∗0biσbi−σ + g0∆0b
†
iσb
†
i−σ − g0∆2

0]

Now for the electron-electron interaction of the nearest neighbors we can write

g1

∑
<ij>

∑
σ,σ′

a†iσaiσb
†
jσ′bjσ′ = g1

∑
<ij>

[a†i↑ai↑b
†
j↓bj↓ + a†i↓ai↓b

†
j↑bj↑] (4.5)

Hence, the above term can be rewritten as:

g1

∑
<ij>

∑
σ,σ′

a†iσaiσb
†
jσbjσ = g1

∑
<ij>

(−B†ijBij +D†ijDij) (4.6)

where Dij = ai↑bj↓ − ai↓bj↑ e Bij = a†i↑bj↑ + a†i↓bj↓.

The above relation can be demonstrated remembering the anti-commutation relationships

of the fermion operators of the two sublattices of graphene. ( see appendix A.7). For sub lattice

A, we have ∑
σ,σ′

[aσ, a
†
σ′ ] =

∑
σ,σ′

δσ,σ′ (4.7)

Similar relations for the B sublattice can also be written. Considering the expression Bij =

a†i↑bj↑ + a†i↓bj↓ we can write down the product of the operators as

−B†ijBij = (b†j↑ai↑ + b†j↓ai↓)(a
†
i↑bj↑ + a†i↓bj↓)

= −b†j↑ai↑a
†
i↑bj↑ − b

†
j↓ai↓a

†
i↑bj↑

−b†j↑ai↑a
†
i↓bj↓ − b

†
j↓ai↓a

†
i↓bj↓
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In the same manner for the operator Dij, we get

D†ijDij = (b†j↓a
†
i↑ − b

†
j↑a
†
i↓)(ai↑bj↓ − ai↓bj↑)

= b†j↓a
†
i↑ai↑bj↓ − b

†
j↓a
†
i↓ai↑bj↓

−b†j↓a
†
i↑ai↓bj↑ + b†j↑a

†
i↓ai↓bj↑

Hence, applying the anti-commutation relations and thereby adding the terms we have,

g1

∑
<ij>

[−B†ijBij +D†ijDij] = g1

∑
<ij>

[a†i↑ai↑b
†
j↓bj↓ + a†i↓ai↓b

†
j↑bj↑]

+ g1

∑
<ij>

[a†i↑ai↑b
†
j↑bj↑ + a†i↓ai↓b

†
j↓bj↓] (4.8)

Mean-�eld theory has the enormous advantage of being mathematically simple, and it is almost

invariably the �rst approach taken to predict phase diagrams and properties of new experimental

systems. Therefore,

g1

∑
<ij>

∑
σ,σ′

a†iσaiσb
†
jσ′bjσ′ = g1

∑
<ij>

[< Dij > D†ij+ < D†ij > Dij− < D†ij >< Dij >]

+ g1

∑
<ij>

[< Bij > B†ij+ < B†ij > Bij− < B†ij >< Bij >] (4.9)

As we already know that < Bij >= 0, we have:

g1

∑
<ij>

∑
σ,σ′

a†iσaiσb
†
jσ′bjσ′ = g1

∑
<ij>

[< Dij > D†ij+ < D†ij > Dij− < D†ij >< Dij >]

g1

∑
<ij>

∑
σ,σ′

a†iσaiσb
†
jσ′bjσ′ = g1

∑
<ij>

[∆1ij(a
†
i↑b
†
j↓ − a

†
i↓b
†
j↑) + ∆†1ij(ai↑bj↓ − ai↓bj↑)]

− 3g1∆2
1 (4.10)

where 3 represents the sum of the three closest neighbors. Considering all the above terms

and then rewriting the Hamiltonian HP , we have

HP =
∑
i

g0[∆∗0ai↑ai↓ + ∆0a
†
i↑a
†
i↓ + ∆∗0bi↑bi↓ + ∆0b

†
i↑b
†
i↓]

+
∑
<ij>

g1[∆1ij(a
†
i↑b
†
j↓ − a

†
i↓b
†
j↑) + ∆†1ij(ai↑bj↓ − ai↓bj↑)]

−g0
∆∗0∆0

2
− g0

∆∗0∆0

2
− 3g1∆2

1 (4.11)
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De�ning E0 = −g0∆2
0 − 3g1∆2

1, we have:

HP = E0 + g0∆0

∑
i

(a†i↑a
†
i↓ + b†i↑b

†
i↓) + h.c+

∑
<ij>

g1∆1ij(a
†
i↑b
†
j↓ − a

†
i↓b
†
j↑) + h.c (4.12)

In Nambu bases considering the wave function to be Ψk = (ak↑, bk↑, a
†
−k↓b

†
−k↓), we can rewrite

the tight-binding Hamiltonian as:

H =
∑
k

Ψ†kHΨk + E0 (4.13)

But to write the matrix we �rst need to write the Fourier transform of the Hamiltonian in k

space. So now considering the Fourier transform

aσ(Ri) =
1√
N

∑
k

expik.Ri akσ (4.14)

and

bσ(Rj) =
1√
N

∑
k

expik
′.Rj bk′σ (4.15)

and its conjugate transform:

a†σ(Ri) =
1√
N

∑
k

exp−ik.Ri a†kσ

b†σ(Rj) =
1√
N

∑
k

exp−ik.Rj b†kσ

where k and k
′
are the vectors of the �rst Brillouin zone in sublattices A and B , respectively.

Now representing the operators in that space.

∑
<ij>,σ

a†σ(Ri)bσ(Rj) =
3∑
j=1

∑
iσ

1

N

∑
k,k′

exp−ik
′δj exp−i(k−k

′).Ri a†kσbk′σ

=
3∑
j=1

∑
kσ

expik
′δj a†kσbk′σ (4.16)

where does the Dirac Delta function used for our calculation is given by δkk′ =
1

N

∑
i

exp−i(k−k
′).Ri .

Similarly, ∑
<ij>,σ

a†σ(Ri)aσ(Rj) =
1

N

∑
<ij>,σ

∑
kk′

exp−ikRi expik
′Rj a†kσak′σ (4.17)

∑
i,σ

a†iσaiσ =
∑
k,σ

a†kσakσ (4.18)
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Similarly we have:

∑
<ij>,σ

b†σ(Ri)bσ(Rj) =
1

N

∑
<ij>,σ

∑
kk′

exp−ikRi expik
′Rj b†kσbk′σ (4.19)

∑
i,σ

b†iσbiσ =
∑
k,σ

b†kσbkσ (4.20)

Specifying the spins we can write the relevant terms as∑
<ij>

a†i↑a
†
j↓ =

∑
k

a†k↑a
†
−k↓ (4.21)

∑
<ij>

b†i↑b
†
j↓ =

∑
k

b†k↑b
†
−k↓ (4.22)

Moreover, we get,

∑
<ij>

a†i↑b
†
j↓ =

3∑
j=1

∑
k

expik.δj a†−k↓b
†
k↑∑

<i>σ

a†i↑b
†
j↓ =

∑
k

φ(k)a†−k↓b
†
k↑ (4.23)

where ∑
k

3∑
j=1

expik.δj = φ(k) (4.24)

Hence, considering all the terms as shown above, we can write the total Hamiltonian as

H = −t[φ(k)a†kσbkσ + φ(k)b†kσakσ]− µ[a†kσakσ + b†kσbkσ]

+
∑
k

g0∆0(a†k↑a
†
−k↓ + b†k↑b−k↓) + h.c.

+
∑
k

g1∆1(a†k↑b
†
−k↓ + b†−k↑a

†
k↓) + h.c.+ E0 (4.25)

Noting that in the space of the moments ∆1 is written by:

∆k =
∑
ij

∆1,ij exp−k.(ri−rj) = ∆1φ(k)

And, for �rst order approximation in k next to Dirac points in Q0 [4], ∆k is rewritten as:

∆Q0+k = (3a/2)∆1(kx + iky)

We then have the symmetry of the exotic wave p + ip in terms of the number of waves, see

Fig. 4.1.
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4.2 Methodology

The superconductivity in graphene can be studied in details using the expression of the Hamil-

tonian H. It consists of a hopping term relevant for the two sublattices of graphene resembling

the kinetic energy part of the Hamiltonian. The chemical potential energy term is important

to consider the zero of the kinetic energy to be µ. In neutral graphene the chemical poten-

tial crosses exactly through the Dirac point (µ = 0). Moreover, the pairing terms involve

the electron-electron interactions. The Hamiltonian can be diagonalized in the Nambu basis

Ψk = (ak↑, bk↑, a
†
−k↓b

†
−k↓) as shown earlier. Therefore, writing the Hamiltonian in matricial

form,

Ĥ =


−µ −tφk g0∆0 g1∆1,k

tφ∗k −µ g1∆1,−k g0∆0

g0∆0 g1∆1,−k µ tφk

g1∆1,k g0∆0 tφ∗k µ

 (4.26)

and utilizing the the secular equation det(H − EI) = 0, we can obtain the eigenvalues and

eigenvectors needed for further study. Hence,

det


−µ− E −tφk g0∆0 g1∆1,k

tφ∗k −µ− E g1∆1,−k g0∆0

g0∆0 g1∆1,−k µ− E tφk

g1∆1,k g0∆0 tφ∗k µ− E

 = 0 (4.27)

The eigen values are given by,

Eks = ±
√

(t | φk | +sµ)2 + (g0∆0 + sg1∆1 | φk |)2 (4.28)

where s = ±1 and Ekαs ≡ Eks where α = ±1, so we have the eigen-energies as: Ek++, Ek−+, Ek+−, Ek−−.

So, the Hamiltonian can be diagonalized and rewritten as:

H =
∑
kαs

Ekαsn
B
kαs + E0

The self consistent equations for calculation of the superconducting gap parameters and

also its temperature dependencies can be obtained from the free energy (F ) expression. Now

the two mean-�eld equations can be obtained by the stationary condition of F with respect to

the corresponding order parameters ∂F/∂∆0, ∂F/∂∆1. The free energy of graphene is given

by

F = − 1

β

∑
k,α,s

ln(1 + e−βEkαs) + E0 (4.29)
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where we have β =
1

kBT
.Considering the four eigenvalues Ek−+ = −Ek++ e Ek−− = −Ek+− of

the Hamiltonian we can simplify the free energy and write it as

F = − 1

β

∑
ks

2 ln

(
2 cosh

Ekα

2T

)
+ E0 (4.30)

The derivative of the energies are:

dEk+

d∆0

=
1

2Ek+

(2g2
0∆0 + 2g0g1∆1 | φk |)

dEk−
d∆0

=
1

2Ek−
(2g2

0∆0 − 2g0g1∆1 | φk |)

dEk+

d∆1

=
1

2Ek+

(2g2
1∆1 | φk |2 +2g0g1∆0 | φk |)

dEk−
d∆1

=
1

2Ek−
(2g2

1∆1 | φk |2 −2g0g1∆0 | φk |)

The resulting two equations for the gaps ∆0 and ∆1 are written. Thus the of self-consistent

equations are:

∆0 = −1

2

∑
k,s

(g0∆0 + sg1∆1 | φk |)
Ek,s

tanh

(
Eks

2T

)
(4.31)

∆1 = −1

6

∑
k,s

| φk | (g1∆1 | φk | +sg0∆0)

Eks

tanh

(
Ek,s

2T

)
(4.32)

The above two equations can be solved numerically to obtain the gap values at T = 0. Vary-

ing the temperature, we shall also the temperature dependencies of the two order-parameters

and also the value of the critical temperature of the system where the second order-phase

transition is observed for graphene. Moreover, the temperature dependencies also allows us

to calculate the thermodynamic parameters of the system like entropy, speci�c heat, internal

energy and also the free energy. In the next section we shall discuss in details the dependencies

and also calculate the speci�c heat of graphene.

4.3 Results and Discussion

In this section we would like to �rstly consider the nature of the spectrum obtained from

the pairing Hamiltonian of graphene. Secondly a numerical calculation of the model should be

performed in detail to understand superconducting nature of graphene. The spectrum energy
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is given by the equation.

Eks = ±
√

(t | φk | +sµ)2 + (g0∆0 + sg1∆1 | φk |)2 (4.33)

In the s wave state where ∆0 6= 0 and ∆1 = 0 e µ 6= 0, the spectrum is given by Eks =

±
√

(t | φk | +sµ)2 + (g0∆0)2 and the gap energy of the s-wave is given by E
(0)
g = 2g0∆0. On

the other hand for the p+ ip state when we have ∆0 = 0 , ∆1 6= 0 e µ 6= 0, the order parameters

of the p wave is given by:

E(1)
g = 2 | µg1∆1 | /

√
t2 + g2

1∆2
1 (4.34)

where we observe a linear dependence on chemical potential. Varying the chemical potential

we are able to study the system with doping. For ∆0 = 0 , ∆1 6= 0 e µ = 0, we can write

Eks = ±
√

(t | φk |)2 + (g1∆1)2 (4.35)

De�ning an e�ective hopping parameter t′ = t
√

1 + g1∆2
1/t

2, we get Eks = t′ | φk |, thereby
the e�ective hopping parameter renormalizes the Fermi-Dirac's velocity.

Let us consider the more general case where ∆0 6= 0 , ∆1 6= 0 e µ 6= 0, we have the presence

of the both the gaps of s and p+ ip symmetries and the gap is given in terms of the parameter

t as

E(0,1)
g = 2

| tg0∆0 − g1µ∆1 |
t′

(4.36)

The mean-�eld phase diagram of graphene has been studied with µ [11] which demonstrates the

three distinct phases depending on the interaction parameter: (i) s-wave phase for attractive

values of the on-site interaction (g0 < 0) and repulsive nearest neighbor interaction (g1 > 0).

(ii) p+ ip -wave phase for attractive nearest neighbor interaction (g1 < 0) and repulsive on-site

interaction (g0 > 0) (iii) a coexistence phase of s and p + ip phase for attractive values of the

on-site interaction (g0 < 0) and nearest neighbor interaction (g1 < 0). As we know that the

physical realization of superconductivity is di�cult we can obtain superconductivity on doping

the material that shifts the chemical potential values to values away from the Dirac point. This

could be possible for e.g by chemically doping graphene with a metal. Hence to understand the

superconductivity caused by doping in graphene we consider the phase that has coexistence of

the two gaps for µ > 0.

The self-consistent equations obtained previously was numerically solved to obtain the values

of the order parameters and their dependencies on temperature. All our results in this work

are in units of t unless mentioned otherwise. The parameters utilized in our work were chosen

as per ref. [11] and also in accordance with the experimental values of graphene. In Fig. (4.4)

we plot the temperature dependencies of the order parameters ∆0 and ∆1. The �gure exhibits

three di�erent sets of the interaction parameters: g0 = −0.15, g1 = −0.1 (blue solid line) ,

g0 = −0.2 , g1 = −0.1 (black solid line ) and g0 = −0.25, g1 = −0.1 (red solid line). The

chemical potential value for the above sets of calculation were chosen to be µ = −0.1. The



CHAPTER 4. SUPERCONDUCTING STATES OF SINGLE-LAYER GRAPHENE. 48

Figure 4.3: Mean �eld phase diagram [13].

higher value of the gap parameter represents the s-wave whereas the lower value is for the p+ ip

symmetry. The coexistence of the order parameters is observed for all temperatures below the

critical temperature. Moreover, ∆0 is always larger than ∆1 for all T . As the on-site interaction

g0 increase we observe a rise in the Tc values. For (g0 = −0.15, g1 = −0.1), TC is 4.8k, whereas

for (g0 = −0.2, g1 = −0.1), Tc = 12.4k and for (g0 = −0.25 ,g1 = −0.1), Tc = 25k.
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Figure 4.4: ∆0 ,∆1 vs T for g0 = −0.15,g1 = −0.1 (blue solid line), g0 = −0.2 ,g1 = −0.1(black
solid line ) and g0 = −0.25 ,g1 = −0.1 (red solid line) and µ = −1.0.

Fig. (4.5) exhibit the temperature dependencies of ∆0 and ∆1 with various values of the

nearest-neighbor interaction. The �gure exhibits three di�erent sets of the interaction param-
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eters: (g0 = −0.2,g1 = −0.05 (blue solid line) , g0 = −0.2 , g1 = −0.1(black solid line ) and

g0 = −0.2 , g1 = −0.15 (red solid line). The higher value of the gap parameter represents the

s-wave whereas the lower value is for the p + ip symmetry. We observe a similar trend and

qualitative behavior as compared to Fig. (4.4), where we have a unique critical temperature

and the gap values increases with the increase in g1. As the nearest-neighbor interaction g1

increase we observe a rise in the Tc values. For (g0 = −0.2,g1 = −0.05), TC is 9.5k, whereas for

g0 = −0.2 ,g1 = −0.1 , Tc = 12, 4k and for (g0 = −0.2, g1 = −0, 15), Tc = 16.0k. The �gure

demonstrates that the on-site interaction has a larger e�ect on the critical temperature values

of graphene.

0 5 10 15 20
0.00

0.01

0.02

0.03

0.04

, 

T(K)

Figure 4.5: ∆0, ∆1 vs T for g0 = −0.2, g1 = −0.05 (blue solid line), g0 = −0.2,g1 = −0.1
(black solid line ), g0 = −0.2, g1 = −0.15 (red solid line) and µ = −1.0..

In Fig. (4.6), the dependence of the order parameters on chemical potential was studied.

The dependencies were studied for the interaction parameters g0 = −0, 2, g1 = −0, 1 for three

values of µ: µ = −1.0 (red solid line), µ = −1.1 (black solid line), µ = −1.2 (blue solid line).

The critical temperatures for µ = −1.0 , −1.1 and −1.2 are 16K, 7k and 4.6k , respectively. The

higher value of the gap parameter represents the s-wave whereas the lower value is for the p+ ip

symmetry. As we increase doping we observe a decrease in the critical temperature of graphene.

With further increase in µ, superconductivity in graphene should disappear completely.

Next, the normalized order parameters ∆0(T )/∆0(Tc) and ∆1(T )/∆1(Tc) are plotted vs the

normalized temperature (T/Tc) for g0 = −0.2, g1 = −0.15 for µ = −1.0, −1.1 and −1.2. It

also includes formg0 = −0.2, g1 = −0.1 for µ = −1.0, −1.1 and −1.2. An universal character

of the parameters is observed for both type of order parameters irrespective of the interaction

strength and doping of graphene. It also resembles the characteristic curve of the BCS theory
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Figure 4.6: ∆0, ∆1 vs µ for g0 = −0.2, g1 = −0.15 andµ = −1.0 (red solid line), µ = −1.1
(black solid line), µ = −1.2 (blue solid line) .

[10].
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Figure 4.7: ∆0(T )/∆0(Tc) and ∆1(T )/∆1(Tc) are plotted vs the normalized temperature
(T/Tc).
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Figure 4.8: Critical temperature vs |µ| for g0 = 0.2 and g1 = 0.15.

The dependence of the critical temperature of graphene [11] on interaction is generally given

by the following expression:

TC ≈ 2µ(γ/π)exp(−Λ(gc0/g0 − 1)µ−1 − 1) (4.37)

where γ is Euler's constant. Hence we should expect that the critical temperature drops

exponentially with the chemical potential and should tend to saturate for higher values of

potential. In Fig. (4.8) we plot the critical temperature vs |µ| for g0 = 0.2 and g1 = 0.15. We

observe that the critical temperature decreases exponentially with |µ| initially and tends then to
saturate for higher values of the chemical potential until it vanishes completely for high values

of the chemical potential. In Figs. (4.9) and (4.10) the dependence of Tc on the interaction

parameter | g0 | and | g1 | are considered. The line drawn has been provided as a guide

to the eye for better observation. Tc increases with the increase in the interaction strengths.

However, the dependence of Tc is more pronounced on | g0 |, as was also observed earlier. The

characteristics of superconductivity in graphene was observed from the graphs on the order

parameters and the nature of the critical temperatures. The temperature dependencies of the

order parameters allow us to calculate the thermodynamic properties of the system. Hence, in

the following �gure we demonstrate the temperature dependence of electronic speci�c heat of

the system. The general equation for speci�c heat is:
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Figure 4.9: Critical temperature vs |g0| for µ = −1.0 and g1 = −0.1.
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Figure 4.10: Critical temperature vs |g1| for µ = −1.0 and g0 = −0.2.

Cs = 2βkB
∑
kα

− ∂fαk

∂E
(α)
k

(
E

(α)2
k +

1

2
βE

(α)
k

dE
(α)
k

dβ

)

= 2β2kB
∑
kα

fαk (1− fαk )

[
E

(α)2
k +

T

2

(
−g2

0

d∆2
0

dT
− g2

1|φk|2
d∆2

1

dT
± 2g1|φk|

d∆1∆0

dT

)]
(4.38)
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Figure 4.11: Speci�c heat Cs(T )/Cn(Tc) vs T/Tc for g0 = 0.2, g1 = 0.15 g0 = 0.2 and g1 = 0.1
for µ = −1.0 (dashed line) and µ = −1.1 (solid line).

where
d∆2

0

dT
,
d∆2

1

dT
and d∆1∆0

dT
are the derivatives of the two types of gaps in the coexistence

phase of graphene. Therefore, we have the speci�c superconducting heat in which the �rst time

refers to the redistribution of particles and the second term is derived from the parameters of

the order of waves s and p+ip. Figure (4.11) exhibits the speci�c heat vs temperature plot for

g0 = 0.2, g1 = 0.15 g0 = 0.2 and g1 = 0.1 for µ = −1.0 (dashed line) and µ = −1.1 (solid line).

The jump ∆C(T )/Cn(Tc) in the speci�c heat is seen to be dependent on µ. ∆C(T )/Cn(Tc)

is found to be 1.34 for µ = −1.0 and 1.73 for µ = −1.1. It increases with the increase in µ

denoting a rise in chemical doping of graphene. The above rise in the jump for speci�c heat

with doping was also observed in ref. [59]. Moreover, it is to be noted that the jump in the

BCS case is of the order of 1.43 [10]. Hence with doping we can surpass the jump in the speci�c

heat for graphene.



Chapter 5

Conclusions

The main objective of this was to obtain the behavior of the order parameters, we speci�cally

analyzed the mixed-phase wave for interaction of attractive origin, the critical temperatures and

speci�c heat of the single layer superconducting state of graphene due to the doping as well as

to evaluate the critical values for the transition from the superconducting state to the normal.

From the de�nitions of order parameters via mean �eld theory we obtained the s-wave and

the exotic wave p+ ip. Also,we got the eigen-energies and, consequently, the gap energies E
(0)
g ,

E
(1)
g and E

(0,1)
g were presented [13]. Minimization the free energy of the system resulted in

self-consistent coupled equations.

The self-consistent equations were solved numerically to obtain the gap values at zero tem-

perature. Order parameters (for attractive energies) coexisted at temperatures below TC that

vanishes simultaneously at the same critical temperature. Moreover, ∆0 is always greater than

∆1. As we increase doping, the critical temperature decreases. The graph of normalized order

parameters is also presented. The universal characteristic of the parameters is observed and is

found to be similar to the characteristic curve of the BCS theory.

Critical temperature drops exponentially with chemical potential and should tend to satu-

rate for higher values of potential. The normalized speci�c heat dependence on temperature

was obtained. The jump ∆C exhibits similarity to the BCS theory and with the increase of µ,

CS also rises. Hence with doping we can surpass the jump in the speci�c heat for graphene.

We conclude that there is a direct in�uence of the doping of superconducting states in

the single layer of graphene as observed in the dependencies of the order parameters, critical

temperature and also in thermodynamic quantities. As a perspective, we intend to extend this

research by increasing the amount of graphene layers in order to look for critical optimized

values such as the rise in the critical temperature.
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Appendix A

Comutation and anti-comutation between

fermionic creation and destruction

operators.

The wave function of anti-symmetric N-particles in the �rst quantization is generally written

by the Slater determinant, as follows:

| ψ >=
1√
N

∣∣∣∣∣∣∣∣∣∣
φ1(r1) φ1(r2) ... φ1(rN)

φ2(r1) φ2(r2) ... φ2(rN)
...

...
. . .

...

φN(r1) φN(r2) ... φN(rN)

∣∣∣∣∣∣∣∣∣∣
where φN(rN) represents the Nth atom in position N.

On the other hand, an ingenious way to rewrite fermions is through the description of the

number of occupation of these particles. Thus | nk > for the number of occupation of N

particles and knowing that the fermions obey the Pauli principle of exclusion, which states

that two identical fermions are not allowed (with the same quantum numbers) to occupy the

same state and therefore nk = 0, 1, where | 0 > represents the unoccupied state and | 1 > the

occupied state. In general denoted by:

| 0 >=| 0, ..., 0, 0︸︷︷︸
k

, ..., 0︸︷︷︸
k′

, 0, ... > (A.1)

In the states k and k'.

Denoting c†k e ck for the creation and destruction operators, respectively, of a fermion in the

state k, we get, c†k | 1〉 = 0 , ck | 1〉 = 0 e ck | 0〉 = 0. So we have the number operator c†kck:

c†kck | nk〉 = nk | nk〉 (A.2)
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where nk = 0, 1.

c†k′ | 0 >=| 0 >=| 0, ..., 0, 0︸︷︷︸
k

, ..., 1︸︷︷︸
k′

, 0, ... > (A.3)

c†kc
†
k′ | 0 >=| 0 >=| 0, ..., 0, 1︸︷︷︸

k

, ..., 1︸︷︷︸
k′

, 0, ... > (A.4)

Let us consider the operators in the reverse order and we get,

c†k | 0 >= − | 0 >=| 0, ..., 0, 1︸︷︷︸
k

, ..., 0︸︷︷︸
k′

, 0, ... > (A.5)

c†k′c
†
k | 0 >= − | 0 >=| 0, ..., 0, 1︸︷︷︸

k

, ..., 1︸︷︷︸
k′

, 0, ... > (A.6)

obeying the anti-symmetry of fermionic particles. Therefore:

(c†kk′c
†
k + c†kc

†
k′) = 0 (A.7)

The commutation relations are

[c~kσ, c~k′σ′ ]+ = [c∗~kσ, c
∗
~k′σ′ ]+ = 0 (A.8a)

[c~kσ, c
∗
~k′σ′ ]+ = δ~k~k′δ~σ ~σ′ (A.8b)

c~kσ, c~k′σ′+
= c∗~kσ, c

∗
~k′σ′+

= 0 (A.8c)

c~kσ, c
∗
~k′σ′+

= δ~k~k′δ~σ ~σ′ (A.8d)

Where σ e σ
′
represent the electron spins.



Appendix B

Tight Binding model.

B.1 Electrons in a periodic potential

Electrons placed in a potential V (k) in which the periodicity is the same as ukn(k) and its

eigen-states of a periodic Hamiltonian are described by Bloch's states as we show bellow:

ψkn(r) = expik·r ukn(k) (B.1)

k is the crystalline moment with | k |< kF and n is the band index. Considering the bands

are well separated, enough to use the local bands. The Hamiltonian in the space of the moment

can be written as:

H =
∑
kσ

εkc
†
kσckσ (B.2)

B.2 Wannier states

The name 'tight binding' suggests that this model of quantum mechanics describes the prop-

erties of electrons strongly bonded together in solids. The electrons in this model must be

strongly bonded to the atom to which they belong and must have limited interaction with

states and potentials in the surrounding atoms of the solid. Thus, the electron wave function

becomes very similar to the atomic orbital of the free atom to which it belongs. The electron

energy will also be close to the electron ionization energy in the free atom or ion because the

interaction with potentials and states is limited. [60]

Let's assume that extension physics of the orbitals are smaller than the inter-atomic space.

So we say that the orbitals are tightly connected in the network. The Wannier states located

at ki are de�ned as:

| ψi >=
1√
N

∑
k

exp−ik·Ri | ψk > (B.3)

62



APPENDIX B. TIGHT BINDING MODEL. 63

We construct the states so that they are orthogonal to each other. Then:

| r >=
∑
i

< ψi | r >| ψi > (B.4)

We have

c†σ(r) = ψ∗i (r)c
†
iσ (B.5)

Similarly, inverting we have:

| c†kσ >=
1√
N

∑
i

expik·Ri c†iσ (B.6)

So the Bloch Hamiltonian on that basis becomes:

H =
∑
kσ

εkc
†
kσckσ =

1

N

∑
ij

∑
kσ

expik·(Ri−Rj) εkc
†
iσcjσ ≡

∑
ijσ

tijc
†
iσcjσ (B.7)

Where tij = 1
N

∑
k expik·(Ri−Rj) εk is known as the Hopping Parameter for the electron to

go from site i to site j.

B.3 Eletron-eletron interaction

We know that the term corresponding to the energy of interaction of two electrons at ri e rj is

given by:

He,e =
1

2

∑
i 6=j

e2

| ri − rj |
(B.8)

Using the basis of moments | kσ > and the free particle wave function :

ψk,σ(r) =< r | k, σ >=
1√
ν

expik·r χσ (B.9)

in volume ν. We rewrite the Hamiltonian as:

He,e =
1

2

∑
ki,σi

< k1σ1,k2σ2 |
e2

| ri − rj |
| k4σ4,k3σ3 > c†k1σ1

c†k2σ2
ck3σ3ck4σ4 (B.10)

The overlap matrix is given by:
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< k1σ1,k2σ2 |
e2

| ri − rj |
| k4σ4,k3σ3 > =

∫
d3r

∫
d3r′

1√
ν

exp−ik1·r 1√
ν

exp−ik2·r (B.11)

.
e2

| ri − rj |
1√
ν

expik4·r 1√
ν

expik3·r δσ1σ4δσ2σ3

=
δσ1σ4δσ2σ3

V
δ(k1 + k2 − k3 − k4)

And, therefore, considering the moment conservation of the interaction, we have:

He,e =
e2

2

∑
k,k′,q,σ,σ′

c†(k+q)σc
†
(k′−q)σ′

1

q2
ck′σ′ckσ (B.12)

This is the Hamiltonian form of Coulombian interaction energy.



Appendix C

Mean Field Theory.

The e�ect of many-body in the study of particle interaction in general is complicated by the

terms of correlation in electron-electron interaction. And, to facilitate the approach of physical

methods, a good model for average particle density is commonly used. The medium �eld model.

In the image below [61] we see on the left a physical system of the interaction of particles and

on the right the interactions are replaced by an average density. Fact that directly a�ects the

Hamiltonian of electron-electron interaction. So, a Hamiltonian model of two �uids described

by operators aν and bν , is:

Figure C.1: Illustration of the mean �eld idea. Left box shows the interaction between the
particle. To the right are the interactions experienced by the black particle replaced by an
average interaction due a mean density.

H =
∑
ν

naνa
†
νaν +

∑
µ

nbµb
†
µbµ +

∑
µµ′,νν′

Vµµ′,νν′a
†
νb
†
µbµ′aν′ (C.1)

where naν and n
b
µ represent the particle densities followed by the density and Vµµ′,νν′ the energy

of interaction. For a deviation of the density operators from their average values, it is de�ned

as

Aνν′ = a†νaν− < a†νaν > (C.2)
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and

Bνν′ = b†νbν− < b†νbν > (C.3)

Then we have:

H =
∑
ν

naνa
†
νaν +

∑
µ

nbµb
†
µbµ (C.4)

+
∑
µµ′,νν′

Vµµ′,νν′(a
†
νaν < b†νbν > +b†µbµ < a†νaν >)

+ −
∑
µµ′,νν′

Vµµ′,νν′ < a†νaν >< b†νbν >

This allows the interaction energy to be rewritten in terms of average densities and reduces the

order of operators by simplifying the Hamiltonian.
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