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Abstract

Understanding consumer buying behavior in the context of e-commerce is a

recent trend at large retail stores. It can be very attractive for retail companies

to know which users will buy in their market and what products they will buy.

Through the study of online user behavior, models can be created to improve

marketing personalizing, and build digital products.

Through the historical data of user events, such as clicked items, it is possible to

use them as resources to forecast purchases. Despite how valuable is this data,

it is not so simple to create machine learning models using them. A very small

number of user sessions are buyers of items, and, in general, models have greater

learning difficulties with unbalanced classes. Moreover, there are a large number

of products in a store, making the problem even more complex.

Previous works in the literature show that it is better to solve the problem

in two stages, i.e., using two models: one model to predict which customers

will be buying items and another to predict which products will be purchased

among these consumers. Solving problems in two stages makes the problem

simpler since it divides the model’s complexity. However, creating two models

the second model does not use information from non-buyer-sessions to solve

the item classification. Furthermore, if the first model fails to classify a session

as a buyer-session, the second model may have its results negatively impacted.

Therefore, for this work, our objective is to develop a model that solves the

problem with just a single model, a single-stage model. We deployed Siamese

neural networks to extract features to deal with imbalances.



In our single-stage framework, we had several contributions. First, is the cre-

ation of a new loss function, the quartet-loss, which optimizes the parameters

differently from the triplet-loss. Second, is the development of two different

strategies for modeling user click sessions. Third, is the creation of metrics that

evaluate the results of e-commerce models in online sessions. And finally, we

developed machine learning methods using this project framework that reached

the state-of-the-art for this problem.

Keywords: session-based modeling, predicting purchase intention, customer be-

havior, siamese-networks, triplet-loss
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1 Introduction

Year after year since its inception, e-commerce’s share of the total human shop-

ping interactions keeps increasing. By 2023, online sales by retail stores are

expected to accumulate 6.17 trillion dollars. Latin America was responsible for

85 billion dollars in 2021, a 25% growth compared to 2020 when it reached 68

billion dollars. The estimate for the United States is that it will reach 875 billion

dollars by the end of 2022. China is currently the leader in sales, accounting for

52.1% of sales worldwide, reaching a total of about 2 trillion dollars in 2021. 1

This market represents great potential for e-commerce activities and en-

courages large companies to create new retention strategies to create personalized

campaigns and increase profit. One important approach to do so is leveraging

user-provided data, such as their profile, previous purchases, and browsing be-

havior. Even when the user is not logged, user data can be saved using unique

keys created by cell phone browsers, desktop programs, or the web platform

itself. In this way, e-commerce stores can make use of models on the data to make

real-time predictions to increase purchases or create personalized campaigns to

engage consumers.

The deployment of such techniques enabled merchants to significantly

grow sales profits by knowing which customer niche they are dealing with and

how marketing and advertising techniques can be applied. According to Phillips

[Phillips et al., 2005] merchants can improve profit by between 2% and 11%

depending on the contributing variable (e.g., price management, the variable

cost, etc.), by adjusting the product placement according to each consumer niche.

In the fluid and highly competitive world of online retailing, these margins are

significant, and understanding a user’s shopping intent can positively influence

the final profit [Sheil et al., 2018]. Moreover, most of the research in this area

is done on not publicly disclosed datasets or with a lack of details regarding

method-specific implementations, making it even harder for smaller retailers to

compete with bigger merchants.
1 Total Retail Sales. <https://www.emarketer.com/>

https://www.emarketer.com/


1.1 Problem context

All click data for a certain online user within a given time limit is called a

session. When a session has at least one item purchased, we call it a buyer-session

and when there is none, we call it a non-buyer-session. Figure 1 exemplifies a

customer session.

The problem of predicting purchases given a session can be difficult.

One of the adversities is the fact that the data is heavily unbalanced. We can

exemplify this with the RecSys dataset [Recsys, 2015], a reference dataset for

open data research on shopping behavior, where only 5.5% of users are buyers.

Also, in the Retail Rocket dataset [Rocket, 2017] buyers are only 0.7%. A further

problem is that user sessions can be too short (i.e., less than 3 clicks) or too long

(i.e., more than 200 clicks). This situation can lead a classifier to misidentify

temporal patterns. Moreover, several factors, as showed by Toth [Toth et al.,

2017], can influence user purchase intent. These factors include concerns about

costs, perceived decision difficulty, and selection conflicts due to many similar

choices.

Figure 1 – Sessions data illustration for customers. On the left we have consumer
click views on items and on the right we have their item’s ids purchases.
Our goal is to forecast purchases through views. (Source: Own author)

In this dissertation, we intend to solve the purchase prediction problem

by identifying the sessions that end in a buy and the items purchased within a

session using historical click product views. Naturally, much of the literature

break this problem down into two questions to facilitate the implementation of

the algorithms: 1) Which sessions-clicks will have at least one purchased item

17



(buyer classification problem) 2) Within the buyer sessions, which items will be

purchased (item prediction problem).

In the literature, most of the researchers solved the problem of predicting

purchases based on views using two models, one for each specific question. When

this approach is used, we call it a two-stage model, one for finding buyer sessions

and another to find which item was bought. Although theoretically harder, We

believe it is also possible to solve this problem using a single model. We call this

approach a single-stage model. Each approach contains its pros and cons, as we

will see in the next sections.

In 2015, Romov [Romov et al., 2015] solved the RecSys Challenge with

a two-stage approach. Romov showed that this problem could be solved by

classical machine learning algorithms using extensive feature engineering in two

stages. In this work, differently from Romov, we intend to solve the problem

using deep neural networks with only a single-stage model.

1.2 Motivation

Romov [Romov et al., 2015] won the RecSys 2015 contest using the gradi-

ent boosting algorithm and feature engineering through the two-stage algorithm.

When machine learning models are deployed in two-stages to solve a problem,

[the second model does not use information from non-buyer-sessions to forecast

the item, which can also lead to losses of important information.]. Moreover,

when using two-stage models, if the first-stage model fails, so will the second-

stage model.

Solving the problem with a single-stage model through deep learning

should treat these problems since we will model both questions as a single

problem and will use all available information [(i.e non-buying sessions and

non-purchased items)].

However, solving this problem in a single stage is not an easy task. A

single-stage model prediction will contain most of the labels with an empty set

(no purchase) since about 95% of customers are non-buyers. This imbalance

makes single-stage models generally worse in precision than two-stage models,

as Chen [Chen et al., 2016] reported.

18



The problem of using two stages or not also happens in sentiment analysis:

A sentence may first be classified as subjective or not and then the sentence

polarity is predicted as positive or negative. Recent work such as Devlin [Devlin

et al., 2018], and Sun [Sun et al., 2019a] have shown that sentiment analysis can

be performed in a single stage through the BERT deep attention neural network.

Most datasets do not contain data completely clean and well-tracked. A

poorly done extraction job can cause a shortage of data labels or other features.

Besides that, other reasons also favor the imbalance. In some cases, the very

nature of the problem contains a distorted distribution, as in the case of fraud

and disease detection [Johnson et al., 2019]. Moreover, unbalanced datasets

always favor the sensitivity of the model: That is, learning models tend to be

more accurate in the classes that appear at most, as studies show that unequal

datasets worsen algorithm models [Eggermont et al., 2004]. In this work, we show

in the unbalanced data of e-commerce that single-stage models can improve

classification even in an uneven number of labels.

1.3 Research objective

Our general objective in this work is to demonstrate that single-stage is

competitive to two-stage approach for the problem to identify buyer-sessions

and purchased items. The specific objectives are:

1. Explore ways to represent problem classes and input for the single-stage

approach.

2. Minimize the effect of the imbalance problem.

3. Generate session representation (or embeddings) that easily differentiate

buyer-sessions and non-buyer-sessions as well as which item is bought.

4. Evaluate whether the single-stage approach is viable to the problem.

1.4 Approach

Although previously proposed models achieved satisfactory results, we

believe that it is possible to improve those models. To achieve our research goals,
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we explore the following topics: how to represent the problem, how to represent

a session, and how to represent relationships between sessions.

How to represent the problem: In 2015, several competitors submitted

a solution for RecSys competition. Most of the solutions, including the winner,

Romov [Romov et al., 2015], solved the problem with two models. The first model

contained only two classes, one that described which session was a buyer and the

other that the session was a non-buyer. Likewise, the second model also contained

two classes, one that described whether the selected item was purchased and

another that described whether the item was not purchased. For our single-stage

approach, we developed three classes to represent the problem. The first, Sinn,

refers to items that have not been purchased. The second, represented by Sibn,

refers to items that are in buying sessions but were not bought. Finally, a Sibb
class represents items that have been purchased.

How to represent a session: Previous works have shown that to solve the

purchase prediction problem, two types of input representations are commonly

created. A representation that describes the characteristics of clicks over time,

which we call sequential-features. And another representation that is not tempo-

ral, that is, it characterizes the clicks observing the entire session and also, when

needed, features from a specific item in the session. We call this representation

as aggregated-features. In this work, we showed how we can implement these

two representations and how to implement neural network models that can read

these inputs.

How to represent relationships between sessions: Session relationship

representations must be thought in order to address the problem of imbalance.

A common way to solve the problem of class imbalance is through deep metric

learning, in which a network tries to represent the input in latent space. Through

these learned representations and embeddings, the minority classes tend to

be further away from the majority classes due to the application of the loss

function. In our context, we need the purchase classes, Sibn and Sibb, which will

be formally described in chapter 4, to be far from the non-purchase class. In

this work, we deployed the triplet-loss [Schroff et al., 2015b] for the purchase

prediction problem. However, in our case, there is the presence of two very
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distinct negative classes regarding items that were not bought: The ones from

a "buying session" and the ones from a "non-buying" session. These two class

are treated in the same way in triplet-loss. To tackle this scenario, we developed

a variation of the triplet-loss with one extra negative example: the quartet-loss.

Using quartet-loss, we can consider the classes independently and also control

how much the network pushes the different classes through weights.

1.5 Contributions

According to our systematic review, no single-stage model proposed was

as efficient as the other two-stage models previously proposed for this problem.

Our main contribution is showing how to implement a single-stage model using

siamese networks to extract features for both session buyer and item classification.

[We use the Siamese network because the generated representation separates

the classes in the latent space so that the problem of unbalance is minimized].

Besides, we have other contributions, such as:

1. Implementation of a new loss function, quartet-loss, which handles two

possible negative classes of purchases separately.

2. Achieving excellent results that overcame the state-of-the-art method by

Romov [Romov et al., 2015] using single-stage models.

3. The design of Siamese network models for sequential-features and aggregated-

features.

1.6 Outline

This dissertation is organized in the following structure. The next Chapter

2, contains a list of our proposal’s theoretical concepts. Chapter 3 presents details

of related work returned through a systematic review. In Chapter 4 we present

our solutions to the purchase intention problem. Chapter 5 describes our results.

Finally, Chapter 6 shows our considerations and future works.

21



2 Fundamentals

In this chapter, we present the fundamental concepts of this work. Section 2.1

covers machine learning concepts. Section 2.2 details artificial neural networks

and deep learning theory. Section 2.3 discusses recurrent neural networks. Sec-

tion 2.4 ends with the attention mechanism. Section 2.5 covers convolution

neural networks. Section 2.6 discusses temporal convolution network. Section

2.7 presents the definition of siamese network and triplet-loss. Section 2.8 cov-

ers about principal component analysis. Section 2.9 introduce Silhouette score.

And finally, Section 2.10 discuss some evaluation metrics: confusion matrices,

precision, recall and f1-score.

2.1 Machine learning

Machine Learning can be summarized as a set of techniques in which,

through selected data, we intend to make a model understand or learn patterns in

the data [Palmer et al., 2011]. Mitchell defines it [Mitchell, 1997] more formally

as "A computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P, if its performance at tasks

in T, as measured by P, improves with experience E". A good example of a

machine learning application is the implementation of recommendation systems

for movies and series as is done at Netflix. In 2006, Netflix launched a competition

’The Netflix Prize’, to predict user preferences and improve the accuracy of movie

recommendation models by at least 10% [Bennett et al., 2007].

In general, the machine learning tasks can be divided into two phases

[Hertzmann and Fleet, 2010]: The training phase and the test phase. The data

must be broken into two sets before this next phase: the training data and the

test data. The data splitting is designed to simulate model performance at the

production level. The training data represents all existing collected data that the

model should use to learn a pattern. The test data represents the future or the

actual forecast at the production level.

As an example, suppose we want to recognize handwriting data from



Figure 2 – Machine Learning workflow. (Source: Own author)

28 × 28 pixel images [Lecun et al., 1998]. Our purpose is to build a machine

learning algorithm that takes the image as input and produces the identity of

each digit {0,1,2,3,4,5,6,7,8,9}. A machine learning approach can be adopted

in which a large set of N digits {x1, ...,xN}, the training the data, is used to tune

the parameters of an adaptive model. The categories of the digits in the training

set are known in advance, typically by inspecting them individually and hand-

labeling them. We can express the category of a digit using a target vector t,

which represents the corresponding digit’s identity. The result of running the

machine learning algorithm model takes new digit images x, the test data, as

input and generates an output vector y, encoded in the same way as the target

vectors from the training data [Bishop, 2006].

A very important step in machine learning is data pre-processing. The data

needs to be preprocessed so that the model understands as well as possible. For

example, the digit recognition problem must scale the digits and move them to a

position so that there is not so much variability. The data must be preprocessed

for both training and test data sets. Once the data is properly processed and

divided into test and training, the model can be trained on training data and

evaluated in the test data set. Once the test results are achieved, we can report

through various evaluation metrics present in the literature. Figure 2 shows a

machine learning model workflow. [Bishop, 2006].

In the filed of machine learning, we classify in three types for the ma-

jority of tasks. The first most common is the Supervised Learning which the

training data is labeled with the correct answers. The two most common types

of supervised learning are classification (where the outputs are discrete labels)

and regression (where the outputs are real-values numbers). The second most
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common machine learning type is the Unsupervised Learning which are given

a collection of unlabeled data where we want to analyze and discover some

patterns within. The most important examples are dimension reduction and clus-

tering. Furthermore, the last most common is Reinforcement Learning, which is

currently growing and being mixed with other learning types. Reinforcement

Learning is learning in which the agent seeks to learn the optimal set of actions

following a policy based on past actions [Hertzmann and Fleet, 2010].

2.2 Artificial neural networks and deep Learning

Artificial Neural Networks are machine learning models that are based

on a biological model of the human brain and its neurons. Therefore, we want

to find a mathematical approach to process information similarly to biological

systems. However, today we know direct biological realism would impose entirely

unnecessary constraints [Bishop, 2006].

An artificial neural network, or perceptron, is a supervised model that

was based on the biological neuron, initially used to solve binary classification

problems. So what a perceptron tries to solve is a nonlinear regression problem.

A nonlinear function of the input variables is fitted by optimizing the weights

of a nonlinear function y(W ,X). Where W is the vector to be computed, X is the

vector of known input variables, and y is the unknown output [Dean, 2014].

Figure 3 is a diagram for a simple neural network.

Figure 3 – Simple Neural Network

However, the most commonly used neural network type contains three

or more layers of multiple perceptrons; input, one or more hidden, and output

layers. These feed-forward networks use squashing activation functions for the

neurons in the hidden layer. Recently neural networks of five or more hidden
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layers are useful for feature detection in images and natural language processing.

Networks like these, generalized to include multiple hidden layers, are referred

to as multilayer perceptrons (MLPs). However, the term neural network has been

applied to various other architectures, such as autoencoders, convolutional neural

networks, radial basis function networks, self-organization maps, etc. Recently,

the term deep learning has become widely used to describe machine learning

methods that can learn more abstract concepts from multiple hidden layers and

achieve optimal results in several areas [Dean, 2014].

2.2.1 Training a neural network

To train a neural network it is necessary to call a method or function to

compute the weights that minimize a highly nonlinear objective function for

a set of training examples. The objective function is not the network output.

It represents the network error: the real difference between what the network

should be outputting and what the networks is predicting, overall training

examples. The computation of optimizing a minimum value of a nonlinear

differentiable function is usually accomplished using some variation of the

gradient descent method. For neural networks, the gradient is the vector of

partial derivatives of the objective function concerning each weight. Each partial

derivative value in this vector represents the amount the objective function

changes for a small change in weight [Dean, 2014].

This mechanism to modify each hidden neural weight is called the back-

propagation error. At each step of the training network, two distinct stages occur:

in the first stage, as mentioned, the derivatives of the error function for the

weights must be evaluated, and errors are propagated backward through the

network. In the second stage, the derivatives are then used to compute the

adjustments to be made to the weights [Bishop, 2006].

The gradient descent optimizer method uses the idea that we can use a

randomly chosen initial set of weights and slowly move in the direction of the

negative gradient of the objective function (in the steepest downhill direction)

you can eventually end up at the bottom (global optima), or at least at a place

where the gradient is a zero (local optima). The reason the function has to be
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differentiable is that gradient exists, which it does for multi-layer perceptrons

using standard activation functions. The next lines show a default version of the

gradient descent algorithm [Dean, 2014]:

Gradient descent algorithm

Wn+1 =Wn −Ý▽f (Wn)

where

Wn = current vector of weights

Ý = learning rate

▽f (Wn) = objective function to be minimized

2.2.2 Transfer learning

When it is impossible to collect a huge amount of labeled data to feed

a deep network model, transfer learning could be a solution. First, we train a

base network containing a large set of data, and then we repurpose the learned

features or transfer them to a second target network to be trained on the target

dataset. This process works if the features are general, meaning suitable to both

base and target tasks, instead of specific to the base task. Recent studies have

taken advantage of this fact to obtain state-of-the-art results when transferring

from higher layers ([Donahue et al., 2014], [Zeiler et al., 2014], [Sermanet et al.,

2013]) [Yosinski et al., 2014]. Figure 4 shows the workflow for transfer learning

to cats and dogs classifying.

2.3 Recurrent neural networks

Recurrent neural networks or RNNs are a family of neural networks for

processing sequential data. A recurrent neural network is a neural network that

is specialized for processing a sequence of values [x(1), ...,x(n)]. The broad idea is

that RNNs are neural networks in which there is some dynamic change over time.

Recurrent networks can scale to much longer sequences than would be practical

for networks without sequence-based specialization. Recurrent networks share

parameters differently. Each member of the output is a function of the previous

members of the output. Each member of the output is produced using the same
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Figure 4 – Transfer Learning diagram workflow for cats and dogs recognition.
(Source: Own author)

update rule applied to the previous outputs. In effect, an RNN is a type of neural

network that has an internal loop [Goodfellow et al., 2016]. Figure 5 shows a

single cell of an RNN.

Figure 5 – Sequencial inputs directly in a RNN cells. (Source: Own author)

Even though RNNs are quite powerful, they suffer from a vanishing gra-

dient problem that hinders them from using long-term information. They are

suitable for storing memory with low numbers of past iterations, but many

instances do not provide satisfactory results. New types of recurrent neural

networks were developed; one of the most important is the Long Short Term

Networks LSTM and the Gated Unit Recurrent GRU.

An LSTM unit comprises a memory unit, an input gate, an output gate,

and a forget gate. The memory unit is responsible for remembering the values

over the temporal sequence. The gating mechanism regularizes the values of

the hidden weights that go through the intern connections of the LSTM. The

expression long short-term refers to the fact that LSTM is a model for short-term

memory that can last for a long time. An LSTM is well-suited to classify, process
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and predict time series better than traditional RNNs [Hochreiter and Schmidhu-

ber, 1997]. Consider that each LSTM cell compute a hidden state st−1 as previous

input and xt as instance input to predict the next hidden state st. The next lines

show the calculation for a hidden state st:

i = ã(xtU
i + st−1W

i ) (2.1)

f = ã(xtU
f + st−1W

f ) (2.2)
o = ã(xtU

o + st−1W
o) (2.3)

g = tanh(xtU
g + st−1W

g) (2.4)
ct = ct−1 ⊙ f + g ⊙ i (2.5)
st = tanh(ct)⊙ o (2.6)

LSTM hidden state calculation.

Despite the success of LSTMs, new researchers wondered if all the com-

plexity of LSTMs was needed. One of the exemplary architectures widely used

until 2019 is the gated recurrent units, a simplified version of LSTMs. The main

difference with the LSTM is that a single gating unit simultaneously controls

the forgetting factor and the decision to update the state unit [Goodfellow et al.,

2016]. Empirical results showed that it is not a cleaner, better neural network,

but GRU is faster to train [Chung et al., 2014]. A GRU has two gates, a reset

gate r, and an update gate z. Intuitively, the reset gate determines how to com-

bine the new input with the previous memory, and the update gate defines how

much of the previous memory to keep around. Next, we show the GRU equations:

z = ã(xtU
z + st−1W

z) (2.7)
r = ã(xtU

r + st−1W
r) (2.8)

h = tanh(xtU
h + (st−1 ⊙ r)Wh) (2.9)

ct = ct−1 ⊙ f + g ⊙ i (2.10)
st = (1− z)⊙ h + z ⊙ st−1 (2.11)

GRU hidden state calculation.

28



Figure 6 – LSTM and GRU representation with internal equations elements em-
phasized. (Source: Own author)

Figure 6 demonstrates the LSTM and GRU basic unit cells for the presented

equations in this section.

2.4 Sequence to Sequence and Attention mechanisms

We know that the sequence to sequence learning model has produced

excellent results in natural language processing [Sutskever et al., 2014]. It aims

to transform an input sequence to a new one, and both sequences can be of

arbitrary lengths. We call this kind of problem a sequence to sequence learning

or seq to seq problem. Examples of transformation in seq to seq problems include

machine translation between multiple languages in either text or audio, question-

answer dialog generation, or even parsing sentences into grammar trees.

To create a sequence to sequence learning model it is expected to use an

encoding and decoding architecture. An encoder processes the input sequence

and compresses the information into a context vector (or sentence embedding or

thought vector) of a fixed length. This representation is expected to be a good

summary of the meaning of the whole source sequence. The decoder part is

initialized with the context vector to emit the transformed output. It is common

to use the last state of the encoder network as the initial decoder state. Both the

encoder and decoder are recurrent neural networks. Figure 7 exemplifies it.
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Figure 7 – Encoder and decoder model example from portuguese to english.
(Source: Own author)

Bahdanau [Bahdanau et al., 2014] solves a critical problem in the encoding

and decoding traditional model. The sequence to sequence model is incapable of

remembering very long sentences. It often forgets the first part once it completes

processing the whole input. Bahdanau proposes an attention mechanism that

does not just create a single context vector of the encoder’s last hidden state but

creates a shortcut between the context vector and the entire source input. While

the context vector has access to the entire input sequence, we do not need to

worry about forgetting. The alignment between the source and target is learned

and controlled by the context vector [Weng, 2018]. Figure 8 shows the attention

mechanism in recurrent neural networks.

Figure 8 – Graphical illustration of the proposed model by Bahdanau to generate
the t-th target word yt given a source sentence (x1,x2, ...,xT ). Image
taken from [Bahdanau et al., 2014]

30



Besides the commented model, several other attention mechanism models

were also proposed. We can mention location-base, general and dot-production

[Luong et al., 2015].

2.5 Convolution Neural Networks

Convolutional neural networks (CNN) are a type of artificial neural net-

work widely applied in the areas of image classification, object detection, image

segmentation, and other tasks. A convolutional neural network is composed of

an input layer, hidden layer, and output layer with shared-weights architecture.

Hidden layers are composed of layers that perform a convolution operation. In

a convolution operation, filters (or kernels) are applied in a sliding way on the

input, producing an intermediate layer of responses called a feature map that

can be used by the next layer. After generating the convolution layer, a new set

of layers can be connected, such as pooling layers and a fully connected layer.

The figure 9 shows an example of an architecture to solve a classification of

cats and dogs. In this example, we can see that the convolution layer applies a

filter (or kernel) to the input and throws its output to the pooling layer. This

process occurs one more time until it passes to a fully neural network for the

final classification. [Lecun et al., 1998]

Figure 9 – A common convolutional neural network architecture. In general,
CNN has three components, the convolutional layer, the pooling layer
and the fully connected layer. (Source: Own author)

The convolution layer is composed of three components: the input, the

filter, and the feature map. Filters move in a sliding window (which can vary in

size) to find the important features in the input. In an image of a cat, for example,

filters can pick up important features such as ears, teeth, and fur. This process is

called convolution. The filter is implemented by a two-dimensional matrix with
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weights that is applied to an area of the input and then a dot product is calculated

between the pixels and the filter weights. The output of the dot product is then

fed into an output array. Afterward, the filter is then continuously applied in

strides until it passes through the entire input. The final generated output is

called a feature map. The Figure 10 exemplifies the convolution operation for an

image of dimension 6×5 to a kernel of dimension 3×3.

Figure 10 – Example of convolution operation for an image of dimension 6×5 to
a kernel of dimension 3×3. (Source: Own author)

After the convolutional layer generates the feature map, they are passed

to a Pooling layer. Pooling layers are similar to convolutional layers, they also

pass a filter on the entire input, although the filters do not have any weights. The

difference is that the kernel applies an aggregation function to the input. The

two most applied functions are the max (which we call max pooling) and average

(which we call average pooling) functions. After the convolution and pooling

operations, the feature maps are passed to a fully connected layer for the final

classification to take place.

2.6 Temporal Convolution Networks

Temporal Convolutions are Networks that have two properties:

1. They contain a 1-dimensional fully connected network to keep the network

output the same length as an input sequence.
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2. The outputs are only influenced by information of the present and past

inputs in each layer by using causal convolutions.

A causal convolution is a type of convolution created for sequential data

in which the model does not take away the guarantee of the temporality of the

data. That is, the prediction (xt+1|x1, ...,xt) emitted by the model at timestep t

cannot depend on any of the future timesteps xt+1,xt+2, ...,xT . Figure 11 shows

a visualization of a causal convolution. You can see that the data doesn’t get

information from data that is in the future like a common filter does.

Figure 11 – Visualization of causal convolution. (Source: Own author)

Although recurrent neural networks work well for several sequential mod-

eling tasks, convolutional neural networks also proved to be efficient for this task.

Shaojie Bai et al.[Bai et al., 2018] showed that temporal convolutions networks

(TCN) can substantially outperform LSTMS and GRUs while demonstrating

longer effective memory. Furthermore, using a convolutional network instead of

a recurrent one can lead to performance improvements as it allows for parallel

computation of outputs.

Simple causal convolution still has the problem of traditional convolu-

tional neural networks, and the modeling length of time is limited by the size

of the convolution kernel. In this case, if you want to learn longer dependencies

between data, you need to stack many layers linearly. To solve this problem, TCN

uses one-dimensional dilated convolution.

The difference between dilated convolution and traditional convolution is

that it allows the input of convolution to have interval sampling. In other words,

a dilated convolution is a convolution where the filter is applied over an area
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larger than its length by skipping input values with a certain step. [van den Oord

et al., 2016].

For an input sequence x ∈�T and a filter h : {0, ...,k −1} →� , the dilated

convolution operation on element s of the sequence is defined as:

H(x) = (x ∗ dh)(s) =
k−1¼
i=1

f (i) · xs−d ·i (2.12)

Dilated convolution operation formula.

where d = 2v is the dilation factor, with v the level of the network, and k

is the filter size. The term s − d · i accounts for the direction of the past. Dilation

is equivalent to introducing a fixed step between every two adjacent filter taps

[Richter, 2020]. Choosing a larger filter size k or increasing the expansion factor

d can obtain a larger network receptive field. Similar to the common dilated

convolutions, d increases exponentially with the depth of the network layers,

which allows the network to use a larger effective history while receiving each

input.

Another common method to further increase the network is to connect

several TCN residual blocks. The Residual Blocks have two layers of dilated

with rectified linear units (ReLU) as non-linearities. Also, Weight normalization

[Salimans et al., 2016] is applied to the convolutional filters and a spatial dropout

[Srivastava et al., 2014] is added after each dilated convolution for regularization,

meaning that at each training step a whole channel is filled with zeros. Figure 12

shows a diagram of a TCN residual blocks with dilated convolutions.

2.7 Siamese Networks

Siamese networks were developed in 1990 by Bromley and LeCun to

solve signature verification through an image matching [Bromley et al., 1993]

problem. The term Siamese evolved from a concept of physically conjoined

twins connected. Analogously, Siamese Neural Networks make use of two or

more identical sub-networks (e.g same parameters and layers) to quantify the

similarity between the instances. The sub-networks can be common neural
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Figure 12 – TCN residual block and dilated causal convolutions with dilation
factors d = 1,2 and 4 with filter size of k = 3. (Source: Own author)

networks such as convolutional neural networks, recurrent neural networks,

multi-layer perceptrons, etc.

The traditional Siamese network proposed by Bromley and LeCun receives

the inputs, processes them through the backpropagation algorithm, and generates

the outputs for the sub-network pair as predictions. These outputs are compared

through some similarity function, usually by cosine or Euclidean distance. You

can observe a diagram in the Figure 13. Through this distance, the neural network

can identify whether the classes are different or the same. In the case of cosine

distance, the network considers it as a different class if the distance is between

[−1,0] or similar if the distance is between the range [0,+1].

A Siamese neural network, in addition to comparing objects, also develops

a latent representation for them, usually with lower dimensionality. For this

reason, it is possible to reuse the generated representation for other tasks. An ex-

ample of the use of embeddings in the latent space is the solution to the clothing

matching problem by Yuan et [Yuan et al., 2018]. The clothing matching problem

tries to find the clothing combinations for people, such as finding shoes of one

color for pants of the same color. Yuan et al. solved the task through Siamese

networks with visual and categorical features from a contrastiveT loss. The model
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Figure 13 – Traditional Siamese Network, proposed by Bromley and LeCun
[Bromley et al., 1993]. (Source: Das et al. [2016])

achieved good results for the recommendation of the Weighted Nearest Neighbor

algorithm in the embeddings generated by the Siamese Network.

2.7.1 Triplet loss

A variation of the traditional Siamese network, they are networks that

contain three sub-networks, called a triplet network. This network is trained

using three inputs, commonly named anchor, positive, and negative. The triplet

network is optimized by a cost function called triplet-loss [Ha and Blanz, 2021].

The main idea of triplet loss is to bring instances of the same class close to

each other and move instances of different classes away. Hence, the triplet-loss

minimizes the distance between the anchor input and the positive input, while

trying to maximize the distance between the anchor input and the negative input.

Therefore, we can describe the function as follows:

L(Ia, Ip, In) =max(dist(Ia, Ip)− dist(Ia, In) +margin,0 (2.13)

Triplet-loss formula.

where Ia, Ip and In represents anchor, positive and negative respectively.

36



The dist(x,y) function is a distance between x and y vectors. As a distance,

Euclidean distance and cosine are commonly used. The margin is a threshold

that separates the semi-hard triplets from the easy and hard negatives, proposed

by Schroff et al. [Schroff et al., 2015b].

2.8 Principal Component Analysis

Principal Component Analysis (PCA) is a dimensionality reduction method

widely used in statistics in multivariate analysis. From the reduction of dimen-

sionality, it is possible to represent data of a larger dimension in a smaller

dimension that is more understandable or easier to be modeled. The purpose

of PCA is to extract important information into a smaller set of indices called

principal components.

The dimensionality reduction by the PCA occurs by maximizing the varia-

tion present in the original dataset. This occurs through the principal components

that make a linear transformation of the original attributes. The principal com-

ponents are uncorrelated and ordered such that the first component retains the

greatest percentage of variation from the original attributes [Silva et al., 2019].

2.9 Silhouette Score

The Silhouette Score or Silhouette Coefficient is a method for evaluating

and interpreting clustering data. The general idea is that it validates how compact

the clusters are (using the intra-distance cluster) and how far apart the clusters

are (using the inter-cluster distance). [Rousseeuw, 1987]

The Silhouette value is in the range between -1 and +1. The closer to +1,

the more the data points match their cluster and at the same time are poorly

matched to neighboring clusters. If most of the data points are close to +1, then

the cluster configuration looks good, otherwise, the configuration is bad.

The Silhouette score for data point i is given as:

In this context, bi is inter-cluster distance defined as the average distance

of the cluster closest to the data point i except for the cluster where i is a part.

And ai is the intra-cluster distance as the average distance from all other data
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si =
bi − ai

max(bi ,ai )
(2.14)

where (2.15)

bi =mink,i
1
|Ck |

¼
j∈Ck

d(i , j) ai =
1

|Ci | −1

¼
j∈Ck ,i,j

d(i , j) (2.16)

Silhouette score formula.

points that the i cluster is a part of. The overall Silhouette is computed from the

average of the silhouettes of all data points in the dataset.

2.10 Evaluation metrics

Developing quality predictive models requires an important part: eval-

uation. For a good model evaluation, evaluation metrics are needed. From the

metrics, the model building can continue to improve until it reaches a better

performance. For this section we describe some of the metrics used in the litera-

ture for supervised models: confusion matrix, precision, recall, f1-score, mean

reciprocal rank, and mean rank.

2.10.1 Confusion matrix, precision, recall, f1-score

Once a supervised model is trained, we must perform its validation. Val-

idation through the confusion matrix consists of observing the output of the

predictions and comparing them with the classes. This comparison consists of

verifying if the predictions found the classes correctly and for which classes the

model made the predictions wrongly.

Considering a model that makes predictions for a problem with N classes

of predictions, a confusion matrix of N ×N is required. Considering N = 2, for a

binary classification problem, we can create the relation of prediction classes×
actual classes. Table 1 represent this.
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Actual class
Positive Negative

Predicted
class

Positive
TP

(True Positive)
FP

(False Positive)

Positive predicted Value
TP

(TP + FP)

Negative
FN

(False Positive)
TN

(True Negative)

Negative Predicted Value =
TN

(TN + FN)
Sensitivity

TP
(TP + FN)

Specificity
TN

(TN + FN)

Accuracy
TP + TN

(TP + TN + FP + FN)

Table 1 – Confusion matrix for a binary classification problem.

Table 1 shows the total number of instances organized into predictions

and actual classes. We can mention them as follows:

1. TP, refers to the number of instances correctly set for class Positive.

2. TN, refers to the number of correctly set instances for class Negative,

3. FP, refers to the number of instances predicted to be Positive but actually

are Negative.

4. FN, refers to the number of instances predicted to be Negative but actually

are Positive.

From these nomenclatures, we can define the metrics of precision (or

Positive Predicted Value), Negative Predicted Value, Accuracy, Sensitivity (or

Recall), and Specificity, defined in Table 1. It is worth mentioning that these

metrics can have different importance depending on the problem. For a problem

with unbalanced classes, that is, with several classes with great disparity, it

may not be significant to observe the accuracy metric. For cancer classification

problems, for example, it may be more important to look at the recall metric, to

find the greatest number of people with cancer, even if there are a high number

of false-positives.

In some situations, we may be required to obtain an optimal value between

precision and recall. A good metric for this is the f1-score, which is defined by

the harmonic mean of precision and recall. For this metric, harmonic mean is

used, as it punishes extreme values. An f1-score can be defined as:

39



f1-score =

(
recall−1 +precision−1

2

)−1
= 2 · precision · recall

precision+ recall
(2.17)

F1-score formula.

2.10.2 Mean Reciprocal Rank and Mean Rank

Mean rank (MR) and mean reciprocal rank (MRR) are statistical metrics

used to evaluate a list of possible answers to a query in the area of information

retrieval. MR and MRR are used in situations where there is only one correct

answer. The rank in this case is defined as the position of the correct document

for a given query. Therefore, the MR is the average of the correct positions for a

query. The MRR is the inverse average of the correct positions for a query. The

MRR in this case can be more advantageous than the MR, as it penalizes larger

errors. MR and MRR can be mathematically defined as:

=
1
|Q |

|Q |¼
i=1

1
ranki

MR =
1
|Q |

|Q |¼
i=1

ranki (2.18)

MRR formula.

where ranki refers to the rank position of the relevant document for the

i-th query and Q is the total of queries.
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3 Related work and literature review

This section discusses the main scientific works on the purchase prediction

problem. We conducted a systematic review to extract related works. After the

review was finished, we added up all the results and analyzed different methods

related to our problem. Figure 14 shows the methodology of our literature review.

Figure 14 – Methodology of the systematic review. (Source: Own author)

Section 3.1 explains our systematic literature review for our problem.

Section 3.2 shows results from our systematic review and analysis.

3.1 Systematic literature review

To conduct the review, we used advanced search in the libraries ACM,

IEEE Explore, and ARXIV. We created a string with a pattern that represents our

problem for searching in the selected libraries. The string creation was performed

based on PICO (Population, Intervention, Comparison, and Outcomes) [Keele

et al., 2007] and was based on technical terms and synonyms present in a created

papers control list.

Table 2 – Inclusion criteria

IC01 Research papers that predict online user events (buy, browser, add-to-
cart, etc) from unidentified users through deep learning.

IC02 Research papers that implement recommendation systems through
unidentified user data using deep learning.

IC02 Research papers that implement recommendation system using im-
plicit feedback.



Table 3 – Exclusion criteria

EC01 Papers that not related to e-commerce context.
EC02 Papers that use direct feedback to solve the problem. (e.g direct product

rating, text review, comments, search string, etc.)
EC03 Papers published before 2014

After the search string is created, we filtered the results using some criteria

to extract the primary works. The inclusion and exclusion criteria are present in

tables 2 and 3. The filtering process occurred in two steps:

1. The first filter is to classify who will be present for the next filter, just

matching the inclusion and exclusion criteria on keywords, the title, and

abstract.

2. The second filter is a more in-depth selection of our results from the pre-

vious filter, but instead of just using the metadata, the full text is used to

apply the criteria list.

3.2 Research results

Our search returned a total of 243 results, from which two filters were

applied to reach a total of 19 articles. Unfortunately, of the 19 works selected

for data extraction, not all solve the entire purchase prediction problem as we

have defined it. Some of them solve the first stage; others solve the second or

solve a similar problem. However, this does not mean that they can not serve as

a basis for our research. To better classify our results, we can define four classes

of works related to our problem:

P1 Given user history interactions, who will be a buyer or not? We will call as

Buyer classification.

P2 Given user history interactions, which feature of the user or the product

will be found on the next click? (e.g product category, user location, user

payment, product id). For this, we will call as feature prediction.
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P3 Given user history interactions, who will be a buyer or not? Among the

buyers, which items they will buy? We will define this problem as purchase

intention prediction.

P4 Given user history interactions, which items are more attractive for the

user to buy?. This problem is called next-item recommendation or next-click

recommendation.

Figure 15 shows the distribution of the described problems. TheP3 is the

problem defined exactly equal to our problem. There is very little research on

our problem in the literature. This shortage can be a hindrance since much of the

basis for developing our research does not contain mature historical research in

the literature. As the graph shows, either researcher solves only the first problem

or the second, not both simultaneously, just like we want to. The problem P3 is

basically the concatenation of problems P1 and P2: P1 is the first stage of the P3

problem and P2 is the same problem of the P3 second stage.

Figure 15 – Problem Class × Number of Publications. (Source: Own author)

P4 is not the same problem as P2, although they are similar. In P4, we are

trying to convince new or same products for a user session. In P2, we will only

predict the same products purchased in the past. Although different, P4 models

can be applied in similar ways in P2 problems since recommendation tasks are

also concerned with how to code e-commerce sessions for neural networks.

43



3.3 Research analysis

In the next section, we will briefly analyze the results for each type of

problem defined previously.

3.3.1 Buyer classification (P1)

Ling et al. [Ling et al., 2019] solve P1 as a binary problem classification

using handcrafted features with a deep learning method, a fully connected

neural network stacked with LSTM. The data contains different sources, and

therefore, the network was designed, so that manage it. Unfortunately, the data is

private, and the author only tries to predict the purchase intention in a promotion

announcement.

Another work to comment on is Zhou et al, which solves P1 proposing

two attention networks [Zhou et al., 2019]. The first is a recurring network with

global attention that uses a context vector to capture each activity’s attention.

The second is a recurring network with logistic regression to update the attention

weights in the network. Global attention outperforms the literature networks

in conversion prediction problems, achieving an Area Under the Curve (AUC)

of 0.739, a 7.0% lift above a Logistic Regression, and 0.9% lift above the local

Attention Network from the literature in the RecSys 2015 dataset.

Sheil et al. [Sheil et al., 2018] solved the problem using stacked LSTM

and GRU networks with hidden shared units, sequence reversal, event unrolling,

and data augmentation. He also processed the data to input in an embedding

network to represent the items_ids. Another fact from Sheil’s work is that the

solution algorithm reached a 98% of Area Under the Curve (AUC) compared to

Romov et al. [Romov et al., 2015] without any feature engineering.

3.3.2 Feature prediction (P2)

The P2 problem class is closely related to our problem in the second stage.

Liu [Liu et al., 2019] developed the DeepStore network to solve customers’ point-

of-interesting problems to maximize the sales in a store based on multi-source

data. The DeepStore is a stacked network that uses field embedding and attention-

based spatial embedding to learn latent feature representations. Wen [Wen et al.,
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2018] works on location, time, payment amount, and product category prediction.

To work on the problem, the researcher developed a probabilistic model that

surpassed a Random Forest model. Wen used a private dataset from a Taiwanese

bank.

Huang et al. [Huang et al., 2019] tried to predict the purchasing behavior

by analyzing the final product category by customer. They operated on a pri-

vate dataset from JD.com. Huang et al. developed a complex neural network:

a novel multi-scale pyramid modulation network with a resolution-wise recali-

bration gating mechanism for fusing scale-specific pattern representations and

automatically capturing the importance of each scale-view in the predictive

model.

3.3.3 Purchase intention prediction (P3)

For works that solve P3 robustly we can mention the Romov et al [Romov

et al., 2015] work. Romov et al. won the RecSys Challenge in 2015 with a simple

gradient boosting with categorical features, and as Sheil [Sheil et al., 2018], we

believe that is current state-of-the-art but solves the problem differently as we

want, using two stages algorithm. Another interesting work comes from Wu [Wu

et al., 2015], which reached the seventeenth place in the competition. Although it

was not among the first, it is interesting that it solved the problem using stacked

Long Short-Term Memory (LSTM) Recurrent Network with fewer handcrafted

features, unlike Romov et al [Romov et al., 2015].

The research of Yunghui [Chu et al., 2019] just uses a simple click rate

to predict if a consumer will buy. The major work is found in the second stage

when the author uses a Recurrent Neural Network with a K-nearest-neighbour to

predict the next item. Myklatun [Myklatun et al., 2015] solved the RecSys 2015

Challenge in two stages through random forests and feature engineering. One

of the most important features is the item probability feature that was created

based on the amount of the item’s presence in previous sessions.
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3.3.4 Next-item recommendation (P4)

Of all the searched problem classes, P4 contains the largest number of

results. This is probably due to the great growth in deep learning in the recom-

mendation area. Hidasi et al [Hidasi et al., 2015] were one of the pioneers in

applying recurring networks to historical customer data. Hidasi et al applied a

gated recurrent unit (GRU) with customized loss and session-parallel mini-batch.

After this work, many improvement works were created. Tan et al [Tan et al.,

2016] improved the GRU with the addition of data augmentation and retraining

in more recent fractions. Wu et al [Wu et al., 2017] created a neural list-wise rank-

ing with session information embedding to solve the next-item recommendation.

In 2018, Hidasi et al [Hidasi et al., 2018] proposed a new sampling strategy and

new customized loss functions to the 2015 GRU from Hidasi et al (2015) [Hidasi

et al., 2015].

With the growth of new attention networks in the natural language pro-

cessing area, some of these neural networks started to be deployed in recom-

mendation systems. We can mention the work of Kang [Kang and McAuley,

2018] which created a neural network called SASRec self-attention layer with a

point-wise feedforward network. Sun [Sun et al., 2019b] outperforms the SASRec

network with a bidirectional self-attention network through the Cloze task called

BERT4Rec.

Other interesting works occurred in 2015 on the recommendation prob-

lem. Hu [Hu and He, 2019] created a new concept of recommendation called

sets to sequential sets learning, a generalization of sequence to sequence learning

which treats the input and output encoding and decoding of the problem as a

sequence of sets. The model is an RNN encoder-decoder that uses an element-

embedding-based set embedding to represent each set and uses an attention

mechanism to leverage the information in different input sets for different output

sets accordingly.

Another interesting work is the Graph Neural Network for a session-

based recommendation from Wu [Wu et al., 2019]. In this network, all session

sequences are modeled as directed session graphs, where each session sequence

can be treated as a subgraph. Then, each session graph proceeds successively, and
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the latent vectors for all nodes involved in each graph can be obtained through a

gated graph neural network. The graph neural network adopts the soft-attention

mechanism to generate a session representation that can automatically select the

most significant item transitions.

Conclusion

The systematic review showed that most of the scientific works focus on

product recommendations for the users. And that researchers often don’t solve

the buyer and non-buyer customer classification along with product recommen-

dation. This shows that there is a certain gap in scientific research on consumer

purchase behavior modeling. Also, among the research works found for purchase

prediction, none of them solved the problem in a single-stage efficiently. Another

important fact observed is that most research work hardly focuses on using user,

context, and product information to improve forecasting models, unlike our

project which will focus only on the use of raw click-views.

The applied systematic review shows that there are several fields within

consumer buying behavior predicting that can be explored. This enables the

creation of new scientific interventions within the area.
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4 Predicting purchase intention through

single-stage siamese deep learning

models

In this work, we are trying to predict consumer intent through e-commerce item

clicks. In summary, we want to answer these two questions:

1. Which consumers are most likely to purchase at least one product (or item)?

2. Among those buyer (or converted) consumers, which items will they buy?

If this is solved using two distinct models, one specialized on each question,

this approach is known as a two-stage approach. If we want to solve both ques-

tions at the same time, that is, using a single model, these are called single-stage

approach. The purchase prediction problem is usually tackled in the literature by

deploying two-stage models. Romov [Romov et al., 2015], for instance, deployed

one model to classify who is a buyer and non-buyer and another to predict,

among those sessions considered as a buyer, which items were bought. Chen

[Chen et al., 2016] reported that a single-stage approach performed generally

worse than deploying two-stage methods.

Although two-stage approaches have historically led to better results,

they have some disadvantages in comparison with single-stage models. Since

e-commerce environments may generate a lot of data continuously, training two

distinct models for those tasks may require many optimization parameters and,

therefore, much more human activity to operate them. Another disadvantage of

two-stage models is that all prediction errors from the first model are default

errors for the second model, i.e., if a first stage model wrongly decides that a

session is non-buyer or buyer, the quality of the second is irrelevant, since its

output is either disregarded (in the case of a wrongly classified buyer session) or

wrong by default (in the case of wrongly classified non-buyer session). If the first

model makes too many mistakes in its prediction, the second model may become

practically useless.



The item purchase prediction problem is directly related to buyer classifi-

cation. Once a single purchase of any item occurs, it follows that the session as

a whole is a buyer session. Our intuition is that solving both tasks at the same

time might help each other during training, and there is the possibility that the

model can better understand session-wide characteristics that separate buyer

and non-buyer sessions. Those characteristics might also help to identify which

item was bought.

In this work, we focus on developing single-stage siamese-based networks

aiming to provide a different view on how to solve this problem regarding pre-

vious solutions. Our solution addresses the problem by treating it as a single

multi-class problem, classifying the output into three classes that will be pre-

sented in the 4.2 section: Sinn, Sibn, and Sibb.

Section 4.1 defines our research problem formally. In the following section,

4.2, we present our design to model the purchase prediction problem as a single-

stage classification of three classes. In section 4.3 we specify our approaches and

the characteristics of our proposed models. Lastly, in section 4.4 we present the

architectures used for our proposed models.

4.1 Formal problem statement

Let c(s) = {c1(s), ...,cn(s)(s)} be an array of items clicked during a user

session s with length n in a e-commerce website such that all s ∈ S are ordered

over time.

Consider that each session s contains a set of items Is clicked and Bs ⊆
Is denotes the set of items which have been bought in session s. Within each

item click ci assume that there is a set of records that describe it, such as click

timestamp, product category of the item clicked, the item id, the location of the

user, the item price, and any other features that describe the items clicked in the

platform.

The following function y(s) corresponds to the actual set of items Bs

bought in a session s defined as follow:
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y(s) =

Bs if purchase
∅ otherwise

(4.1)

Purchase problem function.

The sessions in S are divided into two sets: Sb which have at least one

clicked item being bought, and Snb which do not end in a transaction. We want to

classify elements of S as belonging to Sb or Snb. Moreover, if a session s results

in a transaction (i.e. s ∈ Sb), we want to find the Bs products bought. In short,

our task is to construct a model with a hypothesis h(s) such that h(s) ≈ y(s).

4.2 The single-stage classes

An intuitive way to solve the purchase prediction problem is to solve it

in two-stages, such as Romov [Romov et al., 2015] proposed. In that work, the

first model classifies if a given session is a buyer or a non-buyer session. Then,

the sessions classified as a buyer are used as input for the second model, which

predicts, for each item clicked in the session will be purchased or not.

An issue with this approach is that there is a need to create two models for

the problem. With more models, there is a greater amount of tunable parameters

and therefore, it takes more time and complexity to optimize them. Furthermore,

the two-stages approach filters sessions in the first stage and all wrongly filtered

sessions will have no chance to be evaluated in the second stage.

In general, the literature solves the problem with two different approaches.

The first consists of considering the whole session at once and thus first predicting

whether the session ends in a purchase, and then predicting which item was

bought among the clicked items. The second consists of creating session-item

pairs, which consist of a mix of global session and item click specific features,

and predicting, for each session-item pair from a buying session, if that specific

item will be purchased or not.

Our approach to solving the problem in a single-stage is to consider

session-item pairs as input, and then use these as input to predict three possible

classes for each item in a session:
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1. Sinn: If the item is not in a buyer-session.

2. Sibn: If the item is in a buyer-session but was not purchased.

3. Sibb: If the item is in a buyer-session and was purchased.

4.3 Single-stage siamese networks approaches

In real scenarios, our research problem contains extremely unbalanced

classes. For instance, in the RecSys dataset [Recsys, 2015], 89% of all inputs are of

the Sinn class, class Sibn is about 5.5%, and class Sibb is approximately 4.5%. This

imbalance makes the problem very difficult to solve as unprepared models may

show tendencies to predict class Sinn much more frequently. Siamese networks

can help solve this problem by comparing the fixed number of instances from

different classes based on their similarity, in which the network itself generates

an encoding (or an embedding) for the input, having the loss function based

on comparing these encodings. Since every triplet (or quartet, as will be shown

shortly) has a similar number of instances from each class in this scenario, the

imbalance in the original dataset should not affect the training of the method.

The Figure 16 shows an overview of the classification process of our

single-stage models. In it, we can observe three phases: Feature extraction (1),

Embedding generation (2), and classification (3). We will detail it in the next

paragraphs.

Figure 16 – Overview of the classification process for the single-stage model.
(Source: Own author)

• Feature extraction (1): In this first phase, we perform the extraction of the

two possible sets of session and item features we propose to use as input for
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our models in this dissertation, sequential-features and aggregated-features.

These two sets of features are discussed further in the 4.3.1 section.

• Embedding generation (2): In this second phase, the generation of em-

beddings by the Siamese networks takes place. First, an feature set is

chosen as the input of the Siamese network, either sequential-features

or aggregated-features. Given the type of input, we must choose the base

of the Siamese network (BaseNetwork) adapted to the type of input. If

we choose sequential-features we use SequentialFeaturesNetwork, if we

choose aggregated-features we use AggregatedFeaturesNetwork. These base

networks are detailed in section 4.4.

Next, we define the type of loss function to be used by the Siamese network,

which can be either triplet-loss or quartet-loss. The input type in this case

does not define the type of loss to use. Having defined the Siamese network

architecture, we train the model to generate and store the representation

(or embeddings) of our training session-items.

• Classification (3): In this last phase, the session-items embeddings are

loaded into a multi-layer perceptron (MLP) model to be trained and predict

the final classes Sinn, Sibn and Sibb. The MLP in this case can have a variation

with class-weights in its cost function to deal with the imbalance. The

definitions of the number of neurons and layers, as well as other details, are

described in the section 5.2.

In the next subsections, we will detail each phase of the single-stage model

classification. In the 4.3.1 section we describe the input types and how the fea-

tures were implemented. In section 4.3.2 we present how the two losses, quartet-

loss, and triplet-loss, work. Finally, in the 4.4 section we show the two variations

of BaseNetworks, SequentialFeaturesNetwork and AggregatedFeaturesNetwork

implemented for the Siamese network.

4.3.1 Input features

We propose two alternatives for modeling the input sessions, sequential-

features and aggregated-features. The next paragraphs describe those alterna-
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tives:

4.3.1.1 sequential-features inputs

These features describe a session as simply a sequence of clicks as well

as features from the considered item. They are comprised of ten features: tar-

get_item_id, item_id, category, day, hour, month, weekday, time between clicks

(dwelltime), item_purc_rank, item_clk_rank, item_prob and item_session_prob.

The first feature, target_item_id, represents which item_id the model should

consider in relation to the whole session. All other features are relative to all

clicks in the session.

target_item_id item_id category item_purc_rank item_prob item_session_prob item_clk_rank weekday day hour month weekday dwelltime
214536500 214536502 337 17.0 0.00 0.00 1625.0 1 8 11 5 16 0

214536500 337 0 0.00 0.00 502.0 1 8 11 5 16 128
214536506 337 3.0 0.04 0.16 62.0 1 8 11 5 16 64
214577561 337 0 0.00 0.00 132.0 1 8 11 5 16 12
214662742 337 13.0 0.00 0.00 3539.0 1 8 11 5 16 246

Table 4 – Example of a session described sequentialy by sequential-features for
section 4.3.1.1. We developed all features except for item_prob.

The features item_id and category represents which item and category are

clicked over time. The features day, hour, month and weekday of the click repre-

sent temporal trends for the raw-features, and the dwelltime is the difference in

seconds between two consecutives clicks.

The feature item_purc_rank represents the rank of items of all most pur-

chased items in respect of quantity. To develop this feature we calculated the

total amount that each item was purchased in the entire training database history.

Each item is labeled with a value that determines the ranking where the higher

this rank value is more often it is purchased.

The feature item_clk_rank implements the rank of an item concerning all

most clicked items. To create it, we calculated the total number of times each

item was clicked in the entire training database history. The ranking from this

feature is created similarly to item_purc_rank. Each item is labeled with a value

that determines the ranking where the higher this rank value more often it is

clicked in the dataset.

The feature item_prob implements a feature created by Myklatun [Myk-

latun et al., 2015], being the probability that an item will be purchased in the
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sessions that the item is clicked. That is, it is the total sessions in which the item

was purchased divided by the total sessions in which the item was clicked.

In addition, we developed a similar feature called item_session_prob,

which describes the probability of the item appearing in buyer-sessions. To

calculate this feature, we must have the total number of times a certain item is

in a buyer-session divided by the sessions in which it was clicked. The Table 4

shows an example of the mentioned raw features from a user session.

4.3.1.2 aggregated-features inputs

5 These features regard information from the whole session as well as

from a particular item are the same features from the second-stage developed by

Romov [Romov et al., 2015]. Romov’s method does not handle input sequentially

but tries to compile all session information at once. That is, all features are

calculated looking at the entire session, such as the total time of a certain item in

the session. Romov features are divided into two subgroups session-features (SF)

and session-item-features (SIF).

• session-features: The features describe the session as a whole, looking at

all items and categories at once. From these features we can list:

– Numerical time features for the timestamp of the first and last click

in the session. That is, the hour, month, minute, weekday, week of the

year, etc.

– Categorical time features for the timestamp the first and last click in

the session. For example, the concatenated string of the month, year,

and day the click occurred.

– Length of the session in seconds.

– Number of clicks, unique items, categories and item-category pairs in

the session.

– Top 10 items ids and top 5 categories by the number of clicks in the

session.

– Id of the first and last item clicked at least k = 1, 2, . . . , 6 times in the

session.
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Group Feature description Number/Type

session-
features

Numerical time features of the start/end of the session (month, day, hour, minute, second, etc.) 2 × 7 Num
Categorical time features of the start/end of the session
(month, day, month-day, month-day-hour, hour, minute, weekday 2 × 6 Categ

Length of the session in seconds 1 Num
Number of clicks, unique items, categories and item-category pairs in the session 4 Num
Top 10 items and top 5 categories by the number of clicks in the session 15 Categ
IDs of the first/last item clicked at least k = 1, 2, . . . , 6 times in the session 12 Categ
Vector of click numbers and total durations for 100 items and 50 categories that were
the most popular in the whole training set 150 × 2 Num

session
-item-
features

Item ID 1 Categ
Total and relative number of clicks in the session for the given item 2 Num
Numerical time features of the first/last click on the item (month, day, hour, minute,
second, etc.) 2 × 7 Num

Categorical time features of the first/last click on the item (month, day, month-day,
month-day-hour, hour, minute, weekday) 2 × 6 Categ

Number of seconds between the first and the last click on the item 1 Num
Total duration of the clicks on the item in the session and of all item’s categories seen
in the session 2 Num

Number of unique categories seen in the session for a given item 1 Num

Table 5 – Features engineered for the model for the section .

– Vector of click numbers and total duration for 100 items and 50 cate-

gories that were the most popular in the whole training set.

• session-item-features: The session-item-features describe more specific

characteristics of the item as a target. Given that, we can list:

– The item_id (this is the same from target_item_id in sequential-features).

– Total and relative number of clicks in the session for the given item.

– Numerical time features for the timestamp in start and click on the

item. That is, the hour, month, minute, weekday, week of the year, etc

from the timestamp in the given item.

– Categorical time features for the timestamp in start and click on the

item. For example, the concatenated string of the month, year, and day

the click on the given item.

– Number of seconds between the first and the last click on the item.

– Total duration of the clicks on the item in the session and of all item’s

categories pair seen in the session.

– Number of unique categories seen in the session for a given item.

The Table 5 summarizes session-features and session-item-features.
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4.3.2 Loss function

Our solutions may also deploy different loss functions, being either triplet-

loss or quartet-loss, a new loss function proposed in this dissertation. The

triplet-loss was discussed on Chapter 2. It’s a common loss function for siamese

networks developed by Schroff et al. [Schroff et al., 2015b]. The triplet-loss can

be easily adapted for our problem, by setting an anchor and positive input as

Sibb and negative input with the buyer classes as either Sibn and Sinn.

The quartet-loss is a variation of triplet-loss proposed in this dissertation.

Instead of only one negative example, we use two negatives. The quartet-loss re-

ceives quartets inputs containing anchor, positive, the first-negative, and second-

negative. For our problem, the positive and anchor are two instances of Sibb, the

first-negative is an instance of Sibn and the second-negative is an instance of Sinn.

Our preliminary experiments showed that this configuration for these classes

achieves better results. Using quartets the loss minimizes the distance between

the anchor and positive inputs whereas maximizing the distance between anchor

and first-negative and anchor to the second-negative.

We believe that it might be interesting for the model to differentiate the

negative classes Sibn and Sinn. Explicitly separating items of a non-buying session

from items of a buying session that were not purchased might help the model

identify specific characteristics of buying sessions and help it to differentiate

specific items when looking for item purchases. With this, we hope that the

quartet-loss separates the four instances in the latent space at once, so that it is

easier to identify each class.

The quartet-loss can be formulated as follows:

(Ia, Ip, I
1
n , I

2
n ) =max(Ó · dist(Ia, Ip)− Ô · dist(Ia, I1n )−Õ · dist(Ia, I2n ) +margin,0) (4.2)

Quartet-loss formula.

where the Ia, Ip, I1n and I2n represents anchor, positive, first-negative and

second-negative examples respectively. The dist(x,y) and margin are the same

function and parameter defined in triplet-loss in Fundamentals section 2.7.1 to
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select semi-hard samples. The Ó, Ô and Õ are weights created to better fine-tune

how the model perceives each class.

In some tasks, the negative classes may not have the same semantic value

and, therefore, may lead a siamese network encoding to focus on aspects of less

relevant classes. For this reason, the quartet-loss compresses the input from one

more negative class that will be used to differentiate one from another.

(a) triplet-loss

(b) quartet-loss

Figure 17 – Triplet-loss vs Quartet-loss. In triplet-loss we are separating only
one negative while in quartet-loss we are separating two negatives.
(Source: Adapted from Schroff et al. [2015a])

Depending on the problem, it might be more important to differentiate

some classes from others. Thus, it is also possible to use the weights Ó, Ô, and Õ

to find the best level of separation between the positive, the first-negative, and

second-negative. In our experiments in section 5.3 we present the configuration

used for these weights. Figure 17 shows a representation of the difference between

triplet-loss and quartets-loss. We can observe in the Figure how the loss works

for maximizing or minimizing the inputs.

4.3.3 Classification

After the feature extraction process, a straightforward model should easily

separate the three classes, since the Siamese network separates the features
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concerning the classes in the latent space. Our experiments showed that the

best classifier was an MLP neural network. The chosen configuration has 3

dense layers of 64 neurons and BatchNormalization to regularize the weights. To

optimize the weights we use the categorical cross-entropy loss in training.

Figure 18 – MLP classifier architecture. (Source: Own author)

In the beginning of the section 4.3 we commented that the MLP has a

variation on the class-weights technique for handling class imbalance. The class-

weights is applied in the categorical cross-entropy loss. For the class-weights, we

found a better configuration in the following parameters for each class: 1.0 for

Sinn, 3.03 for Sibn and 4.04 for Sibb. The Figure 18 shows the architecture of our

MLP classifier.

4.4 Base network architectures

In section 4.3 we discussed our approach and phases to develop the classi-

fication for our problem using the Base Network. In this section, we will show

the architectures used to create the mentioned Base Network.

Based on the two different representations of inputs (shown in section

4.3.1), we developed two Base Network architectures: SequentialFeaturesNetwork

and AggregatedFeaturesNetwork. The base model SequentialFeaturesNetwork

comprises an architecture made for sequential inputs. The base model Sequen-

tialFeaturesNetwork, along with our two possible loss functions, generate two

variations of our proposed models TCNQuartet, TCNTriplet. The other archi-

58



Figure 19 – Siamese network general architecture. BaseNetwork generates the
latent representation for each input, and loss is calculated to up-
date weights. The grey drawing represent the represents the fourth
BaseNetwork and Input for quartet-loss. (Source: Own author)

tectural base model AggregatedFeaturesNetwork integrates aggregated inputs

aggregated-features. From there we have two more variations of our proposals:

AGQuartet and AGTriplet.

As mentioned in the previous section, our Siamese network models can

contain triplets and quartets. Figure 19 shows a general siamese network archi-

tecture where models with triplet-loss have three BaseNetworks and models with

quartet-loss have four BaseNetworks. Next sections we present SequentialFea-

turesNetwork and AggregatedFeaturesNetwork BaseNetworks.

4.4.1 SequentialFeaturesNetwork

For the Siamese network for sequential-features we developed a BaseNet-

work called SequentialFeaturesNetwork. This network receives sequential-features

inputs described in section 4.3.1. These features receive a concatenation of

Fm,n and a target_i tem_id . The Fm,n is the features that represent clicks over

time (item_id, category, day, hour, month, weekday, dwelltime, item_purc_rank,
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item_clk_rank, item_prob and item_session_prob). The target_i tem_id is the

item_id that indicates the current item the model is observing. The input Fm,n is

passed to a layer called FeaturesEncodingLayer composed of embeddings for cat-

egorical inputs and dense networks for numeric inputs. Table 6 describes which

neural network is used to encode each feature and the total of the numbers of

neurons used. After the FeaturesEncondingLayer, the output is passed to a TCN

(Temporal Convolution Network [Oord et al., 2016]) to process the representation

as a sequential input with 64 neurons. To process the input sequentially, several

models were tested such as Transformers, GRU, LSTM, Graph-Neural-Networks,

but TCN was the one that represented the best results. We supress the results of

other variations for the sake of brevity.

Feature Encoding network Number of neurons
item_id embedding 100
category embedding 10
item_purc_rank dense 5
item_prob dense 5
item_session_prob embedding 5
item_clk_rank dense 5
weekday embedding 5
day embedding 10
hour embedding 5
month embedding 5
weekday embedding 5
target_item_id embedding 100

Table 6 – FeaturesEncodingLayer details. The FeaturesEncondingLayer is the
concatenation of multiples encodings networks.

After the TCN layer, we pass its output to a Bahdanau attention [Bahdanau

et al., 2014] layer to improve our network encoding. In addition, we pass the

output of attention to a dense network with 64 neurons conjugated with a batch

normalization layer. These two layers can be stacked N times. Finally, we have an

OutputLayer that can be a dense network with size EMB_SIZE = 64 or a dense

network with a softmax (or sigmoid) activation to predict classes. Likewise, the

target_i tem_id input is encoded by an embedding network and concatenated

with the final layers of the network. The Figure 20 summarizes our description.

The OutputLayer representation has two possible output options because
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Figure 20 – SequentialFeaturesNetwork architecture. (Source: Own author)

we will also make use of this base architecture to implement some of our base-

lines, as is shown in Chapter 5. For the siamese implementation, the Outputlayer

is a Dense network with output sized EMB_SIZE to generate latent represen-

tations with 64 output size, and for the baselines, the OutputLayer is a dense

network followed either by a softmax or sigmoid activation. The baselines in

single-stage have the OutputLayer with softmax activation and the baselines in

two-stage have sigmoid activation.

In short, our models that use sequential-features have two loss variations,

triplet or quartet (e.g TCNQuartet and TCNTriplet). These models use the Se-

quentialFeaturesNetwork architecture to generate the latent representation of

a session and a target item in the siamese network. These models have N = 2

DenseEncoders to generate the latent representation. In the Figure 19 we can ob-

serve that SequentialFeaturesNetwork is an implementation of the BaseNetwork.
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4.4.2 AggregatedFeaturesNetwork

Figure 21 – AggregatedFeaturesNetwork architecture. (Source: Own author)

The siamese network for aggregated-features works similarly to the sequential-

features siamese, however our input here is a single vector with 495 features, 51

of which are categorical. The aggregated-features are detailed in section 4.3.1.

The architecture splits the input into two vectors, one consisting of categor-

ical features FC
51x1 and the other of numerical features FN

444x1. Each feature of the

vector FC
51,1 is passed to a set of embeddings called CategoricalExtractorLayer, as

shown in the Figure 21. In this way, the output of the CategoricalExtractorLayer

is concatenated with the vector of numerical features FN
444x1.

To set the output size of the embeddings layers in CategoricalExtractor-

Layer we use the following logic: if the categorical input contains more than 100

unique values, the output will be 50 otherwise the size of embedding output will

be 10.

Thereafter, the concatenated output is passed through a dense network

layer with 128 neurons and batch normalization to regularize the model. These

two layers can be stacked N times. After this, the DenseEncoders are connected

to the OutputLayer. In the same way as the SequentialFeaturesNetwork the Out-
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putLayer contains two output options to both to implement the baselines (that

can be a dense network with softmax or sigmoid activation) and to implement

the siamese to generate latent representations with 64 output size (the Dense

with EMB_SIZE = 64).

For aggregated-features we developed two variations of siamese models

(e.g AGQuartet and AGTriplet) one with triplet loss and another with quartet-loss.

These models have N = 2 DenseEncoders to generate the latent representation to

a classifier model.
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5 Methodology and Experiments

This Chapter presents the evaluation methodology and results of our proposed

models compared with a previously proposed approach in the literature.

5.1 Dataset

In our experiments, we used the Recsys Challenge [Recsys, 2015] compe-

tition dataset from 2015. The company YOOCHOOSE provided a collection of

consumer data that contains around six months of click sessions from a retail

store in Europe. Each click session may or may not contain purchase clicks. To

protect users’ privacy and the retailer, the data was modified to conceal the

identity of users.

The dataset is divided into three files in csv format: clicks.dat, buys.dat,

and test.dat. The clicks.dat and buys.dat files contain data regarding the

same user sessions, the first containing only views and the second with the

purchased items in each session. The test.dat is similar to clicks.dat, with

just session clicks and no buying information.

The clicks.dat file has information on 33 million view clicks and 1,15

million lines of purchase. This consists of a total of 9,249,729 sessions, of which

5.8% (509,696) of the sessions have at least one purchased item (referred to as

a buyer-session). In clicks.dat file, only about 28% of the items present were

purchased at least once. The test file follows a similar distribution as clicks.dat,

containing a total of 2,184,173 non-buyer sessions and 128,259 buyer sessions,

e.g 5.8% of the total. Figure 22 demonstrates the session types distributions

(buyer and non-buyer session) and items purchasing distribution.

In the previous Chapter, we defined the classes to be used with our pro-

posed single-stage models. The major class is the Sinn which represents non-buyer

paired sessions-items, which represents 89% of the instances. The class Sibn rep-

resents 5.5% of session-items and finally the class Sibb has the lowest frequency

with just 4.5% of all instances of paired session-items.

Although session sizes range from 1 to 200, most of them are small. Ses-



(a) Buyer and non-buyer sessions distribution (b) Items purchasing distribution

Figure 22 – Session types distribution and Items purchasing distribution.
(Source: Own author)

Figure 23 – Cumulative session’s length. (Source: Own author)

sions up to size 10 are 80% of sessions, and up to 20 are 90%. Figure 23 shows a

cumulative sessions length percentage. An interesting feature in the dataset is

that the larger the session size, the greater the purchase probability, that is, the

buying rate. The Figure 24 shows this behavior.
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Figure 24 – Session sizes vs buying rate. (Source: Own author)

(a) Weekday (b) Hour

(c) Month (d) Week of the year

Figure 25 – Time features vs Buying rates. Weekdays are the days of the week,
such as Monday, Tuesday, Wednesday. Weeks of the year refers to
each of the 52 weeks in each year. (Source: Own author)

Temporal features are features that represent characteristics of time (e.g
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month of clicked item). They can describe relevant information regarding pur-

chasing behavior. For example, on days when a consumer receives their income

they might be more likely to make purchases. Another example may be that at the

weekends there may also be a greater probability of purchase than on working

days since the buyer will have more time to fulfill their wishes. Specific months

might have a larger volume of purchases than others, due to commemorative

dates such as Christmas and Valentine’s day. In our analysis at Figure 25, we can

see this trend.

Another interesting temporal feature is the time between clicks within a

session, or dwelltime. Dwelltime can tell you how important a product can be

depending on how long a user has been watching it. In our analysis in Figure 26,

we have grouped dwelltime into a window of 200 seconds (or 3.33 minutes) to

show the purchasing rate versus dwelltime.

Figure 26 – dwelltime (min) vs buying rate. (Source: Own author)

Another important feature to analyze is whether the number of items

purchased influences the purchase rate. Our intuition is that items that are fre-

quently bought are also more likely to be purchased in future sessions than items

that are rarely bought. From this idea, we can derive two features. A feature that

is based on the number of times an item was purchased, called item_purc_rank

and another on the number of times an item was clicked, called item_clk_rank.

We can create a relationship between these two features concerning the buying

rate. Figure 27 and Figure 28 show binned values from the features vs buying
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rate.

Figure 27 – Feature item_clk_rank vs buying rate. (Source: Own author)

Figure 28 – Feature item_purc_rank vs buying rate. (Source: Own author)

The category of a product has a great influence on purchase intention.

Some products might have a much higher demand than others. Figure 29 shows

the buying rate for the top 20 categories out of the 338 existing categories. From

the figure, you can observe the distribution seems to be very imbalanced and

seems a long tail distribution.
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Figure 29 – Categories vs Buying rate. (Source: Own author)

5.2 Methodology

To evaluate the impact of our proposed single-stage methods in identifying

buyer sessions and items, we compare them to some baselines. The baselines are

described in the next paragraphs. We use 90% of the YOOCHOOSE dataset as a

training set, 10% as validation, and the test.dat file as a test set.

The training of all methods occurred until the overfitting achievement and

best weights were saved regarding validation holdout. We halt the training after

the validation stops improving for about 50 epochs.

Romov presents in his paper and his code in GitHub [Romov, 2015] all

the features proposed, the classifier, a gradient boosting method, and an input

encoder called MatrixNet. Considering MatrixNet code was, unfortunately, not

available, we implemented an adaptation of his method, called RomovNN-T,

using a deep densely connected neural network to simulate the encoding of the

features. We train the two-stage models independently, considering both pur-

chase and non-purchase training sessions in the first stage and then considering

only purchase sessions in the second stage.

To validate our experiments we implemented four baseline approaches,

two using sequential-features and two of them using aggregated-features. The

models RomovNN-T and RomovNN-S use aggregated-features as input. We
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believe that RomovNN-T is the current state-of-the-art for finding the purchase

problem and we performed its implementation to compare it with our proposed

method. The models TCNBaseline-S and TCNBaseline-T were developed based

on our sequential-features and they were created to observe how well they

perform against our methods using the same features.

To identify the difficulties of implementing a single-stage versus a two-

stage model, we implemented the version of RomovNN-T as a single-stage ap-

proach, which we called RomovNN-S. As we also want to know the impact of our

features and we want to investigate the difficulties of implementing single-stage

versus two-stage, we implement the mentioned models: TCNBaseline-S and

TCNBaseline-T. The single-stage baseline models can highlight the efficiency of

treating the unbalanced class concerning our proposed Siamese network models.

Next paragraphs describe our baselines:

RomovNN-T: This model is a simple neural network using two-stage algo-

rithms to solve the purchasing intention problem. This implementation uses all

features from [Romov et al., 2015] and runs on top of a deep neural network. As

our proposed methods, this baseline makes use of AggregatedFeaturesNetwork

as a base feature extractor, for both the first and second stage models. This base-

line has the same parameters of AggregatedFeaturesNetwork, but, with N = 2

layers for the first-stage and N = 1 for the second-stage. After the Aggregated-

FeaturesNetwork both models have the OutputLayer layer with one neuron with

sigmoid activation. In the first stage, the model uses session-features (SF) and

for the second stage the second model uses session-item-features (SIF). Both are

described in Table 5. To deal with the imbalance problem, the first stage model

uses a focal loss [Lin et al., 2017] with Adam optimizer to train the model and

penalize the negative class. In the second stage, we use a binary cross-entropy

(BCE) loss with the Adam optimizer to train the model.

RomovNN-S: A single-stage neural network developed by us with Romov

features based on AggregatedFeaturesNetwork, with same parameters, but with

N = 1 number of layers, and receives aggregated-features as input. This imple-

mentation is quite similar to RomovNN-T second stage but instead of having the

OutputLayer with one neuron, the model has the softmax activation and three
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neurons to output class probabilities to represent Sinn, Sibn and Sibb. To deal

with the imbalance problem we applied a random under-sampling (RUS) method

in the majority class Sinn. We decided not to present the focal-loss based results

since undersampling had better results than focal-loss for this model. Also, we

use sparse categorical cross-entropy (SCCE) with Adam optimizer to train the

model.

TCNBaseline-T: A two-stage neural network proposed by us that uses

sequential-features as input and has the SequentialFeaturesNetwork as base

feature extractor, with same parameters although with N = 2. For both stages,

after the SequentialFeaturesNetwork, the baseline has the OutputLayer with

a single sigmoid activation. To deal with the imbalance problem in the first

stage we applied a focal loss [Lin et al., 2017] with Adam optimizer to train the

model. In the second-stage, the binary cross-entropy (BCE) loss with the Adam

optimizer is used for training. The model solves the problem in the same way as

RomovNN-T, first finding purchasing sessions and after finding items that were

bought in that sessions.

TCNBaseline-S: A single-stage network proposed by us that uses sequential-

features as input, with SequentialFeaturesNetwork as a base extractor, with same

parameters but with N = 2 dense encoder layers. After the SequentialFeatures-

Network, the baseline has the OutputLayer with softmax and three neurons to

represent probabilities class of Sinn, Sibn and Sibb. To train model we used a

sparse categorical cross-entropy (SCCE) loss with Adam optimizer. To deal with

the imbalance problem in we used a random under-sampling (RUS) to balance

classes in quantity. The Table 7 shows more specific characteristics described in

these last paragraphs for each baseline presented.

Model Type Input BaseNetwork N Loss OutputLayer Imb. treat

RomovNN-T two-stage
1st: session-features
2nd: session-item-features SIFN

1st: N = 2
2nd: N = 1

1st: Focal-loss
2nd: BCE Both: Sigmoid

1st: Focal-loss
2nd: None

TCNBaseline-T two-stage sequential-features SFN Both: N = 2
1st: Focal-loss
2nd: BCE Both: Sigmoid

1st: Focal-loss
2nd: None

RomovNN-S single-stage aggregated-features SIFN N = 1 SCCE Softmax RUS
TCNBaseline-S single-stage sequential-features SFN N = 2 SCCE Softmax RUS

Table 7 – Baselines configurations. SCCE: sparse-categorical-cross-entropy, BCE:
binary-cross-entropy. RUS, random under-sampling. 1st: first-model,
2nd: second-model, Both: for both first and second stages. SIFN: Aggre-
gatedFeaturesNetwork, SFN: SequentialFeaturesNetwork.

71



As mentioned in the last Chapter, we want to separate the three classes

Sinn, Sibn and Sibb. Also, we know Sinn is much more voluminous compared to

others and can lead to biases in model training. Thus, we proposed models based

on siamese networks to bypass this impact, as shown in Chapter 4. As we defined

earlier, we have two types of models: Siamese-Triplet and Siamese-Quartet.

The triplet-loss is composed of three components: anchor Ia, positive Ip,

and negative In. In this particular case, the anchor is represented by any pair

session-item Sibb, and the positive, by some other example of another Sibb.

For the creation of triplets, we consider:

• As an anchor Ia any random item that was purchased in a session, Sibb.

• As an positive element, also Ip any random item that was purchased in a

session, Sibb.

• As a negative element, two inputs are possible: one is an item that is not

belong to a buyer session mentioned as Sinn and another is an item that is

belong to a buyer session but was not purchased within it, the Sibn.

Our models that use quartet-loss solve the problem in a similar way to

triplet-loss. As mentioned in the previous Chapter, we have the addition of

one more negative, therefore, obtaining four elements: Ia, Ip, I1n and I2n. The

explanation of how the quartet-loss works is described in Chapter 4.

The quartet-loss has the advantage that it doesn’t treat the two classes Sibn
and Sinn as a single negative element, instead of treating them as two distinct

classes. Differently from Siamese-Triplet, our Siamese-Quartet proposals contain

two negatives to avoid that alternating between two classes. Consequently, we

determined the following settings:

• As an anchor Ia any random item that was purchased in a session, Sibb

• As an positive element, also Ip any random item that was purchased in a

session, Sibb.

• As first-negative element I1n any random item which was not is from a buyer

session, or Sinn.
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• As second-negative element I2n any random item that is from a buyer session

but was not purchased within it, or Sibn.

To train the siamese network models, we used all buyer session-items

to generate the training triplets (or quartets), leading to about one million

(1,000,000) paired session-items elements. This configuration is also maintained

to generate triplets (or quartets) for validation, where we used about one hundred

thousand (100,000) paired session-items.

After the generation of the siamese network inputs in the feature extraction

phase, they are used to generate embedding representations, and then a multi-

layer perceptron (MLP) model is trained to generate the classification based on

those representations. The MLP model is trained with the Adam optimizer, with

a learning rate of 10−3 and sparse categorical crossentropy loss function. This

model is trained until overfitting, and the weights with the best results (e.g with

the lowest loss) in the validation set are saved. For our stop condition, training is

paused after the validation loss shows no improvement after at least 30 epochs.

The set of weights with the smallest error obtained is saved in order to evaluate

the model on test set.

As said about the models proposed in the previous Chapter, they are also

divided by the input feature types: sequential-features and aggregated-features.

Models using sequential-features as input are based on the base neural network

SequentialFeaturesNetwork. This base network process input a time series with

a fixed-length input. To handle the sessions of varying sizes, we decided to pad

and truncate the inputs to size 20. We believe that 20 is an adequate size as it

represents 90% of the existing sessions and showed the best results in preliminary

experiments.

5.2.1 Model naming

We name the models according to their characteristics. That is, we name

it according to the usage of the BaseNetwork type, SequentialFeaturesNetwork

or AggregatedFeaturesNetwork, (which consequently selects the input type,

sequential-features and aggregated-features), the type of loss used (triplet-loss

or quartet-loss), and whether or not the MLP will have class-weights. In Figure
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30 shows a diagram that demonstrates our model naming according to their

characteristic. In this figure, we can verify that the model TCNQuartet, for

example, contains input of type sequential-features, with siamese network with

BaseNetwork SequentialFeaturesNetwork with quartet-loss and without class-

weights in the model MLP. We can also check that we have its variation with

class-weights in the final MLP model named TCNQuartet-CW.

Figure 30 – Proposed models naming diagram.

For the baselines, we did the same. But for baselines, just the name demon-

strates the type of BaseNetwork used and whether the model is single-stage

or two-stage. In Figure 31 you can observe a diagram that express our base-

lines naming according to the characteristic. For example, the prefix ’TCN’ in

TCNBaseline-T, indicates that the BaseNetwork used is SequentialFeaturesNet-

work, and the suffix ’T’ indicates that the model is two-stage.

74



Figure 31 – Baseline naming diagram.

5.2.2 Hyperarameter configuration

The selection of hyperparameters for both the baseline and the proposed

models was designed through multiple trial and error processes. We used the

Adam optimizer with 10−3 as a learning rate with all methods. To avoid overfit-

ting, all models presented in this work applied BatchNormalization to regularize

weights as shown in the architectures presented in the previous Chapter.

As defined in Chapter 4 we have to define some important parameters for

both quartet-loss and triplet-loss: Ó, Ô, Õ and margin. The larger the parameters

Ô, Ó and Õ, the more importance the loss function gives to classes Sinn, Sibn, Sibb,

respectively. The following Table 8 summary the best parameters found for our

models.

Model margin alpha beta gamma
TCNQuartet 0.5 1 0.5 0.7
TCNTriplet 0.1 na. na. na.
AGQuartet 0.7 1 0.5 0.7
AGTriplet 0.5 na. na. na.

Table 8 – Model proposals parameters for siamese networks. The "na" stands for
"not applicable"
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5.2.3 Model evaluation

In our problem, the classes are known to be very unbalanced, with a

much larger number of non-buyer sessions. Therefore, it’s necessary to select the

comparison metrics meticulously.

We know that in an e-commerce system, finding the greatest amount of

buyers is more important than computing the probability of purchase assertively.

This means that the cost of having a false-positive buyer (it was a non-buyer but

the model predicted it to be a buyer section) is low in comparison to missing a

potential buyer session. Thus, in our case, it is more important to have a higher

recall in the buyer classes than high precision. To simulate the model action in

an e-commerce event we will use the metrics, precision, recall, f1-score (macro),

and confusion matrices.

5.2.3.1 Simulating an online evaluation

In real e-commerce environments, user click sessions are not readily given

in full as in the Recsys database. As the user clicks items, the set of clicks

available as features for predicting increases, and the methods class predictions

continuously increase. To verify how well our models would fit into online

environments, where the session grows while the model is continuously trying

to predict, we developed two metrics inspired by mean reciprocal rank (MRR)

and mean rank (MR).

These metrics attempt to answer the following questions:

1. What is the lowest number of clicks that a method needs to correctly classify

a purchase session?

2. What is the fewest number of clicks a method needs to correctly predict a

purchased item?

Let S = {c1,c2, ...,cN} be a session of size N, and S ′ = {S1,S2, ...,SN} the all

subsessions of S such that Si ⊆ S and Si ∈ S where Si is a subsession composed

by clicks from initial position 1 to position i . The Smallest number of clicks (SNC)

indicates the smallest number of clicks needed to find the purchase. Considering

the S ′ subsections, for example, assuming that a purchase is made in the click c3

76



and the model needs 3 clicks to find the purchase then the SNC will be 3. We also

developed RSNC which is the inverse of SNC to penalize sessions that the model

takes to identify buyer-session or a purchased item. The SNC treats penalties

equally while RSNC treats larger penalties as the session grows. Therefore, we

can calculate the mean of SNC, called Mean of smallest number of clicks (MSNC)

and the mean of RSNC, called Mean of reciprocal smallest number of clicks

(MRSNC). Let ST the set of all sessions clicks, we can mathematically define

these metrics as:

MSNC =
1
|ST |

|ST |¼
i=1

SNC i

and

MRSNC =
1
|ST |

|ST |¼
i=1

RSNC i

where

SNC(x) =

length(x) if purchase

0 otherwise

and

RSNC(x) =

1/ length(x) if purchase

length(x) + 1 otherwise

Note that when a purchase is not found in all sub-sessions, SNC penalizes

it with zero, whereas RSNC penalizes with the session size plus one. It is im-

portant to note that we do this evaluation for both common sessions and paired

session-items.

Through these metrics, we will have an understanding of how the model

behaves in online systems, where predictions must occur as the user interacts

with the environment. The higher the value of MRSNC, the quicker the model

predicts purchase classes. For the MSNC metric the logic is the opposite, the

smaller, the quicker.
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5.3 Experimental results

In this section, we present our results in four parts. First, we show overall

results for the proposed models. Then we describe recall levels visually according

to session lengths. Then, we show the results of a simulated online evaluation.

And finally, we present a visual plotting of our embeddings generated by siamese

networks.

5.3.1 Overall results

To evaluate our overall results, we evaluated the following metrics f1-score

(macro version), precision, recall, and confusion matrix. From the f1-score metric,

we can obtain the general performance of the models concerning the classes.

However, the f1-score can generate a false impression regarding minority classes

Sibn and Sibb if the model has its predictions mostly in the class Sinn. For this

reason, we have to observe the trade-off between precision and recall metrics for

different classes.

By analyzing precision, we can evaluate the quality of the predictions, and

from recall levels, we can judge how good is the model at finding the correct

items. For this research problem, it is much more interesting to evaluate the

recall metric, since it is much more important in e-commerce systems to find

the potential purchasing sessions than to have high precision in this decision.

This means that the cost of detecting non-buyer-sessions as buyer-sessions (i.e.

the false-positives) is much lower than detecting buyer-sessions as non-buyer-

sessions (i.e the false-negatives). Therefore, it is more advantageous for retail

stores to have a higher number of false-positives and a low number of false-

negatives because every time stores miss a potential buyer-session, they miss

opportunities to use methods that are more focused on sessions that will indeed

buy products and are not only "window shopping".

We know that most instances are of the Sinn class and that most models

would be able to have a high recall for this class. Therefore, what we should

consider is the recall for the purchase classes Sibn and Sibb. The purchase classes

are harder to find and are the classes of interest for purchase prediction.

Another interesting metric for unbalanced problems is the confusion
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matrix. From there, it is possible to identify the summary of predictions for

each class. Therefore, it can identify if they have focused on having high preci-

sion/recall in the most frequent class.

The Table 9 shows overall results for f1-score metric. The F1 column

refers to the overall f1-score in its macro version. The columns F1_Sinn, F1_Sibn,

F1_Sibb refer to the separate f1-scores of the classes Sinn, Sibn and Sibb. The

Table 10 show overall results for precision and recall metrics. Th. The columns

PR_Sinn, PR_Sibn, PR_Sibb represent the precision metric of the classes Sinn,

Sibn and Sibb respectively. Finally, the columns REC_Sinn, REC_Sibn, REC_Sibb
describe the recall metric of the Sinn, Sibn and Sibb classes respectively.

Model F1 F1_Sinn F1_Sibn F1_Sibb
TCNBaseline-T 0.48 0.93 0.29 0.20
RomovNN-T 0.50 0.91 0.32 0.26
TCNBaseline-S 0.45 0.91 0.24 0.20
RomovNN-S 0.44 0.83 0.27 0.21
AGQuartet 0.50 0.91 0.30 0.27
AGQuartet-CW 0.42 0.80 0.25 0.22
AGTriplet 0.47 0.92 0.29 0.20
AGTriplet-CW 0.41 0.79 0.25 0.20
TCNQuartet 0.45 0.88 0.25 0.24
TCNQuartet-CW 0.40 0.79 0.21 0.21
TCNTriplet 0.48 0.91 0.29 0.25
TCNTriplet-CW 0.40 0.77 0.24 0.18

Table 9 – F1-score results for our baseline and proposed models. The first four
models in the first part of the divider are our baselines.

The Table 9 shows the results for the f1-score of the models presented.

From the table, we observed that the model AGQuartet and RomovNN-T were

tied concerning the overall f1-score, reaching 0.50. It is worth mentioning that

the general metric can be misleading, as it also encompasses the class with the

highest quantity Sinn. Regarding the metric F1_Sinn the highest values were

obtained by the models TCNBaseline-T and AGTriplet. This may have occurred

because these models do not treat the minority class differently, making the

F1_Sinn metric to be higher.

Regarding the F1_Sibn metric, the model RomovNN-T obtained the highest

score, in second place was our model AGQuartet. For the F1_Sibb metric our
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model AGQuartet achieved 1 percent higher than the baseline RomovNN-T. The

models TCNQuartet and TCNTriplet, achieved the similar results as RomovNN-T

with 0.24 and 0.25, respectively. The results achieved by the AGQuartet model

can be explained by our quartet-loss, which better separates each class, and also

by the effectiveness of the aggregated-features that can better describe the raw

features for our problem.

Model PR_Sinn PR_Sibn PR_Sibb REC_Sinn REC_Sibn REC_Sibb
TCNBaseline-T 0.94 0.25 0.21 0.92 0.34 0.21
RomovNN-T 0.96 0.23 0.20 0.87 0.49 0.36
TCNBaseline-S 0.94 0.19 0.16 0.87 0.35 0.26
RomovNN-S 0.97 0.17 0.14 0.72 0.61 0.49
AGQuartet 0.95 0.24 0.21 0.88 0.41 0.38
AGQuartet-CW 0.97 0.15 0.14 0.68 0.66 0.56
AGTriplet 0.94 0.23 0.21 0.91 0.40 0.20
AGTriplet-CW 0.97 0.16 0.12 0.66 0.60 0.60
TCNQuartet 0.96 0.18 0.16 0.81 0.40 0.46
TCNQuartet-CW 0.97 0.14 0.12 0.67 0.51 0.59
TCNTriplet 0.95 0.22 0.21 0.88 0.43 0.31
TCNTriplet-CW 0.97 0.15 0.11 0.64 0.58 0.63

Table 10 – Precision and recall results for our baseline and proposed models. The
first four models in the first part of the divider are our baselines.

The Table 10 extends the results for the presented models, showing the

precision and recall of each class. This Table shows that the models that showed

better F1 results in the previous table, such as AGQuartet, RomovNN-T and TC-

NTriplet, were better in overall class precision, but not in the recall. Interestingly,

the RomovNN-S model obtained better recall for Sibn and Sibb than the baseline

RomovNN-T. This may be because single-stage models can help to reduce the

information loss that exists in the two-stage model. In two-stage models, you

must use the output of the first model to generate the output of the class of the

second model.
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Figure 32 – Recall metrics for best models that were outstanding in Sibn and Sibb.
(Source: Own author)

Another interesting fact is that all models with class-weights (AGQuartet-

CW, AGTriplet-CW, TCNQuartet-CW, TCNTriplet-CW) were good overall in

both recall for Sibn and Sibb, although they are worse in precision metrics. The

model AGQuartet-CW found the best recall for Sibn with 0.66 and the model

TCNQuartet-CW found the best recall for Sibb with 0.61 points. This was ex-

pected since models with class-weights force prediction on classes Sibn and

Sibb.

As our interest metric is recall and interest classes are purchase classes

Sibn and Sibb, we generated a Figure 32 for the models that excelled the most in

this scenario. Note that we also added a REC_AVG metric which is the average

of the two recalls (micro). Observing the REC_AVG metric, the AGQuartet-CW

model was better than all the other models. This possibly shows that the quartet-

loss models can generate better separation spaces than the triplet-loss ones for

aggregated-features.
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Figure 33 – Confusion matrices for the presented models. The lighter the cell
color, the higher the score. (Source: Own author)

One way to explore more deeply the predictions and accuracy of the

models is through the confusion matrix. The Figure 33 shows the confusion

matrices for the models presented. Note that the lighter the cell, the higher the

score. Also, the lighter the main diagonal cells of the confusion matrix, the better
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the model.

We can see that the two-stage models RomovNN-T and TCNBaseline-T

predicted the classes Sinn and the purchase class Sibn in their majority. From the

prediction vector for the class Sinn, it is possible to observe that the two-stage

models predicted many purchase classes as a non-purchase class. This behavior

also happens in single-stage models where class-weights are not applied. For

instance, in models AGQuartet and AGTriplet, there is a high hit rate in the class

Sinn , but there is a high occurrence of wrong predictions of predictions of the

class Sinn as Sibn and Sibb purchase classes.

In the models with class-weights techniques, we have an interesting behav-

ior. In the models AGQuartet-CW, for example, there was a high rate of correct

predictions in the interest classes Sibn and Sibb, although with larger errors in

the non-buyer class Sinn.

5.3.2 Recall metric by sessions lengths

Another way to look at the impact of model predictions is to evaluate

metrics by session sizes. Looking at how models evaluate session size can help

inform which models take advantage of more clicked item information for their

predictions. As mentioned in the last subsections, the recall metric is the most

interesting for our context, as we want are more interested in maximizing true

positives than to minimize false positives, especially in our interest classes.

Figure 34 shows recalls by session sizes for baseline models. Model RomovNN-T

seems to get the most stable results, getting better results on Sibb in relation to

others baselines. Also, the RomovNN-S obtained an interesting result for a higher

recall for the purchase classes Sibn and Sibb in small sessions. The recall for Sibb
appears to be the most difficult to find compared to baselines. The baseline

models with TCN (TCNBaseline-T and TCNBaseline-S) seem to lack stability

against classes Sibn and Sibb as sessions grow.
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(a) RomovNN-T (b) RomovNN-S

(c) TCNBaseline-T (d) TCNBaseline-S

Figure 34 – Recall by session lengths for baseline models. (Source: Own author)

The Figures 35 and 36 show recalls by session sizes for our proposed mod-

els. Considering the Figure 35 we can understand that models with class-weights

AGTriplet-CW and AGQuartet-CW delivered greater recall for purchase classes

Sibn, Sibb as sessions lengths grow, especially between smaller sessions (size less

than 5). This situation corresponds with these models, as the class-weights make

the model give a bigger emphasis to correct predictions in the purchase classes.

Another interesting point is that the model AGQuartet compared to AGTriplet is

more stable in all classes and also obtained better results for the class Sibb. This

possibly shows a superiority of the quartet-loss for this class than the triplet-loss

for this situation.

84



(a) AGTriplet (b) AGTriplet-CW

(c) AGQuartet (d) AGQuartet-CW

Figure 35 – Recall by session lengths for proposed models which uses aggregated-
features. (Source: Own author)

In addition, the Siamese network also helped in the separation of classes, as

the single-stage models that were not helped by the Siamese network (TCNBaseline-

S, RomovNN-S), performed worse. Despite these positive results, these models

also lose out in recall for the Sinn non-purchase class as session sizes increase.

85



(a) TCNQuartet (b) TCNQuartet-CW

(c) TCNTriplet (d) TCNTriplet-CW

Figure 36 – Recall by session lengths for proposed models which uses sequential-
features. (Source: Own author)

In the Figure 36 we see the models for sequential-features. Generally

speaking, the models learned to classify more purchase classes as the size of the

sessions grew. Something important to note is that the TCNQuartet model had a

performance similar to the AGQuartet with balanced recall between the classes.

Also, the AGQuartet model as well as the AGQuartet model also performed

better in the Sibb class. This could also be because quartet-loss is possibly better

than triplet-loss to find the recall in this class.

Another interesting fact, TCN models with class-weights, TCNTriplet-CW

and TCNQuartet-CW, had stable recall for class Sibb at all session sizes, even

for small sessions. This can be useful for finding potential items that will be

purchased for most sessions, as most user sessions are small.
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5.3.3 Simulated online evaluation

As shown in the evaluation subsection, the metrics MSNC and MRSNC are

two metrics that describe how quickly models find a purchased class as the click

session grows. From them, it is possible to extract how a model would behave in

online systems.

Model MRSNC1 MRSNC2
TCNBaseline-T 0.029 0.026
RomovNN-T 0.090 0.059
TCNBaseline-S 0.149 0.059
RomovNN-S 0.290 0.112
AGQuartet 0.132 0.058
AGQuartet-CW 0.306 0.121
AGTriplet 0.070 0.032
AGTriplet-CW 0.322 0.132
TCNQuartet 0.162 0.085
TCNQuartet-CW 0.389 0.154
TCNTriplet 0.091 0.046
TCNTriplet-CW 0.354 0.153

Table 11 – Results for MRSNC for presented models. The higher the metric value,
the better the result.

Model MSNC1 MSNC2
TCNBaseline-T 5.395 12.461
RomovNN-T 4.568 11.808
TCNBaseline-S 4.239 12.727
RomovNN-S 3.510 11.824
AGQuartet 4.729 12.275
AGQuartet-CW 3.291 11.411
AGTriplet 5.369 12.913
AGTriplet-CW 3.200 11.108
TCNQuartet 3.802 11.257
TCNQuartet-CW 2.810 10.570
TCNTriplet 4.507 12.483
TCNTriplet-CW 2.894 10.783

Table 12 – Results for MSNC for presented models. The lower the metric value,
the better the result.

Table 11 and Table 12 shows the results for all presented models. The

columns MRSNC1 and MSNC1 describe MRSNC and MSNC metrics to find

87



whether a session is a purchase (either Sibn or Sibb). The columns MRSNC2

and MSNC2 describe MRSNC and MSNC metrics to find the specific purchased

item(s), that is the Sibb class. For the metric MSNC the lower the value the better

the model, for the metric MRSNC the higher the value the better the model.

Surprisingly, our models with class-weights achieved great MRSNC1 and

MSNC1 metrics, outperforming the baseline RomovNN-S, as expected, and our

vanilla (i.e. without class weights) models. Overall metrics for columns MRSNC2

and MSNC2 are low, possibly because finding a specific purchase item Sibb is a

much more difficult task. Moreover, our models with class-weights also achieve

the best results overall, highlighting the TCNQuartet-CW model as the one

with the strongest results in these metrics. This is possible because single-stage

models work better than two-stage models for the Sibb class and because of the

superiority of our quartet-loss over triplet-loss. The class-weights technique also

has a significant impact, helping the simpler models to predict purchase classes

more quickly, which improves these metrics.

Model MRSNC1_NB MSNC1_NB
TCNBaseline-T 0.003 3.636
RomovNN-T 0.020 4.103
TCNBaseline-S 0.037 3.379
RomovNN-S 0.102 3.564
AGQuartet 0.025 4.017
AGQuartet-CW 0.110 3.470
AGTriplet 0.013 4.124
AGTriplet-CW 0.127 3.392
TCNQuartet 0.050 3.237
TCNQuartet-CW 0.187 2.763
TCNTriplet 0.017 3.472
TCNTriplet-CW 0.137 2.907

Table 13 – Results for MRSNC and MSNC for non-buyer-sessions. For MRSNC
the lower, the better the result. For MSNC the higher, the better the
result.

Finally, Table 13 represents the metrics MRSNC and MSNC with regards

to non-purchase-sessions. The columns MRSNC1_NB and MSNC1_NB describe

MRSNC and MSNC metrics, respectively. These last metrics can tell us how much

the model confuses the non-purchase session with a purchase session, as the num-
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ber of clicks in the session grows. For the MRSNC metric, the smaller the better,

because the closer to 1, the more the model wrongly predicts the non-purchase

session as a purchase-session. The MSNC metric shows the average position

at which the model mispredicts the non-purchase-session as purchase-session.

That is, the bigger MSNC the better the model is, as it takes longer to consider

non-purchase-sessions as purchase-sessions. As expected, all models that find

more purchase classes performed worse in this table. The model with the best

MRSNC1_NB was TCNBaseline-T and the model with the best MSNC1_NB was

the model AGTriplet. These two results make sense, as the model TCNBaseline-T

is two-stage, which makes the model more conservative in predicting purchase

class. The AGTriplet model is also expected to have obtained better results for

this metric, as it also does not contain the class-weights technique.

5.3.4 Embeddings visualization

Before generating the simple classifier with class-weights, our models

perform feature extraction through the Siamese network to generate embedding

representations of the sessions/session items. In this section, we will show the

visualization of the encodings generated by our models using the Principal

Component Analysis (PCA) method. Our visualizations were generated with

opacity equal to 0.20 to facilitate the visualization of the overlaps. Also, we did

undersampling in our dataset to balance classes, with 2000 elements in each

class. As shown at the beginning of the Chapter, we know that the smaller the

Section the more difficult it is to classify them. For this reason, we show the

plots for small sessions (less than five clicks) and large-sessions (greater than five

clicks). Sessions in sizes up to five represent about 60% of the database.

The Figure 37 shows the plots for the models TCNQuartet and TCNTriplet.

From the plot of TCNQuartet it is possible to see a separation between the

classes for both small-sessions and large-sessions. However, there doesn’t seem

to be much difference in quality between small-sessions and large-sessions for

TCNQuartet. For TCNTriplet, the embeddings appear to be visually different in

each figure. In large-sessions it is possible to see the separation better than in

small-sessions.
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(a) TCNQuartet for small-sessions (b) TCNQuartet for large-sessions

(c) TCNTriplet for small-sessions (d) TCNTriplet for large-sessions

Figure 37 – Embeddings visualizations for TCNQuartet and TCNTriplet for
small and large-sessions. (Source: Own author)

Figure 38 shows the plots for models AGQuartet and AGTriplet. From the

embeddings of AGQuartet, we can see that in small-sessions the clusters seem

to have more overlap than in large-sessions. This may explain why the model

misclassifies small-sessions more. Large-session embeddings for AGQuartet seem

to be more identifiable in the latent space than AGTriplet . In AGTriplet in both

situations, it can be observed that the separation of classes happened, even with

a lot of overlapping. Also, not much difference was observed in the visualization

of small-sessions for large-sessions.

The overlapping of the classes in the embeddings can explain the difficulty

of the problem in separating the classes. Many sessions can appear to be purchase-
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(a) AGQuartet for small-sessions (b) AGQuartet for large-sessions

(c) AGTriplet for small-sessions (d) AGTriplet for large-sessions

Figure 38 – Embeddings visualizations for AGQuartet and AGTriplet for small
and large-sessions. (Source: Own author)

sessions even though with a low number of clicks. Even with this difficulty, the

classes can still be seen as being separated to better represent this, we made

a visualization through the k-means algorithm, to detect the easiest examples

to be classified and therefore to be visualized in space. With this, we merge

well-classified (which is around the k-means centroids) examples setting alpha

equal to 1 in the image and with random examples with alpha 0.40. In this way,

we can highlight the separations and observe in which positions the overlaps

to occur more with the well-classified examples. Figure 39 shows the result of

this representation created. From there, it is possible to verify with better quality

the examples separated by quartet-loss or triplet-loss. From this image, it is also
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(a) AGQuartet (b) AGTriplet

(c) TCNQuartet (d) TCNTriplet

Figure 39 – Embeddings visualizations for proposed models with K-means.
(Source: Own author)

Model Silhouette Score
AGQuartet 0.015
AGTriplet 0.004
TCNQuartet 0.010
TCNTriplet 0.011

Table 14 – Results for Silhouette Coefficient for presented models.

possible to verify that there is a lot of confusion between the Sibb and Sinn classes.

About the Silhouette score, as can be seen in table 14, it can be seen that

AGQuartet achieved better results in this metric, which can be a consistent

explanation of the performance of this method concerning the other evaluated.

For our experiments, we use the Silhouette method with Euclidean dis-
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tance. In the Table 14 we can see that the best value was for the model AGQuartet.

This may explain why this model did better in recall metrics.

5.4 Final considerations

In this Chapter, we presented our experimental results of our proposed

models. We propose models based on input type sequential-features and aggregated-

features. Inputs of type sequential-features are more generic and describe data

over time. Inputs of type aggregated-features are aggregated and handcrafted.

Our proposed models achieved good results using both kinds of features, all

while using a single-stage prediction model. In particular, our model AGQuartet

delivered good results for f1-macro and recall for purchase classes Sibn and Sibb
against the two-stage baseline RomovNN-T . A model that also gained promi-

nence was the TCNQuartet-CW which, through our metrics MSNC and MRSNC,

showed that they find purchase sessions faster than the baseline RomovNN-S.

From these results, the superiority of our proposed quartet-loss over the

triplet-loss is evident. This is reinforced also through the embedding visualiza-

tions shown, classification metrics (Recall and F1-score), and through the Silhou-

ette Coefficient, which proved to be better in the quartet-loss model AGQuartet.

Furthermore, we believe that the session embeddings generated by the siamese

networks can further be explored in other tasks related to user sessions in e-

commerce environments.
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6 Conclusions and Future work

In this section, we show the conclusions of our entire research project, the

limitations of our work, and future projects that can be worked on.

6.1 Conclusions

In this work, we introduced several new methods to solve the item pur-

chase prediction problem in a single stage. Through our experiments, we showed

that solving the problem in a single stage is not reasonably easy, however, we

managed to achieve better results than the baselines implemented even with two

stages. Our proposed models achieved better results for finding buyer sessions

and identifying purchased items. Because of class imbalance, the baseline models

focused on their predictions of the non-purchasing class. And even with the

imbalance problem, our models found a greater recall for the purchase classes.

In addition to presenting the impact of using the input representation

based on the work of Romov [Romov et al., 2015] over our models, we also

show how to represent sessions using sequential networks. We also show the

influence of using different weights for minority classes in the classification

after the extraction of features made by Siamese networks. Furthermore, we did

extensive experimentation with all these possible variations and their effects on

the final result.

Furthermore, we proposed the implementation of a new loss function, the

quartet-loss, for Siamese networks. The quartet-loss proved to be more effective

for our problem, as it adds one more negative than the triplet-loss. The quartet-

loss seems more compatible with our problem since it avoids treating the two

negative classes as the same, as occurs in triplet-loss. Using quartet-loss we

observed better results concerning the triplet-loss.

Another important contribution in this work are the metrics MSNC and

MRSNC. These metrics evaluate the model as the user clicks in session. This

refers to what happens in the online scenario, where the session grows as the

user clicks more items, and an earlier correct prediction may lead to potential



monetary gains for the platform. Through experiments, our models with class-

weights proved to be more effective for online evaluation, with emphasis on the

TCNQuartet-CW model, that obtained best results for MRSNC1 and MRSNC2.

6.2 Future works and Limitations

Although our experiments presented solid results for our methods, they

were run using a single dataset. For future works, we intend to do experiments us-

ing new datasets, such as Retail rocket [Rocket, 2017] and Brazilian E-Commerce

Public Dataset by Olist [oil, 2018].

The creation of embeddings by Siamese networks was effective for our

problem. Moreover, it could also be used for a variety of other consumer problems.

Among the possible tasks, we can list Churn prediction, Customer Lifetime Value

prediction, Next basket recommendation, Product recommendation, etc.

In this work, we also proposed the use of two types of features, sequential-

features and aggregated-features. We observed the different behaviors for each

model and concluded that each set of features had an impact on our evaluation

metrics. Models with aggregated-features had better purchase prediction metrics

across the entire session, while sequential-features models had better metrics

simulating online environments. One of the possible next tasks is to use both

types of inputs at the same time, and check what would be the impact of a hybrid

model on the ones presented.

From the visualizations of the embeddings generated by the Siamese net-

works, we observed that despite the separation between the classes, unfortunately,

there is a lot of overlap between the encodings of the sessions. In this work, the

characteristics of the sessions that lead the model to confuse the classes were not

evaluated in depth. Therefore, it should be studied in more depth, why there are

so many overlappings in the embeddings generated by the Siamese network.
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