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Resumo

O campo de estudo sobre Interpretação Semântica de Vídeos procura maneiras de modelar
as informações existentes nos vídeos. Os métodos existentes podem ser divididos em métodos
genéricos e especializados, o primeiro é capaz de categorizar as informações com eficiência
e o especialista não tem um bom desempenho para dados genéricos. Uma maneira de os
pesquisadores lidarem com esse impasse, em outros campos de estudo, é usar o conhecimento
e as restrições sobre ele. Para isso, usamos o raciocínio neural-simbólico. Nossa hipótese
é usar uma rede neural simbólica para extrair informações de imagens de um vídeo para
modelar essas informações, e enfim realizar raciocínio para extração da descrição semântica.
Para tal propósito foram escolhidos três principais etapas (1) identificação dos objetos nas
imagens do vídeo, (2) identificação das relações espaciais em grupos de frames e (3) analise
das relações temporais encontradas, através dessas etapas identificamos com esta pesquisa
que é possível inferirmos as ações que acontecem em um vídeo através do algoritmo proposto.

Palavras-chave: Neural-simbolico, Interpretação Semântica de Vídeo, Raciocínio Espaço-
Temporal.



Abstract

The Semantic Video Interpretation field of study looks for ways to model the information in
videos. Existing methods can be divided into generic and specialized methods; the former
can efficiently categorize information while the latter does not perform well for generic
data. One way for researchers to deal with this impasse, in other fields of study, is to use
the knowledge and basic restrictions on it. For this, we use neural-symbolic reasoning. Our
hypothesis is to use a neural-symbolic network to extract information from images in a video
to model this information, and finally perform reasoning to extract the semantic description.
For this purpose, three main steps were chosen: (1) identification of the objects in the video
images, (2) identification of the spatial relations in frame groups, and (3) analysis of the
temporal relations found.
Keywords: Neural-symbolic, Semantic Interpretation of Video, Spatial-Temporal Reasoning.
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Chapter 1

Introduction

Video semantic interpretation aims to recognize what happens in a video. This involves
recognizing the objects in the video and the actions that occur in it. Recognition of the
actions of what happens in a video and the semantic understanding of what happens in the
objects present are important fields of study of intelligent video analysis.

One of the challenges identified is related to the recognition of human behavior due to
the low recognition efficiency and low accuracy of some proposed algorithms that will be
discussed in this dissertation. Video semantic interpretation is important for several reasons
because the studies for intelligent video analysis describe videos in different contexts with
different goals.

This study specialization aims to extract information from a video, allowing it to be
described according to the objective under study during this extraction. This can occur
through the analysis of the objects identified in the video and the actions they perform in the
captured time.

As an example, consider a hypothetical situation of a video showing traffic on an avenue.
A company responsible for enforcing traffic laws would interpret if any laws were broken
in traffic. However the companies that suggest travel routes for drivers would interpret the
same data in order to identify whether traffic is intense on this avenue. The goals of an
interpretation of data can be differentiated by contexts as in a hypothetical situation of a
video showing traffic on an avenue. A company responsible for enforcing traffic laws would
interpret if any laws were broken in traffic. However the companies that suggest travel routes
for drivers would interpret the same data in order to identify whether traffic is intense on this
avenue.

Through these examples we identified that the way of studying the data is different
depending on how the data is being analyzed. This means that the descriptions obtained
were different. But if someone questioned how the result of such an analysis was obtained,
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we would need to explain the method of study. Because the description is the result of the
analysis made by the algorithm and the explainability is the human understanding of how
this result was obtained.

As we have the objective of description and explainability in this research, we opted for
the semantic interpretation of the video. Because we want to obtain an algorithm capable of
describing the events of a video in such a way that it is possible to understand how the result
of the description was obtained. In other words, description is about what we want to interpret
in the video semantically by recognizing the objects present in the video and describing the
actions they perform. Explainability, in turn, is how comprehensive an algorithm answer is
easily understood by people.

This interpretation must have information that allows the understanding of what happened
in the video and what relations occurred between the objects during the identified action.

The importance of semantic extraction with explainability occurs through the important
possible applications for such a method. The development of explainable methods aims to
explain to a person how the process of the algorithm in question occurred.

In this way information that demonstrates how our method arrived at an identification
makes it explainable at some level. As soon as we developed this method initially for a small
scope, with the possibility of being expanded to several other applications, we would bring
the explanation for the identification of actions in videos.

Obtaining a video semantic description is a complex task because the data information
used involves different types of data. The data information used for this field of study includes
image analysis, study of temporal and spatial relations, data ontology, object identification,
video analysis and among others.

The semantic description of videos will be more convincing if explainability could
support decisions made by the algorithm. The semantics is focused on the description of
meanings. Our purpose is to identify the actions in a video through the analysis of the
movements that occur in it so that the meaning of these movements justify the identification
of the action.

Because of this we identified that the explainability applied in our method would bring
the understanding of how the actions were identified.The expected explainability for this
method is the understanding of how a person can understand how the algorithm completes
its reasoning about the actions identified by the model.

Using the proposed method, we can apply different types of scopes in videos and in
addition to all kinds of relationships that can develop over time. Identify the behavior of
people in a bank with the intention of robbery, in videos that analyze over time the face of a
driver if he presents tiredness or sleep that causes danger of accident, evolution of CT scans
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of cancer patients over the years, analysis of voters’ tweets during the electoral campaign
when they have contact with fake news.

In this way, we chose to analyze short videos of soccer contexts. We want to specifically
identify actions between pairs of objects. The actions between the player and the ball would
be: losing the ball, controlling the ball and passing the ball. Actions between two opposing
players would be: approaching the opponent, attacking the opponent and sounding out the
opponent.

Although video research is old, one of the first successful descriptive methods are SVOs.
SVOs are methods based on tuples (Subject, Object, Verb) used specifically for video
description for Rohrbach [6] in survey Aafaq [7]. Among them, we can highlight the work
of Koller [8], who developed a system that was able to characterize vehicle movement in
real traffic scenes using natural-language verbs, and Brand [9], which described a series of
actions in semantic tag summaries to extract the description of actions.

Current solutions, as in Cohn [10], perform the identification of objects in a video frame,
prioritizing the identification of the positioning of elements in an image in a qualitative way,
and after that infer the sequence of actions that can happen with objects from that video.

Due to these considerations, our proposal to bring the semantic description of soccer
videos is based on a neuro-symbolic network. Most deep neural networks are considered black
boxes, which means that their output is difficult for humans to interpret. In contrast, logical
expressions are considered more understandable, as they use symbols that are semantically
close to natural language rather than distributed representations, [11]. Thus we find the
starting point for the neuro-symbolic approach.

To get a broader view, but within our context of division and conquest, we looked for an
area of knowledge that has a lot of influence for our purpose, we concluded that for video
analysis we would be dealing with the field of study called Semantic Interpretation of Images
(SII). This is the study area that seeks to extract the meaning of information from visual
data, generally extracting semantic descriptions of images by modeling, allowing the use of
images for various applications.

Methods that use the SII approach have the fundamentals of Artificial Intelligence (AI)
and Machine Learning (ML) called Statistical Relational Learning (SRL), as described in
Donadello [12] which are approaches that deal with uncertainty domain models and complex
relational structures. This was extended in [2], through the use of background knowledge in
their framework. This classification approach is called a Logic Tensor Network (LTN).

In Donadello [13] it is shown that SII can be yielded from a labelled graph, an image
or scene. This graph can be interpreted as the semantic description of the image content.
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This graph is a direct correspondence between the low-level features of an image and its
high-level semantic description.

However this approach is only for images, this means it is only used in static contexts.
LTN is not yet able to compute video semantic recognition because it does not have a
temporal dimension of videos. As LTN is a neural-symbolic approach, it allows inductive
learning and reasoning. Through the information learned and the possibility of its application
in explainable AI methods, this approach relates the computationally processed context with
the external resources of available prior knowledge, see Tiddi [14]. This makes this approach
closer to building human thinking than other machine learning models such as the end-to-end
approach.

The challenge of bringing computational reasoning closer to the human for knowledge
of events began in the Tenorio research [15]. The initial discussion addressed the topic of
temporal symbolic reasoning. Through a closed scenario, it was possible to evidence an
explosion of hypotheses, at the same time that logical rules were extracted even with a high
level of expressiveness.

Such an experiment was important for understanding how the symbolic model of spatial-
temporal information behaves in a purely symbolic approach. Allowing us to understand
that when dealing with two-dimensional information, in this case, such as space and time,
it is necessary to have a model capable of relating these dimensions in a coherent way.
However, the advances achieved by AI and ML demonstrate a high impact on the challenges
encountered in the Tenorio research [15]. In addition to the growing concern about reliability,
security, and interpretability of the results obtained from AI methods.

Therefore, there is a need for a better representation of knowledge and reasoning to
integrate with AI deep learning and explainability. Neural-symbolic computing has been an
active area of research for many years. It seeks robust neural network learning with reasoning
and explainability through symbolic representations for neural network models, discussed in
Garcez [16].

Considering all this, the main objective is to develop an algorithm with better semantic
description of video, being able to identify objects, relations between them and infer their
respective actions.

As specific objectives, we intend to: develop an algorithm with more descriptive and
interpretive video information for humans, being able to identify objects, relations between
them and infer the respective action. Our specific goals aim to identify the objects and their
positions in the video, using a framework that is superior to others for this purpose; provide
the identification of spatial relations in symbolic neuro-networks; adapt LTN relations based
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on the QQSTR method; model the identified information in a data structure that allows the
identification of the action that occurred in the video.

The remainder of this work is organized as follows: Chapter 2 presents Fundamental
Concepts necessary for understanding the problem, and the methods used to solve it; in
chapter 3 we describe the proposed model, in addition to demonstrating its application in a
toy generic example for, finally, its application in the context of our final objective, actions
in soccer; the next chapter, Experiment, describes how knowledge construction process,
the associated logical rules, and the construction of the proposed model for the context of
actions in soccer, which was the chosen context; ending in chapter 5, where we present the
conclusions of our research.



Chapter 2

Summary of Related Works

Given the information about the purpose and challenges to be faced in the elaboration of
this method, below we will briefly describe the main base works for this research and their
contributions to it. The main works are LTN for SII by Donadello [2], QQSTR by Cohn [4]
and Activity Graph by Sridhar [17].

The Logic Tensor Network (LTN) is a framework that uses neural symbolism, it has been
shown to be superior to some methods, as in the study by Donadello to identify the part-of
spatial relationship between objects in images. Qualitative and Quantitative Spatial-Temporal
Relations (QQSTR) is an approach that models spatial-temporal information using qualitative
and quantitative characteristics. And finally, Activity Graphs that model spatial relationships
in time using the concept of directed graphs.

In addition to these methods, we highlight the importance and contribution of the YOLO
framework [3]. Through it we will identify the objects in the videos and classify them. In
addition, it will play a fundamental role in the execution of our method to relate the different
approaches that we will use.

As described, LTN is used only in static contexts and has already been applied to images,
but videos have a temporal dimension. This dimension is addressed by the two other
fundamental works QQSTR and Activity Graphs. And we will use YOLO to adapt this
dimension to be used by LTN. In the following chapters we will further discuss this need and
implementation.

The relevance of LTN use is reinforced in Donadello’s research [2]. Using the neural-
symbolic approach of the LTN structure, he shows that it is possible to identify spatial
relationships between pairs of previously identified objects in a way superior to methods
such as Fast-RCNN.
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For such relevance, we adopted the following adaptation to list the works used: YOLO,
in addition to identifying and categorizing the objects of the videos, will be able to fragment
the video into frames, that is, images that are capable of being processed by the LTN.

The LTN in turn will be able to reason about the relations between pairs of video objects.
These spatial relationships will be based on the approach used by Cohn, so that they are
qualitative relationships that allow explainability to continue in our approach in a judicious
way.

Finally, the temporal relations received by YOLO and the spatial relations reasoned by
the LTN will be structured in Activity Graph.

What we propose is an extension of the LTN’s Semantic Image Interpretation to apply it
in the context of spatial-temporal reasoning. The justification for this choice lies in the better
learning results of LTN when compared to other semantic image description frameworks.

The importance of using a framework with a symbolic neural network lies in the strong
representation that this approach has. Allowing that the neural network of this framework
is not a total black box, making the inferences reasoned by our hypothesis a little more
understandable to the human being than the other models.

We intend to demonstrate an algorithm for semantic analysis of soccer videos, such an
algorithm will have several steps to reach the final objective. We will have the pre-processing
of the video through the YOLO framework, to then be analyzed by the LTN that will reason
by spatial relations based on the QQSTR approach. Finally, the spatial relationships will be
structured in an Activity Graph with the equivalent temporal relationships to infer the actions
of soccer videos.



Chapter 3

Fundamental Concepts

The extraction of information from images and videos formed by raw data (without metadata)
can be related to the symbolic approach to obtain the level of explainability and reasoning as
described in Donadello [18].

There are several advantages of extracting information from symbolic knowledge as a
possible advancement towards explainable AI, making such an approach relevant in neural-
symbolic environments, as described by Garcez [19]. This possibility of extracting symbolic
knowledge from pure data in artificial neural networks provides the investigation of how to
improve the explainability of these methods.

In this way, we approach in this chapter, the concepts that underlie the relevance of
neural-symbolic AI, the LTN framework, and its applications in the semantic analysis of
images. We discuss other related works such as YOLO, space-time reasoning, and the
semantic interpretation of the video.

3.1 Artificial Neural Networks

The human brain processes information in a completely different way than conventional
digital computers. It is in the interest of Artificial Intelligence to propose requirement
specifications and express mental models of reasoning.

Starting from that point, Arrieta [20] addresses information about the consensus that has
been created on the importance of explainability. That is, intelligent machines are endowed
with learning, reasoning, and adaptability so that it is still possible to explain to human beings
how these factors are computed.

Although the first systems provided with artificial intelligence were easily interpretable, in
recent years black box systems such Artificial Neural Network, also called the Connectionist
System, are a powerful approach to Machine Learning, inspired by biology and neurology
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as demonstrated in Bader [21]. Black box systems are those that do not allow the human
interpretability of their results, which, unlike white-box systems, are easily interpretable.

Among the black box systems, Deep Learning (DL) models emerged through the union of
efficient learning algorithms and the ability to process several and numerous parameters. Such
conditions have made DL applications, such as Deep Neural Networks (DNNs), considered
complex black-box models explain Arrieta [20].

Among the AI methods, we have Connectionist AI, inspired by intelligent behavior
models. It structures parallel information strongly connected to each other just as the brain
acts between its neurons. The inspiration of this structure is so directly related to the human
nervous system that its components are:

Figure 3.1: Illustration of the behavior of a neuron, adapted from [1]

Besides this method, we also emphasize that Neural Networks are very well distributed
parallel processors, formed by simple processing units (artificial neurons) that are capable of
storing knowledge and making it available for use. As illustrated in Figure 3.1, the behavior
of a neuron can be analyzed in three different steps described by Borges [1]:

1. The synapse (connection) represents the input of a neuron. It is defined by a weight,
which is a real number that will multiply the input values of that synapse;

2. Followed by a combination of weighted inputs and a bias. These values are usually
added to get a new value that will go to the next step v;
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3. Finally, an activation function φ is applied to the value v in the previous step. This is
how the neuron output value called neuron activation is defined.

The comparison between neural networks and the human brain can be done in two main
learning aspects: learning from the environment and storing acquired knowledge. This
knowledge is obtained by connecting neurons, also called synaptic weights.

Its main advantages are its strong parallelism, fault tolerance due to its robust learning,
efficiency in inductive learning, and generalization capability. According to Garcez [22]
they have been used in a variety of tasks, including pattern recognition, robot control, DNA
sequence analysis, and time series analysis and prediction.

Among the main characteristics of artificial neural networks, we can accentuate the
natural tendency to empirical learning, through the use of learning algorithms. This learning
generally occurs by adapting the synaptic weights and the values of the neurons according to
the output error, as explained by Borges [1].

Therefore, we will highlight some attributes that are important for deep learning, Battaglia
[23] define as entities, relations, and rules. An entity is an element with attributes, a relation
is a property between entities, and a rule is a function that maps entities and/or relations to
each other.

3.1.1 Types of Artificial Neural Networks

We initially identified that methods before Artificial Neural Networks valued representation
due to the computational power of the time. Currently, as more robust technologies in terms
of processing time and information storage capacity, deep learning methods have emerged
that seek to be end-to-end methods, that is, they do not emphasize the representation of
information, but the computation that is possible to perform on the data.

For this reason, this subsection explains the different purposes that neural networks can
have, the fields of study in this area, and the use of different connectionist architectures.
Battaglia [23] cites some examples as:

• Fully connected layers: each neuron has an all-to-all relation and the rules are defined
by weights and bias, as illustrated in Figure 3.2;

• Covolutive layers: entities are units like pixels of an image, but with sparse relations
and reflecting relational rules in neurons according to their locations, that is, the closer
the neurons, the greater the influences between them. See 3.3;

• Recurring layers: a sequence of steps is implemented, with inputs and hidden states
in each of them. In order to combine so many different aspects, the input entities are
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Figure 3.2: Example of a neural network’s fully connected layers

Figure 3.3: Example of a neural network’s covolutive layers

connected to the output entities from the previous step. That way the hidden states can
be updated in the next state as they will be used as input, see 3.4.

Still addressing the concepts of neural networks, there is the importance of the black
box behavior of this approach, that is, without explanation for humans. But it is possible to
recognize that such an AI is capable of recognizing patterns and reasoning about data, and is
endowed with learning.

Among other characteristics of neural networks, according to Battaglia [23], the principle
of combinatorial generalization shows the construction of new inferences, predictions, and
behaviors from known blocks. However, for humans, Cohen [24] explains this, which relies
on the cognition engine to represent structures and reason about existing relations.

Therefore, it is evident that Neural Networks are methods of computational learning that
are inspired by the human brain in order to improve reasoning and learning through computer
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Figure 3.4: Example of neural network recurring layers

algorithms, aiming at the expected result without prioritizing the explainability of how it was
obtained.

Next, we present subsections that discuss a specific category of artificial neural networks,
the Symbolic Neural Network; and the framework that we propose to use in this research,
the Logic Tensor Network, which is a framework with a symbolic neural network.

3.2 NeSy AI

According to Sarker [25], Neuro-Symbolic Artificial Intelligence (NeSy AI) is a subfield of
the field of Artificial Intelligence. NeSy AI can be defined as the association of symbolic
methods and methods based on artificial neural networks. Sarker cites:

"The term neural in this case refers to the use of artificial neural networks,
or connectionist systems, in the widest sense. The term symbolic refers to AI
approaches that are based on explicit symbol manipulation. This in general
would include things like term rewriting, graph algorithms, and natural language
question answering. It is often more narrowly understood, though, as a reference
to methods based on formal logic, as utilized, for instance, in the subfield of AI
called Knowledge Representation and Reasoning. The lines easily blur, though,
and for the purposes of this overview, we will not restrict ourselves to logic-based
methods only."

One of the main differences between approaches is the representation of information
within an AI method, and it is precisely this difference that causes the overlap of one NeSy
approach with the others.



3.3 Logic Tensor Network 13

In symbolic systems, the representation of information is totally direct, it is interpretable
by a human being, in addition, it can be manipulated and logically inferred.

However, neural systems have a strongly connected representation between neurons and
their simultaneous activation between them, thus what we call a black box, that is, difficult to
understand for a human being, as discussed in section 3.1.

3.3 Logic Tensor Network

LTN is a framework that integrates Artificial Neural Networks, SRL with First Order Fuzzy
Logic. Through constraints and logical formulas reasoning about the properties of informa-
tion, it is possible to get efficient learning from noisy data described in Serafini [12].

This is a framework capable of identifying binary relations between constants, through
input data properties, prior knowledge, and logical descriptions, as described by Donadello
[2]. Donadello [18] carried out a study on such capabilities in a static context with one-
dimensional approaches, that is, studies with pure data.

The advantage of LTN over other frameworks comes from the combination of visual
data entry with Background Knowledge (BK) corresponding to the data. This allows the
framework to avoid the "zero-shot" learning that occurs when a framework learns without
any prior information to guide its reasoning, explain Donadello [18].

With an LTN, it is possible to have a relation between logical rules and the learning that
takes place on the network, Making it’s black-box grayer, that is, with more explainability
than common neural network models. This approach of using the learning approach based
on logical rules characterizes LTN as a neural-symbolic approach.

According to Bennetot [26] the neural-symbolic approach is important because of (1) the
possibility of logical induction for reasoning about the information learned, (2) the possibility
of its application in eXplainable AI methods, (3) the extraction of logical rules, and (4) the
modeling of information closer to human thought.

In Donadello [2] the LTN application is described to combine visual and symbolic
knowledge in the form of logical axioms to solve two problems of SII: (1) the classification
of objects identified in the images, and (2) identifying part-of relations between the objects
that compose it.

Thus, an LTN aims to compensate the mismatch between low-level (numeric) character-
istics that can be observed in an image and the high-level semantic descriptions associated
with objects present in it, this is the semantic gap, through the use of background knowledge
according Donadello [2].
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3.3.1 Definitions of LTN

The LTN syntax is the same as the First-Order Predicate Language (PL): definition is
comprised by the terms {C,F,P}, where C are constant of symbols; F are functions of real
numbers; P are predicates interpreted as functions on real vectors of [0, 1] for relations,
whose the domain is a subset of Rn.

Because it is a Predicate Language, LTN also needs to satisfy the same conditions
presented by Donadello [13]:

• G (c) ∈ Rn for every constant symbol c ∈ C ;

• G ( f ) ∈ Rn.a( f )→ Rn for every functional symbol f ∈F ;

• G (P) ∈ Rn.a(P)→ [0,1] for every predicate symbol P ∈P

Definition 1 (N-grounding) A formula is interpreted by its degree of veracity. LTN uses the
term grounding as a synonym for logical interpretation in a "real world", G (with n ∈ N,
n > 0) captures the correlation between objects, their category properties and relation to
these conditions:

1. G(c)∈R, for every c ∈ C

2. G(P) ∈Rn.α(P)→ [0,1], for every P ∈P

Given a grounding G and let terms(P L ) = t1, t2, t3 ..., the induction is defined as
follows:

G (P(t1, ..., tm)) = G (P)(G (t1), ...,G (tm))
(Equation 1)

Under such conditions LTN has the exact grounding of an unknown symbol φ , but it is
known that it can be obtained by finding a set of real-valued parameters, that is, via learning.

To emphasize this fact, LTN adopts the notation by Badreddine [27]. This process
requires a t-norms operator used in Fuzzy Logic. In this case, Donadello [13] describes using
Lukasiewicz t-norm for the semantics of non-atomic formulas.

Due to such grounding, LTN defines Lukasiewicz t-norm according to the following
functions:

G (φ → ψ) = min(1,1−G (φ)+G (ψ))

G (φ ∧ψ) = max(0,G (φ)+G (ψ)−1)
G (φ ∨ψ) = min(1,G (φ)+G (ψ))

G (¬φ) = 1−G (φ)

(Equation 2)
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However, LTN is not limited to such t-norms; there are also functions for the interpretation
of quantifiers, for example, the interpretation of ∀ is:

G (∀xφ(x)) = in f G (φ()t)|t ∈ term(PL )

(Equation 3)

The definitions mentioned above do not tolerate exceptions; however, LTN is able to
handle this type of information. Because this framework can handle exceptions by assigning
higher truth outliers to the formula ∀xφ(x), providing learning with the required exception, if
many examples satisfy: φ(x). See:

Definition 2 Let meanp(x1, ...,xd) =
( 1

d ∑
d
i=1 xp

i
) 1

p , with p1 ∈Z , d ∈N , the grounding for
∀xφ(x) is:

G (∀xφ((x))) = lim
d→|term(PL )|

meanp(G (φ(t1)), ...,G (φ(td)))

(Equation 4)

The grounding of a quantified formula ∀xφ(x) is the mean of the d groundings of the
quantifier-free formula φ(x). Regularity is necessary for a suitable function for grounding.
Let b ∈ C refer to a bounding box constant containing a dog as illustrated in 3.5. Let v =
G (b) be its feature vector, then it holds that G (Dog)(v) ≈ 1.

Moreover, for every bounding box with feature vector v’ similar to v, G (Dog)(v’) ≈ 1
holds. These functions are learned from data by tweaking their inner parameters in a training
process.

Figure 3.5: Example of bounding box notation in a video frame

In addition to the functions, we have the predicate symbols, these are effective architec-
tures for relational learning. Let b1,...,bm ∈ C with feature vectors vi = G (bi) ∈Rn, with i =
1,...,m, and v = <v1; ...;vm >is a m-ary vector given by the vertical stacking of each vector vi.
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In this way, there is also the grounding associated with the predicates. The grounding
G (P) of an m-ary predicate P(b1, ...,bm) where σ is the sigmoid function:

G (P)(v) = σ

(
uT

Ptanh
(

vT W
[1:k]

P v+VPv+bP

))
(Equation 5)

Finally, for the predicate, we have the following parameters: UP ∈ Rk, a 3-D tensor
W

[1:k]
P ∈Rk×mn×mn, VP ∈Rk×mn and bP ∈Rk. The parameter UP computes a linear com-

bination of the quadratic features returned by the tensor product. With Equations (1) and
(5) the grounding of the closed terms are computed, and the atomic formulas are combined
using a specific operator t-norm, see Equation (2).

These are the ways to build the formulas to be used in LTN. Through this, symbolic
neural networks can be built. In the next section, LTN learning will be discussed.

3.3.2 LTN Learning

LTN learning occurs through the construction of groundings, a process which involves
optimizing the truth values of the formulas discussed in the previous section. Through this,
an LTN knowledge base is built, also known as grounded theory.

Through the divide and conquer approach, a partial grounding Ĝ is a grounding defined
on a subset of the signature of PL , to finally unite in grounding G for PL . Donadello
[13] define this grounding as a completion of Ĝ (in symbols Ĝ ⊆ G ) if G coincides with Ĝ

on the symbols where Ĝ . See the definitions about this in LTN:

Definition 3 A grounded theory GT is a pair <K , Ĝ >with K a set of closed formulas and
Ĝ a partial grounding.

Definition 4 A grounding G satisfies a grounded theory <K , Ĝ >if Ĝ ⊆ G and G (φ) = 1,
for all φ ∈K . A grounded theory <K , Ĝ >is satisfiable if there exists a grounding G that
satisfies <K , Ĝ >.

Grounding Theory (GT) < K, Ĝ > is defined as an extension of partial grounding Ĝ >

on all possible grounds. So that all instances of clauses in K are satisfied within the range,
making grounding satisfactory.

But this is not practical, to verify the satisfiability in the grounding, a correlation must be
captured between the quantitative attributes of an object and its relational properties. Serafini
[28] explains that to limit the number of instances of clauses, which can be infinite, we
generally consider the instances of each clause to a certain depth.
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According to the above definition, the satisfiability of <K , Ĝ >can be obtained by
searching for a grounding G . That extends Ĝ such that every formula in K has value 1 when
a grounded theory is not the GT.

Definition 5 Let <K , Ĝ >be a grounded theory. This definition is related to the problem
of the best satisfiability, this amounts to searching an extension G ∗ of Ĝ ∈ G (the set of all
possible groundings). Serafini [28] explains that, maximizing the satisfiability error on the
set, and minimizing the truth value of the conjunction of the formulas in K :

G ∗ = argmaxG
Ĝ⊆G∈G

(
φ ∈K∧ φ

)
(6)

The maximum satisfiability problem is an optimization problem on the set of parameters
to be learned. Let Θ= WP ,VP ,bP ,uP |P ∈P be the set of parameters. Let G (.|Θ) be
the grounding obtained by setting the parameters of the grounding functions to Θ.

The best satisfiability problem tries to find the best set of parameters Θ with λ ∥Θ ∥2
2 a

regularization term:

Θ∗= argmaxΘG
(∧

φ∈K φ |Θ
)
−λ ∥Θ ∥2

2 (7)

Through such learning, it is possible to identify different scopes of application of the use
of LTNs as mentioned initially in this section. Next, the application of LTN in the specific
scope of semantic image interpretation is explored.

3.3.3 LTN in Semantic Image Interpretation

With LTN, it is possible to perform linear regression, binary or multi-label classification,
and relation learning. As our goal is to use LTN to analyze spatial relations between
objects identified in a video, we focus on understanding the framework for relations between
instances.

LTN learning for spatial relations in images is described by Serafini [29] using the
following definitions :

Domain Two rectangles A and B represented by four real numbers and six spatial relations,
as show in Figure 3.6:

Problem Given the above definitions it is necessary to provide examples of pairs for each
relation and the background knowledge with the logical constraints, as shown in figure
3.6, making it possible to identify what is the relation between two new random objects.
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Figure 3.6: 1. a to the left of b, 2. a to the right of b, 3. a is a above b, 4. a is below b, 5. a
contains b and 6. a is contained by b.

Language Defined as: le f t(a,b), right(a,b), above(a,b), below(a,b), contains(a,b) and
in(a,b)

Constraints Positive and negative examples of each spatial relations and axioms of spatial
relations as: ∀(x,y) : le f t(a,b)−> le f t(b,a)

Donadello [2] uses LTN to describe the identification of the Part Of relation between
pairs of objects. These objects are identified in the input image. Each object is associated
with a bounding box and has its characteristics represented in an n-dimensional array of real
numbers, such as:

<class1(0,b1)1)...,classn,(0,b1),x0,y0,x1,y1 >

As relates to this form of object identification, we have the labels as semantic classes,
or types of objects, identified in the bounding boxes. The terms class1(0,b1), ...,classn are
the possible classes for the objects described by the background knowledge; (x0, y0) are the
upper left and (x1, y1) are the lower right coordinates.

These characteristics are related to an ontology of the descriptive structure, which is
presented by Serafini [29] and can be represented by a labeled directed graph, where the
vertices are the bounding boxes, which represent each object identified in the initial image.

Such vertices are labeled with the type of object that exists in them; edges are the relations
between pairs of objects, labeled by the reasoned binary relation. Each graph of this structure
is called a scene graph [2], as show in Figure 3.7.

Given the information on how the LTN is composed and its behavior to reason about the
data, we now emphasize that the language of the LTN undergoes some adaptations to be used
in the research of Semantic Interpretation of Images. We emphasize them below:
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Figure 3.7: In this graph, the vertices represent the bounding box of each object in the image
with their classification and the edges are labeled with the relations between pairs of objects

• C constants are all “bounding boxes” identified in the image, they are formed by
semantic characteristics (possibility of belonging to the class of objects) and geometric
(quadrant x0,y0,x1,y1)

• F empty, as the SII task of partial knowledge completion does not require function
symbols;

• P the predicates are P1,P2, P1 is the set of unary predicates which are the object
identification classes, as P1 = person,woman,child,animal,dog,cat, and P2 is the
set of binary predicates with the relations between pairs of bounding boxes, as P2 =

hugging, jumping,running, talking.

Semantic Interpretation of Images addresses the understanding of the relations Part Of.
This relation is defined by checking the overlap between bounding boxes of objects in the
image, and by analyzing the logical constraints that are provided as background knowledge.
Because a dataset contains objects and pairs of objects labeled with a set of labels that are
relational data, and visual relation are labels between pairs of bounding boxes that describe
the semantic relations between the physical objects in the bounding boxes.

But when dealing with incomplete information, it is necessary for the LTN to be able to
complete the missing information, this is called completion of the knowledge base. According
Donadello [13] LTNs are developed to encode and solve this task with the help of logical
constraint. This is done using grounded theory TSII =

〈
KSII, ˆGSII

〉
, where KSII is a LTNs

knowledge base and ˆGSII is a partial grounding. In order to complete a partial knowledge of
the database, extend or land G ∗SII to ĜSII , being:

G ∗SII(C(b))→ [0,1]
ĜSII(R(b1,b2)→ [0,1]

3.3.4 Implementation of LTN for SII

To understand the implementation of LTN for SII, we first need to understand the state of
the art on this type of study. Convolutional Neural Networks (CNNs) constitute the state-of-
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art models in all fundamental computer vision tasks, from image classification and object
detection to instance segmentation as Arietta [20] describes. A CNN can be divided into two
categories: 1) search to understand the decision process by mapping the output in the input
space to see which parts of the input were used for the output; 2) find out how the network,
and interpret how the middle layers, see the outside world.

These advantages over the use of the LTN framework for reasoning about images that we
are addressing in this work were identified through experiments presented by Serafini [2].
In this experiment, they choose the "Part Of" relation to better handle the PASCAL-PART
dataset, and ontologies were in WORDNET as cite Chen [30] and Fellbaum [31].

As relates to the "Part Of" relations, visual relations capture a wide variety of interactions
between pairs of objects in images. This further emphasizes the importance of this field of
study, because the better algorithms are developed for this study, the more scope applications
can be explored, explains Lu [32]. With this, the Part Of can be used to represent many
classes of relations between constants, including spatial relations.

However, it is worth noting that many other relations could have been included in this
evaluation, but the time complexity of LTN grows linearly with the number of axioms. To
train in a large visual set, many data labels can be affected by noise, such as missing or
incorrect labels, non-localized objects, and disagreements between annotations. For example,
labels for humans often confuse "Part Of" with the relation "Have". So to differentiate them
would require a computational queue resource not interesting for our current research.

This LTN for the SII experiment used a PASCAL-PART dataset, the images of this dataset
had bounding boxes for the objects, the categorization of the objects, and the part-of relations
between pairs of bounding boxes. With these data, it was possible to reason the classification
of the object type, and the detection of the "Part Of" relation. This was done through a set of
bounding boxes detected by an object detector, in this case, Fast-RCNN.

In this way, each bounding box had the identification of its object type, and the "Part-Of"
detection task occurred from a pair of bounding boxes, in case the object contained in the
first is part of the object contained in the second.

LTN was used to solve both tasks: (1) because a type of bounding box and the part of the
relation are not independent, (2) their dependencies are specified in LTN using background
knowledge in the form of logical axioms. To show the effect of the logical axioms, two
experiments with LTNs were carried out. The first had only examples of training types of
objects and relation "Part Of" (Texpl). While in the second, logical axioms were added about
types and "Part Of" (Tprior).

According to Donadello [2], the LTNs were set up with TensorFlowT M with layers as k =
6 and a regularization parameter λ = 10−10. They choose Lukasiewicz’s T-norm (µ(a,b) =
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max(0,a+b−1)) and use the harmonic mean as aggregation operator. The experiment ran
1000 training epochs of the RMSProp learning algorithm available in TensorFlowT M. The
results obtained were compared with those made in the Fast RCNN framework to classify the
type of object and the "inclusion radius" (ir) to detect "Part Of". By the following definition:
if the ir is greater than a certain limit th (in this case, th = 0.7 was adopted), the bounding
boxes will have the relation "Part Of".

Every bounding box "b" is classified into C ∈P1 if G (C (b))≥ th. With this, a bounding
box can be classified into more than one class. For each class, precision and recall are
calculated in the usual way. This allows a bounding box to have several classes.

Figure 3.8: Precision-recall curves for indoor objects type classification and the Part Of
relation between objects. Image of [2]

The results show that for the types of objects and for the "Part of" relation, LTN trained
with prior knowledge provided by mere logical axioms perform better than LTN trained
only with examples, see Figure 3.8. In addition, LTN was trained using the results of Fast
R-CNN. This has meant that previous knowledge of LTN improves the performance of the
Fast R-CNN (FRCNN) object detector.

This is because LTN makes the choice to consider the semantics and geometry of the
data. This makes the LTN classifier robust with a drop in precision, but the logical axioms
make up for this drop. Therefore, they concluded that the experiment indicates that the LTN
axioms offer robustness when dealing with noise.

Regarding the fall, it is understandable to expect that there will be a negative impact on
performance. But one can see a growing difference between the drop in performance of LTN
trained with examples only and LTN trained including prior knowledge. Next, we show how
to code a set of K formulas in LTN so that each formula in K has an LTN, and then, they
have aggregated all networks with an operator and according to Equation (6).
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Starting from an example where K is derived by the formula drive(x,y)→Vehicle(y),
with input elements v and u. The grounding calculation is represented in the LTN in Figure 3.9,
with G (x) = v,G (y) = u and k = 2, therefore G (drive(v,u)→Vehicle(u)). The parameters
to be learned are Wd,Vd,bd,ud,WV ,VV ,bV ,uV (where d means an inverter and V means the
Vehicle).

Figure 3.9: LTN for the formula drive(x,y)→Vehicle(y), TensorFlowT M to drive(x,y) and
other to Vehicle(y). Image adapted from Donadello [2]

In this way, we understand that learning is accomplished by maximizing the true value,
degree of satisfaction, of the formula drive(x,y)→Vehicle(y), see Definition 5. However,
a knowledge-base K can contain many formulas: K = φ1, ...,φq and the ground G (φ) is
calculated for each formula (φ ∈ G ) that obtains a set of LTNs.

The blocks of the networks, represented by dashed rectangles in Figure 3.9, correspond
to predicates in the PL that can appear in various formulas. In other words, some blocks
can be linked to blocks of other formulas and a very complex network will be formed.

In the last stage, the grounding G (φ) (the outputs), with φ ∈K , will be connected to
some operators the implementation of ∧ that will be defined according to the chosen t-norm.
This will return the grounding G (K ) of the entire knowledge base K .
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3.4 YOLO

YOLO, [3], is a system that provides the delimitation of boxes using dimension groups as
anchorage boxes. The YOLO framework will substitute in our method the Fast-R CNN
from Donatello’s experiment. This is because YOLO currently has the best performance for
classifying and identifying objects in images in a generic way, being ideal for the purpose of
this research to have data from only one niche, in this context, soccer games.

This framework has the behavior defined with the cell and is identified by 4 coordinates
for each bounding box, represented by: tx, ty, tw, th, for tx and ty the top left corner of the
image by (cx,cy) and for width and height by tw and th. The predictions in YOLO correspond
to, see 3.10:

bx = φ(tx)+ cx

by = φ(ty)+ cy

bw = pxetw

bh = pheth

So it is possible to identify if the cell is offset from the upper left corner of the image by
(cx,cy) and the previous bounding box has width and height px, ph. During training, the sum
of error loss squared, Redmon [3] explains how this is used, as the truth on the ground when
determining a prediction from the coordinates is determined as t*. Then the gradient will be
the value of the truth on the ground, obtained by subtracting the given prediction, so: t̂* - t*.
This ground truth value can be easily calculated by inverting the above equations.

Figure 3.10: Bounding boxes with dimension priors and location prediction. Image from
Redmon [3]

Each box predicts the classes the bounding box may contain using multi-label classifica-
tion and independent logistic classifiers. During training, there is binary cross-entropy loss
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for the class predictions. According to Redmon [3] this occurs because the classes can be
moved to more complex domains like the Open Images Dataset.

Therefore, YOLO training is done on full images without any difficult negative mining.
According to Redmon [33], the neural network structure used in the framework is Darknet and
its training took place at various scales, such as data augmentation and batch normalization.

3.5 Spatial-Temporal Reasoning

Studies on Spatial-Temporal Reasoning (STR) generally use visual data, and focus on the
analysis of interactions with objects, observing characteristics of the environment through
videos. According to Tayyub [34], in the analysis of spatial temporal relations, the qualitative
approach is usually more successful, as it captures the main spatial and temporal changes in
visual data and has become quite common in the representation of activities.

Such a study should not be based on just one dimension, as its characteristics may change
over time and something in the present may be justified by a previous state. That is why it
is important to obtain a representation that allows the analysis of the spatial and temporal
dimensions in the same model. Since the states of an object are directly connected to its
characteristics.

3.5.1 Qualitative and Quantitative Spatial-Temporal Relation

By using visual data to analyze interactions between objects, the qualitative and quantitative
spatial-temporal relation (QQSTR) captures important changes in instances over time. The
choices of these characteristics in the framework were defined by the great representativeness
that this information describes in the analyzed visual data, explains Tayyub [34]:

Qualitative implies that two objects are partially overlapping, without specifying how much
overlap exists, such as describing when an activity begins and ends before another
activity begins.

Quantitative unlike the qualitative, is defined as something measurable in quantity, such as
in describing that two objects, for example: overlap by 30%.

Spatial describes property and relations between objects that exist in space, such as poses of
objects, poses of objects relative to other objects, the direction of absolute and relative
movement, etc.
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Temporal describes the properties or relations of objects or activities over time, like interval
algebra. Identifying an activity’s start time, its duration and completion, and whether
there was overlap or relations with other properties, objects, or activities.

These features are used by the QQSTR method with each feature responsible for the
complete characterization of an action F = <F1, F2, F3 >, as follows:

F1: Qualitative Spatial: A histogram is used to identify subsequences, that is if the
sequence repeats it is suppressed until a change occurs. Suppressing the minimal blocks will
suffice to describe an action.

The spatial relation between pairs of objects can be classified as follows, see Figure 3.11,
with their representations being: discrete, partial or partial overlap, inverse part, or equality.

Figure 3.11: Each layout is categorized into F1, left - discrete D, in the center - PO partial
overlap, and right - O overlap, inverse part, or equality. Image to illustrate the QQSTR,
method of Cohn [4]

F2: Qualitative temporal In F1 it is not possible to have the notion of time in an event.
Usually this description is made by Allen’s interval algebra, cited in [23], but it does not
encode quantitative relations of duration.

Allen’s Interval Algebra is an approach to reasoning about time using the notion of time
intervals and binary relations [35]. A time interval T is an (X, Y) where X is smaller than Y
and both are points in time. The relation between these two points can be described by one
of the relations in Table 3.1.

So in Tayyub [34] the relation of encounters is added as a qualitative measure according
to a relative duration between two different and consecutive spatial relations. The temporal
classifications of the duration of spatial relations can be short, equal, or long, as shown in
Figure 3.12.

F3: Spatial quantitative: This representation is used to help the model recognize the
different activities that resemble the qualitative representation. This uses the Euclidean
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Table 3.1: Relations in Allen’s Interval Algebra. Image from Mate [5]

Figure 3.12: The scheme of each layout categorized into F2, left - short, in the center - equal,
and right - long. Cohn’s [4] adapted image

distance through the centroids of the identified objects, or the relative direction of motion.
Contextualizing, thus, the previous characteristics in a measurable, quantitative way.

Qualitative Reasoning is not just a representation of the physical world, according to Cohn
[4] it is also important in this abstraction as it is used for predictive models, diagnoses, and
explanations of environments. By introducing physical characteristics, we have Qualitative
Spatial Reasoning (QSR). This feature allows to obtain representation and reasoning with
dimensional spatial entities, that is, kinematic features.

Thus the model has applications in areas such as geographic information systems, robotic
navigation, common sense about physical dimensional situations, spatial preposition seman-
tics in natural language, and, to which this research applies, visual language syntax and
semantics, as explains Cohn [10].
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Figure 3.13: Demonstration of the difference between the centroids of objects in a quantitative
way. Cohn’s [4] adapted image

3.6 Semantic Video Interpretation

During the course of the research, we must pay attention to the object under study and
its main characteristics for its analysis [24]. LTN can analyze information about spatial
features as it can extract it from the provided visual data. However, in a video, LTN would
analyze each frame of the video individually, without analyzing the context of the temporal
information.

But when we analyze videos, we have a new dimension of characteristics, time. For this
reason, spatial-temporal reasoning is necessary for this approach. That’s why we propose to
adapt the LTN so that each frame is analyzed individually to semantically describe the set of
frames by which the video is formed.

Recognition of video semantics is a fundamental research problem in computer vision
and multimedia analysis. Video data is usually represented by high-dimensional features.
Zhang [36] identifies that semantic video recognition performance may deteriorate, due to
irrelevant and redundant components included in high-dimensional representations.

Thus, it is important to emphasize a deeper understanding of video activities. This goes
beyond the recognition of underlying concepts such as actions and objects, but also the
construction of semantic representations, being profound it requires reasoning about the
semantic relations between these concepts.

The interpretation of video content consists of the construction of a semantically coherent
composition of basic (atomic) elements of knowledge. According to Aakur [37] they are
called concepts detected in the videos which represent the individual actions and objects
needed to form an interpretation of an activity.
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3.6.1 Identification of objects and their relations in images and videos

We call an object any and all elements identified in a scene, be it a person, a member of
a body, a kitchen utensil or animal. To carry out the identification of an object in a video
frame, or in an image, we need to clearly identify the objective of the model we are dealing
with. Because information about object placement and description may be sufficient for a
search, while colors, dimensions, and relations with other objects may be relevant for another
objective, as Cohen[24] mentions.

Through the identification of elements in an image, it is possible to describe and infer
situations that an image represents, already in a video, the understanding of information is
related to the events that are presented, events between objects, how they occur, and their
consequences. And to analyze each context and purpose of descriptions, some characteristics
must be analyzed.

3.6.2 Activity Graph

Classification of object actions in videos can be learned by systematizing the information
in Activity Graphs, as shown by Srichar [38]. They are graphs used specifically to model
objects and the relations between them over time.

When more than one event occurs in the same frame set in a video, it is called a complex
scene. This scene can be analyzed using tracks, which will last as long as there are spatial
relations between certain pairs of objects as illustrated, for example, in Figure 3.14:

Figure 3.14: Example of tracks between two object relations
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Each change in the spatial relations between a pair of objects is called an episode. As
example, one can describe Figure 3.14 as follows: In the first episode, the dog o1 and the
woman o2 have the relation r1 in the time interval I1. Their first representation in this model
will be like (1) holds(dog,woman,r1, I1); in the second episode, the identified objects have
a new relation r2 in I2 described like this (2) holds(dog,woman,r2, I2); finally, in the third
episode, we have the last relation r3 in I3, holds(dog,woman,r3, I3). After describing the
spatial relations, we can insert the relations between the time intervals that were indicated, as
follows: meets(I1, I2), meets (I2, I3) and before (I1, I3).

As concerns the episodes, it is necessary to describe each episode for all pairs of objects
in the video, to build the level 0 of the activity graph. Sridhar [38] mentions, that the graph
will be constructed with vertices, like an episode, and the edges of Allen’s time intervals are
described with temporal relations: before, meets, overlaps, starts, during, ends, and equals.

Since the episode is described as: “in frame f there is a spatial relation r between objects
o1 and o2”, in the logical form is: holds(r(o1,o2), f ) and formalized by the quadruple: E =
<o1,o2,T,r >, containing the objects o1 and o2. The consecutive sequence of frames (f1 +
f2 + ... + fn) was a repeated relation that occurs in these frames.

After the elaboration of the complete graph, an attention mechanism is used to change
the level of abstraction of the graph to level 1. This allows the identification of "super events"
later allowing the classification of activities in a generalized way [38].

This happens by grouping episodes for vertices and the temporal relations between these
groupings will be the edges. When different actions occur in the same frame, the relation
between them is during, being called objects in the foreground, those that start the analysis
of the frame. The other objects comprise the objects as the background.



Chapter 4

Proposed Model

Despite the advantages highlighted in the previous chapter, LTN identifies the PartOf relation
between pairs of bounding boxes[2] in static concepts. For this reason, there is such an
accurate performance and applied only to analyzing images. That is, the advantages it
presents are superior to other models that also identify objects in images. But this evidence is
a hypothesis for this research as we explore the application in a semantic analysis of videos.

Given this context, to use LTN in video analysis, its syntactic and semantic descriptive
model must be extended. This way, LTN is able to have its advantages applied in spatial-
temporal relations of video descriptions. This approach forms the basis of this work to
evaluate the advantages of neural symbolic reasoning in the descriptive analysis of videos.

Our adaptation proposal is to use the YOLO framework to process the video in a few
steps so that the problem is treated according to the "divide and conquer" approach. Thus,
it would be possible to reduce the video complexity for individual frame analysis for LTN
applications. Such adaptation would take place as follows:

• The input is a video that is initially divided into frames, i.e., sequences of images

• Chooses a frame at each selected number interval

• Identifies the objects in the selected image and using dimension clusters as anchor
boxes, the network predicts 4 coordinates for each bounding box

• Classifies each object by predicting an objectivity for each box boundary using logistic
regression

This output is handled according to the consistent representation of time and space
provided by QQSTR, described in Tayyub’s [34] approach. Such a representation provides
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a way of organizing information about time and space by its qualitative and quantitative
characteristics.

Finally, the Activity Graph model of Sridhar [38], is still needed. Because from it, it will
be possible to reason the spatial relations with the temporal relations identified throughout
the process.

When we approach this last step in more detail, we will have a clearer view of the
importance of using symbolic neural reasoning, through LTN, to identify the spatial relations
of the data provided.

Thus, we emphasize the importance of these steps. Because through them it is possible
that we are not restricted to the information retained in the videos, as we use logical and
symbolic data that can, in turn, be endowed with inferences, reasoning, and logical rules.

In addition, any type of information that may be related to evolution over time can be
analyzed with our proposed approach. As mentioned in the first chapter, data that evolve
over time can be monitoring medical records, analyzing social behavior, identifying climate
changes, and analyzing the stock market in a period, among others.

4.1 The Extension Proposed

We can use the neural symbolic approach to describe videos. Through a few steps, it is
possible to adapt the information about videos to use the LTN framework to identify spatial
relations. Relations of object pairs are identified and classified in video frames by the YOLO
framework. For this, the actions that occur during the video are represented based on the
approach of the activity graph. To explain this proposed approach, we represent the steps
illustrated in Figure 4.6:

1. YOLO has as input a video and output base information with the coordinates of the
pairs of bounding boxes and the classification of their respective objects;

2. LTN receives output from YOLO and identifies spatial relations between pairs of
bounding boxes;

3. Construction of the Activity Graph where the edges are the temporal relations, based
on Allen’s algebra, and the nodes are the grouping of frames with the same spatial
relation in related time;

4. Perform the reasoning for the video description with the modeled information.

We start from the principle expounded by Badreddine [27] which shows that the standard
approach to the multiple-label problem is to provide explicit negative examples for each class.
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However, LTN can use its prior knowledge to relate classes, making it a powerful tool in the
case of the multiple-label problem, when labeled data is usually scarce.

And these superior characteristics of LTN are realized through the factors that make up
its structure, which are presented below.

Domain labels denoting the relations

Constant are the bounding boxes

Predicates spatial relations of bounding boxes pairs

Axioms represent the mutual exclusion of labels on spatial relations. As a result, negative
examples are not used explicitly in this specification

Grounding G (itens) = N △ vectors are used to represent class labels

Learning As before, the fuzzy logic operators and connectives are approximated using the
stable product configuration

Querying LTN constraint learning

By joining the spatial relations described in LTN with the qualitative spatial characteristics
of QQSTR, we had spatial relations that cover several cases. They arise from 3 labels capable
of distinguishing 24 spatial relations, shown in Figure 4.1. New spatial relations, based on
QQSTR on the background knowledge of the LTN, allow identifying different positions in
relation to the pairs of objects identified in each image.

Figure 4.1: Types of spatial relations based on QQSTR and LTN
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inSideLe f tAltAbove(B,A)← p(A,B), le f t(B,A),above(B,A)

inAltAbove(C,A)← p(A,C),above(C,A)

inSideRightAltAbove(D,A)← p(A,D), le f t(A,D),above(D,A)

inSideRight(E,A)← p(A,E), le f t(A,D)

inSideRightAltBelow(F,A)← p(A,F), le f t(A,D),above(A,F)

inAltBelow(G,A)← p(A,G),above(A,G)

inSideLe f tAltBelow(H,A)← p(A,H), le f t(H,A),above(A,H)

inSideLe f t(I,A)← p(A, I), le f t(I,A)

edgeSideLe f tAltAbove(J,A)← po(A,J), le f t(J,A),above(J,A)

edgeAltAbove(K,A)← po(A,K),above(K,A)

edgeSideRightAltAbove(L,A)← po(A,L), le f t(A,L),above(L,A)

edgeSideRight(M,A)← po(A,M), le f t(A,M)

edgeSideRightAltBelow(N,A)← po(A,N), le f t(A,N),above(A,N)

edgeAltBelow(O,A)← po(A,O),above(A,O)

edgeSideLe f tAltBelow(P,A)← po(A,P), le f t(P,A),above(A,P)

edgeSideLe f t(Q,A)← po(A,Q), le f t(Q,A)

outSideLe f tAltAbove(R,A)← d(A,R), le f t(A,R),above(R,A)

outAltAbove(S,A)← d(A,S),above(S,A)

outSideRightAltAbove(T,A)← d(A,T ), le f t(A,T ),above(T,A)

outSideRight(U,A)← d(A,U), le f t(A,U)

outSideRightAltBelow(V,A)← d(A,W ), le f t(A,V ),above(A,V )

outAltBelow(W,A)← d(A,W ),above(A,W )

outSideLe f tAltBelow(X ,A)← d(A,X), le f t(X ,A),above(A,X)

outSideLe f t(Y,A)← d(A,Y ), le f t(Y,A)

in(A,Z)← p(Z,A)

The spatial relations presented above can be divided into three categories of labels: O -
overlapping, PO - partially overlapping, and D - discrete. This definition is given according
to the coordinates identified by YOLO in the delimitation of the identified objects. In the
next chapter, we describe in more details how these spatial relations influence the reasoning
of the video description.

4.2 Syntax and Semantics

This section describes the syntactic and semantics addressed in our hypothesis. It is carried
out according to LTN formalities, facilitating the integration of all the methods used.
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The knowledge calculated by the LTN is called grounding ( G ). In our case, grounding
refers to the spatial relations of the selected frames. And these relations are always referring
to bounding box pairs like this: relation type (b,b′), where b and b′ are bounding boxes
identified in an image and the relations between them.

We consider that, as in LTN, the foundation of G i in a first-order language PL, so it is
necessary to obey the functions of the PL signature that satisfies the conditions:

Definition 1 Also in LTN, grounding G for a first-order language PL is a function of the PL
signature that satisfies the conditions:

1. G (c) ∈ Rn for every constant symbol c ∈C that is bounding box b ∈ Pics;

2. G ( f ) ∈ Rn.a( f )→ Rn for every functional symbol f inF ;

3. G (P) ∈ Rn.a(P)→ [0,1] for every predicate symbol P ∈P that are P1andP2

Grounding can be done by methods using predicates or by logical rules. We start by
introducing grounding by logical rules. The classification of a bounding box occurs through
a score function σ of all possible classes in P1 on a single bounding box, and its grounding
also has its coordinates from upper left and lower right points:

< score(C1,b), ...,score(C|P1|,b),x0(b),y0(b),x1(b),y1(b)> G (C(b)) = σ(score(C,b))

The groundings for the spatial relations are membership functions, which return the
degree of membership of an element. Fuzzy Logic represents the true value of an atomic
formula.

The following relations are defined from the Cartesian position of the vertices that
compose the bounding box of the objects identified by x,y,w, and h. Being x and y the
ordered pair of the lower-left vertices of each box, w the width, and h the height.

Let b,b′ ∈C be two bounding box constants, and β be the angle made by an angle in a
unitary circle between the center of the circumference, that will be the centroid of b, and a
point on the circumference, that will be the centroid of b′.

Below is a table that summarizes the table in Appendix A. In this table, we have the
semantic definitions for the new spatial relations proposed in this manuscript in Table 4.1.
Settings include the placement of related bounding box points and the angle between their
centroids.
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Table 4.1: Summary information from the table in the appendix

Group Spatial relation Example Definitions

b with limitations
within of b

′ G (inSideLe f tAltAbove(b,b
′
))

x0(b)⩾ x0(b
′
)

y0(b)≤ y0(b
′
)

x1(b)≤ x1(b
′
)

y1(b)⩾ y1(b
′
)

regardlesso f angle

b with limitations
that overlap the
edges of b

′
G (edgeAltAboveSideLe f t(b,b

′
))

x0(b) <x0(b
′
)

x1(b) <x1(b
′
)

y0(b) >y0(b
′
)

y1(b) <y1(b
′
)

135o

b with limitations
outside the b

′ G (outSideRight(b,b
′
))

x0(b) <x0(b
′
)

x1(b) <x1(b
′
)

4.2.1 Proposed Spatial Relations

For the evolution of all relations mentioned above we have as a basis the following relations
used in our approach.

After some adaptations, it was defined that the classifications would be according to the
coordinates to be defined as h1 and w1 height and length, (x1,y1) as the ordered pair of
the lower-left vertical of bounding box 1 and h2 and w2 height and length, (x2,y2) as the
ordered pair of the lower-left vertical of bounding box 2:

considering as "O":
i f (((x2 >= x1)and((x2+w2)<= (x1+w1)))or((y2 > y1)and((y2+h2)< (y1+h1))))

considering as "PO":
i f (((x2 < x1)and((x2+w2)> x1)and
I . case 1
(((y2 < y1)and((y2+h2)> y1))or((y2+h2)> (y1+h1))))
II . case 2
or(((x2 < x1)and((x2+w2)> x1)and((x2+w2)< (x1+w1)))and
((((y2+h2)> (y1+h1))and(y2 < (y1+h1)))or((y2 < y1)and((y2+h2)> y1))))
III . case 3
or(((x2 > x1)and((x2+h2)< (x1+h1)))and
((((y2+h2)> (y1+h1))and(y2 < (y1+h1)))or((y2 < y1)and((y2+h2)> y1))))
IV . case 4
or(((x2 > x1)and(x2 < (x1+w1))and((x2+w2)> (x1+w1)))and
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((((y2+h2)< (y1+h1))and((y2+h2)> y1))or((y2 > y1)and(y2 < (y1+h1))))))

considering as "D":
i f (((x2+w2)< x1)or(x2 > (x1+w1))or(y2 > (y1+h1))or((y2+h2)< y1))

From these definitions, we analyze LTN which identifies the input bounding boxes have.
Within a toy example, the classification follows as a general context as described in 4.2.2.

However, in chapter 5 we address the classification of the action for the specific context
of the experiment, soccer. This happens based on the same generic descriptions and thus
demonstrating the efficiency of the method with all types of temporal data, that is, that evolve
over time as discussed above.

To demonstrate LTN constraint learning overtime during learning, let’s use an example.
In this first moment we manually analyze the video dogandwoman.mp3 (attached) to defend
the hypothesis presented, outlined in Figure 3.5.

The first step is to submit the video to the YOLO framework, to get the selected frames
that will be passed on to the LTN framework. However, before submission, it is necessary to
build the background knowledge in the LTN.

The following is a diagram of the first step being YOLO identifying and classifying the
bounding boxes of the images:

Figure 4.2: Example of notation made from YOLO

The categorization goes through stages, analyzing the score of the ratings to indicate the
object of that bounding box 4.2:

BB1: <dog(0.98),horse(0.02),woman(0),child(0),x0(8),y0(7),x1(15),y1(3) >
BB2: <dog(0),horse(0),woman(0.89),child(0.16),x0(17),y0(18),x1(23),y1(3) >
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According to the positions of the bounding box pairs, we can analyze which of the spatial
relations as illustrated in Figure 4.1 we can identify between them. Then we group the frames
that have the same description of the spatial relation between the identified objects. In this
example, we have 3 groups shown in Figure 4.3:

Figure 4.3: Separation of frame groups from objects with the same spatial relation

Identification of the beginning and end of the spatial relations that the objects maintain
among themselves during the video 4.4.

Figure 4.4: Identification of object tracks during the video

The graph construction has each episode, as a grouping, with the edges as its temporal
relations 4.5.

Through the activity graph, we have the spatial-temporal relations extracted from a video
with a logical description. Thus being able to perform logical reasoning about it, in addition
to the semantic description mentioned in Table 4.2:
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Figure 4.5: Construction of the activity graph

Episode 1 holds(dog,woman,outSideLeftAltBelow,I1)
Episode 2 holds(dog,woman,edgeSideLeft,I2)
Episode 3 holds(dog,woman,inSideLeftAltAbove,I3)

meets(I1,I2) and meets(I2,I3) and before(I1,I3)

Table 4.2: Spatial-temporal relations of toy example

Figure 4.6: Approach hypothesis scheme

4.2.2 Inferences and Learning About Actions of the Toy Example

The inferences about a description of the episodes must observe the changes in spatial
relations and the temporal relations between them. In terms of a neural-symbolic approach,
we can use background knowledge combined with logical constraints, for learning actions.
Let’s see some cases based on the toy example presented:

• pick_up: from “out” to “in”
(holds (o1, o2, out, I1) and holds (o1, o2, in, I2) and ( before (I1, I2) or meets (I1, I2)))

• leave: from “in” to “out”
(holds (o1, o2, in, I1) and holds (o1, o2, out, I2) and ( before (I1, I2) or meets (I1, I2)))
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• went_up: from “below” to “above”
(holds (o1, o2, below, I1) and holds (o1, o2, above, I2) and ( before (I1, I2) or meets
(I1, I2)))

• go_down: from “above” to “below”
(holds (o1, o2, above, I1) and holds (o1, o2, below, I2) and ( before (I1, I2) or meets
(I1, I2)))

• got_up: pick_up and went_up

• let_go: leave and go_down

In the example presented, we find in the first episode that the dog is “out", "left" and
“below" about the woman, then in the last episode it is “in", continues “left", that is, it fits the
case got_up.

The great advantage of this approach is that one can detect complex activities based
on simpler activities. Approaches that use end-to-end Machine Learning models need an
absurdly large number of examples, while what we propose resembles something more like
the human learning process, with few examples.

By abstracting the visual information from a video that demonstrates the heartbeat of
a patient undergoing a surgical procedure, let us imagine a situation where a sequence of
heartbeat frequencies are mapped to what kind of action is required.

We could classify if it is in a normal, slow or fast state, and identify the action that this
sequence of states could represent. And in a future work, predict which actions could be
taken according to the current state by analyzing the history already covered during the video.

As described so far, this approach considers that the data evolving in space and time
characteristics can be reasoned through a neuro-symbolic approach in the classification of
their spatial relations represented in an activity graph.

4.3 Representation of information

This section presents a generalized formalization of each step taken to extract the information
from the video till its logical representation. To achieve this, we present the logical formal-
ization used 4.1, followed by the algorithm of information extraction, and finally an example
of how this execution occurs.

The formalization for logical representation used in this work is based on [2], which
consists of declaring unary and binary predicates, the unary ones representing the category
of the object identified in the video and the binaries representing the spatial and binary
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predicates’ temporal relations. The identification and categorization of objects is done using
the YOLO framework, while the identification of spatial relations is done using LTNQSTR
4.1.

4.3.1 Description of Background Knowledge

Based on LTN formalization, we also have a knowledge base defined by <P,C>, being
predicted of two types, unary P1 (object classification) and binary P2 (spatial and temporal
relations). Some examples for the predicates would be:

P1 - Person, Dog, Car, Ball, Notebook... P2 - [24 spatial relations, described in 4.1],
[Allen’s temporal algebra, in 3.1]

The object classification is obtained as knowledge prior to learning, as well as the spatial
relations that were defined in the 4.1 section and the temporal relations described by Allen’s
algebra, in Y.

4.4 Algorithm

This section presents the formalization of each step to extract the information from the video
till the logical representation. For this, we present the logical formalization used, followed by
the information extraction algorithm, and finally an example of how this execution occurs.

The formalization for logical representation used is based on Donadello [2], mainly in its
division of unary and binary predicates.

The identification and categorization of the objects is done done through the YOLO
framework (Section 3.4), while the classification of the spatial relations is done through
LTNQQSRT (Section 3.5.1); the identification of the temporal relations is based on Allen’s
Algebra [23].

The knowledge base is defined by <P, C >predicates and constants, the predicates being
of two types, P1 unary and P2 binary. For example, for unary predicates we have: Person,
Dog, Car, Ball, Interval, and for binary predicates: out_left_below, in_left_below, before,
after.

We also have predicates that help in the space-time representation, including pair, interval
and holds, which represent respectively: the pairs of objects of the formalized instance,
declaration of the interval, and finally, the relation between the predicate of the spatial
relation and the instance of interval.

As described in Section 3.4, object classification is obtained as knowledge before learning,
as well as the spatial relations that were defined in section 3.6 and the temporal relations
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described by Allen’s algebra, in 3.5.1. Our logical representation needs to identify (1) the
objects that are being analyzed, (2) each spatial relation that occurs in the video, and (3) the
temporal relation between these instances. For this we propose the following representation:

{Person(p1),Dog(d1), pair(p1,d1), Interval(i1),holds(outle f t_below(d1, p1), i1),
Interval(i2),holds(in_le f t_below(d1, p1), i2),be f ore(i1, i2)}

In this representation we have defined the objects present in the video:

Person(p1),Dog(d1), pair(p1,d1)

The predicates Person/Dog are the objects identified in the video, which are unary
predicates. We use the binary predicate pair to identify which pairs of objects are being
highlighted in this logical expression.

We then represent the spatial-temporal relation as:

Interval(i1),holds(out_le f t_below(d1, p1), i1)...be f ore(i1, i2)

The attribute interval defines the time interval of the current instance, holds is the binary
attribute for identifying the space-time relation, composed of the respective arguments: (1)
spatial relation - this argument is a binary attribute consisting of the pair of objects in its
relation, (2) temporal relation - is the identification of the time interval of this spatial relation.
Finally, the binary predicate before is the temporal relation between the intervals of its
arguments.

4.4.1 Algorithm Description

The algorithm can be divided into four main parts (1) Selection of Frames and Classification
of Objects (2) Classification of Spatial Relations (3) Classification of Temporal Relations (4)
Inference of the Action in the Video:

Preparing the video The video preparation consists of extracting selected frames from the
video with the classification of its objects. For this (1) each frame of the video is
saved in a folder, that is, the video is divided into several images. From this point
(2) we select only a few frames for analysis, selecting images in the interval of 2 in 2
seconds. As it is not a stream transmission, but an analysis of a short video, we can
drop some frames without compromising the result sought. After the sequential frame
selection is done, (3) we submit these images to the YOLO framework to recognize
and classify the objects present in the frames. The recognition by YOLO is highlighted
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with rectangles (or bounding boxes) the objects identified in each image, informing
their position in the image, and the classification associated with it. At the end of this
step, we can have a set of frames with their objects identified by their position in the
image and classification.

Identification of spatial relations The identification of spatial relations occurs through the
LTNQQSR framework, an example of implementation as a proof of concept, which
receives as input an image with the identification of a pair of bounding boxes to identify
the spatial relation between these two objects. These relations are for pairs of objects,
identified through the position of the bounding box (bb) centroids and the relations
between their boundaries, see 4.1, for example, outle f tbelow(x,y). For this, we need a
script that runs LTNQQSR for each frame processed by YOLO in the first step and this
process results in the identification of spatial relations between two objects for each
input image.

Construction of the activity graph and the logical expression The data structure chosen
for such representation of the temporal space relations was an activity graph. In such a
graph, each node is a spatial relation and the edges are the temporal relations section
of the activity graph. For its construction, we (1) group the frames with the same
sequential spatial relation, (2) represent each group as a node of the graph, (3) identify
the temporal relations through Allen’s algebra, and (4) join the graph nodes according
to the identified temporal relations.

1. grouping consists of comparing the spatial relation frame by frame identified in
step 2. As long as the spatial relation is the same, the sequential frames will be
added to the same group. As soon as the analyzed frame presents a new spatial
relation, we can create a new group for it and so on to return to the beginning of
this process until the end of the frames;

2. each group is a graph node, for example, group 1 (frame 1 to 4) is the first node,
group 2 (frame 5 to 8) is the second node;

3. the identification of temporal relations in our current scenario will always be
before / after, as we deal with sequential actions and analyze object pairs per
frame. However, this structure would support more complex relations with
multiple object pairs and simultaneous actions;

4. we identify that we need to connect each node with its respective temporal
relation.
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Our logical expression is formed by three steps: (1) by the objects identified in the spatial
relations in the node. These are unary predicates, and the identification of this pair of objects
are represented by the predicate par (2) we have the declarations of the relations’ spatial
relations, where for each new group we have a new Interval followed by a holds that declares
the spatial relation of the highlighted group, followed by the interval that corresponds to it.
These temporal relations are made to represent each node of the graph or group of frames, and
finally (3) we have the logical representation of the temporal relations, which are predicted
as defined by Allen’s algebra that identifies the relation between the intervals.

The following is the description of our algorithm 1:
Keep in mind that BB’s can have 24 different spatial relations already presented in this

chapter. Then we can infer the existing action by checking the actions identified by the nodes.
In the next chapter, we present a practical example of formulating the rules and applying the
hypothesis in the context of soccer games. As well as the inferences that occur to identify
actions through logical axioms.
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Algorithm 1 The algorithm name
procedure SELECTION OF FRAMES AND CLASSIFICATION OF OBJECTS(video)

YOLOimages[∅]
f rame← f irst_ f rame(video)
while f rame ̸= NULL do ▷ apply to all video frames

f rame← YOLO( f rame) ▷ apply YOLO for this frame
YOLOimages← insert( f rame) ▷ save processed image
f rame← next_ f rame(video) ▷ next frame

returnYOLOimages
procedure CLASSIFICATION OF SPATIAL RELATIONS(YOLOimages[])

imageSpatialRelation[∅]
image← f irst_image(YOLOimages)
while image ̸= NULL do ▷ apply to all images processed by YOLO

spacial_relation← LT NQSR(image) ▷ apply YOLO for this frame
imageSpatialRelation← (image,spacial_relation) ▷ identified spatial relation

with your image
image← next_image(YOLOimages) ▷ next image

procedure CLASSIFICATION OF TEMPORAL RELATIONS(imageSpatialRelation[])
temporalClassi f ication[∅]
image← f irst_image(imageSpatialRelation)
pair← next_image(image) ▷ next image of sequence
while image ̸= NULL do ▷ apply to all images processed by LTNQR

temporal_relation← Allen_Interval(image, pair) ▷ identify relation temporal
temporalClassi f ication← (image, temporal_relation, pair) ▷ associate the

identified spatial relation with your image
image← pair ▷ next image
pair← next_image(image) ▷ next pair

procedure INFERENCE OF THE ACTION IN THE

VIDEO(YOLOimages[], imageSpatialRelation[], temporalClassi f ication[])
data = YOLOimages, imageSpatialRelation, temporalClassi f ication
apply_in f erence(data,bk)
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Experiment

One of the current challenges in AI is combining explicit symbolic knowledge in the form
of rules with implicit sub-symbolic knowledge, such as the weights of a neural network.
For this reason, we use LTN for such a challenge. It is a framework for a symbolic neural
network using fuzzy logic for its reasoning of symbolic rules.

Thus, we propose a comparison between the behaviors of neural networks with and
without symbolic rules in order to validate whether the combination of explicit and symbolic
knowledge in the form of rules with implicit and sub-symbolic knowledge can excel in
advantages over purely neural learning.

Following the scope of this investigation, our proposal for video interpretation constitutes
of approaching steps for fragmenting the video into frames, identifying and categorizing the
objects present in the video; identifying the spatial relation between pairs of objects to be
treated, and logical inference about what action was performed in the video.

As we have several steps, we use the YOLO framework for the identification and cat-
egorization of objects on the frames; for semantics and definition of spatial relations, we
adapted the QQSTR method within the LTN framework, and finally, for structuring the
Spatio-temporal information of data, we used the Activity Graph.

For this approach we treat spatial relations as: O totally overlapped, PO partially
overlapped and D discretely non-overlapping. For the present context and for the specific
knowledge proposed, these summarized relations of those represented in the Appendix are
sufficient for our purpose.

Demonstrating the importance of the abstract context of this approach, we present in this
chapter each of the proposed algorithms and finally an application in a specific scenario of
categorization and recognition of action types during a soccer match.

These spatial relations are built logically by checking the veracity of the following
arguments, admitting BB1 and BB2: BB1[x1,y1,w1,h1] and BB2[x2,y2,w2,h2] with repre-
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sentatives: x - on the coordinate axis for the bottom left point of bb, y - on the abscissa axis
from the bottom left point of bb, w - the width of bb, h - the height of bb:

Category Case Rule
O 1:

2:
[x2≥ x1] AND [(x2+w2)≤ (x1+w1)]
[y2≥ y1] AND [(y2+h2)≤ (y1+h1)]

PO 1:

2:

3:

4:

[x2≤ x1] AND{(x2+w2)≥ x1} AND [{y2≤ y1} AND (y2+h2)≥ y1
OR {(y2+h2)≤ (y1+h1)}]

[x2≤ x1] AND {(x2+w2)≥ x1} AND {(x2+w2)≤ (x1+w1)} AND
[{(y2+ h2) ≥ (y1+ h1)}AND {y2 ≤ (y1+ h1)} OR {(y2 ≤ y1) AND
(y2+h2≥ y1)}]

[x2 ≥ x1] AND {(x2 + w2) ≤ (x1 + w1)} AND [{(y2 + h2) ≥
(y1+h1)}AND {y2≤ (y1+h1)} OR {y2≤ y1 AND (y2+h2)≥ y1}]

[x2≥ x1] AND {x2≤ (x1+w1)} AND {(x2+w2)≥ (x1+w1)} AND
[{(y2+ h2) ≤ (y1+ h1)} AND {(y2+ h2) ≥ y1} OR {y2 ≥ y1 AND
y2≤ y1+h1}]

D 1:

2:

3:

4:

(x2+w2)≤ x1

x2≥ (x1+w1)

y2≥ (y1+h1)

(y2+h2)≤ y1

Given such categories we will identify in a frame what the spatial relation is between
two identified and categorized objects, this identification being in the pattern we adopted
for the bbś < x,y,w,h >. LTN will receive this pair of bbś and as output, we will get the
categorization of this spatial relation.

We then carried out the main experiment of this research with soccer videos. The first
step with the classification and selection of frames by YOLO, followed by the reasoning of
spatial relationships by LTN. To, finally, have the inference of the actions that occurred in
the analyzed video.

5.1 Learning Groundings from Data

As described in this thesis, our classification occurs in each selected frame, so in this section
we present the grounding for the characteristics needed in our scope.

The context of the characterization of our constants are the bounding boxes, bb, repre-
sented as follows:
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<Class,x,y,w,h >

Class – Yolo classification
bb1: <Class1,x1,y1,w1,h1 >

bb2: <Class2,x2,y2,w2,h2 >

The perception of each spatial relation is defined by its coordinates identified by YOLO,
5. With this knowledge, we can define the grounding of our constraints, which make learning
through LTN different from the others, as described above.

The YOLO Framework analyzes an image according to the general context of the image
through the knowledge obtained in its pre-training. Therefore, this framework has the ability
to perform such object prediction by its neural network. This makes it different from other
methods like R-CNN and Fast R-CNN that analyze the image piece by piece.

This way we have the first part of our algorithm, which receives a video to separate all its
frames, then selects from a range of time-spaced images, and finally recognizes the position
of the object coordinates and classifies them according to the learning of the preformed
method that makes up YOLO.

As discussed earlier, the output of YOLO will be the input to LTN, so that the spatial rela-
tions between pairs of bounding boxes will be identified through neural symbolic reasoning
provided by this framework.

Using YOLO, each frame is represented as follows:

DOG 98% [525, 793, 500, 386]
PERSON 95% [1104, 58, 496, 1085]

Figure 5.1: Bounding box identification by YOLO

Extracting the data present in the video using YOLO would be something represented in
figure 5.1. The framework output identifies in each new frame the objects in a tuple formed
by: object category; percentage associated with the category; bounding box coordinates.
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When the LTN framework receives the file with the coordinates and categorization of the
bounding boxes, it will instantiate each piece of information received according to the logic
of its own algorithm.

In this case, the instances will be divided into constants, variables, class, and axioms. The
constants will be the bounding boxes because through them we will carry out the reasoning
for defining the variables of the spatial relations between their peers. These variables will be
trained according to the axioms given to the context of this learning 3.3.4 to define the class
of spatial relations.

So, for the Toy Example we use in this dissertation, we can have axioms that cause the
grounding, 3.3, to recognize the dog toward the woman, the dog jumping, and the woman
holding the dog, 5.2.

Figure 5.2: Example of Grounding in LTN for Toy Example

Reinforcing that such axioms are based on the positions of the coordinates of the bounding
boxes, we thus have an adaptation of Cohen’s definitions as described in 3.5.1.

These steps permit the possibility to infer the action from the video through the activity
graph. To do this we sequentially join the frames that had the same classification, grouping
constants that had the same spatial relation identification, this is shown in 5.3.
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As described in 4.5 these clusters will be the nodes of our activity graph, and the edges
of this graph will be the temporal relations based on Allen’s temporal algebra 3.1.

This graph will have the edges indicating the next action, as we are dealing with isolated
cases of actions between pairs of objects. Chapter 6 will describe the importance and
symbolic power of this representation in complex actions.

Figure 5.3: Steps of Construction of Activity Graph of Toy Example

Figure 5.3 shows the schema that represents what has been described so far divided by
the steps of the discussed algorithm. The first step is the YOLO process, identifying the
objects and classifying them.

5.2 Learning in Specific Context

The last step is the Activity Graph representation linking all the steps through Allen’s algebra,
as shown in 5.5. The next step guarantees the reasoning of spatial relations through prior
knowledge of the LTN together with axioms based on Cohen’s QQSTR relations.

This activity graph shows that the sequence of spatial relations represented is related to
the dog’s jump being followed by the woman’s hug. Thus, we infer that the action of the
video is to have object 1 being "hold" by object 2. Interestingly, because we treat relations in
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Figure 5.4: Steps of Construction of Activity Graph of Toy Example

an abstract and symbolic way, other videos can receive the exact inference, as the examples
presented in 5.5.

Figure 5.5: In both images we can identify the same action

We can observe that the sequence of instances of spatial relations follow a pattern which
allows us to infer that in both videos the same action occurs.
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5.2.1 Contextualizing for Soccer

By exploring a closed world of knowledge and definitions, we can obtain a totally specific
approach to such a scenario. Thus, we will explore the algorithm discussed in this dissertation
to identify specific spatial relations in soccer and the inferences of the actions they can
represent.

Therefore, we will explore the construction of the axioms for this closed world of soccer.
In this approach, as we always deal with pairs of objects, we chose to make the relations
between players and relations between player and ball. In this way, reasoning about objects
remains abstract for the spatial relations already presented: O overlapping, PO partial overlap
and D discrete.

We divide theses spatial relations to be inferred in this approach into two groups. Because
we always treat relations in pairs of objects, the first group for relations between two players
and the second group for relations between player and ball:

Players 1. The tackling action 5.6 would be when two players from opposite teams meet
in the same physical space, performing a kind of confrontation between them in
order to make the opponent’s locomotion difficult.

∀xy(Player(x)∧Tackling(x,y)→ Player(y))

Figure 5.6: Tackling action has as final state the overlapping spatial relation between the
players O(player1, player2)

2. The approaching action 5.7 happens when another player is so close to his
opponent, but still there is no overlapping of them, in such a position it is possible
to identify that the physical space of the players are getting closer with time.

∀xy(Player(x)∧Approaching(x,y)→ Player(y))

3. The Probing action 5.8 occurs when a player begins the process of approaching
his opponent. In such conditions it is possible to notice the physical distance
between them having the possibility of approximation with the evolution of time.

∀xy(Player(x)∧ProbingPlayer(x,y)→ Player(y))
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Figure 5.7: Approaching action has as final state the overlapping spatial relation
PO(player1, player2)

Figure 5.8: Probing action has as final state the discrete separation between the players
D(player1, player2)

Ball Player 1. Controlling 5.9 is an action that occurs when the player is in possession of the
ball in play. We identify it when both are physically very close, so their object
bounding boxes are totally overlapped. In this moment the player in possession
has dominion and is totally controlling the ball.

∀xy(Player(x)∧Controlling(x,y)→ Ball(y))

Figure 5.9: Controlling action has as final state the overlapping spatial relation between the
player and the ball O(player,ball)

2. Pass 5.10 is the action identified when the player passes the ball to another, or
when the player is receiving the ball. The inference of what actually happened
depends on the spatial relations evidenced in the other frames of the video. In
our context for this inference we only consider the physical distance between
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the player and the ball and if this distance is not discrete and not completely
overlapping we consider the partially overlapping spatial relation.

∀xy(Player(x)∧Passing(x,y)→ Ball(y))

Figure 5.10: Passing action has as final state the partial overlapping spatial relation between
the player and the ball PO(player,ball)

3. Losing 5.11 is the action when the player presents a physically noticeable distance
from the ball, making it difficult for him to possess it, and thus we consider that
there is no control relation between the player and the ball, inferring the action of
losing the ball.

∀xy(Player(x)∧Losing(x,y)→ Ball(y))

Figure 5.11: Losing action has as final state the discrete separation between the player and
the ball of the spatial relation D(player,ball)

5.3 Applying the algorithm to short videos about soccer

We consider the evolution of each action described in the previous section, 5.2.1, in our
proposed algorithm 4.4.1. In 5.12 we present each step of the algorithm specifying the
knowledge for soccer and in the following list we have the final result of each action.

The definitions of spatial relations in O, PO or D occur from Cohen’s QQSTR approach
already demonstrated in 3.11. This identification occurs by analyzing the coordinates of the
bounding boxes over their behavior qualitatively as discussed in 4.2.1.
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Figure 5.12: Steps of the proposed algorithm for action inference Probing during a soccer
match

• Tackling/Controlling O
∀xy(Player(x)∧O(x,y)→ Tackling(x,y)∨Controlling(x,y))



5.4 Instantiating the aspects in LTN 55

• Approaching/Passing PO
∀xy(Player(x)∧PO(x,y)→ Approaching(x,y)∨Passing(x,y))

• Probing Player/Losing D
∀xy(Player(x)∧D(x,y)→ ProbingPlayer(x,y)∨Losing(x,y))

The spatial relations mentioned have similar characteristics, for instance, we can describe
that the spatial relation related to the Tackling and Controlling actions is O, in which the
related objects have the distance of overlap between them.

For the soccer context where the relations between objects are partially overlapping,
we have the actions related to Approaching and Passing. And finally, the discrete relations
between objects are associated with the actions Probing Player and Losing.

5.4 Instantiating the aspects in LTN

As mentioned at the beginning of this subsection we have defined only two types of possible
object identifications in this environment: player and ball, just as the relations that can be
inferred are limited to: Tackling, Approaching, Probing for player relations, and Controlling,
Passing, and Losing for player-ball relations.

In LTN we declare spatial relations as classes, see below:
classP = ltn.Constant(0, trainable = False)
classPO = ltn.Constant(1, trainable = False)
classD = ltn.Constant(2, trainable = False)
These classes will be managed with the constants to identify the variable classifications

that are the spatial relations between the pairs of bounding boxes.
xp = ltn.Variable(”xp”, f eatures[label_position == P])
xpo = ltn.Variable(”xpo”, f eatures[label_position == PO])

xd = ltn.Variable(”xd”, f eatures[label_position == D])

Below we demonstrate each activity graph of the following actions that we discussed:
Approaching 5.13, Probing 5.15, Controlling 5.15, Passing 5.16 and Losing 5.11.

Figure 5.13: Approaching Activity Graph
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Figure 5.14: Probing Activity Graph

Figure 5.15: Controlling Activity Graph

Figure 5.16: Passing Activity Graph

Figure 5.17: Losing Activity Graph

In this way, we identified the superiority of our hypothesis using the neural symbolic
approach provided by the LTN in the verification and validation of the reasoning performed
by the algorithm. Demonstrating the strong representation of the information by the symbolic
part of the algorithm, for understanding the human being. As well as the reasoning performed
by neural networks with symbolic constraints to improve the identification of spatial relations.



Chapter 6

Conclusion

Right from the very beginning, this project was based on the principle of studying the possibil-
ity of reasoning about videos through a neural symbolic approach, initially studying the state
of the art of video analytics, what are the main challenges and the best approaches according
to the different objectives proposed and discussed at the beginning of this dissertation.

The main objective was achieved through the divide and conquer approach, more specifi-
cally LTN, which started by the search for the smallest possible division to start our project.
Thus we began the search for a method that would better decode the spatial characteristics of
videos.

In this way, we identified the need to isolate the characteristics of a video to perform its
classification. For this reason, we chose QQSTR as a method for a detailed approach to the
physical positions of objects in the images, identifying that it would not be necessary to carry
out a quantitative analysis of the information available for analysis, such as R-CNN.

This approach allows the use of the LTN framework to analyze the spatial relations that
occur during the video. However, LTN analyzes information statically, and for this reason,
we chose the YOLO framework to prepare the data to be reasoned by the LTN.

YOLO on the other hand receives a video and separates it into several frameworks,
selecting frames at each time interval to optimize the video processing. After the frames
are selected, the detection of objects in the images is performed and identified by bounding
boxes.

These bounding boxes, in turn, are categorized by the same YOLO framework for
recognizing the possible objects detected, based on a pre-trained knowledge of YOLO itself.

Only after this process is the LTN able to reason about the spatial relations between pairs
of previously detected and categorized objects. This reasoning takes place from the neuro-
symbolic domain of LTN, which through prior knowledge of positive and negative examples
of classifications further improves knowledge of LTN along with axioms of first-order logic.
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The proposal of this research was presented at the Black in AI workshop, at the 2019
NeurIPS congress, in the article "Learning Spatial Relations LTN with Qualitative and
Quantitative Representations of Spatial-Temporal Resources". The proposal of integration of
the time restrictions in the LTN was presented so that its applications of static environments
represented in images, could be extended in applications in dynamic environments, as data
present in the video.

The article achieved such visibility by demonstrating that the neural symbolic approach
unites the strong data representation of symbolic methods with the current advances in
artificial intelligence achieved by neural networks. As a combination of methods with goals
and ascension in different AI eras, neural symbolism brings advantages to both methods.

Thus there were challenges in understanding the union of these methods and their
relations in this new approach, comparing and adapting the methods related to the research
were moments that required more dedication to better understand the scope of the study and
the influences that the differences could cause.

We found that by using the symbolic neural network during the video action identification
algorithm, it was possible to obtain information from the entire analysis process to complete
the final identification because we treat data in a symbolic way. This allowed the manipulation
of these data and their description in the activity graph.

Through this study, it was possible to verify that by using symbolic neural networks, the
proposed video action identification algorithm allows obtaining information and treating them
in a symbolic way, having information about the entire analysis process for the conclusion of
the identification of action in a video.

As shown in schema 5.5 it is possible to use the hypothesis addressed in this research for
different contexts of videos and related objects. For a more specific description, we detail for
the desired context, as we have presented for soccer.

This research aimed to demonstrate the efficiency of the method presented and its
advantage over other algorithms due to its strong representation through a study applied in a
context of soccer videos.

This is a fundamental work for future research of more complex actions and videos. It is
possible to perform abstraction for several approaches to data that are not only visual but that
progress in time and space. Supporting that it is possible to obtain more representation of
neural methods by unifying with a symbolic approach, making the black box of traditional
neural methods clearer.

Based on the information obtained, our objective is to work on expanding this approach
to complex actions and longer videos.
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This will be possible by representing more actions on the same activity graph, using
other temporal relations on the directed edges of the graph, and demonstrating the relations
between more objects.

In the context of a soccer game, it would be possible to analyze three objects, for example,
we could identify the actions that take place in a video in which there are two opposing
players, only one with possession of the ball while the other tries to get it as represented in
figure 6.1.

For such a problem we would analyze it in the same way, between pairs of objects. So we
would have the relation between the ball and Player 1, the ball and Player 2, and finally the
spatial relation between the players. Each instance of these relations would have a temporal
relation according to what occurs in the video. Adding new temporal relations such as starts
on, ends on, and during, for example.

Notice that there are several spatial relations in each node of the graph represented in 6.1,
this way we could also make a more refined analysis of the temporal relations in the nodes
themselves, see the figure 6.2.

As relates to the main objective of this research, it was possible to develop the proposed
algorithm. Our approach represents the data from the information obtained from the video
and manipulates it through symbolic AI that is easily interpreted by humans. Making our
method more interpretable than others already mentioned.

For the partial goals, YOLO was the framework chosen to identify objects and their
positions in the video due to its superiority compared to other methods. This is because the
analysis is performed for the entire image and not for pieces, as is the case of R-CNN. It
was possible to provide a description of the spatial relations in symbolic neuro-networks by
mapping the proposed relationships for LTN, providing the representation of spatial relations
by adapting the LTN relations based on the QQSTR method as O overlaps, PO partially
overlaps and D discretely does not overlap. More so, the activity graph allows one to model
the information identified to infer the action that took place in the video.

Through the initiative of this research, it was possible to initiate a partnership with the
Faculdade de Educação Física e Fisioterapia (FEFF) of UFAM, thereby providing tactical
and teaching knowledge to the students and teachers of the project. The project consists of
collecting data from soccer games, fundamental movements, and player progression during
the training sessions carried out by the project. It is also possible to generate a database for
future works cited, increase FEFF’s technology resources, and the emergence of new project
partnerships.

Through this research, we seek to expand the possibilities of using symbolic neural
networks and contribute to the field of video analytics by integrating knowledge from various
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Figure 6.1: Hypothesis of our approach in a complex context

segments of AI, video processing and analytics, and syntactic and semantic approaches
to the data used. Furthermore, by advancing the analysis to a specific context of several
objects interacting with each other in the same space of time, such advancement can also be
expanded to other contexts of progressive data.

The research contributions lie in the investigation provided for the use of neuro-symbolic
methods in rationalizing data as symbolic data.
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Figure 6.2: Hypothesis of our approach in a complex context about nodes of the activity
graph



Appendix A

Syntax of spatial relationships

This chapter provides formal definitions that will be used to verify some properties of the
model. As they are a work under development, they are put in an appendix. This work
extends LTN spatial relationships between pairs of bounding boxes:

Table regarding definitions of spatial relationships.

Table A.1: New spatial relationships

G (inSideLe f tAltAbove(b,b
′
))

G (inAltAbove(b,b
′
))

G (inSideRightAltAbove(b,b
′
))

G (inSideRight(b,b
′
))

G (inSideRightAltBelow(b,b
′
))

G (inAltBelow(b,b
′
))

G (inSideLe f tAltBelow(b,b
′
))

G (inSideLe f t(b,b
′
))

x0(b)⩾ x0(b
′
)

y0(b)≤ y0(b
′
)

x1(b)≤ x1(b
′
)

y1(b)⩾ y1(b
′
)

regardlesso f angle

G (edgeAltAboveSideLe f t(b,b
′
))

x0(b) <x0(b
′
)

x1(b) <x1(b
′
)

y0(b) >y0(b
′
)

y1(b) <y1(b
′
)

135o

G (edgeAltAbove(b,b
′
))

x0(b) >x0(b
′
)

x1(b) <x1(b
′
)

y0(b) >y0(b
′
)

y1(b) <y1(b
′
)

90o
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G (edgeAltAboveSideRight(b,b
′
))

x0(b) >x0(b
′
)

x1(b) >x1(b
′
)

y0(b) >y0(b
′
)

y1(b) <y1(b
′
)

45o

G (edgeSideRight(b,b
′
))

x0(b) >x0(b
′
)

x1(b) >x1(b
′
)

y0(b) <y0(b
′
)

y1(b) >y1(b
′
)

0oor360o

G (edgeAltAboveSideRight(b,b
′
))

x0(b) >x0(b
′
)

x1(b) >x1(b
′
)

y0(b) <y0(b
′
)

y1(b) <y1(b
′
)

315o

G (edgeAltAbove(b,b
′
))

x0(b) >x0(b
′
)

x1(b) <x1(b
′
)

y0(b) <y0(b
′
)

y1(b) <y1(b
′
)

270o

G (edgeAltAboveSideLe f t(b,b
′
))

x0(b) <x0(b
′
)

x1(b) <x1(b
′
)

y0(b) <y0(b
′
)

y1(b) <y1(b
′
)

225o

G (edgeSideLe f t(b,b
′
))

x0(b) <x0(b
′
)

x1(b) <x1(b
′
)

y0(b) <y0(b
′
)

y1(b) >y1(b
′
)

180o

G (outAltAboveSideRight(b,b
′
))

G (outAltAboveSide(b,b
′
))

G (outAltAboveSideLe f t(b,b
′
))

y0(b) >y0(b
′
)

y1(b) >y1(b
′
)

G (outSideRight(b,b))
x0(b) <x0(b

′
)

x1(b) <x1(b
′
)

G (outSideLe f t(b,b
′
)) x0(b) >x1(b

′
)
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G (outAltBelowSideRight(b,b
′
))

G (outAltBelowSide(b,b
′
))

G (outAltBelowSideLe f t(b,b
′
))

y0(b) <y1(b
′
)
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