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Resumo

A cognição humana depende fortemente do aprendizado indutivo, um processo que o
campo do aprendizado de máquina visa replicar de maneira artificial em hardware/software.
Embora os métodos de aprendizagem conexionistas tenham produzido grandes resultados
pragmáticos nessa área, eles ainda carecem de um modelo de hierarquia de aprendizagem
para explicar seus resultados. A computação Neural Symbolic (NeSy) busca desenvolver uma
integração efetiva entre a aprendizagem conexionista e simbólica. Como esforço para alcançar
essa integração, Neural Multi-Space (NeMuS) é uma estrutura gráfica multidimensional,
originalmente concebida com quatro espaços de elementos codificados de lógica de primeira
ordem, que aprende padrões de refutação e realiza raciocínio oracional indutivo para induzir
hipóteses que explicam exemplos não especificados anteriormente em um conhecimento
prévio. Recentemente, houve um experimento em que um conhecimento de fundo conectado
foi treinado usando Self-Organizing Map (SOM) para gerar similaridade de conceitos de
acordo com seus atributos e sua respectiva posição dentro dos conceitos. Neste experimento,
a indução foi realizada por análise humana no mapa organizacional de conceitos. Neste
trabalho, buscamos um método adequado para gerar padrões de vizinhança a serem usados
para aprendizado indutivo e raciocínio a fim de reduzir o espaço de busca de hipóteses.
Adicionalmente, definimos um viés de linguagem capaz de lidar com invenção de predicados,
para orientar o processo de geração de tais hipóteses.

Palavras-chave: Neural-symbolic, Inductive Logic Programming .



Abstract

Human cognition heavily relies on inductive learning, a process that the field of machine
learning aims to replicate in artificial hardware/software. While connectionist learning
methods have yielded great pragmatic results in this area, they still lack a model hierarchy
of learning to explain their results. NeSy computing seeks to develop effective integration
between connectionist and symbolic learning. As an effort to achieve this integration,
NeMuS is a multi-dimensional graph structure, originally conceived with four spaces of
codified elements of first-order logic, that learns patterns of refutation and performs inductive
clausal reasoning to induce hypotheses that explain examples non-previously specified in a
background knowledge. Recently, there was an experiment in which a connected background
knowledge was trained using SOM to generate similarity of concepts according to their
attributes, and their respective position within the concepts. In this experiment, induction
was performed by human analysis on the organizational map of concepts. In this work, we
seek a suitable method to generate neighbourhood patterns to be used for inductive learning
and reasoning in order to reduce the search space of hypotheses. Additionally, we define a
language bias able to handle predicate invention, to guide the process of generating such
hypotheses.
Keywords: Artificial Intelligence, Neural-Symbolic Integration, Inductive Clausal Learning,
Multidimensional Graph Neural Network.
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Chapter 1

Introduction

One of the main ways by which humans learn is by observing instances of things in the real
world and generalising for what is yet unseen, a process called inductive learning. One of the
most important topics in machine learning is the study and modeling of inductive learning, a
task considered as the "key to an improvement of methods by which computers can acquire
logic"[4]. Even more recently, it has been said in [5] that the aim of Machine Learning (ML)
is to automate induction. To this end, various models have been created, and while many
are able to induce admirably, there is still a wide gap between them and the human brain.
The reason for this gap is easily explained: a human only needs one interaction with, say, a
poisonous plant, to know to avoid that same plant in the future. That is, human brains are
able to generalise from very few examples, sometimes only one. Creating computational
systems that generalise from few examples is still a great challenge in artificial intelligence.

Connectionist learning methods prevail currently in ML. Connectionism comes from the
field of cognitive science, where it is defined as "an approach to the study of human cognition
that utilizes mathematical models, known as connectionist networks or artificial neural
networks" [6]. Artificial Neural Networks (ANNs) are composites of simple processing
elements (artificial neurons) found in different layers, including one input, one output, and
possibly multiple hidden layers[7]. They aim to create models that accurately represent the
cognitive processes that constitute learning, and have repeatedly been proven to successfully
model solutions to many real-world problems. However, unlike humans, they need many
examples to be able to perform induction. Other limitations of ANNs include their black-box
nature, tendency to overfit as their size and expressivity increase, and the idea of propositional
fixation based on an argument of John McCarthy[8] (that neural networks are limited to
propositional logic and cannot represent relational knowledge). Taking these limits into
consideration has given rise to the idea that pure connectionism does not explain intellectual
abilities precisely.
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The symbolic approach to cognitive science precedes the connectionist one, and consists
of rule-based models in which learning and concept representation are seen as symbol
processing and manipulation. Although symbolic methods predominated in the early days
of computer modeling of the mind and have been applied to areas such as problem solving
and language processing, they were eventually abandoned due to their severe limitations.
Currently, logic programming methods such as Inductive Logic Programming (ILP) have
shown potential in addressing the issues with ANNs cited above, as they can be more easily
understood by humans due to learning explicitly symbolic programs. However, they cannot
be applied to the same variety of problems that ANNs can, and are not robust to noise and
mislabelled data[9].

Human cognition, instead of being either purely connectionist or purely symbolic, seems
to consist of processes belonging to both approaches. Moreover, connectionist and symbolic
approaches both have limitations that are addressed by each other. Therefore, it stands to
reason that an interesting and potentially more accurate model would be one that integrated
connectionist learning with symbolic reasoning. This consitutes the field of NeSy computing,
which this work fits into.

In [10], Diniz and Mota began the development of a platform to integrate connective and
symbolic learning. The proposed Shared NeMuS learns patterns of complementary literals
by training a knowledge base, in order to embody resolution within the process of learning
and reasoning as matching of the coded query against regions of these patterns. The structure
was then extended in [11] for symbolic Inductive Clausal Learning (ICL). This type of
learning differs from classic ILP, as it is not limited to Horn clauses and does not check every
possible option in the search space. Instead, it leans on the inductive momentum mechanism
(which prunes away candidates to generalized body literals if they have been reached from
the bindings of terms of the negative examples). Additionally, it uses linkage patterns, which
are paths, within graphs, that connect constants and the predicates where they appear.

1.1 Problem Description

In [1] a first experiment, called Self-Organizing Inductive Reasoning (SOIR), was carried
out by Barreto and Mota in which a connected background knowledge was trained using
a SOM approach. Unlike [10], this SOM training experiment was not meant to generate
patterns of refutation, but rather of similarity of concepts according to their attributes, and
their respective position within the concepts.
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The knowledge base used in the experiment1 was composed of unit clauses with predicates
of the form f ather/2 and mother/2, with the objective of learning the ancestor rule. The
NeMuS constant space, as is called the space of individuals in the universe of discourse,
was fed to the SOM training phase, yielding a map where circles represented instances of
f ather and ×’s represented instances of mother. After training, the SOM was used to "learn
to induce" rules that defined the ancestor target predicate. Below are the first 12 unit clauses
in the knowledge base, as seen in [1]:

f ather(Jake,Bill) f ather(Bill,Ted) f ather(John,Harry)
f ather(Jake,John) f ather(Bill,Megan) f ather(John,Susan)
mother(Matilda,John) mother(Alice,Ted) mother(Mary,Harry)
mother(Matilda,Bill) mother(Alice,Megan) mother(Mary,Susan)

Table 1.1: A background knolwedge to induce ancestor relation.

According to [1], "ancestor(a,b) and ancestor(c,d) are located in the mother and father
regions respectively. Therefore, we can say that an ancestor can be a father or a mother. [Fig-
ure 1.1] shows the SOM after the induction ancestor(X ,Y ) knowing ancestor(Jake,John)
and ancestor(John,Harry). The triangle v0 represents the induction vector of ancestor(Jake,John)
and v1 represents the example ancestor(John,Harry). From the organization of the map,
we see that both vectors are near father instances so we can assume that Jake is father
of somebody that is ancestor of Harry".

Figure 1.1: From [1], the SOM after inducing the ancestor rule only with positive examples

1Access to git repository can be provided upon request
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The biggest limitation in the experiment was that the generation of the hypothesis that
explains positive examples of the target concept, i.e. ancestor(X ,Y ), had to be written out of
the visual observation of the map. In other words, we had to observe the locations of positive
examples, and then discover a rule based on the proximity of these examples to concepts on
the map (as shown in the emphasized sentence at the end of the last paragraph). To automate
this process it is necessary to endow our previous work, [12], with a mechanism able to learn
in a self-organised inductive way. However, before that a far more difficult challenge needs
to be tackled: to figure out a concept of neighbourhood to be used in finding patterns of
groups of individuals (elements of constant space), that are connected to one another in the
same way, via their attributes. The above concept, which we will call neighbourhood pattern
is the central point of this work.

Furthermore, the learning of hypotheses in the way we envision requires the settings of
the inductive process to be configured in order to reduce the search space of hypothesis and
enable the development of heuristics to generate better hypotheses. The literature shows (e.g.
Muggleton [13], Inoue[14]) that this can be done via the use of meta-level approaches, which
(roughly) define hypotheses schemes in logic programming. In this work, we aim to achieve
this through using language bias for the reduction of hypotheses space and perform some
experiments to figure out an useful way to explore recursion patterns, if there are any.

1.2 Objetives of this Work

The objective of this work is to pinpoint a suitable method to generate neighbourhood patterns
to be used for inductive learning and reasoning, based on the NeMuS neural-symbolic
framework. As such, the idea is to maintain connectionist ML’s efficient classification and
learning from large-scale data, while bringing the advantageous aspects of symbolic ML to
fill in the gaps in connectionism as is the main idea of NeSy Artificial Intelligence (AI).

We aim to do this by:

• Reducing the search space of hypotheses by making use of the "bridging concepts"
mechanisms that are set by a proper language bias;

• Integrating ICL with language bias and inductive momentum, from [11], into this new
framework;

• Providing predicate invention based on bridging concepts, as presented in [12];

• Performing experiments to figure out organization patterns of recursion by means of
analysis of neighbourhoods of concepts.
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Related Works

2.1 Inductive Logic Programming

ILP was first proposed by Muggleton in [15], shortly after the introduction of relevant
concepts to the area such as Inverse Resolution and Predicate Invention[16]. As a research
field, ILP aimed to combine the logical knowledge representation from Logic Programming
(LP) with ML. According to Muggleton in [17], as the connectionist inductive learning-based
systems at the time had trouble dealing with propositional fixation, the core task in ILP was
(and has remained) to learn from datasets in which not the values in themselves, but the
relationships between individuals, are what provide the generalizations to learn from. As well
as the problems with dealing with relational knowledge, ILP also tackles other limitations
of connectionist systems at the time: logic programs are more expressive than the network
and graph-structures predominantly used at the time, and are more easily interpretable by
humans.

Today ILP is a form of ML that learns relations instead of functions, and in which data is
represented using logic programs instead of vectors[18]. An ILP task is composed of three
sets of logic programs: Background Knowledge (BK), positive examples (E+) and negative
examples(E−). Given these sets, an ILP system is supposed to learn a hypothesis that entails
all or as many positive examples as possible, and none or as few negative examples as
possible.

There are generally two approaches to ILP systems: bottom-up and top-down. Bottom-up
ILP starts by examining the examples provided and creating very specific hypotheses, which
are then generalised. In contrast, top-down ILP uses a method called generate-and-test,
in which hypotheses are generated first and then tested against the positive and negative
examples provided. These hypotheses are as general as possible, and are further specified by,
when a contradiction is found during testing, applying substitution or adding a literal to one
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of its clauses, or adding a new clause. One example of this approach being used is Metagol,
a state-of-the-art ILP system.

2.1.1 Meta-Interpretive Learning and Metagol

As ILP learns from examples, the information contained in them is often not enough to
generalize rules. When given an extensive or complex BK, as well as few examples, the
resulting hypothesis space (that is, the set of all hypotheses a system can return) may be too
large and inconclusive without the use of bias. In order to control the hypothesis space, ILP
uses inductive bias, also known as priors. These are the set of assumptions a learner uses to
compute predictions beyond what is in the training set. It is a key characteristic of ILP to
use background knowledge as a way to impose strong inductive bias onto systems, which
allows them to generalize from few examples, often a single one. Additionally, other forms
of bias can be used, such as metarules. Used in a form of ILP known as Meta-Interpretive
Learning (MIL), metarules are a form of declarative bias that consists in second-order Horn
clauses with existentially quantified predicate variables. They are often included in the BK
and help define the structure of the hypotheses to be learned.

Metagol [19] is a state-of-the-art ILP system based on Prolog that requires as input, as
well as the logic programs previously mentioned, metarules that define the form of clauses
permitted in a hypothesis. These are of the form metarule(Name,Subs,Head,Body), where
the symbols in Subs are the second-order variables, and the fields Head and Body contain,
respectively, the head and the body of the metarule in the form [X , Y1, ..., Yn], where X
is the second-order variable and all Yis are the first-order variables that compose it. One
example of this is the chain metarule (P(A,B)←Q(A,C),R(C,B)), that in Metagol is written
as metarule(chain, [P,Q,R], [P,A,B], [[Q,A,C], [R,C,B]]).

With this input, Metagol uses iterative deepening on the number of clauses in the solution
to find adequate substitutions for the second-order variables in order to find a hypothesis.
Following the proof of a set of goals, Metagol forms a logic program by projecting the
meta-substitutions onto their corresponding metarules[20]. Metagol is also notable for its
support of automatic predicate invention and its ability to learn recursive programs. It is,
however, limited in the sense that it cannot handle noise.

2.2 Neural-Symbolic Computing based Inductive Learning

NeSy computing seeks to develop effective integration between connectionist learning and
symbolic reasoning, possibly taking advantage of all statistical methods that can be applied
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to the features of data perceived or on the logical structure of symbolic information[21].
A system based on this integration could then transfer knowledge across domains and use
background constraints to identify what is relevant in a particular context and so, restructure
the problem (possibly inventing concepts) to make it easier to solve.

2.2.1 CILP

Garcez and Zaverucha propose in [22] Connectionist Inductive Logic Programming (CILP),
which maps logic programs into a single layer artificial neural network. Each rule has a
neuron in this layer, input signals to each hidden neuron represent propositional literals in
the body and their heads are the output signals. Although they have found a very efficient
NeSy solution, even proving that after training the equivalent ANN its corresponding logic
program is correct, it is limited to propositional logic. Later, Garcez and others [23] proved
that CILP and its extension to Learning by induction (C-IL2P), could deal with possible
world semantics which is a sort of non-propositional logic.

In [24], França et al. propose CILP++, an extension of CILP that allows for efficient and
accurate extraction of first-order logic rules from trained networks. The learning process
begins by generating bottom clauses (described as "the most specific clause that can be
considered a candidate hypothesis", these clauses serve as boundaries in the hypothesis
search space) for each example provided, mapping them onto features on an attribute-value
table and generating numerical vectors that can be taken as input by a neural network. For
learning, CILP++ uses resilient backpropagation with early stopping to train the network, and
then applies an adapted version of the TREPAN rule extractor algorithm (adaptations include
allowing the generation and query of first-order rules into Prolog, as well as simplifications
to improve efficiency and readability) to perform relational knowledge extraction.

Recently, Garcez et al. [25] reported the results from the NeSy Computing community
that has sought to integrate the views from AI, cognitive sciences, machine learning, ANN,
computational vision and natural language processing, and point out the main lines NeSy
should go to meet human-like computing. This is also know as Human-Like AI initiative.

2.2.2 ∂ ILP

Differential ILP (∂ ILP) assumes a that a logic program R is composed by the union of the BK
and positive examples logic programs, a target predicate T , is the intensional predicate that
must be learned, Pe, the set of extensional predicates in R, Pa is a set of auxiliary intensional
predicates, the additional invented predicates used to help define the target predicate, and Pi

= Pa∪T . Then, a language template τ is of the form
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τ =

{
Pe

Pi

Evans and Grefenstette in [26] propose ∂ ILP, a reimplementation of ILP with a differ-
entiable implementation of deduction through forward chaining on definite clauses. ∂ ILP’s
approach to ILP is top-down: it generates clauses from a language template and tests the
generated programs against the positive and negative examples. To make it a satisfiability
problem, it assigns Boolean flags to each clause indicating whether it is on or off. Then,
to solve this satisfiability problem, it uses a SAT solver to find a truth-assignment to the
generated clauses, such that the clauses that are "on" together with the BK entails all the
positive examples and none of the negative ones.

In order to keep the search space of clauses manageable, it is necessary to impose certain
limitations. To do so, ∂ ILP uses concepts such as rule templates.

A rule template describes the range of clauses that can be generated. Specifically,
the number of variables allowed and whether the atoms in the clause can use intensional
predicates or only extensional ones.

∂ ILP limits clause generation by establishing that each intensional predicate p is defined
by exactly two clauses specified by two rule templates. Other limitations include not allowing
the following:

• Constants in any of the clauses;

• Clauses with predicates of arity above 2;

• Circular clauses;

• Duplicated clauses;

• Clauses in which a variably present in the head is not in the body;

• Clauses that contain intensional predicates when their rule template does not allow
them.

In turning an induction problem into a satisfiability one, ∂ ILP makes it possible to
minimize loss by applying stochastic gradient descent and learn the correct truth-assignment
to the clauses generated, even if there is noise or if the data is ambiguous. Furthermore,
∂ ILP uses continuous weights to determine a probability distribution over clauses, instead of
Boolean flags to choose a subset of clauses. Thus, ∂ ILP "implements differentiable deduction
over continuous values". For this reason, it can handle ambiguous or mislabelled data, a
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common limitation in ILP. However, it still includes limitations such as its requirement of
significant memory resources, and the necessity of use of templates to limit search space.

2.2.3 Other Approaches to NeSy

Dai et al. in [27] present a Abductive Learning (ABL), a NeSy approach using abductive
learning as a way to unify machine learning and logical reasoning in a way that benefits both
techniques. In it, a ML model interprets data into primitive logical facts, while a logical
model reasons about missing or incorrect information by using background knowledge to
obtain a consistent final output.

Rocktäschel and Riedel present in [28] the construction of a Neural Theorem Prover
(NTP) based on differentiable backward chaining and unification, that can perform first-order
inference in vector space like a discrete theorem prover would do on symbolic representations
and can also learn representation of symbols and first-order rules of predefined structure. The
key idea is to recursively construct neural networks by replacing operations on symbols in
backward chaining with differentiable operations on distributed representations. To do that,
they separate goals and substitutions into vector representations of involved predicates and
constants, and structures that define the connections of a neural network.

Šourek et al. [29, 30] and Železný et al. [31] present Lifted Relational Neural Network
(LRNN), which uses weighted relations rules for learning feed-forwards neural networks.
They’re different from standard neural networks because their structure is derived from
symbolic rules and thus has an intuitive interpretation, and because the weights of the
network are tied to the first-order rules and are thus shared among different neurons.

LRNNs can be used to learn a latent category structure that is predictive in the sense that
the properties of an entity can be largely determined by the category to which that entity
belongs, and the entities satisfying a property can be largely determined by the category to
which that property belongs. This enables reasoning based on the idea that similar entities
have similar properties.

2.3 GNN-based Inductive Learning

The Graph Neural Network (GNN) model was introduced by Scarselli et al. in [32] to
accurately represent graph structures, in order to better deal with real-world applications in
which data is represented in this form.

Scarselli et al. describe a graph G as a pair (N, E) where N is the set of G’s nodes, while
E is the set of G’s edges. Each node denotes a concept, which is defined by its own features
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and related concepts. Relationships between concepts are denoted by the edges between the
nodes, and each edge e and node n has its own label l, represented by a vector that includes
its features. Therefore, each node n has a state xn that depends on n’s neighbourhood and
features, and represents the concept associated with it. More formally, if fw is a parametric
function that expresses the dependence of a node n on its neighbors, then:

xn = fw(ln, lco[n],xne[n], lne[n])
where co[n] is the set of arcs that have n as a vertex, and ne[n] is the set of n’s neighbors.
Tasks for learning on graphs can be node-focused or graph-focused. In graph-focused

tasks, the learning doesn’t depend on any particular nodes, but is associated with the entire
graph, while node-focused tasks are associated with individual nodes and the learning
depends on each of their properties. To deal with graph-focused tasks, [32] includes a
"supersource node" that represents the whole graph and from which it is possible to reach
every node.

With the rise of deep learning, applying it to graphs was shown to be a difficult task due
to their irregular structures, heterogeneity and large scale in real applications. The recent
advances in Convolutional Neural Networks (CNN) brought GNNs back into view, and
they have thus been improved upon. Many other deep learning methods on graphs have
been created, enough for there to be multiple up-to-date surveys on the subject. Zhang
et al. [33] divide these methods in five categories: graph recurrent neural networks (the
classic GNN as well as its improvements), Graph Convolutional Networks (GCN), Graph
Autoencoders (GAE), graph reinforcement learning, and graph adversarial methods. For the
scope of this work, only GCNs and GAEs will be touched upon, as these are the categories
of methods that can be applied to the inductive learning setting.

2.3.1 Graph Convolutional Networks (GCNs)

The task of defining convolution and pooling operations on graphs, known as the geometric
deep learning problem, is not as straightforward as on images or texts, because graphs don
not have a grid-like structure. One main direction of research on this topic is, according to
[34], to "define graph convolutions from the spectral perspective". Spectral methods perform
convolutions by transforming node representations into the spectral domain. In graphs,
this means using the graph Laplacian to find the combination of orthogonal elements that
compose the graph - a task known as eigen-decomposition. Like in conventional convolutions,
spectral convolution in graphs consists of passing input signals (the set of node features
is the input layer) through a set of learnable filters to aggregate the information, and then
doing some nonlinear transformation. In practice, this leads to limitations such as the need
to learn O(N) parameters, possibility of filters not being localized in the spacial domain,
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high time complexity and inability to share parameters between graphs with different sizes
and structures. All these problems are addressed by different methods. While most of these
problems are addressed and alleviated in methods that still mostly use spectral convolutions,
the multiple graphs aspect requires methods based in spatial convolutions - those that perform
convolution by considering node neighbourhoods

Applying GCNs to inductive learning has been verified to be possible in some models like
GraphSAGE[35], GAT[36], GaAN[37] and FastGCN[38], but only for graphs with explicit
features. The task of performing inductive learning for graphs without those is known as the
out-of-sample problem[39].

2.3.2 Graph Autencoders (GAEs)

Sparse Autoencoder (SAE) began the use of autoencoders for graphs, based on the idea that
autoencoders can be used as dimensionality reduction techniques to learn low-dimensional
node representations, if one regards the adjacency matrix (or its variations) of a graph as
raw features of nodes. Despite outperforming non-deep learning baselines at the time, SAE
was proven by Zhang [40] to be based on an incorrect theoretical analysis, and the reason
for its effectiveness is unknown. However, the need to fill in the puzzle and further develop
this line of research motivated the creation of other GAE methods, including ones that apply
variational autoencoders (that combine dimensionality reduction with generative models) to
graph data.

GAEs have been shown to be applicable to inductive learning by using a GCN as the
encoder or by directly learning a mapping function from node features.

2.3.3 GNN Example

Example 2.1

Teru et al. [2] present Graph Inductive Learning (GraIL), a GNN-based relation
prediction framework that learns entity-independent relational semantics with
strong inductive bias. The paper gives an example of how learning methods
that operate on embeddings (latent representation of entities and relations) work
to predict missing edges on graphs. The training graph (Figure 2.1) and graph
illustrating inductive inference (Figure 2.2) used in the paper, can be translated
into clauses in the following way:
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Figure 2.1: Training graph for example in
[2]

Figure 2.2: Graph illustrating inductive
inference in [2]

From Fig. 2.1 From Fig. 2.2
mother_o f (marie, lebron). mother_o f (ayesha,e_curry).
mother_o f ( jeni f er,savannah). spouse_o f (s_curry,ayesha).
spouse_o f (lebron,savannah). ambassador(s_curry,underarmour).
spouse_o f (a_davis,britney). lives_in(ayesha,cali f ornia).
lives_in(lebron, la). part_o f (s_curry,gsw).
lives_in(savannah, la). located_in(gsw,cali f ornia).
lives_in(britney, la).
part_o f (lebron, lakers).
part_o f (a_davis, lakers).
located_in(lakers, la).
located_in(holly, la).
occupation(savannah, philant).
f ounded_by(akron_school, lebron).
teammate_o f (lebron,adavis).
f av_nba_team(britney, lakers).

In the example, the inductive inference is to learn the missing relation between
s_curry and cali f ornia, which would be lives_in(s_curry,cali f ornia) by tak-
ing into account the clauses spouse_o f (lebron,savannah), lives_in(lebron, la)
and lives_in(savannah, la). The rule learned in this case would be the following:

lives_in(X ,Y )← spouse_o f (X ,Z) ∧ lives_in(Z,Y )
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All approaches briefly described above seek to generate rules like the one presented in
the example, which is the ultimate goal of a relational machine learning system. None of the
works researched seem to solve the problem we are tackling: to perform induction without
the need to walk the entire path that leads to, for example, a recursion. This is due, firstly, to
the fact that none of the observed works have tried to perform inductive reasoning based on
self-orgazing maps of concepts. Secondly, because none of them have logic-like structure
interconnecting spaces of concepts. However, the limitations of the first versions of NeMuS
structure need to be overcome by an extension on its space boundaries, and a more concise
definition of its core component or building block needs to be provided. Thus, we end this
chapter by addresing the rationale for doing this.

2.4 FOIL

Proposed by J.R. Quinlan in [3], First-Order Inductive Learning (FOIL) is a system where
objects are described using relations. Given examples (positive and negative) of a target
relation, FOIL is tasked with finding a rule that defines this relation.

FOIL accepts Horn clauses of the form C← L1,L2, ...,Ln, where C is a predicate and
each Li is either a predicate or the negation of a predicate. Variables start with capital letters,
and all other atoms are constants.

The FOIL algorithm consists of one outer operation and one inner operation. They work
as follows:

Outer operation:

• 1) Establish the training set consisting of constant tuples, labelled (+) or (-);

• 2) Until there are no (+) tuples left in the training set:

– 2.1) Find a clause that characterizes part of the target relation;

– 2.2) Remove from the training set all tuples that satisfy the right-hand side of this
clause.

Inner operation:

• 3) Initialize a training set Ti, local to this operation. Let i = 1;

• 4) Until there are no (-) tuples left in Ti:

– 4.1) Find a literal Li to add to the right-hand side of the clause
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– 4.2) Produce a new training set Ti+1 based on the tuples in Ti that satisfy Li. If Li

introduces new variables, each tuple from Ti can form several expanded tuples in
Li+1;

– 4.3) Increment i and continue.

To visualize how this algorithm works, consider the following example:

Example 2.2

Figure 2.3: Graph that illustrates this example, found in [3]

Consider the target relation can-reach(X,Y), and the following BK, illustrated in
Figure 2.3:

linked-to(0,1). linked-to(4,5).
linked-to(0,3). linked-to(4,6).
linked-to(1,2). linked-to(6,8).
linked-to(3,2). linked-to(7,6).
linked-to(3,4). linked-to(7,8).

Note that in the training sets that follow, <X,Y> = linked-to(X,Y).

• 1) Establish the training set:

(+): <0,1> <0,2> <0,3> <0,4> <0,5> <0,6> <0,8> <1,2> <3,2>
<3,4> <3,5> <3,6> <3,8> <4,5> <4,6> <4,8> <6,8>

(-): <0,0> <0,7> <1,0> <1,1> <1,3> <1,4> <1,5> <1,6> <1,7>

<1,8> <2,0> <2,1> <2,2> <2,3> <2,4> <2,5> <2,6> <2,7> <2,8>

<3,0> <3,1> <3,3> <3,7> <4,0> <4,1> <4,2> <4,3> <4,4> <4,7>

<5,0> <5,1> <5,2> <5,3> <5,4> <5,5> <5,6> <5,7> <5,8> <6,0>
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<6,1> <6,2> <6,3> <6,4> <6,5> <6,6> <6,7> <7,0> <7,1> <7,2>

<7,3> <7,4> <7,5> <7,7> <8,0> <8,1> <8,2> <8,3> <8,4> <8,5>

<8,6> <8,7> <8,8>

• As there are (+) tuples in the training set, proceed to step 2.1;

• 2) As there are (+) tuples in the training set, proceed to step 2.1;

• 2.1) Ideally, the clause set in this step will satisfy many (+) tuples and
few (-) ones. Here, it is set as can-reach(X,Y)← linked-to(X,Y).
This clause satisfies the (+) tuples <0,1>, <0,3>, <1,2>, <3,2>, <3,4>,
<4,5>, <4,6>, <6,8>, <7,6> and <7,8>, while also not satisfying any of
the (-) ones;

• 2.2) Remove the clauses mentioned in the previous step from the training
set. This leaves it as:

(+): <0,1> <0,2> <0,3> <0,4> <0,5> <0,6> <0,8> <1,2> <3,2>

<3,4> <3,5> <3,6> <3,8> <4,5> <4,6> <4,8> <6,8>

(-): <0,0> <0,7> <1,0> <1,1> <1,3> <1,4> <1,5> <1,6> <1,7>

<1,8> <2,0> <2,1> <2,2> <2,3> <2,4> <2,5> <2,6> <2,7> <2,8>

<3,0> <3,1> <3,3> <3,7> <4,0> <4,1> <4,2> <4,3> <4,4> <4,7>

<5,0> <5,1> <5,2> <5,3> <5,4> <5,5> <5,6> <5,7> <5,8> <6,0>

<6,1> <6,2> <6,3> <6,4> <6,5> <6,6> <6,7> <7,0> <7,1> <7,2>

<7,3> <7,4> <7,5> <7,7> <8,0> <8,1> <8,2> <8,3> <8,4> <8,5>

<8,6> <8,7> <8,8>

Note that the clause generated in this outer operation is complete (since
it satisfies (+) tuples and does not satisfy any (-) tuples). Therefore, the
clause set by the inner operation is a different one, and not a continuation
of can-reach(X,Y)← linked-to(X,Y). On entering the inner loop, the
right-hand side of the clause is empty;

• 3) Enter the inner loop with the training set from the previous step as T1;

• 4) As there are (-) tuples in T1, proceed to step 4.1;

– 4.1) Let the literal added to the right-hand side of the clause be
linked-to(X,Z). None of the pairs <2,...>, <5,...> or <8,...>
will satisfy this new literal, because in the original set of relations
there are no linked-to relations with 2, 5 or 8 as X;
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– 4.2) Since linked-to(X,Z) adds a new literal to the base, the tuples
in T2 will be triples instead of pairs. Each pair <A,B> will generate
one triple <A,B,Ci> for each pair <A,Ci> in the relation linked-to.
For example, <0,2> gives way to <0,2,1> and <0,2,3>, because of
the relations linked-to(0,1) and linked-to(0,3). T2 looks like:
(+): <0,2,1> <0,2,3> <0,4,1> <0,4,3> <0,5,1> <0,5,3>
<0,6,1> <0,6,3> <0,8,1> <0,8,3> <3,5,2> <3,5,4> <3,6,2>
<3,6,4> <3,8,2> <3,8,4> <4,8,5> <4,8,6>
(-): <0,0,1> <0,0,3> <0,7,1> <0,7,3> <1,0,2> <1,1,2>
<1,3,2> <1,4,2> <1,5,2> <1,6,2> <1,7,2> <1,8,2> <3,0,2>
<3,0,4> <3,1,2> <3,1,4> <3,3,2> <3,3,4> <3,7,2> <3,7,4>
<4,0,5> <4,0,6> <4,1,5> <4,1,6> <4,2,5> <4,2,6> <4,3,5>
<4,3,6> <4,7,5> <4,7,6> <6,0,8> <6,1,8> <6,2,8> <6,3,8>
<6,4,8> <6,5,8> <6,6,8> <6,7,8> <7,0,6> <7,0,8> <7,1,6>
<7,1,8> <7,2,6> <7,2,8> <7,3,6> <7,3,8> <7,4,6> <7,4,8>
<7,5,6> <7,5,8> <7,7,6> <7,7,8>

– 4.3) Set i = 2 and go back to the beginning of step 4;

• 4) As there are still (-) tuples in T2, proceed to step 4.1;

– 4.1) Let the new literal in the clause be can-reach(Z,Y);

– 4.2) As no new variables were added, the tuples in the next training set
will remain as triples. T3 consists of the tuples in T2 that are satisfied
by the literal added in the previous step. This leaves T3 as:
(+): <0,2,1> <0,2,3> <0,4,3> <0,5,3> <0,6,3> <0,8,3>
<3,5,4> <3,6,4> <3,8,4> <4,8,6>

As there are no (-) tuples in T3, the inner loop will not be repeated. The
clause generated is can-reach(X,Y)← linked-to(X,Z), can-reach(Z,Y),
and all (+) tuples in the original training set are reached by either this
clause or the one generated in the outer loop. Therefore, the definition of
can-reach is complete.

In the last iteration of step 4.1, choosing the literal linked-to(Z,Y) would
also lead to a training set with no (-) tuples, which would lead to the
clause can-reach(X,Y)← linked-to(X,Z), linked-to(Z,Y). How-
ever, FOIL’s heuristic for evaluating literals (explained in section 2.4.1) led
it to choose can-reach(Z,Y), as this literal was considered more useful.
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Limitations of FOIL include being restricted to Horn clauses and not being capable
of predicate invention. Additionally, it is based on a greedy algorithm for assembling
clauses from literals. When valuating a possible literal, FOIL searches almost exhaustively
through possible combinations of variables. Furthermore, once a literal is selected, no other
alternatives are explored.

2.4.1 FOIL’s heuristic for choosing literals

In FOIL, the utility of a literal Li is measured in terms of information gained by adding it to
the clause. Since clauses characterize a subset of the (+) tuples in a relation, this information
gained is in regard to the (+) tuples in the training set Ti obtained by adding Li to the clause.
The information given by Ti labelling any of its tuples as (+) is given by the following
formula, supposing that T+

i is the number of (+) tuples in Ti, and that T−i is the number of
(-) ones:

I(Ti) =−log2(T+
i /(T+

i −T−i ))

Now, suppose that T++
i of the tuples in T+

i generate one or more tuples in Ti+1. Then:

Gain(Li) = T++
i × (I(Ti)− I(Ti+1))

To understand this, consider the previous example. In T2, T+
2 = 18 and T−2 = 54. Ap-

plying these values to the first formula, I(T2) = 2. T3 is then obtained by adding the literal
can-reach(Z,Y). 10 (+) tuples from T2 are represented in T3,each giving way to one tuple,
as no new variables were added. So, T++

2 =T+
3 = 10. As there are no (-) tuples in T3, T−3 =

0. Consequently, I(T3) = 0, which leads to:

Gain(can-reach(Z,Y)) = 10 ×(2−0) = 20

Had linked-to(Z,Y) been chosen, I(T3) would still be 0, but T3 would have only 6
tuples (<0,2,1>, <0,2,3>, <0,4,3>, <3,5,4>, <3,6,4> and <4,8,6>), so T++

2 =T+
3 = 6,

and:

Gain(can-reach(Z,Y)) = 6 ×(2−0) = 12

This means that more information was gained by adding can-reach(Z,Y) to the base
than by adding linked-to(Z,Y). Hence, the former literal being added to the clause, rather
than the latter.
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2.5 Leveraging Information from Logical Ground Terms

Other symbolic or neural-symbolic logic-based inductive learning frameworks consider
constants only for unification purposes, but do not pay attention to their degree of importance
for logical inference. From the human learning perspective, it is intuitive to generate all
possible hypotheses and then keep only those that succeed in proving positive examples and
rejecting negative ones. However, while generating hypotheses, one can also "look ahead" to
see whether a given example has chances of either failing or succeeding with the hypothesis
in question. This is only possible if one understands how the positional bindings of objects
within literals may offer information to foresee such a failure or success.

With this in mind, and aiming to consider the degree of importance of each First-Order
Logic (FOL) object, Mota and Diniz, [10], proposed a Neural Multi-Space (NeMuS) repre-
sentation with four spaces of codified elements of first-order logic. Variables and constants
are paired in the first space, then spaces for functions, predicates and clauses. From the space
of variables and constants, each element has a vector of bindings to upward elements with
a weight of importance were they appear as attributes. The clause space has no bindings
upward, and so might be used as outputs. This structure is illustrated in Figure 2.4(a) and
Figure 2.4(b). The upward arrows in Figure 2.4(b) represent weights of influence from lower
elements upon higher ones in which they appear as a composite part.

Figure 2.4: (a) First-Order logic space. (b) Weighted First-Order logic space

NeMuS was further extended, Mota et alia in [11], for symbolic inductive learning, then
[12] separeted variable and constant spaces into two new ones and showed that predicate
invention can be efficiently performed in such a structure. However, even the self-organised
inductive reasoning experiment reported by Barreto and Mota, [1], was limited by the fixed
number of multi-spaces allowed. Another limitation of the experiment is the fact that it
considers only positive clauses and examples. Including negative ones would enable the
use of the inductive momentum mechanism, introduced in [11]. Inductive momentum is a
mechanism that iteratively "selects" only those atoms not likely to entail negative examples.
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(IM) takes into account the positional information of attributes from positive an negative
examples to perform such selection. What we aim to achieve is to gather additional informa-
tion from ground term and how they are distributed across the BK. This is strongly related
to neighbourhood definition because constants that appear in instances of the same concept
would be in the same neighbourhood. This distribution should obey a certain pattern, which
could be used to generate hypotheses in a more efficient way. Although NeMuS does not
offer straight information to this, it can be used to acquire it.

Within the problem of generating hypotheses, when it comes to figuring out recursive
hypotheses, the previously mentioned ILP methods need to walk the entire path between
individuals, as one does in a graph. We aimed to address the problem of shortening this
process in [12] in two ways:

1. By defining a language bias able to define "bridging concepts" (which will be explained
in the next section), set the size of hypotheses to make simpler clauses, and point to
how auxiliary concepts can be introduced via invention.

2. By assuming a heuristic that was supposed to be defined in the development from [1].
This would consist in finding an organization pattern associated with recursion, like
clusters of concepts. In this way, the task of "walking" a path in a graph would be
transformed into checking if two individuals are in the same neighbourhood.

However, the challenge in 2 was not tackled any further. That is mainly due to the concept
of neighbourhood not being well defined. Therefore, defining it is the main contribution we
expect to make in this work. In the next chapter we will introduce the problem of finding a
recursive hypothesis, bridging concepts, and how we plan to make experiments using NeMuS
to figure out how the definition of neighbourhoods should be addressed.



Chapter 3

Neural-Symbolic Approach to Inductive
Learning

The problem of inductive learning involves a knowledge base of predicates, called background
knowledge (BK), a set E of examples that the logical description H of the target concept (t)
should prove (positive examples, e+) and a set of examples that the target concept should
not prove (negative examples, e−). From BK, only a (not necessarily small) portion of
its constant terms form what is called Herbrand Base, that may explain how H entails a
positive example for the concept t. To reduce the search space of hypotheses generation is
a central theme in this field. In this chapter, we shall present a simple logical language to
represent hypotheses and description of language biases, as well as give and an informal
introduction to our neural-symbolic framework. Using this, we will describe the inductive
learning mechanism developed, and the point in which its integration to a connectionist
approach can aid the discovery of information about patterns that could help guide the search
for useful hypotheses.

3.1 The Logical Language for BK and Hypothesis

The logical language used (for this work) is a fragment of first-order logic based in a clausal
formal system [41], in which clauses are divided into two categories. 1) Initial Clauses, say
B (or the BK), are those belonging to the set of axioms plus the negation of the query; 2)
structured Clauses are the ones derived by a sort of Linear Resolution [42]. Roughly, if s
is a sentence or query, in clausal form, and B is the set of initial clauses, then a deduction
of s from B corresponds to deriving an empty clause, ⊔, from {∼ s}∪B, or according to
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Herbrand theorem, to prove that {∼ s}∪B is unsatisfiable and it yields the most general
unifier for s.

A set of logical formulae is represented by clauses of literals according to the following
terminology. Predicates and constant or atomic symbols start with lowercase letters like
p,q,r, . . . and a,b,c, . . ., respectively. Variables start with capital letters, like X ,Y, . . .. A
term is either a variable, a constant symbol or a function f (t1, . . . , tk) in which f represents
a mapping from terms t1, . . . , tk to an "unknown" individual. If p is a symbol representing
a predicate relation over the terms t1, . . . tn, then p(t1, . . . , tn) is a valid atomic formula.
Predicates and functions are compound symbols with similar structure, but with different
logical meaning. A literal is either an atomic formula, L, or its negation ∼ L, and both are
said to be complementary to each other. A Deduction Rule is a disjunction of literals L1, . . .,
Ln, written as L1; . . . ;L1.

There may exist more than one positive literal, and so any Horn clause is represented by
Head;∼ Body, in which literals of the body are called assumptions. So, any standard Logic
Program, as defined in [43] , can be represented in the logical language we use. Besides, we
use logical negation.

Example 3.1 The Figure 3.1 depicts a hypothetical Family Tree that we then
write in this simple logical language.

Figure 3.1: A simple family tree.

This family tree can be represented by a sequence of clauses in our language.
The aNeMuS system compiles it and each logical element is uniquely indexed
and composes a NeMuS structure which we describe in section 3.3.

father(jake,bill). father(ted,jane). mother(mary,harry).
father(jake,john). father(harry,sam). mother(mary,susan).
father(bill,ted). father(harry,jo). mother(mary,andy).
father(bill,megan). mother(liz,jo). mother(alice,megan).
father(john,harry). mother(matilda,john). mother(jill,bob).
father(john,susan). mother(matilda,bill). mother(jill,jane).
father(ted,bob). mother(alice,ted). mother(liz,sam).
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In the following sections we shall use this example to give an informal presentation of the
NeMuS framework and the method of Inductive Clause Learning (ICL) proposed by Mota et
alia [12], that was developed in the first steps of this present work. Then we describe the the
main problems we aimed to tackle as described in the objectives of our research, section 1.2,
our solution for language bias and the need for the use of connectionist approach to enhance
the learning mechanism of the aNeMus agent.

3.2 Logic Expressions as Multi-Spaces

Sequences of clauses (or logic programs) are parsed and translated into an internal structure
of shared data connected via memory address pointers. This representation is very efficient
for dealing with symbols, and the idea of sharing data could be used to create computational
efficient neural representations of clauses. Formal logic languages are structurally well
defined, and as such can be designed as a hierarchical structure of indexes. Instead of training
a neural network with bare data like other approaches, e.g. Komendantskaya [44], an efficient
encoding of shared structures was used, and turn them into spaces of index to build up a
logic neural multi-space. The investigation of this work concerns specifically examples of
neural multi-space for first-order logical expressions, but the structure presented here is not
restricted to it.

For this purpose, we use a symbolic hash mapping [45], that maps symbolic objects of
the language to a hash key within a finite range. Such a key is not the one used for learning
because collisions may happen. So, a separate chaining is used to place keys that collide
in a list associated with index, in which every node contains the kind of occurred symbol.
Counters were added so that to every new symbol parsed and "hashed", a code hash mapping
function generates the next natural number, starting from 1. In this way, every single symbol
has a unique index, and such an index shall be the one used for neural learning mechanism.

Thus, a Logic Expression Coded Corpus (LECC) is an n-tuple1 of associative hash
mappings ⟨ fC, fF , fP, fW ⟩, such that fC : C →N, fF : F →N, fP : P→N and fW : W →N,
in which C , F , P and W be a finite sets of constants, functions, predicates, and all other
categorical concepts above predicates (e.g. worlds), respectively. Note that the uniqueness
of a mapping is only within a corpus space, i.e. the code "1" will be the index of the first
predicate found, as well as the first atom four in the case of formula p(a) be the first clause
parsed.

1Here n is set to 4
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3.3 NeMuS Definition

In general, NeMuS is an ordered space for components of logical languages. However, the
class of first order-logic applications, for simplicity sake, we consider the interpretation of
only five indexed spaces for elements of a first-order language: variables (space 0), atomic
constants of the Herbrand Universe (space 1), functions (space 2), predicates with literal
instances (space 3), and clauses (space 4). For higher-order logics one just needs to consider
spaces above (say 5 as possible worlds) as composed of clause spaces below (in this case 4),
and so on. In what follows vectors are written v, and v[i] or vi is used to refer to an element
of a vector at position i.

Each logical element is described by a vector called T-Node, and in particular each
element is uniquely identified by an integer code (an index) within its space. In addition,
a T-Node identifies the lexicographic occurrence of the element, and (when appropriate)
an attribute position. For the purpose of this work we shall omit the dimension attribute of
T-Node which is meant to represent negative literals, which are needed for representation
of deduction rules. Although most ILP standard methods make use of them because they
perform deduction while running their learning algorithms, the method we propose does not
need them as it anticipates deduction for positive and negative examples.

Definition 1 (T-Node). Let c,a, i,h ∈ Z. A T-Node (target node) is a quintuple (h,c, i,a)
that identifies an object at space h, with code c and occurrence (or instance) i, at attribute
position a. If p is a T-Node, ζ (p) = h, κ(p) = c, α(p) = a and ι(p) = i. If x is a vector of
T-Nodes with size n, and c is a code index of an object occurring in an element of x, then
o(c,x) = {k1, . . . ,km} is a set of all orders (or indexes) of c within x, 0≤ k ≤ (n−1). The
set of all T-Nodes will be called TN .

Definition 2 (Binding). If p is a T-Node and z ∈ Z, then a Binding is pair (p,w)k, which
represents the influence w of object k over occurrence ι(p) of object κ(p) at space ζ (p) in
position α(p).

The neural multi-space (NeMuS) is ingeniously built upon a building block we call
Neural Compound (nComp or compound). It is used to mount spaces into bundles of vectors
of vectors of vector of compounds. A nComp is made of a vector of attributes (T-Nodes),
and a vector of bindings to indicate where such instances appear within NeMuS. All other
elements follow from it, as we have presented before. Formally we have:

Definition 3 (Neural Compound and Compound Space - cSpace). A Neural Compound
– nComp, is a pair (xi

a,β
i), in which xi

a = [c1, . . . ,cm] is a vector of T-Nodes, each one
representing an attribute instance of compound instance i, and β

i is a vector of bindings
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from compound i to all upper compounds where i appears. A Compound Space (c-Space) is
simply a vector c of compounds.

A compound space is a vector where all instances of a concept (an object, function,
predicate, world, etc) are stored. Note that variables and constants are treated as compounds,
and the logical scope of a variable, say X , is identified by the instances of its bindings.
Variables can be used as inputs for NeMuS. The function fβ maps a constant i to the vector
of its bindings x⃗i, as above. For each literal there is a compound space because the same
literal, even ground, may appear in more than one formula. In the case of constants and
variables, such a space is unique, i.e. a vector with only one element but it is still a vector.
This means that we can build logical terms, expressions and formulas only with vectors of
vectors of vectors of compound spaces, or a vector bundle-like structure. As elements of
such spaces are also interconnected by bindings of influence, from bottom to top, each space
can be interpreted as layers. Formally, this can be defined as follows.

Definition 4 (NeMuS - Deep NeMuS). Let ci = [−→s1 , . . . ,
−→sk ] a vector of cSpaces, or simply a

Conceptual Space (or layer). Then d1 = [c1
1,c

2
1, . . . ,c

n
1] is a vector of conceptual spaces or

dimension. A Deep NeMuS is a vector of dimensions.

As mentioned above, negative literals are not used in the examples of this work. However,
the aNeMuS artificial agent2 keeps a dimension for negative space of literals in logical
formulae.

Example 3.2 Consider the following part the of clauses from Example 3.1

father(jake,bill). mother(matilda,bill).
father(bill,ted). mother(jill,jane).

Codes for the logical elements in the order they are read or scanned are:

2aNeMuS is a C++ implementation of an artificial cognitive agent the performs symbolic reasoning that is
being extended to deal with neural-symbolic learning based on a NeMuS structure.
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constant literal it appears code instance of constant
jake father(jake,bill) 1 1
bill father(jake,bill) 2 1
bill father(bill,ted) 2 2
ted father(bill,ted) 4 1
matilda mother(matilda,bill) 12 1
bill mother(matilda,bill) 2 4
jill mother(jill,jane) 15 2
jane mother(jill,jane) 9 2

For the predicate space here is part of its coded elements.

predicate clause it occurs predicate instance of predicate
father(jake,bill) 1 1 (father) 1
father(bill,ted) 3 1 (father) 3
mother(matilda,bill) 12 2 (mother) 2
mother(jill,jane) 18 2 (mother) 8

Using these codes, we consider these clauses from the BK in example 3.1. The
part of the aNeMuS structure that shows what each vector is composed of is
presented as follows, with interspersed explanations for how each space should
be read:

Clause space:
father(jake,bill): [4,1,1,1]
father(bill,ted): [4,3,1,1]
mother(matilda,bill): [4,12,1,1]
mother(jill,jane): [4,18,1,1]

This space encodes the occurrences of the clauses. Each entry is a compound space that
encodes a clause, and in this case, all compound spaces have only one compound. The third
entry, for example, encodes the clause mother(matilda,bill). This clause is made up
of only one term, which is an instance of the predicate mother. Therefore, the vector of
attributes in this compound is composed of one T-Node: [4,12,1,1]. This T-Node is read
as follows:
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• The first element (4) places the term in the third space. As that is the space of clauses,
this means that the term is a clause;

• The second element (12) indicates that this is the twelfth clause in the BK;

• The third element (1) indicates that the term is the first (and only) instance of said
clause;

• The fourth element (1) indicates that this term is the first (and only) in the clause.

Predicate space:

father: [ [3,1,1,1], [3,1,1,2] ], [ [3,1,3,1], [3,1,3,2] ]
mother: [ [3,2,2,1], [3,2,2,2] ], [ [3,2,8,1], [3,2,8,2] ]

This space encodes the occurrences of the predicates. Entries 1 and 2 are compound
spaces that encode, respectively, the predicates father and mother. Analysing the first
entry, the vector for father has two compounds: one for father(jake,bill) and one for
the occurrence of father(bill,ted). The T-Node in the father(bill,ted) compound,
for example, has two element, because this predicate only has two terms ( bill and ted).
Inside this compound, the T-Node for ted is [3,1,3,2]:

• The first element (3) places the term in the third space. As that is the space of predicates,
this means that the term appears in a predicate;

• The second element (1) indicates that the term is in the first predicate in the base, that
is, father;

• The fourth element (3) indicates that the term is in the third instance of said predicate;

• The fifth element (2) indicates that this term is the first in the predicate.

Constant space:
jake: [1,1,1,1]
bill: [1,2,1,2],[1,2,2,1],[1,2,4,2]
ted: [1,4,1,2]
jane: [1,9,2,2]
matilda: [1,12,2,1]
jill: [1,15,2,1]
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This space encodes the occurrences of the constants. Each entry is a compound space
made up of a single compound that encodes the occurrences of a specific constant. As there
are 3 occurrences of bill in the BK, the vector of bindings for bill is composed of three
T-Nodes. The T-Node in the second binding ([1,2,2,1]), for example, is thus read:

• The first element (1) places the occurrence in the first space. As that is the space of
constants, this means that bill is a constant;

• The second element (2) indicates that this is an occurrence of the second constant in
the base (that is, bill is the second constant);

• The third element (2) indicates that this is the second instance of said constant;

• The fourth element (1) indicates that this instance of bill is the first term of the
predicate instance where it happens

This hierarchy of indexed terms is used to perform inductive learning as it is described in
the following sections.

3.4 NeMuS-based Inductive Learning

ICL is based on the concept of Least Herbrand Model (LHM), established by John Lloyd
[43] to anticipate the elimination of inconsistent hypotheses, at each induction step, before
they are fully generated. This is done by colliding, via computing the inductive momentum,
atoms obtained from bindings of arguments from e+ (candidates to compose LHM) and
e−. Then, a pattern of linkage across verified literals is identified, anti-unification (adapted
from [46]) is applied, and a conjecture is generated. The process repeats until the conjecture
becomes a closed and consistent hypothesis.

In Figure 3.2 it is depicted a Herbrand Base that may explain how the hypothesis how H
entails a positive example for the concept t. In its turn, t may have just one attribute (p(ak)),
two attributes (p(ak,ak1)), etc.

From the bindings of t’s attribute, i.e. β (ak) and possibly β (ak1), t is connected with
attribute mates’ bindings. Such connections bridge all concepts they may appear in (p1,
q1, etc.), like a path {c1, . . . ,c j} in a graph, until it reaches the binding concept of t’s last
attribute. The interconnected concepts form a linkage pattern. For instance, when p1, q1

etc., are all the same concept, then a recursive hypothesis may be generated. Invention and
hypotheses generation will always take place in the bridging concepts’ region.
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Figure 3.2: Portion of the HB with bindings of t’s attributes.

The induction method is based on the following aspects: (a) Inductive momentum that
iteratively “selects" only those atoms not likely to entail e−, (b) linkage patterns among
atoms passed (a), based on internal connections (bridging concepts); (c) anti-unification
substitutes constants in an atom from the Herbrand Base by variables (and optionally (d)
category-first ordering as described in our previous work, Schramm et alia [47], useful when
BK contains monadic definitions of categories).

3.4.1 Hypothesis Information

A special form of intersection ρ identifies the common terms between both literals. For
instance, in Figure 3.2, suppose j = 1, i.e. bridging concepts has just two literals of the same
concept p1: p1(ak,c1) and p1(c1,ak1). Then ρ(p1

1, p2
1) = c1.

Definition 5 (Linkage and Hook-Terms). Let p and q be two predicates of a BK. There is a
Linkage between p and q if a same constant, th, appears (at least) once in ground instances
of p and q. We call th a hook-term, computed by th = ρ(p,q). The attribute mates th w.r.t. an
atom p, written ρ(p,q)p is a set of terms occurring in p, but not in q.

With p1
1, p2

1 as above, c1 is their hook term and ρ(p1
1, p2

1)p1
1
= {ak} and ρ(p1

1, p2
1)p2

1
=

{ak1}. This would form the definite clause p(ak,ak1)← p1(ak,c1)∧ p1(c1,ak1), which is
not generated but it is built using anti-unification to generalize over its hooked ground literals.
In the following definition we use the standard notion of a substitution θ as a set of pairs of
variables and terms like {X1/t1, . . . ,Xn/tn}.

Definition 6 (Anti-substitution and Anti-unification). Let G be a first-order expression with
no constant term and X1, . . . ,Xn be free variables of G, e is a ground first-order expression,
and t1, . . . , tn are constants terms of e. An anti-substitution is a set θ−1 = {t1/X1, . . . , tn/Xn}
such that G = θ−1e, and G is called a simple anti-unification of e. The anti-unification
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f−1
θ

maps a ground atom e to its corresponding anti-substitution set that generalizes e, i.e.
f−1
θ

(e) = θ−1

Note that in the original definition of anti-unification proposed by Idestam-Almquist, [46],
G should be the generalisation of two ground expressions. Here, as we build a hypothesis by
adding literals from a definite clause the definition is

Definition 7 (Anti-unification on linkage terms). Given two literals p(ak,az) and q(az,ak1).
A linkage term, say Z0, for their hook term az, is a variable that can be placed, by anti-
unification, in the hook’s position wherever it appears in the ground instance that will produce
two non-ground literals.

The definite clause p(ak,ak1)← p1(ak,c1)∧ p1(c1,ak1), from Figure 3.2 ( j = 1), θ−1 =

{ak/X ,ak1/Y,c1/Z} is incrementally anti-unified, and so the following general clause is
found: p(X ,Y )← p1(X ,Z)∧ p1(Z,Y ).

This concept is the fundamental operation to generate a hypothesis because it generalizes
ground formulas into universally quantified ones. Before describing how negative examples
are used we have the following definition.

Definition 8 (Hypothesis). Let H be a formula with no constant term, S be a set of ground
atoms formed by concepts and constants from a Herbrand universe Hu, t is a ground atom
with k terms (which belongs to the base of constants, H0) such that t ̸∈ S. We say that H is a
hypothesis for t with respect to S if and only if there is a set of atoms E = {e1, . . . ,en} and a
θ−1 such that for

1. every a of t, there is some ei ∈ E and ρ(t,ei) = a

2. every ei and ei+1 ρ(ei,ei+1) is not empty.

3. when 1 and 2 hold, then H = θ−1({t}∪E).

An open hypothesis is one that at least one term of t have not been anti-unified. Thus, 1, 2
and 3 will always generate a closed least hypothesis.

Recall that learning should involve the generation of a hypothesis and to test it against
positive and negative examples. Such a “test" could be done while the hypothesis is being
generated. This is the fundamental role of the following concept. Note that, in the interest
of saving space, the following sections shall use logic notation. It is important, however, to
recall the definitions given in section 3.3, as the method described runs on top of the NeMuS
structure in the aNeMuS agent.
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3.4.2 Inductive Momentum

In the following definition, ak is a constant originating from the path of a positive example,
and bk is another constant originating from a negative example.

Definition 9 (Inductive Momentum). Let (xi
a,wi) and (x j

a,w j) be two spaces of atoms i and
j, representing l+ and l− atomic formulas (literals) in the Herbrand base. If ∃k and m, from
e+ and e−, such that l+ ∈ β (k) and l− ∈ β (m), i.e. k is an element of xi

a and m is an element
of x j

a, then the inductive momentum between l+ and l− with respect to k and m is

Iµ(xi
a,x

j
a)

k
m =


inconsistent(0) if i = j, and

ι(k,xi
a) = ι(m,x j

a)

consistent(1) otherwise

When i = j, then it is assumed |xi
a|= |x

j
a| since they are the same code in the predicate space.

When it is clear in the context we shall simply write Iµ(l+, l−)k
m rather than the T-Node vector

notation.

Inconsistent hypotheses are eliminated by computing the Iµ , i.e. the collision of atoms,
obtained from bindings of arguments from e+, via computing the Inductive momentum,.

Example 3.3 The BK is formed by ground instances of binary and monadic
predicates (not limited to them), atoms and Herbrand universe Hu as follows.

1. {p1(a,a1), . . . , pk(ak,a)},

2. {q1(a1,b1), . . . ,q j(b j,a1)},

3. {r1(c1,ak) . . . ,rm(ak,cm)},

4. {t1(b j), . . . ,s1(c1), . . . ,v1(cm), . . .},

5. target p(X), with e+: p(a) and e−: ∼ p(b).

As depicted in Figure 3.3 Atom candidates to form consistent hypotheses, via
anti-unification [46], from the Least Herbrand Model (LHM) [43], pass Iµ . In
Figure 1, on the right, q j(a1,b1) pass Iµ while q j(b j,a1) do not.

When the BK is compiled its correspondent NeMuS structure is also built. The induction
mechanism, at each step, adds to the premise of a hypothesis the next available atom from
the bindings of a constant only if such an atom “resists" the inductive momentum.
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Figure 3.3: figure
Search space formed by β (a) and β (b) yielded from Iµ

Step partial hypothesis Inductive Momentum (Iµ )
1 p(X)← p1(X ,Y ) not applied
2 p(X)← p1(X ,Y )∧q1(Z,Y ) Iµ(q1(a1,b1),r1(b1,c1))

a1
b1

= consistent
3 p(X)← p1(X ,Y )∧q2(Z,Y ) Iµ(q1(a1,b2),r2(b2,c2))

a1
b1

= consistent
. . . . . . . . .
n p(X)← p1(X ,Y )∧q j(Z,Y ) Iµ(q j(b j,a1),q j(b j,b1))

a1
b1

= inconsistent

For a partial hypothesis would be p(X)← p1(X ,Y )∧q j(Z,Y ) with θ−1 = {a/X ,a1/Y,b j/Z},
but the equivalent path from negative example would reach q j(b j,b1). This would al-
low p(b) to be also deduced, which is not what it is expected from a sound hypothe-
sis. Thus, this hypothesis is dropped. For this example, a sound hypothesis could be
p(X)← pk(Y,X)∧ r1(Z,Y )∧ s1(Z). Had the target concept be s(X) and positive example
s(c1), then a possible hypothesis generated would be

s(X)← s1(X)∧ r1(X ,Z0)∧ pk(Z0,Z1).

3.5 Inductive Clause Learning from the Herbrand Base

The following method joins all ideas described in section 3.4. We shall use standard logic
program notation for clauses just for readability sake, but recall that Amao language treats
q← p as q∨¬p. The general idea of ICL can be summarised in three mains steps.

1. to walk across the linkages found in the Herbrand Base in order to select atoms as
candidates for composing hypotheses, as well as those to oppose the compositions

2. to compute Iµ of atoms as candidates for anti-unification that were selected from
positive and negative linkages.
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3. to generalize, via anti-unification, only atomic formulas likely to build consistent
hypotheses, i.e. those composed by atoms consistent with respect to Iµ

However, this general description lacks a proper treatment for language biases as away to
guide the search for useful relations to be added in the hypothesis formation. As pointed out
in section 1.2, language biases has been recently treated as meta-level approaches, which
(roughly) define hypotheses schemes in logic programming. We partially achieve this using
language bias for the reduction of hypotheses space. Furthermore, it gives no clue at which
point a connectionist method of pattern recognition could be used as heuristics for the
selection of shorter hypothesis, e.g. recursive hypotheses. In the following description
we shall consider a dyadic theory with no function terms, in order to make it simple the
understanding of our proposed method of bridging concepts to be added in the inductive
learning mechanism.

3.5.1 Bridging Concepts

Predicate invention, according to ILP definition, is a bias defined by the user via a declarative
language. It is a way to deal with predicates missing from the BK for lack of information.

Consider a BK defined by the set B = { f ather(a1,c1),mother(b1,c1), f ather(a2,c2),

mother(b2,c2), . . . , f ather(an,cn),mother(bn,cn)}, and suppose that the target predicate is
ancestor(X ,Y ). Without information on how the concepts of parenthood or ancestry work,
it is still possible to detect that (a) there are two distinct concept relations where a constant
ci participates as a second attribute; and (b) there can be many instances of both f ather
and mother, and no constant appears as first argument of both. Therefore, there seems
to be a new concept that captures the property shared by all individuals/objects when
appearing as the first attribute of either relation. This concept bridges two regions of
concepts via a path across their attributes, as can be seen in Figures 3.4 and 3.5, where
B = { f ather( jake,alice),mother(matilda,alice), . . .}.

Bridging concepts consists in, when two or more different predicates essentially perform
the same "role" in a base, inventing a predicate that generalises them. This makes the
hypotheses space smaller, and makes it simpler to find a recursive hypothesis because it is
much simpler to deal with a single concept than it is to deal with many, as far as recursion is
concerned.

The concept of ancestor is connected with the bindings of other constants that appear
along with jake or bob in predicates that are already part of the BK (we call these constants
attribute mates). Such connections bridge all concepts related to these constants, like a path
in a graph, until the binding concept of ancestor( jake,bob)’s last attribute (that is, bob) is



3.5 Inductive Clause Learning from the Herbrand Base 33

Figure 3.4: newConcept bridges two regions of concepts via a path.

reached. In the current example, jake and bob are linked via only one concept: the one
discovered in the previous step, which we know to be parent.

On a closer look at Figure 3.5, it is possible that our general approach to predicate inven-
tion generates hypotheses that do not look like what we expect. For example ancestor(X ,Y )
given ancestor( jake,bob), might generate ancestor(X ,Y )← f ather(X ,Z0)∧ p1(Z0,Y ). It
is assumed that two concepts, say c1 and c2, are “specialisations" of another concept c
whenever there are objects appearing as second argument of both, but can only appear as first
in one of them.

Figure 3.5: Bridging concept reduces hypothesis expression.

We say that an invented predicate bridges two regions of concepts, allowing for a simpler
generalisation of ground rules into hypothesis. This is illustrated in Figure 3.5

Every time either or both concepts are involved in a hypothesis generation, the new
concept is used to intentionally define the target predicate. So, from Figure 3.5 the rule base
would be

newConcept(X ,Y )← ( f ather(X ,Y )∨mother(X ,Y ))
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The new concept is parent, which is not a target concept to consider induction, but shall
be used as a bridge or as a base form of a hypothesis, while the target shall be a linear or
recursive linkage pattern (in our approach), or tail recursive.

3.5.2 ‘Bias" as Invention of Predicates

aNeMuS performs a similarity training on NeMuS’s weights using the vector representation
for each constant as well as for literals. Those with similar linkages end up with similar
weight values associated to the argument they have and their position within them. Besides,
bias may be used to add non targeted new predicates.

Non user bias: “automated" invention

For this, it is necessary “to invent" a predicate, say p0, such that H1 becomes a closed
hypothesis. For the sake of space θ−1 will be suppressed when anti-substituions are clear.

User defined bias for invention

When an assumption that rl defines another concept, say pb, then H1’s body would have
pb and H2’s head would have pb, rather then p0. This would be something like assuming
rl(X ,Y ) defines pb(X ,Y ). As there can be many bindings, we close an open hypothesis
for each possible combination of bindings. Then, we keep computing the momentum and
expanding a new branch for each combination (as explained in Sections 3.5.3 to 3.5.2).

Suppose we wish to induce a hypothesis that defines the ancestry relation from this base.
The general form of requesting this, according to the literature, is simply written:

ancestor(X,Y) given (knowing) E+ and E−

However, using a language bias can guide the search towards more suitable candidates to
add to the hypothesis according to:

• the desired size of the hypothesis, which is usually set as dyadic theory (Chomsky-like
normal form grammars, i.e. clauses with, at most, two literals in the body); this can
lead to

• invention of predicates, which can be done either by automatically generating indexed
labels for new predicates (i.e. p0, pi, . . . ) or making known to the induction process the
possible forms of bridging concepts (i.e. assuming mother(X,Y) or father(X,Y)
defines parent(X,Y)

Considering these Informally, the language bias we propose is a set of strings formed by
one of the following possibilities:
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1. induce pX

Free induction, the general case seen above with ancestor

2. induce pX assuming qX [or rX] defines sX (or inventing sX from qX
or rX).

induction with concept biased invention

3. induce pX assuming qX [or rX] defines sX (or inventing sX from qX
or rX) a dyadic theory.

induction with dyadic concept biased invention

4. induce pX knowing pa [∼ pb]

induction by examples

5. induce pX knowing pa [∼ pb] assuming qX [or rX] defines sX

induction by examples with invention biased by concepts

6. induce pX [knowing pa [ ∼ pb]] [assuming a dyadic theory.] (default is
automatic invention)

induction by examples with invention biased by concepts

7. induce pX assuming/inventing general dyadic theory

induction by examples automatically inventing dyadic theories

8. induce pX knowing pa [∼ pb] assuming qX [or rX] defines sX a dyadic
theory

induction by examples with concept biased invention of dyadics.

Based on this informal grammar description, the recognition of a well-formed induction
request is performed by the automaton in Figure 3.6
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Figure 3.6: Automaton that performs the proposed language bias

Continuing with the running example, a valid request for aNeMuS would be:

induce ancestor(X,Y) knowing ancestor(matilda,bob) assuming father(X,Y) or mother(X,Y)
defines parent(X,Y) a dyadic theory.

The first step would be to associate ancestor(matilda,bob) with ancestor(X,Y).
This is done by anti-substituting matilda for X and bob for Y. We represent this as θ

−1
0 =

{matilda/X, bob/Y}. This θ
−1
0 is associated to the initial conjecture (that is, the initial

incomplete hypothesis), which is generated as C0 = ancestor(X,Y).

The second step is to get β(matilda) and β(bob), that is, the set of all bindings of
matilda and all bindings of bob, respectively. The request made to aNeMuS does not
include any negative examples, and so the inductive momentum automatically succeeds.

i atom/hypothesis θ
−1
i / β (a)

0 ancestor(matilda,bob) {matilda/X ,bob/Y}
C0 ancestor(X ,Y )← β1(matilda) and β1(bob)
1 Iµ = consistent, no hook mother(matilda, john) and mother(matilda,bill)

Now, for each pair pi ∈ β(matilda) and qi ∈ β(bob), we check if there is any hook-
term (Definition 5), i.e. a constant common to both pi and qi. If one such constant is found
it establishes a "chain" that connects matilda to bob. The first case checked would be
pi = mother(matilda,john) and qi = father(ted,bob), where there is no hook-term.
Checking all other cases, it is clear that this is the case for all values of pi and qi. However,
both constants that appear in β(matilda) (that is, both john and bill) also have other



3.5 Inductive Clause Learning from the Herbrand Base 37

bindings, through which it may still be possible to reach bob. Therefore, we continue the
process of generating a hypothesis.

The next step, then, is to check for bias for pi. For example, if pi = mother(matilda,john),
by anti-unifying θ

−1
1 = {matilda/X, john/Y} we have parent(X,Y)← mother(X,Y)

as the first closed conjecture, or hypothesis. That is, we reach a hypothesis that states, in
informal terms, that every mother is a parent. This then becomes one of the hypotheses
generated, which should now be used to extend C0 to C1. We note, though, that in C0’s θ

−1
0 ,

we have bob/Y. As bob and john are different constants, it is not possible to assign them
both to Y. Therefore, we rename john/Y to john/Z0.

For the purpose of visualization:
β(matilda) = {mother(matilda,john), mother(matilda,bill)}
β(bob) = {father(ted,bob), mother(jill,bob)}

i atom/hypothesis θ
−1
i / β (a)

0 ancestor(matilda,bob) {matilda/X ,bob/Y}
C0 ancestor(X ,Y )← β1(matilda) and β1(bob)
1 Iµ = consistent, no hook mother(matilda, john) and mother(matilda,bill)

bias mother(X ,Y ) match both β1
for parent(X ,Y ) rename variable
H i

0 parent(X ,Y )← f ather(X ,Y ) {matilda/X ,bob/Y, john/Z0}
C1 ancestor(X ,Y )← parent(X ,Z0) β1( john), mother(alice, ted)

Now, the next conjecture C1 = C0∪parent(X,Z0)= ancestor(X,Y)← parent(X,Z0).
This conjecture is not closed yet because there is still a variable in the head of the clause
that has not been reached by a predicate (that would be bob/Y), thus we must continue.
The same happens in the case of pi = mother(matilda,bill), where (after the renam-
ing process) θ

−1
1 = {matilda/X, bill/Z0} and parent(X,Z0)← mother(X,Z0). There-

fore, in this case, the next conjecture would be C1 = C0 ∪ parent(X,Z0) , that is, C1 =

ancestor(X,Y)← parent(X,Z0). As both versions of C1 are the same, we can proceed
with only one of them.

Once again, to ease visualization:
β(john) = {father(jake,john), father(john,harry), father(john,susan),

mother(matilda,john)}
β(bill) = {father(jake,bill), father(bill,ted), father(bill,megan),

mother(matilda,bill)}
β(bob) = {father(ted,bob), mother(jill,bob)}
We now repeat the process of checking for constants in common both for each pair

pi ∈ β(john) and qi ∈ β(bob), and for each pair pi ∈ β(bill) and qi ∈ β(bob). In
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the latter case, when checking p2 = father(bill,ted) and q1 = father(ted,bob), a
hook-term is found: ted.

Following the other previously described steps, we establish ted/Z1, and reach C2 =

ancestor(X,Y)← parent(X,Z0)∧parent(Z0,Z1)∧parent(Z1,Y). Unfortunately, we
cannot do so, as the induction is in dyadic theory mode, and therefore C2 has already reached
its maximum body size of 2 at the inclusion of parent(Z0,Z1). Due to this, we must invent
a new predicate P0(Z0,Y)← parent(Z0,Z1)∧parent(Z1,Y), which aggregates the last 2
literals included in C2 into one single definition.

In order to proceed, we notice that finding a hook-term has led to the discovery of
a shallow recursive path bill→ ted→ bob. This allows us to replace P0(Z0,Y) with
ancestor(Z0,Y), since ancestor(bill,bob)← parent(bill,ted)∧parent(ted,bob).

As a consequence of that, we have the following 2 clauses:

1. ancestor(X,Y)← parent(X,Z0)∧parent(Z0,Z1)∧parent(Z1,Y)

2. ancestor(Z0,Y)← parent(Z0,Z1)∧parent(Z1,Y)

Then, replacing clause 2 in clause 1, we reach the hypothesis we want:

C2 = ancestor(X,Y)← parent(X,Z0)∧ancestor(Z0,Y)

Although the reached hypothesis is valid, it is not helpful in establishing the ancestry
relation between individuals in the BK, as it is recursive and has no base case. In this example,
the base case would be ancestor(X,Y)← parent(X,Y). This clause can be added to the
hypothesis by either:

1. Including another language bias in the request, establishing that ancestor(X,Y)←
parent(X,Y), that is, that parent(X,Y) defines ancestor(X,Y); or

2. Including another positive example in the request that would help the induction process
to reach the conclusion that ancestor(X,Y)← parent(X,Y). Some options for such
examples would be ancestor(jake,john) or ancestor(mary,susan).

Note that in the construction of the hypothesis, the reason why P0(Z0,Y) could be
replaced with ancestor(Z0,Y) was that a shallow recursive path was found through the
constants in the base. The other situation in which this replacement could be made would
be if a deep recursive path was found. Current methods find this path by iteratively walking
through it, starting at X and stopping only when Y is reached. We propose instead that it
can be found via a pre-processing of the data in the BK that allows for analyzing regions of
neighbourhoods.
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3.5.3 Hypotheses’ space formation via Selection of Candidates

Induce concept t(X ,Y ), given e+ = {t(ak,ak1)} and e− = {t(bk,bk1)}, θ−1 is the anti-
substitution set. From NeMuS get β (ak) and β (ak1). The initial view of the space of possible
hypotheses that can be formed using atoms from the Herbrand Base and anti-unification is
illustrated in Figure 3.7.

Each β (ak)i in a triangle represents a hypothesis formation branch that can be expanded
following the bindings of the attribute in e+. Some of them may allow the deduction of
e−, and thus inductive momentum is applied to validate fetched atoms. After adding an
anti-unified literal from β (ak)1 into the premise of the hypothesis being generated, say H1,
the next induction step will take a branch from the attribute-mates of ak to compute Iµ ,
generalize and so on. In the breadth-first walk the generation of H1 is postponed until all
triangle branches have been initially exploited. For completeness sake it is implemented
breadth-first.

Figure 3.7: (a) Hypotheses’ space from e+; (b) Anti-unify atoms along with invention (steps
a to m).

Let q1 be a positive literal coming from a positive example, and η a negative literal from
a negative example.According to Definition 9, ak is attribute of q1 and bk is an attribute of η .

1. If Iµ(q1,η)ak
bk
= 1 for all η ∈ β (bk), then

2. If q1(ak,ak1) ∈ β (ak) and q1(ak,ak1) ∈ β (ak1), then
3. H1: t(X ,Y )← q1(X ,Y ), θ

−1
1 = {ak/X ,ak1/Y},

4. else if q1(ak,c) ∈ β (ak) and c ̸= ak1, then
5. H1: t(X ,Y )← q1(X ,Z0), θ

−1
1 = {ak/X ,c/Z0}

6. else get another q j ∈ β (ak) and repeat 1-5, until consistent hypotheses candidates are found

For a consistent H1, ∃rl ∈ β (c), and
a. if ∃ rl ∈ β (c) and rl ∈ β (ak1) and rl ̸= q1, then anti-unify rl(c,ak1) against previous θ−1

b. H1: t(X ,Y )← q1(X ,Z0)∧ rl(Z0,Y ). (Chain in ILP)
c. else if no bias is given and Iµ(rl,η

′) = 1 then invent p0 and H2
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d. H1: t(X ,Y )← q1(X ,Z0)∧ p0(Z0,Y )
e. H2: p0(X ,Y )← rl(X ,Z0). The search now is guided by β (c)
f . else if rl(X ,Y ) defines pb(X ,Y ) and rl ̸= q1, then invent pb in H1 and H2

g. else if rl(X ,Y ) defines pb(X ,Y ) and rl = q1, then
h. if q1(c,ak1) ∈ β (ak1), then H1: t(X ,Y )← q1(X ,Z0)∧q1(Z0,Y ) and
i. invent H2 : t(X ,Y )← q1(X ,Y ), H3 : t(X ,Y )← q1(X ,Z0)∧ t(Z0,Y )
j. else if q1(c,ak1) ̸∈ β (ak1) and q1(ak,c) and q1(c,ak1) region’s weights are similar ,
k. invent H1: t(X ,Y )← q1(X ,Y )
m. H2: t(X ,Y )← q1(X ,Z0)∧ t(Z0,Y )

Table 3.1 show all steps of the hypothesis generation that our method suggests, in which
we spot the parts that lacked either a formal definition (in the case of language biases), or the
exact point at which connectionist method will enhance the inductive learning process.

i atom/hypothesis θ
−1
i / β (a)

0 ancestor( jake,bob) { jake/X ,bob/Y}
C0 ancestor(X ,Y )← β1( jake) and β1(bob)
1 Iµ = consistent, no hook f ather( jake,alice) and f ather(ted,bob)

bias f ather(X ,Y ) match both β1
for parent(X ,Y ) rename variable
H i

0 parent(X ,Y )← f ather(X ,Y ) { jake/X ,bob/Y,alice/Z0}
C1 ancestor(X ,Y )← parent(X ,Z0) β1(alice), mother(alice, ted)

bias mother(X ,Y ) match both β1(alice)
for parent(X ,Y ) rename variable
H i

1 parent(X ,Y )← mother(X ,Y ) reaches maximun body size, do not add
H1 anotherparent(Z0,Z1). Check for region similarity
H i

2 ancestor(X ,Y )← parent(X ,Y )
H3 ancestor(X ,Y )← parent(X ,Z0) ∧ ancestor(Z0,Y )

Table 3.1: Complete execution of the ICL with biases and connectionist selection of candi-
dates

This chapter presented our approach to deal with language biases in order to guide the
hypothesis generation. The expressive power of our notation do not mix the logical language
of hypothesis representation with the settings to be followed by based on invention and
bridging concepts. In the next chapter we shall describe the experimental results we found in
order to figure out the feasibility of a connectionist method to be used in a self-organized
inductive learning mechanism.



Chapter 4

Towards a Self-Organized Inductive
Learning Mechanism

This chapter is meant to present the directions to follow in order to meet the targets of this
work. For this, we briefly describe some partial results achieved so far, presented in [12].
The main components of inductive clausal learning are presented, as well as its limitations
and we pinpoint where it shall benefit from self-organizing map of concepts to produce a
self-organized inductive learning. We end the chapter by presenting a schedule of activities
for the next six months.

4.1 SOM Experiments

Throughout this chapter we shall write constants with vector notation to represent their
encoding when needed. For instance, the constant "Jake" will be written

−−→
jake.

Before proceeding any further, a change was made to the original data: the constant andy
was removed from the BK, since it only has one binding (mother(mary,andy)) and that
might make give way to confusing results in the future if, for example, we tried to create a
hypothesis for the "sibling" relation. Once the necessary alteration was done, we started the
experiments, the basis for which consists of the following:

1 Create a table where each line is a β representing where a binding of an object in the
predicate space;
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space predicate instance att position
Jake father(jake,bill) 3 1 1 1
Bill father(jake,bill) 3 1 1 2
Jake father(jake,john) 3 1 2 1
John father(jake,john) 3 1 2 2
. . .

2 Create a table where each line is a β representing a binding of an object in the constant
space;

space constant instance att position
Jake 1 1 1 1
Bill 1 2 1 2
Jake 1 1 2 1
John 1 3 1 2
. . .

Table 4.1: Constant table

3 Normalize each line of both tables so that each β according to vector normalization,
turn each embed in its unit vector form given by the formula.

for any vector v⃗, v̂ = v⃗
∥⃗v∥

space predicate instance att position
Jake father(jake,bill) 0.866025 0.288675 0.288675 0.288675
Bill father(jake,bill) 0.774597 0.258199 0.258199 0.516398
Jake father(jake,john) 0.774597 0.258199 0.516398 0.258199
John father(jake,john) 0.707107 0.235702 0.471405 0.471405
. . .

Table 4.2: Normalized predicate table

space constant instance att position
Jake 0.5 0.5 0.5 0.5
Bill 0.316228 0.632456 0.316228 0.632456
Jake 0.377964 0.377964 0.755929 0.377964
John 0.258199 0.774597 0.258199 0.516398
. . .

Table 4.3: Normalized constant table
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4 Subtract each β in the predicate table from its corresponding β in the constant table.
In this way, we obtain the actual vectors between the space of constants and the space
of predicates;

space constant instance att position
Jake -0.366025 0.211325 0.211325 0.211325
Bill -0.458369 0.374257 0.058029 0.116058
Jake -0.396633 0.119765 0.239531 0.119765
John -0.448908 0.538895 -0.213206 0.044993
. . .

Table 4.4: Subtraction table

5 Use vectors from the normalized predicate table to calculate a vector orthogonal to
the predicate hyperplane. From that table it was picked three vectors at random, say
v⃗1, v⃗2, v⃗3, presented in Table 4.5;

v⃗1 0.15359 0.051197 -0.090427 0.051197
v⃗2 0.39347 0.038707 -0.25368 0.038707
v⃗3 0.387299 0.387299 -0.645497 0.1291

Table 4.5: Vectors used to calculate vector orthogonal to hyperplane

Ps =

 0.15359 0.051197 −0.090427 0.051197
0.39347 0.038707 −0.25368 0.038707

0.387299 0.387299 −0.645497 0.1291


The hyperplane passing across these vectors can be found by the standard method
found in linear algebra, which find the unit vector orthogonal to such a hyperplane.
This is done by reducing matrix Ps to its Reduced Row Echelon Form and solving the
following linear equations:

1 0 0 0.3601797955
0 1 0 0.8715918482
0 0 1 0.5390635833




x1

x2

x3

x4

= 0⃗

0.3601797955x4 =−x1

0.8715918482x4 =−x2
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0.5390635833x4 =−x3

Assuming x4 =−1, then:
x1 = 0.3601797955;
x2 = 0.8715918482;
x3 = 0.5390635833.

Therefore, n⃗ = (0.3601797955,0.8715918482,0.5390635833,−1)

6 Calculate the cross-product between each vector from the table obtained in step 4
without the “space” column, and the last three coordinates of the orthogonal vector
obtained in step 5. In this way, we obtain the projection of the vectors between
constants and predicates on the predicate space. The resulting table has one line for
each binding of an object in the base, ignoring the "space" column;

concept instance att position
Jake father(jake,bill) -0.3252426117 0.3955141473 -0.07027153558
Bill father(jake,bill) -0.1205916414 0.4754122067 0.1511707161
Jake father(jake,john) -0.3040919501 0.2241511977 -0.1442123169
John father(jake,john) 0.1889519122 0.578110532 0.4763272813
. . .

Table 4.6: Cross-products table

7 Create a table where each line is constructed by mapping all reference vectors of an
object to a single vector. This operation is done by simply appending all lines that are
bindings of the same object.

The table obtained in step 7, which can be seen in Appendix A, would be used as input
in a SOM. Although this SOM was originally meant to be implemented and incorporated
into aNeMuS, we later came to the conclusion that it would be more advantageous to make
our experiments separated from what was already implemented. This is due to the fact that
the current aNeMuS structure is relatively stable, and we believed that it would not be worth
modifying until we were sure of the results of the experiments.

Experiments were made with python 3, using Jupyter and MiniSom, a minimalistic
implementation of SOM. The maps generated were 9x9, and were trained for one thousand
epochs.

Our first experiment consisted simply of the steps listed above, with no further additions.
The resulting SOM can be seen in Figure 4.1.
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Figure 4.1: Map generated in first experiment, following the listed steps with no further
additions.

It is notable in the map of Figure 4.1 that all the individuals that were neither fathers
nor mothers appear in the four leftmost columns of the map. All mothers appear in the next
three columns, and fathers can be seen in the next five. However, the node representing jake
appears to be closer to "mother" constants than to "father" ones. This is possibly due to the
fact that, as jake is the first father in the base, it does not have bindings where it appears
as the second argument of a predicate (which is what happens to other fathers in the base,
since we have information about their parents). Additionally, in general, the last couple of
generations appear in the first few lines of the map and earlier generations appear lower.

As we want to create clusters of objects induced by the vector representations of their
occurrences in the concepts where they appear, i.e. conceptual clusters, we believed that the
"space" column should be incorporated somehow into the vectors of the resulting input table.
As a first attempt to achieve this, we attempted to find a formula for linear transformation,
to reduce the dimensions of our vector in a way that incorporated the value of the "space"
column into all following columns. However, no satisfactory formula was reached, and we
decided to try a different approach.

This different approach consisted of calculating the mean of the cells corresponding to
"space" for each object from the table obtained in step 4. Then, we made two additional
variations of the previously obtained input: one by multiplying each "concept" cell by its
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corresponding "mean of spaces", and another by multiplying each "attribute" cell by the
same corresponding "mean of spaces".

Figure 4.2: Map generated in second experiment, by multiplying each "concept" cell by its
corresponding "mean of spaces".

In the map seen in Figure 4.2, most fathers appear in the seven uppermost lines, while all
mothers are in the next three, and those who are neither appear in the last five lines. Once
again the node that represents jake appears to be closer to instances of mothers and children
than to other fathers, and so the approach taken for this map does not seem correct. However,
it is still interesting to note that all fathers appear in the same or almost the same column
as the mother of their children (and as their children themselves, when these are not also
fathers). Older generations appear mostly to the right, while the newer ones are to the left

The configuration of the map in Figure 4.3 is as follows: instances of father are on the
upper half of the map, while mothers are on the lower right quarter, and instances of constants
that are neither appear on the lower left quarter. This is the first map where jake appears
along with the other fathers, and so, inserting the "space" information into the "attribute"
column seems a promising approach. We note also that all mothers appear lower and to the
right of the fathers of their children, who all seem to appear below their fathers and to the
left of their mothers.

As using the mean of the cells in the "space" column did not yield linearly separable clus-
ters, we tried another strategy: as our BK only has predicates of the form f ather(a1,a2) and
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Figure 4.3: Map generated in second experiment, by multiplying each "attribute" cell by its
corresponding "mean of spaces".

mother(b1,b2), we decided to calculate the deviation between all cells in the "space" column
that corresponded to "father" relations, and multiply each "attribute" cell corresponding to
these relations in the cross-products table by this value. We then did the same calculation for
the cells in the "space" column that corresponded to "mother" relations, and multiplied each
corresponding "attribute" cell in the cross-products table by this new value.

The division in the map of Figure 4.4 is clearer than the others, as regions are linearly
separable. Fathers to the left on the map, mothers are on the right, and children (who are
neither fathers nor mothers) are in the middle.

Although last attempt resulted in linearly separable regions for each concept, these
regions still have to be identified manually. We attempted to make this division automatic
by applying the k-means clustering technique on a dataset composed of the vectors with the
final weights of the nodes that represent each individual in the original base.

The first of the three resulting clusters consisted of all constants that were neither fathers
nor mothers, as well as "Ted", "Jo" and "Mary". The second cluster included all fathers
except for "Ted", and the third cluster included only "Jo" and "Mary". This result is shown in
Figure 4.5
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Figure 4.4: Map generated in the third experiment, where the deviation of all "space" cells
of each predicate were calculated, and each "attribute" cell was multiplied by the deviation
value corresponding to its predicate

Figure 4.5: Clusters generated by applying k-means on vectors of final weights
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4.2 K-Means Experiment

The SOM experiment did not generate the expected clusters. In order to verify if this result
was too unusual, we decided to make another experiment based on the k-means clustering
technique. The database for this experiment consisted of four vectors, one for each attribute
of the concepts in the original base ( f ather and mother). The values in these vectors for any
given constant were "1" if that constant appeared in the base at least once as that attribute in
that concept, and "0" if not. These vectors f1 (first attribute of f ather), f2 (second attribute
of f ather), m1 (first attribute of mother) and m2 (second attribute of mother) are split in
Tables 4.7 and 4.8. They were created manually in this experiment, but it would be easy to
generate them automatically using aNeMuS.

Jake Bill John Ted Megan Harry Susan Bob Jane
f1 1 1 1 1 0 1 0 0 0
f2 0 1 1 1 1 1 1 1 1
m1 0 0 0 0 0 0 0 0 0
m2 0 1 1 1 1 1 1 1 1

Table 4.7: The vectors f1, f2, m1 and m2 were used in this experiment

Sam Jo Matilda Alice Mary Jill Liz
f1 0 0 0 0 0 0 0
f2 1 1 0 0 0 0 0
m1 0 0 1 1 1 1 1
m2 1 1 0 0 0 0 0

Table 4.8: The vectors f1, f2, m1 and m2 were used in this experiment

The resulting three clusters correctly separate the concepts, as shown in figure 4.6.
Therefore, this approach is preferable to using SOM.

4.3 Discussion

The experiments described in the previous section were made with the purpose of finding a
definition for the concept of neighbourhoods. The expected outcome of these experiments
could help us to find organization patterns in the BK to guide the search for good hypotheses.
In [48], where the use of SOM for maps of semantic concepts was first proposed, Kohonen
states that "any realistic semantic brain maps would need a much more complicated, probably
hierarchical model". This served as inspiration for the basis of the aNeMuS symbolic
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Figure 4.6: Clusters generated by applying k-means on vectors f1, f2, m1 and m2

framework, with its distinct spaces for each concept, linked in a hierarchical way to one
another.

The original idea was to integrate the aNeMuS framework with a self-organizing structure
in order to provide it with "higher-level meanings" (term used by Kohonen in [48]). These
are formally described by means of logical language, because logical expressions have sound
semantic interpretation. In our methodological procedure, we projected the vectors between
constants and predicates on the predicate hyperplane to observe how both spaces would
influence each other, in this case, constants on predicates. As such, the result should resemble
clusters of similar relations over constants.

Figure 4.7 shows that the last experiment yielded a map with linearly separable clusters,
one for each concept: fathers, mothers, and constants that were neither. Knowing which
objects are in which regions of the map could reduce the hypotheses search space and "prune"
the search. Considering the relation ancestor(X,Y), if X is in the region of those that are
neither fathers nor mothers, then the relation is false for any value of Y. This could also be
discovered by simply examining the bindings of each constant, but as this could require
walking multiple paths in a graph, it would eventually become an NP-hard problem given a
BK big enough. We claim that there must be a way to associate neighbourhoods of concepts
that can yield observable patterns of recursion.
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Figure 4.7: Map generated in the third experiment. The red dotted lines indicate the regions
of concepts. The leftmost region indicates fathers, while rightmost one indicates mothers and
the middle region includes only elements which are neither.

On the other hand, it is very likely that pre-processing all this information may be time-
consuming. However, as we did not expect the outcome presented in previous sections,
more analysis is necessary to figure out more effective experiments. One possible avenue
to explore would be using a Graph Attention-like component "plugged" into the aNeMuS
structure so that we could use a structured self-attention to pinpoint where such patterns
could emerge.



Chapter 5

Conclusion and Future Work

In this work, we aimed to find a suitable method to generate neighbourhood patterns to be
used for inductive learning and reasoning to reduce the search space of hypotheses. Besides,
we defined a language bias to guide the process of generating hypotheses. The latter objective
was achieved as presented in Sections 3.5.1 and 3.5.2. These were incorporated into the
Inductive Clause Learning mechanism of aNeMuS. The results of the former objective can
be seen in the presentation of the experiments in Chapter 4.

Nevertheless, there are aspects that we have not been able to take into account, but that
would be beneficial to consider for future research. The first aspect would be to put into
question the use of SOM (which would be part of a revision of the methodology). Though
our reasons for using this specific method have been explained, we believe that research may
benefit from exploring other methods as well, such as KNN.

Additionally, we have not yet been able to incorporate the weights generated by aNeMuS
into the induction. An interesting direction we wish to take is to use them as bias for the
projection of vectors between constants and predicates onto the predicate space. For this, we
would consider the statistical distribution of objects according to their occurrences within
the structure of the language, similar to what CILP ([22], [23], [24]) did successfully for
connectionist inductive propositional logic programming. They compute the influence of
literals in a logic program by calculating their statistics within the structure of a logic program,
and using them to yield the initial weights and biases of the neural network obtained from it.
Just with that, they achieved faster convergence in comparison to other approaches. Perhaps
the path to take, in our case, may be getting the statistics of the objects (logical terms) and
other logical compounds across the spaces of the aNeMuS structure.

Furthermore, when projecting vectors onto the predicate hyperplane, we used three
arbitrary vectors from this hyperplane to find a vector orthogonal to it (normal vector). Using
three other vectors would have led to a different normal vector being found, and possibly, to
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a different configuration on the maps generated. We do not believe that this would change
the topology of the maps very much, but wish to account for this possibility by verifying if
there exists a normal distribution of hyperplanes, and using this distribution to find one most
significative hyperplane that could be used reliably.

However, the achieved results do not suggest that our hypothesis could be proved. Perhaps
our methodology should be revised, our data representation changed, or perhaps it is not
feasible to find useful neighbourhoods of concepts at all. One very interesting suggestion
that came to us was to use the vector representation of BERT ([49]) for each constant and
concept, mostly used for natural language processing. As such, we might translate our
logical representation into natural language expressions, and then use BERT. As a result, our
experiment would have a strong inclination towards natural language inference[50].



Appendix A

Table of Embedding SOM Training
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