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RESUMO

A ascensao de estudos que abordam o grafeno tem sido notavel nas dltimas décadas, tanto por
suas estrutura bidimensional quanto para diversas aplicagoes em potenciais tecnologicos. Em
adicao, descobertas sobre fenomenos supercondutores emergem cada vez mais nos diversos ma-
teriais quando postos a baixa temperatura, com isso este trabalho tem como enfoque principal
o estudo das fases do estado supercondutor na estrutura de rede favo de mel do grafeno.

Para isso, foi fundamentalmente apresentado o grafeno puro por aproximagao tight-binding
dos elétrons e suas as bandas de energia na primeira zona de Brillouin descrito pela dispersao
linear dos férmions de Dirac. Em seguida abordou-se a teoria da supercondutividade através
da teoria de campo médio e energias de excitagao.

Conciliando esse estado da matéria aplicado ao grafeno e considerando efeitos de dopagem
n6s analisamos os estados de fase para energias atrativas de interagao elétron-elétron.

Obtivemos além da usual onda s, uma exoética possibilidade, uma onda p + ip simétrica
devido a estrutura de simetria em torno dos pontos de Dirac e portanto uma coexisténcia das
fases e sao obtidos graficos caraceristicos do parametro de ordem e do calor especifico com

relagao a temperatura na variacao do potencial quimico.

Palavras-chave: Grafeno. Supercondutividade. Parametro de ordem.



ABSTRACT

An increase in the number of studies involving graphene has been notable in the recent
decades, mainly due its two-dimensional structure and also for the varied applications in tech-
nological devices. Superconductivity has been observed in different materials when placed under
very-low temperatures, which motivated us to the study the different phases of the supercon-
ducting states in the honeycomb lattice structure of graphene.

In this work we consider pure two-dimensional single-layer graphene on a honeycomb lat-
tice. A tight-binding model of the electrons and their energy bands in the first Brillouin zone
described by the linear dispersion of the Dirac fermions is used to describe the graphene in its
pure form. We study the superconducting phases of the graphene using a mean field theory to
calculate the temperature dependencies of the order parameters and also the specific heat of
the system below the critical temperature.

Conciling this states of matter applied to graphene and considering doping effects we anal-
ized the phases states for attractive electron-electron interactions energies.

We get in addition to the usual s-wave, an exotic possibility appears in the form of a
symmetric p+ip wave due to the symmetry structure around the Dirac points. The coexistence
of the above two phases has been of utmost importance for our study. Hence the characteristic
graphs of the order parameter and specific heat in the variation of the chemical potential are
studied.

Keywords: Graphene. Superconductivity. Order parameter.
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Chapter 1
Introduction

Graphene is one of the allotropes of carbon which has a two-dimensional structure, with
its atoms organized on a honeycomb lattice. The above structure leads to some interesting
and unusual physical properties. Extraordinary electrical and thermal conductivities and very
high mechanical strength make graphene a promising candidate for a host of technological
applications [5].

The peculiar electronic behavior in Graphene envisages advances in technological applica-
tions of great interest for e.g. in electronic sensor bases , LEDs, solar cells, photodetectors,
transistors that operate on radio frequency, among others [14] [15]. Evidence of superconduc-
tivity in graphene has also attracted a lot of attention in the condensed matter community.
The superconducting state in general is induced in graphene by proximity effects with super-
conducting contacts or by doping. Hence, the presence of superconductivity also confirms the
presence of the Cooper pairs that can propagate coherently in graphene. However, there are
motivations to make it an intrinsic superconducting material [16]. Experimental and theoretical
researchers use the method of intercalated materials, alkali metals in the pure form of graphene
at low temperature by chemical modification and by polarizing semiconductor substrates such
as Si, Sn, Pb to induce cooper pairs in graphene [12]. For this reason, in this work, we consider
we consider superconductivity in graphene and study the cases in which the chemical potential
is non-zero representing possible doping in pure graphene.

A study of spin singlet states was developed, with the emergence of the exotic state of the
p+1p wave phase which in general is unusual. However, the above state was shown to belong to
the structure itself. It was also considered that the energies of the electron-electron interaction
potentials of the s and p + ip waves have a value whose module depends on temperature due
to their relations with the self-consistent equations.

In this work, we study the temperature dependencies of the order parameters with various
values of the interaction parameters. The dependence of the chemical potential of the system
on critical temperature and the order parameters were also studied. The normalized gap pa-
rameters for the two order parameters also demonstrate a universal nature for all values of the

interaction strengths. Moreover, specific heat C.¢ vs temperature for various chemical potential

12
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values demonstrates a consonance with the experimental obtained results with doping.

This present dissertation is organized as follows:

In Chapter 2 we discuss the electronic structure of graphene. The arrangement of the
carbon atoms in the crystal lattice and also the interaction of these atoms in the hybridization
of orbitals of sp? type were considered. The tight-binding model of the graphene single-layer
Hamiltonian is discussed in great detail to obtain the dispersion relations of the system.

In chapter 3, a historical overview of superconductivity is presented at the beginning. An
explanation of the theory of superconductivity with an emphasis on Cooper pairs, gap energies
and order parameter are discussed to provide an understanding of the phenomenon. We also
define the thermodynamic quantities of interest related to the excitation energies of the fermions
along with their temperature dependencies.

In chapter 4 we discuss the model Hamiltonian considered in our work to study supercon-
ductivity in single-layer, pure graphene. The on-site and the nearest neighbor electron-electron
interactions are considered to define the superconducting states of graphene. The supercon-
ducting order parameters for spin singlet symmetries are defined within a mean-field scenario
and are calculated numerically by minimizing the free energy of the system. Specific heat of
the superconducting states of graphene in the coexistence phase has also been calculated to
study the temperature and doping dependencies of the parameter.

Finally, a short conclusion is presented in chapter 5 with a brief discussion on the future

perspectives of the work.



Chapter 2

The Graphene

Graphene can be defined as a single-layer form of graphite. It is a two-dimensional material
with honeycomb structure whose structure generates a variety of peculiarities that are reflected
in the physical properties,such as its malleability and thermal capacity, high electrical mobility,

current conduction capacity, good mechanical resistance, etc.

2.1 Historical Overview.

The twentieth century(XX) was historically remarkable in the development of techniques for
understanding the elementary structure of materials. The understanding of the highly layered
structure of thermally reduced graphite oxide in the nineteenth century by English chemist
Benjamin Collins Brodie paved the way for wondrous discoveries in material science. The
advent of the powder-diffraction methods and the formulation of Bragg diffraction and Laue
diffraction applied to crystalline solids in 1924 by J.D.Bernal paved new paths [17]. In order to
develop a theory for the electronic properties of bulk graphite, physicist Philip Russel Wallace on
behalf of National Research Council of Canada directed his attention to explore the material by
publishing in 1947 the article entitled "The Band Theory of Graphite" and showed the unusual
semimetallic behavior in this material, see Fig. (2.1) . The theory of the structure of the
electronic energy bands and Brillouin zones for graphite was developed using the tight binding
approximation where along with the overlap of the hexagonal layers of graphite, a single-layer
(called Graphene, a term originally introduced years later by H.P. Boemh) was also considered
so as to neglect the interaction of the superposition of the planes. A large anisotropy in the
electrical conductivity and the diamagnetic susceptibility was exhibited. The work also showed
the linear dispersion relation.

It is important to remember that graphene’s history spans over more than a century of
chemical research. There is a vast chemical literature, literally hundreds of papers during the
second half of the twentieth century. Studies on ultra-fine Graphite compounds using TEM
(Transmission Electron Microscopic), epitaxial graphite on solid substrates (TiC, TaC, Ni) or

chemical exfoliation were performed to understand the layered structure of the graphite. How-

14
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The Band Theory of Graphite

P. R. WaLLace®
National Research Council of Canada, Chalk River Laberatory, Chalk River, Onlario

(Received December 19, 1946)

The structure of the electronic energy bands and Brillouin zones for graphite is developed
using the “tight binding" approximation. Graphite is found to be a semi-conductor with zero
activation energy, i.e., there are no free electrons at zero temperature, but they are created
at higher temperatures by excitation to a band contiguous to the highest one which is normally
filled. The electrical conductivity is treated with assumptions about the mean free path. It is
found to be about 100 times as great parallel to as across crystal planes. A large and anisotropic
diamagnetic susceptibility is predicted for the conduction electrons; this is greatest for fields
across the layers. The volume optical absorption is accounted for,

Figure 2.1: P.R.Wallace’s article named "The Band of Graphite" published in Physical Review
Volume 37 Number 9 on May 1, 1947 [1] .

ever, success only came in 2004 with Andre Geim, Konstantin Novoselov, SV Morozov and his
collaborators in the department of the Institute of Microelectronic Technology at the Univer-
sity of Manchester, when graphene was isolated by a direct method of mechanical exfoliation
and characterized for the first time utilizing the ‘Scotch Tape’ method [18]. Hence, when one
uses a pencil against a sheet of paper one might be actually producing graphene stacks and
among them the presence of the individual graphene layers are highly probable. The number of
academic publications regarding the use of graphene continue to grow along the years. Hence,
with such an enormous interest in graphene it is imperative for us to study the graphene in
more details.

Currently, new approaches are being developed which are not only cost-efficient but also
provides secured and environmental friendly solutions to the society. At the National Institute
of Technology in India, researcher Vishnu Shanker used eucalyptus bark to extract and syn-
thesize graphene sheets [19]. The CVD (chemical vapor deposition) method, Hummer method
and liquid phase exfoliation using extracts of medicinal plants in water were presented by Bip-
inchandra K. Salunke and Beom Soo Kim [20]. In addition, recently, researchers from the Sao
Carlos Institute of Physics developed a cleaner and faster method to produce reduced graphene
using laser-based methods [21].

The application of graphene can be observed in a range of different technologies which could
potentially be created and provide some of the many real-world benefits of graphene research
[22]. One of the first proposed real-world applications of graphene is related to the high con-
ductivity of graphene and would be ideal for high-speed electronics [23]. Ultra-thin graphene
transistors have been developed and could appear in consumer electronics within the next
decade. Reducing the size of data storage devices and thereby increasing the capacity of data
storage devices whilst maintaining the size is an area which is being considered |24]. Several
attempts of producing graphene-based supercapacitors are also being considered to create such

technologies [25]. Photovoltaic cells, or solar cells, are also considered to be a potential appli-
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cation of graphene [26]. Moreover, another application of graphene can be found in the field of
electroanalysis [27]. The electrothermal conduction properties in the production of transistors
that operate at low temperatures and at radio frequencies were studied to achieve cut-off fre-
quencies of 155 Gigahertz of the graphene transistor at short wavelengths [14]. Biomolecules,
nanoparticles and surfaces in Graphene compounds for Biosensors are capable of recognizing
antibodies and organic compounds [15].

Hence, we observe that pure graphene and graphene in compounds could play fundamental
roles in the advancement of scientific knowledge which many call it as "The material of the

future" owing it to the diversity of its application in the real-world.

2.2 Carbon and its allotropes.

2-D 3-D
{9)

(®

(n)

(P)

Figure 2.2: Different structures arranged by carbon atoms in different dimensions. a) Buckmin-
sterfulereno. b) Closed fullerene, nested or graphite rings. ¢) Carbon nanotubes. d) Nanocones.
e) Nanothoroids. f) Graphene Honeycomb Structure.g) 3D Graphite Crystal. h) Haeckelite
structure. i) Graphene nanofibers. j) Graphene Cluster. k) Helical Carbon Nanotube.l) Small
chains of graphene. m) 3D Schwartize crystal. n) Graphene nanostructured foam. o) 3D lattice
composed of nanotubes.p) Network of 2D nanofibers [2].

The main constituent carbon of Graphene, a chemical element with atomic number 6, non-

metallic and tetravalent, is a very abundant atom, responsible for the bonding of organic
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compounds, minerals and hydrocarbons. It is also called the materia prima for life on this
planet and the basis of all organic chemistry [2]. It allows us to connect with other substances
or even in the form of carbon chains giving rise to various allotropic forms, such as diamond,
graphite and many more.

Among the two-dimensional structures demontrated in the figure we observe Graphene in
(2.2)(f) where the carbon atoms are organized in the form of a thin layer of carbon. It is the
basis for the understanding of the electronic properties in other allotropes. On the other hand,
Graphite in (2.2)(g) is the most stable allotrope of Carbon formed from various layers of the

graphene sheets and thereby comprising a three-dimensional (3D) crystal.

2.3 Crystalline structure

Carbon is the sixth element in the periodic table and has 6 electrons orbiting around the
nucleus in its fundamental state. According to the Pauling Diagram these electrons are arranged
in atomic orbitals in the form: 1s, 2s® and 2p?. The spatial distribution of the s and p orbitals
are illustrated in Fig. (2.3) .

Q ) 90 O3
2s 2px 2py 2p;

Figure 2.3: s and p orbitals o graphene [3].

The electrons of the symmetric orbitals are in the energy level of quantum number n = 1
and n = 2. The electrons in 1s orbital represent the most strongly connected ones, whereas,
the two electrons in 2s are in the outermost shell, n = 2. The electrons in 2p (with possibilities
of alignment in the three directions (x, y and z)) are in the valence shell and indicate a possible
mixtures of orbitals among them, see Fig. (2.4).

In the case of graphene, hybridization takes place exactly between the 2s, 2p, and 2p,
orbitals generating a coplanar and symmetrical 120° orbital of the type sp? forming the o
bonds. The remaining 2p, orbital remains perpendicular to the plane forming weaker 7 type
bonds containing the free electrons participating directly in the conduction of the material.
The representation of the above type of bondings are given in Fig. (2.5).

The wave functions of the hybrid orbitals are given in terms of the s and p orbitals and can
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A

| 2s

Y
4¢;m

Figure 2.4: Diagram of the fundamental state of carbon [3].

A

energy

be written as follows:

) = %u S+ | pa)t | D)), (2.1a)
| h2) = %(! O+ 1 pe) = 2| 2a)) (2.1b)
[ s) = (1 )= | pa)) (2.10)

N

In Fig. (2.6) we see the form of the crystalline lattice of graphene (the colored dots represent

orbital P,

< ¥

Figure 2.5: The orbitals p, and sp? represented in green. The hybridization orbitals form angles
of 120° to each other in the plane (illustrated by the yellow color) x, y and are orthogonal to

p. |4]-

the carbon atoms). Graphene is a one-atom-thick layer of carbon atoms arranged in a hexagonal
lattice. It and can be visualized as composed of benzene rings stripped out from their hydrogen
atoms. The structure of atoms does not form a Bravais lattice as required. In this case the points

are seen from their adjacent neighbors, only when rotated through an angle of 180°. Hence, two
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triangular sublattices (highlighted in yellow and blue) are considered. The primitive vectors
(@ and @) and the relative vectors (&), da, 03) on a diatomic basis are defined to obtain a
symmetrical Bravais lattice in triangular forms. Therefore, the carbon-carbon distance is given

by a ~ 1.42 x 1071%n [5]. The primitive vectors are

Figure 2.6: Graphene honeycomb structure. The small circles with yellow colors represent
sublattice A and the blue ones represent sublattice B. We have the primitive vectors a; and as
and the relative vectors 01,0 e d3.

@ = V3ai + 0f + 02 (2.2a)
3 3
Gy = T“x + 50402 (2.2b)

where z, § e Z are unit vectors. The translational vector is given by R
R = nd, + ma,

where n and m are integers. The relative vectors are given by:

5 = (0,a) (2.3a)

- av3 a

o (2£2) "
- av3 a

o (n52) »

In the reciprocal space, the Fourier transformed space of graphene is defined by 51, 52 and 51,
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which are given by the following equations:

= (27\/37 _2_7T> (2.4a)

l

(=

3a 3a
- 47
— (02X 2.4
= (0.57) (2.40)
bs = (0,0) (2.4¢)

The reciprocal space is shown in Fig. 2.7. And, just like real space, in reciprocal space we can

kl/
A—
by
®----{----- °
// kG kl \\
’ \
’ \
4 \
/7 AY
/I k\\
’ 2 \’
« k; —
\ ’ xT
\ /7
\ ’
AY
\ ’
\ 4
\\ k4 k3 /I bl
@- - ®

Figure 2.7: (Primitive Wigner-Seitz cell in the reciprocal lattice).
build the entire lattice from the primitive vectors
kpq = pbl + qb2

where the set (p, q) are integers. Now, in the reciprocal space let us analyze the geometric plane
formed by the points (ki, ko, k3, k4, ks, kg) which can be identified as the symmetrical points
in the reciprocal lattice called Dirac points, which form the primitive cell called Wigner-Seitz

Cell. The red dashed line demonstrates the 1st Brillouin zone.

2.4 Tight-Binding model for Graphene.

In order to understand the electronic structure of graphene, we consider the tight-binding
Hamiltonian considering the nearest-neighbor hopping and also the next-nearest neighbor hop-
ping parameters [4]. The Hamiltonian is then written as: (see appendix A.7)

(Here we use units that 7 = 1).

H=t 5 (o + He) =30 (il + b, + Hec) (2.5)
((ig)) o

<ij> o
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where, ¢ represents the nearest neighbor hopping parameter, ¢ is the next-nearest hopping

parameter, al a;, are the creation and destruction operators in sublattice A whereas I;jg, bio

10

are those in sublattice B. i(j) labels the sites in sublattice A(B) and o is the spin. It is
important to state that ¢ = 2.8V and 0.02 eV < ¢ <0.2¢V [28].

The magnitude of the hopping parameter between the second neighbors is less than 0.1eV
[29]. Hence, it can be neglected when compared to ¢t. Therefore, the next-nearest interactions
will not be considered in our following discussion. In order to understand the tight-binding
model of Hamiltonian, we can write the operators in the momentum space. The Fourier trans-

forms for the creation and annihilation operators are given by:

1 -
g = ——= > €™ (2.6a)
>
1 o
_ AT ik
= — g€ " (2.6b)
73 5
. 1 S
bio = 757 2 bt (2.6¢)
k
1 ~ .
— N pl ik 2.6d
\/N Xk: ko ( )

Substituting the above relations in Hamiltonian (2.5) we get:

- 2 (T ()

<ij>,o

1 ~ ik —zk’~Fj
[z ()

Organizing the terms and substituting the position vectors of the jth atom 7 in terms of the

relative vectors 7; = 7; + d; we obtain:

et 3 SN [l e 8 i)

<zg>a k ¥

Now, defining the function g(k’) and its conjugate ¢g*(k’) as

3
)=ty ™ (2.7a)
=1

3
K)=—t) e (2.7b)
=1
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and using the Kronecker Delta property in the reciprocal space:

(I
e

we have

= Z Z Z [ak Do Ok s g (k') + dkoé;fw(sk,k/g*(k/)]
kK K

(e

Then:

Z Z Z [akgbkag + dkal;i‘-{gg* (k)}

Defining a pseudo-spinor and its conjugate and a matrix 2 x 2 H,

we have

Vit Hxti = H = >3 |l brog (k) + nobl, 9" (k)|
k

g

In matrix notation we can write,

to obtain the eigenvalues as

As,

and

3ak,
4 —i— 3
g(k) — _¢eilaky) | +e 2 (cos gal@)

We can write down the eigen-values are given by

1
E(k)s = +t[3+ f(k)]2

22

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)
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where /3
f(k) = 2cos(V/3kea) + 4 cos gaky cos ;akx (2.17)

The equation (2.16) shows we have two symmetric solutions for the energy of the system. The

positive energy F, and the negative energy F_.

Figure 2.8: Graphene Energy Bands. Next to the Dirac points they form the Dirac cone. The
energies I/, and E_ are symmetrical around the Fermi Energy Er = 0. The image is enlarged
on the right, exhibiting the band energy close to the cone [5].

The figure (2.8) represents the energy bands in the first Brillouin zone described by the
equations (2.16) and (2.17). The graphs show that the two energy bands (7 and 7*) intersect
at the so-called Dirac point where the energy is zero and the presence of the Dirac cones are
observed due to the linear dispersion relation of graphene.

The chemical potential of the graphene can be considered in the tight-binding Hamiltonian

as
H=—n Y (R, (2.18)

1
E(k)s = +tB3+ f(K)]2 — u (2.19)



Chapter 3

Theory of superconductivity.

3.1 Historical background.

The study of materials and the understanding of their physical properties have always at-
tracted a lot of attention. The characterization of these materials is fundamental for its appli-
cation. The conduction of these materials, whether thermal or electrical, is a physical quantity
of great importance useful for their classification and understanding. In solid-state physics, the
first attempt to simplify the modeling of metals was proposed by Drude. The above theory
considered a crystalline lattice formed by oscillating ions (when the temperature is non-zero)
surrounded by electrons known as free electrons. The ordered movement of these free elec-
trons is responsible for creating an electric current. However, impurities or imperfections in
the lattice that displace ions from their equilibrium positions generate the well-known electrical
resistance|6] [30].

Metallic wires have electric resistance that opposes the current flow through the wire,
thereby losing the electrical energy by turning it into thermal energy. Superconductors are
materials with no electric resistance below a certain temperature: an electric current can flow
through a superconductor without loosing any energy. A Fermi liquid is a theoretical model
of interacting fermions that describes the normal state of most metals at low temperatures
[31]. Electrons can move freely through a regular crystalline lattice, but any disruptions in the
regularity of the lattice will obstruct their free flow and cause resistance, see Fig. (3.1). There
are two main causes for electric resistance in wires. The imperfections in the crystalline lattice,
such as those caused by impurity atoms or by vacancies. Each time an electron collides with
an irregularity, it loses energy. Secondly, there are lattice vibrations. The vibrations are due
to the phonons.

By early 1911 it was well known that the electric resistance in a metal decreased with
temperature. Exactly what would happen approaching absolute zero was debated. Lord Kelvin
believed that the flow of electrons in a material, which improved with decreasing temperature

might actually stop altogether, the electrons becoming frozen in space. Thereby, the resistance

24
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Electrical resistivity

Temperature ——=

Figure 3.1: Graph representing resistance of pure and impure materials with temperature [6] .

at absolute zero could be infinitely high. Others including Onnes and Dewar argued that the
decrease in resistance would continue in an regular manner, finally approaching a zero value
at the zero temperature point. Finally in late 1911, Kamerlingh Onnes demonstrated that
the resistance of mercury (Hg) decreased rapidly by a factor of at least 10'° at the onset of
superconductivity, see Fig. (3.2). It continues to be superconducting below 4.15 K. He chose
Hg as it could be easily purified. Soon it became very clear that the resistance of some other
metals including mercury really does drop to zero below a certain temperature, known as critical
temperature. Any current introduced into the loop would thereby continue to flow indefinitely
[7].

Several groups continued the study in various parts of the world and years later the highest
transition temperature or critical temperature among metals was observed for Niobium at T
= 9.2k. However, more than half of the metals under the same experimental conditions, never
become superconducting, such as gold, copper, bismuth and germanium.

Meissner and Ochsenfeld demonstrated that when a sphere of the above type is cooled
below the transition temperature in a magnetic field it excludes the magnetic flux [32]. The
same thing happens when the sphere is cooled first and then placed in a magnetic field. Hence
superconductors are also perfect diamagnetic substances. A perfect conductor would resist a
change of flux, while a superconductor expels any flux at all. Hence, a superconductor is not
a theoretical perfect conductor as described by Maxwell’s laws. A superconductor is a perfect
diamagnet, a material which resists internal flux and it is the second hallmark of superconduc-
tors. This phenomena is known as the Meissner-Ochsenfeld effect, or more commonly referred

to as the Meissner effect as illustrated in the figure below (3.3).
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Figure 3.2: Graph of electrical resistance (in Ohm) by temperature (in Kelvin) for mercury
(Hg). Highlighting the abrupt drop in electrical resistance at T = 4.2k obtained by Gilles Holst
experimentally [7].

Figure 3.3: Illustration of the Meissner effect. In 1933 physicists Meissner and Ochsenfeld found
that below critical temperatures the magnetic field is expelled from inside the material [8] .

In summary, a material is considered superconducting if it demonstrates zero resistivity
and Meissner Effect below the critical temperature. The existence of such a reversible Meissner
effect implies that superconductivity should be destroyed by a critical magnetic field, H., which
is related thermodynamically to the free-energy difference between the normal and supercon-
ducting states in the zero field, the so-called condensation energy of the superconducting state.

More precisely, thermodynamic critical field, H. at temperature 71" is given by

H(T) /87 = fn(T) — fs(T) (3.1)

where fy and fg are the Helmholtz free energies per unit volume in the respective phases at
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zero field [10]. Tt was found empirically that H.(T') is quite well approximated by a parabolic

law

HZ(T)/8m = He(0)[1 — (T/T.)*] (3-2)

Various other properties deserves to be mentioned. One of them is &, the coherence length at
which electrons with energy close to Fermi energy are correlated. Moreover, they are responsible
for supercurrents and provide a scale of the superconductivity wave functions . The other one
is the penetration deep A\ that measures how far the magnetic field penetrates the material
surface, both are shown in the table below.

See in Fig. (3.4) a table that contains values of coherence length, critical temperature,

penetration length and critical field of some conductors and compounds [7].

Superconductor T: (K) A0) (4 ) £(0) (4 ) Hea(T)
Nb 92 450 380 02
NbT1 95 1600 50 14
NbN 16 2000 50 16
NbzSn 184 800 35 24
NbzGe 23 - 35 38
Bag K 4B104 31 2200 35 32
MgB2 39 830 37 39
UPt; 05 7800 200 28
UBeiz 09 3600 170 8
URu2S12 12 - 130 8
CelrIns 04 5300 250 1.0

Figure 3.4: Table of coherence length, Critical temperature, penetration length and critical
field of some conductors and compounds [7].

The transition temperature also decreases with the increase in the average isotopic mass,
called the isotope effect. The experimental results within each series of isotopes may be fitted

by a relation of the form

M*°T, = constant (3.3)

where M is the isotopic mass, T, the critical temperature and « is a constant.
The a exponent has an approximate value of 0.45 to 0.50. Although there are exceptions
regarding the veracity of the Isotope Effect for this term that approaches zero for Rubidium

and Molybdenum, for example.
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3.2 Transmission systems; Cold technology

Various uses have been suggested and observed for superconducting materials. Perhaps, the
most trivial one is the transportation of electrical power from one place to another. Electricity
is usually generated in large power stations, and transmitted along power lines to consumers
who could be thousands of kilometers away. Typically, resistive heating in the metal wires
of the transmission lines, usually made of cooper and aluminum, consumes 5 percent of the
electrical power [33]. Hence, possible superconducting wires that could be able to reduce these
losses would be a valuable investment for electricity suppliers

Superconductors do have various other practical uses, especially for specialized applications
where cost is less significant. Among these are superconducting magnets. Wire made from a
superconducting material is wound to form a solenoid and when high currents made to flow
around these solenoids, it can produce strong magnetic fields with flux densities up to 20 Tesla’s,
roughly half a million times the strength of the earth’s magnetic field [34]. The high current
required for such enormous fields would cause conventional electromagnets to overheat.

Superconducting magnets are useful in magnetic resonance body scanners showing up details
of the inside of a patient’s body without the need for surgery or harmful radiation such as X-rays
or gamma rays. Superconducting solenoids are also functional to levitate some of the world’s
fastest trains, known as “Maglev" trains.

Particle accelerators around the world also employ superconducting magnets. For example,
superconducting magnets keep protons orbiting in a circular tunnel of more than 2 kilometers
in diameter in laboratories around the world. The more energetic the particles being studied,
the faster they move and stronger the field needed to keep them in the curved path. Only
superconducting magnets are strong enough.

On a smaller-scale superconductors are used in electronic devices. A Josephson junction can
function as an electronic switch which can switch very fast-within a picosecond (107'% second).
Such switches could substitute transistors to build supercomputers. The Josephson junctions
are also worthwhile in electronic applications like the superconducting quantum interference
device or SQUID. One or more junctions are formed into a loop, and when a magnetic field
passes through the loop it includes a current. A SQUID can be used as an extremely sensitive
device for measuring magnetic fields [35]. It is able to detect changes that are less than a
billionth of the strength of the Earth’s magnetic field. It is essential for various application
like geologists use SQUIDs in search for minerals, chemists use them for monitoring corrosion
and biophysicists use them for imaging activity in the human brain and heart, by detecting the

magnetic fields arising from electric currents flowing in the body.
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3.3 BCS Theory and Pairing Theory.

After the discovery of Onnes in 1911, many more superconducting materials were discovered
in the laboratory in quick succession. Inspite of the few macroscopic theories that were put
forward by F. and H. London [36], Ginzburg and Landau [37], but no suitable microscopic
theory could explain this strange physical phenomenon. The microscopic theory that finally
explained superconductivity was only developed after forty-six years of Onnes’s discovery. In
1957, University of Illinois physicists John Bardeen, Leon Cooper and Robert Schrieffer put
forth their microscopic theory which later became known by their initials as the BCS theory
[38] . Bardeen, Cooper and Schrieffer received the Noble Prize in Physics in 1972 for their

theory that revolutionized the quality of our understanding of superconductivity.

3.3.1 Cooper pairs and the origin of the attractive interaction.

Cooper pairs form the basis of the BCS theory [38]. In 1956, Cooper demonstrated that
even a very weak attraction could bind pairs of electrons where two electrons over the full
Fermi sea spontaneously form a bound Cooper pair if the regions ionic interaction is greater
than the electron-electron repulsion [39]|. Flux quantization and other experimental evidences
support the formation of Cooper pairs and their role in the BCS theory. Hence this result is a
consequence of the Fermi statistics and of the existence of the Fermi sea background.

In order to understand in detail, let us consider a simple model of two electrons added to a
Fermi sea at T=0 with the condition that the extra electrons interact with each other but not
with those in the sea, except via exclusion principle. Applying the general argument of Bloch,
we expect the lowest energy state to have zero total momentum [10], so that the two electrons
have equal and opposite momenta , see Figs. representations (3.5) .

An orbital wave function is given by
Yo(r1,r2) = Z ge’TL e (3.4)
K

where gy is the weighting co-efficient, k& is the momentum and r; and ry, are the radial
vectors. Taking into account the antisymmetry of the total wavefunction with respect to the
exchange of the two electrons, 1 is converted either to a sum of products of cosk.(r; —rs) with
the antisymmetric singlet spin function (o 8y — f1az) or to a sum of products of sink.(r; —rs)
with one of the symmetric triplet spin functions (e, 182+ asf1, B1P2). In these expressions
aq refers to the spin up state of particle 1 and [ refers to the down state. Due to the
existence of an attractive interaction, we expect the singlet coupling to have lower energy

because the cosinusoidal dependence of its orbital wavefunction on (r; — ry) gives a larger
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(b)

K=

Figure 3.5: (a)Schematic representation of a single Cooper pair, added to the ground-state of a
free-electron gas. Two "extras electrons" in the pair state (k 1, —k | ) scatter freely to the pair
states (k' 1T, —k’ ]), in the energy region Er < Fy, Fj < Er+hwp, where the phonon mediated
attractive interaction is operative, and form a bond Cooper pair. (b) Schematic representation
of a scattering of two electrons with wavevectors (k, —k) into (k/, —k’) via the emission and
subsequent absorption of a phonon of momentum fk [9].

probability amplitude for the electrons to be near each other. Therefore,

%(Id - 1‘2) = Z gk COS k'(rl - 1‘2) (04152 - 51042) (3-5)

k>kp

where kg is the Fermi momentum. Thereby, the Cooper pair equation can be written as

(E — 2€k>gk = Z ka/gi (36)

k' >kp

where E is the energy eigenvalue, €, is the quasiparticle energy and Vi is the interaction
potential. Cooper binding is given by B, = 2FEp — E, where Ep is the Fermi energy. To

understand the situation we can consider,

Viw = =V, if |(|< hwp and |(|< hwp;
= 0, otherwise. (3.7)

where hwp is the Debye energy for photons in the lattice and (x = €x — Er, EFr being the Fermi
energy. Thereby, we can write

% = Z (26k - E)il (38)

k>kp

Hence, replacing the summation by an integration, with N(0) denoting the density of states at

the Fermi level for electrons of one spin orientation, we get:
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_ = -N(0)1
Er 2%—E 2 (©) 9Ep — E

In most of the superconductors, it is found that N(0)V < 0.3. This allows the use of the so
called weak-coupling approzimation, valid for N(0)V < 1, in which the solution of the preceding

1 Erthop g 1 2Ep — E + 2%
me/ ‘ p S2F _ 21 hp (3.9)
equation can be written as:

EF =~ 2FEp —2hwp e 2/NOV
28y — B, (3.10)

Q

Thus indeed, there is a bound state with negative energy with respect to the Fermi surface
made up entirely of electrons with k& > kg, i.e., with kinetic energy in excess of Er. The
contribution to the energy of the attractive potential outweighs this excess kinetic energy,

leading to binding regardless of how small V is.

3.3.2 BCS Equations

The Fermi sea is unstable against the formation of a bound Cooper pair when the net interaction
is attractive. Hence, the pairs tend to condense until an equilibrium point is reached. The size
of the Cooper pairs are much larger than the interparticle distance. This means that a large
number of other pairs are present in between a given pair, as many as 10° other pairs. This
large overlap of pairs contribute to a correlation of the other pairs. The collective state can be
thought of as the Fermi gas being “condensed" into a “macromolecule" that includes the entire
superconducting system. Therefore, the macromolecule remains superconducting until the gap
energy is overcome.

At the transition temperature, the superconducting state becomes more favorable, and goes
to a lower energy state. At temperatures higher than the transition temperature the Cooper
pairs tend to dissociate leading to the normal state of the material. This explains the jump
in the specific heat when the material moves from superconducting to normal state. Unlike
liquid and gas phases, the phase transition from the normal state to the superconducting
state is a second-order type. This means that when a material is cooled so that it becomes a
superconductor, the transition takes place almost instantaneously without any latent heat, but
nevertheless with a discontinuity in the specific heat. This can be seen from the abrupt drop
in resistance within a small temperature range in the Fig. (3.2) .

In the microscopic theory, BCS (Bardeen, Cooper and Schrieffer) took a variational ansatz,
designed to take maximum advantage of the Cooper condensation. In BCS theory the trial

ground state |1,) is taken to be,

[g) = T ] (e + viccir o) )l6bo) (3.11)

k
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where |@g) is the vacuum state with no particles present. The notation ci, ( cky) denotes
the creation (annihilation) operator of an electron with momentum k and spin up. |uy|* is
the probability that the pair (k 1, —k |) is unoccupied and |vk|? is the probability that it is

occupied. The complex variational amplitudes satisfy,

Uk — U_k (312)
Vk = UV_k (313)

and the normalization requirement is
|uge|*+ o= 1. (3.14)

The product is over all k values allowed by box normalization conditions [40].

It should be noted that the variational state of equation (3.11) does not contain a fixed
number of particles, since only the probabilities of pair occupation are specified. In the early
days this was seen as a weakness of the formalism, although, for example, a superconducting
specimen is normally probed by current leads, so that the number of electrons it contains is
genuinely variable. That exists a "number- phase uncertainty relation", Nd¢ ~ 1 where 0N is
the uncertainty in the number of particles NV and d¢ is the uncertainty in the phase ¢. It must
be noted that there exists a phase difference by a factor of ¢ between uy and vy, where ¢ is
independent of k£ and this is the phase for the BCS state. It can be shown that the variational
energy is independent of the phase.

The "pairing Hamiltonian" or "reduced Hamiltonian" in terms of the creation and destruc-

tion operators is given by,
H = Z €xNko + Z ViaCer € k) C—qiCqt (3.15)
ko kq

where ¢ _cx, = nko 1s the particle number operator, Viq is the matrix element of the interaction
potential. The solution can be obtained by using the variational approach as done in the original
BCS paper [38].

As the number of particles is variable we need to minimize the expectation value (v,|H|v,)
subject to the constraint (iy|N|i,) = N. Here N is the number operator and N is the
mean number of particles in the system. Hence by the method of undetermined multipliers we

minimize the Hamiltonian
5<¢g |7'[_H/N|¢g> =0

where p is the chemical potential. The inclusion of — uN is mathematically equivalent to taking
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zero of kinetic energy to be . Hence, writing more explicitly we get

6(thg | Y Gemier + >, ViaCig € iy C-aiCat | g) =0 (3.16)
ko kq

The number operator, N appears in conjunction with the kinetic energy operator, hence
effectively the single particle energies (i are measured from Er. Considering the ground state

in equation (3.16) we get

(g | 1 = pN 1) =) 2G|vil*+ ) ViqUtctiqrg (3.17)
k kq

which is to be minimized subject to the condition that |uy|*+|v|*= 1. The condition for self

consistency can be written as

Aq Aq
Ap=-> -2 3E, Vg =—>_ 2621 Cz)l/Qqu’ (3.18)
q q
Considering,
qu = _V7 if |Ck’7 ‘Cq|< th;
= 0, otherwise. (3.19)

with V being a positive constant and Inserting this Viq in (3.18), we find

Ax = A, if |{|< hwp;
= 0, otherwise. (3.20)

Writing the summation in terms of an integral we can write,

hup hw
. -1 D
V / (A2 +C2 (AZ: )i = sinh N (3.21)

In the weak coupling limit we get,

th

~ Sinh[1/N(0)V]

~ 2hwpe YNOV (3.22)

Physically, the parameter A is the minimum excitation energy, or the energy gap. A supercon-
ductor behaves as if there were a gap in energy of width 2A centered about the Fermi energy

in the set of allowed one-electron levels.
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BCS theory at nonzero temperature

The BCS state at T' = 0 is described by the wave function v, of equation (3.23).
() = [ ]10) (3.23)
K

with
1) = ] ] (uxc|00) + wac11)) (3.24)

k

where |00) and |11) represents the unoccupied and the occupied pair respectively. At 7" = 0
only the pair states |00) and |[11) occur, but for T > 0 it is required to consider the broken
pair states |01) and [10). Specifically, fi (Fermi function) is the probability that |01) and |10)
are occupied, so that (1 — 2f) is the probability that the pair state ¢y of equation (3.24) is

occupied. Hence we can redefine A for any value of temperature from the equation (3.18) as,

A = =) Viqlqug(l —2fq)
q

_ —kaqz%‘;u 270) (3.25)

As FJ is an excitation energy, shows that, just at zero temperature, |Ak| is the energy gap and
Ex must be a positive quantity > |Ag|. Since fq is the thermal occupation probability, this

shows that A, is temperature dependent. The usual Fermi function is defined as

fa= (P 1) (3.26)

where = 1/kgT. Since Eq > A, fq — 0 at T'=0 for all q.
Hence considering equations (3.25) ( 3.26) we get,

A E
Ak =—) Vigm tanh ——. 3.27

k Zq: Kaop, M 2ksT (3:27)
Making use of the BCS approximation that Viq = —V and Ay = Ay = A, the self consis-

tency condition becomes,

(3.28)

1 1 tanh(8Ey/2)
AR ol

2 2F ’

a temperature dependent form of the gap equation. See the representations f A Figs. (3.6)
(3.7).
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A(T)

Ay [ A(0) = 1.76kT,

| | | |
0 0.2 0.4 0.6 0.8 1.0

I
T.

Figure 3.6: A(T)/Ag vs T'/T where Ay is the zero temperature order parameter. The normal
state persists for 7' > T [10].

—
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Figure 3.7: Representation of the gap around the Fermi energy comparing the superconducting
state and the normal state(T=0) [7].

3.4 Thermodynamic parameter - Specific heat

The temperature dependencies of the order parameter can be determined from equation (3.27).

Thereby, the electronic entropy is given by

Ss(T) = =2kp > _[(1 = fi) In(1 = fii) + filn fi]. (3.29)

k

Given Sg(T'), the specific heat can be calculated by using

~_dSs  _dSs
Cs(1) =T = =072
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Hence using equation (3.29) we can write

2
Cs(T) = 2Bkp > —g—g (Eﬁ - % %“) (3.30)
k

The first term in the above equation is the usual one coming from the redistribution of quasi
particles among the various energy states as temperature changes. The second term describes
the effect of the temperature-dependent gap. The normal specific heat Cy(T') can be obtained
from the above expression by putting A(T) = 0. Replacing Ex by |(i| in (3.30) one gets

0
(b)

|~

Figure 3.8: Graph of specific heat normalized with respect to temperature. Cs is continuous
at the critical temperature so there is a second order transition [10].

2 2
Cn(T) = AT = %N(O)I%T (3.31)
which is continuous at T,.. There is a discontinuity in the superconducting specific heat Cg
at T = T, due to the fact that the second term of equation (3.30) is finite below 7, where
dA?/dT is large, but is zero above T,. This jump indicates that the normal superconducting

transition is a second-order phase transition. The jump in the specific heat AC' = (Cs — Cy)

Te
can be found to be.

AC =) L= (3.32)

See its representations in Fig. (3.8).



Chapter 4

Superconducting states of single-layer

graphene.

Superconductivity in graphene has attracted a lot of attention in recent years. Several studies
on the transport mechanism in graphene demonstrates the observation of the proximity in-
duced superconductivity in graphene [41]. The energy spectrum with linear dispersion in the
reciprocal and peculiar space and the Dirac nature of the quasiparticles allows the presence
of supercurrents in long junctions [42] [43]. Several theoretical studies has been performed on
the differential conductance in normal-superconductor interfaces [44] . Josephson current in
graphene SNS junction was considered in [45] [46]. The importance of the above studies lie in
the various possible applications like current switches [47], spin-current filter [48], and many
more.

The above advancement in the tunneling processes stimulated a lot of enthusiasm in mak-
ing graphene an intrinsic superconductor. Various parent compounds like CaCg and KCg are
low-temperature superconductors although graphite is non-superconducting [49] [50]. How-
ever, several possibilities of observing superconductivity have been proposed till date like the
plasmon-mediate mechanism [13], proximity effect on adsorption of metallic atoms electronic
mechanism involving Van Hove singularity [51], presence of spin-density wave or a charge-
density wave and other competitive phases [52] [53].

Moreover, possible superconductivity in graphene was demonstrated through different cal-
culations that demonstrate that for pure graphene the electron—phonon coupling constant is
very weak and phonon-mediated superconductivity does not occur [54]. Nevertheless, recently
first-principles calculations predicted the presence of superconductivity in chemically doped
graphene. For example, superconductivity with critical temperatures around 8k and 17k was
detected in lithium-doped graphene (LiCg and LisCg , respectively) [55]. T, around 13k and
30k were demonstrated for electron-doped and hole-doped graphene, respectively [56] [57]. Fur-
thermore, hole-doped graphene was predicted to be a high T, superconductor with a transition
temperature above 80k [58|. Hence doping graphene seems to be a fruitful way of producing

superconductivity in graphene.

37
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Regardless of the microscopic origin, the superconducting state in graphene can be studied
considering the symmetries and the possible pairing observed in graphene. The article "Super-
conducting States of Pure and Doped Graphene" by Bruno Uchoa and A.H. Castro Neto [13]
serves as an exponent of research in this area, including for this dissertation, serving as a basis
for a concise understanding of the addressed subject. It explains how the study of the supercon-
ducting state in pure and doped graphene is carried out, with an emphasis on retarded Green
equation methods, plasmon quantizations and based on proximity effects to induce cooper pairs
in pure graphene making it an intrinsic superconductor [11] [5] [13].The presence of supercon-
ductivity demonstrates that Cooper pairs can propagate coherently in graphene. Graphene is
a zero-gap semiconductor, but bilayer graphene has been shown to be a tunable gap semicon-
ductor. Hence, modifying graphene it might be possible not only to obtain the gap but also
create a superconductor.

In ref. [11] they exhibit a mean-field phase diagram for spin-singlet superconductivity
where two types of pairing are observed. One is the s wave pairing and another of p+ip orbital
symmetry. The s wave demonstrates an isotropic dependence on momentum k whereas the
p + ip dependence can be seen from the figure below (4.1). From the orbital point of view of
the crystalline lattice, its composition only by carbon atoms in bonds of the type sp?, mixed
bonds of the atomic orbitals of the band s and band p form the honeycomb structure. The
resulting hybridization comprises low density sub-levels that even at the lowest temperature
close to absolute zero does not generate the need for an intraband model study related to this
phenomenon. The maximum p wave infers in the matching symmetry around the Dirac points.

Such symmetry is lost as we move away from the points.

Figure 4.1: a)Symmetry of the p wave in the space of moment near the points of Dirac.b) The
symmetry is broken away from the points of Dirac. The gray lines represent the real space and
the black the imaginary space [11].

The mean-field phase diagram demonstrates that both the above types can be observed

but with an substantial dependence on the chemical potential and the relative values of the
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interaction parameters. Other types of symmetry have also been proposed that could explain
the presence of superconductivity in graphene. Black Schaeffer and Doniach [45] described a
pairing of the type A;; = A1e!®™/37 with j = 1,2, 3 for the three neighbors of the site leading
toin d,2_,2 symmetry in real space and d,, in imaginary space . Despite the effort, this pairing

does not preserve all the translation and rotation symmetries of the lattice.
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Figure 4.2: Energy band with respect to moment k for different substrates. For different values
of state density d1 = 0.0035,0.0071,0.0089,0.107 in order to open a gap in the original energy
band of graphene [12].

When graphene is placed on substrates to induce cooper pairs in the sample, gaps of a small
order of magnitude were observed (approximately 100 meV ) and 250meV for silicone substrates
[12]. On the other hand,in the honeycomb structure with Boron Nitride (BN) atoms, excitation
energies with a gap band of 5.56eV has been observed [12]. On different semiconductor surfaces
such as silicon, lead, and tin, interaction energies of the order of gy = 3.3t = 9.34 €V and
g1 = 2.0t = 5.6eV are observed. Figure (4.2) shows the momentum dependencies of the
superconducting gaps for various values of the density of the surface.

In the next section the Model Hamiltonian is considered in our study to demonstrate the
presence of superconductivity in graphene using a mean-field approximation. The temperature
dependencies of the order parameter and also the dependencies on the interaction parameters

will be counsidered.
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4.1 Model Hamiltonian

The Hamiltonian considered to study superconductivity in Graphene can be given by:
H=H,+H, (4.1)

where the term H, is the tight-binding Hamiltonian for graphene considering the hopping

parameter and the chemical potential. H; can be written as

Hy=—t > (albje+hc)—p Y (al,ai,+blbi) (4.2)

<ij>, 0=+ i,0=%

The second term H, represents the electron-electron interaction and is given by:

g
HP = EO Z[ajgaiaaj_gaifa + b;'fgbiobT b'L O' + g1 Z Z azo—afza'b;o.lbja'/ (43)

i,0 <ij> o,0’

t - is the hopping parameter, u - Represents the chemical potential, gy and g; are on-site and

the nearest-neighbor electron-electron interaction energies, respectively. The operators al

zo‘?aa'

are the creation and destruction operates in sublattice A which create or destroy the electron at

points in the vicinity of its ¢ spin p sublattice. The operators b by perform the same process

(1ol
of creation and destruction in sublattice B. i(j) labels the sites in sublattice A(B) and o is
the spin. Hp represents the electron-electron interaction of opposite spins. go and g; are the
on-site and nearest neighbor elctron electron interaction energies.

If 1 = 0 we have particle-hole symmetry around the Dirac points, otherwise this symmetry
is broken the term that surrounds it in the Hamiltonian introduces an electron surface (u < 0)
or holes (1 > 0) around the Dirac points producing a finite density of states.

The order parameters for the singlet spin are:

for s wave:

Ao =< ;a4 >=< bubn >

and for the p + ip wave :

Avij =< aybjy — bipagy, >

where we defining both as a real number. Then A{ = Ay and A} = A;.
Using the mean field theory (see appendix C.5) the electron-electron interaction of the same
site of sublattice A, can be written as
Zgoa gy = Z[go <alal | > ai,ai o+ go < Giga;_o > alal_,
1,0

— g < al al  >< aga;, >].

ZO‘ZO’
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Hence,

Y qualaigal jai s = ) [90A5aieai o + goloal,al, — oA (4.4)

1,0

Similary for the sublattice B we have

> bl bicbl bie = ) (g0 < bl , > bigbis + go < bicbi_e > B,bL,

1,0

— g0 < bT bT >< bwbi_g >]

10 "1—0

giving rise to

Zgob* biohl_bie = Y [90A5bicbi-s + goAobl,bl_, — goA]]

1,0

Now for the electron-electron interaction of the nearest neighbors we can write

g1 Z Za;awb}o,bjg/ =g Z[ naﬁbﬁbﬂ + aLawb]Tb] ] (4.5)

<ij> o,0’ <ij>

Hence, the above term can be rewritten as:

g1 Y > alaibl,bie = g1 Y (=BlBi; + D Dyj) (4.6)

<ij> o,0’ <ij>

where Dij = afinj¢ — aiibﬁ € Bz] a’szJT + G,L’bji.

The above relation can be demonstrated remembering the anti-commutation relationships

of the fermion operators of the two sublattices of graphene. ( see appendix A.7). For sub lattice

> lao,al)] 2500 (4.7)

o,0!

A, we have

Similar relations for the B sublattice can also be written. Considering the expression B;; =

a bt + a 1bjy we can write down the product of the operators as

T _ T T
_szBij = (bjTaiT + bj¢ai¢)(az'rb]i + aj'ibji)
_ T T T T
= —bﬁana”bﬂ — bjiaiia”bﬂ

T T T i
_bjTa’iTai\Lbji — bjiauawbﬂ
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In the same manner for the operator D;;, we get

T _ oot oot
D;;Di; = (bjﬂm - bjTau)(ainji — aiybjt)
_ b Tt
= bj azyairbj, — bj a; ainby

. Pt
—bjyaiai bjy + bjra; aigbjy

Hence, applying the anti-commutation relations and thereby adding the terms we have,

g1 ) [=BLBy + DDyl = g1 ) lalanb] by, + afaiblbi]
<ij> <ij>
+ g1 Z [GIT&in;Tb‘T + CLLCLub;ub‘i] (48)
<i5>

Mean-field theory has the enormous advantage of being mathematically simple, and it is almost

invariably the first approach taken to predict phase diagrams and properties of new experimental
systems. Therefore,

g1 Y>> alaighl b = g Y _[<Di;> D+ < D, > Djj— < Df; >< Dj; >]

<ij> o,0’ <ij>
S [< By > Bt < Bl > By~ < Bl, >< B,

<ij>

As we already know that < B;; >= 0, we have:

g1 > Y alaigbl b =g Y _[< Dij > D+ < DI, > Dij— < DI, >< Dj; >]

<ij> o,0’ <ij>

91> alaigbl b = g1 [Aglaldh, —albh) + Al (ainbs — aibir)]

<ij> o,0’ <ij>

— 3173 (4.10)

where 3 represents the sum of the three closest neighbors. Considering all the above terms

and then rewriting the Hamiltonian Hp, we have
Hp = Z gO[ASCLiTau + AOGITCLL + Agbﬁbu + AobijL]

+ ) gi[Auis(aldl, — al bl + Al (aib;) — aiybjr)]
<ij>
AfNy  AIA,

—90 5 — 90 5

— 31 A7 (4.11)
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Defining Ey = —goA2 — 391 A2, we have:

Hp = Ey+ g\ Z(a%al + szTbL) + h.c+ Z glAlij(aijL - aLb}T) + h.c (4.12)

7 <ij>

In Nambu bases considering the wave function to be ¥ = (axs, bir, aT_kibT_ki), we can rewrite

the tight-binding Hamiltonian as:

H=> UlHV + Ey (4.13)
k

But to write the matrix we first need to write the Fourier transform of the Hamiltonian in k

space. So now considering the Fourier transform
1 B
ar(R;) = — Z exp™Fi gy, (4.14)

and .
ba(Rj) = — Zexpik/ﬂf bk’o (415)

and its conjugate transform:

—ik.R; bL
o

() = <= Y e
k

where k and K are the vectors of the first Brillouin zone in sublattices A and B , respectively.

Now representing the operators in that space.

3
S (R (R) = 3N 1 S exp M exp K al by,

<ij>,0 j=1 ioc kK
3
.
= g E exp™% af by (4.16)
j=1 ko

1 —_
where does the Dirac Delta function used for our calculation is given by dyr = N Z exp HkK)- B

Similarly,

1 ; T
Z al (R;)as(R;) = N Z Zexp”kRi exp™ i gl apy (4.17)

<ij>.o <ij>,0o kk’/

Z al i, = Z altaaka (4.18)
©,0 k,o
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Similarly we have:

> b(R)bs(R, Z > " exp i exp™ b b, (4.19)

<ij>,0 <zg> o kk’/

> blbie =Y bl b (4.20)
©,0 k,o

Specifying the spins we can write the relevant terms as

> ahay, =D ajaly (4.21)

<ij> k
> bl = Z babl s, (4.22)
<ij>

Moreover, we get,

3
Dakby = Y D exp™¥aly bl
=1 k

<ij>

D albl = ek)al, by (4.23)
k

<i>0

where

D) exp™ = ¢(k) (4.24)

k j=1

Hence, considering all the terms as shown above, we can write the total Hamiltonian as

H = _t[¢(k>aLgbka + qb(k)kao—ako} - ,U/[a;[(gaka + b;f{gbkcr]
+ Z g0\ aLTaT K T kaTb_ki) + h.c.

+Zg1 Lafy bl + b al)) + hee. + By (4.25)

Noting that in the space of the moments A; is written by:

Ay = ZAMJ exp ® i) = A p(k)

ij

And, for first order approximation in k next to Dirac points in Qq [4], Ak is rewritten as:

Aqo+k = (3a/2) Ay (ky + iky)

We then have the symmetry of the exotic wave p -+ ip in terms of the number of waves, see
Fig. 4.1.
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4.2 Methodology

The superconductivity in graphene can be studied in details using the expression of the Hamil-
tonian H. It consists of a hopping term relevant for the two sublattices of graphene resembling
the kinetic energy part of the Hamiltonian. The chemical potential energy term is important
to consider the zero of the kinetic energy to be u. In neutral graphene the chemical poten-
tial crosses exactly through the Dirac point (u = 0). Moreover, the pairing terms involve
the electron-electron interactions. The Hamiltonian can be diagonalized in the Nambu basis

Uy = (akT,ka,aT_kJ/bT_m) as shown earlier. Therefore, writing the Hamiltonian in matricial

form,
—[ —tox 90D 91A1,k
~ Lok — A _ A
- Pr H J181,-k  GoLo (4.26)
9o G1A1_x iz tox
g1l1x 9ol Loy 0

and utilizing the the secular equation det(H — EI) = 0, we can obtain the eigenvalues and

eigenvectors needed for further study. Hence,

—pu—FE  —tpx [ VAV TPAS R
Loy —n—=E gl _x gl

det =0 (4.27)
glo gD x p—E  tok
g1ld1x  golo top, p—F
The eigen values are given by,
Bus = £V/(t | d | +510)2 + (9000 + sg1 1 | ¢xc |)? (4.28)

where s = +1 and Fy,s = Eyxs where a = £1, so we have the eigen-energies as: Fy. ., Fx 1, Fx, Eyx .

So, the Hamiltonian can be diagonalized and rewritten as:

H =" Brasmigys + Eo

kas

The self consistent equations for calculation of the superconducting gap parameters and
also its temperature dependencies can be obtained from the free energy (F') expression. Now
the two mean-field equations can be obtained by the stationary condition of F' with respect to
the corresponding order parameters OF/0A,, OF/0A;. The free energy of graphene is given

by
1
F= -3 D In(1 4 e PFres) 4 Ey (4.29)

k,a,s
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1
where we have § = k—T.Considering the four eigenvalues Fy_, = —Fy 4 e By = —FEy,_ of

the Hamiltonian we can simplify the free energy and write it as

1 Fra
F = -3 > 2 (2 cosh %) + E, (4.30)

ks

The derivative of the energies are:

dE 1
A, ~ 3m 29080+ 200000 | 6 )
dE,_ 1
A~ 35 (20080 = 2009181 | 61 )
dr 1
i~ 2 oA o +2909180 | o |
+
dEy._ 1

A = m(ngAl | o I —2909100 | &1 |)

The resulting two equations for the gaps Ay and A; are written. Thus the of self-consistent

equations are:

1 A A Exs
L LU (ﬁ) (431)
s ,8
—5 Z | dx | 91A1E|1fk | +59080) tanh (g;s) (4.32)
k S

The above two equations can be solved numerically to obtain the gap values at T' = 0. Vary-
ing the temperature, we shall also the temperature dependencies of the two order-parameters
and also the value of the critical temperature of the system where the second order-phase
transition is observed for graphene. Moreover, the temperature dependencies also allows us
to calculate the thermodynamic parameters of the system like entropy, specific heat, internal
energy and also the free energy. In the next section we shall discuss in details the dependencies

and also calculate the specific heat of graphene.

4.3 Results and Discussion

In this section we would like to firstly consider the nature of the spectrum obtained from
the pairing Hamiltonian of graphene. Secondly a numerical calculation of the model should be

performed in detail to understand superconducting nature of graphene. The spectrum energy
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is given by the equation.

Bys = £V/(t | dxc | +510)% + (9000 + 5141 | dxc |)? (4.33)

In the s wave state where Ay # 0 and A; = 0 e u # 0, the spectrum is given by Ey, =
++/(t | ¢x | +5p)% + (9oDo)? and the gap energy of the s-wave is given by Eéo) = 290Ap. On
the other hand for the p+p state when we have Ag =0, Ay #£ 0 e u # 0, the order parameters

of the p wave is given by:
Eél) =2 | pgr Ay | /)12 + 91 AT (4.34)

where we observe a linear dependence on chemical potential. Varying the chemical potential

we are able to study the system with doping. For Ag =0, A; # 0 e p =0, we can write

Bws = V(] o )2+ (1 A1)? (4.35)

Defining an effective hopping parameter ' = t1/1 + g1A}/t2, we get Fy, = t' | ¢x |, thereby
the effective hopping parameter renormalizes the Fermi-Dirac’s velocity.

Let us consider the more general case where Ay # 0, A; # 0 e u # 0, we have the presence
of the both the gaps of s and p + ip symmetries and the gap is given in terms of the parameter

has | tgoAo — g1 1A |
0,1 020 1 1
Eé )—2 ”

(4.36)

The mean-field phase diagram of graphene has been studied with p [11] which demonstrates the
three distinct phases depending on the interaction parameter: (i) s-wave phase for attractive
values of the on-site interaction (go < 0) and repulsive nearest neighbor interaction (g; > 0).
(ii) p+ip -wave phase for attractive nearest neighbor interaction (g; < 0) and repulsive on-site
interaction (go > 0) (iii) a coexistence phase of s and p + ip phase for attractive values of the
on-site interaction (go < 0) and nearest neighbor interaction (g3 < 0). As we know that the
physical realization of superconductivity is difficult we can obtain superconductivity on doping
the material that shifts the chemical potential values to values away from the Dirac point. This
could be possible for e.g by chemically doping graphene with a metal. Hence to understand the
superconductivity caused by doping in graphene we consider the phase that has coexistence of
the two gaps for u > 0.

The self-consistent equations obtained previously was numerically solved to obtain the values
of the order parameters and their dependencies on temperature. All our results in this work
are in units of ¢ unless mentioned otherwise. The parameters utilized in our work were chosen
as per ref. [11] and also in accordance with the experimental values of graphene. In Fig. (4.4)
we plot the temperature dependencies of the order parameters Ag and A;. The figure exhibits
three different sets of the interaction parameters: go = —0.15, g1 = —0.1 (blue solid line) ,
go = —0.2 , g = —0.1 (black solid line ) and gy = —0.25, gy = —0.1 (red solid line). The

chemical potential value for the above sets of calculation were chosen to be y = —0.1. The
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gapless

Figure 4.3: Mean field phase diagram [13].

higher value of the gap parameter represents the s-wave whereas the lower value is for the p+ip
symmetry. The coexistence of the order parameters is observed for all temperatures below the
critical temperature. Moreover, A is always larger than A; for all T. As the on-site interaction
go increase we observe a rise in the T, values. For (go = —0.15, g; = —0.1), T¢ is 4.8k, whereas
for (go = —0.2, gy = —0.1), T, = 12.4k and for (go = —0.25 ,9; = —0.1), T, = 25k.
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Figure 4.4: Ay ,A; vs T for go = —0.15,g1 = —0.1 (blue solid line), go = —0.2 ,g; = —0.1(black
solid line ) and gy = —0.25 ,g; = —0.1 (red solid line) and p = —1.0.

Fig. (4.5) exhibit the temperature dependencies of Ay and A; with various values of the

nearest-neighbor interaction. The figure exhibits three different sets of the interaction param-
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eters: (go = —0.2,g; = —0.05 (blue solid line) , go = —0.2 , gy = —0.1(black solid line ) and
go = —0.2, g1 = —0.15 (red solid line). The higher value of the gap parameter represents the
s-wave whereas the lower value is for the p 4+ ip symmetry. We observe a similar trend and
qualitative behavior as compared to Fig. (4.4), where we have a unique critical temperature
and the gap values increases with the increase in ¢g;. As the nearest-neighbor interaction g¢;
increase we observe a rise in the T, values. For (go = —0.2,g; = —0.05), T¢ is 9.5k, whereas for
go = —0.2,91 = —0.1 , T, = 12,4k and for (go = —0.2, g = —0,15), T. = 16.0k. The figure

demonstrates that the on-site interaction has a larger effect on the critical temperature values

of graphene.
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Figure 4.5: Ag, Ay vs T for g9 = —0.2, g1 = —0.05 (blue solid line), g9 = —0.2,g; = —0.1
(black solid line ), go = —0.2, g; = —0.15 (red solid line) and p = —1.0..

In Fig. (4.6), the dependence of the order parameters on chemical potential was studied.
The dependencies were studied for the interaction parameters go = —0,2,9; = —0, 1 for three
values of p: = —1.0 (red solid line), p = —1.1 (black solid line), u = —1.2 (blue solid line).
The critical temperatures for y = —1.0, —1.1 and —1.2 are 16K, 7k and 4.6k , respectively. The
higher value of the gap parameter represents the s-wave whereas the lower value is for the p+1p
symmetry. As we increase doping we observe a decrease in the critical temperature of graphene.
With further increase in u, superconductivity in graphene should disappear completely.

Next, the normalized order parameters Ao (7T")/Ag(Te.) and A1(T)/A;(T.) are plotted vs the
normalized temperature (T'/T.) for go = —0.2, ¢y = —0.15 for p = —1.0, —1.1 and —1.2. It
also includes formgy = —0.2, g = —0.1 for p = —1.0, —1.1 and —1.2. An universal character
of the parameters is observed for both type of order parameters irrespective of the interaction

strength and doping of graphene. It also resembles the characteristic curve of the BCS theory
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Figure 4.6: Ag, Ay vs u for go = —0.2, g = —0.15 andp = —1.0 (red solid line), p = —1.1
(black solid line), u = —1.2 (blue solid line) .

[10].
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Figure 4.7:  Ao(T)/Ao(T.) and A(T)/A(T.) are plotted vs the normalized temperature
(T/T).
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Figure 4.8: Critical temperature vs |u| for go = 0.2 and g; = 0.15.

The dependence of the critical temperature of graphene [11] on interaction is generally given

by the following expression:

To =~ 2pu(y/m)exp(—A(gs/go — D~ — 1) (4.37)

where ~ is Euler’s constant. Hence we should expect that the critical temperature drops
exponentially with the chemical potential and should tend to saturate for higher values of
potential. In Fig. (4.8) we plot the critical temperature vs |u| for go = 0.2 and g; = 0.15. We
observe that the critical temperature decreases exponentially with |y initially and tends then to
saturate for higher values of the chemical potential until it vanishes completely for high values
of the chemical potential. In Figs. (4.9) and (4.10) the dependence of T, on the interaction
parameter | go | and | ¢g; | are considered. The line drawn has been provided as a guide
to the eye for better observation. T, increases with the increase in the interaction strengths.
However, the dependence of T is more pronounced on | gq |, as was also observed earlier. The
characteristics of superconductivity in graphene was observed from the graphs on the order
parameters and the nature of the critical temperatures. The temperature dependencies of the
order parameters allow us to calculate the thermodynamic properties of the system. Hence, in
the following figure we demonstrate the temperature dependence of electronic specific heat of

the system. The general equation for specific heat is:
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Figure 4.9: Critical temperature vs |go| for © = —1.0 and g; = —0.1.
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Figure 4.10: Critical temperature vs |g1| for p = —1.0 and go = —0.2.
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Figure 4.11: Specific heat C5(T")/C,(T.) vs T /T, for go = 0.2, g1 = 0.15 gy = 0.2 and g; = 0.1
for 4 = —1.0 (dashed line) and p = —1.1 (solid line).
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phase of graphene. Therefore, we have the specific superconducting heat in which the first time

where and % are the derivatives of the two types of gaps in the coexistence
refers to the redistribution of particles and the second term is derived from the parameters of
the order of waves s and p-+ip. Figure (4.11) exhibits the specific heat vs temperature plot for
go=0.2, gy =0.15 g0 = 0.2 and g; = 0.1 for p = —1.0 (dashed line) and p = —1.1 (solid line).
The jump AC(T)/C,(T.) in the specific heat is seen to be dependent on u. AC(T)/C,(T.)
is found to be 1.34 for p = —1.0 and 1.73 for p = —1.1. It increases with the increase in u
denoting a rise in chemical doping of graphene. The above rise in the jump for specific heat
with doping was also observed in ref. [59]. Moreover, it is to be noted that the jump in the
BCS case is of the order of 1.43 [10]. Hence with doping we can surpass the jump in the specific
heat for graphene.



Chapter 5
Conclusions

The main objective of this was to obtain the behavior of the order parameters, we specifically
analyzed the mixed-phase wave for interaction of attractive origin, the critical temperatures and
specific heat of the single layer superconducting state of graphene due to the doping as well as
to evaluate the critical values for the transition from the superconducting state to the normal.

From the definitions of order parameters via mean field theory we obtained the s-wave and
the exotic wave p+ip. Also,we got the eigen-energies and, consequently, the gap energies Eéo),
Egl) and Eg(,o’l) were presented [13]. Minimization the free energy of the system resulted in
self-consistent coupled equations.

The self-consistent equations were solved numerically to obtain the gap values at zero tem-
perature. Order parameters (for attractive energies) coexisted at temperatures below T that
vanishes simultaneously at the same critical temperature. Moreover, A is always greater than
A1. As we increase doping, the critical temperature decreases. The graph of normalized order
parameters is also presented. The universal characteristic of the parameters is observed and is
found to be similar to the characteristic curve of the BCS theory.

Critical temperature drops exponentially with chemical potential and should tend to satu-
rate for higher values of potential. The normalized specific heat dependence on temperature
was obtained. The jump A¢ exhibits similarity to the BCS theory and with the increase of p,
(s also rises. Hence with doping we can surpass the jump in the specific heat for graphene.

We conclude that there is a direct influence of the doping of superconducting states in
the single layer of graphene as observed in the dependencies of the order parameters, critical
temperature and also in thermodynamic quantities. As a perspective, we intend to extend this
research by increasing the amount of graphene layers in order to look for critical optimized

values such as the rise in the critical temperature.
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Appendix A

Comutation and anti-comutation between
fermionic creation and destruction

operators.

The wave function of anti-symmetric N-particles in the first quantization is generally written

by the Slater determinant, as follows:

¢1(r1)  ¢i(r2) o ¢ulrn)

|¢>_L Ga(r1)  Pa(r2) . B2(rn)

on(rl) on(r2) ... on(rn)

where ¢y (ry) represents the Nth atom in position N.

On the other hand, an ingenious way to rewrite fermions is through the description of the
number of occupation of these particles. Thus | ny, > for the number of occupation of N
particles and knowing that the fermions obey the Pauli principle of exclusion, which states
that two identical fermions are not allowed (with the same quantum numbers) to occupy the
same state and therefore ny = 0,1, where | 0 > represents the unoccupied state and | 1 > the

occupied state. In general denoted by:

10>=[0,..,0, 0 ,...,_0 ,0,..> (A1)
k Kk’

In the states k and k’.

Denoting cL e ¢k for the creation and destruction operators, respectively, of a fermion in the

state k, we get, ¢f [ 1) =0, ¢ | 1) =0 e ¢ | 0) = 0. So we have the number operator ¢l c:

cher | me) = muc | mae) (A.2)
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where ny =0, 1.

o, |0>=/0>=0,..,0, 0 ,.. 1 ,0,...> (A.3)
k k’

chel, |0>=/0>=]0,..,0, 1 ,..,_1,0,..> (A.4)
k k’

Let us consider the operators in the reverse order and we get,

A [0>=—]0>=]0,..,0, 01 ,..., 0 ,0,..> (A.5)
k k’

el |0>=—=10>=[0,..,0, 1 ..., 1 ,0,...> (A.6)
k k’

obeying the anti-symmetry of fermionic particles. Therefore:

(el +cel)y=0 (A.7)

The commutation relations are

[CEU7 Cl;’a’]+ = [Cl*zg’ C;;"/J/]+ =0 (A8a)
(ko Ciorl+ = Ok 0557 (A.8b)
CEU’ Clz’o’+ = CEO” C;}/a"+ =0 (A8C)
ko Cpigry = 00055 (A.8d)

Where o e ¢ represent the electron spins.



Appendix B

Tight Binding model.

B.1 Electrons in a periodic potential

Electrons placed in a potential V(k) in which the periodicity is the same as uy,(k) and its

eigen-states of a periodic Hamiltonian are described by Bloch’s states as we show bellow:

Uren (1) = exp™ T gen (k) (B.1)

k is the crystalline moment with | k |< kg and n is the band index. Considering the bands
are well separated, enough to use the local bands. The Hamiltonian in the space of the moment

can be written as:
H= Z EkCLUCkU (BQ)
ko

B.2 Wannier states

The name ’tight binding’ suggests that this model of quantum mechanics describes the prop-
erties of electrons strongly bonded together in solids. The electrons in this model must be
strongly bonded to the atom to which they belong and must have limited interaction with
states and potentials in the surrounding atoms of the solid. Thus, the electron wave function
becomes very similar to the atomic orbital of the free atom to which it belongs. The electron
energy will also be close to the electron ionization energy in the free atom or ion because the
interaction with potentials and states is limited. [60]

Let’s assume that extension physics of the orbitals are smaller than the inter-atomic space.
So we say that the orbitals are tightly connected in the network. The Wannier states located

at k; are defined as:

—ik-R;

1
| ¥ >= Vi gexp Yy > (B.3)
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We construct the states so that they are orthogonal to each other. Then:

(e >=>" <di|r>| >
%

We have

Similarly, inverting we have:

I —— Zexpsz f

So the Bloch Hamiltonian on that basis becomes:

(Ri—Rj)
H = E ekckockg =¥ E E eXp ekcwc][, = E twcwcﬂ,
ij ko

ijo
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(B.4)

(B.5)

(B.7)

Where t;; = + >, exp™®i~Ri) ¢, is known as the Hopping Parameter for the electron to

go from site i to site j.

B.3 Eletron-eletron interaction

We know that the term corresponding to the energy of interaction of two electrons at r; e rj is

given by:

B Z|r1_rJ|

Using the basis of moments | ko > and the free particle wave function :

1 4
wk,o(r> =<r | k7 o >— —— eXplk-r Yo

NG

in volume v. We rewrite the Hamiltonian as:

2

T i
‘ k40’4,k303 > Ckla,lck2o_2ck30'36k4o-4

H.. Z < kyo1, koo |

2~ | ri — 1y |

The overlap matrix is given by:

(B.8)

(B.10)
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2
e
< k10'1,k20'2 | | k40'4,k30'3 > =

| T — 15 |

64

1 . 1 .
/d3r dgr'ﬁ eXp_Zkl.r ﬁ eXp_’kﬂ (Bl].)
1 ,
r \/; eszkg-r 5
Ogy 040

ST 298 §(ky + ke — k3 — k
v (k1 + ko 3 1)

0'10'450'20'3

And, therefore, considering the moment conservation of the interaction, we have:

2

_¢ P 1
Hoe=% 3. “leta)o (k' —q)o’ 3 W' ko

k7k,7q7o—7o-l

(B.12)

This is the Hamiltonian form of Coulombian interaction energy.



Appendix C

Mean Field Theory.

The effect of many-body in the study of particle interaction in general is complicated by the
terms of correlation in electron-electron interaction. And, to facilitate the approach of physical
methods, a good model for average particle density is commonly used. The medium field model.

In the image below [61]| we see on the left a physical system of the interaction of particles and
on the right the interactions are replaced by an average density. Fact that directly affects the
Hamiltonian of electron-electron interaction. So, a Hamiltonian model of two fluids described

by operators a, and b,, is:

M
[t

Figure C.1: Tllustration of the mean field idea. Left box shows the interaction between the
particle. To the right are the interactions experienced by the black particle replaced by an
average interaction due a mean density.

H =" ngala, +> nbbib,+ > Viwwwalblbua, (C.1)
v H pp! wv!
where n¢ and nz represent the particle densities followed by the density and V), .,/ the energy
of interaction. For a deviation of the density operators from their average values, it is defined
as
A,y =ala,— < dla, > (C.2)
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and
B, =blb,— < blb, > (C.3)
Then we have:
H = ) niala,+ Y nibib, (C.4)
v 7
+ Z VW/,W/(aZa,, < blb,, > —l—bLbu < aia,, >)
wp' vv’
+ = Y Vi <aba, >< blb, >
pp wv!

This allows the interaction energy to be rewritten in terms of average densities and reduces the

order of operators by simplifying the Hamiltonian.
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