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Abstract

Introductory programming (also known as CS1 - Computer Science 1) may be complex

for many students. Moreover, there are a high failure in these courses. A common agree-

ment from computing education research is that programming students need practice

and quick feedback on the correctness of their code. Nonetheless, CS1 classes are usually

large with high heterogeneity of students which make individual/group personalised

support almost impractical. As an alternative to improve and optimise the learning

process, researchers indicate a system that automatically evaluates students’ codes, also

called online judge. These systems provide assignments created by instructors and

an integrated development environment, where the student can develop and submit

the solutions to problems and receive immediate feedback about the code correctness.

Additionally, these online judge systems have opened up new research opportunities

since it is possible to embed software components capable of monitoring and recording

fine-grained actions performed by students during their attempts to solve the program-

ming assignments. Research in the areas of Intelligent Tutoring Systems, Adaptive

Educational Hypermedia and AI in Education have shown that personalisation using

data-driven analysis is essential to improve the teaching and learning process and can

be useful to provide individualised/group support for stakeholders (instructors and

students). In this sense, in this work we collected students’ interaction logs within an



online judge, recording very fine-grained data, such as keystroke, number of commands

typed, number of submissions, etc., making it possible to do research of great precision

into the exact triggers for students’ progress. From these logs, we extract students’

programming behaviours to compose what we call programming profiles. Furthermore,

we extract useful information from the program statements using Natural Language

Processing (NLP). Using such programming profiles and NLP extracted information,

we propose and validate descriptive, predictive, and prescriptive AI methods that com-

bine the large-scale approach formula for generalities with the flexibility given by an

in-house online judge system, allowing unprecedented research depth and amenability

to provide personalised individualised/group support for stakeholders. Indeed, our

AI methods have the potential of improving the CS1 students learning by stimulating

effective practice at the same time that reducing the instructors’ workload. Our results

include: i) a cutting-edge interpretable machine learning method that predicts the learn-

ers’ performance and explains individually and collectively factors that lead to failure or

success; (ii) a method that, for the first time, to the best of our knowledge, detects early

effective programming behaviours and indicates how those positive behaviours can be

used to guide students with ineffective behaviours; iii) a novel prescriptive model that

automatically detects the topic of problems achieving state-of-the-art results and makes

problems’ recommendations based on that and the students’ programming profiles.

Finally, we also explored how our AI methods could be used in collaboration with the

instructors’ intelligence, giving thus a move towards novel human/AI online judge

architecture to support the decision making of CS1 instructors and students. To do so,

the results of our methods are represented in the format of hybrid human/AI concept

designs, which are validated consistently and systematically by CS1 instructors, who

are responsible for deciding which concept designs should be available to the students.

Keywords: CS1, machine learning, human/AI intelligence, hybrid intelligence, predictive

analytics, prescriptive analytics, recommendation systems, topic extraction, NLP.
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1

INTRODUCTION

In God we trust; all others must

bring data.

- William Edwards Deming

Introductory programming (also known as CS1) , one of the basic topics in Com-

puter Science and STEM programmes, might be considered one of the most complex

courses for many learners (ULLAH et al., 2018; ARAUJO et al., 2021; LIMA et al., 2021b;

BRAZ et al., 2021b; MENDONÇA et al., 2021). Previous studies report high failure rates

in CS1 (CARVALHO et al., 2016; ROBINS, 2019; LUXTON-REILLY et al., 2018), posing

significant challenges for instructors, who naturally wish their learners to progress

effectively. Additionally, instructors may face institutional pressures if students do not

perform well (ROBINS, 2019).

In face of those challenges, a common agreement from computing education

research is that programming students need practice and quick feedback on the correct-

ness of their codes (IHANTOLA et al., 2015; CARVALHO et al., 2016; LUXTON-REILLY

et al., 2018; ROBINS, 2019; OLIVEIRA et al., 2020; BRAZ et al., 2021a). However, instruc-

tors usually face large and heterogeneous classes, which makes well-crafted assessment

and individualised/group/personalised support almost impractical (ANDERSEN et al.,

2016; CARVALHO et al., 2016; PEREIRA et al., 2020; COSTA et al., 2021). For instructors,

the typical challenges confronted are the difficulty and endeavour needed to assess

students’ codes (SOUZA et al., 2016) and to deliver individualised, timely feedback

based on that assessment (IHANTOLA et al., 2015; ULLAH et al., 2018). For students,
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it is also essential to receive precise and quick feedback, so that they can correct their

mistakes in a timely fashion (IHANTOLA et al., 2015; WASIK et al., 2018; ROBINS, 2019;

LUXTON-REILLY et al., 2018).

In this sense, Programming Online Judges (OJs) are learning environments tar-

geted for programming learning that can bring many advantages (BEZ et al., 2014;

WASIK et al., 2018; LIMA et al., 2020; PESSOA et al., 2021). Recently, these systems

are increasingly being used to support CS1 classes, as they reduce instructors’ work-

load in correcting the learners’ programming tasks and provide instantaneous and

accurate feedback to students about the correctness of their solutions (WASIK et al.,

2018; PEREIRA et al., 2020). The typical architecture of an OJ provides an Integrated

Development Environment (IDE) where learners can develop, test, compile, run, and

submit solutions to programming assignments and exams (IHANTOLA et al., 2015;

CARTER et al., 2019; PEREIRA et al., 2020a). The instructors’ role is generally to select

problems to compose assignments lists and exams on different topics covered in the

CS1 course (KURNIA et al., 2001; BEZ et al., 2014; IHANTOLA et al., 2015; WASIK et

al., 2018; PEREIRA et al., 2020a). In addition, the instructors can visualise the students’

progress in these assessments.

Nonetheless, ordinary OJ systems do not provide any learning analytical tool or

adaptive approach to provide support for instructors to teach in such numerous and

heterogeneous classes as required for CS1 (CARVALHO et al., 2016; WASIK et al., 2018;

PEREIRA et al., 2020a). It is important to note that the use of AI to design adaptive

approaches is claimed to be more powerful for instruction, due to students’ variance

in abilities and performance (WOOLF, 2010; ANDERSEN et al., 2016; TENÓRIO et al.,

2021). In this sense, studies (IHANTOLA et al., 2015; SOUZA et al., 2016; WASIK et al.,

2018; PEREIRA et al., 2020a; BILEGJARGAL; HSUEH, 2021) indicate that the typical

architecture of OJ systems needs to be extended to leverage CS1 teaching and learning.

To illustrate, Pereira et al. (2021a), Pereira et al. (2021b) propose an AI-agent to support

the instructors in the selection of problems to compose assignments in CS1 courses. This

process is known to be cumbersome, due to there being many problems to search manu-

ally in OJs. Instead, using an AI agent, data can be collected and processed automatically.
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Moreover, these data can lead to a better understanding of learners’ behaviours and

help in enhancing the instructors’ methodology, decision-making process, and allowing

prompt interventions (IHANTOLA et al., 2015; WASIK et al., 2018; CARTER et al., 2019;

PEREIRA et al., 2020a).

Nevertheless, recent literature claims that AI alone is not enough and must not

disregard the instructors’ expertise from their daily classroom experience (DELLER-

MANN et al., 2019; AKATA et al., 2020; HOLSTEIN et al., 2020; TENÓRIO et al., 2021).

Dellermann et al. (2019), Akata et al. (2020) point out that the combination of humans

and AI can provide better results than AI and humans alone. Indeed, instructors might

have essential information and knowledge that the Artificial Intelligence Educational

(AIEd) system has no access to (HOLSTEIN et al., 2020). Thus, hybrid systems where

AI and instructors collaborate are required. In such systems, instructors might help the

AI with cases where it misinterprets the data; or where it needs creativity, intuition,

flexibility, or empathy. Similarly, instructors can benefit from the information that the

AIEd system has exclusive access to.

Despite their potential, there is a lack of studies on proposing designing and

validating these hybrid systems or methods. Many works (RODRÍGUEZ-TRIANA et al.,

2018; CHEN et al., 2018; DE-ARTEAGA et al., 2020; TENÓRIO et al., 2021) point to the

need for studies that explore the ways humans can augment the AIEd interpretation

and understanding of the data, and vice-versa. Specifically, Holstein et al. (2020) claim

a need for research to propose domain-specific hybrid systems and explore concept

designs for these agents (human and AI) to augment their intelligence. To the best of our

knowledge, there are no studies available addressing opportunities to propose, design,

and validate hybrid methods and architectures in the online judges’ field.

In light of this, this work proposes, designs and validates descriptive, predictive

and prescriptive AI methods to compose a novel hybrid human/AI online judge architecture

to support the decision-making process of instructors and students in CS1 classes.

Our novel architecture is designed to extend the commonly used OJ architecture. To

do so, our AI methods encompass descriptive, predictive and prescriptive methods

that use a programming profile from the CS1 students to support the CS1 instructors
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and students. The methods employ fine-grained data collected from the OJ systems

when students are solving programming problems. In other words, using OJ data, our

methods can perform: i) descriptive analysis of students’ behaviours by structuring their

data, ii) predictive analysis by estimating the students’ outcomes, and iii) prescriptive

analysis, for example, by recommending pedagogical items of providing feedback about

important patterns found from the eXplainable Artificial Intelligence (XAI) approach.

Finally, we further validate our methods in format of concept designs to support

instructors to enhance the students leaning in CS1 classes. Our validation involves the

integration of those concept designs in a novel hybrid human/AI architecture that could

potentially extends to typical OJ architecture. We opted to validate the concept-designs

with instructors because all the potential application of our methods are mediated by

them.

Moreover, we validate the concepts systematically and consistently by using the

speed dating method (DAVIDOFF et al., 2007), which is a user experience approach

to explore the application of concepts in new systems without requiring any technol-

ogy implementation. This is important in our case, because although our descriptive,

predictive and prescriptive methods have been implemented and validated in our

experimental settings, they have not yet been employed in real scenarios with CS1

students.

Briefly, the main contributions of this work are as follows:

• Proposing and validating cutting-edge AI descriptive, predictive and prescriptive

methods to support CS1 teaching and learning.

• Combining those methods in a novel architecture for a hybrid human/AI OJ

system to support CS1 teaching and, hence, the learning process in CS1.

• The validation of this novel architecture from the perspective of CS1 instructors’

with OJ experience.
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1.1 General Objective
This study aims to propose, design and validate a hybrid human/AI OJ architecture

to create mechanisms to support the decision-making of CS1 instructors to enhance

students’ learning. For instructors, these mechanisms must be carried out in order to

help them improve their pedagogical and methodological practices, enabling early and

long-term interventions that minimise the chances of at-risk students to end up failing,

at the same time that enhance the chances of students with a high probability of passing.

For students, support is mediated by the instructors aiming at description, prediction

and prescriptions/recommendations of programming behaviours that can increase the

student’s chances of being approved in the course.

Finally, we also have the goal of creating a mechanism to reduce the instructors

workload in composing assignments and exams, given to them more time for other

tasks, such as improving their methodology, reflecting on potential interventions, and

adapting their pedagogy.

1.2 Specific Objectives
The following are the specific objectives of this study:

• Collect fine-grained data from students in CS1 classes as they solve coding prob-

lems in an IDE built into the OJ.

• Compose a programming profile based on features that represent programming

behaviours that can increase or decrease the chances of CS1 students being ap-

proved.

• Propose and validate descriptive and predictive methods that apply AI techniques

(e.g., clustering and classification) that detect which programming behaviours can

increase or decrease CS1 students’ chances of passing.

• Based on the methods generated from the aforementioned objectives, propose

and validate prescriptive methods (recommendation) that provide support to CS1
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instructors and students1 decision making.

• Validate the methods generated consistently and systematically with CS1 instruc-

tors.

1.3 Thesis Overview
In this work we present how helpful typical OJ are to introductory programming (also

known as CS1) classes. Furthermore, we show the gaps left by those systems that

can be potentially fulfilled by using AI methods combined with the CS1 instructors’

intelligence (hybrid human/AI intelligence). More specifically, we demonstrated how

typical OJ architectures can be extended using human/AI hybrid intelligence, to support

the decision making of CS1 instructors to enhance the CS1 learning. We do that by

first proposing and validating AI methods to support instructors, in which they are

responsible for mediating which applications from our methods should be exposed

to the students. Moreover, we explore in which extent our methods might enhance

the instructors’ knowledge about the students and minimise instructors’ workload.

Those potential application of our methods are then represented in format of hybrid

human/AI concept designs, and validated consistently and systematically by our target

users - CS1 instructors. Finally, we combined and integrated those concept designs

in our novel human/AI OJ architecture. In other words, we propose and validate AI

methods to extend the OJ typical architecture, and then validate the hybrid human/AI

concept designs, derived from our AI methods, with CS1 instructors.

Our results are important for the field of CS1 learning as a step towards enhanc-

ing instructors decision making power and students learning. Moreover, our results can

also be helpful to optimise the instructors work time, freeing their time in repetitive

tasks such as selecting problems to compose assignments and exams.

It is worth noting that this thesis is a portfolio of articles that converge to our validated

hybrid human/AI OJ architecture to support CS1 classes. In this sense, the chapters of this
1 In this work, all methods presented to the students should be mediated by the instructors first. So

that, first the instructors decide which methods should be exposed to the students to improve their
learning.
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thesis are an aggregation of our publications, whilst this chapter is an overview of

them and, hence, an overview of the thesis. Thus, we present the novelty of each of our

AI methods in chapters 2-6 and the integration of those in Chapter 7. Moreover, our

research questions is presented in each Chapter separately since we address specific

problems in each chapter. By addressing these problems, we move towards achieving

our general objective (Section 1.1).

In the next sections, we explore and contextualise the use of OJ systems in CS1,

explain how data is collected from these systems, show how hybrid intelligence (hu-

man/AI) can be employed using such data, and then we present our hybrid human/AI

architecture to extend typical OJ architecture.

1.4 Programming Online Judges and CS1
Many studies (BEZ et al., 2014; SOUZA et al., 2016; CARVALHO et al., 2016; WASIK et al.,

2018; ZHOU et al., 2018; PEREIRA et al., 2020a; BILEGJARGAL; HSUEH, 2021) showed

that OJs could bring benefits for CS1 students and instructors. This is due to these

systems providing instantaneous and precise feedback to students and reducing the

instructors’ workload in code evaluation. For instance, with manual code evaluation, in

a class with 100 students, if an instructor creates an assignment with 10 coding exercises,

they need to evaluate 1000 pieces of code (100∗10). Note that in CS1, instructors typically

employ a ’Many Small Programs’ (MSP) approach (ALLEN et al., 2018; ALLEN; VAHID,

2021), which requires learners to solve many small problems weekly during the course.

Accordingly, evaluating all students’ codes precisely and fairly is unrealistic.

In a pioneering study about OJ, Kurnia et al. (2001) compared human code

evaluation versus the OJ mechanism of automatic code correction. As a result, the

authors showed that, when implemented carefully, OJs are more secure and convenient.

In addition, manual evaluation carries human subjectivity, which may bias the code

evaluation. Thus, OJ correction brings more fairness to the evaluation process (KURNIA

et al., 2001; ZHOU et al., 2018). Furthermore, Choy et al. (2005) demonstrated that OJ

systems might be beneficial for student motivation. They observed that learners were
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encouraged to practice more, without fear of being judged for their programming

mistakes, which piqued students’ interest in developing their programming skills.

Despite these benefits, recent works state that the OJ architecture needs to be

extended, to better support the instructors and enhance learning (IHANTOLA et al.,

2015; SOUZA et al., 2016; WASIK et al., 2018; PEREIRA et al., 2020a; BILEGJARGAL;

HSUEH, 2021). Ihantola et al. (2015), Carter et al. (2019) claim that it is important to

understand how students can improve their codes and learning process to provide

refined information for instructors. Luxton-Reilly et al. (2018), Tenório et al. (2021) argue

that CS1 instructors need tools to improve their pedagogy/methodology. Still, Zhou et

al. (2018), Pereira et al. (2021a), Oliveira et al. (2021b), Lima et al. (2021a), Fowler & Zilles

(2021) explain that it is challenging for the instructors to select problems to create the

assignments and exams using the questions available on OJ systems, because there are

typically thousands of problems available in these systems. Whilst high variation of

questions is good for diversity, it often consumes too much time for the instructors to

select the questions to compose assignments and exams.

Moreover, instructors usually face large and heterogeneous classes, which makes

individualised/personalised or even group support almost impractical (ANDERSEN

et al., 2016; PRICE et al., 2020). However, because the OJs feedback is only based on

code correction, more research is needed to improve the OJ mechanisms to provide

individualised and group support for heterogeneous CS1 classes and to encourage

effective problem-solving practice and behaviours (KEUNING et al., 2018; CARTER et

al., 2019; KARVELAS et al., 2020; OLIVEIRA et al., 2020; PEREIRA et al., 2020). In addition,

early individualised and group support is vital in CS1 classes, if behavioural changes

are desired. Importantly, this support needs to be scalable for large and heterogeneous

classes with an increasing number of students (PRICE et al., 2016; RIVERS; KOEDINGER,

2017; MARWAN et al., 2019a; MARWAN et al., 2019b; PRICE et al., 2020).

In this sense, AIEd research has shown, albeit mainly on small-scale teaching

experiments, that analysing data from students is essential to improve the learning

process and can be helpful to provide support for instructors and leverage the learning

process (KULIK; FLETCHER, 2016; HOLSTEIN et al., 2019; PEREIRA et al., 2020a).
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Furthermore, Holstein et al. (2020) explain that researchers should also use AIEd systems

to help instructors in interpreting and drawing inferences from what they perceived

and how to guide instructors towards interpretations of data. Moreover, it is essential

to scaffold learners in more productive ways using the data available. In light of this,

the following sections show how the data collected from OJ systems and AI techniques

can be employed to support CS1 teaching and learning.

1.5 Using AI over data collected from Online Judges
Overall, OJ architectures provide students with an environment in which they can

develop, compile, run and debug their code in an IDE, which is typically embedded

in the OJ (IHANTOLA et al., 2015; CARTER et al., 2019; PEREIRA et al., 2020a). After

developing the code, students submit it and then receive feedback on the correctness of

their solution. Figure 1 illustrates the typical architecture of an OJ system. Notice that

the data can be collected at different granularities when students solve the problems

(VIHAVAINEN et al., 2014; IHANTOLA et al., 2015; CARTER et al., 2019; QUILLE;

BERGIN, 2019; PEREIRA et al., 2020a). That is, in addition to the code submitted by

the student, it is possible to evaluate how students developed their code (e.g., the time

spent to solve the problem, number, type of errors made, etc.).

submits code solution

writes
code

solution

accesses

Student

Autograder
component

provides feedback about the code correctude

database
with 

students
logs

Data collector
component

fddfdfdfdfdEdition
Compilation
Execution
Debugging

Integrated Development
Environment (IDE)

code solution

student log

Programming
assignments creates

accesses

Instructor

Students'
progress

Figure 1 – Typical architecture of an OJ system used to support programming courses
(PEREIRA et al., 2020a).

Note that students’ code and the process behind the code development play
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a critical role in the students’ assessment (BLIKSTEIN et al., 2014; ZHOU et al., 2018;

EDWARDS et al., 2020; FILHO et al., 2020). Indeed, what improves students’ abilities in

programming is the experience they gather when solving problems, instead of just the

outcome – whether the code is correct or not. As such, it is crucial to evaluate the code’s

correctness and the data-log collected when the students are solving the problems

(WATSON et al., 2013; VIHAVAINEN et al., 2014; IHANTOLA et al., 2015; CARTER et al.,

2019; QUILLE; BERGIN, 2019; PEREIRA et al., 2020a; PEREIRA et al., 2021).

In this direction, researchers in the Computer Education field (AHADI et al., 2015;

AHADI et al., 2016; ESTEY; COADY, 2016; LEINONEN et al., 2016; CASTRO-WUNSCH

et al., 2017; COSTA et al., 2017; Abu Amra; Maghari, 2017; PEREIRA et al., 2019b; FON-

SECA et al., 2019; BOCKMON et al., 2020; Kumar Veerasamy et al., 2020; PEREIRA et al.,

2021) have used OJ data to model students’ behaviour and quantify aspects of students’

outcomes. Typically, these studies have in common that they perform a data-driven

analysis, extract useful information, and use them as features in data mining, machine

learning, and inferential statistical techniques to predict the CS1 students’ performance,

potentially, at an early stage in the course (CARTER et al., 2019; AHADI et al., 2016;

CASTRO-WUNSCH et al., 2017; ROBINS, 2019; PEREIRA et al., 2021). However, few

studies have used fine-grained OJ interaction data (e.g., keys pressed when coding, copy

and paste patterns, etc.) to better understand students’ performance and behaviours,

often due to lack of data availability or inadequate granularity (PEREIRA et al., 2020a).

Another limitation of these methods is that they were not employed in any

educational setting and, hence, their effects were not measured in a real-life scenario

(QUILLE; BERGIN, 2019; PEREIRA et al., 2020a). Indeed, the methods proposed by the

literature are evaluated in terms of accuracy, f1-score, precision, and other machine

learning metrics, but not by target users. These methods remain in laboratory settings

rather than being employed in CS1 classes supported by OJ systems. Also, note that one

crucial step before implementation is the validation of design concepts of a potential

novel functionality or method (HOLSTEIN et al., 2020; TENÓRIO et al., 2021).

Furthermore, for the adoption of these machine learning methods, Agrawal et al.

(2018), Dellermann et al. (2019), Holstein et al. (2019), Pereira et al. (2021) explain that
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they should also ensure interpretability and transparency on the predictive methods’

decision. Besides the prediction provided by the ML methods, it is crucial to understand

what leads the predictive method to make the decision. EXplainble Artificial Intelligence

(XAI) appears as a viable solution, with methods (e.g., SHAP Lundberg & Lee (2017),

LIME Ribeiro et al. (2016)) that can be used to explain why the model2 estimated that a

student has high/low chances of passing.

Thus, using OJ data, AI methods could perform: i) descriptive analysis of stu-

dents’ behaviours by structuring their data, ii) predictive analysis by estimating the

students’ outcomes, and iii) prescriptive analysis, for example, by recommending ped-

agogical items of providing feedback about important patterns found from the XAI

approach.

Additionally, Luxton-Reilly et al. (2018) highlight that many works focus on the

students’ deficits, which is considered of high importance. However, it is also crucial

to create mechanisms to improve pedagogical practice, since teaching CS1 students to

program is complex and laborious. Moreover, when we enhance the teaching process,

then we potentially would leverage the learning as well (LUXTON-REILLY et al., 2018;

PEREIRA et al., 2020a; TENÓRIO et al., 2021).

Finally, although AI applications are potentially helpful, in practice, AIEd or

adaptive systems in education are generally implemented in the form of an AI agent,

working with a mediator, such as an instructor. In this sense, some of the recent AIEd lit-

erature (VANLEHN, 2016; GERRITSEN et al., 2018; MOLENAAR et al., 2019; HOLSTEIN

et al., 2020; PEREIRA et al., 2021) highlights a need for both AI that help humans and

humans that supports AI, to support effective human decisions and teachable machines

in a move towards hybrid human/AI systems. We explore this in the following sections.

1.6 Hybrid human/AI systems
Instead of combining homogeneous agents (humans, animals), hybrid intelligence com-

bines the complementary strengths of heterogeneous intelligent agents (e.g., instructors
2 Generated using the ML method
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and AI). Although AI is being adopted much less than ideal in educational practice

(HOLSTEIN et al., 2020), it could be applied to support instructors in structuring learners’

data, recognising hidden patterns, making forecasts, and so forth. Notice that humans

often act non-Bayesian making inconsistent decisions and violating probabilistic rules.

In light of this, the analytical power of AI grounded by the statistical and probabilistic

foundation can empower instructors in making more effective, consistent, and accurate

decisions (AGRAWAL et al., 2018; DELLERMANN et al., 2019).

Moreover, humans’ intuition can empower the choices from the AI predictions

or prescriptions. Indeed, on the opposite path (humans helping AI), humans provide

domain knowledge and instructions to teach machines in many tasks that they cannot

do by themselves. A typical example is when humans provide labels for supervised

machine learning approaches to train the models or to make sense of unsupervised

approaches. Also, humans are notorious better to perform tasks that require intuition,

flexibility, creativity, empathy, and common sense (DELLERMANN et al., 2019).

As such, well-designed AIEd systems may allow both agents (AI and human)

to augment the intelligence of each other (HOLSTEIN et al., 2020; DE-ARTEAGA et

al., 2020). In other words, AIEd systems will potentially work more effectively by

combining the complementary strengths of humans and vice-versa (MOLENAAR et

al., 2019; VANLEHN et al., 2021); such a combination is called hybrid intelligence.

Many authors claim that hybrid systems will be a dominant method in many fields

(DELLERMANN et al., 2019; HOLSTEIN et al., 2019; MOLENAAR et al., 2019; DE-

ARTEAGA et al., 2020). However, there is a lack of studies about proposing, designing

and validating human/AI hybrid methods and systems. For instance, Dellermann et

al. (2019) claim that more research is necessary to build domain-specific human/AI

educational systems and to explore interface designs that allow users helpers to teach

an AI system and vice-versa.

In light of this, Holstein et al. (2020) proposed a conceptual framework to map

distinct ways of human/AI collaboration. The framework shows dimensions that cap-

ture crucial components of an AIEd system. These dimensions are based on frameworks

available in the literature (NEWELL, 1994; RUMMEL, 2018; ALEVEN et al., 2016; VAN-
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LEHN et al., 2021), which were captured and adapted in a more general conceptual

framework for human/AI hybrid systems. Due to the generality, we opted to use the

dimensions presented in Holstein et al. (2020) to capture how humans and AI can aug-

ment each other’s abilities in our hybrid human/AI OJ architecture. The dimensions

are: goal augmentation, perceptual augmentation, action augmentation, and decision

augmentation. These dimensions are helpful to provide guidance on the design of

hybrid systems and they will be discussed in depth in Chapter 7.

1.7 A novel hybrid human/AI Programming Online Judge

architecture
Based on the dimensions pointed out by Holstein et al. (2020) and the AI methods

we propose and validate in this research, we proposed our hybrid AI/Human OJ

architecture.

Importantly, this research adopted as a premise that the AI cannot make the final

decision unassisted in our architecture of human/AI hybrid OJ system. The instructor

mediate all the final decisions since they are responsible for using software in their

classes. As such, although the instructor could augment the AIEd decision-making

process, the instructor must be the terminal node of the pipeline and control of what is

available for the students. We believe this is important to consider how effective the

AI decisions are and to calibrate the AI during a cycle of human validation of the AI

decisions.

Moreover, our OJ architecture requires collecting fine-grained data from students

whilst solving problems in the IDE embedded in the OJ. Fine-grained data provide

refined information about the students learning process that can be translated to mean-

ingful feedback (IHANTOLA et al., 2015; WASIK et al., 2018; CARTER et al., 2019; PRICE

et al., 2020; PEREIRA et al., 2020a).

More specifically, logs, codes, and interaction data with the OJ system are needed

to represent students’ behaviours. Figure 7 (Chapter 2) shows an example of log data

extracted from an open dataset of fine-grained data collected from an OJ system.
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We employ this data to extract features that compose the programming profile

from the learners. Such programming profile represents their effective and ineffec-

tive programming behaviours. Effective means behaviours that increase the students’

chances of passing, whereas ineffective is the opposite (ROBINS, 2019; PEREIRA et al.,

2020). These programming profiles, in turn, can be used to produce descriptive, predic-

tive, and prescriptive methods based on AI techniques. Table 2 (Chapter 2) presents

the features we propose to represent the programming profiles of the students. The

following is an illustration of three features used in our programming profile:

• procrastination: time between first code edit and assignment deadline;

• events: number of log lines;

• ideUsage: total time to solve problems, disregarding inactive use of the IDE;

We chose the features based on a systematic mapping of the literature that we

carried out (PEREIRA et al., 2020a) and discussions between the authors about possible

useful information for describing metrics that measure programming practices that can

lead to pass or fail. Additionally, for a specific task related to one of our methods we

use text-data from problems’ statements.

Figure 2 presents the architecture of our novel human/AI OJ system proposed

in this study. Instructors might create programming assignments for students sup-

ported by the AI. Moreover, descriptive, predictive and prescriptive methods provide

meaningful feedback for the instructors based on how students solve the programming

assignments. More specifically, descriptive methods will be used for instructors to gain

insights from the fine-grained data collected and through visualisation and statistical

analysis of the relationships of programming profile attributes with student perfor-

mance. Predictive methods can estimate student behaviours and performance to allow

effective intervention. Finally, prescriptive methods can be used so that instructors bet-

ter understand the possible factors that are leading students to success or fail. Moreover,

they support the instructors in their more recurrent role in OJs, selecting problems

to compose assignments and exams. All those applications of descriptive, predictive,

and prescriptive methods are examples of how the AI could enhance the instructors’
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instructional goals, perception, actions, and decision-making (the dimensions defined

by Holstein et al. (2020)).

Programming

Assignments
Analysis of students' 

logs, codes, and
interections

Fine-
grained

Data Base

human 
validation 

comprises them 
supported by AI

Instructor 
human 

adjustments

AI 
support

intelligence
augmentation 

goals, perception,
action, decisions 

feeds

Programming profile

Descriptive 
* descriptive statitics
* grouping students'
behaviour

Predictive 
* predicting performance 
over time

Prescriptive 
* inspecting behaviours'
effectiveness
* recommending problems

AI methods

AI-information

Figure 2 – Extension of a typical Human/AI OJ architecture to support CS1 teaching
and learning.

On the other hand, the instructor can expand the AI capabilities mainly by

relabelling descriptions, prediction, prescription and inserting domain knowledge

based on their daily experience to the AI algorithms. To illustrate, if the instructors

perceive that the predictive model has misclassified a student, they can adjust it to

improve the system. In this way, the model can be periodically be retrained to learn

from the instructor’s input.

Finally, it is worth noting that the results of all methods proposed in this study

were compared with methods presented in the literature. In addition, the recommenda-

tion method was evaluated in a double-blind controlled study, in which instructors were

exposed to our method and a baseline method. In this way, all methods (descriptive,

predictive and prescriptive) were validated in an experimental scenario before being ex-

posed to instructors in the format of design concepts. The design concepts are potential
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applications of the methods that can be incorporated into our novel human/AI hybrid

OJ architecture. Finally, we validated the design concepts with CS1 teachers using the

speed dating technique (DAVIDOFF et al., 2007), which is a technique recommended

for this purpose (HOLSTEIN et al., 2019; HOLSTEIN et al., 2020).

Briefly, the main steps (in chronological order) that were carried out in this study

are:

• Collection and pre-processing of data used in our methods.

• Compose student programming profile.

• Descriptive data analysis through clustering of student behaviours for the con-

struction and validation of a method that describes effective and ineffective pro-

gramming behaviours.

• Construction of an interpretable predictive method for early prediction of student

performance using data from the first two weeks of course3.

• Local and global interpretation of predictive method decisions to identify which

behaviours can potentially lead to pass/fail.

• Construction of an automatic problem recommender based on the programming

profile features, software engineering code metrics and textual analysis (natural

language processing) of problem statements.

• Comparison of methods with others presented in the literature.

• Implementation of design concepts with the descriptive, predictive and prescrip-

tive methods in a move towards a hybrid human/AI OJ system.

• Use of speed dating to validate the design concepts with CS1 instructors.
3 We also show that the predictive method can be accurately used not only in an early stage.
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1.8 Scope and Generalities
The scope of this thesis is restricted to online judges focused on supporting introduc-

tory programming classes and not programming competitions. In addition, our target

audience and stakeholders are CS1 instructors and students. We focus on introductory

programming classes since this is the root of the problem: high failure rate, numerous

and heterogeneous classes, many students struggling to learn to program, and the need

of reducing instructors’ workload. In addition, these introductory programming courses

might be offered to non-CS courses and, hence, we might face the lack of motivation

problem from non-CS students in learning to program.

Finally, to create our programming profile, we use fine-grained behavioural data

collected from one online judge called CodeBench, due to convenience, since CodeBench

is developed and maintained by one of the supervisors of this work (professor David

Oliveira), what facilitates the process of data collection and sharing. Notice that fine-

grained public data collected from online judges is scarce. For the text mining and NLP

techniques, however, we use data collected from 3 different online judges (URI Online

Judge, A2 Online Judge, and CodeBench) because such data is typically public in many

OJs. Despite that, we strongly believe that the methods we built can be generalised

to other educational contexts that use OJ’s (or any variation of automatic assessment

systems), or even Learning Management Systems (LMS) or Massive Open Online

Course (MOOC) that allow granular collection of student data whilst they are solving

programming problems. We claim that as the features we use were generally extracted

from different works that were replicated in the literature. Moreover, our self-devised

features are easily replicated since we will make available our extractor on Github4 and

our data5. Additionally, for the methods that use NLP, problem’s statements have a

similar structure, regardless of the OJ.
4 github.com/filipedwan/CodeBench-Features-Extractor
5 codebench.icomp.ufam.edu.br/dataset/
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Estendidos do I Simpósio Brasileiro de Educação em Computação (pp. 41-42).

SBC.

Awards:

• Best paper Award on the Intelligent Systems for the Promotion of Teaching and

Learning track - Brazilian Symposium on Computers in Education (Simpósio

Brasileiro de Informática na Educação-SBIE). 2019.

• Second best paper Award on the Intelligent and Adaptive Systems track - Brazilian

Symposium on Computers in Education (Simpósio Brasileiro de Informática na

Educação-SBIE). 2020.

• Second best paper Award on the Technologies in Computer Education track -

Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Infor-

mática na Educação-SBIE). 2020.

• Second best paper Award on the Educational Games and Innovative Technology

for Education track - Brazilian Symposium on Computers in Education (Simpósio

Brasileiro de Informática na Educação-SBIE). 2020.

• Wiley award for top cited article in 2020-2021, related to the article ”Using learn-

ing analytics in the Amazonas: understanding students’ behaviour in introductory

programming“, published in British Journal of Educational Technology.

• Award for being the supervisor of the Best undergraduate thesis in the Thesis and

Dissertation Contest Distinction - Brazilian Congress of Computer in Education

(Congresso Brasileiro de Informática na Educação). 2020.

• Samsung Ph.D. Scholarship Award.

1.10 Thesis Guideline
In Chapter 2, we show how we collected the data used in this thesis. Additionally, we

present how we extracted the features to create the students’ programming profiles.
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We also show our descriptive method that provides potential effective and ineffective

programming behaviours that can be used as references for instructors or learners as

a move towards improve learning. Moreover, we present how the early detection of

effective and ineffective behaviours can be useful to guide students with ineffective

behaviours. The publications related to this chapter are: J02 and C09.

In Chapter 3, we present how the features from the programming profile can be

used in ML learning to achieve cutting-edge results for early performance prediction.

Moreover, we demonstrate that the features can accurately be employed not only on

the beginning of the course to predict the performance of students, but also during the

rest of the course. We also point to potential applications and implications for early and

non-early prediction. The publications related to this chapter are: J03, C01, C03, C04,

and C06.

In Chapter4, we employ interpretable AI to inspect the decisions of our most

accurate predictive method. To do so, we perform an analysis of non-linear relation-

ship between the effective and ineffective students’ behaviours and the final grade to

interpret the features effects in the method’s prediction individually and collectively.

We also explore ways of using these results in potential applications to extend the OJ

system. The publications related to this chapter are: J04, A02.

In the Chapter 5 we used the effective and ineffective behaviours from the

programming profile to perform recommendation of problems for learners. To evaluate

our recommendations, we compare our Behavioural-based Recommender System (BRS)

with a Random Recommender System (RRS), which simulates typical human selection

of problems in online judges. Such comparison was conducted through a double-

blind control experiment to verify the impact on student’s programming achievement,

motivational affect and effort employed to solve the recommended problems. The

publications related to this chapter are: C11, C20.

In the Chapter 6 we enhanced the recommender proposed in Chapter 6 to help

instructors in selecting problems to create programming assignments and exams. The

publications related to this chapter are: C16, C20, A01. Another article related to this

chapter is being evaluated by the reviewers from the IEEE Transactions on Learning
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Technologies (IEEE TLT). Moreover, for the topic prediction, we have also another paper

being evaluated by the reviewers from the IEEE Access journal, and published as a

pre-print (PEREIRA et al., 2022).

For all the mentioned chapters, we also explore ways of using these results in

potential applications to extend the typical OJ system in a move towards our goal, that is,

to propose and validate a human/AI OJ architecture to support CS1 instructors. Notice

that it is important to validate such architecture in the perspective of the instructors.

Thus, in Chapter 7, we propose and validate concept designs based on our methods

(presented in the previous chapters) to validate a hybrid human/AI architecture that

can be used to extended the typical OJ architecture. The article related to this chapter is

being evaluated by the reviews from the International Journal of Artificial Intelligence

in Education (IJAIED).

Conclusions, limitations, future work, as well as the research next steps are

presented in Chapter 8.
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2

PROGRAMMING PROFILE WITH

EFFECTIVE AND INEFFECTIVE

PROGRAMMING BEHAVIOURS

Learning is a treasure will

follow its owner everywhere.

- Chinese Proverb

2.1 Overview of the Chapter
As we show in the previous Chapter, tools for automatic grading programming as-

signments, also known as Programming Online Judges, have been widely used to

support CS courses. Nevertheless, a limited number of studies have used these tools

to acquire and analyse interaction data to better understand students’ performance

and behaviours, often due to data availability or inadequate granularity. To address

this problem, in this study we use an Online Judge called CodeBench, which allows

for fine-grained data collection of student interactions, at the level of, e.g., keystrokes,

number of submissions, and grades. We deployed CodeBench for three years (2016-

2018) and collected data from 2058 students from 16 introductory computer courses, on

which we have carried out fine-grained descriptive, predictive, and prescriptive analy-
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sis. In this Chapter, specifically, we aim at detecting effective/ineffective behaviours

regarding learning CS1 concepts that can be used to represent a programming profile

of the students. Results extract clear behavioural classes of CS1 students, significantly

differentiated both semantically and statistically, enabling us to better explain how

student behaviours during programming have influenced learning outcomes. Finally,

we also identify behaviours that can guide novice students to improve their learning

performance, which can be used for interventions. We believe this the findings from

this Chapter is a step forward towards enhancing OJ systems and helping instructors

and students improve their CS1 teaching/learning practices.

2.2 Practitioner Notes
What is already known about this topic:

• Studies suggest a high failure rate in CS1 courses (CARVALHO et al., 2016;

ROBINS, 2019; LUXTON-REILLY et al., 2018).

• Learning to program takes a lot of practice and feedback is highly desirable

(IHANTOLA et al., 2015; LUXTON-REILLY et al., 2018; CARVALHO et al., 2016).

• Student activity in Online Judges can be used to predict their outcome (PEREIRA

et al., 2020a), but studies are few.

• Data for such studies is often proprietary or of inadequate granularity (IHAN-

TOLA et al., 2015; PEREIRA et al., 2020a).

What this Chapter adds:

• Creating a programming profile using features collected from a new Online Judge

system, CodeBench, which allows for fine-grained descriptive, predictive and

prescriptive analysis of student behaviour for CS1.

• Employing descriptive and predictive analytics to identify early effective be-

haviours for novice students and, for the first time in our knowledge, how these

behaviours can be useful for ineffective students.
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• A novel classification of students into effective, average and ineffective, based on

their behaviour, which shows both semantic and significant statistical differences.

• A clear indication that student behaviour during programming influences learning

outcomes for CS1.

• A proposal, design, and implementation of a large scale, longitudinal study of

student behaviour in CS1.

Implications for practice and/or policy:

• Students may need to reflect on their behaviour and self-regulate.

• Instructors may propose specific strategies and guidance based on early ineffective

behaviours.

• Instructors have a powerful descriptive and predictive analytic method to under-

stand student behaviour and patterns.

• Instructors can combine their knowledge with the descriptive and predictive

analytic method to perform interventions.

2.3 Research Questions Addressed in this Chapter
To improve the way students learn to program and to tackle the high dropout rate,

instructors from the Federal University of Amazonas, Brazil, have developed an Online

Judge from scratch, called CodeBench, which automatically evaluates and feeds back

on CS1 assignments. Such home-made system combines the large-scale approach of

the popular MOOC formula with the flexibility given by an in-house system, allow-

ing unprecedented research depth and amenability. Running since 2016, CodeBench

has collected interaction data from 2058 non-CS major students, across six semesters,

from 16 different classes every year. It collects fine granularity data, whilst students

attempt to solve assignments and exams, such as keystrokes in the embedded Integrated

Development Environment (IDE), submissions, etc.
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In this work, we model this fine-grained data using descriptive and predictive

analytics methods, to identify early effective programming behaviours and how they

could be useful to guide ineffective students. We represent those programming be-

haviours in form of ML-features. Those features together compose what we call the students’

programming profile.

Thus, as a step towards understanding CS1 student behaviours, our goal is to

answer the following two research questions:

• RQ1-1: How can effective and ineffective behaviours of CS1 students be detected

early, using data from an Online Judge system?

• RQ1-2: Which effective behaviours of novice students can be useful to guide

students with ineffective behaviours and which ineffective behaviors should be

avoided by learners?

2.4 Definition of effectiveness, ineffectiveness and resilience
In this work, we call “effective students” those who make progress in learning to pro-

gram, typically leading to successful outcomes (ROBINS, 2019). Conversely, “ineffective

students” are those who do not make progress or require excessive effort, typically

leading to unsuccessful outcomes (ROBINS, 2019). Finally, we use the term “resilience”

to refer to the students who struggle to edit and submit code more than the median of

attempts, employing then more effort in problem-solving.

2.5 Effective and Ineffective Behaviours in Programming

- State of the art
Despite the considerable number of studies about novice and expert learners from

introductory programming classes, Robins (2019) explains that we know very little

about effective and ineffective behaviours of novice students in CS1 classes, especially
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how effective behaviours can be identified and whether they can be used to improve

the learning process of the ineffective learners.

In this sense, Edwards et al. (2009) conducted an initial study, involving 1,101

students from three different computer science courses (CS1, CS2, and CS3). The authors

inspected students’ time and code-size data and found that students who achieve

better grades start and finish assignments earlier than students with worse grades.

In addition, successful novice programmers moderately wrote more program code.

Although this study has analysed an extensive sample, they inspected just a few features

(procrastination and changes in the codes). In our work, we employ hence a much larger

set of 16 features (Table 2), as well as a larger number of students (Table 1) with a new

method to detect early effective behaviours.

Data collected from Online Judges can be useful for formative assessment, pre-

diction of student outcomes and early identification of students at risk (HERODOTOU

et al., 2019; CARTER et al., 2019; QUILLE; BERGIN, 2019; OLIVEIRA et al., 2021a).

Recently, these kinds of analyses have been arousing the interest of researchers. For

example, Ahadi et al. (2016), Otero et al. (2016), Dwan et al. (2017), Castro-Wunsch et al.

(2017), Quille & Bergin (2019), Leeuwen et al. (2019) use code metrics, such as number of

submissions, time spent programming, temporal patterns, number of syntactic errors,

a.o., to estimate students outcomes, using varied machine learning and data mining

techniques.

Still, Hosseini et al. (2014) performed a formative assessment of programming

students by evaluating how 101 learners develop their code over time in order to explore

problem solving paths. Rivers & Koedinger (2017) investigated a small dataset of 15

programming students collected from a what they called intelligent teaching assistant

for programming with the aim of generating automatic hints. Both works are much

smaller scale than ours; they support, like our work, a fine-grained data analysis, as

crucial for a better understanding of programming behaviours.

Jadud (2006) proposed an algorithm called Error Quotient (EQ), which uses

snapshots of compilation to quantify the student errors whilst they are programming.

The EQ algorithm receives as input a pair of compilation events and assigns to them a
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penalty, if both events ended with error. The penalty could vary, e.g., whether or not the

error of both compilation events was the same. Watson et al. (2013) extended EQ with

an algorithm to compute the Watwin Score (WS), which scores compilation pairs, by

additionally considering the problem-solving time.

Considering descriptive and predictive analytics in the context of CS1 classes

to model students’ behaviour, studies have explored the compilation errors (JADUD,

2006; WATSON et al., 2013; SANTOS et al., 2020), how students deal with deadlines

(EDWARDS et al., 2009; SPACCO et al., 2013; VIHAVAINEN, 2013; AUVINEN, 2015;

CARTER et al., 2019), how many attempts they need to solve the problems (AHADI

et al., 2016; CASTRO-WUNSCH et al., 2017; ESTEY; COADY, 2016; FONSECA et al.,

2019), how they use hints in a web-based system (ESTEY; COADY, 2016; OLIVEIRA et

al., 2020), which are their frequencies of submission and unique attempts (MUNSON;

ZITOVSKY, 2018), how much effort they put into code (static analysis) writing (OTERO

et al., 2016), and which is their typing pattern and keystroke latency when programming

(LEINONEN et al., 2016). All these studies analyse the relationship between students’

code metrics and performance.

Here, instead, we start with all fine-grained code metrics (features) in CodeBench,

proposed our self-devised ones, as a basis for selecting the best. Hence, one important

contribution of this work is to show, through our case study, how important it is to

measure, collect, analyse and report the fine-grained data proposed by the CodeBench,

and how this helps stakeholders to have an early understanding of students’ behaviours

in programming classes.

2.6 Educational Context
At the Federal University of Amazonas, about 640 STEM undergraduate students enrol

every year in CS1, distributed over sixteen classes, 11 held in the first term and 5 in the

second. Figure 3 shows the evolution of pass rates from 2010 to 2018.

In public Brazilian universities, students must go through a new selection process

if they want to move from one undergraduate program to another. Thus, the dropout
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Figure 3 – Evolution of pass rate in CS1 classes.

rate of CS1 is partially explained by the dissatisfaction of some students with the

program itself.

Since 2015, the content is divided into seven modules, each consisting of four

two-hour sessions: (1) variables; (2) conditionals; (3) nested conditionals; (4) while-

loops; (5) vectors; (6) for-loops; and (7) matrices. Each module follows this sequence of

activities: a lecture class, two practical classes, and a partial exam. Python is adopted as

the base programming language. Figure 4 illustrates , during the CS1 course, students in

our environment typically solve 7 assignments lists, whereas which assignment precede

a test on the same programming topic. Each list has an average of 10 questions, and the

tests have 2 questions.

Session 1
Topic: Sequential 

Session 2
Topic: Composite 

conditional 
structures

Session 3
Topic: Chained 

conditional 
structures

Session 4
Topic: Repeating 

structures by 
condition

Session 5
Topic: Repeating 

structures by 
count

Session 6
Topic: Vectors 

and Strings

Session 7
Topic: Matrices

Sessions

Each session

Assingment lists
10 questions

Test
2 questions

1

2

3

4

5

6

7

Figure 4 – CS1 course configuration

Since CS1 content gradually increases in complexity, the final grade is a weighted
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average of the partial exams, where more advanced modules have higher weights.

The final grade is determined based on 7 partial exams (summative assessments), 7

mandatory programming assignments (formative assessments), and one final exam.

Partial exams contribute with increasing weights (6.1% to 18.2%) to the final grade,

whereas all assignments have the same weight (≈ 1.3%). For this study, we normalised

the final grades in the range from 0 to 1.

Thus, we analyse here running the Introductory Programming (CS1) course at

the Federal University of the Amazonas, via this self-designed OJ, which is delivered to

15 non-CS undergraduate degrees across the university. These courses are divided into

5 major areas: Mathematics, Physics, Engineering, Statistic and Geology. Three of the

degrees belong to Mathematics, 2 to Physics, 8 to Engineering, 1 to Statistics and 1 to

Geology. Figure 5 illustrates this configuration.

Mathematics

Physics

Statistic

Geology

Engineering

bachelor

applied

licenciate

bachelor

Statistic

Geology

Chemistry

Oil and gas

Materials

Mechanics

Production

Electrical/Electrotechnical

Electrical/Electronics

licenciate

Electrical/Telecommunication

Figure 5 – Non-CS undergraduate courses at the Federal University of the Amazonas
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2.7 Method

2.7.1 Instrument

In this work, we use as instrument the CodeBench Online Judge environment, which is

self-designed and implemented, as it allows us the freedom to add the changes inspired

by our research results. CodeBench1 (Figure 6) is developed from scratch by one of the

authors2. It evaluates students’ codes using a “dynamic analysis approach”, as defined

by the taxonomy proposed by Ullah et al. (2018), i.e. students submit their program to

the platform, and the output is compared against a set of test cases, manually provided

by the instructor.

Figure 6 – Screenshot of the student interface of CodeBench, showing a programming
assignment composed of 7 questions (left), the description of question #6
(middle), the built-in IDE (right), and the Python console (right bottom).

1 codebench.icomp.ufam.edu.br
2 The author who developed CodeBench is professor David Braga Fernandes de Oliveira, who is the

co-supervisor of this work.
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2.7.2 Data Collection

CodeBench provides its own code editor (IDE), designed to be simple and novice-

friendly, as shown in Figure 7. All actions performed by students in the IDE (e.g.,

keystrokes, submissions, code pasting, mouse clicks, tab or window transitions, etc.) are

timestamped and recorded in a log file on the server side. Figure 7 shows an example of

the log, from where we can extract variables to measure learner behaviour.

Figure 7 – Logs collected from CodeBench when the learner was writing a print com-
mand.

We have analysed data from 2016-1 to 2018-2 (2016-1 means the first term of

2016), with emphasis on the first four weeks, since our goal is to detect early effective

and ineffective behaviour. After gathering data from six academic terms (semesters), we

had 2058 students in total, which we call consolidation data3. As it is difficult to compare

data from different runs, we applied a z-score (zi) to each feature (briefly explained

in the next section), i.e., assigning zero to the mean (x̄) and replacing values (xi) with

the amount of standard deviations (σ(xi)) from this mean for any value other than the

mean, as in equation 2.1.

zi =
xi − x̄
σ(x)

(2.1)

Table 1 presents descriptive statistics, differentiated by term, on the number

of students and submission attempts for the programming assignments and exam

exercises.

2.7.3 Features Extraction and Selection

To create the programming profiles, we extracted useful information from two sources

in CodeBench: IDE raw logs and students’ source codes. We defined which features
3 Our dataset can be found on codebench.icomp.ufam.edu.br/dataset/
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Table 1 – Number of instances in CodeBench’s data set (by term)

2016-1 2016-2 2017-1 2017-2 2018-1 2018-2 Total
Students 535 176 481 190 486 190 2058
Programming
assignments

675 447 1278 556 1550 893 5399

Exam exer-
cises

128 110 153 93 180 107 771

Submission
attempts

154163 38933 119370 27613 148775 46765 535619

to be extracted, firstly based on previous work (PEREIRA et al., 2020a), to which we

added self-devised features, based on discussions with three of the instructors (who

also authored this work). The features suggested by the instructors were mainly related

to coding activity, time spent in the IDE and inappropriate use of copy&paste.

We computed several features, such as the proportion of copy&paste events,

number of executions between submissions, number of deleted characters, program

metrics (number of cycles, cyclomatic complexity, number of variables, number of

comments, number of non-comment lines, etc.), among others. In order to reduce the

feature space, we analysed the pairwise Spearman’s rho correlation among all the

features, since they were not normally distributed. Hinkle et al. (2003) claims that

a correlation ≥ 0.9 (absolute value) is strong. As such, we removed features with

correlation bellow -0.9 and above 0.9 with other features. In the case of a high correlation

between a pair of features, we opted to remove the one with a lower correlation with the

final grade, as we intend to find features related to effective and ineffective behaviour.

Table 2 describes each remaining feature along with its categorisation, according

to a taxonomy of ‘useful information’ derivable from IDE data, proposed by Carter et al.

(2019), where Count represents features that can be extracted by counting events in raw

log files or source codes, Math represents features that need a mathematical formula to

be computed, and Algo represents those features that need an algorithm applied in the

raw data to extract useful information. These features (programming behaviours) together

compose what we call the students’ programming profile. In other words, the programming

profile from CS1 students is a set of features that represent the learners’ effective

and ineffective programming behaviours. We also provide descriptive statistics of our



Chapter 2. Programming Profile with effective and Ineffective Programming Behaviours 58

features in Appendix C.

Table 2 – Features (programming behaviour) used in the machine learning models

Features (Pro-
gramming be-
haviour)

Description Type

procrastination Root square4 of time in minutes between first code edit and programming
assignment deadline (EDWARDS et al., 2009; CARTER et al., 2019) multi-
plied by -1 after the z-score transformation5;

Count

amountOfChange Amount of code added/changed between submissions (EDWARDS et al.,
2009; CARTER et al., 2019);

Count

attempts Average number of submission attempts (regardless whether correct or not)
for each problem (CASTRO-WUNSCH et al., 2017);

Math

lloc Total number of logical lines for each submitted code (OTERO et al., 2016).
Imports, comments, and blank lines were not counted;

Math

systemAccess Total number of student logins between the beginning and the end of the
forth week;

Count

firstExamGrade Student grades for the first exam taken at the end of the fourth week of the
course;

Count

events6 Number of log lines on attempt to solve problems. To illustrate, each time
the student presses a button in the embedded IDE of CodeBench, this event
is stored as a line in a log file (adapted from (LEINONEN et al., 2016;
CASTRO-WUNSCH et al., 2017))

Count

eventActivity A binary self-devised feature, where 1 is assigned when the student solves
a problem with less than an amount 7 of events8. To aggregate the feature,
we calculate the probability of a student having a value 1;

Algo

correctness Number of problems solved correctly from the programming assignment
realised in the first four weeks (CASTRO-WUNSCH et al., 2017);

Count

copyPaste A self-devised feature, the proportion between pasted characters (’ctrl+V’)
and characters typed;

Math

syntaxError A self-devised feature, ratio between the number of submissions with syn-
tax error9 and the number of attempts (ESTEY; COADY, 2016);

Math

ideUsage Total time spent, in minutes, by the students solving problems in the em-
bedded IDE (counted only when students were typing - we removed down-
time);

Algo

keystrokeLatency Keystroke average latency of the students when typing in the embedded
IDE (we also removed downtime) - adapted from (LEINONEN et al., 2016);

Algo

errorQuotient Compute a score based on the number of code errors and repeated errors
(JADUD, 2006);

Algo

watWinScore An extension of errorQuotient taking into account the problem solving time
(WATSON et al., 2013) (more explanation in related works - Section 2.5);

Algo

countVar Total number of variables in the source codes (CARTER et al., 2019); Count

Figure 8 presents pairwise Spearman’s rho correlations among the features

in Table 2. It shows that watWinScore, procrastination, copyPaste, syntaxError, and

errorQuotient are positively correlated. However, they are negatively correlated with

other features: amountOfChange, attempts, lloc, systemAccess, firstExamGrade, events,
4 We apply square root to smooth the data, since time is measured in minutes.
5 As an example, after the transformation, a z-score = 2 for procrastination means that the student

solved the problem with an antecedence of 2 standard deviation below the mean. Thus, a value above
zero would mean low procrastination, which is not reasonable in terms of semantics. As such, we
addressed it by multiplying the feature value by -1 after the transformation and, after that, a high
value means high procrastination and low value means low procrastination.

6 (CASTRO-WUNSCH et al., 2017) called this feature ’number of steps’. However, unlike them, we
averaged it.

7 One standard deviation minus the median of the numbers of logRows/events for a problem
8 Castro-Wunsch et al. (2017) called this feature ’number of steps’. However, unlike them, we averaged

it.
9 SyntaxError is a common and generic exception in python.
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correctness, ideUsage, eventActivity, and keystrokeLatency. This suggests that high

values of features of the first group might correspond to negative/undesirable behaviour

(e.g., high syntaxError is an undesirable behaviour, which should be improved). This

observation is further used in the clustering analysis.
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Figure 8 – Pairwise Spearman’s rho correlation between remained features.

2.7.4 Evaluative Factors

As effectiveness and ineffectiveness are psychological constructs, we derived a set of

evaluative factors to perform an operational definition of these concepts. For each

student, we determined the number of solved and unsolved questions, considering the
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number of attempts of code submission to CodeBench correction. At the same time,

for each programming question, we calculated the median of the number of attempts.

We state here that students made few attempts if they made less than the median of

attempts, and many attempts, otherwise. Moreover, if students perform many attempts,

they are called resilient. From these assumptions, we defined five evaluative factors to

measure effective or ineffective behaviours, as follows, which were inspired in Yera &

Martínez (2017):

• Non-attempt ratio: noAttempts = #non−attempted−questions
#questions

• Unsuccessful without resilience ratio: unsucNoRes = #unsolved−questions−after−few−attempts
#questions

• Successful without resilience ratio: sucNoRes = #solved−questions−after−few−attempts
#questions

• Unsuccessful with resilience ratio: unsucRes = #unsolved−questions−after−many−attempts
#questions

• Successful with resilience ratio: sucRes = #solved−questions−after−many−attempts
#questions

Note that the sum of these five factors is equal to 1. In addition, we defined

another two evaluative factors, based on how successfully learners solve programming

assignments, as follows:

• Effective attempt ratio: effectAttRate = #solved−questions
#attempted−questions

• Effective general ratio: effectGenRate = #solved−questions
#questions

Here we hypothesised that an effective behaviour is related to low values of

noAttempt and unsucNoRes. Similarly, it is related to high values of sucNoRes, sucRes,

effectAttRate, effectGenRate. On the other hand, ineffectiveness is the opposite. To check

if our hypotheses are reasonable, we measured the correlation of the evaluative factors

with the final grades. Figure 9 shows the pairwise Spearman rho correlation among

evaluative factors and final grade.

Regarding unsucRes, a high value may look like a sign of ineffectiveness. When

students try a lot, even not achieving a correct solution, they show resilience, which is

an important characteristic for programmers (Pereira et al., 2019c). In addition, Online

Judges based on dynamic analysis have limitations and sometimes they may be unfair,
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Figure 9 – Pairwise Spearman’s rho correlation between evaluative factors.

since they perform a string comparison between student solution output and the

expected output. Consequently, if the student misses a space or a break line in the

output (presentation error), the solution will be considered as wrong, even if it is

logically correct. Thus, to confirm this assumption, we have analysed the correlation

between unsucRes and finalGrade. We found a positive value (rs = .65) and, hence, we

state that a high unsucRes is related to effectiveness.

Notice that sucNoRes has a weak positive correlation with finalGrade (rs = 0.05).

Although this outcome also sounds unexpected, Ahadi et al. (2016) showed that there are

cases in which solving correctly the programming problem is irrelevant, provided that

the learner achieves a threshold of attempts (resilience). Still, there are also problems that

are important to solve correctly (success), but students are expected to have done so with

more than a specific number of attempts (with resilience). Moreover, at the beginning of

the course, students are learning how to deal with the nuances of CodeBench and it is

common to make naive mistakes (as previously explained), provoking an increase on
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the number of attempts even for students who end up passing.

Thus, different from our prior assumption, effectiveness and ineffectiveness

without resilience are not correlated with the final grade (Figure 6). Hence, we kept as

evaluative factors only the features with Spearman’s rho correlation with the final grade

above .6, which were: noAttempt, unsucRes, sucRes, effectAttRate, effectGenRate, and

obviously the finalGrade.

2.7.5 Clustering and Association Rule algorithms

Clustering algorithms can uncover hidden patterns in a complex dataset and many

works (ANTONENKO et al., 2012; SHI; CRISTEA, 2018; SHI et al., 2020; DUTT et al.,

2015) used these unsupervised learning methods to analyse new relationships on edu-

cational data. Still, students’ behaviour is heterogenous and, as effective and ineffective

programming indicators need to be found, these would be expected to have different

values for different student subpopulations. Hence, we cluster students based on the stu-

dents’ logs, in order to inspect the patterns of programming behaviours in each student

cluster and how these behaviours reflect on the evaluative factors. To do so, we used

the well-known k-means algorithm (MACQUEEN et al., 1967). This algorithm clusters

n observations within a predetermined number of k clusters, where each observation

belongs to the nearest group mean. Thus, each observation is closer to its own cluster

centroid10. Henceforth, we have used the mean silhouette coefficient (ROUSSEEUW,

1987) of observations to choose the most appropriate number of clusters for our data, as

this method can be applied to analyse the distance between every pair of clusters. We

opted for k-means after empirically trying other techniques such as Gaussian Mixture

Models, Spectral clustering, and DBSCAN. Indeed, k-means performed a better separa-

tion in subgroups (taking in consideration the mean silhouette coefficient) at the same

that has polynomial smoothed running time.

Furthermore, to strengthen and validate our conclusions and triangulate results,

Association Rule Mining (ARM) is used to identify groups within a given dataset, based
10 Represented by the mean of the observations within the cluster
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on the support (frequency) of items (AGRAWAL et al., 1993). The effectiveness of ARM

can be evaluated through different measures; in this work, we opted to use confidence

and lift, since those are some of the most used in the literature (HUANG et al., 2017).

2.8 Results and Discussion

2.8.1 Analysing Consolidation Data

To tackle the research questions, we modelled students’ programming behaviour using

the features presented in Table 2. These served as observations of the k-means clustering

method. From the complete three-year data set, we have used data from the first four

weeks11 of the course, as we aimed to detect effective behaviour early on. Previous

studies support that it is possible to draw patterns using fine-grained data from the

first weeks of introductory programming courses (ESTEY; COADY, 2016; CASTRO-

WUNSCH et al., 2017; COSTA et al., 2017; MUNSON; ZITOVSKY, 2018; ROMERO;

VENTURA, 2019; BOCKMON et al., 2020; PEREIRA et al., 2020a).

We inspected the relationship between the k-means clusters and the effective-

ness or ineffectiveness (based on evaluative factors). The convergence of k-means was

achieved in the 10th iteration with k=3 as the best value, and 44.94% of the students

were assigned to Cluster A, 29.93% to Cluster B, and 25.12% to Cluster C. We applied

the non-parametric Mann-Whitney U test for pairwise cluster comparison of features,

to inspect the impact of each feature, individually, in the cluster formation. The results

indicate a statistical difference (even with Bonferroni correction: p� 0.05/3) between

features in different clusters, except for the errorQuotient between Clusters A and B.

We also observed high effect sizes12 (r > 0.5).

Furthermore, in terms of evaluative factors, Figure 10 shows that Cluster A

performs better than Cluster B, which performs better than Cluster C, and, by transitivity,

Cluster A performs better than Cluster C. Indeed, this pattern is kept in terms of all
11 We performed the clustering using data from the first two, four, and six weeks. Results in the fourth

week were significantly better (better effect sizes) than in the first two weeks. However, the difference
between the fourth and sixth weeks was not significant, thus we opted for the fourth.

12 Mangiafico (2016) states that r in between 0.10 and 0.30 is considered small, whilst r greater than 0.30
and lower than 0.50 is considered medium, and r > 0.5 is a large effect.
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evaluative factors presented in the methods section. To check the statistical significance

between these evaluative factors, we conducted a pairwise comparison between each

cluster, as shown in Table 3. Apart from unsucRes for Cluster A vs Cluster B only,

Cluster A outperforms Cluster B, which outperforms Cluster C for all evaluative factors,

even with Bonferroni correction (p� 0.05/3).
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Figure 10 – Evaluative factors distribution of each cluster.

Based on Figure 10 and pairwise Mann-Whitney tests of the evaluative factors

(Table 3), we can label each cluster, as follows: (i) Cluster A contains the effective

students, (ii) Cluster B comprises the average students, and (iii) Cluster C has the

ineffective ones. Moreover, Figure 11 presents the centroids of each cluster, showing the

general programming behaviour of each group. From Figure 8, we can see which early

programming behaviours (represented by the k-means centroids) are leading factors for

effectiveness or ineffectiveness by adopted clusters.

2.8.2 Comparing Student Clusters

First, comparing effective with ineffective students, we can observe that the effective

ones deal with errors better, since they have a lower errorQuotient, and they take less

time to correct mistakes, as they have a lower watWinScore and, hence, they tend

to not get stuck too much time with, for example, the same errors. Besides, effective

learners have a higher amountOfChange between submissions, which might explain

why these learners can fix errors faster. Coupled with that, ineffective learners are more

affected with syntaxError, a generic and recurring exception in Python that may be
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Figure 11 – Programming profile of students in each cluster. We have marked with
bold and grouped together the features with a reverse scale for a better
visualisation.

difficult to fix for CS1 students. With that in mind, instructors might be notified, or

even the learners can be made aware of the risk of having many erroneous submission

pairs, especially if the error is the generic Python SyntaxError. Moreover, a clear sign

of concern is represented by a student with a huge difference in timestamps between

a pair of submissions with errors (mainly with the same errors), coupled with a small

amount of change.

Equally important, effective students have more attempts, lloc, systemAccess,

events, ideUsage, and countVar, as they spend more time programming, and they sub-

mit more problems to the Online Judge. This clearly shows that these learners are more

engaged with the course. Furthermore, effective students tend to code faster (higher

keystrokeLatency). They also solve more problems (higher correctness) which is one

possible reason why they achieve a better grade in the first exam (higher firstExam-
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Grade). Finally, these students tend to manage their time better, as they procrastinate

less. Still, when they solve problems, they do so with more events. If students solve a

problem with too few events (lower eventActivity) they are copying and pasting code

already created, which may or may not have been developed by themselves. In this

sense, we can also see from Figure 11 that ineffective students tend to copy and paste

more, which is not a desirable behaviour for introductory students at the very beginning

of the course (first four weeks in our case).

To compare the average students with the two other groups, we should consider

the effect sizes (COHEN, 2013) from Tables 3. We can see for all features a medium to

large (r > 0.4) degree to which a sample from Cluster A (effective students) has stochas-

tic dominance compared with the other sample from Cluster C (ineffective students).

However, we can see a lower degree (r < 0.3) to which the null hypothesis (sample

from the same group) is false comparing Cluster A versus Cluster B and comparing

Cluster B versus Cluster C, which shows that Cluster B has nuances from both groups,

i.e., students from Cluster B might have effective and ineffective behaviours.

Table 3 – Pairwise cluster comparisons of evaluative factors.

finalGrade noAttempt unsuRes suRe effectAttRate effectGenRate
Cluster A W 427702.5 335088.5 523403.0 426444.0 490898.5 478139.5

vs Z -13.7420 -6.5230 -0.1230 -13.9100 -4.7460 -6.5610
Cluster B Effect size (r) 0.1405 0.0317 0.0000 0.1440 0.0168 0.0320

Asy. Sig. (2) 0.0000 0.0000 0.9020 0.0000 0.0000 0.0000
Cluster A W 55826.5 161972.5 53377.0 49302.0 68775.5 49876.5

vs Z -22.5410 -24.0780 -23.0630 -24.2020 -18.7570 -24.0350
Cluster C Effect size (r) 0.5807 0.6626 0.6079 0.6694 0.4021 0.6602

Asy. Sig. (2) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Cluster B W 427702.5 335088.5 523403.0 426444.0 490898.5 478139.5

vs Z -13.7420 -6.5230 -0.1230 -13.9100 -4.7460 -6.5610
Cluster C Effect size (r) 0.1405 0.0317 0.0000 0.1440 0.0168 0.0320

Asy. Sig. (2) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2.8.3 Association rules analysis

A total of 83 rules13 were found (0.1 < support < 0.6, confidence > 0.1 and lift = 6.0850).

Figure 12 presents the stronger rules, sorted by their confidence (strongest rules have a

higher contrast). The figure shows how different clusters (A, B, C) are more influenced

by some features than by others.
13 The full set of association rules can be accessed on shorturl.at/czEOX
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Figure 12 – Association Rules representation.

In general, the rules confirmed what we found for effective and ineffective be-

haviour using clustering, e.g., the amountOfChange, eventActivity and examGrade are

highly associated (confidence >= 0.8, lift > 3) with the behaviour of non-passing students.

As a new finding, we observed that low eventActivity with a small amountOfChange

is related to ineffective students (lift = 6.1, confidence = 0.8, rule 55). On the other

hand, effective learners have solved more problems (higher correctness) with higher

eventActivity (lift = 3.59, confidence = 0.56, rule 64). By finding these new associations,

alongside the similarities within our clusters, we can infer that these rules might be

useful (due to the high lift) as predictors to identify at-risk students.

Finally, knowing which behaviour can be effective for CS1 learners may help
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towards self-regulation and awareness of what kind of attitude can be dangerous

and detrimental to their performance. An easily implementable option is to share this

information as a report to instructors, to provide them with tools to motivate students.

For instance, we have shown that resilient students (higher sucRes and unsucRes –

Cluster A), who do not easily give up trying to solve a problem, usually perform better

and end up passing. Instructors can then encourage weaker students to be resilient, as a

path towards better performance. However, resilience alone is not enough. There are

more factors involved in effectiveness, such as knowing how to fix, analyse or debug

compilation errors, managing well their time to solve the assignments, and practising

to develop skills - such as a higher accuracy of problem-solving, and so forth.

2.9 Pedagogical Implications
The origins of Online Judges trace back to programming competitions, whose intent

was to test programming ability, instead of building it (KURNIA et al., 2001; WASIK

et al., 2018). More recently, Online Judges are used as a self-learning tool, in parallel

to regular courses (WASIK et al., 2018; IHANTOLA et al., 2015; PEREIRA et al., 2020a).

Thus, this work impacts on a wide variety of stakeholders, such as developers, teachers,

students. Programming is a hands-on activity, which, however, requires a great amount

of feedback. Such feedback is precious in educational terms, and early feedback is vital,

if behavioural changes are desired. However, it is not scalable to large class sizes and

growing number of students, as in the case studied here, of the Amazonas. Instead,

with an approach such as ours, effective and ineffective behaviours in introductory

programming can be automatically identified early on, and encouraged or discouraged,

respectively. On the other hand, some measured behaviours may not be straightforward

or wise to automatically action upon. In such situations, instructors can receive alerts of

which students are at risk of low performance and why, so they can reflect on possible

causes of the observed ineffective behaviours. For example, explicitly inefficient student

behaviours (such as procrastination, copying/pasting of big chunks of code, and low

IDE usage time) can be automatically tracked by an Online Judge. Students could
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themselves be directly alerted, as a first port of call, on how far their behaviour is from

the higher-performance students within their group, as well as in average, and as a

result be invited to change their study strategy.

As another example, copy&paste behaviour may be due to plagiarism, or sim-

ply due to writing code separately and only pasting it in the system when “ready".

Nevertheless, writing code directly in the system is very informative in the analysis

and can lead to much more refined feedback to students. Thus some initial notification

on undesired behaviour can be useful for students to be given a chance to change

their own behaviour to better reflect their knowledge status. However, notice that such

intervention (the alert, in this case) should be mediated by the instructors, as this is a

premise of our work. Indeed, instructors can combine the information provided from

this clusters to reinforce, offline, the need for changing study behaviour.

Other behaviours, such as a high keystroke latency and a small amount of change

in code may be an observed consequence of non-observed actions. In this case, this

information should be reported only to instructors, who, in turn, should plan activities

in order to address the cause of such behaviours. For example, they can assign extra

exercises that target debugging, misconceptions, or code patterns.

Furthermore, identified effective behaviours can be brought to the attention of

instructors, effective, and also ineffective students – with instructors mediation and care

about non-disclosure of personal information. For example, late students can be warned

when a certain number of students complete assignments or spend more time coding in

the IDE than they do. Here, again, group membership can inform the feedback, so that

low-performance students have the opportunity to compare themselves with the best

amongst their group, as opposed to the best in class, which may be nonviable for them

to “beat". Additionally, the Online Judge can notify instructors about which students

need extra help, in good time before any deadlines, allowing for proactive instead of

reactive pedagogical interventions.

Briefly, we believe that our descriptive method provided in this chapter through

our clustering and associate rules analysis can be used as reference values for instructors

and in some cases for students. Such reference values (effective, ineffective, average (or
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intermediate) - see Figure 11) can be provided to instructors (or even other stakeholders

such as administrators), who in turn might make them available to students. Moreover,

we performed the analysis only on early data, however the method can be generalised

for the other sessions. Such analysis during the course can also be helpful for instructors

and students. Indeed, a bit out of the scope of this Chapter, we also carry out experiments

using non-early data. We observed that the hidden patterns found though the clustering

descriptive method become even more explicit throughout the sessions (S1 - S7). The

results can be seen in the Appendix B.

Finally, it is worth noting that, whilst correlation or even association rules per

se do not imply causation, the two-pronged triangulation approach used is providing

more evidence towards prediction power. Moreover, undesirable behaviours may need

to be addressed in some cases, even if they may not directly cause ineffectiveness – as

in the example of the copy&paste case.

2.10 Chapter Conclusions
CS1 classes usually have high heterogeneity among students. This was clear in this

work, showing variations in the patterns of student behaviours, resulting in three

different clusters. We further supported the findings via statistical differences in learn-

ing outcomes, programming behaviour and evaluative factors between these clusters.

Importantly, our analyses showed which early (based on only the first four weeks) pro-

gramming behaviours potentially indicate effectiveness or ineffectiveness in learning.

We believe that these programming effective, ineffective, and average/intermediate

behaviours can be used as reference values for instructors, who in turn can decide which

reference value should be available to the students.

Thus, this result can support decision making of students as well as instructor

intervention, such as designing specific guidance for a struggling group of students,

proposing new and challenging exercises for effective students, and personalising exer-

cises, according to different student needs. Furthermore, knowing which behaviour can

be effective might help students to improve their self-regulation and awareness of what
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kind of programming behaviour can be dangerous or beneficial to their performance.

In the next Chapter, we will show how the programming profile used in this Chapter

can be also useful for early performance prediction, thus giving another move towards

human/AI hybrid systems in which the instructors will have early information about

the final grade and situation (passed or failed) of each student. Also, we will go deeper

into the analysis of the effective and ineffective behaviours by interpreting the predictive

model since it is critical for adoption and prescription. Notice that the analysis of how

the instructors might help the AI is provided only on Chapter 7, when we integrate the

our AI methods.
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3

EARLY PERFORMANCE PREDICTION

The journey of a thousand miles

begins with one step.

- Lao Tsu.

3.1 Overview of the Chapter
We showed through the use of unsupervised machine learning algorithms (clustering

and association rules analysis) a clear indication that early student behaviour during

programming influences learning outcomes for programming classes. In this Chapter,

we will demonstrate thought supervised machine learning algorithms that these early

behaviours can also be employed as features to predict the students’ performance in an

early stage of the course.

As previous explained, introductory programming may be complex for many

students. Moreover, there is a high failure and dropout rate in these courses. A potential

way to tackle this problem is to predict student performance at an early stage, as

it also facilitates human/AI collaboration towards prescriptive analytics, where the

instructors/monitors will be told how to intervene and support students - where early

intervention is crucial. However, the literature states that there is no reliable predictor

yet for programming students’ performance, since even large-scale analysis of multiple

features have resulted in only limited predictive power. Notice that Deep Learning (DL)
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can provide high-quality results for huge amount of data and complex problems. In

this sense, we employed DL for early prediction of students’ performance using data

collected in the very first two weeks1 from introductory programming courses offered

for a total of 2058 students during 6 semesters2. We compared our results with the

state-of-the-art, an Evolutionary Algorithm (EA) that automatic creates and optimises

shallow machine learning pipelines. Our DL model achieved an average accuracy of

82.5%, which is statistically superior to the model constructed and optimised by the EA

(p − value � 0.05 even with Bonferroni correction). In addition, we also adapted the

DL model in a stacking ensemble for continuous prediction purposes. As a result, our

regression model explained 62% of the final grade variance. In closing, we also provide

results on the interpretation of our regression model as a first step to understand the

leading factors of success and failure in introductory programming, demonstrating in

another perspective early effective and ineffective behaviours.

3.1.1 Practitioner Notes

What is already known about this topic:

• Researchers have argued that early performance prediction is vital (IHANTOLA

et al., 2015; HELLAS et al., 2018; PEREIRA et al., 2020a; QUILLE; BERGIN, 2019).

• One potential way to perform such early prediction is by extracting useful infor-

mation from students’ log-data and use this information as features in machine-

learning algorithms (CARTER et al., 2019; PEREIRA et al., 2020a).

• There is no reliable early predictor of programming student performance (ROBINS,

2019).

• Besides the prediction, it is also important to interpret the predictive model to

facilitate adoption (PEREIRA et al., 2021; BERENDT et al., 2020; TENÓRIO et al.,

2021).
1 We opt to use data from the first 2 weeks instead of 4 weeks since there are other works which use

this minimum period to construct a predictive model capable of predicting the students’ outcomes at
the end of the course.

2 detail of the data is presented in the previous chapter
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• Deep learning and optimisation of machine learning pipelines using evolutionary

algorithms are achieving state-of-the-art results for other prediction tasks (OLSON

et al., 2016; GÉRON, 2019).

What this Chapter adds:

• A new combination of features, compared to the state-of-the-art, in order to explore

potential avenues for enhancing students’ performance.

• Showing how a deep learning pipeline can surpass state-of-the-art evolutionary

algorithm for construction and optimisation of shallow machine learning models.

• Cutting-edge classification performance for early performance prediction using a

large scale, longitudinal data from introductory programming students.

• Going one step further than binary classification and constructing an interpretable

stacking method that combines deep learning and easily explainable regularised

linear regression model.

• Showing in another perspective (by a regression model) how student behaviour

during programming can be effective and ineffective, leading students to success

and failure, respectively.

Implications for practice and/or policy:

• With early prediction, in a standard course, teachers could provide extra assign-

ments for the high-achieving group and personalised support to those who are

struggling.

• effective and ineffective behaviours can be automatically identified early on, and

encouraged or discouraged, respectively.

• Such process of early intervention can be performed using dashboards, e-mails,

etc. In other words, as ‘prevention is better than a cure’, likewise, it is better to

prevent students from failure as soon as possible, instead of finding out students

are struggling when their poor marks come in.
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• Applying a linear regression model is a step towards Interpretable Machine

Learning by understanding effective and ineffective programming behaviours,

which facilitates the adoption of early interventions thought learning analytics

tools to monitor the students’ performance.

• Predicting student performance at an early stage might facilitates human/AI

collaboration towards prescriptive analytics.

3.2 Research Questions Addressed in this Chapter
Many works have tried to find ways to mitigate the problem of high failure rate (IHAN-

TOLA et al., 2015; DWAN et al., 2017; HELLAS et al., 2018; LUXTON-REILLY et al.,

2018; ROBINS, 2019; FONSECA et al., 2019) in programming courses. In this sense,

researchers (Abu Amra; Maghari, 2017; COSTA et al., 2017; AGUIAR; PEREIRA, 2018;

HELLAS et al., 2018; QUILLE; BERGIN, 2018; PEREIRA et al., 2019a; PEREIRA et al.,

2019b; ROMERO; VENTURA, 2019; PEREIRA et al., 2020a) have argued that early

performance prediction is vital. This can facilitate human–AI collaboration towards

prescriptive analytics, where the instructors/monitors will be told how to intervene and

support students - where early intervention is crucial (HELLAS et al., 2018; ALAMRI

et al., 2019; ROMERO; VENTURA, 2019; PEREIRA et al., 2020). Furthermore, if the

predictive model is interpretable, it can allow understanding the model’s decisions

(MOLNAR, 2020), for a better analysis of which factors can lead to success or failure

of learners (PEREIRA et al., 2020a). With such understanding, we can offer valuable

information to instructors and learners. However, Robins (2019) explains that currently

there is no reliable predictor yet for programming students’ performance, since even

large-scale analysis of multiple features have resulted in only limited predictive power.

Still, Ihantola et al. (2015), Quille & Bergin (2018), Hellas et al. (2018), Robins (2019) state

there is a need to advance further in this field.

One potential way to perform such early prediction is by extracting useful infor-

mation from students’ log-data and use this information as features in machine-learning

algorithms (CARTER et al., 2019). To illustrate, there are studies which perform predic-
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tion using log-data, to represent how students deal with errors (JADUD, 2006; WATSON

et al., 2013), deadlines (CARTER et al., 2019; EDWARDS et al., 2009), attempts and cor-

rectness (CASTRO-WUNSCH et al., 2017; AHADI et al., 2016; ESTEY; COADY, 2016;

FONSECA et al., 2019; PEREIRA et al., 2020b); static analysis of code (OTERO et al.,

2016), typing patterns (LEINONEN et al., 2016), etc. In this sense, after demonstrating

in the previous Chapter a clear indication that student behaviour during programming

influences learning outcomes for programming classes, here we compiled these set of

predictive factors (described in Chapter 2) based on the recent literature to be used as

features in supervised Machine Learning (ML) models, to predict students’ performance

at the very beginning of introductory programming courses. We collected log-data from

a home-made online judge, and employed a method using an evolutionary algorithm,

to build and automatically optimise the machine learning pipeline, i.e., without the need

of an expert in data science. The evolutionary algorithm explored many combinations

of feature selection techniques, machine learning algorithms, combination of hyper-

parameters and their tuning, to the best ones thus representing a quite competitive

technique.

Despite that, the evolutionary algorithm does not explore any deep learning tech-

nique for the prediction. However, many researchers (HINTON et al., 2012; KINGMA;

BA, 2014; SRIVASTAVA et al., 2014; GÉRON, 2019; ALJOHANI et al., 2020) have shown

that deep learning can provide high-quality results for huge amount of data and com-

plex problems. With this in mind, it is worth noting that early performance prediction

is a complex problem (ROBINS, 2019) and we have a reasonable amount of data (N =

2058) (HERNÁNDEZ-BLANCO et al., 2019) to allow for deep learning. Thus, we raised

our first research question of this Chapter: (RQ2-1) Would a deep learning model surpass

an state-of-the-art evolutionary algorithm for early prediction of students’ performance?

Moreover, many works (ESTEY; COADY, 2016; COSTA et al., 2017; CASTRO-

WUNSCH et al., 2017; MUNSON; ZITOVSKY, 2018; PEREIRA et al., 2020a) defined the

problem of prediction as binary classification, in which a student must earn a final grade

of at least 5 (on a scale 0 – 10) in order to pass the course. Yadin (2013), Elarde (2016),

Robins (2019) used the term bimodal outcomes related to programming students’ grades,
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which means that, in general, programming classes have mainly two groups: high

achievers and failure students. For this, a binary classification make sense, reflecting the

bimodal nature of programming students’ outcomes. Nonetheless, this approach does

not consider properly students in the mid-range. As such, we raised a second research

question of this Chapter, in order to go a step further than the binary classification:

(RQ2-2) How we can effectively use the same data as for student result classification in a

regression model, to obtain early prediction of the students’ actual final grades?

Additionally, for prescriptive analysis, education applications must go a step

further than prediction itself and analyse the relevance of features (programming

behaviours), with the aim of understanding the major factors that can lead to success or

failure for a given cohort (HELLAS et al., 2018; ROBINS, 2019; QUILLE; BERGIN, 2019;

PEREIRA et al., 2020a). In other words, a better understanding of what programming

behaviours might negatively or positively influence the students’ grades could lead

to a better analysis of which strategies we might use to teach and how our students

would like to learn. With a different perspective than when we are addressing RQ1-1

and RQ1-2 (Chapter 2), we also want to interpret the regression model used to address

RQ2-2 and, thus, detect effective and ineffective behaviors (factors that can lead to

success or failure, respectively) in a new angle , that is, based on the analysis of the

coefficients of a regression model instead of clustering and association rules analysis.

Thus, we raised our third (and last) research question of this Chapter: (RQ2-3) How can

we interpret the results of the regression model to better understand effective and ineffective

behaviours?

3.3 Early Performance Prediction - State of the art
Research on how to improve the teaching and learning process in introductory pro-

gramming courses has been a major focus in computing education research (ROBINS,

2019). For example, there are many relevant works pointing out the advantages of

using e-learning systems, such as online judges (WASIK et al., 2018). Some propose

methods of exploring the large-scale data that come from the interaction of students
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with these systems (LUXTON-REILLY et al., 2018; WASIK et al., 2018). This kind of

data collection enables a data-driven analysis of student behaviours (IHANTOLA et al.,

2015; PEREIRA et al., 2018; AGUIAR; PEREIRA, 2018; CARTER et al., 2019; LIMA et al.,

2020), important to encapsulate the learners’ progress during the programming courses

(WATSON et al., 2013; HELLAS et al., 2018; CARTER et al., 2019; PEREIRA et al., 2020a).

In this context, early performance prediction is gaining increasing attention, as it creates

the possibilities to leverage the educational outcomes via early interventions (HELLAS

et al., 2018; ROMERO; VENTURA, 2019; PEREIRA et al., 2020a). In general, researchers

in this field investigate features that can be used in machine learning algorithms to make

predictions (HELLAS et al., 2018; PEREIRA et al., 2020a). This section presents some

relevant work that can contribute in the search of solutions to the problem of early

prediction of programming student’s performance, using data collected from e-learning

systems employed in programming classes. Moreover, we draw parallels to our work

to show both the need for it and its additional contributions.

Many works (JADUD, 2006; AHADI et al., 2016; ESTEY; COADY, 2016; LEINONEN

et al., 2016; CASTRO-WUNSCH et al., 2017; COSTA et al., 2017; Abu Amra; Maghari,

2017; PEREIRA et al., 2019b; PEREIRA et al., 2019) have been collecting fine-grained data

in the context of programming classes, to model students’ behaviour and to quantify

aspects of students’ performance. All these studies have in common that they analyse

the data-driven student behaviours, extract useful information, and use them as features

in machine learning and inferential statistics techniques, with the goal of predicting the

programming students’ performance at an early stage in the course.

Costa et al. (2017) conducted an important work in predicting students’ outcomes,

comparing different machine learning algorithms and the impact of data pre-processing

and fine-tuning of hyperparameters. The authors analysed data from 262 distance

education students and 161 on-campus learners. They used demographic features, such

as age, gender, civil status, and other data-driven features, like number of accesses to

the system and participation in discussion forums. Their best prediction results have

an f-score of 82% for on-campus students and an f-score of 80% for distance education

ones, both results using data from the first two weeks of the course. Although the outcomes
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of this work are promising, their database is small. Moreover, their use of demographic

data is static in nature and, hence, fails to encapsulate changes in students’ learning

progress during the course. Still, their results missed out on continuous prediction

(regression). They also did not explain their machine learning model’s decisions. In

this study, we also use their early, first-two-weeks-based prediction idea. However,

we present a different approach, using non-static, data-driven features for predicting

student’s grades both for discrete and continuous outcome. Moreover, we explore the use of

deep learning, instead of only shallow models and we interpret the model’s results.

In a pioneering and highly cited study, Jadud (2006) conducted a data-driven

analysis to propose an algorithm called Error Quotient (EQ), which uses snapshots of

compilation, to quantify the errors from the students, whilst they are programming. In

essence, the EQ algorithm received as input a pair of compilation events and assigned

to them a penalty, if errors were found. The penalty could vary; for example, if the

error of both compilation events were the same, then the penalty would be greater,

as the student would be showing the same misunderstandings repeatedly. Watson et

al. (2013) extended EQ with an algorithm computing the watWinScore, which scores

compilation pairs, by additionally taking into account the problem resolution time.

However, the results of these algorithms were modest in predicting students’ outcomes.

The algorithm proposed by Watson et al. (2013) obtained an average accuracy of 68.8%

during the course, whereas the EQ results had an average accuracy of 55.8%, both

for performance prediction in an experiment reported by Watson et al. (2013) with 45

programming students. In addition, for a regression task, the EQ explained ≈ 30%

(r2 = 0.3005) of the students’ grades, whilst watWinScore explained somewhat more, but

still only ≈ 42% (r2 = 0.4249), both using data from the entire course. Using data from

the beginning of the course (first 3 weeks), EQ and watWinScore had a poorly explained

variance ranging from 5% to 10% (r2 = [0.5˘0.1]). Despite the poor results for early

prediction, they provided some interesting ideas, useful to explore in another education

context. Thus, we considered using the EQ and watWinScore together, as features in a

machine learning model, to investigate their predictive power in conjunction.

Leinonen et al. (2016) used Machine Learning models to detect students with
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prior programming experience and to infer which students will pass or fail in CS1

classes. In order to do so, they used features based on typing patterns (e.g., number of

pairs of alphabetic or numeric characters) and keystroke latency. For the problem of

detecting whether the students would pass or not, they also achieved a modest accuracy

of 65.8%, using data from 226 students in their first two weeks of course. Similar to EQ

and watWinScore, more studies were considered to be required to be conducted, to check

whether some combination of the features presented by Leinonen et al. (2016), together

with others, would achieve higher outcomes.

Castro-Wunsch et al. (2017) adopted deep learning and traditional ML models to

identify students (n=897) in need of assistance. The authors found that the number of

attempts for each code exercise and the proportion of test cases accepted (correctness) in

problems from online judges are effective predictors to be used as features in machine

learning models. As a result, they achieved the best accuracy of 71.81%, using data

from the fourth week of the course. Still, Castro-Wunsch et al. (2017) suggested in

their conclusions that deep learning would likely achieve better results, with new

combination of features and more data. Following this, and using similar features as

Castro-Wunsch et al. (2017), Estey & Coady (2016) revealed that students at risk not

only have fewer submission attempts, but also a lower compilation frequency, and

different patterns in relation to the repeated consumption of hints generated in an

online environment. Using data from 652 students for early prediction (first two weeks),

Estey & Coady (2016) achieved an accuracy for the failing students of 30%. This results

were also found in a replication of Estey & Coady (2016)’s work conducted by Fonseca et

al. (2019). In brief, Estey & Coady (2016), Castro-Wunsch et al. (2017), Fonseca et al. (2019)

demonstrated the predictive power of simple metrics (e.g., attempts and correctness),

however their results were still modest. As such, there is a need of more improvements

and new experiments with other features.

In an exploratory study, Auvinen (2015) analysed deeply the programming

behaviours of 1777 students in an online judge and found that studying close to the

deadline and trial and error behaviour is related to poor performance. Kazerouni et al.

(2017) tracked and assessed procrastination behaviours and the amount of change of
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370 students whilst solving programming problems. To check the positive and negative

effect of such behaviours, they interviewed the students. As a result, they confirmed

what Auvinen (2015) has found that procrastination behaviours can be dangerous

for programming students. Following, Otero et al. (2016) analysed code metrics of

programming students’ codes, such as number of lines, number of conditions and so

forth. As a result, the authors suggested that these code metrics were related to the

student’s performance. Again, all these works are relevant, however there is a need to

understand their predictive power together in machine learning models, using data

collected from different educational institutions.

In this sense, in an effort to compile these data-driven programming behaviours

(features) exposed previously in this section, we have used some adaptations of code

metrics proposed by the literature (JADUD, 2006; WATSON et al., 2013; AHADI et

al., 2015; ESTEY; COADY, 2016; AHADI et al., 2016; LEINONEN et al., 2016; OTERO

et al., 2016; CASTRO-WUNSCH et al., 2017) in Chapter 2 to early identify effective

and ineffective behaviours. Now we are interested in testing those features for early

prediction. To do so, we will use traditional ML model optimised by an evolutionary

algorithm. To train and validate the model, we will employ the same data explained in

previous Chapter, that is, data collected from 2058 learners, however, in the first two

weeks of introductory programming courses.

Meanwhile, deep learning revolutionised the field of machine learning, by ob-

taining state-of-the-art results (MIIKKULAINEN et al., 2019). Many areas have benefited

from applying deep learning, and education is no exception (HERNÁNDEZ-BLANCO

et al., 2019). Moreover, as stated by Robins (2019) in a recent book, predicting program-

ming students’ performance is a complex problem. Géron (2019) explains that deep

learning is suitable for large amounts of data (as for our dataset) and complex problems

(such as the early prediction performance of programming students).

As such, we will compare SoA techniques of evolutionary algorithms for op-

timisation of ML pipeline with SoA deep learning architecture using fine-grained

behavioural longitudinal data. We will use such cutting-edge techniques with the fea-

tures combined in the previous Chapter, which comes from works presented in this
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section. As such, we are addressing a claim from the literature (IHANTOLA et al., 2015;

QUILLE; BERGIN, 2018; HELLAS et al., 2018; ROBINS, 2019) stating that more studies

need to be replicated and new methods need to be proposed to advance in this field.

3.4 Method
In this work, we validate and compare machine learning pipelines with the goal of: i)

estimating whether students will pass or not in a CS1 course using classification models;

ii) predicting the students’ final grades using regression models; and iii) interpreting

what programming behaviours are leading factors for success and failure. To do so, we

used data collected from a home-made online judge that will be described next.

3.4.1 Instrument

As in the previous Chapter, we also used an online judge called CodeBench, developed

from scratch by one of the authors for automatic evaluation of students’ solutions.

3.4.2 Data Collection and Programming Behaviours

We used the programming behaviours (features) defined in Table 2, explained in Chapter

2, extracted from students’ interactions with CodeBench during their attempts to solve

the programming problems. However, we added two features to try to perform a deeper

analysis of correctness taking into consideration the events (logs) and whether students

are redoing/rewriting their codes analysing how they delete their code. In addition, we

added these two features because both deep learning techniques and the evolutionary

algorithm perform feature selection and, hence, if these two features are not necessary

they will be automatic excluded. The features that takes into consideration are described

as follows:

• correctnessCodeAct: Represents the same as correctness, but in this case, we consider
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‘correct’ only student’s solutions with more than 50 events. To illustrate, if a student

submits a correct solution by copying and pasting (only 1 event), for this problem

it will be assigned 0 to the feature correctnessCodeAct, however for the feature

correctness will be assigned 1.

• deleteAvg: average of deleted characters for each problem.

All the features were extracted from students logs when solving the program-

ming problems from assignment and exams of the programming courses. The pro-

gramming assignment has from 10 to 12 programming problems. These activities are

followed by an exam, conducted in the same web-based system. There were 2 program-

ming problems in each exam. The problems from the exams were on the same topics as

the assignment beforehand. The exams were shorter because they were face-to-face in a

lab. In this work, we call each pair formed of an assignment and an exam a ’session’. In

total, 7 sessions were held throughout the course, lasting a little over 2 weeks each.

For the training of machine learning algorithms, we use only the data from the

first session (first two weeks), since the purpose of this method is to investigate early

predictors. The content of the seven sessions were: variables and sequential structure

(S1), conditionals (S2), nested conditionals (S3), ‘while’ repetition structures (S4), vectors

and strings (S5), ‘for’ repetition structures (S6), and bi-dimensional matrix (S7). Thus,

the sessions were structured so that problems became gradually harder.

3.4.3 Student Programming Profile

A ’programming profile’ for each student in the first session (S1) was constructed by

using 18 code features (programming behaviours) which represented metrics proposed

by state-of-the-art studies. This ’student programming profile’ was then digitally repre-

sented as a feature matrix, i.e., allocating each student a row and each feature a column.

The features and corresponding description are listed on Table 2 and subsection 3.4.2,

and sources are given.
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3.4.4 Cleaning the features and dealing with imbalanced dataset

First, for classification, we normalise our features using MinMax (equation 3.1) to

produce maximum absolute value of each feature scaled in unit size. We used this

scaling technique due to its robustness to features with small standard deviation as ours

and because it preserves zero entries. Moreover, such scaling technique is important for

neural networks because if a feature has a variance that is orders of magnitude larger

than others, the estimator might be unable to learn from other features correctly as

expected (GÉRON, 2019; PEDREGOSA et al., 2011).

Xstd =
X −min(X)

max(X)−min(X)
(3.1)

Moreover, the data generated by students that did not attend the course were

removed from this analysis, since they did not have any interaction with the online

judge. In addition, the database is very slightly unbalanced, since, unlike in other

educational environments there are somewhat more students who passed (≈ 56.7%)

than failed (≈ 43.3%). As we are dealing with features extracted from a very fine-grained

log-data collected from students’ interactions with an online system, some packets of

data may be lost before reaching the server side. To illustrate, if a student loses internet

connection whilst solving a problem on the IDE, then his/her logs will not be sent

properly to the server. Still, students can start the course with a desirable behaviour,

engaged, solving many problems from the assignments and performing well on the

first exam, but change throughout the course, possibly due to external factors, ending

with a low grade (and vice-versa). As such, our database might have some outliers.

Thus, aiming to decrease the biases of the classifiers due to the unbalanced nature of

the database and the presence of outliers, we used a statistical technique called Tomek

Links (TOMEK, 1976) to remove noise. When a Tomek’s link is formed on unbalanced

datasets (as ours), Batista et al. (2004) recommended removing one instance from the

majority class, in order to decrease the unbalance of the database, whilst also removing

noise. Using this approach, we removed 100 instances from the majority class (students

who passed) that form Tomek’s links on our database.

Notice that a Tomek’s link (L_T ) is defined between two samples xi and xj of
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different classes c1 and c2, respectively, for any sample y (equation 3.2), where d(.) is

the Euclidean distance between the two samples. In other words, a Tomek’s link is

represented by two samples from different classes that are the nearest neighbours of

each other, which might confuse the ML model, when creating the decision boundaries

to separate the instances of each class (BATISTA et al., 2004).

L_t = d(x1, x2) < d(x1, y) and d(x1, x2) < d(x2, y) (3.2)

To further deal with our imbalanced dataset, we divided the data into homo-

geneous subgroups called stratum (stratified sampling), so that the right number of

instances is sampled from each stratum in order to keep the same class proportion in the

training and validation sets (GÉRON, 2019). To do so, we used the library StratifiedKFold

from scikit-learn (PEDREGOSA et al., 2011), using a total of 10 folds.

For regression, we simply divided the data into training (70%) and testing (30%)

as the outcome is continuous and, hence, there is no problem of unbalancing. Moreover,

instead of MinMax normalisation, we used standardisation with z-score (equation 2.1)

as it measures values in terms of standard deviation, making it easy to interpret the

coefficients and features values of the regression model.

3.4.5 Prediction and Validation

First, it is important to explain how the task of classification is performed, when the

target is a continuous variable. We will employ the same approach used by the SoA

work presented in section 3.3, which represented the problem as a binary classification,

where students that achieve a final grade greater or equal to 5 are represented as the

class ‘passed’, the rest being ‘failed’. We use the grade 5 as threshold since this grade

is used by the university to check whether the student passed or failed. Next we will

show how we configurate and validate our classifiers and regressor.
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3.4.5.1 Genetic Algorithms and Automatic Machine Learning

There is a research field that studies the automation of the machine learning process.

This field is known as Automated Machine Learning (AutoML). Initially, the researchers

investigated techniques for optimizing subsets of ML pipeline, such as automating the

hyperparameter setting or selecting attributes (HUTTER et al., 2015).

With the evolution of AI, sophisticated AutoML methods have been proposed. To

illustrate, Feurer et al. (2015) presented auto-sklearn which is a tool that uses bayesiana

optimization for the entire production of ML pipelines, that is, the pre-processing of

attributes, selection of the ML algorithm and adjustment of hyperparameters. However,

auto-sklearn is not able to produce a large number of pipelines. Indeed, auto-sklearn

exploits a fixed number of pipelines steps that include only a pre-processing algorithm

data, one attribute pre-processing algorithm and one ML algorithm on the pipeline.

On the other hand, Zutty et al. (2015) demonstrated that optimization with ge-

netic programming can surpass humans in the search for a ML pipeline that best fits in

a supervised learning task. In this way, Olson et al. (2016) proposed a method of con-

struction and optimization of ML pipelines trees using genetic algorithms. The method

created by Olson et al. (2016) is called Tree-based Pipeline Optimization Tool (TPOT) and the

main idea is to initially create an entire population of random shallow ML pipelines and

evolve them with mutations and crossover operators over the generations. To build the

pipelines, Olson et al. (2016) employed several algorithms for selecting, constructing and

transforming features and ML algorithms together with fine-tuning hyperparameters.

Olson et al. (2016) explain that the tree is created using many operators.

To illustrate, Figure 13 presents an example of the process of building a pipeline

tree, where each circle represents an operator. Note that copies of the training base are

created so that operators can combine the modified attributes and data. Subsequently,

there may be a process of selecting attributes so that the predictive model can finally be

built. Also note that the pipeline shown in Figure 13 is an individual from the population

that will evolve over the generations. Note that to carry out the evolution an elective

selection is used, evaluating the individuals of the population with a fitness function that

measures the performance of the pipeline in the training base. The fitness function in
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this context can be accuracy or another performance metric.

1. Transformation,
construction and selection of
features from Programming

Profile

2. Building
ML models

4.
Hyperparameter

tuning
3. Cross-

validation k-fold

Tree-based	Pipeline	Optimisation	Tool	(TPOT)
	

5. Validation
with unseen

data

Figure 13 – Operators for building the ML pipelines using TPOT method. Adapted from
Olson et al. (2016).

Finally, TPOT employs the NSGA-II (DEB et al., 2002) algorithm, which is a

multiobjective genetic algorithm. The objective functions used in the NSGA-II were to

maximize the accuracy of the models and minimize the pipelines’ complexity, in which

complexity is measured by the number of operators in the pipeline.

Therefor, using TPOT, we found as the best model a regularised Random Forest

(RF) with 100 constituent decision trees that considers 30% of the features when splitting

the constituent decision trees using bootstrap for resampling. Moreover, the trees must

have at least 8 instances to create a new branch. To perform the classification, the RF

used hard-voting.

3.4.5.2 Deep Learning Model

To validate our hypotheses that a deep learning model will outperform the evolutionary

algorithm that optimeses shallow ML models, we adopted the popular and widely used

Multilayer Perceptron (MLP). We use MLP, as this is one of the most effective neural

network techniques for modelling and prediction (GÉRON, 2019; MAHAJAN; SAINI,

2020). In addition, Géron (2019) has claimed that MLP can be effectively employed for

modelling nonlinear and complex processes of the real world, and education is not an

exception (HERNÁNDEZ-BLANCO et al., 2019). In brief, MLP is a neural network fully

connected that comprises an input layer followed by one or more hidden layers, and a

final output layer. MLP is a feed forward Neural Network (NN) as the data flows only

from the input to the output. MLP is considered a deep learning model as many authors

use this term whenever neural network is involved (GÉRON, 2019), even for shallow

NN.
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In general, deep learning models are suitable for huge amount of data and

complex problems (GÉRON, 2019). Here, we are tackling a complex problem (HELLAS

et al., 2018; QUILLE; BERGIN, 2019; ROBINS, 2019), however with not that much data.

In this scenario, a highly deep MLP will likely perform well on the training, but not

on the testing set (overfitting). As such, we configured our MLP with only two hidden

dense3 layers. Each dense layer has 64 nodes4 and we use the state-of-the-art Rectified

Linear Unit function (RELU) as activation function. We initialised the weights and biases

of our NN randomly, following a normal distribution as widely recommended (GÉRON,

2019). As a way of regularising our NN, we added the widely used dropout technique

(HINTON et al., 2012; SRIVASTAVA et al., 2014) followed by each hidden dense layer.

We configured the dropout5 with p=0.5, which means that 50% of the neurons of a

hidden layer are ignored during training. Still, we used adaptive moment estimation

(adam) technique (KINGMA; BA, 2014) for optimisation of the gradient descent, as this

method tends to accelerate the convergence of the model and reduces the fast decay

of the learning rates (GÉRON, 2019). In addition, we used the popular binary cross

entropy as loss function for our classification problem. The output layer has two nodes,

one for each class, and uses the sigmoid activation function, which gives a probability

of a student passing or failing.

3.4.5.3 Regression Model

Moreover, a continuous estimation of students’ grades can be more useful for instructors,

as it is more detailed and thus more powerful and information rich than a binary

classification (passed or failed). In this sense, we go a step further by adopting, besides

classification, a regression model, to perform continuous estimation. To do so, we adapted

the ideas behind stacking ensemble (WOLPERT, 1992). We configured the stacking

ensemble using the outcome (predicted probabilities) from the MLP model as input

on a meta-classifier (blender). In other words, as we performed 10-fold stratified cross-
3 It is called a dense layer when all the neurons in a layer are connected to every neuron in the previous

layer (fully connected layer) (GÉRON, 2019). Moreover, we tested different configuration for the
model, varying the number of hidden layers of the NN from 2 to 8 on the training set.

4 This value was found empirically, after testing 16, 32 and 64 on the training set.
5 We experimented with different values for p (from 0.2 to 0.8), and 0.5 renders the best results
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validation for the classification problem with our DL model, we have a probability

prediction for each student based on the sigmoid activation function, which is estimated

on each test fold of the cross validation. As such, these probabilities as one of the

features (dlProbs) in our Ridge Regression model. Thus, we used this ‘meta-feature’

concatenated with the features from the programming profile (presented on Table 2) and

used as input on an easily interpretable Ridge Regression algorithm, that worked as a

meta-classifier (blender) on the stacking ensemble. This allows us to have the predictive

power of our deep learning model (by using its outcome) along with the interpretability

power of a Ridge regression linear model, which is important to understand the early

programming behaviours that might be positive or negative in terms of success and

failure in CS1 courses. We opted for Ridge Regression, as this regularised version of a

linear regression is a good default in cases where we suspect that almost all features

will likely be useful (GÉRON, 2019).

As extra information, we state that we also performed tests with other machine

learning algorithms in the regression task (RandomForest, Extra Trees, XGboost and

others), including with optimisation of hyperparameters; however, the results were not

significantly superior to those found with our linear model of regression. Therefore, we

chose to use Ridge Regression, which gives us, in addition to the predictive power, an

easy interpretation of the confidence intervals of the regression coefficients.

3.4.5.4 Validation

For classification, we compared both models, using the following statistical metrics

suitable for unbalanced dataset such as ours: recall (equation 4), precision (equation 5),

F1-score (equation 6), and accuracy (equation 7), where TP stands for true positive, TN

stands for true negative, FP stands for false positive, and FN stands for false negative.

For regression, we used the widely recommended (MONTGOMERY et al., 2012) MAE

(equation 8) and the coefficient of determination r2 (equation 9), where n is the number

of samples, ŷi is the predicted value of the i-th sample, yi he corresponding true value,
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and y is the average of all true values.

recall =
TP

TP + FN
(3.3)

recall =
TP

TP + FP
(3.4)

F1 = 2.
precision.recall

precision+ recall
(3.5)

accuracy =
TP + TN

TP + FP + TN + FN
(3.6)

MAE =
1

n

n∑
i

|yi − ŷi| (3.7)

r2 = 1−
∑n

i (yi − ŷi)2∑n
i (yi − y)2

(3.8)

3.5 Results and Discussion
We organised the results in three subsections, in order to answer our three research

questions. In subsection 3.5.1, we compare our deep learning model with the best

previous model found evolutionary algorithm, answering RQ2-1. In subsection 3.5.3,

we show the results of our regression model, in order to respond to RQ2-2. Furthermore,

in education, it is also important to understand which behaviours mostly affect student

performance. As such, answering RQ2-3, in subsection 3.5.4, we analyse how each

feature affected the regression model outcome in a move towards understanding each

positive and negative programming behaviour from the students’ programming profile.

3.5.1 Deep Learning versus Evolutionary Algorithm

In Chapter 2 we have showed a novel classification of students into effective, average

and ineffective, based on their programming behaviour (features), which shows both
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semantic and significant statistical differences. Here we also check whether the features

are relevant to distinguish programming behaviours from students who passed and

failed and, hence, whether they would be useful as features for the ML model and for

our explanation of the model decision. For this, we first applied the non-parametric

Mann-Whitney U test to compare the features of students who passed or failed. Results

indicate a statistical difference (even with Bonferroni correction: p� 0.05/18) between

all features. Hence, we opted not to perform feature selection and use all features as

input to construct our predictive model. Another reason for not performing feature

selection is that it is intrinsic to deep learning models and the evolutionary algorithm to

automatically extract the best.

Given that, in this subsection we answer RQ2-1: Would a deep learning model sur-

pass an state-of-the-art evolutionary algorithm for early prediction of students’ performance?’.

To answer this question, we ran the model using shallow classification settings con-

structed and optimised by an evolutionary algorithm, using TPOT. Subsequently, we

compared the results with our deep learning predictive model (both predicting models

are explained in subsection 4.4.1). For each predictive model, we ran the stratified

cross-validation 20 times with 10 folds, varying the seed over a range from 1 to 20, in

order to shuffle the database in different ways and, hence, explore the range of possible

outcomes. Hence, we obtained 200 results for each metric (10 x 20), one outcome for

each fold.

Figure 14 shows the performance of the models, in which we can observe a

superiority of the deep learning model. For a deeper analysis, Table 4 shows the descrip-

tive statistics of each model outcome, in which Random Forest (RF) depicts the model

constructed and optimised by the evolutionary algorithm. Although the RF has less

variance (measured here by the standard deviation and Interquartile Range), our deep

learning model achieved a higher performance in all metrics (accuracy, F1-score, recall,

and precision). Indeed, our accuracy ranging from ≈ 81.9% to ≈ 82.7% (C.L. 95%) using

data from the first two weeks of the course for training, whereas the RF model found by

our baseline achieved an accuracy ranging from ≈ 77.8% to ≈ 78.6% (C.L. 95%).

To check for statistical significance following we define null hypotheses and,
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Figure 14 – Comparing performance of the predictive models - deep Learning vs. evo-
lutionary algorithm for optimisation.

Table 4 – Statistics of the predictive models outcomes (better results are bolded). C.I.
stands for Confidence Interval, L.B. stands for Lower Bound, and U.B. stands
for Upper Bound.

Accuracy F1-Score Recall Precision
DL RF DL RF DL RF DL RF

Mean 0.823 0.797 0.818 0.792 0.860 0.838 0.782 0.751

95% C.I. for Mean
L.B. 0.819 0.794 0.814 0.789 0.854 0.833 0.777 0.747
U.B. 0.827 0.800 0.822 0.795 0.865 0.843 0.787 0.756

Median 0.827 0.798 0.821 0.792 0.864 0.835 0.781 0.747
Std. Deviation 0.027 0.022 0.027 0.022 0.039 0.034 0.037 0.032
Minimum 0.754 0.742 0.746 0.746 0.739 0.766 0.692 0.684
Maximum 0.895 0.855 0.888 0.847 0.966 0.915 0.886 0.830
Interquartile Range 0.037 0.030 0.037 0.028 0.053 0.047 0.052 0.038

in Table 5, we show the pairwise Wilcoxon test results to check these null hypotheses.

Indeed, Table 5 shows that our model (DL) statistically surpasses our baseline (RF),

even after Bonferroni correction (p− value� 0.05/4) in all model evaluation metrics

(accuracy, F1-score, precision and recall), which shows that we can better recognise

(higher recall) students who pass and fail with a higher precision. Thus, we can refute

all the null hypotheses H01, H02, H03, H04. The effect size (η2) is considered medium

(COHEN, 2013) for all metrics (accuracy, recall, f1-score, and precision).

• H01: The distribution of Accuracy is the same between the models Deep Learning

and Random Forest.

• H02: The distribution of F1-score is the same between the models Deep Learning

and Random Forest

• H03: The distribution of Recall is the same between the models Deep Learning

and Random Forest.
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• H04: The distribution of Precision is the same between the models Deep Learning

and Random Forest

Table 5 – Wilcoxon W test to compare the predictive models. Effect size (η2) is considered
small if η2<0.01, it is medium if .01 < η2 ≤ .06, and high if η2 > 0.06 (COHEN,
2013)

.

Accuracy Recall F1-Score Precision
Wilcoxon W 29028.00 33297.00 28971.00 30700.00
Z -9.58 -5.89 -9.63 -8.13
Effect size (η2) .05 .02 .05 .04
Asymp. Sig. (2-tailed) .00 .00 .00 .00

Moreover, giving a parallel with other relevant works (presented in section 3.3)

that also have the goal of early performance prediction in introductory programming,

Leinonen et al. (2016) achieved an accuracy of 65.8%, using data from 226 students in

their first two weeks of the course and in extension work, using more data Edwards et

al. (2020) achieved 72% of accuracy. Using data of 897 learners in their first four weeks6,

Castro-Wunsch et al. (2017) achieved an accuracy of 71.81%, Quille & Bergin (2019)

achieved an average accuracy of 71% using early data from 692 students, Tomasevic et

al. (2020) achieved 78% of accuracy. Indeed, our result is superior to all related works that

performed early performance prediction (section 3.3). Other works such as Jadud (2006),

Watson et al. (2013) that used only one feature achieved lower accuracy (<66%) using

data from the whole course instead. Only Costa et al. (2017) achieved a similar result

(80%), however, using demographic features. Notice that demographic attributes might

be good predictors, however, the stakeholders have no control on the demographics (e.g.

age, gender, etc.) of students and, hence, such static features are not useful in this work

since we aim at predicting and prescription and, for the later, behavioural attributes are

needed as stakeholders might stimulate the effective behaviours whereas guiding the

ineffective ones.

In addition, although all these works were conducted in different education

scenarios, their performance gives us the intuitions that the problem of early prediction

is complex and our DL model achieved cutting-edge performance. Moreover, we are the
6 The performance in the first two weeks is not reported in Castro-Wunsch et al. (2017)
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first, to the best of our knowledge, to apply explainable artificial intelligence to interpret

the predictions of the predictive model’s decision, as it will be explained in section 3.5.4.

3.5.2 Performance Analysis Per class

Therefore, we now will further explore the results of our deep learning model, analysing

the performance per class (failed or passed). In Figure 15 (left), we show the precision/re-

call curve of our model for different thresholds, whilst in Figure 15 (right) we show the

ROC curves, i.e., the false positive rate (x-axis) and true positive rate (y-axis) also for

different thresholds, where class 0 depicts the students who fail and class 1 represents

the students who passed. Before the explanation about Figure 15 (left and right), it is

worth illustrating what means threshold in the context of these figures. In a binary

classification task as ours, the DL algorithm uses probability to classify a student as

passed or failed. Thus, to perform the classification, the model uses a standard threshold

of 0.5 (50%). As such, if the model estimates that the probability of a student passing is

60% and the threshold is equal to 50%, then the student will be classified as passed. On

the other hand, the same student would be classified as failed if the threshold is equal

to 70%. Note that increasing the threshold increases the confidence level to classify a

sample as passed, however the algorithm’s hit rate decreases, as it tends to estimate an

observation as pass, only when it has a higher level of confidence.

Figure 15 – Precision and recall curve (left) and ROC curve (right) of students who
passed (class 1) and students who failed (class 0). The micro-average takes
into consideration the class proportion of students who passed and failed,
whereas the macro-average threats each class independently.
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Given that, from a visual inspection of Figure 15, it is possible to see that our

model indeed performed well on both classes. With regards to the precision/recall

curve, we achieved an area under the curve of 0.854 for students who passed and≈ 0.92

for learners who failed. Still, with regards to the ROC curves, we achieved an area under

the curve of 0.90 in both classes. This shows that our model distinguished students who

passed and failed, even when the threshold was different from the central value (0.5).

This can be seen by analysing the continuous lines (green and black) of Figure 15 (right)

(left and right) that are close together, sometimes overlapping.

3.5.3 Regression Analysis

In this subsection we answer RQ2-2: ‘How we can effectively use the same data as for student

result classification in a regression model, to obtain early prediction of the students’ actual final

grades?’.

As we are using a linear model with regularisation, Ridge Regression, we first

adjust the alpha value, which controls the amount of regularisation, i.e., the higher the

alpha, the less complex (and higher bias) the model, whereas the lower the alpha, the

more complex (and higher variance) the model. Notice that too complex models can

lead to overfitting, whilst a too simple model can cause underfitting. Thus, we tested

different values of alpha to find a balance between this bias-variance trade-off, as can be

seen in Figure 16. As a result, the best value found is alpha=2.474 (see the vertical dotted

line). Using this alpha, we achieved a coefficient of determination (r2) of approximately

0.62 (see Table 6). Thus, overall, our model can explain 62% (r2 ≈ 0.62) of the variance

on students’ final grades, by using a relatively high degree of freedom for the residuals

(Df residuals) and a low degree of freedom for the model (Df model). This is important

in linear regression, as r2 only increases when the Df model (number of features + 1)

increases (MONTGOMERY et al., 2012). Indeed, the predictions of our regression model

is statistically significant (p− value < 0.05 and f − statistics = 166.4).

In addition, for a better understanding of our regression’s performance, we

evaluated our MAE, which is 1.6 [+/- 0.11, CL of 95%] (Table 16), what means that in
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Figure 16 – Choosing the optimal alpha for our Ridge Regression Model. We use as
error measure the Mean Squared Error (y-axis) as this statistic metric gives
a higher penalty to errors than Mean Absolute Error and Coefficient of
Determination.

Table 6 – Regression Results. Df stands for degrees of freedom, MAE stands for mean
absolute error

Df residuals 1936
Df model 19
MAE 1.6
R2 0.62
F-statistic 166.4
p (f-statistic) 0.00

some cases the model’s residual might be high, as these predictions are on a scale of

[0-10] (students’ grades). Nonetheless, notice that MAE is the mean of the residuals7

absolute values (equation 8) and the mean is quite sensitive to outliers.

In this sense, in Figure 17, we plot the actual grade (y) of each student on the

x-axis, whilst on y-axis we plot the grades predicted (ŷ) by our model. Moreover, we

show a dashed 45-degree line (identity) to compare with our model’s best fit prediction

(best fit). Using this we can inspect the amount of variance in our regression model, i.e.,

where the model makes bigger mistakes and where the model hits. To illustrate, there

are many points close to the identity, which means that the residual of the prediction is

close to zero. However, we can observe a few outliers along a range of the target domain,

which might explain the high value of our MAE. To illustrate, notice the density of
7 n this case, residual is the difference between the actual student’s grade and the predicted grade
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errors on the point zero of the x-axis forming a kind of a ‘vertical line’, which means

that the model predicted higher grades for some students who achieved an actual

grade close to zero. A possible explanation for that is that we are using data from the

very beginning of the course (first two weeks) and, hence, some students might begin

the course with effective behaviours that probably would lead to success. However,

during the course they might give up because of personal reasons or even become less

engaged and dropout. As instructors, we know empirically that students can change

their posture in terms of engagement during the course, i.e., they can begin well but end

up failing. We can also observe in this figure a few cases of the opposite phenomenon,

i.e., students who achieved higher grades but the model predict low grades to them,

which likely means that these students begin with bad habits but end up passing with

higher grades because of possible changes on habits. As such, for regression, we believe

that our model predictions are not highly accurate for extreme values (0’s and 10’s)

because of those uncontrollable and unknown factors influencing the students’ grades,

typical in human sciences. However, we believe that when using our regression model

combined with teachers, these estimator errors for extreme values (0’s and 10’s) will

be detected by the teachers ’intuition and experience with students, thus lessening the

limitations of our regression model.

In Figure 18 we can see the residuals are proportionally distributed along the

zero axis, which indicates there is no heteroskedasticity. To confirm that, we applied

Goldfeld-Quandt test, and we did find homoscedasticity (p−value = 0.3471). Besides that,

Figure 19 shows the residuals of our model on y-axis and the actual students’ grades on

the x-axis. With this in hand, we can perform a visual inspection of the regions within

more or less errors regarding to the students’ grades prediction, confirming what we

explained previously about our prediction on extreme grades (0’s and 10’s). Nonetheless,

we can see that in overall the points are close to the horizontal black line (point zero

on y-axis), which means lower errors. Moreover, we claim that the regularization was

done properly as the predictions on the training and testing set have almost the same

spectrum and residual distribution (see the histogram), demonstrating that our model

generalises well. Still, the histogram of the residuals shows a distribution centred on
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Figure 17 – Prediction error of our regression model. On the x-axis we show the actual
values and on y-axis we show the predicted values for each student on the
testing set.

zero and with a bell shape, which suggests a linear underlying nature of the data.

Figure 18 – Residuals of our regression model.

3.5.4 Analysis of Feature Effects on the Regression Outcomes

In this subsection, we answer RQ2-3: ‘How can we interpret the results of the regression

model to better understand effective and ineffective behaviours?’.
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Figure 19 – Prediction error (residuals) of our regression model in another perspective.

A better understanding of what students programming behaviours might be

effective or ineffective and what goes behind the students’ grades could lead to a better

analysis of which strategies we might use to teach and how our students would like to

learn. As such, in this subsection, we go beyond prediction and move towards analysing

the effects of features in our regression model outcome with the aim at understanding

the major factors that can lead to success and failure in our cohort. To do so, we will

analyse the coefficients of our regression model. Figure 20 shows a Pareto plot with

the cumulative relevance of each feature, measured by the absolute value of each

coefficient. We can see that the dlProbs (predicted probability from the DL model), is

the most influential factor, being responsible for 47% of the prediction’s weight, which

shows the technique of stacking works as we expected. In addition, the features dlProbs,

firstExamGrade, systemAccess, correcteness and events accomplish for 80% of the predictive

power of the model, which follows the Pareto’s Principal, or the 80/20 Pareto’s rule,

which states that, in general, 80% of the effects come from 20% of the causes (NEWMAN,

2005), in our case 20% of the features.

Moreover, in Table 7, we show the coefficients values, their confidence interval,

statistics, and their statistical significance. A simple way to interpret these coefficients

is the higher the absolute value the higher effect on the model outcome. To illustrate,

for every additional degree (increase by one std as we used z-score standardisation) of

ideUsage, the expected increase on final grade is something between [0.09-0.49] (95%
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Figure 20 – Pareto plot of the feature’s relevance based on their coefficients.

C.L.), or 0.29 on average, keeping all other variables constant. With this in mind, the

top features with higher impact are, respectively, dlProbs (predicted probability from

the DL model), firstExamGrade, systemAccess, correctness, events, ideUsage, and lloc. First,

dlProbs is the most influential factor which shows the technique of stacking works as

we expected. Following, all the other top features have a positive magnitude which

means that the greater the value the higher the positive effect regarding to the final

grade of students. About firstExamGrade and correctness appearing the top features was

only a confirmation, as we expected the students who do well on the first exam and

assignment tend to perform better. However, as a more hidden pattern found, we can

see that coding activity also plays an important role (systemAccess, events, ideUsage, and

lloc) for student success. In other words, it suggests that it is important for learners

to access (systemAccess) regularly the online judge actively (high events, ideUsage, and

lloc), that is, solving the problems from the assignments with a reasonable number of

logical lines of code (lloc), and spending time on the IDE with a considerable number of

events generated (events), which means that the student is typing something on the IDE

whilst he/she is accessing the online judge. This support our findings in our previous

Chapter 2

The other features that follow are, respectively, deleteAvg, procrastination and

copyPaste. These three features have a negative coefficient, which means that lower

values are better. As such, these coefficients might suggest that procrastination and a

higher number of copyPaste on the first code solutions of an introductory programming
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Table 7 – Coefficients of our regression model. Statitiscally significan coefficients bolded
(p− value < 0.05).

coef. std err t p>|t| [0.025 0.095]
Intercept 3.0 0.14 21.43 0.00 2.72 3.28
dlProbs 3.0 0.28 10.71 0.00 2.44 3.56
firstExamGrade 0.79 0.08 9.88 0.00 0.63 0.95
systemAccess 0.5 0.07 7.14 0.00 0.36 0.64
correctness 0.45 0.14 3.21 0.00 0.17 0.73
events 0.41 0.14 2.93 0.01 0.13 0.69
ideUsage 0.29 0.1 2.90 0.01 0.09 0.49
Lloc 0.27 0.06 4.50 0.00 0.15 0.39
deleteAvg -0.23 0.11 -2.09 0.04 -0.45 -0.01
procrastination -0.12 0.05 -2.40 0.02 -0.22 -0.02
copyPaste -0.09 0.04 -2.25 0.03 -0.17 -0.01
correctnessCodeAct 0.09 0.09 1.00 0.24 -0.09 0.27
amountOfChange 0.05 0.06 0.83 0.28 -0.07 0.17
countVar -0.05 0.07 -0.71 0.31 -0.19 0.09
eventActivity -0.03 0.06 -0.50 0.35 -0.15 0.09
keystrokeLatency -0.03 0.07 -0.43 0.36 -0.17 0.11
syntaxError 0.02 0.06 0.33 0.38 -0.1 0.14
watWinScore 0.01 0.05 0.20 0.39 -0.09 0.11
errorQuotient 0.01 0.06 0.17 0.39 -0.11 0.13
Attempts 0.01 0.08 0.13 0.40 -0.15 0.17

course are not desirable programming behaviours, similar to what we pointed out in the

previous Chapter 2. Furthermore, a high value of deleteAvg might indicate that students

are struggling, by deleting the code and redoing it repeatedly.

Finally, differently from Chapter 2, the following features have less impact

(no statistical significance, p − value � 0.05) on the model outcome: correctnessCode-

Act, amountOfChange countVar, keystrokeLatency, eventActivity, syntaxError, watWinScore,

attempts, and errorQuotient. This is interesting, since the literature (JADUD, 2006; ED-

WARDS et al., 2009; WATSON et al., 2013; LEINONEN et al., 2016; CARTER et al., 2019)

report that these features are generally useful to predict student’s performance. How-

ever, for this cohort and for our regression problem, this is not the case. A possible

reason is that, again, we are dealing with data from the first two weeks of the course

and, hence, some patterns are still not evident yet. For example, repeating the same

errors (errorQuotient, SyntaxErrors, watWinScore) could not be a common behaviour in

the beginning of the course because the problems are very easy. However, when the

problems become more challenging, these students would need to use debugging tools,
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otherwise they might be stuck with the same errors increasing the value of metrics that

compute errors. Notice that in the previous Chapter we used data from the first fourth

weeks, whilst in this Chapter we are using data from the very first two weeks.

In closing, these features may not have a high relevance in isolation; however,

together they have a reasonable predictive power for classification and regression.

We believe that these top features might be generalised for other contexts, as they do

not depend on nuances of a given compilation message or a specific programming

language or web-based system. Moreover, some of our features were not statistically

significant for our regression model, which indicates there is no linear relationship with

the students’ final grades and these two features.

3.6 Pedagogical Implication of Early Prediction
Ihantola et al. (2015), Yera & Martínez (2017), Luxton-Reilly et al. (2018), Robins (2019),

Júnior & Pereira (2020) advocate about the importance of students solving many prob-

lems to improve their programming skills. However, this leads to a significant increase on

the workload of instructors, as they need to evaluate many codes from many students.

In this sense, the use of online judges in CS1 courses are gaining momentum (IHAN-

TOLA et al., 2015; CARVALHO et al., 2016; WASIK et al., 2018), since they bring benefits

in decreasing instructors/monitors workload and enable a data-driven analysis of CS1

students’ behaviours. Blikstein (2011), Carter et al. (2019) explain that such analysis

allows a formative assessment, as not only the code submitted by the learners can be

evaluated, but also the process behind it, when students are building their code.

Moreover, in programming classes, we teach our students to be excellent prob-

lem solvers. According to the SOLO taxonomy, this represents the highest level of

abstraction. SOLO (BIGGS; COLLIS, 2014), which stands for Structure of the Observed

Learning Outcome, is a general education framework that describes levels of increasing

complexity in a learner’s understanding of a subject. It ranges from pre-structural (no

understanding), to unistructural, multistructural, relational, and extended abstract (un-

derstanding at a high level that enables generalisation to a new topic or area). Although
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instructors of CS1 classes aim to bring all students to the extended abstract level, many

students will probably remain at the lower levels.

In our work, we aim at high SOLO levels by using a methodology based on

practice and formative assessment. As explained by Robins (2019), hands-on experience

is the most effective form of learning for students. Thus, in the 7 sessions of the CS1

program, we propose many assignments and exams, always with a close tutoring,

allowing a formative, beside the summative assessment. In other words, the fine-grained

data collect from our online judge allows for a formative assessment, as not only the

code submitted by the students can be evaluated, but also the process behind it. This

kind of assessment provides a comprehensive view upon the student’s learning and

can guide the teacher towards truly effective interventions.

Additionally, with early prediction, in a standard course, teachers could provide

extra assignments for the high-achieving group and personalised support to those who

are struggling. If the strategies of effective novices can be identified, it may be possible

to promote effective strategies to all groups. Such early prediction allows personalised

feedback, but this is not scalable to large classes without proper technological support.

With an approach such as ours, effective and ineffective behaviours can be automati-

cally identified early on, and encouraged or discouraged, respectively. Such process of

early intervention can be performed using dashboards, e-mails, etc. In other words, as

‘prevention is better than a cure’, likewise, it is better to prevent students from failure as

soon as possible, instead of finding out students are struggling when their poor marks

come in.

Moreover, this approach prevents fragile learning (ROBINS, 2019). This occurs

when students pass by learning in a short period something that they should have

learn over the entire course (by ‘cramming’ at the end). As such, it is crucial to decrease

the time lag between detecting at-risk students and acting to provide early help to the

learner.

Importantly, according to Ihantola et al. (2015), this kind of approach presents

essential benefits for the educational context since learning analytics promise better

understanding of student behavior and knowledge, as well as new useful information
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on the hidden factors that contribute to learners’ actions. This knowledge can be used to

inform decisions related to course and tool design and pedagogy, and to further engage

students and guide those at risk of failure.

3.7 Chapter Conclusions
In this work, we developed a deep learning pipeline that statistically outperforms a

predictive model optimised by an evolutionary algorithm. These results were achieved

using features extracted from data collected in the very first two weeks of introductory

programming courses, allowing early intervention. We achieved a competitive perfor-

mance in both tasks of classification and regression. Such high performance from our

predictive models can facilitate human–AI collaboration towards prescriptive analysis,

where the instructors/monitors can take advantage of the predictions to implement

different and personalised pedagogic approaches targeting at-risk students and higher

achievers, leading to profound effects for students’ learning and experience. On the stu-

dent side, such prediction can promote self-regulation and awareness of their strengths

and weakness, showing that there is room for improvement.

In brief, we can claim there are significant benefits in using data-driven code

metrics presented in our programming profile to design LA tools. Importantly, as the data

refers to the student’s learning process and not only to the final product generated and

submitted (code with the solution), our study is a move towards formative evaluation.

That is, our model is not inspecting only the feedback from ’online judges’ which judge

only the program sent, but also taking into account all the paths taken (challenges

and difficulties faced) by analysing a fine-grained log-data of students during the

construction of the code produced and submitted. Still, we interpreted our regression

model outcomes, showing the effect of programming behaviours related to how students

solve problems, how active they are whilst solving these problems, how they are

managing deadlines, and so forth. We believe that the features of the programming

profile are not sensitive to the educational context, since they are not tied to the nuances

of the programming language and, hence, are sufficiently generic.
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Nonetheless, some of our features were not statistically significant for our re-

gression model, which indicates there is no linear relationship with the students’ final

grades and these two features. However, our cutting-edge results using DL for classifi-

cation task were achieved using non-linear algorithms, which may suggest a non-linear

relationship between the features and the final grade. Additionally, we can observe

from the Pareto plot (Figure 20) that the embedded probabilities (dlProbs) from the DL

model (non-linear) comprise almost for the half (47%) of the predictive power of the

linear regression model, which, hence, enforces the indication of a non-linearity relation

among the features and students performance, that is, our data is likely more complex

than a “straight line" (actually a hyper-plane) from a linear regression. Thus, our regres-

sion model is only the first step in the direction of explainable machine learning. Indeed,

more research needs to be conducted to interpret this potential non-linear relationship,

what we will do in the next Chapter.

Notice that we could have used polynomial transformation on the features to

perform polynomial regression, in an attempt to cover such mentioned non-linear

relationship. In other words, we could have added powers of each feature as new

features and have used them in our regularised regression model. However, using

polynomial transformation we would need to add all combinations of features up to the

given degree8, which is not feasible for interpretation purposes due to the combinatorial

explosion. To illustrate, we have 18 features and, using a polynomial degree of 5, for

example, there will be 33649 new features9 to use in the regression model, which is

prohibitive for interpretation. As such, in the next Chapter, we opt to use a game

theory-based framework, that covers linearity and non-linearity, to analyse how the

effective and ineffective behaviours (represented by our features) effect the students’

performance.

8 For example, 2 features x, z, and a polynomial degree of 2, we would have x2, z2, xz, x2z, xz2, and
x2z2

9 (n+d)!
d!n! , where n is the number of features and d is the polynomial degree.
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4

EXPLAINING INDIVIDUAL AND

COLLECTIVE EFFECTIVE AND

INEFFECTIVE PROGRAMMING

STUDENTS’ BEHAVIOUR

So teach us to number our days

that we may get a heart of

wisdom.

- Psalm 90:12

4.1 Overview of the Chapter
Predicting students’ performance as rapidly and early as possible and analysing to

which extent initial students’ behaviour could lead to failure or success is critical in in-

troductory programming courses, for allowing prompt intervention in a move towards

alleviating their high failure rate. As CS1 is often the first point of contact with program-

ming (and possibly last) for many students, it is vital to efficiently understand their

needs. Nevertheless, as shown in the previous Chapter, the highest precision predictive

models are typically black box models, and don’t provide any interpretation. Lately,
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the research community has started understanding the importance of working towards

explainable Artificial Intelligence (AI). However, in CS1 performance prediction, there

is a serious lack of studies that interpret the predictive model’s decisions, to under-

stand why the student is classified as failed or passed. Thus, in our current Chapter,

we tackle both fronts: i) constructing an accurate early predictor and ii) interpreting

its predictions. To do so, we use the same data from the previous Chapter, but now

exploring deeply the relationship between features and students’ performance. To do so,

we construct a new non-linear model based on gradient boosting and decision trees to

predict learners’ performance that has the same (statistically saying) predictive power of

our DL model, however, with the advantage of individual and collective interpretation

of the model’s decision. More specifically, to allow an effective intervention and to

facilitate human/AI collaboration towards prescriptive analytics, we, for the first time,

to the best of our knowledge, go a step further than the prediction itself and leverage

this field by proposing an approach to explaining our predictive model decisions indi-

vidually and collectively using a game-theory based framework (SHAP), as recently

recommended in the Nature Journal (LUNDBERG et al., 2020), that allows interpreting

our black box non-linear model linearly. In other words, we explain the feature effects

clearly by visualising and analysing individual predictions, the overall importance

of features, and identification of typical prediction paths. This method can be further

applied to other emerging competitive models, as the CS1 prediction field progresses,

ensuring transparency of the process for key stakeholders: administrators, instructors,

and learners.

4.1.1 Practitioner Notes

What is already known about this topic:

• Knowing about student performance in advance can be useful for many reasons

(PEREIRA et al., 2020a; ROMERO; VENTURA, 2019).

• The highest performance for prediction tasks is accomplished by ’black box’ ML

algorithms (GÉRON, 2019; LUNDBERG et al., 2020).



Chapter 4. Explaining individual and collective effective and ineffective programming students’ behaviour 108

• Besides the early prediction, it is also important to interpret the model’s deci-

sions to analyse behaviours that could lead to failure or success (ROBINS, 2019;

BERENDT et al., 2020).

• Stakeholders need not only a collective and overall explanation of models’ decision

(e.g. using only the feature importance of the predictive models), but also an

individual analysis of the features for each instance (here, student), as the learners’

behaviours are heterogeneous (ROBINS, 2019; BERENDT et al., 2020). Thus, a

general effective or ineffective behavioural pattern might not be applicable to all

learners.

What this Chapter adds:

• A new interpretable predictive model that achieved cutting-edge results for early

prediction.

• An important move towards Explainable, Transparent AI in Education (BERENDT

et al., 2020), by demonstrating how to explain the predictive model’s decision

(individually and collectively), to better support students and instructors (and

other stakeholders).

• Collective and individual explanation of the model’s decisions by the identification

and analysis of typical prediction paths and analysis of feature effect for each

instance.

• Identification and analysis of typical prediction paths for general behaviours.

Implications for practice and/or policy:

• Early prediction empowered by its explanation might potentially allow an effective

early intervention by the stakeholders.

• A visualisation dashboard including prediction and interpretations might con-

tribute for a more formative assessment.

• Reflection and diagnosing potential causes of the students’ lack of success for

stakeholders.



Chapter 4. Explaining individual and collective effective and ineffective programming students’ behaviour 109

• Metacognitive strategies which get the students to think about their own learning.

• Predicting and explaining the student performance at an early stage might facili-

tates human/AI collaboration towards prescriptive analytics.

4.2 Research Questions Addressed in this Chapter
Typically, educational data-driven researches identify patterns of behaviour based on

data collected from the students learning process (BAKER; INVENTADO, 2014). In

general, there are many works (DWAN et al., 2017; CASTRO-WUNSCH et al., 2017;

QUILLE; BERGIN, 2018; CARTER et al., 2019; QUILLE; BERGIN, 2019; ROMERO; VEN-

TURA, 2019; FWA, 2019; PEREIRA et al., 2021a) in this field that use machine learning

to construct models to predict the students performance in programming classes. How-

ever, as explained in the previous Chapter, a book about introductory programming

research (ROBINS, 2019) claims there is no reliable method in the literature to predict

CS1 students’ performance. In this sense, we advanced in this field by constructing a

deep learning model with cutting-edge results. Moreover, we adapted the deep learning

model probabilities in a linear regression model to interpret the leading factors of effec-

tiveness and ineffectiveness. However, our results using DL for classification task were

achieved using non-linear algorithms, which may suggest a non-linear relationship

between the features and the final grade. Notice that linear regression does not uncover

such kind of non-linear relationship1. Thus, more research needs to be conducted to

interpret this potential non-linear relationship.

The highest performance for prediction tasks is accomplished by ’black box’ ML

algorithms, which even professional data scientists struggle to interpret. Thus, the next

challenge is to extract the explainable, transparent model for the AI in Education for CS1

(BERENDT et al., 2020). Some previous attempts (ALTMANN et al., 2010; LIU et al., 2012;

QIU et al., 2018) to explain predictive ML models in other fields proposed the analysis

of the overall importance of general and specific features to the model. However, in
1 We could apply manually polynomial transformation to deal with non-linearity, but it would make

difficult to interpret the model.
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reality, more than a collective explanation of features is needed, as learners’ behaviours

are heterogeneous and, thus, a generic average pattern might not match individual

learners. In other words, it is also important to make a deep individual analysis of the

model’s decision for each student.

Carter et al. (2019), Robins (2019), Quille & Bergin (2019) claim there is a lack of

studies that use such prediction analyses to improve instruction and pedagogy. Indeed,

there is a need for a descriptive, predictive and prescriptive analytics infrastructure that

provides information to support instructors and students. Recently, Carter et al. (2019)

state that there are relevant open questions concerning what learning data should be

collected within an e-learning environment for programming courses in order to provide

a foundation for improving student learning and how the learning data should be

analysed to provide useful information on student learning in individual and collective

level.

Thus, in this Chapter, our main focus is on understanding which students’ early

programming behaviours are related to the learner’s success or failure and, hence, with

effectiveness and ineffectiveness. Moreover, we aim at analysing students’ behaviours

generally, to give stakeholders a big picture of early programming behaviours, and

individually, to provide an analysis of students’ specificities, allowing self-regulation

and higher self-knowledge for the learner. To achieve this goal, we constructed a non-

linear predictive model using the features of our previous Chapters and we applied a

game-theory based framework (SHAP method) (LUNDBERG; LEE, 2017; LUNDBERG et

al., 2020) that allows interpreting our black box non-linear model linearly. The features

depict useful information from fine-grained log-data collected from a home-made

online judge system (PEREIRA et al., 2020) used in our programming classes. We believe

that our findings are important to enrich the research on programming learning with

findings of effective and ineffective early students behaviours (currently considered an

open question (ROBINS, 2019), and the educational data mining field with an accurate

and explainable machine learning pipeline that can be useful for early intervention and

student self-regulation. In brief, in this Chapter we will respond the following research

questions:
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RQ3-1) How to interpret the features effects in the black-box non-linear model’s predic-

tion for each student (individual analysis)?

RQ3-2) How to interpret the features effects in the black-box non-linear model’s predic-

tion for all students (collective analysis)?

4.3 Explainable Machine Learning
Nowadays, ML is mainstream, with great potential to improve education. However,

predictive models often do not explain their decisions, which might be a barrier to

adoption (MOLNAR, 2020). There are some simple ML methods, such as decision

trees, linear regressions, decision rules, which are easily explainable (MURDOCH et al.,

2019; MOLNAR, 2020). However, they often lack predictive power, possibly because

higher accuracy for complex datasets is commonly achieved by non-linear black-box

models (LUNDBERG; LEE, 2017), such as deep learning and ensembles (GÉRON, 2019;

CHOLLET et al., 2018). Consequently, a trade-off appears between performance and

interpretability.

In this sense, the literature has been proposing new methods for explaining

complex ML models at breakneck speed and it is often unclear how these methods

are related and which one to choose (MOLNAR, 2020; RAI, 2020; LUNDBERG; LEE,

2017). As a response to this, (LUNDBERG; LEE, 2017) proposed a unified framework for

interpreting predictions, SHAP (SHapley Additive exPlanations). This state-of-the-art

method unifies in a single framework prestigious additive feature attribution methods

such as LIME(RIBEIRO et al., 2016), DeepLIFT(SHRIKUMAR et al., 2017), classic Shapley

value estimation(LIPOVETSKY; CONKLIN, 2001), layer-wise relevance propagation

(BACH et al., 2015) and others. Still, (BOULANGER; KUMAR, 2020) note that, no

matter the SHAP implementation used, Shapley values are challenging to interpret.

Thus, as one of the contributions of our paper, we, for the first time, to the best of

our knowledge, are interpreting a black-box model to better understand effective and

ineffective programming student behaviours. This allows trust in early performance

predicting, through transparency, as recommendations based on machines that may
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impact on human life need to be tractable and explicit.

SHAP is a method with foundations in game theory (SHAPLEY, 1953), where

the features divide rewards in a way which reflects each of their contributions to the

model’s prediction (LUNDBERG; LEE, 2017; MOLNAR, 2020). The SHAP interpretation

method calculates the Shapley values for each feature at instance-level.

In practice, using SHAP we can compute the magnitude of positive or negative

effects for each feature on individual predictions. To do so, the method tests how the

prediction changes when feature j is withheld from the model (LUNDBERG; LEE, 2017).

In other words, SHAP calculates the feature importance of a feature j ∈ F , for a given

local instance x, in a given predictive model f, by evaluating the marginal contribution

of that feature j for all subsets S ⊆ F , where F is the set of all features. Thus, the

marginal contribution of j (Shapley value) is calculated by the weighted average of

fS∪{j}(xS∪{j})− fS(xS) for all subsets S ⊆ F , where xS depicts the values of the input

features in the subset S. Formally, the contribution of a given feature j is measured by the

following equation, that is the weighted average for all possible differences, computed

as the combination function:

φj =
∑

S⊆F\{j}

|S|!(|F | − |S| − 1)!

|F |!
[fS∪{j}(xS∪{j})− fS(xS)]

where φj is the marginal contribution of feature j on the model output fS∪{j}(xS∪{j}).

To calculate the feature contributions in a fair way, SHAP keeps fairness properties

called additivity, missingness, and consistency (SHAPLEY, 1953; LUNDBERG; LEE,

2017; MOLNAR, 2020).

Additivity means that the sum of the feature contributions together should match

the output of f for the simplified input x′ (which corresponds to the original input x).

More formally, SHAP keeps the additivity property as:

f(x) = g(x′) = φ0 +
M∑
j=1

φj.x
′
j (4.1)

where g is the explanation model, x′ ∈ {0, 1}M is the simplified feature vector, M

is the maximum simplified features vector size, and φj ∈ R is the feature contribution,

for a feature j, of Shapley values (LUNDBERG; LEE, 2017; MOLNAR, 2020). Here, φ0
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represents the expected value with no prior information about the features (similar to

the intercept in a regression model). In practice, φ0 is the average of predictions in the

training set.

The second fairness property is missingness. This is a trivial property, defined as:

x′j = 0 =⇒ φj = 0 (4.2)

This trivial property requires features missing in the original input to have no

impact (LUNDBERG; LEE, 2017).

Finally, consistency means that if one feature contributes more to the model

output, it cannot get a lower Shapley value. It is worth noting the feature contribution

calculated by SHAP is the only possible explanation model that satisfies these 3 fairness

properties (see the theorem proof in (LUNDBERG; LEE, 2017)).

In more recent work, (LUNDBERG et al., 2020) show that combining many local

explanations allows capturing global patterns from the representation of the predictive

model whilst retaining local faithfulness to the original model, which can be used for

detailed and accurate representations of model behaviour. Figure 21 illustrates the

workflow of the SHAP method, which can be used to analyse local feature effects and

to combine local explanations of individual predictions, in order to generate global

explanations (data insights, model summarisation, collective feature effects).
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Figure 21 – Workflow of how we used the SHAP method (LUNDBERG et al., 2020) for
computing local predictions to create individual and collective explanations
of the predictions from our tree-based black-box model.
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4.3.1 Machine Learning Models

To develop our predictive model we used the popular eXtreme Gradient Boosting

method (XGBoost) (CHEN; GUESTRIN, 2016). XGBoost is an optimised implementation

of the Gradient Tree Boosting (GTB) ML algorithm, an ensemble method based on

decision trees. Specifically, XGBoost utilises the boosting principle in an iterative way,

wherein each iteration the algorithm attempts to correct the errors of the previous

iteration, by optimising specific loss functions as well as applying several regularisation

techniques. We opted for XGBoost because this model might outperform standard

deep learning models on tabular-style databases as ours, in which the attributes are

meaningful and they lack strong multiscale temporal or spatial structure (LUNDBERG

et al., 2020; CHEN; GUESTRIN, 2016). However, it is important to experiment more

machine learning techniques (No-Free-Lunch Theorem - Machine Learning (WOLPERT,

2002)).

In previous chapter, we have composed a set of data-driven features that, in

conjunction, have a high predictive power to infer the students’ performance when

using data from the very first two weeks of course. The model optimised by the EA

achieved an average accuracy of 78.2% using data collected in the first two weeks of

course, which outperformed cutting edge results for this task (PEREIRA et al., 2019). As

an extension, we surpassed the EA (PEREIRA et al., 2019) with an average accuracy of

82.2% using deep learning architecture, as we shown in the previous Chapter. Between

the model presented in this current Chapter using XGBoost and our previous best

result using deep learning, we did not find statistical significance (p-value>0.05), as

we achieved an average accuracy of 81.3%, using XGBoost (the comparison of the ML

models is provided in section 4.5). Thus, here we can state that there are no performance

drawbacks or advantages in our choice for XGBoost instead of Deep Learning model.

Notice that tree-based ensembles and deep neural network are non-linear tech-

niques that construct complex models, that is, typical black-box models. As our goal

is mainly interpretation, we need to ‘open’ such a black-box to explain the model’s

decision. To do so, as mentioned in the previous subsection, we used a state-of-the-art

unified approach to interpret model predictions, SHAP method (LUNDBERG; LEE,
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2017). There are several implementations of SHAP, such as TreeSHAP, which is de-

signed for tree-based models, and KernelSHAP, which is a model-agnostic designed for

a variety of ML pipelines, such as deep neural networks. Nonetheless, (BOULANGER;

KUMAR, 2020) explain there are several caveats of KernelSHAP such as: i) KernelSHAP

requires access to the entire dataset to calculate the Shapley values; ii) KernelSHAP is

procedurally slower when calculating Shapley values of large datasets; iii) KernelSHAP

ignores feature dependency; iv) using KernelSHAP, the Shapley values are not exactly

computed, instead they are only estimated. Indeed, KernelSHAP performs a sampling

of features when evaluating the possible subsets S ⊆ F . The TreeSHAP implementation

solves all of these issues, by calculating the exact Shapley values in polynomial time

(see (LUNDBERG et al., 2020)). Thus, as a final justification for our choice for XGBoost

instead of deep learning, we used this tree-based model with the TreeSHAP implemen-

tation, because it gives us more interpretative power of the models’ decision, with no

drawbacks with regards to the predictive model performance.

Additionally, please note that to calculate the Shapley values we need to run the

predictive model many times with missing features (LUNDBERG; LEE, 2017; LUND-

BERG et al., 2020). Thus, there is a need to supply a background dataset (LUNDBERG et

al., 2020). In our case, we use the training set as user-supplied background dataset, by re-

lying only on the path coverage information stored in the tree-models, as recommended

by the authors of the method (LUNDBERG et al., 2020).

4.4 Method
In this Chapter we applied the same experiment design presented in Chapter 3, using

the same instrument, data collection and programming behaviours (features), and data

cleaning process. The unique difference is about the machine learning algorithm in

which we also used the XGboost ensemble method. More details in the next section.
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4.4.1 Prediction and Validation

In this work, as said, we used XGBoost, which has parameters to control the ensemble

training, such as the number of trees (n_estimators), as well as parameters to control

the growth of trees (e.g., max_depth, min_samples_leaf, etc.). Moreover, an important

parameter is the learning rate, which scales the contribution of each tree. To train our

model, we used a popular regularisation technique called shrinkage (Géron, 2019), in

which we set a low value to the learning rate (e.g. 0.05), and a high number of decision

trees (100 estimators). Finally, we used the early stopping technique with at most 100

rounds, meaning that we stopped training when the validation error stops decreasing

to avoid overfitting.

As a baseline for our model, we used the deep learning model and the classifier

found more promising by a genetic algorithm presented in Chapter 3.

4.5 Results and Discussions
It is intrinsic for XGBoost to automatically select the best feature as the root of the con-

stituting tree of the predictive model (and, similarly, for sub-trees), using this algorithm

performs an automatic feature importance analysis. As such, we opted for not using

any dimensionality reduction technique at this point.

For each predictive model, we ran the stratified cross-validation 20 times with

10 folds (as recommended in other study (EDWARDS et al., 2020; PEREIRA et al., 2020)),

varying the seed in a range from 1 to 20, in order to shuffle the database in different

ways, to ensure reliable results. Hence, we report outcomes from the 200 results for each

metric (20 times 100, one outcome for each fold). All models were trained using data

from the very first two weeks of the course for early prediction.

The results of each method are presented in Table 8, where Random Forest

(RF) is the model found by the genetic algorithm (PEREIRA et al., 2019) and DL is the

deep learning model (PEREIRA et al., 2020), both explained in the previous Chapter.

Our predictive model (XGB) achieved an accuracy ranging from 81.1% to 81.6% (C.L.

95%). Our current model statistically surpasses the RF even with Bonferroni correction
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(p− value < 0.05/3) in all evaluation metrics (accuracy, F1-score, precision and recall).

Moreover, although we can see a difference between the performance of our model and

the deep learning model, this difference is not statistically significant for the F1-score

(p− value = 0.625) and recall (p− value = 0.05), whilst there are statistical difference

for accuracy (p − value < 0.05/3) and precision (p − value < 0.05/3). Thus, our XGB

model surpassed the DL model in terms of precision, whilst was surpassed by the DL

model in terms of accuracy, and there is a draw for the other metrics (F1-score and

recall). Notice that we are dealing with a database that is a bit unbalanced and, hence,

our XGBoost have some advantage since the XGB model achieved higher results for the

precision, and accuracy might be misleading even for such subtly unbalanced databases.

Moreover, we can also see that our XGBoost model is more stable in terms of accuracy

since the standard deviation and Interquartile Range of accuracy are lower than in

the DL model. In addition, as explained in section 4.3.1, we opted for the XGBoost

because TreeSHAP, which is designed for tree-based models, solved several issues of

KernelSHAP, which is designed for kernel models such as deep neural networks.

Table 8 – Comparison of our prediction model and our baselines. C.I. stands for Con-
fidence Interval, L.B. stands for Lower Bound, and U.B stands for Upper
Bound.

Accuracy Recall F1-Score Precision
XGB DL RF XGB DL RF XGB DL RF XGB DL RF

Mean 0,813 0,823 0,797 0,850 0,860 0,838 0,821 0,818 0,792 0,794 0,782 0,751

95% C.I. for Mean L.B. 0,811 0,819 0,794 0,844 0,854 0,833 0,816 0,814 0,789 0,791 0,777 0,747
U.B. 0,816 0,827 0,800 0,857 0,865 0,843 0,826 0,822 0,795 0,797 0,787 0,756

Median 0,809 0,827 0,798 0,841 0,864 0,835 0,809 0,821 0,792 0,797 0,781 0,747
Std. Deviation 0,018 0,027 0,022 0,049 0,039 0,034 0,033 0,027 0,022 0,023 0,037 0,032
Minimum 0,774 0,754 0,742 0,787 0,739 0,766 0,775 0,746 0,746 0,750 0,692 0,684
Maximum 0,839 0,895 0,855 0,936 0,966 0,915 0,882 0,888 0,847 0,835 0,886 0,830
Interquartile Range 0,031 0,037 0,030 0,079 0,053 0,047 0,047 0,037 0,028 0,022 0,052 0,038

4.5.1 Reliability of the XGBoost model

To demonstrate the reliability of our XGBoost model, we analysed its learning curves

for an increasing number of instances (students) using 10 fold cross-validation as

recommended in a prestigious machine learning book (GÉRON, 2019). We plotted

the average cross-validation performance (accuracy, F1-score, recall, and precision)

and the standard deviation in the shaded areas of Figure 22. We started with 180
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instances and then incremented 400 instances for the cross-validation of our XGBoost.

We stopped this process with 1760 as one more increment would exceed our total

number of instances. Notice that from 580 instances on, the predictive model achieves a

score close to 80% in all performance measures. As such, 580 instances is potentially

the number of students needed for convergence, whichendorses that our model can be

used even in a lightweight database. Moreover, from a visual inspection of the plots,

we can observe that our model generalises well on the validation set, as the continuous

lines (red and green) are close to each other, which indicates that our model did not

overfit the training set.
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Figure 22 – Learning Curve of our interpretable predictive model for different metrics
(accuracy, F1-score, precision and recall) taking into consideration varied
number of instances for training.

Moreover, analysing the trade-off between bias and variance we can state that our

model potentially found a balance between these errors since the variability around the

training score and cross-validation score curves are almost stable from the convergence

point and the curves are similar (see Géron (2019)).

Finally, a bit out of the scope of this Chapter, we also carry out experiments

using non-early data. We observed that the predictive model become even more ac-

curate throughout the sessions (S1 - S7). The results of the models can be seen in the

Appendix A.
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Figure 23 – Precision and recall curve (left) and ROC curve (right) of students who
passed (class 1) and students who failed (class 0). The micro-average takes
into consideration the class proportion of students who passed and failed,
whereas the macro-average threats each class independently.

4.5.2 Interpretation of the predictive model

As previously argued, obtaining a good prediction model is important, but not enough,

if its decisions are obscure - especially when working with a vulnerable population

such as that of learners. Thus, after ensuring a competitive performance of our model,

we show here how to interpret its decisions. The performance of our model ensures we

are interpreting a reliable model. Next, we use the SHAP method (as explained above)

to explain individual predictions, and what we call predictions paths to explain collective

behaviours.

4.5.3 Individual analysis

To provide a general idea of how we can evaluate which learner programming be-

haviours are effective and ineffective, we can inspect graphically the Shapley values of

each learner, individually. Figure 24 shows decision plots with coloured lines (vertical),

where a light brown line represents an individual prediction of a student that failed in

CS1, whilst a dark purple line depicts a student who passed in the course. The students

were chosen at random. The x-axis represents the model’s output: in this case, the

probability of a student passing2. The students’ coloured line cross the (top) x-axis at our

model’s predicted probability value. To classify the students, we used as threshold the
2 In order to calculate the probability of failing we just subtracted: (1 − pp), with pp probability of

passing.
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base value3, which is approximately 0.46. Hence, if the probability of students passing is

higher than this threshold, then they will be classified as passed, otherwise as failed. To

illustrate, in Figure 24 (a), our model predicted that the probability of the highlighted

student passing is close to 0.05 (5%) and, hence, the student is classified as failed, whilst

in Figure 24 (b), the probability of the highlighted learner passing is close to 0.85 (85%),

thus classified as passed.
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Figure 24 – Decision plots to explain the potential leading factors (early programming
behaviours) for passing or failing.

The y-axis of the decision plot lists our features in descending order of impor-

tance. Each feature’s importance is specific for the student plotted in that particular

decision plot. Moreover, the straight vertical grey line marks the model’s base value. Fi-

nally, from the bottom to the top of the plot, the decision plot shows cumulative Shapley

values (feature effects - see section 4.3.1) for each student’s programming behaviour, i.e.,

for a given prediction we show how each student’s programming behaviour (feature

value) contributes to the overall prediction over the model’s base value. We also show

the feature values next to the coloured student prediction line, for reference. Remember

that the feature values are standardised with the z-score, representing, for each feature,

how far a student is from its mean value.
3 The base value is is the average prediction over the training set. This value represents the overall

value that would be predicted if we did not know any features of the current output(LUNDBERG;
LEE, 2017).
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4.5.3.1 Explaining individual programming behaviours of a learner with a

high chance of passing

With information as above, we can perform a deep explanation of individual predictions,

i.e., we are able to uncover notable patterns of programming behaviours that can be

useful for a better understanding of what might lead to success or failure. In Figure

24 (b), we can see that this student has a high probability of passing (≈ 85%).

Observing the decision plot, we can notice that the features eventActivity, attempts,

watWinScore, countVar, syntaxError, events, and keystrokeLatency had no effect for this

learner. Indeed, feature values that push the prediction higher (effective behaviours)

are the learner’s moderately low deleteAvg (-0.5), low copyPaste (-1.1), moderately high

correctnessCodeAct (0.72), moderately low errorQuotient (-0.6), average systemAccess (0.1),

average ideUsage (-0.2), low procrastination (-1.0), moderate high lloc (0.81), high correct-

ness (1.0) and high firstExamGrade (1.1). Considering the effective behaviours of this

student, we notice that the student deleted parts of their code less frequently than

her/his peers, which might indicate that this student is not struggling, or rewriting the

code many times. This can also be seen by observing that the negative errorQuotient in-

creases the student’s chances of passing. Moreover, s/he makes low use of copyPaste and,

hence, s/he is potentially writing the code from scratch. Finally, s/he achieved a high

grade in the first assignment list and exam. On the other hand, the features that push

the prediction lower (ineffective behaviours) are the high value of comments (1.0) and

amountOfChange (1.0), which is somewhat unexpected. A high value of amountOfChange

as ineffective might be explained by the fact that this learner has a moderately low

errorQuotient and, thus, theoretically, would not need to make many changes between

submissions. About the comments, it seems to be a hidden pattern that the predictive

model uncovers for this learner. That is, a high number of comments in the beginning

of the course is not increasing the learner’s chances of passing. This may potentially be

because the (Python) code required is too easy and brief at this point of the CS1 course

(first two weeks), without great need of documentation. Mnemonic variable names

might be enough to explain such code.
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Figure 25 – Force plot of a given student.

4.5.3.2 Explaining individual programming behaviours of a learner with a

high chance of failing

Conversely, in Figure 24 (a) we show an example of a student who has a high chance

of ending up failing. Overall, this learner has ineffective behaviours, such as a high

errorQuotient (1.6), low ideUsage (-1.3), high procrastination ( 1.0), and moderately high

copyPaste (0.80). Moreover, s/he has low correctness (-1.9), correctnessCodeAct (-1.5), and

firstExamGrade (-1.0). As an effective behaviour, s/he accesses the system more than the

average: systemAccess = 0.7. Thus, we can assume that this learner expends little effort

in trying to solve the problems from the assignment. Some indicators of that are the low

ideUsage, high procrastination, high copyPaste, and low correctnessCodeAct.

We can also visualise an individual explanation of the model prediction as a

force plot (LUNDBERG et al., 2018), presented in Figure 25. Similarly to the decision

plot, the force plot presents a prediction for a student (here, chosen at random). The f(x)

function is the model output (the predicted probability for that student), and the base

value follows the same reasoning of the decision plot (average of model predictions).

The features that push the prediction higher are shown in dark purple, whilst the ones

which push the prediction lower are in light brown. To be more meaningful, the dark

purple features are right arrows, whereas the light brown ones are left arrows. The

arrow’s size represents the effect of that feature. Given that, from a visual inspection

of Figure 25, we can observe that the leading factors that are pushing the prediction

lower are that s/he has a low firstExamGrade (-1.02), correctness (-1.9) , lloc (-1.7), and

correctnessCodeAct (-1.5). However, similar to the learner from Figure 24 (a), s/he has a

high systemAccess (2.7) value, which is slightly increasing the learners’ chance of passing.

Based on such individual explanations, we can generate automatic, customised,

fine-grained suggestions to a student; or provide this detailed information to the teacher,

who can use it in talking (face to face) with the student, to encourage the learner to better
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use her/his potential; e.g., guiding them towards being more hardworking - by solving

more problems from scratch, and not too close to the deadline. As another example

where there is room for improvement, some learners are copying and pasting more

than 1 standard deviation above the average, which might not be a desirable behaviour

for a novice student in the first two weeks of the course. Instead, it is expected that

students solve problems from scratch, to practice more, as recommended by the testing

effect theory (ROWLAND, 2014), which explains the role of effortful processing as a

contributor to the achievement.

Notice that although the force plot might seems more intuitive for interpretation,

it is useful only for a few features, while the decision plot can present a large number

of features effects clearly. Moreover, in a decision plot, we can visualise multi-output

predictions, as we show in the next subsection, which allows detecting some prediction

paths.

4.5.4 Small group analysis (Passed versus Failed)

After an individual analysis of student behaviours, we join 10 low-achieving students

who failed, in Figure 26 (a), and 10 high-achievers students, who passed, in Figure 26 (b),

to inspect patterns related to the predictions. All students were chosen at random.

Such local explanations can be useful, as building-blocks for global insights. Here we

notice that the failing students have a similar trajectory (prediction paths), that is, their

learning lines are relatively close for many features, which shows a similarity in their

programming behaviours. However, we can see some exceptions. To illustrate, we can

observe a student who crossed the margin line, which suggests that this learner was

performing well towards passing the CS1 course, e.g., s/he did not procrastinate too

much, accessed the online judge (systemAccess) regularly, with a medium number of

events and eventActivity. Nonetheless, s/he made many mistakes while submitting

the code (see errorQuotient, watWinScore and syntaxError) and solved a lower number

of problems from the assignments (lower correctness), and then, perhaps for some an

unknown reason (extraneous variables), ended up failing.
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Another observation for prediction paths of the successful students (Figure 26 (b))

is that we note two divisions in the plot: (i) the first is for students who did not struggle

too much, which is illustrated by the lines which have often been above the vertical line

margin; (ii) the other students have encountered higher difficulty, but they were still

successful. The lines of these students are on both sides of the margin line.
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Figure 26 – Prediction paths of 10 learners who failed (left) and 10 learners who passed
(right).

From this small sample of learners, although we can observe similarity in predic-

tion paths of the successful and unsuccessful learners, there are some nuances in the

behaviours that might lead to success or failure in this cohort. In the next subsection

we will evaluate these nuances in the prediction paths more holistically, taking into

consideration almost the entire dataset, instead of a small sample of learners.

4.5.5 Prediction paths

To evaluate possible prediction paths, we cluster the Shapley values of all learners

using the well-known k-means algorithm. We use the knee point detection algorithm

(SATOPAA et al., 2011) to automatically find the potential optimal number of clusters.

The metrics used to evaluate the maximum curvature point (knee point) (SATOPAA et

al., 2011) were the mean silhouette score and inertia, as recommended in (GÉRON, 2019).

After running the k-means algorithm with k ranging from 2 to 10, we found that 5 is
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the most suitable number of clusters. In other words, we found five different prediction

paths, represented by five behavioural patterns that might lead to success and failure,

which are shown in Figure 27. These decision plots show the centroids of each cluster.

Notice that the centroids in k-means are the averages of the instances inside a cluster.

As such, the centroids in this case depict the overall Shapley values (feature effect) of the

learners in each cluster. In Figure 27, we keep the same feature order in the decision

plots, to make it easier to compare the different prediction paths.
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Figure 27 – Cluster centroids of prediction paths of our model prediction for a better
understanding of effective and ineffective behaviours. Here the subfigures’
labels are counted from left to the right, up to down, beginning from a) until
e).

Following, we give a brief description of each prediction path that we found (see

Figure 27):

• Prediction path 1: students with high chances of passing and who have mostly

effective behaviours. They may also have some minor ineffective behaviours.

• Prediction path 2: students with moderate to high chances of passing, who have

mostly effective behaviours, but with a different pattern than prediction path 1.

• Prediction path 3: students with a high chance of failing and who have mostly

ineffective behaviours. They may also have some slightly effective behaviours.
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• Prediction path 4: students whose chances of passing are uncertain. In general,

their chances are a bit lower then the base value and, hence, they are borderline

cases, potentially unsuccessful. Indeed, these students have moderately effective

behaviours; however, they achieved a low grade in the first exam.

• Prediction path 5: students whose chances of passing are uncertain. Their chances

are generally a little higher than the base value, and hence, similar to the prediction

path 4. They are borderline cases; however, potentially successful ones. Indeed,

whilst these learners have some moderate effective and ineffective behaviours,

they have a high first exam grade.

Approximately 30.02% of the students follow the prediction path 1, 8.32% follow

the prediction path 2, 34.85% follow the prediction path 3, 13.32% follow the prediction

path 4, and 13.49% follow the prediction path 5. In other words, 38.34% (30.02% + 8.32%)

of the learners have high chances of passing, 34.85% have high chances of failing, and

26.81% (13.32% + 13.49%) are borderline cases, for which the prediction model predicts

with moderate to high level of uncertainty.

For a better understanding of the prediction paths, we analyse the effective

and ineffective behaviours present in each plot from Figure 27. In Figure 27 (a), we

can inspect that the learners from this cluster likely made less common errors (e.g.,

syntaxError = -0.25), dealt with the errors better (errorQuotient = -0.35) and tended to

spend less time to fix errors (watWinScore = -0.28), which is a sign that these learners

were not struggling to solve the problems. Moreover, they used copyPaste (copyPaste =

-0.25) moderately, which is important for a novice learner. In spite of the importance of

knowing that, these behaviours from this cluster have low effect (low Shapley value) in

the model’s decision. Indeed, the programming behaviours that have highest impact

for this prediction path are the fact that the learners from this cluster solved most of

the problems from the assignment (correctness = 0.80 and correctnessCodeAct = 0.76), and

spent more than the average time coding in the IDE (ideUsage = 0.78). Moreover, the

students accessed the system regularly and achieved a moderate to high grade in the first

exam (firstExamGrade = 0.94). These effective behaviours are the potential explanation

of why such learners had a probability of passing (close to 80%). The programming
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behaviours events (0.25) and amountOfChange (0.19) have also some minor impact in the

model’s decision. The average value of these features is somewhat expected, as these

effective learners do not make many errors, even having a moderate to high number

of attempts (0.46) and correctness (0.80). As a counterexample, a learner who had a

moderate to high number of attempts, who solved many problems, and who submitted

many code snippets with errors, should have changed her/his code a lot to fix problems,

which would have generated many log events. Finally, it is expected that these learners

have a low value of procrastination, so that there is still room for improvement for the

students from this cluster.

In Figure 27 (b) we can observe a similar prediction path (see the trajectory of the

coloured line) showed in Figure 27 (a). That is, the learners from this cluster have also

high chances of passing, potentially because of similar reasons to the learners who follow

prediction path 1. The main difference is that these learners (that follow prediction path

2) have a lower value of systemAccess (-0.62) and procrastination (-1.62). However, such

a moderately low value of systemAccess is likely a positive indicator for this prediction

path. Indeed, as the learners solved most of the problems (correctness = 0.70), with a

low value of procrastination, this suggests them solving problems from the assignment

as soon as the instructors made them available. Hence, after that, they did not keep

accessing the online judge, as they had already finished their assignment.

On the other hand, Figure 27 (c) shows the students who follow the third predic-

tion path. The students from this cluster have more than the average number of code

errors (errorQuotient = 0.59), and they were not dealing well with the errors (watWin-

Score = 0.38). That is, they potentially were not trying to fix the problems (see the low

amountOfChange = -0.38), which might explain why they achieved low grades in the first

assignment (correctness = -1.12) and exam (firstExamGrade = -1.01). Additionally, based

on the number of attempts (attempts = -0.6) and time spent to solve problems (ideUsage

= -0.78), we can deduce that these learners are neither effective nor resilient in trying

to fix code errors. These ineffective behaviours are potential explanations of why the

students from this cluster have their average probabilities of passing close to 10%.

Figure 27 (d), the forth prediction path, are learners with a similar trajectory to
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those following prediction path 1. The main differences are twofold. Firstly, the feature

values from this cluster are almost half of those that follow the first prediction path.

Overall, they solved half of the questions from the assignments, they have half of the

lloc value, they spent half of the time that learners from the first cluster spent in solving

problems. Secondly, these learners might have some moderate effective behaviours,

but achieved a low grade in the first exam (firstExamGrade = -0.99). This discrepancy is

resulting in the uncertainty of the model for these cases. Indeed, the second reason (low

firstExamGrade) has a high impact on the model’s decision and changed the direction of

the prediction to the left, decreasing the learners’ chances of passing.

The learners that follow the prediction path 5 (Figure 27 (e)) have average

values for almost all programming behaviours, which makes the trajectory of the

prediction (looking from the bottom to the top of the plot) close to the grey vertical

line (base value). Indeed, the direction starts to change from programming behaviours

ideUsage and lloc, which increase somewhat the chances of passing. This indicates that

average values of these 2 features might be effective behaviours for this prediction

path. Still, an average correctness associated with a moderate to low systemAccess and

an average procrastination is decreasing the learners’ chances of passing. A possible

reason why an average correctness is potentially an ineffective behaviour is that the first

assignment has only easy problems and, thus, many learners solved all the questions

(for more details, see the correctness statistical analysis in Appendix A). Moreover, a

moderate/average procrastination4, without a high correctness, might not seem as an

effective behaviour. However, unexpectedly, as an inflection point, a moderate to high

firstExamGrade changed the direction of this prediction path to the right, raising the

overall chances of these learners above the base value. A possible explanation is that

these students did not access the IDE regularly (systemAccess = -0.38) and may not have

solved all the exercises from the programming assignments, not because of lack of

knowledge, but because they may already have known programming, i.e., they might

have had contact with programming before the CS1 course. Another possibility is simply

because of plagiarism in the exam. Notice that this kind of behaviour might confuse
4 Notice that a moderate procrastination means that the learner started solving the problems between 4

or 5 days before the deadline - as better explained in our Appendix II.
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the predictive model and bring about false negatives. Such outliers are interesting in

themselves to find, to analyse separately (ideally, by an instructor) as they may have

quite distinct needs from the rest of the cohort.

Finally, for a deeper analysis of each feature importance based on our model

prediction, we make available a link5 with interactive plots. The shared folder has 10

HTML files with plots for each fold tested in this study. The plots are a combination

of individual force plots, rotated 90 degrees and stacked horizontally, and ordered by

similarity of SHAP explanation, using the cluster analyses. To illustrate, in Figure 28

we show the first 1000 instances of the first fold (cross-validation). The bold value on

the y-axis shows the probability to pass of the student in position 896. Similarly to the

explained force plot, the feature values in purple represent a positive effect and the light

brown ones a negative effect for this individual student. With such an interactive plot

on-hand, the stakeholders (instructors, monitors, coordinators, etc.) can preventively

evaluate which behaviour should be stimulated and which should be improved upon,

for each student and for groups of learners, since the plot is sorted by similar Shapley

values.

Figure 28 – Prediction forceplots rotated 90 degrees, stacked horizontally. Here we high-
light the 896th instance, showing her/his feature values and contributions.

5 bit.ly/2PVCCaP
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4.5.6 Global Analysis

Regarding the importance of the features, Figure 29 (a) presents a bar chart with the

average impact (mean of Shapley values) for each feature, in terms of model output

magnitude. As arguably expected, the three most relevant are firstExamGrade, systemAc-

cess, and correctness. This translates into the conclusion that if the learner performs badly

in the first exam and in our programming assignment lists, a ’red flag’ needs raised.

Still, it is important to monitor how regularly students are accessing the online judge,

as the number of accesses (systemAccess) plays an important role at the beginning of

the course. Moreover, the number of logical lines of code (lloc) matters in the solution

submitted, as lloc is the forth most important feature. A potential reason is that the

total lloc of the solutions sent by the learners for all problems of the first assignment

might have an expected value, and the predictive model potentially uncovered the

likelihood of the expected value that might be effective or ineffective. Still, we can see

in the plot that procrastination might be an undesirable behaviour for some students and

can influence their performance negatively. Finally, as found by Pereira et al. (PEREIRA

et al., 2020), spending more time solving problems (ideUsage) and being resilient are

positive behaviours. Here, resilience might be measured by the association of attempts,

ideUsage, lloc, errorQuotient, syntaxError, amountOfChange, and watWinScore. That is, even

when the solutions are not correct at first (errorQuotient, syntaxError), it is important

to spend qualitative time (ideUsage) trying to fix the error (attempts, amountOfChange,

watWinScore) more than once. Notice that such attempts will increase the lloc and count-

Var, as these features compute the total number of logical lines of code and variables

(respectively) in all submissions, regardless whether accepted or not.

Additionally, it is important to note that the feature effects might be different for

different students. To illustrate, whilst general procrastination is associated negatively

with performance (STEEL, 2007), this effect might be less pronounced or even reversed

for some students. In this sense, Figure 29 (b) presents the direction and the distribution

of the feature effect. For some features, there are some medium to long tails, meaning

that those features might have low global importance, but a high relevance for specific

instances. To illustrate, systemAccess has a higher total model impact than procrastination.
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Nonetheless, for the instances in which procrastination plays an important role (long tail),

it has more impact than systemAccess. Thus, procrastination impacts a few predictions,

by a large amount; whilst systemAccess affects almost all predictions, by a smaller

amount.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
mean(|SHAP value|) (average impact on model output magnitude)

eventActivity
watWinScore

keystrokeLatency
countVar

syntaxError
attempts

comments
events

deleteAvg
errorQuotient

amountOfChange
copyPaste

correctnessCodeAct
ideUsage

procrastination
lloc

correctness
systemAccess

firstExamGrade

0.2 0.1 0.0 0.1 0.2
SHAP value (impact on model output)

eventActivity
watWinScore

keystrokeLatency
countVar

syntaxError
attempts

comments
events

deleteAvg
errorQuotient

amountOfChange
copyPaste

correctnessCodeAct
ideUsage

procrastination
lloc

correctness
systemAccess

firstExamGrade

Low

High

Fe
at

ur
e 

va
lu

e

Figure 29 – Summary of features’ importance for the model’s decision.

4.6 Pedagogical Implications
Our work enriches the research on programming learning with findings of effective and

ineffective early students behaviours (currently considered an open question (ROBINS,

2019; CARTER et al., 2019; QUILLE; BERGIN, 2019; PEREIRA et al., 2020a)), and the

educational data mining field, with an accurate and explainable ML pipeline that can

be useful for early intervention and student self-regulation.

An important finding from our approach is the notion that for different learners,

a different set of predictors seem to have an impact on successful learning. As we

demonstrated above, even generally undesirable behaviours, like procrastination (STEEL,

2007) might be more-, or less-harmful, for a particular person. As psychological and

educational research typically applies linear modelling (GUASTELLO et al., 2008), such

a complex nonlinear interplay has remained undiscovered by prior research applying

traditional methods.

Regarding the different features used for prediction in our analysis, we need

to emphasise that there are some behaviours that are easier to modify than others.
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Whilst it is possible to instruct students to avoid procrastination and increase total time

investment (BELLHäUSER et al., 2016), keystroke latency or the number of deleted

characters are less suitable for interventions.

For a more generalist analysis for adaptation of instructional decisions, we pre-

sented the power of global explanation by the identification and analysis of typical

prediction paths. Moreover, our focus not only on global behaviours, but also on in-

dividual ones, enabled by visualising and analysing feature effects at single-student

granularity level, can be used in an unprecedented variety of pedagogical applications.

Indeed, this early prediction, empowered by its explanation, might potentially allow

an effective early intervention by stakeholders. To illustrate, our interactive force plots

(Figure 28) of each student might be shown to the instructors at the end of the second

week of the course, who in turn might create some proactive way of minimising the

chances of at-risk students ending up failing. What is more, as the plot is sorted by

similar Shapley values, student behaviours might be grouped, for recommendation

purposes.

Notice that, in CS1 classes, each student may have a different timing to learn to

program. However, in traditional non-personalised classes, all students are treated in the

same way. Ideally, students should be challenged to learn as much as they can, taking

into consideration their individual learning weaknesses and strengths. For example, a

student that solves tasks fast and effortlessly, may be bored and potentially frustrated.

One possible solution for that is creating more challenging tasks for the students with

high probability of passing. More specifically, more challenging problems may be

recommended for students who have low procrastination, solve all the exercises on

the assignment, and access the system regularly. Hence, traditional Intelligent Tutoring

Systems or Adaptive Educational Hypermedia rule-based approaches (STASH et al.,

2004; BROWN et al., 2005) can be combined with modern educational data mining and

SHAP-based processing for large-scale personalised education.

In addition, for instructors, managers, and educators, a visualisation dashboard,

including our force plots, decision plots (and so forth) might contribute for a more

formative assessment. As such, not only the learner product is evaluated, but also
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the process behind, that is, not only their codes are evaluated, but also their learning

paths and effort to produce their codes. Formative feedback might be sent to students,

to improve student attainment, in response to a request from the literature for such

works (KEEFER et al., 2014; CRIŞAN, 2017; MENÉNDEZ et al., 2019). For example, an

automatic notification might be sent to each learner, showing them their own force plots

with their most important behaviours that should be encouraged, and the ones which

need improved upon. An individual decision plot might be also sent to students for

self-reflection of all analysed behaviours. This would empower the students to better

guide their own study. Such metacognitive strategies, which get the students to think

about their own learning, have been proven efficient in many areas of education. Indeed,

(ROWLAND, 2014) showed that metacognitive strategies may be worth the equivalent

of an additional 7x times greater progress than that used in a traditional environment.

The study explains that the major reason for such progress is that the learners were

aware of their strengths and weaknesses, which motivated them to engage in and

improve their learning. Such metacognitive or self-regulatory strategies can also be

trained via web-based training (BELLHäUSER et al., 2016).

Furthermore, this dashboard can increase the chances of the instructor reflecting

and diagnosing potential causes of the students’ lack of success. For example, an instruc-

tor might explore in the dashboard a plot like in Figure 28, where forceplots are clustered.

Using that AI-based information combined with classroom experience, the instructor

might schedule a meeting with specific groups, to discuss how certain programming

behaviours they are having are potentially jeopardising their learning. In other words,

this could amplify the instructor’s ability to implement effective interventions.

Indeed, based on such a dashboard we can intervene on many design dimensions

(CARTER et al., 2019), such as providing to the learners AI-based information, critique,

suggestions, and encouragement. Such intervention content might be shown in our

dashboard visually, or through text notification, with the intention of positively affecting

their programming behaviours, learning process and outcomes. Moreover, students

might also explore visually and interactively their learning process and progress. A

dashboard might allow triggered intervention as well, in which a notification or plot
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might to be shown to the learner in response to her/his actions. Another option would

be performing intervention on demand, in which the learner must explicitly require

some feedback or suggestion on effective and ineffective behaviours.

Finally, another possibility for interventions is to use the log file data for group

formation. As heterogeneity has been proven as beneficial for collaborative learning

in many scenarios (MÜLLER et al., 2021), one pedagogical approach would be to form

groups of learners with force plots differing from each other.

4.7 Chapter Conclusions
In this Chapter, we developed an explainable ML pipeline that competes in performance

with current state-of-the-art (inexplicable) black-box models. We have also shown

that there are significant benefits in using fine-grained data-driven code metrics to

extract features using insightful algorithms, since this allows, besides predicting student

performance early, to analyse behaviours that are related to struggling and successful

students. Moreover, we trained our model using data from the first two weeks of classes,

allowing early intervention.

For replication purposes, we provide our fine-grained dataset6. Moreover, for

works that want to replicate our work but use only globally relevant features, the most

important features for early prediction were firstExamGrade, systemAccess, correctness,

lloc, procrastination, ideUsage, correctnessCodeAct, and copyPaste (see Figure 29 (a)). This

translates into: if some students perform badly in the first exam and in the early pro-

gramming assignments, by procrastinating, do not spend appropriate time solving

the problems, then a ’red flag’ needs raised, as it has likely negative consequences for

the students’ final performance. Furthermore, we have shown also the local impact of

features for each individual student, where less important features could have high

relevance for some learners (Figure 29 (b)). As such, researchers that want to replicate

this work could consider this local importance of features, additionally to the global

one.
6 Our dataset can be found on codebench.icomp.ufam.edu.br/dataset/
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Additionally, our high-performance predictive model is explainable, which can

facilitate human/AI collaboration towards prescriptive analysis, where the instruc-

tors/monitors will have access to individual and collective analysis on which student

behaviours should be encouraged and which ones should be inhibited. On the student

side, such analysis can promote self-regulation and awareness of their strengths and

their chances for improvement. To illustrate the usefulness of the approach from a

student’s point of view, they may trust more on a recommendation if they understand

why they received it. From the instructors’ and coordinators’ side, understanding why

students are failing or passing would allow them to apply effective efforts to tailor

pedagogical material, instructions and interventions for future classes.

Nonetheless, besides that, more prescription needs to be done in order to support

students and instructors. For the instructors side, although the benefits that our method

can bring online judges to support CS1 classes, these systems also bring about a work-

load increase for instructors, since there are many repetitive and laborious tasks to feed

the system for different classes and terms. To illustrate, following we point out some: a)

selecting problems to create assignments lists and exams; b) creating different problems

assignments for distinct classes during terms to avoid plagiarism; c) categorizing these

problems in topics presented on the methodological CS1 curriculum. All these tasks

are important to allow the methodology and resources adaptation and dynamism in

order to personalise the system for different knowledge domain during the courses and

terms.

Moreover, some students like solving problems outside the assignments created

by the instructors. That is, such students like performing a self-direct learning (ZHAO et

al., 2018). However, due to the overload of problems available in online judge systems,

learners might feel frustrated in searching problems adequate to their knowledge. As

such, in the next Chapter we will go a step further in terms of prescription by proposing

and validating a recommender system to support CS1 classes using the knowledge we

obtained so far in this Chapter and in previous. Indeed, we will use the programming

profile based on effective and ineffective behaviours to help learners to solve adequate

problems and to help instructors selecting problems to compose assignments and exams.
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5

RECOMMENDING PROBLEMS FOR

STUDENTS BASED ON EFFECTIVE AND

INEFFECTIVE BEHAVIOURS

This I call to mind and therefore

I have hope.

- Lamentations 3:21

5.1 Overview of the Chapter
We showed in previous Chapters how fine-grained data collected from online judges

can be used to depict effective and ineffective behaviours and how those behaviours

can be used as predictors of students performance in programming courses, enabling

proactive interventions from stakeholders and potential prescriptions. Here we use

this knowledge to deal with a particular problem in online judges: learners in general,

and novices in particular, typically struggle to find problems in online judges that are

adequate for their capabilities and programming skills. A potential reason is that online

judges present problems with varied categories and difficulty levels, which may cause a

cognitive overload due to the large amount of information (and choice) presented to the

student. Thus, students can often feel less capable, which may result in affective effects,
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such as frustration and demotivation, decreasing their performance and potentially

leading to increasing dropout rates. This problem occurs specifically when students are

performing self-direct learning, what is quite common in online judges. On the other

hand, when students are guided in the learning process by the instructors, these educa-

tors need to select adequate problems to compose the assignments and exams, what

takes time, since typically those instructors needs to create variation of the assignments

for different classes and terms to avoid plagiarism. Recently, the literature has presented

systems to recommend problems in online judges, however, using a non-granular anal-

ysis of student data, that do not take into consideration the students’ effective and

ineffective behaviours, achievement. In this sense, in this Chapter we proposes for the first

time, to the best of our knowledge, a prescriptive analytics solution for students’ programming

behaviour by constructing and evaluating an automatic recommender module based on

students’ effective and ineffective behaviours to personalise the problems presented

to the learner in online judges in order to improve the learners achievement, whilst

minimising negative affective states, and to help instructors in selecting problems to

comprise the assignments and exams. To evaluate our recommendations, we compare

our Behavioural-based Recommender System (BRS) with a Random Recommender Sys-

tem (RRS), which simulates typical human selection of problems in online judges. Such

comparison was conducted through a double-blind control experiment to verify the im-

pact on student’s programming achievement, motivational affect and effort employed

to solve the recommended problems. Results showed that our method significantly

maximised positive affective states, whereas minimising the negatives ones. Moreover,

BRS significantly outperformed typical human selection (simulated via RRS; p < 0.05)

in terms of effort and achievement (correct solutions) and reduced dropout and failure

in the problem-solving process.

5.1.1 Practitioner Notes

What is already known about this topic:

• Fine-grained data collected from online judge can be used to depict effective and
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ineffective behaviours and as early predictors of student performance (PEREIRA

et al., 2020; PEREIRA et al., 2020; PEREIRA et al., 2021).

• Few methods to recommend problems in online judge available (TOLEDO et al.,

2018; FANTOZZI; LAURA, 2020).

• Studies have shown recommender systems for online judges using only non-

granular features (attempts and correctness) (YERA; MARTÍNEZ, 2017; PEREIRA

et al., 2021a; SAITO; WATANOBE, 2020).

What this Chapter adds:

• Showing how our fine-grained features can represent the effort expected to solve

programming problems.

• A novel behavioral recommender system based on students’ expected effort to

solve a given problem.

• Showing, through a double-blind controlled experiment, empirical evidence on

how personalised recommendations based on effort influence achievement and

affective states.

• Showing potential implication and application of our recommender system for

learners and instructors.

Implications for practice and/or policy:

• Potential application for self-direct learners who will easily find problems more

adequate to their knowledge level and skills.

• reducing negative affective states in the task of searching for adequate questions

and in trying to solve inappropriate problems.

5.2 Research Question Addressed in this Chapter
The adoption of OJ environments by instructors and institutions has increased in the last

few years (YU et al., 2015; WASIK et al., 2018; ZHAO et al., 2018; SAITO; WATANOBE,
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2020). Despite the notorious benefits of OJs in education, these systems are not able

to recommend the appropriate problems for the students, which may impact affective

perception, leading to affective states such as frustration, over time (RODRIGO; BAKER,

2009; YU et al., 2015; TOLEDO et al., 2018; CHAU et al., 2017; SETTLE et al., 2015;

LUXTON-REILLY et al., 2018). Frustration has been shown to be directly related to the

amount of effort a student needs to spend to solve a problem and may even lead to

dropout (RODRIGO; BAKER, 2009; NGAI et al., 2010; LEE et al., 2011; FORD; PARNIN,

2015). This happens due to effort being intrinsically related to the students’ confidence,

competence and consequently affecting their motivation (KELLER, 2009; DECI; RYAN,

2010).

The amount of effort a student puts into a task is also tied to their motivational

experience (e.g., reaching the flow state proposed by (CSIKSZENTMIHALYI; CSIK-

SZENTMIHALYI, 1992)) where their effort is appropriate to the task these students are

doing. Indeed, a good balance of effort required to solve tasks is related to an increase

in achievement (DUCKWORTH et al., 2015). In this sense, it is important to measure

the students’ effort in those environments and show how this effort is related to their

personalised programming tasks, affective states, and achievement.

To adapt the programming problems to the students’ effort, recommender sys-

tems appear as a viable solution (MANOUSELIS et al., 2011; KULKARNI et al., 2020;

JÚNIOR; PEREIRA, 2020; JÚNIOR et al., 2020). Recommender systems (RS) are environ-

ments used to identify and provide content based on rules that use user data (RICCI

et al., 2011). These systems have been widely used in educational scenarios; however,

few studies have tackled ways to provide recommendations based on a deep analysis

of user behaviours (RIVERA et al., 2018; SAITO; WATANOBE, 2020; KULKARNI et

al., 2020; JÚNIOR et al., 2020). More specifically in the scope of programming learning,

there are only a few studies available in the literature proposing methods to recommend

problems in OJs, and such studies make the recommendations only based on students’

attempts and results from the submissions to the OJ. Notice that a deep behavioural

analysis of fine grained data is crucial to make appropriate recommendations (CUI et al.,

2016; KULKARNI et al., 2020). Moreover, effort and its implications for affective states
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and achievement should be taken into consideration in programming learning (RO-

DRIGO; BAKER, 2009; KINNUNEN; SIMON, 2010; EDWARDS; LI, 2016; UMAPATHY;

RITZHAUPT, 2017; FWA, 2018; IM; KANG, 2019; RANGEL et al., 2020).

We showed in the previous Chapters that our fine-grained data is useful to depict

effective and ineffective behaviours and that those behaviours are related to resilience

and achievement (e.g. finalGrade). Notice that resilience and effort are intrinsically

related. Proag (2014) explains that resilience may be measured as the effort required to

do something. Indeed, we showed in previous Chapters (in Chapter 2, specifically) that

effective students are those who employ a good balance of effort in problem-solving

and make progress in learning to program, typically leading to successful outcomes. We

showed that thorough an analysis of a set of features that we called programming profile.

As such, in this work, besides the variables previous used in previous works

(attempts and results from submissions), we also employed our programming profile

to represent the effort expected to solve a given problem. Using these features, we

make a recommendation based on the following hypothesis: if a student s solves a

given problem p, and our method recommends a problem p’ that requires an effort to

be solved similar to that of p, then the student s is able to solve the problem p’. Using

that, we believe that the recommendations will minimise students’ negative affective

factors, whilst maximising the positive ones, as the problems recommended will not

require a disproportionate effort from the learners. In addition, as aforementioned,

effort is related to the students achievement (DUCKWORTH et al., 2015; PEREIRA et al.,

2020). Hence, our second hypothesis is that our recommendation based on expected

effort will increase the student achievement and decrease dropout and failure rate

in problem-solving. Thus, in this Chapter we aim at solving the following research

question:

• RQ4-1) How to recommend adequate problems for students and instructors based on

effective and ineffective behaviours?
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5.3 Affective states whilst learning to program
The several programming problems available in OJ allow students to test themselves

(e.g., writes and submits a code to receive feedback on its correctness) multiple times.

This practice can be seen as self-testing, an approach beneficial to learning (e.g., im-

proving long-term knowledge retention) known as testing effect (ROWLAND, 2014;

GOLDSTEIN, 2014; ROEDIGER-III; KARPICKE, 2006). This context demonstrates the

value that the OJ has to those who are learning to program, indicating the importance

of keeping learners engaged with these systems.

However, according to (KINNUNEN; SIMON, 2010; LUXTON-REILLY et al.,

2018), introductory programming students present high levels of anxiety and frus-

tration among any other disciplines in computer science courses. Frustration1 likely

leads to many negative outcomes, such as deterioration of students’ self-esteem, dis-

engagement, poor learning outcomes and retention, and may even lead to dropout

(RODRIGO; BAKER, 2009; KINNUNEN; SIMON, 2010). Consequently, minimising

learners’ frustration from interacting with OJ is necessary to prevent that they quit

using these systems.

Whilst frustration is a negative affective state for learning, having students

satisfied with their performance, as well as pleased with the material, likely works

in the opposed way. (D’MELLO et al., 2010) consider feeling this way as happiness,

and reasons for this affective state contributing to learning might lie in attending basic

human needs. That is, as learners feel satisfied with their performance, they likely have

their competence need satisfied (DECI; RYAN, 2010), which contributes to high-quality

learning experiences (DICHEV et al., 2014; TODA et al., 2020). Therefore, working

towards maximising students’ happiness whilst using OJs is another approach relevant

to improve learning.

Based on this context, OJs should strive to prevent learners from feeling frus-

trated, at the same time they should seek to enhance their happiness. Frustration can
1 In the scope of this work, we consider frustration when an effort disproportionate to what the student

is used to is required for him/her to solve a certain problem. In other words, the student needs to
solve a problem that is too difficult or too easy for his/her level of knowledge, that is, his/her learning
expectations have not been met (D’MELLO et al., 2010).
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be mitigated through the students’ effort2 (KELLER, 2009). When applying the tailored

amount of effort to a certain activity, students may become engaged and motivated by

achieving what they wanted, which leads to a better learning experience (LEE et al.,

2011). Hence, mitigating frustration and the negative outcomes that derives from it may

help with satisfaction with their performance (i.e., happiness).

As such, recommender systems present a viable solution to handle students’

feelings of frustration and happiness through effort. These systems provide contents

based on given inputs, such as students’ skill level. Henceforth, by understanding

and mapping students’ efforts in programming courses, RS can suggest the best tasks

that are tailored to students’ level of knowledge, which will likely lead them to better

learning experiences and achievement. Consequently, this will contribute i) to improving

students’ happiness, as they will feel satisfied with their performance by achieving what

they expected and by receiving learning materials aligned to their level of knowledge,

and ii) to mitigating frustration by providing assignments tailored to the amount of

effort needed. Finally, those systems can help instructors in selecting adequate problems

to create assignments and exams.

5.4 Recommender Systems in Online Judges - State-of-

the-art
In recent years, coding automatic feedback has been used to aid in programming teach-

ing and competitions (TOLEDO; MOTA, 2014; ANSARI et al., 2016; YERA; MARTÍNEZ,

2017; DWAN et al., 2017; CHAU et al., 2017; PEREIRA et al., 2019a; PEREIRA et al.,

2019b; PEREIRA et al., 2019; SAITO; WATANOBE, 2020; FANTOZZI; LAURA, 2020;

OLIVEIRA et al., 2020; PEREIRA et al., 2020a; FILHO et al., 2020; LIMA et al., 2021a). Since

then, students have embraced the advantages of self-learning through online judges,

which led to the emergence of a new research direction related to better understanding

students’ needs and interaction as well as designing and building better OJ systems
2 In the scope of this work, effort is defined as the learner’s work employed to try to solve a given

problem (DUCKWORTH et al., 2015).
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(CHEN, 2009; WASIK et al., 2018; PEREIRA et al., 2020b; SAITO; WATANOBE, 2020;

FANTOZZI; LAURA, 2020; MELO et al., 2021; PESSOA et al., 2021). However, there is a

lack of studies exploring the role of effort and how personalised recommendations may

have impact on effective states and achievement.

Hosseini & Brusilovsky (2017), Chau et al. (2017) proposed to extract information

from codes to choose the suggestions for students learning programming. Hosseini

& Brusilovsky (2017) created an RS that provided hints during the solving process,

using techniques as term frequency–inverse document frequency to represent similarities.

Chau et al. (2017) created an RS that suggested learning materials to help teachers in

designing courses. Different from Hosseini & Brusilovsky (2017) and Chau et al. (2017)

who focused on tips about learning materials, we used data-driven behaviours analysis

to infer the knowledge and effort of the students based on the data logs generated

through real time execution.

Indeed, data-driven behaviour analysis have been a trend in the past few years.

Many studies analysed a set of metrics that can estimate the students’ behavioural

patterns in OJs, such as: number of attempts, IDE usage, number of errors, average lines

of codes, etc. (JADUD, 2006; WATSON et al., 2013; ESTEY; COADY, 2016; AHADI et

al., 2016; OTERO et al., 2016; LEINONEN et al., 2016; CASTRO-WUNSCH et al., 2017;

DWAN et al., 2017; LEEUWEN et al., 2019; CARTER et al., 2019; QUILLE; BERGIN,

2019; LOPES et al., 2019; MARGULIEUX et al., 2020). All these works showed that these

fine grained behavioural features are related to students’ achievement/performance.

Nonetheless, none of these studies analysed the features’ in conjunction neither how

they can be used to automatic recommending problems. Notice that you do both in this

work since we analysed the features in conjunction in previous Chapter and now we

are focusing on recommendations.

Moreover, in the direction of recommendations, Toledo & Mota (2014),Yera

& Martínez (2017),Toledo et al. (2018) and Saito & Watanobe (2020) used learner be-

havioural data for automatic recommendation of problems in online judges. Toledo

& Mota (2014),Yera & Martínez (2017) and Toledo et al. (2018) proposed RS that rec-

ommend problems based on a collaborative approach. They used a binary matrix as a
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basis for the recommender. Saito & Watanobe (2020) proposed a learning path recom-

mendation system based on learner’s submission history in an online judge. However,

these authors Toledo & Mota (2014), Yera & Martínez (2017), Toledo et al. (2018), Saito &

Watanobe (2020) consider only the number of attempts and results from the submissions

as features. In this work, we extend the metrics that are used in previous works to the

ones shown in our programming profile (Table 2) and others (it will be shown next

in Table 9) that were extracted from the codes submitted and log data collected from

CodeBench. Moreover, different from all of them, we evaluated our method with real

learners and checked their affective factors, achievement rates, and effort employed

when solving the problems.

In brief, none of the previous studies performed an analyses of effort considering

such fine-grained set of features to design a behavioural recommender model, as a way

to personalise the recommendations in online judges. In this study, our RS provides

problems adapted to the students’ skills, and we measured the resulting achievement

rate, effort employed, and affective states (frustration, happiness and confusion) when

solving our recommended problems.

5.5 Methods
As in previous Chapters we use real interaction fine-grained data from students in

CodeBench. Thus, the instruments and data collection process are the same as explained

in the previous Chapters, except that we now use the data from the entire courses,

instead of the first two weeks, as we are interested in recommending problems instead

of early predictions.

5.5.1 Feature Extraction to Represent Learner’s Effort

Effort is a psychological construct and, therefore, there is no standard way to measure it.

In other words, there is no pattern scale to put students that will give a direct and precise

measure of how effortful they are in solving problems. (HADEN, 2019) explains that in



Chapter 5. Recommending Problems for students based on effective and ineffective Behaviours 145

this cases, there is a need of features that indirectly measure the construct. That is, we

need to define some observable, recordable measure that we believe accurately reflects

the construct, what is called the operational definition of the construct. As such, we have

established an operational definition to compute the expected effort to solve a given

problem, using features that have already proved to be efficient in the literature and

code metrics established in software engineering to measure the effort of programmers

in the development process, as well as the features we showed in previous Chapters to

be good predictors of achievement and relevant measures of efficient behaviours.

Features Description

countCicle Average number of loops from submitted students’ codes for
a given problem;

countCondition Average number of conditional structures from submitted
students’ codes for a given problem;

cyclomaticComplexity Average cyclomatic Complexity from submitted students’
codes for a given problem, where cyclomatic Complexity rep-
resent the source code as a control flow graph, corresponding
to the number of independent paths of this graph (OTERO et
al., 2016);

nDistinctOperands Average arithmetic operands in the source codes;

nDistinctOperators Average arithmetic operators in the source codes;

test Average number of times the student tested the source code
(DWAN et al., 2017);

totalOperands Total of operands in the source codes (LEINONEN et al., 2016;
OTERO et al., 2016);

totalOperators Total operators present in the source codes (LEINONEN et al.,
2016; OTERO et al., 2016);

Table 9 – Data-driven features to represent student’s effort to solve programming prob-
lems.

As explained in previous Chapters, we extracted these features from the stu-

dents’ logs and further processed them, e.g., extracting the average number of students’

attempts for each problem, average number of lines of codes for each problem, etc.

Thus, our observable, recordable measure to represent the effort is presented in Table 2

(Chapter 2). Moreover, we extended this set of features to represent also behaviours that

are important after the beginning of the course, such as the number of cycles which are
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not covered in the first weeks of CS1 courses. Thus, we also added features presented

in Table 9, which are inspired by previous works (OTERO et al., 2016; LEINONEN

et al., 2016; DWAN et al., 2017) in the field, as they have been proven to be tied with

students’ achievement and in the software metrics (FENTON; BIEMAN, 2014) from

software engineering field. Still, notice that achievement is completely related to effort,

as explained by (DUCKWORTH et al., 2015). Therefore, here we are using these features

to measure the expected effort the students need to employ to solve a given problem to

improve learners’ achievement rate, in a move towards minimising students’ frustration

and maximising satisfaction (i.e. happiness) in the learning process.

We also adapted other variables presented in Chapter 2, where we propose the

concept of resilience, which is related to the number of attempts a student takes to solve

a given problem. We added all these variables to the analysis to measure the student

effort in-depth. For a better understanding, following is the list of features used in

our BRS: procrastination, amountOfChange, attempts, lloc, systemAccess, events, correctness,

syntaxError, ideUsage, keystrokeLatency, errorQuotient, watWinScore, countVar, contCicle,

contCondition, cyclomaticComplexity, nDistinctOperands, test, totalOperands, totalOperators,

noAttempts, unsucNoRes, sucNoRes, unsucRes, sucRes, effectAttRate, effectGenRate. Notice

that now we aggregate these features per problem and use data from the entire curse

instead of first weeks.

Concerning the data transformation, we used a widely established statistic

measure, the z-score, to standardise the features in each problem (MANSOURY et al.,

2019).

5.5.2 Behaviour-based Recommender System

The architecture of the BRS is presented in Figure 30, in which the system recommends

problems that contain similarities to the current problem solved by the student. The

features indicate the behaviour each student presents when using the IDE in the OJ.

This set of features forms the input data-driven behaviour model, which can be used to

represent the students’ effort. The similarity between the recommended problem and
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the target problem is made through nearest neighbour analysis, using cosine similarity

as distance metric. We use this technique to support our first hypothesis that is if a

student s solves a given problem p (which we call a target problem), and our method

recommends a problem p’ that requires an effort to be solved similar to that of p, then the

student s is able to solve the problem p’, and, hence, p’ is adequate to the learner’s level

of knowledge. As such, the nearest neighbour analysis is playing a role of matching the

target and recommended problem by analysing the problems’ similarities.

With nearest neighbour technique, each group of questions (solved by the student

and contained in the system) is represented through an array and the similarity is the

calculation of the correlations between these arrays (the angle between them, always

ranging from 0 to 180). Furthermore, cosine arc is used to transform the result into a

value between 0 and 180 degrees. In this sense, given two arrays P and E, the cosine

between them is given by the product of P × E divided by the product of l2-norm

of P and E, given by
√∑n

k=1Xk
2, where X = {P,E}. This way, we guarantee that

our results generated through the similarity of the cosine are always normalised, with

values ranging from 0 to 1. The similarity formula is thus:

SPE =
P · E
‖P‖ ‖E‖

=

∑n
i=1 Pi × Ei√∑n

i=1 P
2
i ×

√∑n
i=1E

2
i

(5.1)
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Figure 30 – Workflow of Behavioural Based Recommender System
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5.5.3 Evaluation of the Recommender Model

5.5.3.1 Participants

As a proof of concept we evaluated our method in a double-blind controlled experiment.

For the evaluation, we recruited students who had already done introductory pro-

gramming, from the Federal University of Roraima (UFRR), Brazil, due to convenience

sampling. We have written a message to all mailing computer science students from

UFRR, explaining our research goals, asking for volunteers to participate in a 10-minute

phone call, scheduling calls for all who replied.

Before starting the evaluation, we have explained the study to the learners and

obtained their consent to participate. In total, 15 students agreed to participate and each

of them solved 16 problems, 12 recommendations and 4 target problems3, totalling 180

recommendations (12x15) to be evaluated.

Affective State Description

Boredom Uninterested in the current recommended problem.

Confusion Poor comprehension of the problem, attempts to resolve erro-
neous belief.

Engagement Student motivated to solve the current problem recommended.

Neutral No visible affect, at a state of homeostasis.

Frustration Problem recommended was not as expected, that is, more difficult
or easier.

Happiness Satisfaction with the recommendation, feelings of pleasure about
the problem.

Table 10 – Affective states used to evaluate learner’s comments

5.5.3.2 Measures

For each recommended problem, we asked the participants to make a comment about

the effort required to solve the target problem and the recommended problem. Thus, we

evaluate the affective states of the comments based on the most frequent affective states

when solving problems (D’MELLO; CALVO, 2013), which are boredom, confusion,
3 Target problems do not count as a recommendation
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engagement, neutral, and frustration. Besides that, in our context it is also crucial to

evaluate when the learner is satisfied with the recommendation. Therefore, we included

happiness (EKMAN, 1992; JÚNIOR et al., 2019), as (D’MELLO et al., 2010) explain that

happiness is a typical affective state presented when students are satisfied when solving

problems. Thus, we showed a description of each used affective state in Table 10.

We further use a data-driven approach to evaluate the recommendations in terms

of effort employed and achievement, following the procedures:

• For achievement, we perform an analysis of correct and incorrect submitted

answers, and problems which the students did not try to solve;

• For effort employed, we perform a feature analysis of the data log from the

submitted recommendations’ solutions. In this case, we adopted the metrics

presented in Table 9, which we found that better represent the effort required by

the student to develop a solution for the problem. These metrics were: number

of attempts (attempts), average usage time in the IDE (IDEusage), average of

successful submissions (successAverage), average log rows (events), and length of

codes (lloc). We opted to use only those five instead of all features for a simpler

analysis (Occam’s razor) after some discussion between authors.

5.5.3.3 Experimental Manipulation

To apply our RS, we elaborated lists of recommendations, which means, two lists with

eight problems totalling 16 problems per student. Each student has his/her own person-

alised list divided in groups, as shown in Figure 31. Each group contains four problems,

first group is composed of easy problems and second one of intermediate problems.

First question of each group is a target problem (TP1 and TP2) that was selected by

the authors of this study, in collaboration with lecturers and professors of program-

ming. These target problems act as a starting point to balance the RS to generate the

recommendations. After the target problems, we have sequenced 3 recommendations,

as shown in Figure 31. Thus, we construct the list of problems to the participants using

the following sequence: TP1 → R1, R2, R3 and TP2 → R4, R5, R6.
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It is worth to mention that the target problems were not included as part of the

recommendation. For the easy target problems we chose sequential and conditional

problems (if...then...else), whereas for the intermediate problems we selected problems

that use repetition structure (loops), vectors, strings and matrices. To personalise the

recommendation of each student, we selected five different target problems for TP1 and

TP2. Moreover, we calculated the 10 nearest neighbours of each target problem. After

that, we randomly assigned 3 out of 10 nearest neighbours of a given target problem to

compose its recommendations (Figure 31).

R1TP1 R2 R3 R4TP2 R5 R6

TARGET
PROBLEM

EASY
GROUP

INTERMEDIATE
GROUP

LIST

Figure 31 – Representation of a recommendation list

To evaluate the BRS itself (experimental treatment) we compared the person-

alised recommendation with a random recommender (control treatment). We called

Random Recommender System (RRS) because the input is known but not the output,

which means that given a target problem, the RRS recommends the next problem(s)

by performing a random selection of questions from pre-determined lists of problems

selected by instructors. These pre-determined lists of problems might vary in terms

of topic, that is, there are assignments lists that comprise problems of variables, con-

ditionals, loops, vectors, and simple matrices operation. As such, the random method

works as a baseline (or a placebo) to check the recommendation impact of our BRS.

(ZHAO et al., 2018) explain that, in OJs, learners need to find problems spread across

multiple volumes of questions with varying topics and difficulty levels. Thus, the RRS

simulates the way self-direct learners select problem in OJs, as these systems do not

provide automatic recommendation of problems. In other words, the learner needs to
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find the next problem to solve randomly searching in the volume of problems until

finding a suitable one.

The comparison between the BRS and RRS was conducted through a within-

subject experiment double-blind controlled, where students did not know which treat-

ment (BRS or RRS) they were using neither the authors knew which student was

receiving which treatment. We first applied the BRS and after the RRS, so that, the

participants would have the recommendation from the BRS as reference to classify the

recommendation for the RRS. However, as the evaluation was double-blinded and,

hence, the participants have not known about that.

5.6 Results and Discussions
In this section, we present our results regarding to the affective states, effort employed,

achievement, failure and dropout rate of the students when they were solving the

problems that we recommended on our BRS and our baseline, the RRS.

First, we performed a qualitative analysis of the students’ comments4 over

the recommended problems to identify the affective states. To perform that analysis,

two authors independently classified5 each comment based on the affective states

presented in Table 10. Subsequently, we performed Kappa Cohen Test (COHEN, 1960)

to check the agreement level and, as a result, we achieved 0.83, which is considered

a high level of agreement (ARTSTEIN; POESIO, 2008). For the cases of disagreement,

another author acted as the third judge. Using this classification, Figure 32 shows

the affective states presented in the comments about the recommendation of each

method. Comparing the methods, we can see a clear difference in terms of happiness

and frustration. Indeed, the difference is statistically significant (p − value < 0.05,

χ2 - even after Bonferroni correction), which reveals that our method maximise the

positive affective state (happiness which are related with satisfaction), whist minimising
4 The original comments are in portuguese. We, thus, translated it us-

ing google translate API for python. The comments can fe found on
https://www.dropbox.com/s/gbi37va72lqgvub/comments_english.xlsx?dl=0

5 Remembering that the evaluation was double-blinded and, hence, authors have not known if the
comments were from BRS nor from RRS.
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Figure 32 – Affective states classified based on learners’ comments.

Analysing each affective state in isolation, we observe only few neutral com-

ments, which makes sense, since the students’ comments about the recommendations

tend to be pragmatic, that is, they usually stated that they were satisfied with the rec-

ommendation (happiness) or that the recommendations did not require the same effort

as the target problems (frustration). Indeed, neutral comments only occurred in cases

where the students did not show any visible affective state. Moreover, we can observe

that boredom and engagement was not assigned for any comment. A possible reason is

that the students may not have experienced an aversive state to the activity nor have

felt sufficiently engaged as they treated the recommendations as an experiment and not

as an usual learning activity.

Another affective state that occurred with a relatively low frequency (N = 21)

was confusion. In total, there were 11 cases of confusion in the RRS and 10 cases in the

BRS, which reveals a balance in relation to this state. This affective state occurred when

students did not understand the problem statement or the way in which the outputs of

their codes should be presented in order to pass in all test cases. To illustrate, in some

comments, students reported that their codes were correct, but the OJ did not judge

them right because, apparently, the test cases were pointing out an error that they could



Chapter 5. Recommending Problems for students based on effective and ineffective Behaviours 153

not find. Wasik et al. (2018) state that this phenomenon can happen, as test cases are

analysed by comparing strings, so if the student forgets a line break in a print command,

then the problem can be assessed as wrong, even if logic being right. Nonetheless, notice

that this is a limitation of the way in which OJs assess exercises and not a limitation

of our recommender method. Similarly, a poorly designed question (which can cause

confusion) is out of the scope of our method. Still, these cases of confusion may have

slightly influenced the failure rate and dropout in both methods, however, as there are

almost the same number of confusion cases in both methods, such influence potentially

weighed equally.

In terms of happiness, there are 28 cases in our baseline, whereas 60 in our

method, more than double. In addition, there were 47 cases of frustration in the RRS,

whilst 19 in our method. This is a first evidence that our method is mitigating frustration,

whilst maximising the students’ satisfaction (i.e. happiness), what support our belief

about our first hypothesis that the recommendations will minimise students’ negative

affective factors, whilst maximising the positive ones, as the problems recommended

will not require a disproportionate effort from the learners.

After this qualitative analysis of the student affective states, we analyzed the

effort employed by students using the following metrics: i) achievement rate, which

is the proportion of correct submissions over all submissions; ii) failure rate, which

is the proportion of incorrect over all submissions; and iii) dropout rate, which is the

proportion of recommended problems that were not attempted by the students over all

problems. It is worth mentioning that students were free to execute and submit solutions

to the recommended problems as they wished, i.e., there was no limit of attempts to

solve the recommended problems.

Figure 33 shows the results for each method in terms of three rates: achievement,

failure and dropout. When the students solved the problems recommended by the

BRS, 60% of their submissions were assessed as correct (achievement rate), whereas

using the RRS, the achievement rate was of only 25%. In terms of failure rate, only 14%

of students’ solutions were not accepted within the BRS, against 24% within the RRS.

Indeed, these differences are statistically significant (p− value < 0.05 - χ2test, even after
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Figure 33 – Analysis of the recommendations submitted to the OJ.

Bonferroni correction). Thus, these results may reveal that in the RRS, the effort required

to solve these problems is much higher than they used to employ in the target problems.

Furthermore, this is an evidence found that suggests the importance of recommending

problems that are more appropriate to the students’ efforts so as not to lead them to a

low achievement rate and, hence, to frustration. Still, something worth to note is that in

the RRS, students have a high rate of untried problems (51% of dropout rate), whereas

in the BRS the learners had only 26%. These findings support our second hypothesis

that recommendation based on effort expected will increase the student achievement

and decrease dropout and failure rate.

About the difference in terms of dropout and failure rate, we can state that this is

another confirmation that the problems recommended by the RRS either required more

effort from learners or were more complex to the point where the students did not even

try to solve them. Such high dropout rate from the RRS is a clear evidence of students’

frustration in trying to solve problems not adequate to the effort they apply in the target

problems. Other reasons that may have led the student to not try may be either the

lack of understanding of the problem or the lack of skills (confusion). Nonetheless, the

target problems of each method are, respectively, an easy and intermediate problem. As

such, if the recommender system works well, the first group of recommendation should
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comprise only easy problems, and the second group of recommendations should contain

only intermediate problems (see Figure 31). Consequently, the lack of skills to solve

the problem should not be presented as all the students who solved the recommended

problems (in both methods) had already done introductory programming and are

able to solve easy and intermediate problems. So, what likely happened was some

bad recommendations in both systems, proportional to the students’ dropout rate and

failure rate. Notice that, BRS was statistically superior in terms of achievement rate,

failure rate and dropout rate, which likely means that the recommendation of the BRS

were more suitable to students effort.

In addition, it is also important to analyse the recommendations from other

perspectives. As such, we also examined the students codes submitted for each recom-

mendation and the learners’ logs when they were solving the recommended problems

in the embedded IDE of CodeBench. This approach makes it possible to investigate stu-

dents’ effort in a more holistically way to build solutions with a formative evaluation in

which we are not only inspecting the code submitted by the student but also the process

behind this code, which is when the learner is building the solution. More specifically,

we conducted such data-driven approach by checking the number of attempts, IDEUsage,

events, sloc and successAverage on both recommenders.

After comparing all these features for each recommender, we found statistical

significance even after Bonferroni correction (p− value < 0.05 - Mann Whitney Test),

as presented in Table 11. Furthermore, for a better visualisation of this difference we

plotted the mean of each one in the radar plot presented on Figure 33. Before plotting,

we normalised the features using MinMaxScaler technique to better see the differences

among all features.

Through a visual inspection in the Figure 34 regarding to the random recom-

mender, we can observe that the students spent more time programming in the IDE

(greater solution time, p − value < 0.05) at the same time that more line of logs were

generated (greater events - p− value < 0.05) whilst they were solving the problems. This

might suggest that learners were ‘rewriting’ the code more on the RRS than on our BRS.

Moreover, the codes submitted by the students in the recommendations of the RRS were
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smaller (lower value of sloc - p− value < 0.05), which also indicates that students had

to employ much more effort (greater IDEUsage, events, and attempts - p− value < 0.05)

to submit solutions with fewer lines of code.

attempts IDEUsage events sloc sucess_average

Mann-Whitney U 5232.000 5339.000 5528.500 5696.000 4666.500

Z -3.991 -3.494 -3.135 -2.835 -5.446

Asymp. Sig. (2-tailed) .000 .000 .002 .005 .000

Table 11 – Results of the Mann-Whitney test in the distribution of the characteristics of
the recommendation systems.

Figure 34 – Analysis of logs obtained in the evaluation of programming students.

Furthermore, in the RRS the students had more submissions (greater number of

attempts - p− value < 0.05) at the same time they had a lower success rate when solving

the recommended problems (lower successAverage - p− value < 0.05). This is another

evidence that students tried harder to solve the problems recommended by the RRS.

In summary, we showed in Figure 33 and Figure 34 and through our analysis, that

our BRS is superior to the RRS. Indeed in our BRS, students had a lower dropout rate
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when trying to solve problems. In addition, the learners’ logs suggest that they employed

a more proportional effort to solve recommended problems and that the problems were

more adequate to their programming skills. Providing adequate problems contributes to

maintaining them testing their solutions in the OJ, which likely enhances their learning

based on the testing effect (see (ROWLAND, 2014)). Notice that such adaptation and

personalisation of learning might lead to minising the chances of students becoming

frustrated and even dropping out of the course.

The evidences we found in our qualitative analysis associated with what we

found analysing the achievement rate and students logs supports our hypotheses that,

in general, our recommendations require similar level of effort regarding to the target

problem. Indeed, the higher level of frustration in our baseline is potentially the driven

factor that lead to such a high dropout and failure rate, whereas the higher rate of

happiness might be related to the high achievement rate in our method, supporting,

thus, our second hypothesis that the affective states influences achievement, defined

here in terms of lower failure and dropout and higher number of problems solved.

With regards to the evaluation of the recommended problems, it should be taken

in consideration that human responses may be subject to bias, as it is difficult to control

human attitudes and behaviour, even in a controlled experiment. Thus, consider that the

way we evaluated our recommendation method was designed to reduce potential biases.

That is, besides the comments analysis, we also evaluated the students’ interaction with

the OJ and the problem solving process.

5.7 Pedagogical Implications
There are five main implications from our findings. First, students felt less frustration

and more happiness when completing assignments recommended by the behavioural

RS. Compared to when using the RRS, students’ feedback concerning the BRS demon-

strate they largely perceived the assignments with more feelings of happiness and less

feelings of frustration. This finding suggests using our proposed RS contributed to

minimising students’ frustration whilst maximising their satisfaction with the mate-
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rial (happiness). As mitigating and improving frustration and happiness, respectively,

is important to improve learning outcomes, this finding implies the use of our pro-

posed recommendation approach holds the potential to enhance learning experiences

in solving programming assignments.

Second, we found that when provided with programming assignments recom-

mended based on their behaviours, students showed higher achievements rates and

lower failing and dropout rates compared to when receiving random recommendations.

This finding suggests that our recommendation approach contributed to maintaining

students trying to solve the assignments (less dropouts), preventing them to fail, and

enhancing their achievements. Therefore, this finding implies the need to provide ade-

quate recommendations for programming students to practice, instead of relying on

their own non-guided choices, which are likely to act as the random approach that

would be harmful to their learning.

Third, we found students were more successful within less tries when com-

pleting assignments recommended based on their behaviours rather than randomly

selected. That is, when completing assignments suggested by the BRS, learners’ correctly

completed way more assignments, with few attempts, and within a smaller time period

than when completing assignments recommended by the RRS. This finding implies that

using our approach for assignment recommendation improves programming practice,

as learners will likely need less time to successfully complete more assignments that if

they would practice with assignments recommended with no consideration for their

behavioural data.

Fourth, our results indicate the relationship between affective states and achieve-

ment. On one hand, learners’ felt less frustration and more happiness from the as-

signments provided by the BRS than from the RRS. On the other hand, students were

more successful (e.g., higher achievement, less dropout) when completing assignments

recommended by the BRS compared to when completing those suggested by the RRS.

This finding suggests an association between affective states and achievement, that

is, frustration and low success and happiness and high success. The implication from

this finding is that designers and instructors should strive to ensure learners are not
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frustrated but feeling happiness concerning the learning activities, as this will likely

enhance their learning experiences.

In closing, it is worth noting that our recommender system have a potential ap-

plication for instructors. Typically instructors need to create variations of programming

assignments lists for different classes, in order to avoid plagiarism, for example. Using

our method, consider each problem in a list of exercises already created by a instructor

as a target problem. By generating N recommendations for each of these problems,

we can compose N new lists of exercises that require effort and knowledge similar to

those required to solve the original. Thus, the instructor’s workload to compose new

programming assignment lists is significantly reduced.

5.8 Chapter Conclusions
This work proposed and validated a method for recommending programming problems

in an OJ based on the expected effort extracted from the student behaviour. We compared

our method with an random method that simulates the way learners search problems

in OJs. To compare the performance of both methods, five descriptive metrics based

on data-driven behaviour analysis were collected from the students’ logs. Such metrics

indicate the effort made by the student when they were developing the solutions.

Additionally, we compared both methods in terms of achievement, failure, dropout and

affective states trigered when learners were solving the recommended problems.

During the evaluation of the methods, the behaviour-based method obtained a

statistically significant higher rate of achievement, and lower rate of failure and dropout.

Also, after analysing the logs of the submitted recommendations, we confirm that the

behaviour-based recommender suggests problems that are more appropriate to the

students’ effort based on previous submissions. In addition, our method triggered more

positive affective states and less negatives ones in students. Furthermore, we show that

our method has potential benefits for learners and instructors, in a way to improve self-

regulation learning for the further and reducing the workload in creating assignment

tasks in programming classes supported by OJs for the later, towards minimising
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plagiarism threats.

It is worth noting that the effort required to solve a given problem depends on

the previous knowledge acquired by the learner about the programming topic of that

problem. To illustrate, if the student already known how to manipulate matrices using

python, it is easier for them to code a matrix sum, as the numpy module allows summing

up matrices as scalars. However, for a student who has no prior knowledge of matrix

manipulation with numPy, the effort to learn will be greater. The way in which the level

of effort required to solve a problem in the RS based on behaviour was modelled does

not take into account this prior knowledge that the student has about the CS1 topic.

Figure 35 exemplifies better such limitation of our recommender. Question 1 is a given

target problem. The students need to read two variables and print the sum of these

variables. A potential recommendation for such target problem would be the question

2, which asks the student to read two matrices (same shape) and print the sum of these

matrices. The reason for such bad recommendation is that the effort required to solve

both questions are quite similar, and our BRS recommends problems only based on the

effort.

Figure 35 – Limitation of the recommender system presented in this Chapter.

Thus, a potential limitation of our behavioural method is recommending a matrix

sum problem for a student who is learning how to sum variables. As a way to solve

that problem, in the next Chapter we take into consideration topics of problems needed
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to be specified on each problems. Notice that a challenging of performing such analysis

is that problems in general are not annotated with this information in OJs.
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6

RECOMMENDING PROBLEMS FOR

INSTRUCTORS TO COMPOSE

ASSIGNMENTS AND EXAMS

The roots of education are bitter,

but the fruit is sweet.

- Aristotle

6.1 Overview of the Chapter
For instructors, OJ is a useful tool for creating assignments and exams. However, the

task of selecting problems in OJs is time-consuming. First, problems are generally not

organised based on topics covered in the CS1 syllabus. Second, assessing whether

problems require similar effort and topic to be completed is a subjective and expert-

dependent task. It becomes even more difficult if the instructor must create variations

of these assessments to avoid plagiarism. Thus, in this Chapter, we propose a method

as an extension of the method proposed in the previous Chapter. The method makes

intelligent recommendation that works in collaboration with the instructors, helping

them in this task of selecting problems to compose one-size-fits-all or personalised as-

signments/exams. That is, recommendations are made based on the same mechanism,
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a fine-grained data-driven analysis of the students’ effort on solving problems in the

IDE of an OJ system, plus an automatic detection of topics for CS1 problems, based

on problem descriptions. We evaluated our method against the state-of-the-art, in a

simple blind experiment with CS1 instructors (N = 35). The results show that our recom-

mendations are 88% more accurate as evaluated by instructors in assignments/exams

(p < 0.05).

6.1.1 Practitioner Notes

What is already known about this topic:

• Fine-grained data collected can also be used for problem recommendation. How-

ever, the topic related to the problems should consider when performing recom-

mendation (PEREIRA et al., 2021a).

• Detecting problem topics is challenging since problems are generally not annotated

with this information (ZHAO et al., 2018; INTISAR et al., 2019).

What this Chapter adds:

• Demonstrating how our fine-grained features can be combined with a topic detec-

tor to perform problem recomendation for instructors.

• Showing, through a single-blind controlled experiment, empirical evidence on

how our recommender can be used to support instructors to select problems to

compose assignments and exams.

Implications for practice and/or policy:

• For instructors of programming classes supported by OJs (OJ is a trend in edu-

cation nowadays), the recommender can be used for semi-automatic creation of

assignment tasks, that is, based on a single assignment task previous created, N

assignment tasks can be automatically constructed by recommending N problems

for each constituent question of the original assignment task.
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• Different programming assignments is something that can be used to avoid pla-

giarism, which is critical in programming learning.

• Recommending adequate problems might facilitates human/AI collaboration

towards prescriptive analytics.

• Presenting how our method can also be used to create a pool of equivalent ques-

tions that can be used for many applications.

• Showing a way to expose students’ Fragile learning (ROBINS, 2019; LEHTINEN et

al., 2021).

6.2 Research Question Addressed in this Chapter
Despite the known (IHANTOLA et al., 2015; WASIK et al., 2018; PEREIRA et al., 2020a;

ZHAO et al., 2018) benefits OJs bring for CS1 instructors, by reducing their workload

via automatic students’ code correction, some challenges remain. First, instructors need

to select problems to compose assignments and exams. This is a high cognitive load

task, due to the many problems available to select from. Second, those questions are

generally not hierarchically arranged, nor structured according to CS1 topics, which

makes the search processing exhaustive. Third, as an aggravating factor, researchers

claim that plagiarism is a common practice in CS1 for many reasons (see (ALBLUWI,

2019; FOWLER; ZILLES, 2021; VICIAN et al., 2006)). Thus, instructors typically create

multiple versions of one assignment/exam, to proactively avoid plagiarism. Authors

(WASIK et al., 2018; ALBLUWI, 2019; PEREIRA et al., 2020a; FOWLER; ZILLES, 2021)

state that one of the most recurrent and repetitive task of a CS1 instructor, when using

OJ, is to select the problems to create these varied assignments and exams.

As an illustrative scenario about the effort needed for selecting problems in OJs,

assume that an instructor uses an OJ to choose problems to create variations of an exam

(already used in previous classes) to test students on conditional structures (if-then-else

problems). This task seems elementary - simply find equivalent problems to each one

on the original exam. However, this exam should be fair to all students, regardless of
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the version they take (DORODCHI et al., 2017). This task can then be broken down into

two sequential parts: (i) looking through the whole set of OJ problems for those about

conditional structures1, and ii) among the subset of problems on conditional structures,

selecting problems that require a similar effort to be solved (equivalent problems),

compared to the problems from the original assignment/exam.

In this sense, a recommender system might be used to map an equivalent prob-

lem for each problem in the original exam in our illustrative scenario. Given an assign-

ment/exam used as reference by the instructor, the recommender might create one or

more variations of it through this equivalence mapping. Note that, for a problem to be

equivalent to another, both should share the same CS1 topic, and the effort required to

solve each should be similar. Thus, our mechanism presented in the previous Chapter

could be used to make recommendation if we enhance it with a method to detect the

topic of problems.

Thus, to fill the gap of OJs on lack of problem organisation (ZHAO et al., 2018;

INTISAR et al., 2019; WASIK et al., 2018), we use a Deep Learning (DL) architecture and

Natural Language Processing (NLP) techniques, adopted from (PEREIRA et al., 2021b),

to detect the topic of questions related to the CS1 syllabus. Thus, the research question

addressed in this Chapter is related to our previous research question, which is:

RQ6-1) How to support instructors in selecting problems to compose assign-

ments and exams using an enhanced version of our behavioural recommender?

Notice that by detecting the topic and effort required to solve a question, we, for

the first time, to the best of our knowledge, propose and validate a method addressing

this cumbersome task of selecting problems to compose variations of assignments and

exams.

Previous studies on recommender systems for OJ targeted mainly expert learners,

preparing for competitive programming competitions. Thus, neither novices nor CS1

instructors were considered. Moreover, the methods did not target problem topics,

which were seen as crucial by previous works (ZHAO et al., 2018; INTISAR et al., 2019;

PEREIRA et al., 2021b). Differently, the forefront work of (YERA; MARTÍNEZ, 2017)
1 Some OJs have a category called ’beginning’ which facilitates this process somewhat, but it is still far

from ideal, since problems from different CS1-related topics are just pilled in this broad category.
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makes recommendation also suitable for novice learners and the features employed

might implicitly detect the problems topics.

Thus, we compared our method to that of Yera & Martínez (2017) on different CS1

topics, based on different accuracy measures for recommendations to replace an original

problem with a new variation. Since (YERA; MARTÍNEZ, 2017)’s work is suitable to

suggest problems for students (not for instructors), we performed then an adaptation to

conduct our comparison. As a result, we statistically (p < 0.05) surpassed our baseline

in all measures tested. Our outcomes point to implications that go beyond our primary

objective of assisting students in composing one-size-fits-all or personalised (variations)

assignments/exams, including creating a pool of equivalent questions to detect fragile

learning (ROBINS, 2019; LEHTINEN et al., 2021), diminish plagiarism proactively, and

provide an inventory of pre- and post-tests for computer education researchers.

6.3 State of the art
In this section, we will explore works that provide solutions for the topic detection and

for problem recommendation2. We will also discuss our contribution in unifying topic

detection and effort measurement to propose and validate a recommender system to

support CS1 instructors in composing assignments and exams.

6.3.1 Classification of Topics from Programming Online Judges

problems

OJ problems span over different computer science contents. (WASIK et al., 2018; ZHAO

et al., 2018; INTISAR et al., 2019; PEREIRA et al., 2021b) explain that users can find

problems from beginner topics (e.g., conditionals, loops) to more advanced ones (e.g.,

dynamic programming, computational geometry) in these systems. Nonetheless, only

a few OJs categorise problems based on topics to facilitate the searching process for
2 For problem recommendation, we extend the discussion we provide in the section 5.4, giving more

focus on how a topic detector would benefit the recommender system.
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users. For instance, URI online judge (BEZ et al., 2014) organise problems in nine main

categories: (1) beginner, (2) ad-hoc, (3) strings, (4) data structures and libraries, (5)

mathematics, (6) paradigms, (7) graph, (8) computational geometry, and (9) SQL. A few

OJs organise problems in other macro categories targeted for expert users (ZHAO et

al., 2018; INTISAR et al., 2019; ATHAVALE et al., 2019). However, many do not provide

any hierarchical classification of problems per topic, therefore piling problems into new

volumes without any annotation. The main reason is that manually categorising OJ

questions is laborious and tough to scale. In addition to the wide variety of problems

available, new problems are regularly registered in these systems (WASIK et al., 2018;

ZHAO et al., 2018). In this sense, some recent works (INTISAR et al., 2019; ATHAVALE

et al., 2019; PEREIRA et al., 2021b; FONSECA et al., 2020) proposed ways to mitigate this

issue, by using machine learning and natural language processing techniques over the

statements of the problems, to automate/semi-automate the categorisation process.

In a pioneering work, (ZHAO et al., 2018) employed problem description to de-

tect 12 general topics (Dynamic programming, Palindromes, Geometry, Tricky problem,

Hardest problem, Basic problems, etc.) using ML techniques. However, they achieved

poor results (≈ 40% accuracy) using Latent Dirichlet Allocation (LDA). Despite that,

(ZHAO et al., 2018) recognised the potential of using text mining on problem descrip-

tions and that other ML methods might achieve better results, such as neural networks.

(ATHAVALE et al., 2019) employed shallow ML methods with NLP techniques to

also categorise OJ problems into five categories (data structures, dynamic program-

ming, greedy algorithms, implementation, and mathematics). Their best predictive

models achieved an F1-score of 62.2%. (INTISAR et al., 2019), using techniques similar

to (ATHAVALE et al., 2019), achieved a high F1-score of 92% to detect six different

topics (Geometry, Number Theory, Game Theory, Dynamic Programming, Graph, Data

Structures). However, (INTISAR et al., 2019) used only a small dataset, with only 200

problems and, hence, the sample might not be representative enough for a complex

multi-classification task (GÉRON, 2019). Finally, (PEREIRA et al., 2021b) combined many

NLP techniques with shallow and deep learning models, constructing a cutting-edge

pipeline that achieved a high F1-score ranging from 86% to 96%, to classify eight dif-
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ferent topics (Beginner, Graphs, Data Structure, Geometry, Mathematics, Paradigms,

Strings) relating to the computer science subject. (FONSECA et al., 2020) used similar

techniques and achieved high accuracy (ranging from 92% to 97%) for detecting 23

contexts (e.g., Computational, Games, Mathematics, Sports, etc.) of problems rather than

computer science topics. Both of these works, (PEREIRA et al., 2021b; FONSECA et al.,

2020) demonstrated that deep learning models are promising for this multi-classification

task.

Despite the usefulness of this accurate topic classification for expert users, novice

students may still struggle to find problems relating to their skills. For example, a novice

student who wishes to practice with simple problems about vectors may still have to

struggle across many volumes to find one in that category. In addition, CS1 instructors

may also face difficulty finding problems relating specifically to categories in their

syllabus. Thus, there is a need for the categories to be more granular, by, for example,

segregating problems based on the CS1 syllabus.

In our prior work (PEREIRA et al., 2021b; FONSECA et al., 2020), we achieved

high accuracy using an elevated number of categories for the multi-classification task.

As such, we hypothesise that our ML pipeline can also be adapted to detect problem

topics based on the CS1 syllabus. Thus, we employed the same NLP preprocessing steps

proposed in our prior work (PEREIRA et al., 2021b), with a deep learning architecture,

to detect eight CS1-related topics.

6.3.2 Problem Recommendation

Despite the calls from the literature (WASIK et al., 2018; SAITO; WATANOBE, 2020;

PEREIRA et al., 2020a; IHANTOLA et al., 2015; LUXTON-REILLY et al., 2018; ZHAO et

al., 2018; COSTA et al., 2021) for research about recommending problems in OJs, only

a few works have proposed methods for this task. Additionally, as mentioned in the

previous Chapter, these methods are typically suitable for expert students, but not

for novices. For example, (FANTOZZI; LAURA, 2020) used an auto-encoder neural

network to recommend problems for expert users who were training for the Interna-
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tional Collegiate Programming Contest (ICPC). Similarly, (SAITO; WATANOBE, 2020)

employed the learner’s submission history to construct the student learning path and

perform recommendations based on that and student objectives. Both works (FAN-

TOZZI; LAURA, 2020; SAITO; WATANOBE, 2020) make recommendations based on

students’ attempts and correctness.

(YERA; MARTÍNEZ, 2017) proposed an approach to recommend OJ problems

based on the number of attempts and prior correctness. The authors explained that these

features could be useful to measure the students’ effort necessary to solve problems.

This work is comparable to ours, since it can be used to recommend problems for

novice students, and, hence, we used it as our baseline. Their method received a user-

problem matrix as input, which covers a set of triples <a, p, j>, where a represents the

number of attempts a user u needed in trying to solve a problem p, resulting in the OJ

judgement j. The judgement was a binary variable, with value accepted, if the student

solved the problem p, or not accepted if they did not. Thus, after processing this input,

the method returned a list of problems for a given user, after sequentially building and

pre-processing the user-problem matrix, M, based on the following rules:

• M[u, p] = 0, user u has never attempted to solve the problem p;

• M[u, p]= 1, user u has not solved the problem p, and has tried it just few times;

• M[u, p] = 2, user u has not solved the problem p, and has quite a few previous

failed attempts;

• M[u, p] = 3, user u solved the problem p, having failed many times beforehand;

• M[u, p] = 4, user u solved the problem p quickly.

To define what ’few’ and ’many’ mean, they used the average number of problem

attempts as the threshold. Exemplifying, assume that the average number of attempts

for a given problem p1 is γ. Then, if a given user u1 has more than γ attempts and she/he

do not solved the problem, then M [u1, p1] = 2. We adapt the (YERA; MARTÍNEZ, 2017)

rules in our set of features (more details in Chapter 2). Hence, our feature space extends
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the one proposed by (YERA; MARTÍNEZ, 2017). Our extension considers fine-grained

features instead of only rules based on the number of attempts and correctness.

Such fine-grained features (detailed in Chapter 2) could represent behaviours that

measure the effort needed to solve the problems, as we demonstrated in the previous

Chapter. Indeed, data-driven behaviour analysis has been a trend in the past few years.

Many studies analysed metrics that can estimate the students’ behavioural patterns

in OJs, such as IDE usage, number of errors, average lines of code, etc. Jadud (2006),

Watson et al. (2013), Dwan et al. (2017), Leeuwen et al. (2019), Carter et al. (2019), Quille

& Bergin (2019), Margulieux et al. (2020), Pereira et al. (2021), Pereira et al. (2020). All

these works showed that these fine-grained behavioural features are related to students’

effort and achievement/performance - as we demonstrated in the previous Chapter.

Nonetheless, none of these studies analysed the features in conjunction to automatically

recommend problems.

Additionally, none of the presented related work that recommend problems

in the OJ considers the problem topics. Thus, uniquely differing from these works,

we employed and validated a set of fine-grained features representing the students’

effort necessary to solve problems. Moreover, we combined the effort required to solve

problems with the topics that we automatically detected to make recommendations,

filling a gap from previous works (YERA; MARTÍNEZ, 2017; SAITO; WATANOBE,

2020; FANTOZZI; LAURA, 2020; PEREIRA et al., 2021a). Additionally, despite the

importance of these works that target learners, the literature (LUXTON-REILLY et

al., 2018; HOLSTEIN et al., 2020) points out the lack of works viable to support CS1

instructors - which ours addresses. Furthermore, the methods presented in this section

were not evaluated in the perspective of their target users. Differently, we propose

and compare our method with a baseline and evaluate them with CS1 instructors with

experience with OJs.
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6.4 Data
The educational context and instruments are the same we use in the previous Chapter.

The main difference is that now we use not only the students’ behavioural data, but also

the description of problems available in the Codebench system. We used the problem’s

description to feed a ML pipeline that automatically detects the topic of the problems

based on the CS1 syllabus. The total number of distinct problems from CodeBench we

used in this work is 1,026. Table 12 shows the descriptions for each topic (where a0

depicts the period when students get used with the CodeBench), and the number of

problems per topic. Moreover, to clarify the concepts covered in each topic, in Table 12

we provide an example of code, illustrating a typical answer to a question on that topic.

6.5 Effort-topic based Recommender
In this Chapter our goal is to propose and validate a method to recommend questions

to instructors to support them in the creation of assignments/exams. By achieving our

goal we are then able to respond our research question. Our method uses the concept of

hybrid intelligence, in which AI provides the recommendation to the instructors to em-

power their decision-making on composing CS1 assignments/exams. Collaboration is

performed in three sequential steps: i) instructor provides as input an assignment/exam

(we call it master list), ii) the AI method returns one or several recommended problem(s)

for each problem of that master list to be used in the assignment/exam variation(s) iii)

the instructor validates each recommendation and decides whether they can be used in

the assignment/exam variation(s). The expected effort and topic needed to solve both

(master list and its variation(s)) are expected to be equivalent.

Similar to the previous Chapter, for the sake of terminology, we call a Target

Problem (TP) each problem from the master list. Given that, we have then an extension

of our hypothesis presented in the previous Chapter, by now considering also the

topic of problems. Our hypothesis H1 is that if students have solved a TP and there

are problems similar to TP in terms of topic and effort required, these problems can be

used as potential Recommended Problems (RPs), to replace TP in new assignments or
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Topic Description Example of implementation N

a0 print and
input

reading a single
variable and use of
the print command

print ( 2 0∗35 ) 19

s1 sequential
structure

arithmetic opera-
tions and use of
variables

from math import ∗
r = f l o a t ( input ( ) )
c = pi ∗ r ^ 2
print ( ’ %.2 f ’ , c )

157

s2 if-then-
else

conditional struc-
ture

from math import ∗
r = f l o a t ( input ( ) )
c = pi ∗ r ^ 2
i f r > 1 0 :

print ( ’ big c i r c l e ’ )
e lse :

print ( ’ small c i r c l e ’ )

136

s3 if-then-
else
(nested)

nested conditionals
structure

from math import ∗
a = f l o a t ( input ( ) )
b = f l o a t ( input ( ) )
c = f l o a t ( input ( ) )
i f ( a > 0 and b > 0 and c > 0 ) :

i f ( ( a < b + c ) and ( b < a + c ) and ( c < a + b ) ) :
s = ( a + b + c ) / 2 . 0
area = s q r t ( s ∗ ( s − a ) ∗ ( s − b ) ∗ ( s − c ) )
print ( " Area : " , area )

e lse :
print ( " I n v a l i d area " )

e lse :
print ( " I n v a l i d area " )

161

s4 while-
loop

repetition structure
by condition - loops
using the structure
while

num = i n t ( input ( ) )
while (num != −1):

i f (num % 2 == 0 ) :
print ( " even " )

e lse :
print ( "odd" )

num = i n t ( input ( ) )

114

s5 for-loop repetition structure
by count - loops us-
ing the structure for

import numpy as np
n = i n t ( input ( ) )
print ( np . ones ( n , dtype= i n t ) )

117

s6 strings operations on
strings

s t r i n g = input ( )
print ( s t r i n g . upper ( ) )
print ( s t r i n g ∗500)

47

s6 vectors operations on uni-
dimensional vectors

data = eval ( s t r ( input ( ) ) )
speed_l imi t = data [ 0 ]
i = 1
accumulator = 0
minimum_limit = speed_l imi t + ( speed_l imi t ∗ 0 . 2 )
maximum_limit = speed_l imi t + ( speed_l imi t ∗ 0 . 5 )
for x in data [ 1 : ] :

i f x > minimum_limit and x < maximum_limit :
print ( i )
accumulator = accumulator + 1

i = i + 1
print ( accumulator )

160

s7 matrices operations on
bi-dimensional
matrices

from numpy import ∗
m = eval ( s t r ( input ( ) ) )
n = eval ( s t r ( input ( ) ) )
matriz = np . zeros ( (m, n ) , dtype= i n t )
print ( matriz )

134

Table 12 – Description of Topics based on CS1 Syllabus on CodeBench.
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exams (variation). As such, our recommendations are based on the following mapping

TP → RP1..RPn, where the effort is represented by a series of fine-grained features,

based on the time students spent on the IDE to solve problems, software engineer code

metrics extracted from the students’ code submissions, and so forth, whereas the topics

are based on CS1-syllabus presented in Table 12.

Our method then use the same behavioural features we presented in the previous

Chapter, and the same process to reduce the dimensionality of our feature space by

applying matrix factorisation. The difference is that we also added an NLP pipeline

to detect the problems topics. Moreover, we explain how we adapted our mechanism

of recommendation to assist CS1 instructors to create assignments/exams through a

hybrid solution that combines our AI method with the CS1 instructor’s knowledge.

Following we present such adaptation.

6.5.1 Recommendation mechanism

After building our feature matrix based on the steps presented in the previous Chapter,

we move towards accomplishing our goal to recommend problems to CS1 instructors,

to support them in composing assignments/exams variations. Algorithm 1 shows

our procedure to return possible variations of assignments/exams for the instructors,

given a master list as input. Function getNewVariation receives as input a master list,

represented by L = {q1...qm}, where m is the number of questions in L. Following we

present a description of each variable:

• K is a global variable that defines the i-th new variation L′ built upon L;

• qi depicts the statement of a problem i;

• pi is a vector that represents the effort required to solve a problem qi, in which

such effort is represented by the aggregation of features presented in Table 2;

• t is the topic related to the CS1-syllabus the NLP classifier detected to be associated

with a problem qi.
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• k is a local variable used to find the kth nearest neighbour of a vector pi. This

variable is initialised with the global variable K, so that, a first variation assign-

ment/exam will potentially use the first nearest neighbours of the questions

present on the master list, whilst the second variation would use the second

neighbours and so forth. An exception occurs when the current nearest neighbour

is already used in the current L′ or L. In which case, we use the next nearest

neighbours to be inserted in L′ (see line 8-10);

• p′i is the kth nearest neighbour of pi;

• q′i is the statement of the questions associated with p′i. Thus q′i is the question

recommended to replace qi on the position i of the new variant list L′;

In line 3 of the procedure, the variation L′ is initialised empty. When iterating

over the problems of the master list L, the procedure will automatically classify the

topic t of each problem qi ∈ L (line 5). Then, in the subset of problems associated of

topic t, the statement related to the kth nearest neighbour of pi is assigned to be q′m ∈ L′.

To detect the topic of problems we use getTopic, which is a DL model, whist to find the

nearest neighbour we use findKthNearstNeighbour function. Both auxiliary functions are

employed to support our hypothesis H1.

Algorithm 1 Creating new assignment/exam

1: global const K ← 1 . K sets the ith L′ created based on L.
2: procedure GETNEWVARIATION(L)
3: L′ ← {}
4: for (q, p) ∈ L do
5: t ← getTopic(q)
6: k ← K . Kth nearest neighbour of p is first used as p′

7: q′ ← findKthNearstNeighbour(p, t, k)
8: while q′ ∈ L′ OR q′ ∈ L do
9: k ← k + 1

10: q′ ← findKthNearstNeighbour(p, t, k)
11: end while
12: L′ ← q′ ∪ L′
13: end for
14: return L′ . new assignment/exam L′

15: end procedure
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6.5.1.1 Topic Detection

The function getTopic uses a predictive model constructed using the preprocessing steps

provided in our previous work (PEREIRA et al., 2021b). The preprocessing steps over

the problems’ descriptions are: i) remove all the html tags from the text; ii) translate

our statements from Portuguese to English iii) stop-word removal; iv) lemmatisation v)

converte each capital letter of the data to lowercase vi) tokenisation of the text vii) mask

the numbers, viii) and replace line breaks with simple spaces.

Figure 36 illustrates the proposed evaluation methodology pipeline used in the

experiments of our research for topic detection. We create here a unique, comprehensive

pipeline, studying various combinations of the most popular and successful bleeding

edge state-of-the-art techniques for natural language processing. For a deep explanation

of each step of our pipeline and results we achieved, you can access a version of our

paper (PEREIRA et al., 2022)3.

Text 
Representation

With 
contextual 
paraphrase

Data 
augmentation Classifiers

RandomForest
SVM
NB

XGBoost
ExtraTree

GradientBoosting

Validation

StratifiedKFoldPROBLEMS 
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contextual 
paraphrase

Pre-processing

Stop words removal
Lemmatization

BERT

SNN

Word embedding

GLOVE

W2V

CNN
RNN+CNN

Embedding layer

Figure 36 – Our front-heavy pipeline to automatically categorise programming prob-
lems based on their statements.

For classification, we achieved the best result using a Convolutional Neural

Network (CNN). Thus, we employed such CNN architecture that employs the following

sequence of layers: i) embedding layer using 100 dimensions, an input length of 300, and

vocabulary equal to the number of tokens from our corpus plus 1. ii) 1D convolution

layer that creates a convolution kernel, convolved with the previous layer over a single
3 A version of this pre-print article is being evaluated by the reviewers of the IEEE Access journal
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dimension to produce a tensor of outputs. iii) a convolutional pooling that downsamples

the previous layer representation by taking the maximum value over the dimension.

iv) a dense layer with 64 nodes using the activation function Relu; v) a dropout layer

that randomly sets input unit to 0 using a rate of 10%; vi) a softmax layer to perform the

multiclassification. For the optimisation, we used the cutting-edge Adam.

To calculate the performance confidence interval of our model, we run the 10-fold

stratified4 cross-validation 10 times with different seeds to shuffle the data before the

split, varying the seed from 1 to 10. Thus, we obtained 100 (10 times 10) different results,

i.e. one result for each test set. We did that due to statistical constraints. We implemented

it using the StratifiedKFold from scikit-learn. As labels, we use the topics presented in

Table 12. CodeBench problems are already annotated based on CS1-syllabus topics by

UFAM instructors.

As a result, we found that our CNN model achieved an F1-score of 90%. We, thus,

opted to use this CNN model as our classifier since, besides achieving a satisfactory

result, the literature pointed out that this neural network can reach state-of-the-art

results for multi-classification problems using text as source of the data (SONG et al.,

2019).

6.5.1.2 Finding the nearest neighbour

We use the nearest neighbour technique over the aggregation of features presented

in Table 2. The features aggregations are allocated as dimensions of the vector p that

represents the effort required to solve q. That is, given a pair (q, p), the vector p has the

aggregation of the features’ values based on the learners who solved that question q.

For instance, given a question qa, the aggregation of attempts (a given feature presented

in Table 2) is the average of attempts student made in trying to solve question qa. Thus,

one of the dimensions of the vector pa will be the average attemptsqa for all students

who submitted accepted solutions for the question qa.

Using the aggregations represented by p, the similarity is the calculation of the
4 Stratified in this context means that each fold was divided proportionally to the number of statements

present in each class in the database (GÉRON, 2019)
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correlations between these vectors (the angle between them, always ranging from 0

to 180). Furthermore, cosine arc is used to transform the result into a value between

0 and 180 degrees. In this sense, given two vectors p and p′, the cosine between them

is given by the product of p × p′ divided by the product of l2-norm of p and p′, given

by
√∑n

k=1Xk
2, where X = {p, p′}. This way, we guarantee that our results generated

through the similarity of the cosine are always normalised, with values ranging from 0

to 1. The similarity formula is thus:

Spp′ =
p · p′

‖p‖ ‖p′‖
=

∑n
i=1 pi × p′i√∑n

i=1 p
2
i ×

√∑n
i=1p

′
i
2

(6.1)

6.6 Evaluation
In this study, two methods that recommend problems for OJ users are employed and

compared, to support CS1 instructors in creating assignments/exams variations. The for-

mer is our Effort-topic based Recommender. The latter is (YERA; MARTÍNEZ, 2017)’s

method, representing the state-of-the-art. To perform the recommendation, we em-

ployed the procedure illustrated in Algorithm 1. However, since (YERA; MARTÍNEZ,

2017) does not perform topic detection, we adapted lines 5 and 7 to make a recommen-

dation based on (YERA; MARTÍNEZ, 2017)’s method.

Notice that our procedure illustrated in Algorithm 1 uses as input a master

list L, to create variation L′. Moreover, L is associated with one topic related to the

CS1-syllabus, as explained in Section 6.4. Thus, we opted to stratify the evaluation

based on the CS1 topics. In order not to create an unnecessarily high number of groups

and to reduce the number of questions asked to instructors, we unified similar topics,

for the sake of simplicity of this evaluation. First, we merged the problems of ”Simple

Conditional Structures“ and ”Nested Conditional Structure“ into a more general topic

called ”Conditional Structures‘. Moreover, we also unified the topics ”while loops“ and

”for loops“ in a more general topic called ”loops“.

Notice that a master list L needs to be created in advance by instructors of

previous classes, a group of experts, or the OJ maintainer. In our case, we opted to use
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master lists created and used previously in CS1 classes at UFAM to simulate a more

realistic educational scenario. We will use the following nomenclatures:

• Master list: an assignment/exam created by UFAM group of instructors;

• List A: variation of a master list created using our Effort-topic based Recom-

mender;

• List B: variation of a master list created using (YERA; MARTÍNEZ, 2017)’s method

(our baseline).

To assess the power of the methods to create different variations of the assign-

ment/exam, each instructor evaluated a personalised List A and List B. To do this,

for each topic, we used a different master list. We iterate with K (global variable in

Algorithm 1) from 1 to 7 to create seven different variations of a master list on each

topic. So that each instructor evaluates a different variation L′, being created using our

method (List A) and our baseline (List B).

In order not to overload the instructors by asking them to compare too many

problems, we asked them to compare 3 pairs of questions for each list (A and B). To

illustrate, if the master list has the problems Lmaster = {q1, q2, q3} then List A must have

the problems LA = {q′1, q′2, q′3}, where each pair of questions (q1, q
′
1), (q2, q

′
2) and (q3, q

′
3)

must require a similar effort and topic to be solved by the students. To carry out the

evaluation of list variations with instructors, we compare pairs (q1, q
′
1) from each list (A

and B), so if all pairs are equivalent, then the lists are equivalent.

Briefly, to carry out the assessment of lists A and B, 5 groups were created,

stratified by topic, as shown in the Table 13. In each group we have 7 instructors who

evaluate a List A and List B. Each instructor in each group assesses the pairs (qmaster
i , qAi )

and (qmaster
i , qBi ), where i varies from 1 to 3. In this way, the instructors assess the

similarity of 6 pairs of questions.
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Participants Topics (after unification)
Group 01 - 7 instructors Sequential Structure
Group 02 - 7 instructors Conditional Structure (simple and nested)
Group 03 - 7 instructors Repetition structure (while and for)
Group 04 - 7 instructors Vectors and Strings
Group 05 - 7 instructors Matrices

Table 13 – Unified topics for the experimental evaluation

6.6.1 Procedure

The procedure for comparing the methods was as follows: we present the i-th target

problem, and the i-th recommended problem of a given list (A or B) for the participant

to answer if there is a similarity between the target problem and the recommended

problem, in relation to measures of effort and topic (presented in the following subsec-

tion).

The order of presentation of lists A and B was counterbalanced. As we applied

the test 35 times (7x5), we started presenting problems from list A 18 times and with list

B 17 times. Furthermore, the assessment is simply-blind, so the instructor did not know

whether they would be evaluating problems from list A or list B.

6.6.2 Measures

To measure the equivalence between the pair of problems (target and recommended)

we used the following measures:

• Interchangeable: whether the pair of problems is equivalent and, hence, whether

the recommended problem could replace the target problem in a new assignmen-

t/exam.

• Topic: whether the topic of the question pairs is equivalent. We used the 5 topics

unified and presented in Table 13.

• Resolution time: whether the expected time to resolve the question pairs is similar.

To perform the similarity comparison, we set a 20 minute threshold. Thus, if

the expected time difference for resolution was greater than this threshold, then
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the instructor should indicate that the pair of questions does not have a similar

resolution time. This time threshold value was chosen because the standard

deviation of the times it takes students to solve problems is approximately 20-

minutes when solving problems on CodeBench. Moreover, the instructors in the

pilot (Section 6.6.3) agreed that this is a reasonable value to be used as threshold.

• Coding effort: whether the coding effort to resolve the question pairs is similar. We

asked the instructors to understand as coding effort the number of lines of code,

conditional structures and loops needed to solve the problem.

• Hit Rate: whether the expected hit rate for the question pairs is similar. To perform

the similarity comparison, we set a threshold of 25% difference in hit rate. Thus,

if the expected difference in the hit rate was greater or lower than this threshold,

then the instructor should point out that the pair of questions does not have a

similar hit rate. This time limit value was chosen because the standard deviation

of student hit rates is approximately 25% when solving problems on CodeBench.

Moreover, the instructors in the pilot (Section 6.6.3) agreed that this is a reasonable

value to be used as threshold.

We utilised the forced choice technique to elaborate the alternatives of the ques-

tions since we are simulating the decision-making process of an instructor when check-

ing whether a question recommended by a system will be used or not in a new assign-

ment or exam. Table 14 shows the number of items from the questionnaire for each

comparison (List A vs Master List and List B vs Master List), where topic i represents

one of the topics presented in Table 13.

Topic
i

Comparisons
Master List vs List A Master List vs List B

Problem 1 5 items 5 items
Problem 2 5 items 5 items
Problem 3 5 items 5 items

Table 14 – List A: recommended-test list; List B = baseline-recommended list; Items =
interchangeable, topic, resolution time, coding effort, hit rate.
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6.6.3 Pilot

Before conducting the experiment, a pilot study was carried out with 5 CS1 instructors

from different universities, in order to validate the questionnaire in each group. For that,

we used the think-aloud technique to analyse the cognitive process of the instructors

while they were solving the questionnaire. This was used to improve the instrument.

After this process, we refined the assumptions instructors should have known

before answering the questionnaire. We asked the instructors to assume that there are 5

topics covered in the CS1 course, taught in this order (cumulative learning process): i)

variables and conditional structure, ii) conditional structures (simple and nested), iii)

repetition structures (while and for) iv) vectors and strings; v) matrices. In addition, we

asked them to assume that a question from an assignment/exam belongs to a single

topic. Thus, if a problem has elements from more than one topic (e.g., conditional

structures and repetition structures), then they should consider only the most complex

(repetition structures).

Moreover, we measured the time instructors take to read and answer the ques-

tions, so that, when inviting the participants we could provide an estimate of how

long it would take to answer the questionnaire. We also asked whether the number of

questions were appropriate and about the thresholds we determined to measure effort

(Section 6.6.2).

6.6.4 Participants

We invited CS1 instructors from different universities to participate in our experiment

through mailing lists and social networks. Next, we asked for their informed consent,

as per (GELINAS et al., 2017). A total of 35 CS1 instructors were allocated in one of the

groups from Table 13 to answer the questionnaire, comparing the methods with the

target list. All CS1 instructors had previous experience with OJs.
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6.6.4.1 Data filtering

To monitor participants’ fatigue, where they eventually answer without proper attention,

and to avoid biasing our study with such data, control questions were added to our

questionnaire. These tested if participants were reading the questions carefully. Errors

in these control items would justify data exclusion. We also checked our data to exclude

participants whose answers were all positive. This response pattern was interpreted as

acquiescence, which means that the participant agreed with a question regardless of its

content (DANNER et al., 2015). None of our participants, were excluded because of the

control questions, but one was excluded for acquiescence.

6.6.5 Instructors answer analysis

We used a binomial multi-level regression (HOX et al., 2010) to compare our method

to the one of (YERA; MARTÍNEZ, 2017). On one hand, the forced-choice questions led

to categorical dependent variables (e.g., for interchangeable, the answer could be either

yes or no). Accordingly, we coded all measures as binary (e.g., same topic? yes or no;

same resolution time? yes or no) because our goal is to check whether there would be a

difference between effort, hit rate and resolution time for a given pair of questions. Thus,

for all variables, we assigned 1 if the pair of problems were equivalent and 0 otherwise.

That led to the need for using a binomial regression. On the other hand, we used a

repeated-measures design, to evaluate the pair of questions from each method. That is,

each instructor evaluated 6 different pairs of questions, hence 3 pairs for each method.

Because we had six data points for each participant, we had to adopt the multi-level

approach, given that alternatives such as the McNemar test and standard regression

are limited to 2x2 tables and independent data, respectively (GELMAN; HILL, 2006;

LACHENBRUCH, 2014).

Overall, multi-level regression can be seen as a set of standard regressions that

are hierarchically grouped (HOX et al., 2010). In many cases, the grouping factor is the

factor that makes the data dependent, such as the fact that each participant accounts

for six rows in our dataset. To work in that way, multi-level regressions have two
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kinds of coefficients: fixed, which represent overall properties of the data and do not

vary across groups, and random, which represent grouping variations, by allowing

each one to have a slope/intercept (MIRMAN, 2016). Because we have five dependent

variables, we ran five binomial multi-level regressions in our analyses. Considering

all dependent variables were coded as binary, higher regression outputs indicate the

method’s recommendation was more likely to be equivalent to the target problem. Then,

to compare recommendation methods, we used the same approach for all regressions:

recommendation method (ours or (YERA; MARTÍNEZ, 2017)’s) was the only predictor

(independent variable) and participant was the grouping factor.

Hence, our analyses are based on fixed effects, because we want to test for overall

differences between recommendation methods. Nevertheless, note that using the multi-

level approach is imperative even though we disregard the random coefficients in

interpreting our results. The reason is that fixed effects are estimated while accounting

for them. Thus, we are able to test for overall variations, which we expect to be due to

changing the recommendations methods, whilst considering within-person variations

estimated by the random coefficients (HOX et al., 2010). For these analyses, we adopted

the standard 95% confidence level, due to its confirmatory nature. Note that we do

not correct p-values, because we conducted a small number of previously planned

comparisons (ARMSTRONG, 2014).

6.7 Results
For interchangeable, based on our results in Table 15, ≈ 87.6% (92/(92+13)) of the ques-

tions recommended using our method are interchangeable, compared to the target

problems, whilst ≈ 38% in our baseline. The multi-level analysis confirms the methods’

difference for interchangeable, showing that the probability of recommended problems

being interchangeable is significantly different (p = 1.66e-10) when comparing the

baseline to our proposed method (see Figure 37).

Secondly, we compared the methods in terms of coding effort. As can be computed

based on the data on Table 15, ≈ 81, 0% of the problems recommended by our method
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Interchangable
Method Baseline Proposed
Equivalent 40 92
Non-Equivalent 65 13

Topic
Method Baseline Proposed
Equivalent 50 97
Non-Equivalent 55 8

Resolution Time
Method Baseline Proposed
Equivalent 53 86
Superior 26 11
Inferior 26 8

Coding Effort
Method Baseline Proposed
Equivalent 34 85
Superior 31 12
Inferior 40 8

Hit Rate
Method Baseline Proposed
Equivalent 47 83
Superior 28 8
Inferior 30 14

Table 15 – Comparison of number of problems evaluated as Equivalent (Eq) and Non-
Equivalent (N-Eq) for each measure, where List A was created using our
method, whereas List B used our baseline.
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Figure 37 – Methods comparison. Measure: interchangeable.

were equivalent in terms of effort, whereas ≈ 32, 4% in our baseline. We can evaluate in

Figure 38 that the probability of having problems with equivalent coding effort increases

as the method changes from the baseline to the our proposed method. The difference is

statistically significant (p = 2.28e-10).

The third measure is resolution time. Based on Table 15, we can determine that

≈ 82.4% of the problems recommended by our method were evaluated as equivalent

in terms of resolution time against ≈ 50.5% of our baseline. As can be seen in Figure 39,
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Figure 38 – Methods comparison. Measure: coding effort.

the probability of equivalence in resolution time increases using our method and that

difference is statistically significant (p = 1.48e-06).
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Figure 39 – Methods comparison. Measure: resolution time.

The fourth measure compared is the hit rate. Based on Table 15, we can compute

that ≈ 79.1% of the problems recommended by our method were assessed as equivalent

in terms of hit rate against ≈ 44.7% of our baseline. As can be seen in Figure 39, the

probability of equivalence in hit rate grows using our method and that difference is

statistically significant (p = 3.72e-07).
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Figure 40 – Methods comparison. Measure: hit rate.

For our last measure, we compared the pair of problems of each method with

regards to their topic. We can compute from Table 15 that ≈ 92% of the problems recom-

mended by our method were assessed as equivalent in terms of topic, whereas ≈ 48%

were assessed as equivalent in our baseline. As can be seen in Figure 39, the probabil-

ity of equivalence in topic grows using our method and the difference is statistically

significant (p = 1.97e-09).
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Figure 41 – Methods comparison. Measure: topic.

Thus, we have empirical evidence to support H1. Indeed, the recommendations

provided by our method have high chances of being utilised by instructors (see Fig-

ure 37). Moreover, we observed that the likelihood of topic and effort (measured in the

experiments as Resolution time, Coding Effort, and Hit Rate) equivalence between the TP

and RP provided on list A is high.

Moreover, based on our results, we can thus state that our method can be used

to support instructors in selecting problems to compose assignments and exams using

an enhanced version of our behavioural recommender, responding then our research

question RQ6-1.

6.8 Discussion

6.8.1 General

In this study, we demonstrated how a hybrid human/AI OJ could perceive how students

solve problems to make recommendations to instructors on how to compose one-fits-all

or personalised (variations) assignments/exams.

Thinking about the organisation of the assignments/exams provided by our

method (how problems are sorted), it is important to notice that a question q′ is inserted

in L′ in the same interaction (of the for loop - line 4 of the Algorithm 1) when q ∈ L

is accessed. Notice that based on our results the pair of questions (q, q′) is potentially

interchangeable, from the same topic, and require a similar effort to be solved. In this

way, the recommended list L′ is potentially sorted in the same way that the instructor

organised the list L. This is important if instructors have scaffolded the master list L

by ordering the problems from the smallest to the greatest effort because L′ would
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be scaffolded as well. Additionally, based on how interchangeable are pair of ques-

tions provided by our method, we can state that it can be employed in CS1 classes to

support instructors with a relatively low need of instructors endeavour to replace our

recommendations.

In terms of validation, we demonstrate that we surpassed our cutting-edge

baseline for all measures (Interchangeable, Topic, Resolution time, Coding effort, and Hit

rate) tested. The first measure tested is potentially the most important one, since it

simulates the decision-making process of the instructors about whether the pair of

problems could be used in a new assessment. The other measures evaluate nuances of

both methods, with regard to effort and the topic. About the later, although our baseline

(and our related works) does not consider the topic when performing recommendations,

we observed that their rules implicitly detected the topics with a precision of ≈ 48%.

Nonetheless, such precision is far from ideal and, thus, we can state that our novel topic

detector is crucial to perform the recommendations. It is worth noting that the detection

of effort is not enough to perform precise recommendations in this task, as we have

demonstrated in the previous Chapter.

Still, based on our empirical results, we can state that our extended fine-grained

features represented better (p < 0.05) the effort required to solve problems better than

our baseline, taking into consideration the effort being represented by the following

measures: Resolution time, Coding effort, and Hit rate. This shows the importance of

extracting features in such fine-grained level, differently from our related work, which

provides features only based on students’ attempts and correctness. Furthermore, we

can claim that we propose a different way of performing recommendations, compared

to related work, since we perform precise recommendations for instructors, instead of

expert users.

Finally, our work has natural application for hybrid systems that combines

human and AI. Next, we discuss possible ways of collaboration between CS1 instructors

and our AI-method. Besides, we explore potential applications and implications of our

method for CS1 classes supported by OJ, as a move that brings OJ from technology-

enhanced learning towards smart learning environments that use fine-grained data for
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interventions.

6.8.2 Human/AI collaboration

Searching problems in a huge volume of data - not organised by categories or topics - is

typically a task that humans can not perform quickly and perhaps well. AI, on the other

hand, has the potential to organise the collection of problems and to perform recom-

mendations, as we have shown in this Chapter. In this sense, our AI method leverages

the instructors’ abilities to accomplish such task. However, our AI method lacks the

intuition, flexibility, common sense, and other cognitive skills that only instructors have,

due to everyday classroom experiences. In this sense, we propose to combine our AI

method with the instructor knowledge, to perform recommendations. The basic idea

of combining human and AI is that these heterogeneous intelligences can potentially

create a social-technological ensemble that is able to overcome the limitations of both

agents (DELLERMANN et al., 2019; HOLSTEIN et al., 2020; DELLERMANN et al., 2021)

to leverage perception, action and decision making of these agents.

Regarding perception, using our method, instructors end up evaluating work/exam

arrangements that they might not have access to when manually looking for problems to

compose the assessments. Additionally, by viewing the proposed assignments/exams,

the instructor can gain insights to teach a specific concept needed to solve the AI’s

proposed assignments/exams questions.

Regarding actions, if the instructors notice high chances of plagiarism in a given

class, it would be possible to create different variations assignments/exams in order

to proactively avoid this practice. That is, the instructor can redefine the assessment

strategy, considering their perception/intuition and alternatives supported by our AI

method. Still, depending how large is the pool of questions available on the OJ, it would

be possible to create a different assignment or exam for each student, which could foster

personalisation an avoid plagiarism. Plagiarism would be discouraged because there’s

little chance that a student would find a colleague with the same problem that he/she

has. Additionally, when the instructors identifies that the teaching conditions were
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not effective (in the sense that they did not provide learning) or that the evaluative

conditions failed (because they were not understood, had errors or were too difficult),

the instructor cannot simply repeat what didn’t work. Therefore, variety also matters

for this reason, as an “ace up one’s sleeve” for the instructor, after all, he/she can access

new recommendations for problems based on our AI-method.

In decision making, we then have the most natural part performed from our

method. That is, helping the instructors to compose lists and exams so that the in-

structors can assess and decide which questions will be most appropriate for students

without the need for an exhaustive search for problems in an OJ. Our method allows

the instructors to selectively overwrite questions suggested by the recommendation

system to compose assignments/exams. In this way, the instructor acts as an agent that

complements the suggestion revealed by the AI method. In addition, with the increase

in perceptions and actions, the instructor has more power to select actions that can be

strategic to leverage students’ learning.

On the other hand, our method may also allow the instructor to teach AI. Our

mapping process of a TP → RP has two components of errors: i) the topic associated

with the RP may be misassigned due to a topic detector classification failure; ii) the

effort required to solve both problems could not be equivalent. These two components

of errors can be easily corrected by the instructor when assessing whether the map-

ping (TP → RP ) is valid. Thus, answering to literature calls for hybrid human/AI

approaches (HOLSTEIN et al., 2020; DELLERMANN et al., 2019), our method, in addi-

tion to augmenting the instructor’s ability to select problems, has also the potential to

leverage the AI skills about how to recommend problems. In the last case (instructor

teaches the AI), the instructor can relabel the topics of the problems when the topic

detector perform misclassification.

Moreover, each time that the AI recommends a problem, the instructor may

assign a penalty or a reward to the recommendation, so that the AI-method can use

this information to perform better recommendations in the future. It is worth noting

that based on our results, the chances of these errors occurring tend to be low. Thus,

after the employment of our method, the tendency is that instructors would need to put
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less endeavour in the validation of assignments/exams recommended by our method.

With the relabelling of poorly classified topics, the tendency of topic missclassifica-

tions would be low since our topic detector is already 90% accurate, thus this 10% of

missclassification would decrease after instructors relabelling.

Additionally, in the case of a topic missclassification, the nearest neighbour

of the target problem is fetched in a different topic than the target problem. Thus,

with the correction of the topic, the chances of the recommendation being accurate

increase, since the nearest neighbour to the target problem is searched for in the correct

subset of problems, that is, in the subset associated with the topic that is truly related

to the target problem. To sum up, instructors and our AI method can support each

other by influencing each other’s decision making process. Furthermore, instructors

would become more effective at their jobs with fewer operational duties, which usually

competes with a closer, more attentive relationship between instructors and students.

6.8.3 Pedagogical Implications

First, our method can also be used to compose a pool of equivalent questions, which

can make many pedagogical applications possible. Part of being a skilled programmer

includes the ability of transferring understanding from solved problems to equivalent

or analogous problems, that is, the ability to generalise a solution. So that students

could solve pair of equivalent questions for self-testing purposes. Moreover, the testing

effect theory has shown to be effective in many fields of education (ROWLAND, 2014).

Such a pool of questions might facilitate the implementation of testing effect theory

by providing pairs of equivalent questions in different moments of the course in order

to leverage the long-term memory of students by retrieving the to-be-remembered

knowledge required to solve the problems. As such, the pool of questions could be used

to re-enforce the practice of a single concept/knowledge in a give topic.

Fragile learning (ROBINS, 2019; LEHTINEN et al., 2021) might be exposed, in

cases where learners are not able to solve equivalent questions, after a short or relatively

long period, depending on the duration of the course. For instance, if the instructor
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detects that some student had solved a problem, but cannot generalise her/his solutions

in similar questions recommended by our method, then this is a sign of fragile learning.

The instructor could apply some intervention to improve the student learning of the

concept associated with the questions in evidence.

Apart of practice to improve students’ learning, our method might also be

employed in the computing education research. Applying pre- and post-tests is an

important procedure to evaluate interventions in this field. However, creating equiva-

lent tests is a very challenging task for the researcher. As our method can be used to

recommend similar questions,it can create an inventory of equivalent questions to be

used in pre- and post-tests. In other words, assume that an arbitrary exercise list L1 is

used as a pre-test in a given experiment. By using L1 as an input to our Algorithm 1, we

can then apply L′1 as a post-test. The pool of equivalent questions could also be used for

this purpose. This same rationale applies to researchers that conduct multiple-baseline

experiments between subjects. They need several tests throughout the experiment to

demonstrate that behavioural changes (learning) only occurs when a specific indepen-

dent variable is manipulated, like a class to teach students Python functions that deal

with problems involving strings.

6.9 Chapter Conclusion
In this Chapter, we proposed and validated that our method of intelligent recommen-

dation, in collaboration with the instructor, can be useful in assisting CS1 instructors

in the arduous task of selecting problems to compose one-fits-all and personalised as-

signments/exams. The experimental results obtained from a single-blinded controlled

evaluation with CS1 instructors support our hypothesis that if students have solved a TP

and there are problems similar to the TP in terms of topic and effort required, these problems can

be used as potential Recommended Problems (RPs), to replace the TP in new assignments or

exams (variation). Chances of our method recommending viable questions for instruc-

tors are ≈ 88% (interchangeable), which statistically surpassed our baseline (p < 0.05).

Additionally, we show how fine-grained features represent effort combined with a
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DL classifier that employs NLP techniques over problems’ description can empower

the system to perform highly accurate recommendations, in terms of four different

measures (Topic, Resolution Time, Coding Effort, and Hit Rate).

We believe that such results are promising for advancing many technologies for

data-driven interventions in in a hybrid human/AI OJ for CS1 classes. However, such

belief should be tested and validated in the perspective of our target audience - the

instructors. Indeed, more than the method presented in this Chapter, the usefulness

of all the methods presented in this work should be systematically and consistently

validated by CS1 instructors. Thus, in the next Chapter we move in this direction by

proposing and validating concept-designs created derived from the methods presented

in this work. Moreover, we also provide a human/AI architecture integrating those

concept-designs doing then a final step towards our general goal, presented in the first

Chapter.
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7

VALIDATION OF THE HYBRID

AI/HUMAN ONLINE JUDGE

ARCHITECTURE

Live as if you were to die

tomorrow. Learn as if you were

to live forever.

- Mahatma Gandhi

7.1 Overview of the Chapter
In the previous Chapters we proposed and validated methods to extend the typical

OJ architecture to support CS1. However, our methods have not been validated by

our main target users, that is, CS1 instructors. Notice that, in our work, we have a

premise that learning data must be translated to personalised instructional support for

instructors, who in turn, can monitor and mediate the adaptation of the student learning.

That is, instructors are in charge of which of our methods from our novel OJ architecture

would be available for the students. Thus, in this Chapter we evaluate our proposal of a

novel human/AI OJ architecture over the perspective of instructors. To do so, we use the

results and potential application based on the methods we presented so far in format of
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concept design to support CS1 instructors. Specifically, we focus on how those methods

can be used in a hybrid architecture that combines human and AI intelligence. We

then conducted a qualitative study, where we applied a user experience method (Speed

Dating) to consistently validate our architecture’s concept-design relevance with 22 CS1

instructors from different universities. Our results suggest that early prediction based

on explainable AI (presented in Chapter 4), along with methods to support instructors

to elaborate their assessments/exams (presented in Chapter 6) are the better evaluated

by the instructors. Furthermore, instructors reported the relevance of using techniques

to detect behaviours that can increase the students’ chances of passing and clustering

those behaviours to facilitate the intervention (presented in Chapter 2 and Chapter 4).

Performance prediction based on black-box models were also well accepted, but with

some concerns about the accuracy of the model and information provided about the

predictive model. These findings can fill the gap between design and implementation

of hybrid Human/AI OJ and shed light on monitoring and adaptation of OJ systems to

support CS1 teaching.

What is already known about this topic:

• Typical OJ architecture to support CS1 needs to be extended (WASIK et al., 2018).

• Application of methods that use data collected from OJ are not validated by real

users (PEREIRA et al., 2020a).

• Hybrid intelligence can achieve better results than humans and AI alone (AGRAWAL

et al., 2018; DELLERMANN et al., 2019; HOLSTEIN et al., 2020).

What this Chapter adds:

• A hybrid human/AI architecture that extends the Typical OJ architecture.

• Validation with CS1 instructors of concept-design based on AI methods that use

data collected from OJ systems.

Implications for practice and/or policy:

• Demonstrating possibilities of AI augmenting the instructors’ capabilities to im-

prove students’ learning, and vice-versa.
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• Our findings can be used to fill a gap between the design and implementation

of hybrid Human/AI OJ. Designers, developers, instructors, and policymakers

within universities might use our novel architecture as a reference in such an aim.

7.2 Research Question Addressed in this Chapter
In this study, we collected fine-grained data from students while they were solving

problems in an IDE built into an OJ. Such problems are arranged in assignments created

by instructors and made available in an OJ that we use to support CS1 classes. More

specifically, we collected logs, codes and interaction data on Codebench, which is the

OJ we used as an instrument in this research.

This granular data was used to create a programming profile that represents

students’ programming behaviours. These programming profiles, in turn, are used to

produce descriptive, predictive and prescriptive models, using various AI techniques:

machine learning algorithms (deep and shallow), recommender systems, natural lan-

guage processing and genetic algorithms. The programming profile unifies features

presented in publications that we mapped in Pereira et al. (2020a) and joins them to new

features formulated in this research.

Just to recap, the Figure 42 1 presents the architecture proposed in this study. We

employed descriptive models to gain insights from the data by visualizing and statistical

analysis of correlations and relationships of programming profile attributes with student

performance. We employ predictive models to estimate student performance at the

end of the course, in order to provide early intervention, and intervention during

the course (not necessarily early). We utilised prescriptive models to suggest to the

instructor/student possibilities of effective coding behaviours, that is, that can increase

the chances of the student being approved. Prescriptive models can also be used so that

instructors have a better understanding of the possible factors that are driving students

to succeed (pass). Finally, as another prescription step, based on an observation we

had throughout the PhD, the programming profile can also be used to recommend
1 We presented the same figure in Chapter 1.
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programming problems to students and instructors.
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Figure 42 – Extension of a typical Human/AI OJ architecture to support CS1 teaching
and learning.

When possible, we compared the results of our methods against methods pre-

sented in the literature through statistical comparisons of performance (e.g. comparison

of f1-score of predictive models). In addition, the recommendation method was evalu-

ated in a controlled study with students/instructors. Thus, all methods (descriptive,

predictive and prescriptive) have been validated and must be adapted into a dashboard

that can be incorporated into an online judge model that extends the typical architecture

of these systems, that follows the arquitecture presented in Figure 42.

It is also noted that we model the interaction of AI with the instructor in a

hybrid way, in which the instructors is helped by AI and vice versa. Therefore, this

study makes a move towards hybrid online judge systems, in which AI can support

the decision-making of instructors and in which instructors can also act by assisting AI

(e.g., through the re-labeling of patterns discovered by the AI).

However, an essential step before the implementation of such dashboard is
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the evaluation of these methods with real users. Note that the potential pedagogical

implications of our methods have not been validated with users. Thus, in this Chapter

we carry out a consistent and systematic evaluation of design concepts created from the

methods proposed in this study. Thus, our research question is as follows:

RQ7-1) What is the relevance (quantitative and qualitative) of design concepts based on

our methods, from the perspective of CS1 instructors?

To address the research question, in this Chapter we created 19 concept designs

based on our method and evaluated them with 22 CS1 instructors. In addition, we

point out directions on how these concepts can be used in a hybrid architecture that

combines instructor intelligence with AI. The following is a brief explanation of hybrid

intelligence.

7.2.1 Hybrid human/AI systems

Instead of combining homogeneous agents (humans, animals), hybrid intelligence com-

bines the complementary strengths of heterogeneous intelligent agents (e.g., instructors

and AI). Although AI is being adopted much less than ideal in educational practice

(HOLSTEIN et al., 2020), it could be applied to support instructors in structuring learners’

data, recognising hidden patterns, making forecasts, and so forth. Notice that humans

often act non-Bayesian making inconsistent decisions and violating probabilistic rules.

In light of this, the analytical power of AI grounded by the statistical and probabilistic

foundation can empower instructors in making more effective, consistent, and accurate

decisions (AGRAWAL et al., 2018; DELLERMANN et al., 2019).

Moreover, humans’ intuition can empower the choices from the AI predictions

or prescriptions. Indeed, on the opposite path (humans helping AI), humans provide

domain knowledge and instructions to teach machines in many tasks that they cannot

do by themselves. A typical example is when humans provide labels for supervised

machine learning approaches to train the models or to make sense of unsupervised

approaches. Also, humans are notorious better to perform tasks that require intuition,

flexibility, creativity, empathy, and common sense (DELLERMANN et al., 2019).
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As such, well-designed AIEd systems may allow both agents (AI and human)

to augment the intelligence of each other (HOLSTEIN et al., 2020; DE-ARTEAGA et

al., 2020). In other words, AIEd systems will potentially work more effectively by

combining the complementary strengths of humans and vice-versa (MOLENAAR et

al., 2019; VANLEHN et al., 2021); such a combination is called hybrid intelligence.

Many authors claim that hybrid systems will be a dominant model in many fields

(DELLERMANN et al., 2019; HOLSTEIN et al., 2019; MOLENAAR et al., 2019; DE-

ARTEAGA et al., 2020). However, there is a lack of studies about proposing, designing

and validating human/AI hybrid methods and systems. For instance, Dellermann et

al. (2019) claim that more research is necessary to build domain-specific human/AI

educational systems and to explore interface designs that allow users helpers to teach

an AI system and vice-versa.

In light of this, Holstein et al. (2020) proposed a conceptual framework to map

distinct ways of human/AI collaboration. The framework shows dimensions that cap-

ture crucial components of an AIEd system. These dimensions are based on frameworks

available in the literature (NEWELL, 1994; RUMMEL, 2018; ALEVEN et al., 2016; VAN-

LEHN et al., 2021), which were captured and adapted in a more general conceptual

framework for human/AI hybrid systems. Due to the generality, we opted to use the

dimensions presented in Holstein et al. (2020) to capture how humans and AI can

augment each other’s abilities in our hybrid human/AI OJ architecture.

7.2.1.1 Dimensions for hybrid Human-AI systems

Based on the conceptual framework proposed by Holstein et al. (2020), the first dimen-

sion is goal augmentation. One possible way of human/AI collaboration is positively

affecting each other’s instructional goals. However, the agents’ goals might be conflict-

ing. To illustrate, an AIEd system might guide students to complete the assignments

at their own pace. However, as the instructor needs to finish the content of a given

topic on schedule, sometimes the instructor might want to expedite the process to

the detriment of the AIEd suggestions. In this case, the instructor’s goals might harm
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students’ learning process. Thus, Holstein et al. (2020) explain that future hybrid systems

could help instructors reflect and refine their goals and methodology. On the other hand,

instructors could also support the AIEd systems to improve their goals as they hold

essential knowledge that AIEd systems do not have access to.

The second dimension is perceptual augmentation. This is related to the systems’

capability to infer the students’ current knowledge from patterns of historical data

or recent behaviour. In terms of perceptual augmentation, AIEd and humans can

collaborate by leveraging their capabilities of perceiving opportunities for actions that could

improve the students learning process. In other words, this dimension is related to how

both agents can help each other perceive, sense, and notice the relevant information

that can be used for timely and effective intervention in the educational environment.

The third dimension is action augmentation. Another way AIEd and humans

can also collaborate is by leveraging each other abilities of performing instructional actions

and augmenting the number of activities available to each. For instance, the AIEd system

could augment the instructors’ ability to adapt their methodology or interventions for a

group of students.

The fourth (and last) dimension is decision augmentation. Human and AIEd

systems may collaborate to help each on the decision-making process, maximising the

chances of achieving effective decision to improve the learning process, that is, helping

them map perception to action. Notice that the other three dimensions influence this one.

To illustrate, perceptual augmentation might leverage decision-making by moving the

instructors’ attention to a learning phenomenon that requires their action or evaluation.

7.3 Method

7.3.1 Speed Dating Design Method

According to Davidoff et al. (2007), Speed Dating is a design method that can rapidly

explore and compare design concepts without requiring any technology implementation.

The Speed Dating method helps researchers and professionals to draw possible futures

with target users based on their needs, reducing the risk of making products that they
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will not adopt (ZIMMERMAN; FORLIZZI, 2017; DAVIDOFF et al., 2007). This method

consists of two main phases: user needs validation and user approval. In the validation

phase, researchers/professionals present various predefined storyboards to the target

users in order to synchronise the design opportunities researchers found with the needs

users perceive (DAVIDOFF et al., 2007; TRUONG et al., 2006). These storyboards help

researchers/professionals rapidly investigate many possible futures, prioritise user

needs, and narrow the design space for potential applications (DAVIDOFF et al., 2007;

TRUONG et al., 2006). In the user approval phase, participants must play a specific

role that they play regularly (e.g., instructor) to evaluate critically the different design

concepts demonstrated by the storyboards (DAVIDOFF et al., 2007; TRUONG et al.,

2006).

The first proposal is a novel hybrid human/AI online judge architecture in this

work. However, considering that it is a novel contribution, it is an open question of how

future human/AI hybrid OJ systems that adopt our architecture will implement it from

a design perspective. In the field of human-computer interaction, it is well-stated the

relevance of participatory design, which is a process that includes the stakeholders in

the stages of design (ROSENZWEIG, 2015), to recognise the rights of the stakeholders

in having a voice in the technology design (BANNON; EHN, 2012). Therefore, this

research must validate the architecture-based design concepts according to the target

audience’s needs (i.e., instructors). In this work, we adopt the "Speed Dating method" to

validate the design concepts based on the proposed "human/AI hybrid Programming

Online Judge architecture".

As previously stated, our human target audience is instructors, who will be

responsible for making the final decision based on AI recommendations, according

to our proposed architecture. Consequently, this research recruited 20 CS1 instructors

from different universities with previous experience with OJ systems to participate in

individual speed dating sessions. To recruit these instructors, we used convenience

sampling by sending emails to CS1 instructors of different Brazilian universities. We

conducted the sessions through video conference due to the Covid-19 pandemic, and

the sessions lasted 45 to 75 minutes each. Two researchers were responsible to annotate
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the instructors’ responses. After the meetings, the annotators discuss and

All the concepts were presented in format of storyboards, as recommended by

the literature. The storyboards can be found on this link2. The instructors’ answers were

of two types: qualitative and quantitative. For the qualitative questions, the instructors

provided their perspective over a specific concept-design, explaining which aspects of

the concept could be positive, negative, what could be improved upon, and potential

limitations. The quantitative could be -1, 0 or 1, in which the first (-1) represent that the

instructors evaluated the concepts as non-relevant. The second (0) represent that the

instructor is in doubt about the relevance of the concept, whereas the last (1) means

the instructor find the concept relevant. Moreover, during and at the end of the session

we ask the instructors whether they would like to suggest a new concept-design. We

did that because the Speed dating method allows new concepts being created by the

instructors during the sessions.

7.3.2 Pilot and Concepts Definition

To define the concepts, we first explored the methods we proposed in the previous

Chapters. We limited our scope for descriptive, predictive, and prescriptive analysis con-

cepts since these analytical areas employ AI techniques to analyse data to improve the

decision-making process. Overall, our methods can be used for performance prediction,

group formation, analysis of effective and ineffective behaviours, and recommending

problems in online judges to support instructors and students. We then held 3 discussion

sessions among at least 6 researchers, including the authors of this work and external

collaborators, to establish the initial set of concepts. At the end more then 30 concepts

were elaborated based on our methods.

Thus, before carrying out the experiment we performed a pilot with 2 CS1

instructors with previous experience with OJs, which the main aim at reducing the

number of concepts, by removing potential redundancies. During the 2 sessions, we

reduced the number of concepts to 16 concepts. Moreover, the pilot were helpful to give
2 sites.google.com/ic.ufal.br/speeddatingmethod



Chapter 7. Validation of the hybrid AI/Human Online Judge architecture 202

us insights on how to conduct the Speed Dating sessions, the duration of the sessions,

and how to conduct the interviews.

7.3.3 Descriptions of the Validated Design Concepts

As stated previously, the speed dating is a dynamic method and the instructors might

suggest ideas for the conception of new concepts during the evaluation process. In this

sense, the instructor suggested 3 new concepts and, hence, in the end, we achieved a

total of 19 design concepts. The concepts, their relation to the dimensions described in

section 7.2.1.1, and their relation to our previous Chapters are described below:

• Concept 1 - early performance prediction: helping instructors to identify at the

beginning of the course (e.g., first 2-4 weeks of course) the student’s probabilities

of passing based on their learning data. This concept is related to the second and

third dimensions, and the findings from Chapter 3.

• Concept 2 - report of performance prediction and abruptly changes over time: helping

instructors to visualise a periodically (e.g., biweekly) reporting of the probability

of the student passing during the course. The idea is to create a graphical report

for the instructor with notification of abrupt changes, such as a student who has

80% of a chance of passing in the fourth week and then in the sixth week has only

40%. This concept is related to the second and third dimensions, and the findings

from Chapter 3.

• Concept 3 - visualisation of at-risk and high-achievers students: helping instructors to

identify (even at the beginning of the course) at-risk and high-achievers students

based on their probabilities of passing. In this concept, the instructor can use a

threshold to filter the students with probability of passing below or above this

value. This concept is related to the first, second, and third dimensions, and the

findings from Chapter 3.

• Concept 4 - inspecting individual effective and ineffective behaviours - helping instruc-

tors to identify (even at the beginning of the course) individually which student
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programming behaviour may increase (effective behaviour) or decrease (ineffec-

tive behaviour) their chances of passing. In this concept, the proposal uses XAI to

inspect and explain why the model predicts that a student has high probability

of passing or failing. Instructors can visualise it in precise but heavyweight plots

such as a decision plot or forceplot. This concept is related to all dimensions, and

the findings from Chapter 4.

• Concept 5 - inspecting groups of effective and ineffective behaviours: helping instructors

to inspect and visualise a group of similar behaviours from different students that

potentially lead to similar performance predictions. This concept is related to all

dimensions, and the findings from Chapter 4

• Concept 6 - inspecting effective and ineffective behaviours of the class: the same in-

structor may teach CS1 for different classes. In this concept, the instructor can

inspect effective and ineffective behaviours of a given class in a lightweight and

straightforward plot (e.g., a bar plot). This concept is related to all dimensions,

and the findings from Chapter 4.

• Concept 7 - inspect effective and ineffective behaviours per student in a lightweight

plot: similar to concept 4, the instructor can inspect which are the effective and

ineffective behaviours for a given student. However, in this concept, the idea is

to provide this information in a lightweight and straightforward plot (e.g., a bar

plot). Notice that such a plot is not as precise as a force or a decision plot. This

concept is related to all dimensions, and the findings from Chapter 4

• Concept 8 - comparing students behaviours against the low, border, and high reference

values: helping instructors to compare students’ behaviours on the assignments

against the low, medium, and high reference values. The reference values are

obtained by clustering of students’ programming behaviours and evaluation of

the relationship of the clusters’ centroids and students’ outcomes. This concept is

related to the first, second, and third dimensions, and the findings from Chapter 2.

• Concept 9 - comparison of students behaviours with class average: helping instructors

to compare student’s behaviours on the assignments against the average obtained
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in her class. This concept is related to the first, second, and third dimensions, and

the findings from Chapter 2.

• Concept 10 - creating one-fits-all assignment lists: helping instructors select problems

to compose one single assignment list for all students from a given class. The

instructors select a given topic of the CS1 syllabus. The system automatically

creates one assignment based on the historical type of assignments that the same

(or other) instructor used in previous classes, based on the fine-grained data

of how students solve the problems3. After that, the instructor validated the

assignment, replacing some questions. This concept is related to all dimensions,

and the findings from Chapter 6.

• Concept 11 - scaffolding assignment lists: helping instructors to create more chal-

lenging assignments lists for a group of high achievers and slightly simpler lists

for low achievers/average students. This concept is related to all dimensions, and

the findings from Chapter3 and Chapter 6.

• Concept 12 - creating variations of one-fits-all assignment: helping instructors to

create N variations/versions of a single one-fits-all assignment to avoid plagiarism

practice. The difficulty of the variations should be equivalent to the original one-

fits-all assignment. This concept is related to all dimensions, and the findings from

Chapter 6.

• Concept 13 - creating individual assignments for each student: helping instructors

to create a unique assignment for each student of a given class. The assignment

would be a variation of one original one-fits-all assignment. The difficulty of

the variations should be equivalent to the original one-fits-all assignment. This

concept is related to all dimensions, and the findings from Chapter 6.

• Concept 14 - creating one-fits-all exams: helping instructors to select problems to

compose one-fits-all exams4. This concept is related to all dimensions, and the
3 This mechanism is assumed to be used in all other concepts employed to help instructors select the

problems to compose the assignments and exams.
4 We created specific concepts for exams and assignments because some instructors reported that they

have different criteria to create them and, hence, their evaluation of the concepts might be different.



Chapter 7. Validation of the hybrid AI/Human Online Judge architecture 205

findings from Chapter 6.

• Concept 15 - creating variations of one-fits-all exams: similar to the mechanism of

concept 12, the idea is to help instructors create different versions of the same exam

to avoid plagiarism. This concept is related to all dimensions, and the findings

from Chapter 6.

• Concept 16 - creating individual exams for each student: using the same mechanism

of concept 13, here the idea is to help instructors to create a specific exam for each

student to avoid plagiarism. This concept is related to all dimensions, and the

findings from Chapter 6.

• Concept 17 - personalised notification: help instructors to send messages/notification

to groups of students with similar performance estimates or similar behaviours to

enable interventions. Also, the instructor can send these notifications to individual

students based on their access to the previous concepts. This concept is related

to the second, third, and fourth dimensions, and the findings from all previous

Chapters.

• Concept 18 - problem recommendation: an instructor might use a recommender

system for two purposes: i) when the instructors use the concept of automatic

list/exam creation, they may want to replace some questions from the list/exam

created by the AI method. For each question the instructors want to replace, they

can ask the system to recommend substitute problems; ii) for students using the

recommender in an unguided learning process. After the student finishes the

assignment, the instructor could suggest that the learner uses the recommender

to continue solving problems recommended by the system for the students in

an unguided learning process. This concept is related to all dimensions, and the

findings from Chapter5 and Chapter 6.

• Concept 19 - help button for each concept describing its functionality: helping instruc-

tors to understand the functionality of each concept. This concept is related to

the second dimension. This concept is based on human experience interfaces, not

necessarily related to our previous chapters.
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7.4 Results and Discussion

7.4.1 Concepts Classification

We rated concepts as high (≥ .7), moderate (> .4 and < .7) and poor (≤ 4) based on the

average rating given by instructors. The thresholds used for classification follow the

same pattern as those recommended in (DAVIDOFF et al., 2007; TENÓRIO et al., 2021).

Notice that a concept rate can range from -1 to 1 (DAVIDOFF et al., 2007). Figure 43

presents the instructors’ classification of the concepts. The rows in this figure indicate

our concepts, whilst the columns depict the instructors who participated in the study

(sorted in order of participation). Instructors came up with the last three concepts in

the figure. We use blue cells to represent high classification and red cells to depict poor

classification. Cases in which instructors doubt (neutral) about the concept use received

0, represented in green in this figure. The rightmost column shows the average of the

ratings assigned by the instructors for the concepts.

Concepts IP1 IP2 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15 I16 I17 I18 I19 I20 Average
Concept 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.91
Concept 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.00
Concept 3 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.91
Concept 4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.95
Concept 5 1 1 1 1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.91
Concept 6 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0.86
Concept 7 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0.86
Concept 8 1 1 1 1 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0.77
Concept 9 -1 1 1 1 0 0 0 0 1 1 -1 1 1 0 1 1 1 1 1 1 1 1 0.59
Concept 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.00
Concept 11 1 1 1 1 1 1 1 1 -1 1 1 1 -1 1 1 1 1 1 1 -1 1 0 0.68
Concept 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 1 0.91
Concept 13 0 1 1 1 -1 1 1 1 1 1 -1 1 1 -1 0 -1 1 -1 -1 1 -1 -1 0.18
Concept 14 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0.91
Concept 15 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 -1 1 1 1 0.86
Concept 16 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 -1 1 -1 -1 1 -1 -1 0.41
Concept 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0.95
Concept 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.00
Concept 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0.94

Figure 43 – Quantitative evaluation of concepts performed by the CS1 instructors.

Given that, we can visually inspect Figure 43 and observe that 15 concepts were

evaluated as high, the instructors evaluated two concepts as moderate, and the other

two concepts as poor. Following, we present the qualitative evaluation of each concept

from the instructors’ perspective.
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7.4.2 Concepts Sumarisation in Instructors’ Perspectives

This section performs a qualitative analysis of how the instructors evaluated the con-

cepts. To summarise the concepts from the instructors’ perspective, we extract from the

transcriptions of the interviews the exposed advantages, suggestions for improvements,

and limitations for each concept. Confirmatory comments (e.g., the concept is relevant)

encoded in the quantitative analysis were not considered for this section.

Concept 1 (early performance prediction) was highly rated (mean = 0.91). Since

CS1 courses typically have a high failure rate, most of the instructors (N = 18) agreed

that having a predictive model that estimates even in the first weeks of the course the

chances of a student passing is important to enable early intervention. As stated by

instructors I1 and I11, this is a fundamental concept for the instructors to help at-risk stu-

dents complete the course, especially in classes with many students. Additionally, many

instructors (I4, I8, I13, I20) stated that this concept would be important to combine the

predictions with their daily experience in the classroom. I20 explained that instructors

use this functionality (performance prediction) empirically based on classroom experi-

ences, and with this concept, the instructor’s predictive capability would be augmented.

However, two instructors (I2 and I6) had doubts about using this concept because they

did not trust such an early performance prediction. Whilst I6 was not confident about

the prediction accuracy, I2 opined that as he does not have information on which data is

used to make the prediction, he can’t judge whether the concept is relevant. Moreover,

I2 pointed out that to increase the trust in the predictive model, she/he would like to

know what students’ features the model would employ to perform the inference.

Concept 2 (report of performance prediction and abruptly changes over time) was

highly rated (mean = 1.00). All instructors (N = 22) agreed that this concept is relevant.

Notice that a student might begin the course well but, due to some reason, end up failing

and vice-versa. So, we asked the instructors whether it is important to discover the

inflection point, which is when this change occurred. Instructors I4 and I12 explained

that they should receive a notification when this change happens. I14 claimed that

this might reveal which subject those students are struggling with since the change

would be associated with a period of time the instructors have taught some specific
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subject. Furthermore, I5 and I17 claimed that this concept might also be important to

check the effect of the intervention during the course or changes in their methodologies.

These instructors (I5 and I17) explained that it would be helpful to add a label every

time the instructor performed an intervention or change in their methodology to verify

the potential effect of the intervention on the predicted performance of the students.

Besides, instructor I8 opined that if many students are in an at-risk situation, thus

the problems could be with the instructor methodology. Hence, this concept could

be used as a self-evaluation tool for instructors. Finally, I6 explained that, differently

from concept 1, in this concept, the performance of the predictive model tend to grow

throughout the course since more data (from more weeks) will become available for the

predictive model during the course, and it increases her/his confidence in using this

concept.

Concept 3 (visualisation of at-risk and high-achievers students) was also highly rated

(mean = 0.91). In this concept, an instructor could, for example, visualise potential at-risk

or high achievers students by using a threshold. To illustrate, selecting all students

that have less than 50% chances for passing in the course’s fourth week (or in another

moment). I2, I3, and I19 explain that this concept is crucial for the instructors to bring

together students who are having difficulty and so that they can try to resolve their

doubts. In addition, they explain that this allows the instructor to apply interventions

to groups of at-risk learners to try to leave them in the same class level. I6 opines that

this concept can be more helpful in remote or blended learning, in which the instructor

may have little or no contact with the students. As a suggestion to improve this concept,

I7 and I9 stated that it would be important to put a calendar with checkpoints that

determine when they should visualise a report with the list of at-risk students. For

example, this checkpoints could be in each assignment deadline or when the instructor

finishes teaching a course topic. Moreover, I2 and I11 point out that identifying the

students’ difficulties would also be important. If the instructor knows in which part of

the course the learner is struggling, then they could identify which topic was taught at

that moment.

As a caveat, I16 states that it would be complex to assemble the at-risk students
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without making them feel diminished for being in a low-performing group. In the same

sense, I14 points out that he would use the concept as long as students did not have

access to this information. Finally, I8 states that the concept is quite prominent for large

classes, but it would not be as relevant for small classes.

Concept 4 (inspecting individual effective and ineffective behaviours) was highly

rated (mean = 0.95). Almost all instructors (N = 21) agreed that this concept is relevant,

although some have put some caveats to the use. I6, I13, I15 I19, and I20 stated that the

combination of information revealed by this concept with the instructor’s experience

could be of paramount importance for the construction of effective interventions. For

example, identifying which copy and paste and repeated error behaviours may affect

the student’s performance. It would allow the instructor to reflect on the lesson to

re-plan the class to cover something about debugging or even reinforce the importance

of writing the code from scratch when starting to the program. Still, on the example, I10

points out that the instructor could try to deepen the analysis to identify which parts of

the code the student is copying and pasting so that he/she could identify whether the

copy-paste behaviour is harmful or not. I18 summarises that this concept can help the

instructor identify minimum behavioural changes needed to boost student performance.

Besides, I9, 12, and I13 believe that this concept would help adopt predictive models

as it would bring more confidence about how predictions are performed. On the other

hand, I2 points out that it is tough to understand this concept. I3 also explains that it

would use this concept if it is presented in a didactic way, with an intuitive interface or

plot. I16 also explains that it is important to present only the most effective/ineffective

behaviours to the instructor, not very extensive information (lightweight). In addition,

I3 and I16 opine that it would be interesting to point out some recommendations for the

instructor on what to do given the information presented in this concept. Finally, I2 and

I13 explain that a potential limitation of this concept is that it will not consider external

variables that the online judge cannot detect.

Concept 5 (inspecting groups of effective and ineffective behaviours) was highly rated

(mean = 0.91). This concept is helpful as a complement to concept 4. To illustrate this

concept, imagine that a student named Jack has 30% chance of passing based on data
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collected until the fifth week of class. Suppose further that based on inspection of the

predictive model, what caused this low percentage was that the student procrastinated

too much on the first two assignment lists and made many consecutive identical errors,

many of which were not resolved. With that, this concept serves to identify which

are the ‘Jacks’ in the class, that is, which students had behaviours similar to ‘Jacks’

and which led to an approximately 30% chance of passing as well. With this, the

instructor can carry out one intervention in the whole group of ‘Jacks’. I16 explains that

the concept allows the instructor to tackle what can generate learning problems for

students since the concept group’s difficulties are related to assignments and topics

that can be reinforced. I7 and I12 explain that this concept would be viable for them

to identify opportunities to recommend pedagogical materials ( e.g., videos, tutorials,

extra exercises) to the groups. Instructors I5, I11, I14, I18, and I20 point out that the

concept is crucial, especially for large classes. I14 and I18 highlight the importance of

the concept for personalising pedagogical and intervention strategies that the instructor

can provide to different student groups/profiles. Indeed, I4 explains that he already

tries to do manually, intuitively, and empirically what the concept proposes and that,

therefore, the concept would increase his ability to perform this task.

As a possibility for improvement, IP1 explains that it is interesting to add some

labels in the groups to facilitate the search later from the teacher’s point of view. For

example, add labels for low-achievers who are procrastinators and who access the

system with low frequency so that the instructor could easily find such students in

a single search. I5 opines that the concept could also provide a behavioural filter so

that the teacher could assess each group’s behavior individually. In addition, IP2 states

that it would be interesting to point out the percentage of the class that has a certain

effective or ineffective behaviour. I6 explains that despite the importance of the concept,

it must be presented to the teacher in a graphic or intuitive interface, otherwise it

would not be useful. Furthermore, it would be great if the teacher had access to a set of

strategies or intervention options given the group’s effective and ineffective behaviours

presented in this concept. Finally, I6 highlights that the concept would help in the

interventions for the teacher. Still, for the student it would not be helpful to know
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that their performance is classified in such a profile or group, especially if this would

stigmatise them, conveying the idea that there is little chance of change.

Concept 6 (inspect effective and ineffective behaviours of the class) was also highly

rated (mean = 0.86). Some teachers (IP1, I3, I11, and I12) claim that the visualisation of

effective and ineffective behaviour by class is convenient for the instructor to have an

overview of the class’s difficulties and facilities and adapt the methodology based on

this. Others (I4 and I19) explained that they already carry out this general analysis that

the concept proposes manually and based on their perceptions. Therefore, for I4 and I19,

the concept would help them to expand and even confront their perceptions. I6 and I15

opine that the concept would help teachers provide general technical and motivational

guidelines for the class based on evidence-based data that teachers manually would not

be able to obtain and synthesise if the concept is not available systematically.

As suggestions and a possibility for improvement, IP2 points out using macro

graphs in this concept, where instructors could zoom in on the plot to visualize each

student’s behavior in the class. I14 warns that the concept is relevant if it is made

available at appropriate times during the course, such as at the beginning of the course,

before the deadline of an assignment, or when there is still time to intervene in the class.

I16 suggests that message templates based on the results of this concept (and other

concepts as well) should be available for the teachers so that instructors can customise

these templates and send personalised messages to students from different classes

without too much effort. I20 points out that the concept would be interesting to provide

a temporal filter for classes to compare a given class with other classes in that same time

window. It would help instructors to map good and bad methodological practices used

in these classes from different periods. Furthermore, it would be useful for the teacher

to test the power of generalising strategies with classes whose students may have other

behaviours and belong to different generations.

On the other hand, I7 and I17 state that confidence in use may vary depending

on the programming behaviours used in the concept. I18 explains that he doesn’t know

if he would use the concept because the students’ behaviour can vary a lot in a given

class. As such, this central measure or general behaviours of the class presented in this
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concept may not be as accurate.

Concept 7 (inspect effective and ineffective behaviours per student in a lightweight plot)

was highly rated (mean = 0.86). IP1 points out that the concept provides an intuitive

visualisation through a bar plot ordered by the importance of the student’s behaviour

in his/her predicted performance. However, only this instructor (IP1) assessed that a

lightweight view is more appropriate than a more detailed plot such as a decision plot

or force plot. Four instructors (I1, IP2, I5, I14) prefer a more detailed view following

concept 4, while 17 instructors (I2, I3, I4, I6, I7, I8, I9, I10, I11, I12, I13, I15, I16, I17, I18,

I19, I20) prefer both visualisation to be available.

I12 explained that the concept is important to cross-reference the information

with concept two quickly; that is, when a student inflection point is detected, it would

be helpful to assess behavioural changes (using this concept) from before and at the

time of change. Moreover, as of concept 4, the evaluations were generally positive. Even

the suggestions for improvement and limitations pointed out were similar to concept 4.

Concept 8 (comparing students behaviours against low, border and high reference

values) was highly rated (mean = 0.77). Some instructors (IP1, I5, I13, I15, I16, and I19)

explained that having the option of viewing the student compared to low, medium, and

high-performance references allow the teacher to carry out a systematic analysis of the

students, what is important to enable the adaptation of classes and provide personalised

support to the student. Furthermore, these instructors stated that the concept allows

for interventions with greater chances of effectiveness. I5 points out that the idea of

mapping student behaviours based on reference values would be complementary to

the results of the previous concepts, enabling the instructor to cross this information

with the detection of effective/ineffective behaviours and students’ probabilities of

passing. I19 points out that this information, along with some calibration in 5 years, can

bring important values for a deeper analysis. For example, the instructor can conduct a

longitudinal study of why students tend to decrease their performance throughout the

course.

On the other hand, I3 and I14 point out that they would have doubts about using

this concept since there is no recommendation associated with the information revealed
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in the concept. I18 opines that it would take a long time to evaluate each student’s graph

and that the graph is complex as a complicating factor. In this sense, I17 points out that

the amount of information (represented in the axes of the radar plot) presented in the

graph is a potential reason why making the plot complex. I17 suggests presenting a few

variables to make the plot simpler, more precise, and more intuitive. Thus, the ideal is

possible to group the variables in different radar plots, for example, by presenting a

radar plot with only code metrics variables (lloc, comments, etc), Another only with

measures of effort (e.g., number of attempts with resilience - Chapter 2).

Lastly, IP1, I4, and I12 explain that this concept would be more critical for the

student than instructors, as it would allow the students to reflect and perhaps self-

regulate their learning. On the other hand, I6, I7, and I8 point out that the concept is

relevant for the instructor, but they would not make it available to students as it could

make them feel inferior or even overestimated, depending on how close they are to

the references values. One alternative use of the concept is for the instructor to choose

whether a student can visualize it or not. Furthermore, an analysis (using AI) of the

student affective or emotional profile can help to choose which students should be

exposed to this resource.

Concept 9 (comparison of students behaviours with the class average) achieved a

moderate rate (mean = 0.59). This concept is a variation of the previous concept. In this

case, the reference value is the class average. Instructors generally point out that both

concepts bring relevant and complementary information. Only two instructors (IP1

and I5) opined that they preferred to use only concept 8. In this sense, I18 points out

that the concept is helpful for the student to have a notion that specific problems take

work to solve. For example, after the third failed attempt to solve a given question, the

learner could visualise that the class’s average attempts are six. Therefore it’s expected

that they made some mistake to solve that question. I12 opines that the concept would

be relevant for students to visualise questions that have already been resolved by

other students in the class and the effort required to solve that questions. It would

attract former students to try to resolve the most popular questions. Still, I16 suggests a

competition/comparison among the classes to engage more students. The instructor
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stated that a plot could be shown to students comparing the classes. Furthermore, the

teachers repeated the comments on the previous concept about concerns about making

this concept available to students.

Concept 10 (creating one-fits-all assignment lists) was evaluated for all instructors

as relevant (mean = 1.00), achieving a high rate. IP1, IP2, I2, I5, and I14 point out that

the concept helps to optimise the instructor’s time, which is relevant given that the

teaching workload is generally high. I2 states that this concept is fundamental since

problems are selected to compose assignments are recurrent throughout the terms. The

CS1 instructor usually prepares many lists of exercises on different topics to reinforce

and consolidate the students’ learning. I18 explains that this concept is already used

for some educational systems in majors but not for programming courses. Therefore,

the concept would be a great addition to education systems to support CS1 classes. In

addition, instructors I2, I13, I15, and I20 state that it is essential for the instructor to

collaborate with AI in this concept so that they can validate the list before presenting it

to the students.

As improvements, I1 explains that it would also be important to point out

which exercises should have greater weight because they carry key subjects or require

abstractions necessary for learning a given topic. I5 and I12 also state that it would

be interesting to define the subjects even more fine-grained. Instructors may choose

to have the assignment built on nested conditional structures, sequential structures,

and other topics provided in the CS1 syllabus. Nonetheless, it would also be essential

to have something more specific like basic arithmetic operations, increments, control

variables, numeric sequences, etc. Finally, I11 clarifies that it is expected for the concept

to avoid repetition of questions from lists from other semesters or other classes to avoid

plagiarism, which is quite frequent in CS1.

Concept 11 (scaffolding assignment lists) achieved a moderate rate (mean = 0.68).

I1, I2, I5, I9, I14, and I15 state that the concept is relevant to support and evaluate

the students’ learning process according to their differences in their learning pace.

Specifically, I15 explains that the concept would help look at students according to

their individualities. I6 explains that this concept would also help more advanced
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students (fast-learners or who already have previous programming experience) get

frustrated when they are either not challenged or need to solve fundamental problems.

I14 states that the concept would be helpful even to find monitors to support future CS1

classes, based on the student’s group and whether they could solve the most challenging

questions. For I13, the concept would apply very well to students in Non-CS courses.

According to the instructor, some students of Non-CS courses intend to learn just the

basics of programming without having to face many challenges since their focus is the

content directly related to their course. In these cases, according to the instructor, more

straightforward assignments would be suitable to the intention of this student profile.

IP2 and I20 show that despite liking the idea, the concept can make it difficult

for the instructor to identify how to employ the class level since assessments of different

difficulty levels in the same class. That is, there would be no reference. Still, IP2 points

out that she/he would use this concept to create different lists or challenges, whilst

I20 explains that he/she would have doubts. I5 and I12 also reported that they doubt

whether the concept would mask students’ learning development who solve the most

straightforward problems. Since they would not solve some problems (of a more chal-

lenging level), that may be key to learning some concepts taught in the course. Despite

doubts about the implications of using the concept, both instructors (I5 and I12) stated

that it is relevant and would use it in their classes.

I11 and I18 explain that they would not use the concept because it segregates

the class in a potentially harmful way. For instance, I11 explains that the concept could

bring psychological burdens to students allocated to the low-achievers group, making

them feel less capable. I16 and I19 also point to this possibility of segregation. Still,

these instructors explain that a solution would be to use this concept as a reinforcement

assignment only for students struggling in the course. Instructor I16 also states that

communicating this would also be compassionate for the student to see the concept as

a possibility for improvement and not as a way to allocate it to a group inferior to the

others.

Concept 12 (creating variations of one-fits-all assignment) was highly rated (mean

= 0.91). IP1, IP2, I1, I4, I5, I7, I11, I15, and I20 state that the concept is important to
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help reduce the chances of students’ plagiarism, something recurrent in CS1. I5 and

I17 explain that they would be even more inclined to use the concept in -learning or

blended courses, where the practice of plagiarism can be even more frequent. I12, I17,

and I18 point out that they already do this (generate multiple versions of an assignment)

manually, so the concept would help a lot. I2 adds that she/he would also like accessing

a way to evaluate the similarity rate of the codes or some metric that points to the

possibility of plagiarism among the students’ solutions.

I9 and I16 explain that they would use the concept as long as there were not so

many assignments validations to be performed by them. Specifically, I16 points out that

she/he wouldn’t use the concept if she/he was pushed for time. However, according to

I2, over time, the validation process tends to become faster if the instructor observes

that the recommended assignments are accurate. On the other hand, I19 points out

that she/he would not use the concept because it can make it more difficult for the

instructor/monitor to address students’ doubts. I19 explains that as there would be

several different assignments, the instructor would need to have an in-depth knowledge

of solutions to more questions, thus increasing planning time and teaching workload.

Concept 13 (creating individual assignments for each student) achieved a low rate

(mean = 0.18). Despite the low rating, more than half of the instructors rated the concept

as relevant (N = 11). I4 and I5 explain that the concept would probably be more helpful

for small classes or for creating challenging assignments with few questions. IP2 points

out that the concept is great. However, it must be challenging to implement as it would

need a large number of questions registered in the online judge to create different

assignments for each student.

Many instructors (I3, I9, I12, I13, I14, I16, I17, I19, and I20) explain that they

would not use the concept because it would require too much time to validate the

individual assignments. Specifically, I16 states that validation can be a big issue for

large classes. I19 and I20 point out that, similar to the previous concept, it would be

even more challenging to help students address code errors with different questions for

each student.

Concept 14 (creating one-fits-all exams) was highly rated (mean = 0.91). IP1 ex-
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plains that the validation should be accompanied by the exam used as a reference. In this

way, the instructor could compare the similarities of the questions to judge equivalent

questions between the reference exam and the recommended exam. I6 states that it

would use this concept but would not use the automatic correction provided by the

online judge. According to the instructor, a well-crafted assessment can directly benefit

student learning, especially in exams. I17 and I19 report that they would perhaps use

the concept as a starting point, modifying the necessary questions and adapting them.

I11 points out that the questions that had already been used in previous assign-

ments should be labeled to facilitate the instructor’s mapping of items that may be

repeated in the assignments and exams. Two instructors (I5 and I17) were unsure about

using the concept because they typically use exam questions covering key concepts in

the assignment lists. In addition, the instructors (I5 and I17) explain that they customise

the exams based on the observations they make in face-to-face classes. I18 adds that

she/he often puts on the exams questions related to specific subjects that she/he has

covered or given tips during face-to-face classes. These instructors (I5 and I17) believe

that the concept might not meet these requirements.

Concept 15 (creating variations of one-fits-all assignment) was highly rated (mean

= 0.86). The instructors were consistent with the evaluation of this concept and the

previous one (concept 14). The main difference is that they argued that this concept can

be helpful to avoid plagiarism but might increase the instructor’s overload in validating

the exams. Only instructor I17 marked the concept as -1, while she/he marked the

previous concept as 0. The justification is that the exams must be identical for the

instructor for all students to be fair. If it were to change something to minimise the

plagiarism practice, it would only change the order of the questions in the exams.

Furthermore, I18 explains that the system should choose the reference exam based on

the similarity of the classes. For instance, if the class from the first term of 2016 is similar

to the class from the second term of 2018, the system would automatically reference the

questions used in the 2016 exam to recommend the questions for the 2018 exam.

Concept 16 (creating individual exams for each student) achieved a low rate (mean

= 0.41). Although most instructors (IP2, I1, I2, I3, I4, I6, I7, I8, I9, I10, I11, I18) believe
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that the concept can be beneficial in making plagiarism impractical, some (IP1, I3, I5,

I12, I14, I16, I17, I20) explain that the use of the concept may be unfeasible as it requires

a lot of work for validation, especially in classes with many students. Some instructors

pointed out specific cases where the concept could be helpful. To illustrate, I3 and I12

state that they would not use this functionality to apply an exam to the entire class.

However, I3 and I12 explain that they would use it to apply for a recovery exam or a

final exam when the number of students is usually much smaller. I4 and I9 state that

they would feel more confident using this concept in online exams as a way to mitigate

plagiarism.

Concept 17 (personalised notification) was highly rated (mean = 0.95). I1, I3, and

I4 explain that this concept is crucial to complement the previous ones. It allows the

instructor to perform the intervention remotely for a group or even directly for a student,

given the feedback or data provided in the other concepts. I1 points out that the concept

is essential, especially if used from the beginning of the course, to enable the recovery of

students at risk or to leverage the learning of high-performance students. I5 states that

the system should allow data and graphics from previous concepts (e.g., Concept 1-9)

to be coupled to the notification so that students can obtain more meaningful feedback.

I20 explains that she/he already tried to do what this concept proposes manually in

her/his classes and, hence, the functionality would be beneficial for her/him.

I7 and I9 state that it would be necessary for the concept to provide a message

template with some standard feedback that could be reused so that the teacher could

contextualise the template or use the standard feedback. I8 suggests that it is possible

to change the list of students in a group that will receive a notification. For instance,

when using the notification associated with concept 5, the instructor might want to

remove a given student from the group that will be notified, either because she/he

believed that the student has been misallocated to the group or because the student

has already dropped out of the course and, therefore, it would no longer make sense

to receive a notification. I13 and I17 suggest that messages for groups be stored in a

forum so that students in the group can interact with each other and with the instructor

asynchronously.
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Finally, I6 states that she/he would use the concept only to deal with groups, as

sending messages individually to students would be too much work. I17 explains that

she/he would have doubts about the use because I17 believes that this communication

should be dealt with in person.

Concept 18 (problem recommendation) was evaluated for all instructors as relevant

(mean = 1.00), achieving a high rate. I3, I6, I11, I12, I19, and I20 state that it is important

for the recommender to take action after the students finish the assignments. Students

first meet the requirements and then explore their potential by solving additional recom-

mended questions. I4 explains that he would use the recommender mainly to replace

questions that she/he thought would not be valid in the recommended assignments/ex-

ams proposed in concepts 10-16. According to the instructor, this would facilitate the

process as it would not be necessary to exhaustively search for substitute questions

in the OJ’s question database. I19 points out that it would be interesting to use the

recommender during classes so that the instructor could select questions to solve in

class with the students.

I2 points out that it would be relevant to have a way to monitor the effect of

recommendations on student outcomes. In the same sense, I16 states that students could

classify the recommendations. According to the instructor, it would be helpful for the

instructor to assess the impact of the concept and continually improve the recommender

system.

Concept 19 (help button for each concept describing its functionality) was highly

rated (mean = 0.94). Only one instructor (I17) had doubts about using this concept.

The others rated the relevance of this concept as positive. The teachers explained that

a button is necessary to explain the functionalities of a system. I5 points out that an

explanation (meta-data) for each programming behaviour used in the novel human/AI

OJ architecture is also important.

However, I5 and I19 explain that it would be important to present this concept

practically and intuitively to the teacher, for example, in a video tutorial or a storyboard

format. I5 and I16 point out that they probably wouldn’t use a text tutorial. I7 and I16

explain that it would also be relevant to have a “more details” option for some teachers
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who want to understand some details of the concept, for example, in concept 1, to know

the accuracy of the early prediction. I17 opines that she/he has doubts about using it

due to lack of time. The instructor explained that if she/he needs to access the help

button to understand the use of the tool, then she/he tend not to use it. Ideally, the tools

should minimise the need to have another page explaining the tool itself, she/he said.

7.4.3 General Analysis

In the following, we present a list with concepts sorted by the average in descending

order and grouped by our classification rate:

• Highest-rated concepts: Concept 2, Concept 10, Concept 18, Concept 4, Concept

17, Concept 19, Concept 1, Concept 3, Concept 5, Concept 12, Concept 14, Concept

6, Concept 7, Concept 15, Concept 8.

• Moderately-rated concepts: Concept 11, Concept 9

• Poorest-rated concepts: Concept 16, Concept 13.

We can observe that instructors tend to evaluate approaches to group interven-

tions more positively than concepts that enable individualised interventions and require

too much work for validation. For example, in concept 13 (lowest rate achieved), the

instructor must validate a personalised assignment for each student. Notice that this

concept would become unfeasible in a class with 100 students as it would dramatically

increase the teaching workload.

On the other hand, the instructor better accepted the concepts that tend to group

similar students in different aspects (based on behaviours, estimated performance, etc.).

However, this does not mean the individual concepts are not relevant in our hybrid

human/AI architecture, where the instructor is always the last node in the pipeline,

responsible for making the decision. According to most instructors, the concepts that

allow individual student analysis or intervention can be used for quick reference and

in specific cases. For example, concepts based on XAI strategies (e.g., Concept 4) can

increase teachers’ confidence in predicting and driving human/AI collaboration. The
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instructor can combine the information they have access to during lessons with the AI’s

decoded information.

Furthermore, as in CS1, instructors typically need to create many assignments

and exams. The concepts that facilitate this process tend to be well accepted since

they free up instructors’ limited time and attention for other relevant tasks. Moreover,

variations of assignments/exams tend to make the plagiarism practice more difficult,

which explains why concepts 12 and 15 were also well evaluated. However, instructors

poorly evaluated the cases of creating an assignment/exam for each student (Concept 13

and Concept 16). The first reason is that it would dramatically increase the instructor’s

work to validate an assignment/exam for each student. Besides that, some instructors

explain that students would lose a reference for the assessment when using these

concepts as there would be many variations. Still, some instructors point out that it

would be challenging to clear the doubts of students with such a large number of

different problems available in many different assignments/exams variations. Varied

doubts would tend to arise, significantly increasing the number of exercises that the

instructor should master.

Briefly, many of the concepts are good indicators for instructors providing "what

if" questions that would aid in testing the different hypotheses of interventions and

pedagogical strategies and monitor their effectiveness during the course using the

concepts. They also help increase instructors’ control of what happens during and

after the interventions. Our findings can be used to fill a gap between the design

and implementation of hybrid Human/AI OJ. Designers, developers, instructors, and

policymakers within universities might use our novel architecture as a reference in such

an aim.

Finally, our results provide support to address our research question (RQ7-

1). Indeed, we show the relevance (quantitative and qualitative) of design concepts

based on our methods, by validating them over the perspective of CS1 instructors with

previous experience with OJ systems.
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7.4.4 Hybrid Human/AI Collaboration

Our architecture can provide ground for superior achievement for both AI and instruc-

tors. A possible way is by aggregating the output of these agents to achieve an excellent

outcome on the social and technical levels. In addition, human teaching machines and

humans mediating the AI feedback is crucial for the AIEd adoption and safety, avoiding

biases from the AI such as discrimination or stereotyping against students. Additionally,

as instructors can learn students’ preferences during the interaction, the AI can achieve

a better level of personalisation using such a hybrid human/AI approach.

Mainly, the instructor will augment the AI perception by showing some unseen

pattern or relabelling a student’s description or prediction. For instance, the sequence

of problems in an assignment that an AI system will recommend for the students might

be selectively overridden or replaced by the instructors. Notice that when instructors

correct the AI prescription, the decision (perception to action) is augmented. Indeed,

with this new annotation from the instructor, the AIEd system can learn from that to

prepare better assignments next time. Similarly, the instructor can improve their ability

to create assignments by reflecting on how the AIEd system does that.

Additionally, it is important to consider what kind of change the support is

expected to generate in learners in education. Using the hybrid human/AI architecture

presented in this paper, the instructors might intervene proactively (see concepts 1-6)

using the AI info with the goal of behavioural, cognitive, or even metacognitive change

that might lead to better students outcomes. For example, suppose a student is making

many consecutive syntax errors, which is related to low achieving behaviour (Concept

8). In that case, one of the possible actions from the system is to send a notification to

the instructor or even ask the student whether the system should alert the instructor

about that. Notice that without such AI support, the instructors’ ability to adapt the

methodology to improve the learning process of a group of students is limited to the

instructors’ repertoire and perception.

Moreover, it is essential to verify the moment that the system should perform

a decision to perform some prescription. Regarding the granularity, the frequency of

the prescription might be performed per task or step. When using the architecture,
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both agents (instructors and AI) can be empowered to when/how to perform many

tasks, such as presenting an example of code, providing feedback about the debugging

process or the type of error the student got, or even asking the students to explain an

example of code themselves (self-explanation).

Furthermore, the instructors might train the AIEd system about their exclusive

expertise and methodological/pedagogical preferences, essential for scalability. The

AIED system could then reach more students than a human being can.

Finally, relating to AI goal augmentation, our work makes possible improve-

ments in achieving the intrinsic AI goals of maximising an objective function. For

example, when an instructor relabels an instance misclassified, thus the AI algorithm

has the opportunity to improve its rules to maximise its objective functions better.

7.5 Chapter Conclusions
Effectively improving the way instructors teach and, hence, the learning process in

CS1 is a complex and dynamic problem since it is time-dependent and has no ground

truth. Thus, it requires analytical skills that combine pattern recognition, consistency,

probability theory, speed, and efficiency that the AI could provide through data analysis.

On the other hand, this complex problem also requires intuition, flexibility, common

sense, empathy, and creativity, in which humans are notoriously better than machines.

Thus, combining this heterogeneous and complementary intelligence can achieve higher

results than if they worked isolated.

As pointed out in our results, there are many possibilities of AI potentially

augmenting the instructors’ capabilities to improve students’ learning. For instance, in

concepts 1-3, the instructor’s perception is augmented by the AI with information about

the probability of students failing or passing. Still, concepts 4-7 point to explaining

the predictive model’s estimation. With this in hand, the set of potential actions the

instructor can take is expanded due to the possible causes the explainable predictive

model points out that jeopardise the student’s learning and, hence, their performance.

The instructor’s decision-making is also empowered to carry out effective interventions.
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As this explanation about a single student can be grouped by similarity (e.g., in Concept

5), the instructor’s intervention can also be generalised for a group instead of to each

individual. It not only delivers the adaptability needed but also provides workload

reduction for instructors who can do one single action for the entire group of N students

instead of N similar actions for N different students.
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8

CONCLUSIONS

To know what you know and

what you do not know, that is

true knowledge.

- Confucius

In this study we propose and validate AI methods for descriptive, predictive,

and prescriptive analysis to support cs1 teaching and learning. To feed these methods,

we employed a programming profile from CS1 students, which is a set of features that

represent the learners’ effective and ineffective programming behaviours. We extracted

these behaviours from fine-grained data collected from OJ systems. Thus, using this

data, we model how students solve problems on a built-in IDE, embedded in the an OJ

system called Codebench.

We also show in this work that our methods surpassed cutting-edge solutions

proposed in the educational literature. Moreover, we demonstrated that concept designs

derived from our methods can be used in a novel hybrid human/AI architecture

that extends the typical OJ architecture. We validated those concept designs with CS1

instructors with previous experience with OJs. In other words, our qualitative analysis

provides empirical evidence that our methods can be used as a human/AI hybrid

complement for OJ. Such evidence is important to enlighten the field of CS1 teaching

and learning, and to fill the gaps pointed by the literature to design and validate hybrid

systems (CHEN et al., 2018; DE-ARTEAGA et al., 2020; HOLSTEIN et al., 2020; TENÓRIO

et al., 2021).
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Still, our findings are potentially useful to help instructors to improve their

pedagogical and methodological practices, enabling early and long-term interventions

that minimise the chances of at-risk students to end up failing, while enhancing the

chances of students with a high probability of passing. Moreover, we showed that

our prescriptive recommender can be useful to minimise the instructors’ workload on

selecting problems to compose assignments and exams. It is expected that such support

for the instructors would be reflected in an learning enhancement. Thus, the students

are benefiting as well. As such, we believe that we achieved our goal of designing and

validating a hybrid human/AI OJ architecture to create mechanisms to support the

decision-making of CS1 instructors and students.

Briefly, our hybrid human/AI OJ architecture provides developers and designers

with design concepts to build OJ environments that can improve CS1 teaching. Moreover,

instructors can benefit from our findings by observing the usefulness of the AI method

applied to OJ systems in CS1. Finally, we provide discussions about the directions (based

on the instructors’ perspective) of novel hybrid approaches to support CS1 learning.

Indeed, our findings can be used to reference designers, developers, instructors, and

policymakers within universities.

8.1 Findings, Applications and Implications
Just to recap, following are the findings of this work:

• Creating a programming profile using features collected from a new Online Judge

system, CodeBench, which allows fine-grained descriptive, predictive, and pre-

scriptive analysis of student behaviour for CS1.

• Employing descriptive and predictive analytics to identify early effective be-

haviours for novice students and, for the first time in our knowledge, how these

behaviours can be useful for ineffective students (prescription).

• A novel classification of students into effective, average and ineffective, based on

their behaviour, which shows both semantic and significant statistical differences.
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• A clear indication that student behaviour during programming influences learning

outcomes for CS1.

• A proposal, design, and implementation of a large scale, longitudinal study of

student behaviour in CS1.

• Cutting-edge classification performance for early performance prediction using a

large scale, longitudinal data from introductory programming students.

• Going one step further than binary classification and constructing an interpretable

stacking method that combines deep learning and easily explainable regularised

linear regression model.

• A new non-linear interpretable predictive model as an important move towards

Explainable, Transparent AI in Education, by demonstrating how to explain the

predictive model’s decision (individually and collectively), to better support

students and instructors (and other stakeholders).

• Using our programming profile, we constructed and validated a novel behavioral

recommender system based on students’ expected effort to solve a given problem.

• Showing, through a double-blind controlled experiment, empirical evidence on

how personalised recommendations based on effort influence achievement and

affective states.

• A new, holistic methodology pipeline for the OJ contextual labelling problem,

allowing to compare a variety of cutting edge shallow and deep learning models,

to experiment with the most recent data augmentation techniques (with or without

augmentation), NLP (based on BERT, Word2Vec, Glove), classifiers (based on

BERT, Random Forest, SVM, XGBoost, GaussianNB, GradientBoosting, ExtraTree,

Sequential ANN, CNN, RNN) and validation.

• Proposing and validating a novel human/AI collaboration method to select pro-

gramming problems to compose assignments/exams in CS1 courses;
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• Empirical evidence, validated by CS1 instructors, that our methods (represented

as concept-desings) can be used together as a human/AI hybrid complement for

OJ systems.

We also demonstrated that these findings have many pedagogical implications

for the teaching and learning process in CS1. Some of these implications will be ex-

plained next.

First, it is worth remembering that CS1 classes usually have high heterogeneity

among students. This was clear in this work, showing variations in the patterns of

student behaviours, resulting in three different clusters (effective, average, and inef-

fective students). We further supported the findings via statistical differences in learn-

ing outcomes, programming behaviour and evaluative factors between these clusters.

Importantly, our analyses showed which early programming behaviours potentially

indicate effectiveness or ineffectiveness in learning.

Identified effective behaviours can be brought to the attention of instructors,

effective, but also ineffective students – with care about non-disclosure of personal

information. For example, late students can be warned when a certain number of

students complete assignments or spend more time coding in the IDE than they do.

Here, again, group membership can inform the feedback, and ineffective students

comparing themselves with the best amongst their group, as opposed to the best in

class, which may be tough for them to “beat". Additionally, the Online Judge can notify

instructors about which students need extra help, in good time before any deadlines,

allowing proactive instead of reactive pedagogical interventions. Finally, it is worth

noting that, whilst correlation or even association rules per se do not imply causation,

the two-pronged triangulation approach used is providing more evidence towards

prediction power. Moreover, undesirable behaviours may need to be addressed in some

cases, even if they may not directly cause ineffectiveness.

This result can support decision making of students as well as instructor in-

tervention, such as designing specific guidance for a struggling group of students,

proposing new and challenging exercises for effective students, and personalising exer-

cises, according to different student needs. Furthermore, knowing which behaviour can
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be effective might help students to improve their self-regulation and awareness of what

kind of programming behaviour can be dangerous or beneficial to their performance.

Additionally, with early prediction, in a standard course, instructors could pro-

vide extra assignments for the high-achieving group and personalised support to those

who are struggling. If the strategies of effective novices can be identified, it may be

possible to promote effective strategies to all groups. Such early prediction allows per-

sonalised feedback, but this is not scalable to large classes without proper technological

support. Such process of early intervention can be performed using dashboards, e-mails,

etc. In other words, as prevention is better than a cure, likewise, it is better to prevent

students from failure as soon as possible, instead of finding out students are struggling

when their poor marks come in.

Most importantly, our high-performance predictive model is explainable, which

can facilitate human/AI collaboration towards prescriptive analysis, where the instruc-

tors/monitors will have access to individual and collective analysis on which student

behaviours should be encouraged and which ones should be inhibited. On the student

side, such analysis can promote self-regulation and awareness of their strengths and

their chances for improvement. To illustrate the usefulness of the approach from a

student’s point of view, they may trust more on a recommendation if they understand

why they received it. From the instructors’, understanding why students are failing

or passing would allow them to apply effective efforts to tailor pedagogical material,

instructions and interventions for future classes.

For a more generalist analysis for adaptation of instructional decisions, we pre-

sented the power of global explanation by the identification and analysis of typical

prediction paths. Moreover, our focus not only on global behaviours but also on in-

dividual ones enabled by visualising and analysing feature effects at single-student

granularity level can be used in an unprecedented variety of pedagogical applications.

Indeed, these early prediction empowered by its explanation might potentially

allow an effective early intervention by the stakeholders. To illustrate, our interactive

force plots of each student might be shown to the instructors at the end of the second

week of course, who in turn might create some proactive way of minimising the chances
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of at-risk students end up failing and creating more challenging tasks for the students

with high probability of passing. In addition, for instructors and coordination, a visuali-

sation dashboard including our force plots, decision plots (so forth) might contribute

for a more formative assessment, in which not only the learner product is evaluated

but also the process behind, that is, not only their codes are evaluated but also their

learning paths and effort to produce their codes. Still, this dashboard combined with

the interaction of instructors and students can increase the chances of the instructor

reflecting and diagnosing potential causes of the students’ lack of success.

More than that, we found that when provided with programming assignments

recommended based on their behaviours, students showed higher achievements rates

and lower failing and dropout rates in problem-solving. This finding suggests that

our recommendation approach contributed to maintaining students trying to solve the

assignments (less dropouts in problem-solving), preventing them to fail, and enhancing

their achievements. Therefore, this finding implies the need to provide adequate rec-

ommendations for programming students to practice, instead of relying on their own

non-guided choices when performing self-direct learning. Moreover, our behaviour

recommender system can be used to facilitate the instructors’ work when selecting

problems to compose the assignments and exams. To illustrate, typically instructors

need to create variations of programming assignments lists for different classes, in

order to avoid plagiarism, for example. Using our method, consider each problem in

a list of exercises already created by a instructor as a target problem. By generating N

recommendations for each of these problems, we can compose N new lists of exercises

that require effort and knowledge (same topic) similar to those required to solve the

original. Thus, the instructor’s workload to compose new programming assignment

lists is significantly reduced.

Additionally, as OJs have large numbers of problems registered in their problem

databases (WASIK et al., 2018), in principle, there would be plenty of problems to select

from, for both students as well as teachers, allowing for a mass personalisation - where

one teacher could cater in parallel for the needs of many students. Nonetheless, as

explained, the problems available on these systems often are collected or scraped from
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various environments that do not provide labelling (ZHAO et al., 2018), and thus it

is laborious to find appropriate problems for CS1 students. Indeed, OJs might have

problems that span over different topics. Understanding such categorisation allows

learners to engage with specific algorithm techniques and could improve their skills.

Furthermore, for curriculum design, it is essential to consider problem categories.

In this sense, our NLP pipeline can be used for tasks of categorisation that might

help CS1 students and instructors from CS and Non-CS courses. For CS learners and

instructors, our model can be used to potentially address a limitation of our behavioural

recommendation (as explained in Chapter 6).

Therefore, we, for the first time, to the best of our knowledge, are going in

direction to fill all the research gaps of CS1 teaching and learning by conducting a

longitudinal study, using fine-grained data from 2058 students. Moreover, we reached

the prescription step, besides descriptive and predictive. We produced methods of

individualized and group support for instructors and students by using a programming

profile. Thus, we believe that this is an important move toward the construction of a

human/AI hybrid OJ system, where learners would use AI-based recommendations,

mediated by the instructors, to improve their learning through effective programming

solving practice at the same time that reducing instructors’ workload.

Finally, based on the validation of our design-concepts, we can observe that

instructors tend to evaluate approaches to group interventions more positively than

concepts that enable individualised interventions and require too much work for valida-

tion. However, this does not mean the individual concepts are not relevant in our hybrid

human/AI architecture, where the instructor is always the last node in the pipeline,

responsible for making the decision. According to most instructors, the concepts that

allow individual student analysis or intervention can be used for quick reference and in

specific cases. Indeed, the instructor can combine the information they have access to

during lessons with the AI’s decoded information.

Moreover, many of the concept-designs are good indicators for instructors pro-

viding "what if" questions that would aid in testing the different hypotheses of inter-

ventions and pedagogical strategies and monitor their effectiveness during the course
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using the concepts. They also help increase instructors’ control of what happens during

and after the interventions.

Finally, the validation of our concept-designs can be used to fill a gap between the

design and implementation of hybrid Human/AI OJ. Designers, developers, instructors,

and policymakers within universities might use our novel architecture as a reference in

such an aim.

8.2 Limitations
Among the limitations of this study is the behavioural data collected from a single

institution, which may affect the generalisation of the results. However, considering

data was collected from programming courses from several years and students from

different majors, this limitation might be reduced.

It is indisputably important to provide human-friendly feedback to improve the

students learning. Here we are going in this direction. However, our predictive methods

are not 100% accurate and, hence, the method’s feedback might not be precise in some

cases. In this sense, we believe that a first attempt to employ our method should be

done by combining humans and our AI, that is, our pipeline could be later validated

with a human pipeline of experts, as we proposed in our human/AI architecture.

Moreover, in this work, we performed statistical inference and not causal in-

ference. Our interpretable pipeline using SHAP values, however, offers clear insights

to formulate causal hypotheses that could be assessed in future works. As a potential

internal threat, we did not tackle plagiarism in-depth and some successful programming

behaviours may have been misclassified. We used some features to try to encode the

plagiarism such as attempts, eventsActivity, copyPaste and ideUsage, since learners who

copy codes from others students usually do so from the first attempts (lower number of

attempts) and actually spend little time programming (low use of IDE). To confirm that,

we plan to carry out further studies.

In terms of recommending/prescription of problems, it is worth noting that the

effort required to solve a given problem depends on the previous knowledge acquired
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by the learner about the programming topic of that problem. The way in which the level

of effort required to solve a problem in the recommender system based on behaviour

was modelled in Chapter 5 does not take into account this prior knowledge that the

student has about the domain. Thus, a potential limitation of our behavioural method

(presented in Chapter 5) is recommending an easy problem from a difficult category for

a student who wants an easy problem from an easy category. As a way to solve that

problem, we take into consideration the categories of problems needed to be specified on

each problems. Notice that a challenge of performing such analysis is that problems in

general are not annotated with this information in OJs. Thus, we constructed a pipeline

that automatically detect the problem category based on the problem statement. We then

carried out experiments in Chapter 6 demonstrating the importance of the categorisation

for the recommender. However, this task of categorisation could be further extended

to a multi-label classification, where one problem could potentially be labelled with

multiple labels/classes.

One limitation of our work is related to the number of CS1 instructors (N = 35)

who acted as participants in our experiments. A larger sample is desired; however,

finding and convincing such professionals to participate in experiments is notoriously

challenging, since they already have a high work demand. Furthermore, to reduce the

bias of dependence between individual observations, when a sample is taken from

clusters from geographical areas, the participants of our experiment are from different

universities, from different regions of Brazil. This leads to higher standard errors, which

avoids spurious significant results. Future work could also consider replicating our

study in other universities in different countries. Moreover, it is worth noting that we

are interested in evaluating the equivalence of a pair of questions. In this sense, 210

pairs were evaluated, which is a reasonable number to draw statistical conclusions from

(HOX et al., 2010).

Another limitation is related to how we enhanced our behavioural recommender

with the topic detector. Indeed, an open question in our study is how much our features

contributed to measuring student effort, if we isolated the topic variable. That is, with-

out topic detection, how useful our fine-grained features were. However, to address
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this question, more items would be needed by instructors in our questionnaire, making

it more challenging to find CS1 instructors available to participate in the experiment.

That’s why we, pragmatically, chose to compare how much our combined contribu-

tions (topic detection + effort based on fine-grained metrics) influence the quality of

recommendations compared to our baseline.

In addition, we experimented and drew our conclusions considering data from

the instructors’ perspective in Chapter 6, which is essential and has not yet been done

to the best of our knowledge. The other recommendation systems for OJs presented in

the literature were tested with statistical metrics but were not evaluated by end-users.

However, we assess with CS1 instructors in our method, but not with students. We

envision performing such evaluation with students considering measures extracted

from the IDE whilst students are solving problems recommended by our method,

combined with the instructors, versus the instructors only. Another limitation is related

to the number of variations tested in our experiments. Still in Chapter 6, we evaluated

7 variations of assignments for each topic. Thus, a number higher than 7 is out of the

scope of this experiment.

Furthermore, in this study, we present and validate a method in which AI

provides recommendations to the instructor, who in turn validates the recommendations

and can improve them in a cyclical and mutual learning process between AI agents and

humans. However, the human teaching process for AI has yet to be validated, which

we will be exploring next.

Another limitation related to our validation with CS1 instructors in Chapter 7,

we believe that the distrust of AI can be an obstacle to its adoption. However, XAI might

make this process smoother since the instructor can understand why the model makes

some decisions, giving more transparency to AI users. Moreover, to some extent, it’s

essential not to give overreliance on AI to keep control of which outcomes are effective

and which ones need to be improved.

Another limitation might be the need for training the instructors to use a potential

novel OJ that follows our architecture. Indeed, some of the concepts presented are

not lightweight and require some background (e.g., in statistics) to be understood.
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Thus, implementing these concepts should keep as a requirement to keep the software

component easily understandable for the instructors. So that learning how to use it

would not be one more work for the instructors.

Moreover, another threat to this work is related to the subjectivity of the story-

boards we showed to the instructors in the validation step (Chapter 7). The instructors

might interpret the storyboards in different ways. Nonetheless, during the speed dating

section, we attempted to tackle this limitation by clarifying doubts and explaining to

the participants the concepts.

8.3 Future Work
As future work, we envision to analyse how the data-driven approach used in this work

can model students who begin the course with successful behaviours but end up with

failure behaviours and grades. Similarly, we will analyse students who change their

programming behaviour during the course and the impact of these changes on learning.

Moreover, we will investigate plagiarism behaviour in-depth and its influence in

the model’s decision. Moreover, we envision to analyse how the data-driven approach

used in this work can model students who begin the course with successful behaviours,

but end up with failure behaviours and grades.

Furthermore, a possible extension of the methods presented in Chapter 4 would

be to not only create differential explainable models for different learners, but to also

investigate whether different situations experienced by the same person have a different

impact on the person’s learning success, thereby applying a process perspective on

learning (ZIMMERMAN, 2008). In order to do so, it would be necessary to collect time

series data over a longer period, and to include information about the order of events

into the prediction model.

Additionally, we are managing to adopt our clustering analysis of effective

and ineffective behaviours, our interpretable machine learning model, and our recom-

mender system to intervene in CS1 classes taken in UFAM. We will perform controlled

experiments to analyse how those methods can influence in students’ learning and
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outcomes.

Besides that, using the method we presented in Chapter 6,we intend to create an

inventory of equivalent questions, to be used by researchers who wish to employ pre-

and post-tests in the computing education research field. Still, we envision to measure

plagiarism practice with the use of this method.

Future work might also investigate ways to motivate instructors to teach the

AIEd systems, such as gamification or monetary incentives. Moreover, it is important

to see those concepts implemented in real scenarios and validated from the learners’

perspective. In addition, we envision examining how each concept-design affects stu-

dent learning individually, intending to prioritise how to assist instructors in employing

these concepts.

Related to the dimension of action pointed out by (HOLSTEIN et al., 2020), this

study explored a few possibilities. Some instructors suggested that the system should

provide a set of methodological/pedagogical strategies given the information provided

in the concepts. According to the instructors, the design concepts presented do not

address the dimension of action satisfactorily. A new study will target this aspect by

providing options on how to intervene in future work.

Moreover, we designed our hybrid POJ architecture in a way that only works

online. We envision studying ways of providing our methods in a novel architecture that

allows offline description, prediction, and prescription - for fairness purposes. So that

even places that do not have access to the internet (what is common in poor regions in

Brazil), could access the benefits of our findings. This is important for the development

of a political context aimed at distributional justice and equal opportunities (SMITH et

al., 2018). Still, the use of data-driven decision systems in domains apart from education

has raised concerns about fairness, bias, and discrimination (KIZILCEC; LEE, 2020).

Thus, it is crucial to conduct more studies about these topics in education.

Finally, we observed that our OJ hybrid architecture could be potentially adopted

for a more generic AI in education hybrid architecture. We envision studying ways to

perform such adaptation.
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APPENDIX I

Following are the results (Figure 44) of our predictive model (Xgboost) for the remaining

sessions (s1-s7). Notice that the model become more accurate throughout the course, as

expected.
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Figure 44 – Results of the XGboost model for all sessions.
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APPENDIX II

Following are the results (Figure 44) of our descriptive method (clustering presented

in Chapter 2) for the remaining sessions (s1-s7). Notice that the hidden patterns found

become more explicit throughout the course.

It is worth noting that for the collected from the second session to the seventh

session, the best number of clusters found was 2. Furthermore, the variables that did

not have a moderate to high correlation with the evaluative variables started to have

such correlation. In this way, the data of all the variables were kept in the radar plots

presented in Figure 45.
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Figure 45 – Programming profile of students in each cluster for the remaining sessions
(s2-s7). cpP stands for copyPaste, dAvg stands for deleteAvg, sPE stands
for submissionsPerExercise, cnCI tands for countCicle, tAvg stands for tes-
tAvg, att stands for attempts, wWS stands for watWinScore, errQ stands
for errorQuotient, synE stands for syntaxError, cor stands for correctness,
corCE stands for eventActivity, exGr stands for examGrade, corCA stands
for correctnessCodeAct, cnCo stands for countConditions, cnV stands for
countVar, keyL stands for keystrokeLatency, sAvg stands for submission-
Avg, sysA stands for systemAccess, lloc stands for logicalLinesOfCode, sloc
stands for sourceLinesofCode, com stands for Comments, aOfC stands for
amountOfChange, proc stands for procrastination, blL stands for blankLine-
sOfCode, even stands for numberOfEvents, IDEU stands for IDEUsage. The
description of the variables is provided in Chapter 2 Table2, in Chapter 3
Section3.4.2, and in Chapter 5 Table 9.
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APPENDIX III

C.0.1 Characterisation of Students’ Programming Behaviours

For a general picture of the original values from the programming behaviours (that

compose the programming profile) used as features by the ML models, we show distri-

butions of these features in Figure 46, before any transformation performed. Overall, we

can observe the lack of symmetry in most of the cases, by seeing that most features have

high positive skewness (skewness > 1.0) (procrastination, amountOfChange, comments,

systemAccess, events, copyPaste, syntaxError, ideUsage, deleteAvg, errorQuotient, watWin-

Score) with long tails (kurtosis > 1.0), which means that they tend to be concentrated

in lower values of the distribution. Indeed, only the eventActivity has a high negative

skewness (skewness < −1.0) , which means the values tend to be concentrated in the

higher values. On the other hand, the other features (attempts, lloc, firstExamGrade, cor-

rectness, correctnessCodeAct, keystrokeLatency, countVar, deleteAvg, finalGrade) have low

or moderate skewness. Moreover, we notice an overall high variation in the features,

which indicates heterogeneity in the students’ behaviours1.

Following, we show the explanation and overall analysis results for each feature

from our programming profile presented in Figure 46:

• procrastination: Here we are analysing the feature before the z-score transformation

and multiplication by -1, thus, a higher value means lower procrastination (and

vice-versa). In this feature, there is a high positive skewness (skewness > 1.0 and

kurtosis > 1.0), indicating asymmetric distribution with a long tail. Indeed, some
1 For more details about the distributions of the programming behaviours, see Appendix A
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Figure 46 – Distributions of programming behaviours (features) and distribution of our
dependent variable (final grade) before discretisation.

students solve the problems close to the deadline, however, most of the learners

started to solve the problems around 5 days before the deadline (mean = 4.93,

median = 4.45). Moreover, we can notice a high variation (std = 3.48, Coefficient

of Variation (CV) = .71, and Inter Quartile Range (IQR) = 1.71) in this feature

endorsing what we claimed about the heterogeneity of the students’ behaviours.

• amountOfChange: High positive skewness and kurtosis (skewness > 1.0 and kurto-

sis > 1.0). This suggests that students tend to change their code slightly between

submissions to the same problem (mean = .72, median = .67). This happens typi-

cally when students have not had their code accepted in the first submission. A

high variation (std = .51, CV = .77, and IQR = 0.55) was observed.

• eventActivity: High negative skewness and positive kurtosis (skewness < -1.0 and

kurtosis < -1.0). Most students (mean = .69, median = .75) solve the problems with

few events (line of logs, see Figure 34). The variation (std = .23, CV = .31, and IQR

= 0.18) is moderate to high.

• attempts: Symmetric distribution (skewness = 0.31), however with a high kurtosis
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(kurtosis > 1.0), which can be explained by the presence of outliers: in this case,

students who tried many times to solve a given problem. In average, students

have attempts of 7.52 and a median of 7.62 per problem, with a moderate to high

variation (std = 3.47, CV = .45, IQR = 3.74). The high average and variation in

the first two weeks might be explained due to the students learning to manage

the online judge system. To deal with the outliers, we applied a root square

transformation, to make the distribution normal.

• comments: High positive skewness and kurtosis (skewness > 1.0 and kurtosis >

1.0), suggesting that, in general, the students do not document their code (mean =

2.86, median = 3.00), which is expected from novice programmers solving easy

problems. Nonetheless, we observe a high variation (std = 2.86, CV = .99, IQR =

4.00) and the presence of outliers. As for attempts, here we also applied the root

squared transformation.

• lloc: Symmetric distribution (skewness = -0.28, kurtosis = -0.82) with a moderate

kurtosis, with a mean similar to the median, indicating a bell-shaped distribution.

The average of total lloc (mean = 111.71, median = 110.10) is low, as the learners

are submitting solutions for problems of arithmetic operations and sequential

structures, which require just a few lines of code. Moderate to high variation

(mean = 111.71, std = 58.98, CV = .52, IQR = 86.0) is observed.

• systemAccess: Most of the students have the number of access to the system in the

first 2 weeks of the course concentrated in the lowest values, as the distribution is

highly positively skewed (skewness > 1.0 and kurtosis > 1.0), with an average of

32.89 access and high variation (std = 30.98, CV = .94, IQR = 87.00).

• firstExamGrade: As the first exams had only 2 problems, students can achieve 0, 5

or 10, if they solve 0, 1 or 2 questions, respectively. That explains the multimodal

nature of this distribution, with three potential values of 0, 5 and 10. A different

grade is possible when students solve one of the problems partially, receiving

a grade proportional to the number of test cases accepted. In average, students

solve one problem from the first exam (mean = 5.01, median = 5.00). Notice that
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the nature of this distribution explains the high variation (std = 4.64, CV = .92,

IQR = 10.00).

• events: Most students have a lower value of events as the distribution is high

positively skewed (skewness > 1.0 and kurtosis > 1.0), with an average of 290.63

events and high variation (std = 180.96, CV = .62, IQR = 201.86).

• correctness: Moderate negative skewed distribution (skewness = -0.94 and kurtosis

= -0.39), which indicates that most students take the first assignment list seriously

and solve the problems. In average, students solved approximately 69% of the

problems (mean = 6.91, median = 8.44) in an assignment list comprising 10 or 12

problems. We also observe a moderate variation (std = 3.21, CV = .46, IQR = 4.84).

• correctnessCodeAct: Most of students have an average value (mean = 4.68, median

= 4.75) of correctnessCodeAct, as the distribution is symmetrical (skewness =

-0.14 and kurtosis = -0.95). However, a high variation was observed (std = 2.77,

CV = 0.59, IQR = 4.31). Notice that the values of these distributions tend to be

lower than for the correctness distribution, which means that, potentially, some

students solved the problems just by copying and pasting, thus, generating only

few events.

• copyPaste: Highly skewed with a long tail (skewness > 1.0 and kurtosis > 1.0), with

an average value of .59 and high variation (std = 0.90, CV = 1.52, IQR = 0.67).

As in attempts, here we also applied the root squared transformation due to the

presence of outliers (values greater than 1, in this case). Notice that a value greater

than 1 means that the learner has pasted more characters than typed (e.g., 50

characters pasted and 10 characters types would lead for a copyPaste = 5 (50/10)).

• syntaxError: Highly skewed, with a long tail (skewness > 1.0 and kurtosis > 1.0).

In average, 29% of the attempts (mean = 0.29, median = 0.24) to solve problems in

the first two weeks have this typical error. A high variation was observed (std =

.25, CV = .84, IQR = .27).

• ideUsage: Highly skewed, with a long tail (skewness > 1.0 and kurtosis > 1.0). In

average, students spend 133.93 minutes trying to solve problems in the embedded
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IDE (mean = 133.93, median = 120.52). A high variation was observed (std = 98.08,

CV = .73, IQR = 126.21).

• keystrokeLatency: Highly skewed, with a long tail (skewness > 1.0 and kurtosis >

1.0). The keystroke average latency of the learners is 2.59 (mean = 2.59, median =

2.61) and a moderate to high variance was observed (std = 1.04, CV = .73, IQR =

.97). As in attempts, here we also applied the root squared transformation, due to

the outliers.

• errorQuotient: Highly skewed distribution (skewness > 1.0), but with no long tail

(kurtosis = .04). We found a low value of errorQuotient penalty in pair of errors

between submission (mean = 4.19, median = 3.19). A high variation was observed

(std = 3.54, CV = .84, IQR = 3.79).

• watWinScore: Highly skewed, with a long tail (skewness > 1.0 and kurtosis > 1.0).

Students spent a few minutes (mean = 3.34, median = 1.90) between a pair of

submissions with errors. A high variation (std = 4.35, CV = 1.30, IQR = 3.99)

was observed, due to the presence of some outliers. As in attempts, here we also

applied the root squared transformation.

• countVar: A moderate to high negative skewed distribution (skewness = -0.72), but

with no long tail (kurtosis = .39), with an average of 22.38 (mean = 22.38, median =

3.19) variables in all the code instances submitted by learners. This relatively lower

number of variables is due to the easy nature of the initial problem assignments.

In addition, a moderate variation was observed (std = 10.56, CV = .47, IQR = 9.89).

• deleteAvg: Highly skewed, with a long tail (skewness > 1.0 and kurtosis > 1.0).

In average, students make little use of delete (mean = 35.13, median = 29.72).

A high variation was observed (std = 26.93, CV = .76, IQR = 27.88), due to the

presence of some outliers. As in attempts, here we also applied the root squared

transformation. Notice that learners who make more use of delete are potentially

rewriting their code more frequently.

• finalGrade: Our target variable is a relatively symmetrical (skewness = .2) bimodal

distribution (kurtosis > 1.0). Indeed, the left peak of the distribution concentrates
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most of the failed students and the right peak, the ones that passed. Students

achieved an average final grade of 3.93 (mean = 3.93, media = 4.00). A high

variation was observed (std = 3.45, CV = .96, IQR = 6.74).
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