Universidade Federal do Amazonas
Universidade Federal do Para

Doctoral Program in Mathematics

Mean Curvature Flow in an Extended Ricci Flow Background

Matheus Hudson Gama dos Santos

Manaus, Amazonas, Brazil
March, 2023



Mean Curvature Flow in an Extended Ricci Flow Background

by

Matheus Hudson Gama dos Santos

Advisor

Professor José Nazareno Vieira Gomes

Co-advisor

Professor Marcus Antonio Mendonc¢a Marrocos

Thesis submitted to the Doctoral Program in
Mathematics in Association with the Universidade
Federal do Pard and Universidade Federal do Amazonas
in partial fulfillment of the necessary requirement for
the degree of Ph.D. in Mathematics.

Area of expertise: Geometry.

Manaus, Amazonas, Brazil
March, 2023


http://lattes.cnpq.br/7100507312370749
http://lattes.cnpq.br/5896951132632512
http://lattes.cnpq.br/8619708073570281

Ficha Catalogréfica
Ficha catalogréfica elaborada automaticamente de acordo com os dados fornecidos pelo(a) autor(a).

Santos, Matheus Hudson Gama dos
S237m Mean curvature flow in an extended Ricci flow background /
Matheus Hudson Gama dos Santos . 2023
72 f.:il. color; 31 cm.

Orientador: José Nazareno Vieira Gomes

Coorientador: Marcus Antonio Mendoncga Marrocos

Tese (Doutorado em Matemética) - Universidade Federal do
Amazonas.

1. Acéo de Gibbons-Hawking-York. 2. Fluxo de Ricci estendido. 3.
Fluxo da curvatura média. 4. Monotonicidade tipo Huisken. I.
Gomes, José Nazareno Vieira. . Universidade Federal do
Amazonas lll. Titulo




Ministério da Educacdo
Universidade Federal do Amazonas
Coordenacdo do Programa de Pés-Graduagdao em Matematica

FOLHA DE APROVACAO

"MEAN CURVATURE FLOW IN AN EXTENDED RICCI FLOW BACKGROUND"

MATHEUS HUDSON GAMA DOS SANTOS

Tese de Doutorado defendida e aprovada pela banca examinadora constituida pelos Professores:

Prof. Dr. José Nazareno Vieira Gomes - UFSCar - Presidente

Prof. Dr. Ronaldo Freire de Lima - UFRN - Membro Externo

Prof. Dr. Valter Borges Sampaio Junior - UFPA - Membro Externo

Prof. Dr. Lucas Coelho Ambrozio - IMPA - Membro Externo

Prof. Dr. Abdénago Alves de Barros - UFC - Membro Externo

r ———y
il
sel o
assinatura
‘ eletrdnica

r —
il
sel’ o
assinatura
i eletrbnica

r —
i
sel’ o
assinatura
i eletrbnica

seil A

Manaus, 09 de Margo de 2023

Documento assinado eletronicamente por Jose Nazareno Vieira Gomes, Usudrio Externo, em
13/03/2023, as 21:06, conforme horario oficial de Manaus, com fundamento no art. 62, § 12, do
Decreto n2 8.539, de 8 de outubro de 2015.

Documento assinado eletronicamente por Abdénago Alves de Barros, Usudrio Externo, em
14/03/2023, as 08:22, conforme horario oficial de Manaus, com fundamento no art. 62, § 12, do
Decreto n? 8.539, de 8 de outubro de 2015.

Documento assinado eletronicamente por Ronaldo Freire de Lima, Usuario Externo, em 14/03/2023,
as 08:38, conforme horario oficial de Manaus, com fundamento no art. 62, § 12, do Decreto n2 8.539,
de 8 de outubro de 2015.

assinatura
i eletrbnica

Documento assinado eletronicamente por Lucas Coelho Ambrozio, Usuario Externo, em
14/03/2023, as 08:44, conforme horario oficial de Manaus, com fundamento no art. 62, § 12, do
Decreto n? 8.539, de 8 de outubro de 2015.




Documento assinado eletronicamente por Valter Borges Sampaio Junior, Usuario Externo, em
14/03/2023, as 11:58, conforme hordario oficial de Manaus, com fundamento no art. 62, § 12, do
Decreto n? 8.539, de 8 de outubro de 2015.

L ]
sell 3
il |,
assinatura
gletrGnica

A autenticidade deste documento pode ser conferida no site
Tl https://sei.ufam.edu.br/sei/controlador_externo.php?

Av. General Rodrigo Octdvio, 6200 - Bairro Coroado 1 Campus Universitario Senador Arthur Virgilio Filho,
Setor Norte - Telefone: (92) (92) 3305-1181 / Ramal 2405
CEP 69080-900 Manaus/AM - pos-matematica@ufam.edu.br

Referéncia: Processo n? 23105.050702/2022-85 SEI n2 1405581



Dedico este trabalho aos
meus pais Jorge Hudson
Souza Santos e Maria
Lucilene Gama  Teixeira
Santos.



Acknowledgement

I would like to thank my advisor, José Nazareno Vieira Gomes, for all his support and the
many useful discussions. Furthermore, I would like to thank all the students of the graduate
program at UFAM for listening to me and giving helpful comments. I would also like to thank
my co-advisor, Marcus Antonio Marrocos, for patiently helping me with the preliminaries of
this thesis. I would like to say thanks to my family and to my God for being with me.

I would like to express my sincere thanks to Lucas Ambrozio (IMPA), Abdénago Barros
(UFC), Valter Borges (UFPA) and Ronaldo de Lima (UFRN) for useful comments, discussions,
and constant encouragement as well as to Department of Mathematics at Universidade Federal
de Sao Carlos, where part of this thesis was carried out.

During my time as a PhD. student at UFAM, I was partially supported by the Fundagao
de Apoio a Pesquisa do Estado do Amazonas (Grant 062.00931/2013) and Coordenacdo de
Aperfeicoamento de Pessoal de Nivel Superior (Grant 001). I would like to express my thanks
to FAPEAM and CAPES for it.



“A guerra é sua”.

(José Nazareno)



Resumo

Consideramos funcionais relacionados ao fluxo da curvatura média em um espaco ambiente
que evolui por um fluxo de Ricci estendido, dando continuidade a uma perspectiva introduzida
por Lott em seu artigo sobre o fluxo da curvatura média em um espaco ambiente que evolui
pelo fluxo de Ricci. Focamos principalmente em uma versao estendida ponderada da acdo de
Gibbons-Hawking-York sobre métricas Riemannianas em variedades compactas com bordo.
Calculamos suas propriedades variacionais, a partir do qual surgem naturalmente as condicdes
de bordo para analisar a derivada tempo sobre um fluxo de Ricci-Perelman estendido modificado.
Nesta formula de derivada tempo aparece uma extensdo da expressao diferencial de Harnack-
Hamilton. Obtemos equacgdes de evolucdo para a segunda forma fundamental e a curvatura
média em um fluxo de Ricci estendido. No caso especial de solitons gradientes, discutimos
solitons de curvatura média e uma monotonicidade tipo Huisken. Mostramos como construir
uma familia de solitons de curvatura média e uma caracteriza¢do de tal familia. Finalmente,

apresentamos exemplos de solitons de curvatura média em um fluxo de Ricci estendido.

Palavras-chave: Acdo de Gibbons-Hawking-York, Fluxo de Ricci estendido, Fluxo da curvatura

média, Monotonicidade tipo Huisken.



Abstract

We consider functionals related to mean curvature flow in an ambient space which evolves by
an extended Ricci flow from the perspective introduced by Lott when studying mean curvature
flow in a Ricci flow background. Mainly, the functional we focus on the Gibbons-Hawking-
York action on Riemannian metrics in compact manifolds with boundary. We compute its
variational properties, from which naturally arise boundary conditions to the analysis of its
time-derivative under Perelman’s modified extended Ricci flow. In this time-derivative formula
an extension of Hamilton’s differential Harnack expression on the boundary integrand appears.
We also derive the evolution equations for both the second fundamental form and the mean
curvature under mean curvature flow in an extended Ricci flow background. In the special case
of gradient solitons to the extended Ricci flow, we discuss mean curvature solitons and establish
Huisken’s monotonicity-type formula. We show how to construct a family of mean curvature
solitons and establish a characterization of such a family. Finally, we present examples of mean

curvature solitons in an extended Ricci flow background.

Keywords: Gibbons-Hawking-York action, Extended Ricci flow, Mean curvature flow, Huisken-

type monotonicity.



Contents

Introduction 1
1 The weighted Gibbons-Hawking-York action 7
I.1  Preliminaries . . . . . . . . . . . . e 7
1.1.1  Evolutionof curvature . . . . . ... .. ... ... ... ...... 11
1.1.2  Laplacian of the second fundamental form. . . . . . . ... ... ... 12
1.1.3  Mean curvature flow and f-minimal hypersurfaces . . . ... ... .. 15
1.1.4 Weighted scalar curvature . . . . ... .. ... ... ... ...... 17
1.2 Perelman’s functionals . . . . . ... ... ... ... 19
1.2.1  Evolution of the weighted total mean curvature functional . . . . . .. 25
1.2.2  Evolution of the weighted GHY-action. . . . . . ... ... ... ... 28
1.2.3  Evolution of the W.-type entropy functional . . . .. ... ... ... 30
2 Mean curvature flow in an extended Ricci flow background 34
2.1 Gradient solitons to the extended Ricciflow . . . .. ... ... ... ..... 35
2.2 Evolution of weighted extended GHY-action . . . . . .. ... ... ...... 36
2.2.1 Time-derivative of the weighted extended GHY-action under Perelman’s

modified extended Ricciflow . . . .. ... ... ... ... 40

2.2.2  Evolution equations for the boundary geometry under a Perelman’s modified
extended Ricciflow . . . . . . .. ... .o L oo 42
2.3 Hypersurfaces in an extended Ricci flow background . . . . . . ... ... .. 46
2.3.1 Mean curvature flow in an extended Ricci flow background . . . . . . . 47
2.3.2 Extension of Hamilton’s differential Harnack expression . . . . . . .. 51
2.3.3 Characterization of mean curvature solitons . . . . . . . .. ... ... 53
2.3.4 Huisken-type monotonicity . . . . . . . . .. ... ... 54
2.4 Examples of solitons solution to the extended Ricciflow . . . . ... ... .. 59
3 Perelman’s Entropy-type 65

Bibliography 70



Introduction

One of the greatest mathematical achievements of this century was the proof of Thurston’s
Geometrization Conjecture, by Perelman, which, as a consequence, settled affirmatively the
celebrated Poincaré’s Conjecture. The main tool used by Perelman in his proofs was the Ricci
flow, introduced by Hamilton [Ham82], which is defined as follows. Let G := { g(t)}te[a’b} be
a smoothly varying family of Riemannian metrics on an (n > 3)-dimensional compact smooth
manifold M. One says that G satisfies the Ricci flow equation if

d .
gg(l‘) = —2R1Cg(t) Vt € [a,b], (1)

where Ric,(,) denotes the Ricci curvature of (M, g(t)).

Hamilton established the existence and the uniqueness of solutions to (1) in a maximal
interval [0,7T), T < oo, for any given initial metric g = g(0). This maximal solution is then
called the Ricci flow with initial condition g, and T (whenever finite) is called the blow-up time
of the flow.

The standard example of a Ricci flow is the family G := {g()},¢|o ) of metrics on the 3-
sphere S® with g(0) = r3ges and g(¢) = (13 — 4t)ggs, where ry > 0 and ggs denotes the standard
Euclidean metric of S3. One then verifies that the blow up time of this flow is 7 = ,,(2) /4.

An important geometric flow also considered by Hamilton was the celebrated mean curvature
Sflow (MCEF, for short), which falls in the class of extrinsic geometric flows (see definition below).
Since then, mean curvature flow has been a constant object of investigation and has experienced
great development in the last decades. It should also be mentioned that MCF has applications
in many fields, including geometric analysis, geometric measure theory, and partial differential
equations, to name a few.

A significant contribution given by Perelman to the study of the Ricci flow was the discovery
of its gradient-like structure, namely, he showed how the Ricci flow can be regarded as a
gradient flow from its F-functional on compact manifolds with weighted preserving-measure,
for details see [Per02, Sects. 1 and 3] and [KLO8, Sects. 10 and 12]. Moreover, he defined an
associated entropy by means of its VV/-functional (see Section 1.2).

In a similar way, List showed how the extended Ricci flow can also be regarded as a gradient
flow (cf. [LisO8, Lem. 3.4 and Thm. 6.1]). Moreover, he proved the existence of a Perelman

F-type functional such that the stationary points are solutions to the static Einstein vacuum



equations and studied an extended parabolic system which is equivalent to the gradient flow
of his functional. We will see that, in the boundary case, interesting properties arise when the
boundary evolves by some geometric flow.

In [EckO07], Ecker defined a version of Perelman’s VV-functional for Ricci flow on bounded
domains with smooth boundary. Curiously, in its time-derivative formula, it appears Hamilton’s
differential Harnack expression on the boundary integrand. It should also be mentioned that, in
this work, Ecker conjectured that his functional is nondecreasing in time under mean curvature
flow of any compact hypersurface in R”, see (1.25) and Prop. 2.19 for the definition of Ecker’s
functional and its time-derivative.

Inspired by Ecker’s work, Lott [Lotl12] approached mean curvature flow in arbitrary Ricci
flow background by introducing an analogue of Perelman’s J-functional for a manifold M
with boundary dM. More precisely, he added a boundary term to the interior integral of F,
obtaining then a weighted version /. of the Gibbons-Hawking-York action [GH77, Yor72], see
also Araujo [Ara03]. In a similar way, one can think of an analogous conjecture for weighted
Gibbons-Hawking-York action . under the mean curvature flow in a Ricci flow background,
which is still an open problem. In both cases, an answer for these open problems required a
study on the boundary integrand of the time-derivative of these functionals. In this setting, the
main results obtained by Lott include the determination of the evolution equations of the action
L., of the second fundamental form of dM, and of the mean curvature of dM under Perelman’s
modified Ricci flow.

In this thesis, we intend to consider Lott’s program in the context of mean curvature flow
in an extended Ricci flow background. To be more precise, let M be an n(> 3)-dimensional

smooth manifold and let (g(z),w(z)) be a solution to the extended Ricci flow

{

inM x [0,T), for some initial value (g, w). Here and throughout this thesis, o, = (n—1)/(n—2),

g(t) = —2Ricg) +2a dw(t) @ dw(r),

(2)
W<t) = Ag(t)w<t)7

YoYv

Ric,(;) stands for the Ricci tensor of the Riemannian metric g(), the Laplacian operator A,
is the trace of the Hessian operator Hess,;), and dw(¢) @ dw(t) denotes the tensor product of
the 1-form dw(¢) by itself, which is metrically dual to gradient vector field Vw(¢) computed on
g(t) of a scalar smooth function w(¢) on M. For an account of extended Ricci flows, including
proof of short-time existence of solutions to (2) on complete manifolds, we refer to [Lis08,
Thm. 4.1]. In this paper, List also showed that Hamilton’s Ricci flow and the static Einstein
vacuum equations are closely connected by extended Ricci flow, which justifies the value of the
constant ;. So, he provided an interesting and useful link from problems in low-dimensional
topology and geometry to physical questions in general relativity.

A gradient soliton to the extended Ricci flow is, by definition, a self-similar solution



(3(x),w(1)) of (2) given by

{ g(t) =o(t)ys,
w(t) = yiw,

for some initial value (g,w), where y; is a smooth one-parameter family of diffeomorphisms
of M generated from the flow of V,f/c(¢) computed on g, for some f € C*(M), and o is a
smooth positive function on ¢. By setting f(t) = y* f, the system (2) becomes

Ricg+ Hessg f — o, dw @ dw = %8>
Ag = (Vgf, Vei)g,

where ¢ = 0 in the steady case (for r € R and yjy = Id), ¢ = —1 in the shrinking case (for
t € (—o0,0) and y_; = Id) and ¢ = —1 in the expanding case (for 7 € (0,00) and y; = Id).
Moreover,

Jd— —
SF=IveTI2.

The function f is then called the potential function. For details and proofs, see Subsection 2.3.3.

We shall consider mean curvature flows in the following context: let (g(z),w(z)) be an
extended Ricci flow in M x [0,T). Given an (n — 1)-dimensional smooth compact manifold
¥ without boundary, let {x(-,7); t € [0,7)} be a smooth one-parameter family of immersions of
Y into M. Foreacht € [0,T), set x; = x(-,7) and ¥, for the hypersurface x;(X) of (M, g(1)), i.e.,

L= (u(X),8(1), 1 €[0,7),

and suppose that the family .# := {¥;;1 € [0,T)} evolves under mean curvature flow

%x(p,t) =H(p,t)e(p,t),
X(p,O) :XO(P),

where H(p,t) and e(p,t) are the mean curvature and the unit normal of ¥, at the point p in
L, respectively. In this setting, we say that .% is the mean curvature flow in the (g(t),w(t))-
extended Ricci flow background. In the particular case (g(r),w(t)) = (g(¢),w(t)) is a gradient
soliton to the extended Ricci flow on M with potential function f, a hypersurface ¥, € .% is a
mean curvature soliton, if

H(p,t)+e(p,))f =0VYp X,

Here, e( -,#) must be the inward unit normal vector field on X,.

Now suppose that M is an n(> 3)-dimensional compact smooth manifold with boundary



OM. Let met(M) be the set of all metrics g on M. We define the weighted extended Gibbons-
Hawking-York (GHY, for short) action I on the product (M) := met(M) x C*(M) x C*(M)
as follows

19 (g, fow) = /M (R~ V) e/ av 42 /a Hee A, 3)

where R = Ry +2A, f — |V f|? is the weighted scalar curvature of g, the function He = H +eo f
is the weighted mean curvature with respect to the inward unit normal field ey on dM, the forms
dV and dA are the n-dimensional Riemannian measure of (M, g), and the (n — 1)-dimensional
Riemannian measure of (M, g), respectively.

The action I% is the proper extension to our context of the action I. introduced by Lott
in [Lot12]. It should also be mentioned that the function R, arises quite naturally, as observed
by Perelman [Per(02, Sect. 1.3], and H is in fact the appropriate geometric object when we are
using a weighted measure (see, e.g., [Gro03, Sect. 9.4.E] and Section 1.1.4).

Our first main result extends [Lotl2, Thm. 1] to the context of mean curvature flow in
an extended Ricci flow background. It reads as follows (see Section 1.1 for definitions and

notation).

Theorem 1. Let M be an n(> 3)-dimensional compact smooth manifold with boundary dM,
and let I% be the weighted extended GHY-action on &2 (M) defined as in (3). Suppose that the
family {dM;;t € [0,T)} is a MCF in the (g(r),w(¢))-extended Ricci flow background which
satisfies egw = 0 on dM, where ¢ is the inward unit normal vector field on dM. Under these

conditions, if u := e~/ is a solution to the conjugate heat equation

)
4= —Agut+ Ryt — 0| Vi |*u 4)

in M x [0,T), with eou = Hu on dM, then

d
1 :2/ (1Ric+Hess £ — 0, dbo @ dwl? + ey (Agw — (Y, V1)) )™/ av
M

9 SN SN o
+2) (EH—Z(Vf,VH>+A(Vf,Vf)+2R0‘Vif—EVORg—HRoo
M

+ OtnA(§w, %w)) e /dA,

where A is the second fundamental form of M and V £ denotes the gradient of f on (dM,g(1)).

For the proof of Theorem 1, we first study the Perelman’s modified extended Ricci flow (see
Subsection 2.2.1), and then “translate” the results for the context of extended Ricci flow. Also,
as an application of Theorem 1, we obtain an extension of Hamilton’s differential Harnack
expression for the mean curvature flow in Euclidean space to the more general context of mean

curvature flow in a gradient steady soliton background (cf. Corollary 2.21).



Now let us consider an n(> 3)-dimensional smooth manifold M, and let (g(¢),w(z)) be a
gradient soliton to the extended Ricci flow on M for some initial value (g, w) and with potential
function f = y* f, where {y;} is the smooth one-parameter family of diffeomorphisms of M
generated by ¥; = V,f/o(t), with o(t) = —«xt and y_, = Id, where x = 1 in the shrinking
case (for t € (—,0)), Kk = —1 in the expanding case (for ¢ € (0,4o0)) and o(t) = 1 in the
steady case (for 7 € R) with yy = Id. Besides, let {x(-,7)} be a smooth one-parameter family
of immersions of an (n — 1)-dimensional smooth compact manifold ¥ without boundary into
M, given by x(-,1) := y(-,—t —2x) and x(-,¢) := y(-,—¢) in the steady case. For each 7, set
L, := (x(X),g(r)) for the hypersurface of (M,g(z)), and ¢4 := {¥;}. With this setting in mind,
we show how to construct a family of mean curvature solitons and establish a characterization

of such a family. This is the content of our second main result.

Theorem 2. If ¥ is the f-minimal hypersurface of (M, g), then ¢ is a family of mean curvature
solitons. Besides, any family .%# of mean curvature solitons is given by ¢ up to reparame-

trization.

Our third main result is Huisken’s monotonicity-type formula for the mean curvature flow in

an extended Ricci flow background, as stated below.

Theorem 3. Let M be an n(> 3)-dimensional smooth manifold. Let (g(7),w(¢)) be a gradient
soliton to the extended Ricci flow on M with potential function f. Assume that .% := {¥,} is
a MCF in the (g, w)-extended Ricci flow background, denote by dAg the (n — 1)-dimensional
Riemannian measure on ¥, induced by g(z), and set Areap(%,) := [5, e*?dAg. Under these
conditions, the function ®(z) given by:

(i) R>1+— Areap(X,) in the steady case,
(ii) (—o0,0) 31 (—1)~ ("= 1)/2 Areaz(X;) in the shrinking case, and
(iii) (0,00) >1+> r—(n=1)/2 Areaf(Z,) in the expanding case,

is nonincreasing. Moreover, ®(¢) is constant if and only if .# is a family of mean curvature

solitons.

It is worth mentioning here a result by Huisken, from which we know that the shrinking
self-similar solutions to the mean curvature flow in Euclidean space are exactly singularity of
type-I (i.e., the growth rate estimate for the norm of the second fundamental form is bounded)
and asymptotically self-similar which appears as stationary points for the Gaussian area-type
functional playing the role of the energy-type functional (see [Hui90] for details). Theorem 3
is a useful tool for studying an analogous to Huisken’s result to mean curvature solitons in the
(g, w)-extended Ricci flow background.

We point out that, by considering particular cases of our results (for instance, assuming g(¢)
or w(t) constant), we recover some previous results on mean curvature flows (see Remarks 2.7,
2.15,2.18,2.22 and 2.27).



The thesis is organized as follows. In Chapter 1, we fix some notation and formulae. We
compute the Laplacian of the second fundamental form on the line of [Hui86], see Subsection
1.1.2. We discuss both scalar curvature and mean curvature in the context of weighted smooth
manifolds, showing that the former arises from the weighted Schrédinger-Lichnerowicz formula
to a weighted Dirac operator (Subsection 1.1.4), whereas the latter is closely related to f-
minimal hypersurfaces (Section 1.1.3). We also discuss the evolution of the weighted GHY-
action and derive some actions in terms of it (Section 1.2). In Chapter 2, we introduce Perelman’s
modified extended Ricci flow (Section 2.2), determine its evolution equations (Subsection 2.2.2)
and provide the proofs of Theorems 1, 2 and 3 (Section 2.3). In Chapter 3, we consider an
(n > 3)-dimensional smooth compact manifold M with boundary dM and define a Perelman’s
Entropy-type functional on (M) x R,. Next, we prove a version of Theorem 1 for this
functional. In particular, by considering M compact without boundary, we recover the result by
List [Lis08, Thm. 6.1].



Chapter 1

The weighted Gibbons-Hawking-York
action

In this chapter, we take a closer look at the weighted Gibbons-Hawking-York (GHY, for
short) action from which we derive Perelman’s F and WV type functionals on smooth manifolds
with boundary. We begin by fixing some notation and reminding the reader of some basic facts
about Riemannian geometry. After, we compute Laplacian of the second fundamental form
in the line of [Hui86], and we motivate both scalar and mean curvatures on weighted smooth
manifolds. We give the proof for the evolution of weighted GHY-action and derive some actions

in terms of it.

1.1 Preliminaries

In this thesis, the manifolds are assumed to be orientable and connected. Also, in dealing
with flows, we shall usually simplify the notation by suppressing the parameter . Moreover, we
are using the Einstein summation convention.

We shall adopt the following notation. Let M be an n(> 3)-dimensional compact smooth
manifold with boundary dM and let met(M) be the set of all Riemannian metrics on M. Let us
denote the local coordinates at p € M by {xq }’&;10 and the local coordinate basis by {dy ’&;10,
the corresponding dual basis is denoted by {dx“}g;lo. Near dM, we take xy to be a local
defining function for dM. We denote the local coordinates for dM by {xi}?:_ll. We choose these
coordinates near a point at dM so that dy|y,, = ep is the inward unit normal field ey on dM. The
Greek letters a, 3, . .. stand for the indices associated with the coordinates on M, while i, j, ...
for the indices of the coordinates on dM.

For a Riemannian metric g = (,) on M we denote by V the Levi-Civita connection on 7M and
by V the Levi-Civita connection on TIM. By simplicity, we also denote Vo =V, . As usual,
let g% denote the arBth entry of the inverse of (8ap) in the basis {dy Zc_:]O' The Riemannian
volume element of g on M is denoted by dV and dA stands for the induced Riemannian area



element on dM.
In what concerns M (or a hypersurface X of M), we write A;; = (e, V5,;) for its second
fundamental form and H = gkl Ay, for its mean curvature.

In local coordinates, the Riemannian curvature tensor is given by
R4p,9¢ = Rm(9q,dp)dy = VsV dy — Vo V0,

so that Rgaﬁy = gécRaﬁyé, where Ry gye = (Rm(dy,dg)dy,de). The Riemann tensor, in terms
of the Christoffel symbols, is given by

L (| E L E L
Reopy = 9pTay — 0ol g, +Tay T — T3 To-

Furthermore, the Ricci tensor and the scalar curvature are given by
Ryp = Ricy(dy,dp) := gYCRayBg“ and R, := go‘ﬁRaﬁ,

respectively. We claim that for all V be a vector field on M with components (0, ...,v"~1), we

have
VﬁvC = 8ﬁvg - vyl“gy.
In fact, note that
VﬁV = Vﬁ (Vyay) = (8Bv7)8y+ VYVB 8y = (8ﬁvC + v”l“gng = Vﬁvcag
The second covariant derivative on M gives us

VaVpV = 06 (Vpr$)d; + Vvt (Vo,0;) = (9udpv® + (9av!)Tg, +v7(0aT5,) + Vv Tay)d;

=: VaVﬁvCHC,
where
VaVpvé =0y’ + (9T, +V7(3alg,) + OpV Thy + V1T Th.
As a consequence, we have

VaVpr¢ —VgVert = —RS 7, (1.1)

oBy
which is known as Symmetry Lemma.

For a smooth function f on M, we write its gradient as V f = V% fdy, so that V* f = g®PV gf
and |Vf|? =gV, fVsf, where Vg f = (Vf,0p).



For a vector field X on M, we write the divergence of X at g as

dng(X) = 8aﬁg(v8aX, aﬁ) = gaﬁvaxﬁ —gaﬁXyl—‘LB,

where Xg = g(X,dg). In particular,
Aof =divg(VF) =g VaVpf =VPVgf,
where

VoVpfi=Hess, f(da,dp) = &(Va,Vf,9p) = dadpf — (Va,9p)Sf

is the Hessian of f at g.

We denote %ﬁ jf and A f the corresponding Hessian and Laplacian of f computed in the
induced metric on M.

For a 2-tensor field T on M we consider its associate operator T given by the equation
Top = (T(aa),aﬁ) = (Tcao'?c,&[;), where T¢, represents the coordinate of the vector T (dy).
Hence T, = ggYTay. By simplicity, we will use 75¢ = g5 O‘gCYTOW.

We can also consider @(X) = T(X,ep) an 1-form on dM with X tangent vector field to dM.
Thus, we take the covariant derivative of the boundary on dM to obtain

(Viw); == 3(0(9))) — 0(Vid))
= O(T(9},e0)) — T(V9,9;,€0)
— (ViT)jo+T(V3,9;,¢0) +T(9;,Vg.e0) — T(V 3:9;, e0)
= (ViT) jo + AijToo — 8 AT

Define %iTj() = (%ia))]‘. Thus
(ViT)jo = ViTjo — A;jToo + AT (1.2)

Let us show that the covariant derivative on M always commutes with the trace of an arbitrary

2-tensor field v on M. For simplicity, we write Vxvgg := (VxV)qp

Lemma 1.1. Let v¥*y be the trace of a 2-tensor field v on M. Then
X(vo‘a) = gaﬁvxvaﬁ.
Proof. 1t is enough to prove the equality to X = dy. Since g*? gor = 0%, we get

5,8P = —go‘éffg —g*fre,



and then

goc,B (V8yv)aﬁ = gaﬁ ayvaﬁ - gaﬁrgavnﬁ - gaﬁr‘gﬁvan
= a?’(gaﬁvaﬁ) - a?/gaﬁvaﬁ _géﬁr%vaﬁ _gaérﬁgvaﬁ
- af)/(vaa).
This finishes the proof of the lemma. U

Recall that Lie derivative to 2-tensor field on M is given by

(ﬁXT)l.j:X(Tij) ~T([X,9],9;)-T(9;,[X,9;])=(VxT) j+T(VeX,0))+T(;,V5,X), (13)

i

where (VXT)
to get

i =X(T;j)—T(Vx9;,dj)+T(d;,Vx ;). Take traces in (1.3) together with Lemma 1.1

§1(LxT) = Vx(8Ty) + 8T (V5X,3)) + 87T (3, V5 X). (1.4)
ij
Now, we recall the divergence theorem.

Theorem 1.2 (Divergence Theorem). Let (M, (,)) be an oriented Riemannian manifold with
boundary. For any compactly supported smooth vector field X on M,

/dideV:/ (X, &) dA,
M oM

where e is the outward unit normal vector field along dM.

Proof.

/dideV:/ d(XJdV):/ XdV= (XT+XL)JdV=/ (X,éf))éZ)JdV:/ (X,e0)dA,
M M oM oM oM oM

&K

where “_” is the interior multiplication, X ' and X are the tangential and normal components
of X, respectively (see [Leel2, Thm. 16.32] for more details). [

In this thesis, ¢( stands for the inward unit normal vector field along dM, thus the divergence

theorem has the opposite sign, as follows

/dideV:—/ (X, e0)dA.
M oM

Hence, for all u,v € C*(M), integration by parts is given by

/vAudV:—/ <Vu,Vv>dV—/ veou dA (1.5)
M M oM
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and then

/M (vAu — uAv) dv = /8M (ueov — veou) dA. (1.6)

1.1.1 Evolution of curvature

In this section, we establish how one can formally take the time-derivative of the Riemann
tensor and the scalar curvature under arbitrary metric variations. Henceforth, we assume by
simplicity that VVgTyy := (V¢ VgT)qy stands for the second covariant derivative for each 2-
tensor field 7 on M. We also adopt this notation for k-tensor field T on M, k € {3,4}. Let g(¢)
be a smooth one-parameter family of Riemannian metrics on M and the variation of coefficient
of the metrics will be denoted by % gap = Vap- For more details, see [AHI1].

We start noting that go‘ﬁ 8py = 0%y. Taking the derivate on both sides, we have

J
=870 = =g gl (1.7)

Lemma 1.3. The symmetric 2-tensor field Ric evolves by

) 1
> Rap = 587 (V¢Vpvay = VaVpvey+ Ve Vavgy = V¢ Vyvap). (1.8)
Proof. See, for example, [AH11]. O

Proposition 1.4. The scalar curvature R, evolves by

%Rg = Vo V™ — VeV — v PRy (1.9)

Proof. By definition of escalar curvature R, equations (1.8) and (1.7) we obtain

0 0
gRg " (Raﬁg

aB)

= —g"7gP vy Rop + %g“ﬁ 8" (VeVpvay = VaVpvey+VeVavpy = VeVyvap)

= —gTgPCy R+ %g%gaﬁvgvﬁvay_ %gﬂgaﬁvavﬁvgy_i_ %gYCgaBVCvavM
_ %gaﬁgYCV§VyVaﬁ)

_ —gaygﬁCVyCRaﬁ + Vavﬁvaﬁ VY,

= —V*PRyp +VaVv* — VOV,

This finishes the proof of the proposition. U
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1.1.2 Laplacian of the second fundamental form

In this section we compute the Laplacian of the second fundamental form of a hypersurface
(E,%) in a target Riemannian manifold (M,V). In [Sim68], Simons had computed it for
minimal immersions, likewise Huisken [Hui86, Lem. 2.1] had proposed the corresponding
formula for any hypersurfaces. Here, we will make the proof of this formula as proposed by
Lott [Lot12], namely

ViViH = (AA);; + ViRjo + V Rio — VoRij + A* iRoroj + A* jRoroi — AijRoo + 24 Ry
— HRoioj — HAY (A ji + AM Ay Aij + VoRoi,- (1.10)

Recall the well-known Gauss, Ricci, and Codazzi-Mainardi equations,

~

R jkim = R jiim + AjiAm — AjmAri,

Rjoo = (Rjroo) ™ + & Ajs A — & At Ajr = 0
and
Roije = VA — Vidij, (1.11)
respectively. For a proof, see [DT19, Sect. 1.3]. By definition

(KA),']' = glele.Aij
= g"Vi(—Roiji + (V;A)i)
= —g""ViRoiji + g ViV j Ay

Using (ijA)il = gkl§k§inl - §j§k¢4il to obtain
(AA);; = —g"ViRoiji + R A)i + V Vi Au,

where (RjxA)y = RﬁOOAil — A(ﬁ *0;,01) — A(;, R jk01), where the Riemann tensor of boundary
is given by ﬁjkai = %,ﬁja,- — %ﬁkai with ﬁjkai = (I?é.ka,-)(?l, I?i.ka,- = gmlk\jkim. Thus

(AA)i; = —g"ViRoij + & (R xA)i + &'V j(—Roiix + (ViA)w).-
Now we will compute some terms of this equation. The first one of them is

(RixA) i = —&"™ (R jkim + AjiAim — AjmAki) Ast — 8™ (R jkim + Aj1 Agm — AjmAxt) Ais
= —Rjkim A" — AjiAm A" + A jn Ak A" — 8™ R jam Ais — A ji A Ais + A% j A Ais

12



where by Guass equation we get ﬁ;kai = g™R ikim = &™ (R jkim + AjiAm — AjmAri)-
Now we are going to proceed as in (1.2). Let T be a 4-tensor field on M, we also can consider
0(X,Y,Z) =T(ey,X,Y,Z) a3-tensor field on dM. Again taking the covariant derivative on the

boundary, we obtain

Vi = 0i(@(9;,0, ) — ©(V:d;,0, ) — (3}, Vidk,d) — (3}, , Vid))
= (T (e0,9;,0%, ;) — T (€0, Vid;,k,0) — T (e0,9;,Vidk, ) — T (o, 9;,, Vid;)
= (ViT)oju + T (Vieo, 9}, 0, ) + T (eo,Vidj, o, ) + T (eo, d;, Vi, ;)
+T(e0,9;, 9k, Vidy) — T (e0,Vid;, 0k, ) — T (€0, 9}, Vidk, ) — T (€0, 9}, 0k, Vi)
= (ViT)ojx + AijToows + AiTojor + AuTojro — 8™ AisTn jki-

Define §iTOjkl = §iwjkl~

VT, ikt = (ViT )ojxs + AijToows + AiTojor + AuTojro — 8™ AisTnjki-
The second one of them is

VR i1 = (VkR)oiji + AxiRoo j1 + Ak jRoior + AxiRoijo — 8" AksRmiji-
By combining all of the terms, we find that

(AA);; =—8"ViRoiji —g" AxjRoior —8" ArRoijo +8° 8™ ArsRij +8" (-R ikim A" = Aji A Ay

+ A jn Ak A" — 8" R jam Ais — A i A Ais + Asj-AklAis) — v Rovix + 8" (6 j§i~A)lk-
Since the trace commutes with the covariant derivative on the boundary,
gkl(§j§iv4)lk = §j§i(8kl~Alk)7
and using the contracted Bianchi identity
—&"ViRoij = g VoRiji + 8" ViReoji,
one has

(AA);; = ¢'VoRiji + &' ViRuo 1 — A'jRoior — HRoijo + A™ Ropijt — R jim A™ — A ji Apn A"
+ A A A™ — MR g A™: — Aj A A + HASj Ais — 85V jRowi + YV ViH.

Note that

§"VoRyj1 = VoRij— VoRiojo and  g"ViRyj1 = —g"ViRorji = —ViRo; + ViRoojo,
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together with

— "V Ry = =V iRoi+ViRooio and  — ¢"Rjuum = R jtmi = Rjm — R;

8 JjROlik J 0i 1+ jv00i0 an 8 Njkim = 8 N jkmi jm jOmO
imply

(AA)i; =VoRi; —VoRiojo —ViRoj—&" Ar iRoior —& " AxiRoijo +A™ R jt =R jim A™ —Aji Agn A™
+ Ajn A A™ + R i A — A™R jomo — Aj A Aig + HA Aig — V jRoi + ViV H.

Hence

(AA)ij = VoRij —VoRiojo —ViRoj —A'iRoior — HRoijo + 2A™ Rynijt —Aji Apn A™ + A Ay A
+Rjm A" — AR jomo — Aj A Ay + HAS Aig — V Roi +V jVH.

Thus

(AA);; = VoRi; — VoRinjo — ViRoj + AijRoo — 8 ARy j — A'jRoios — HRoijo + 2A™ Ryni 1
— AjiAin A"+ R A — AR jomo + HA’j Ais — V jRoi + V jViH.

By (1.2) applied to T = Ric we have
VRoi = V jRoi — AijRoo + g A xRy,
and we finally arrive at

(AA)ij = VoRi; — VoRiojo — ViRo; + AijRoo — A'jRojo;i + HRoio; — 2A™ Ryt
— AjiAkmAmk — .AmiR()moj + HASJ'A,'S — VjR()i + VjV,’H,

which is exactly (1.10). Besides, to use forward, take traces in (1.11) to get
Roj=V;H-V,A ;. (1.12)

In what follows, we will use the next lemma to describe the Laplacian of a smooth function

on the target manifold in terms of isometric immersion objects.

Lemma 1.5. Let X be an n-dimensional Riemannian manifold with Levi-Civita connection V
and let (M, g) be an (m+ n)-dimensional Riemannian manifold with Levi-Civita connection V.

Given an isometric immersion f : X — M, then for all w € C*(M) we have
Agw = Aw — g(Vw,H) + gV, Vyw,
where H is the mean curvature vector field on X and a,b € {n+1,....n+m}.
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Proof. Consider a coordinate system {Jy }’g;’? so that {d;}}_, is tangent to X and {d,}/ 7", is
normal to X, and set 0;; = (V;9;)+. Thus for all w € C*(M) we have
Agw = gaﬁ <8a8ﬁw - (Vaaaﬁ)w)
= gij (8,~8jw - (Vaiaj)w> +gab (8a8bw - (Vaaab)w)
=g (8,~ajw — (Q;ﬁj + Ocij)w> + gV, V,w
= Aw— g(Vw,H) + gV, Vyw,
where H = gy j 1s the mean curvature vector field on X. 0

1.1.3 Mean curvature flow and f-minimal hypersurfaces

In this subsection, we shall state the classic evolution equations for mean curvature flow in
Euclidean spaces. Given an (n— 1)-dimensional smooth compact manifold ¥ without boundary,
let {x(-,7);t € [0,T)} be a smooth one-parameter family of immersions of ¥ in R”. Set X, :=
x(X), where x; = x(-,), and suppose that the family .% := {X,} evolves under mean curvature

flow, i.e.,

{ %x(p,t)zH(pat)e(PJ)’ (1.13)

x(p,0) = x0(p),

where H(p,t) and e(p,t) are the mean curvature and the unit normal of ¥, at the point p € X,
respectively. For short-time existence of a solution for (1.13) (see, e.g., the book by Mantegazza
[Manll1, p. 18]).

If there exist C > 0 so that sup ¢y [ A(p,?)| < C/ V/2(Tnax — 1), we say that MCF is developing
at time 7y,,x a type I singularity. Huisken used a functional (see Remark 2.27) in order to classify

these singularities.

Example 1.6. Let S"(R) be the n-sphere of radius R, and let x(p,7) = r(t)xo(p) be a family of
immersions of S”(R) into R"™!, where r(t) = VVR2 — 2nt = \/2n(Tyqx — t) and xo is the standard
inclusion map. Note that at time 7},,4x = I;—i the sphere shrinks to a point, so the flow becomes

singular (see figure below). Moreover, the norm of the second fundamental form evolves as

A1) = 25 = —=—

2(Tpax—t)
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Figure 1.1: Sphere collapsed in finite time.

Another example is given by the cylinders S"(R) x R.

Example 1.7. Let S"(R) x R be the cylinders, and let x(p, s,7) = (x ( ) s) = (r(t)xo(p),s) be

the family of immersions of S"(R ) x R into R"*2, where r(t) = —2nt = \/2n(Tpax — 1)
and collapse to R at time T,qx = & Moreover, | A(-,t)| = % = —(Tl st

T AT —

v N il

m o P . .

v | ]

it B

- - -S> =

Figure 1.2: As in the Sphere, the Cylinder also collapsed in finite time.

Spheres and cylinders are special examples of homothetically shrinking flows, that is, hype-

rsurfaces that simply move by contraction during the evolution by mean curvature.

Proposition 1.8. Let % := {¥,} be a family moving by mean curvature flow in Euclidean space.

Then the following evolution equations hold on %,

2= 2HA, (1.14)
(%A,- i = (AA);j — 2H A A + AX A Ay, (1.15)
O H=RH + AVAH, (1.16)
%dA: —H?dA. (1.17)

For a proof, see [Hui84, Lem. 3.2, Thm. 3.4 and Cor. 3.5] or [Manl11, Sect. 2.3].
It is known that minimal submanifolds arise as critical points of the area functional. Recall

that a submanifold of the area functional is called critical if d% .o Area(X) = 0 for all variational
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vector field X = % 2 where {x; = x(-,)} is a smooth one-parameter family of immersions
of ¥ into M.

For the sake of completeness, we will show an analogous property to f-minimal hypersurfa-
ces which are closely related to this thesis. More precisely, given an n-dimensional Riemannian
manifold (M,g = (,)), an isometric immersion x of an (n — 1)-dimensional compact smooth
manifold X without boundary into M, and a smooth function f on M.

Let {x; = x(-,7)} be a smooth one-parameter family of immersions of X into M, and let X =
% t:OXt be the variational vector field along ¥. Let us consider the f-weighted area functional

given by

Areay(t / —foxi dA,,

where dA; stands for the area element on (X, x; g). Recall that d—%
t

dA, = %dA, where h = trg H
=0
and H = dtxt g. Hence,
d d
aohreor®= (= (5

Note that we can write divs(e /X ") = e /divg(X ") —e /(Vf,XT), so that by divergence
theorem and the known identity 4 = divy(X ") — (X,H), one has

0x,,Vf> e/ dA = / XVf Z)e‘fdA.

1=

d

dt li=0

Areaf(t):/z( (VXYY —(X,H))e /H X, e0)e ! dA,

where one sees that the analog of the mean curvature H., := H + ¢gf. So the critical points of
the f-weighted area functional on X are f-minimal hypersurfaces, i.e., H. = 0. Some results
concerning f-minimal hypersurfaces can be found for example in [ALR20], [CZ15], [CVZ21]
and [Weil7].

1.1.4 Weighted scalar curvature

Before defining Perelman’s functional on a compact smooth manifold M without boundary,
let us motivate what R.. means for an approach of the weighted manifolds. Given f € C*(M),
consider the smooth metric-measure space M = (M, g,e~/ dV). As is now well understood, the
analog of the Ricci curvature for M is the Bakry-Emery Ricci tensor Ric., = Ricg +Hess, f.
In [Per02, Sect. 1.3], Perelman pointed out the analog of the scalar curvature, namely

R =Ry +2A.f — |Vf?,
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which, in fact, works as a scalar curvature on M, since by divergence theorem and the identity
Age™/ = (IVf|> = Agf)e ™/, one can deduce

/M(Rg+Agf)ede:/M(Rg+2Agf—\Vf\2)ede:/MRooede.

In order to give a natural interpretation for R.., Perelman defined the following weighted Dirac
operator Do on the spinors XM

1
D¢ =Dy 90—V 9,

where D, denotes the Dirac operator which acts on the spinors bundle XM and the product

13 2

is known as Clifford multiplication (see, e.g., [LM16, Chapt. 2]). There is an equation
that relates the Dirac operator D, with its Ricci tensor, called by (% Ricg)—formula (see [KFOO,
Lem. 1.2]), namely

1 ~—

SRicg(X) -9 =Dy(Vxp) = Vx(Dg @) =} ea* Vv, xP:
o

where {eq }¢ is an orthonormal frame on TM. Now the Bakry-Emery tensor on M arises quite

naturally when we use to D.. In fact,

1, ~ — 1~
Deoo(Vx@) —Vx(Dew @) — Y €a- Vv, x@ = E(Rlcg(x) +Hessg f(X)) - ¢ = ERICOO(X) - Q.
o

The Schrodinger-Lichnerowicz formula which is weaker than (% Ricg)-formula in the sense to
be a contraction (cf. [HijO1, Lem. 4.11]), is

. 1
D,p=-V Vo+ 1R 9, (1.18)
where V'V = —Y , Vo Vo @. Analogously, we have

1 1 1 1
D% ¢ =Dy(De@) = 3V -Deep =Dy ¢ = S Dg(Vf @) = 5V Dy @+ V- V-,
Since X -Y-@+Y -X-¢=—-2(X,Y).0, and
De(VS @)=Y ea Ve,V ¢V Dy —2Vy (0,
(¢4

we obtain (see [HijO1, Sect. 4.3])

1 1 1 1
Dgo(P:D§¢_Ezea'veavf‘(l)‘i"Evf'Dg(P‘f’VVf(P_Evf'ng)_Z’Vflz'(P-
o
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Moreover, notice that A, f - @ = —Zea -Hggsg(ea) - @ (see, e.g., [KF00, p. 132]), and since
o

R, = —Zea -liivcg(ea) -¢ and (1.18) we can find that R., arises quite naturally of the
04

weighted Schrodinger-Lichnerowicz formula
. 1 . 1
DZ¢=-V'Vo+Vyrp+ Z(Rg+2Agf— IVF?) o = —VngD+ZRoo-(p,

where ViV = V*V@ — Vy ¢ can be thought as Drift Laplacian on M. This finishes our
remark.

1.2 Perelman’s functionals

Let M be a compact smooth manifold without boundary. In [Per02, Rem. 1.3], Perelman
defined the F-functional on met(M) x C*(M) as

F(g.f)= /MRooe‘de (1.19)

or, equivalently,

Flg, f)= /M(Rg+ IVF)e ™ av. (1.20)

The functional in (1.19) appeared for the first time in the great work of Perelman in the study
of the Ricci flow on smooth manifolds without boundary. He had discovered that Ricci flow has
a gradient-like structure, i.e., he showed how the Ricci flow can be regarded as a gradient flow
on compact manifolds with weighted preserving-measure (see [Per(02, Sects. 1 and 3]).

Of course, when M has a boundary, expression (1.20) contains a boundary term. If we add
a suitable boundary term for (1.19) then we obtain an extension of F for the boundary case,
which has nicer variational properties (see Eq. (1.27) and Subsection 1.2.2). However, without
this additional term, we find in the literature the following result by Cortissoz and Murcia (see
[CM19, Prop. 3.1)).

Proposition 1.9 ([(CM19, Prop. 3.1]). Let M be an n-dimensional compact smooth manifold
with boundary OM and F : met(M) x C*(M) — R the functional defined as

Fla.f) = [ (Re+ V7RI av.

Then its evolution is given by

SF(v,h) :/M [—v“ﬁ(Raﬁ +VaVpf)+ (%—h) (Ry— \Vf|2+2Agf)]e’de
+ . [2(% —h)eof— (%,—vio —HWYy —|—Aijv,'j — Vo(gijv,'j) +va0Vaf>} e TdA,
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where the derivative is to be taken on (g, f) € met(M) x C*(M), (%g(t) =vand (%f(t) =h.1If,
in addition, V—O‘ —h =0 o0n M, then the following equality holds:

O0F (vap,h) = —/Mvaﬁ (Rap +VaVBf)ede—/aM (@vio — HV% + AYvi; — Vo(gvi))

+ vaOVaf) e/

Remark 1.10. Here, it is important to observe that 5% — / vanishes 1dentlcally on M if and
only if the measure dm = e~/ dV remains fixed on M, since 8(e~/ dV) = (T —h)e=/av.

Remark 1.11. For the sake of standard notation, we observe that vgg := vgoggo =1%.

Proof. The variation of F in direction (v,) € S*(M) x C*(M), is defined to be

O0F(v,h)(g, f) = .7:(g+tv,f+lh),

drls

where §? (M) is the set of all symmetric 2-tensor fields on M. For simplicity, let us omit the
duple (g, f). This implies that

O0F (v,h) = /M [V“Vﬁvaﬁ — VﬁVﬁvaa — vaBRaB
VY o £V f 4+ 2(VF.VH) + (R + V1) (2 S —h)]eav.

We must compute the integrals on the right-hand side of the previous identity. We start using

Green’s formula (1.6) to obtain
/M f( Agv%q)dV = — /Age Iy dv — / v¥yepe fdA+/ S egv¥q dA.
Now, we use integration by parts (1.5) to compute
/ eIV VP av = —/ Vae IVpoP dV+/ V(e IV P%)av
M M M
= —/ Vae’fVBv“ﬁdV— Vﬁvﬁoe*fdA
M oM
— [ VaVge VPV~ [ Vy(Vae v P)av— [ Vgle S an
M M oM
:/ VaVBe_fvaﬁdV—i—/ Vae_fvaOdA— Vﬁvﬁoe_fdA.
M oM oM
Notice that VaVﬁe‘f = —e‘fVaVBf+ e‘fVafVBf. Finally by means of (1.5), we have

2/ g(VF,Vh)dV = —2/ g(Vef,Vh)dV:2/ (Age )hdV+2 [ heg(e /) dA.
M M

oM
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Thus

5F(uh) =~ [ V(R aﬁ+vavﬁf) Javs | ——h)(Rg—|Vf|2+2Agf)e_f

_|_2/ _—h eofe fdA—/ Vava —Vo(vaa)+vaovaf)e_f
oM

By (1.2), we get Vo v® — Vo (v%y) = V¥ — Voul; = Va0 — Oy + AlJv;; —Vo(g"vij). This is
enough to conclude the proof of the proposition. 0

Remark 1.12. If M has no boundary then Proposition 1.9 appears in [Per02, Sect. 1.1]. In
addition, if “2¢ —h =0 on M, then

SF(v,h) = —/Mv“ﬁ(Raﬁ +VaVgfleav. (1.21)

One can think that F has a gradient-like structure constraint to

C = {v €S (M) :v= %g(r) and f = ln(%)}

If % —h=0o0onM, then f = ln(%), see Remark 1.10. As pointed out by Perelman, the

gradient structure for Ricci flow comes from the following functional

dv
F(g) = F(g.1 —):/R V£12) dn
(8)=F(&n(5,)) = | Re+IVS)
Now we introduce the weighted inner product on S*(M) as

(v,s) ::/nygsygefd\/,

so that we can define the gradient of 7™ at g given by

SFM(g)) = 3| FM(g+n) = {grad F(g),v).

for all v € ¥. This gradient-like structure was the motivation for Perelman to consider the

{

To find a solution to (1.22) we consider a solution of the backward heat equation % flt) =
=Dy (1) + Vg f(2) 2 — Ry () along the Ricci flow in M X [a, b], which is obtained as follows.
Let [a,b] be a sub-interval of [0, 7') and g(¢) satisfying the Ricci flow equation % g(t) = —2Ric,)

system below

8(r) = 2grad F"(3(1)) = ~2(Ricg(,) +Hessg) (1)), (1.22)

F(6) :=h= "% = —Agy ft) — Ryy).

SERSINERS
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in [a,b]. Take z(t) := e /(") and define s = T — 1. Since Agz = (|V.f|> — Agf)z, one has

039 _
» T ae

Js = ¢ T (=Agf + |V fI? = Rg) = Agz— Ryz

which is a parabolic equation in M X [a,b]. It guarantees the existence of f(¢) along the
Ricci flow in M x [a,b]. Now, let {¢},c[q5 be the one-parameter family of diffeomorphisms

generated by {—V () f(t) }iejap)> With ¢, = 1d. By setting g(¢) := ¢, g() and £(0) == ¢ £ (o),
we have

d d :
80 = 0/ (5-8(1)) + 97 L 15 8(1) = —2(Ric) + Hessgy (1)

and

d ~ d
RO = 07 (S 1(0) + 07 L g, £(1) = B0 (1) Ry,

~ saBd s ~
The two latter equations imply % f= %. Hence, (g(t), f(z)) is a solution to (1.22).
Now, note that we can use (1.21) to obtain
d_sd_d
gl

~ . ~2 _~
o Eg,;f) :2/M|Rlc§—|—Hess§f| e deg.

So, F is constant in ¢ if and only if (§(t),f(t)) is a gradient steady Ricci soliton on M.
System (1.22) is known as Perelman’s modified Ricci flow in M X [a,b].

We say that g is a critical point of F™ if 8F™(v) = 0 for all v € €. Note that g is a
critical point of F™ constraint to % if and only if the orthogonal projection of grad F™(g) =
—Ric, —Hess, f onto ¢ is null. Then, the gradient steady Ricci solitons are critical points of
F constraint to €.

In [Per02], the functional

W(g,f,f)=/M[waJrf—n]udV:/M[r(R+|Vf\2)+f—n]udV, (1.23)

for 7 > 0 and smooth functions f on M it is also considered, where
eff
(47:1')% '

u::=

An associated entropy is defined by

1(g,7) :inf{W(g,f, r),/MudV _ 1}.
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In the same way as in (1.22), Perelman [Per02, Sect. 3.1] also showed that the system

%g: —2(Ricg +Hess, f),
%f: —Agf — Ry + 5%, (1.24)

d
dl’L’——l

has a solution in M x [a,b]. Moreover,

(%g, %f, d—dtr) - 2/Mr| Ric, -+ Hess, f — %g|2udVg,
where u = (4n7) " 2e /.
We highlight that F is nondecreasing in time under Perelman’s modified Ricci flow (1.22)
while W is nondecreasing in time under system (1.24).
An important consequence of this entropy formula is a lower volume ratio bound for solutions
of the Ricci flow on a finite time interval [0, T), asserting the existence of a constant x > 0, only
depending on n, T and g(0), such that the inequality

Vol, (B (xp))

it Z K

holds for all £ € [0,T) and r € [0,4/T) for balls B’ (xo) (with respect to g(¢)) in which the
inequality 7| Rm| < 1 for the Riemann tensor of g(¢) is satisfied.
In [CM19], Cortissoz and Murcia established the monotonicity of VYV and F-Perelman’s

functionals on surfaces M2 with boundary dM under evolution equations given by

( 25(t) = —2Ricy in M2 x(0,T),
ke(r) (- ) ¢( ) on oM x(0,T),
I = () IV f(OF =Ryy+ 55 in M>x(0,T),
eof(t) =0 on dM x (0,T),

| $r=-1 in M?x(0,T),

where k, is the geodesic curvature of dM, both with respect to the time evolving metric g, and ¢
is a smooth real valued function, which is constant in space, defined on dM x [0,e0) and which
satisfies the compatibility condition ¢ (-,0) = kg, (disregard 7 for the case of F).

In [Eck07], WW-Perelman’s Entropy (1.23) had been studied by Ecker in the setting of bounded
domains in Euclidean space R” equipped with its standard metric gg, whose boundary evolves
by mean curvature flow. More precisely, he adapted Perelman’s entropy formula to the situation
where a family of bounded domains {Ql}te[O,T) in R"” with smooth boundary hypersurfaces
family {0, },¢(o 7y is evolving with smooth normal speed

d
Bro, = —5xv,
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where x denotes the embedding map from d€Q; to R”, and v stands for the outward unit normal
vector field along d€;. For bounded domains Q C R”, 7 > 0, smooth functions f : Q — R and
B : 0Q — R, Ecker considered the functional

ng(Q,f,r):/Q[T|Vf|2+f—n]udx+2r/m[3udA (1.25)

and the associated entropy

-
uﬁ(Q,r):inf{Wﬁ(Q,f,r),/udlewhereu:: ¢ }
Q

(4nt)>
Suppose that {Q, } evolves as above, 7(¢) > 0, &7 = —1, and f satisfies the evolution equation
8 2 n
Zfr=_A v —

in Q; with Neumann boundary condition Vf-v = 8 on d€;. If {¢},c(o ) is an one-parameter
family of diffeomorphisms ¢ : Q — Q; generated by {—V f(x,7) },cp0.7) With x = ¢,(q), g € Q,
then

d 1
VB0 1(0)7(0) = 2% [ [Hess = 5ol uds

42 / ﬁ 2V[3Vf)+A(Vf,Vf)—£>udA

In the important case of mean curvature flow, that is, where 85, is the mean curvature H of the

hypersurfaces d€;, the expression

(Vf) :2H Z(VH Vf}—i—A(Vf,Vf)

is the central quantity in Hamilton’s Harnack inequality for convex solutions of the mean
curvature flow (see [Ham95]).
Ecker conjectured that VWg-functional for € is nondecreasing in time under the mean curvature

flow of any compact hypersurface in R”. More precisely

Conjecture 1.13. In the case of mean curvature flow in R" for compact embedded hypersurfa-

ces 0, it is expected that

1
/Qt‘Hessf—z—Tgo‘ / ZT) udA >0

To the author’s knowledge, this conjecture is still open. Lott was inspired by Ecker’s work
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to define a weighted version of the following action (cf. [Lot12])

IGHy(g):/MRng—FZ/aMHdA, (1.26)

If n = 2, then by Gauss-Bonnet theorem, Igyy(g) = 4m)(M). This action appears previously in
the works by Gibbons and Hawking [GH77], York [Yor72], and later by Aradjo [Ara03]. Igyy
is known as Gibbons-Hawking-York (GHY, for short) action. Now we shall briefly mention
some of their results. Gibbons and Hawking used this approach to evaluate the entropy of the
actions of the Kerr-Newman solutions and de Sitter space and found that it is always equal
to one quarter the area of the event horizon in fundamental units. Moreover, in the case of a
stationary system such as a star with no event horizon, the gravitational field has no entropy.

York gave results concerning the action principle, choice of canonical variables, and initial-
value equations strengthen this identification. One of the new canonical variables is shown to
play the role of "time" in the formalism.

Aratjo characterized the critical points of Iggy restricted to spaces of Riemannian metrics
satisfying various volume and area constraints when the dimension of the manifold is bigger
than three. In addition, he computed the second variation of /gy at critical points and provided
directions in which it is positive, negative or zero. These results generalize to manifolds with

boundary some well-known results that hold in the case of manifolds without boundary.

1.2.1 Evolution of the weighted total mean curvature functional

Lott defined a version of Perelman’s F-funcional for manifolds with boundary that can be

considered as a weighted version of the GHY-action on met(M) x C*(M) as follows

Lo(g,f) = / Rewe TdV+2 [ Hee /dA, (1.27)
M om
and called it weighted GHY-action I (see [Lot12]).

Before studying the evolution of I., we are going to establish the evolution of the mean
curvature at g, and then of the weighted total mean curvature functional (see Lemma 1.14).
We know three ways to do this. In the first one, the unit normal on dM is written in terms of
the family of metrics on M to express the derivative of the second fundamental form on dM
(see [Ara03, p. 89]). In the second one, the unit normal on dM is used locally as a gradient of
some smooth function on M (see [GM19, Lem. 2]). The last, we will make it here in the same
way as in [Mia03, Lem. 1].

Let {g(7)} be a family of metrics on M such that g(0) = g and %‘lzog(t) =v. For each t, we
denote V' as the covariant derivative with respect to g(z) with V := V°. We define e(¢) to be the
inward unit normal vector field on (9M, g(t)). We also choose {x¢}"._{, to be a local coordinate
chart for M such that {x;}~]' gives a local chart for M and Jy coincides with eq := ¢(0). Then

25



by definition

Aile(6)) = 5(0) (V5 0y.e(1).

where A;(g(r)) stands for the second fundamental form of (dM,g(¢)). Recall that ¢, 3, ... run
through {0,1,...,n—1} and i, j,... run through {1,2,...,n— 1}. Now we are going to calculate
the evolution of the second fundamental form. First observe that

d

el (X (1), Y (1) )

=v(X,Y) —l—g(zX(t)’ Y)+g(X, %Y(z)

=0 ot

=0’ =0

for all X(¢),Y (¢) vector field on M. So

0 B . d . .8
ZA(e0)| _ =v(V5950)+8(5 (V53| _ se0) +8(Va s 5et)

)

0 0
=T\vio+T{v00 +8 <§(Vf}iaj) ‘t:@’ eo) +Tg <8k, 560)

)

The facts that g(z)(e(t),dr) =0 and g(r)(e(z),e(t)) = 1 imply

)

- Ff‘jvao +g<%(V3i8j) ‘tzo,eo> +F§xjg (3a, %e(r)

)

d
+ F?Jg (807 ge(t)

Vok +g<9k, %e(f) ’t:0> =0,
voo +2¢ (eo, %e(t) ‘[:O> =0.

Since

d 1
g (;(V’a,- 9|,y 60) = 5 (V' + Vs = Vovij)

we conclude that

0 1 1
g““i (1)) = E(V,-voj + V% — Vo) + EvooAl- ;. (1.28)

This finishes the evolution of the second fundamental form. Now, we calculate

0 0 - .0

—H(g(t == l‘l]‘ ii V—A;i(g(t

SH(0)| =560 AT A )]

, 1 .. 1
= WA+ Eg’f(vivoj + V% —Vov;) + 5VooH, (1.29)
and observe that (1.2) implies

J ij 1 o0 0 ki O .0 0
th(g(t)) o = —v .Aij‘f‘ig (ViV i—Aipyoteg Ak +Vivi— A
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1
+ &M Ay — Vovij) + 5 Voot
-1
= V-2 (7%0vi;+ vooH ). (1.30)

This finishes the evolution of the mean curvature.

Now we calculate the evolution of the weighted total mean curvature functional.

Lemma 1.14. Let M be an n(> 3)-dimensional compact smooth manifold with boundary M.
Consider the weighted total mean curvature functional £ : met(M) x C*(M) — R defined as

L. f) :2/3MHe_fdA.

Then, the following equality holds:

_ V0 _ oliay. . glvij -f
0.Z(v,h) = 2V™ —gYVovij —vooH 4+ 2H 2 h)le/dA.

oM

o
In particular, if 5% —h =0 on M, then it reduces to

0L (v,h) = / (2%,-\/’0 — &"Vovij — (voo + VOO)H)e*fdA.
oM

Proof. The variation of % in direction (v,h) € (M) x C*(M), is defined to be

d
8L (wh)(8.f)= 5| Llg+msf+ih)

Thus, by equation (1.30), we have
5.2 (vh) =2 / S{H}e/ dA+2 / HS{e ' dA)
oM oM

g'vij

1
=2 (Vivlo—E(gl]VOVij—FVOOH))e_fdA—l—z S H(
M

. h) e/ dA

which is the first part of the lemma. Now, note that g"/v;; = trg(v]gs7) = v%a — Voo, and as

voo = v(eo, e0) = v(g*P 805,87 8100z ) = 7P g7° gangyovpe = %P g% vpe = v

we obtain v¥, = g'/v;; +v%. In particular, if % —h=0o0nM, then

gvij v 1 00 1 00

BV Ve 20020

2 2 2" 2"
Thus
0L (v,h) = / (2§ivi0 —gijV()vij — V()()H> e/ dA— Hv/dA.
oM oM
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This finishes the proof. 0J

1.2.2 Evolution of the weighted GHY-action

We start rewriting the weighted GHY-action as follows
Ioo(g,f):/ (Rg—l-]Vflz)e_de—l—Z/a He ' dA. (1.31)
M M

It follows by using Age ™/ = (|Vf|> — Ay f)e/ and divergence theorem in (1.27).
Lott computed the evolution of I, directly from (1.27). From Proposition 1.9 and Lemma 1.14,

we give proof of this evolution, as follows.

Proposition 1.15. Let M be an n(> 3)-dimensional compact smooth manifold with boundary
OM. Let I, be the weighted GHY-action on met(M) x C*(M) defined as in (1.27). Then its

evolution is given by

(04

S1.a(v, ) = /[—v“ﬁ( ap+VaVpf)+ (52— (R, —ny|2+2Agf)}e—fdv

+/ ——h eof Alel]_VOOeOf+2H<g 2v .—hﬂe_fdA.

Proof. For the sake of convenience, we are following a different way to address the problem,
however, the main ideas are the same as in Lott. For it, we are working with (1.31) instead
of (1.27) so that

Io(g,f) = F(g ) +ZL(gf).

Thus,
0lw(v,h) = 0 F (v,h) + 8L (v, h).

The first term on the right-hand side is provided by Proposition 1.9, and the second by Lemma 1.14.
From which, one has

Vi

5Lo(wh) = [ [=v*P(Rap+VaVpf)+ (— ) (Ry — V242, f)| e av
a —~ . .. ..
+ - [2(% — h> eof — <V,~v’0 — Y + A — V(g vij) +vaOVaf>} e/ da
o i
+ / 290 — g Vquy; — vool + 2 (£ — k) e/ a

Vi

—/ — aﬁ+vavﬁf)+(7—h)(ze —ny|2+2Agf)}e—fdv

+ [2(%—11)60‘]“ AJV1J+V VIO—VIOVf V00€0f+2H< 2V J _h):|eifdA
oM
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The proposition follows from Vivi%e~/ = V;(v% /) + ¢~/ V, 10 and divergence theorem. [J

Corollary 1.16 ([Lot12, Prop. 2]). Let M be an n(> 3)-dimensional compact smooth manifold
with boundary OM. Let I, be the weighted GHY-action on met(M ) x C*(M) defined as in (1.27).
If%—h:OonM, then

SI(v,h) = — /

P (Rap —i—VaVﬁf)e_de—/ (Viinj-i-VOO(H-i-eof))e_fdA.
M oM

By taking f constant in Proposition 1.15, we obtain.

Corollary 1.17 ([Ara03, Sect. 2]). Let M be an n(> 3)-dimensional compact smooth manifold
with boundary OM. Let Igyy be the GHY-action on met(M) defined as in (1.26). Then

R .
5IGHY<V) = —/ VaB (R(xﬁ — ngaﬁ> dV—/aMVU(.A,'j—HgU)dA. (132)

M

We are in a position to analyze the critical metrics of Igyy. Recall that g € met(M) is a
critical point (or critical metric) of Igyy if dlgyy (v) =0 for all v = %g(t).

Corollary 1.18 ([Lot12, Prop. 2]). Let Igyy be the GHY-action on met(M) defined in (1.26),
with n > 3. If it is fixed an induced metric gy); on dM, then the critical points of Igyy are the
Ricci-flat metrics on M. On the other hand, if it is considered all variations, then the critical

points are the Ricci flat metrics on M with the totally geodesic boundary oM.

Proof. Assume that the induced metric gy, is fixed. Then v;; =0 on M and by (1.32) we

have
. R R
/M<V,RIC—7gg>dV = /Mvo‘ﬁ (Raﬁ — jggaﬁ> dv =0,

for all v € S2(M). This implies Ric, —% g = 0 on M. Take the traces in this equation to obtain
Ry(1—3) =0, so R, = 0. Therefore, g is Ricci flat. This proves the first statement. In the

general case, we have
. R
/ <v,R1c——g>dV+/ (v, A—Hg)dA =0,
M 2 oM

for all v € S?(M) from which we obtain that the critical points are Ricci flat metrics on M with
totally geodesic boundary oM. O

Aratjo classified the critical points of Iggy constraint to set met, (M) = {g € met(M) :
aVolg (M) +b Areay (dM) = 1} where Area,(dM) is the area of (dM, g), Volg(M) is the volume
of (M,g) and a,b are real numbers with either a > 0 or a = 0, b = 1. He showed that when
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a =1 and b = 0, the critical points of the functional /gyy correspond to Einstein metrics with
totally geodesic boundary. When a = 0 and b = 1, the critical points correspond to Ricci flat
metrics with umbilic boundary of constant mean curvature (cf. [Ara03, Cors. 2.2 and 2.3]).

Remark 1.19 ([Lot12, Sect. 3.2]). The variations in Corollary 1.16 all fix the measure e fav.
If we also fix an induced metric g5;; on dM then the critical points of I, are gradient steady
Ricci solitons on M that satisfy H +egf = 0 on dM. On the other hand, if we allow variations
that do not fix the boundary metric then the critical points are gradient steady Ricci solitons on

M with totally geodesic boundary and for which f satisfies Neumann boundary conditions.

From this remark, one can obtain an idea of how Lott motivated his boundary conditions to

the backward heat equation (1.22). In Chapter 2, we will follow the Lott’s program.

1.2.3 Evolution of the )V..-type entropy functional

In [Lot12, Example 2], Lott pointed out that after making the change from F-type functional
(1.27) to W-type functional (1.25), it is possible studying its evolution. Here, we address this

issue in more detail. For it, we define W..-type entropy as follows
Woo(g,f,r)z/ (TRw+ f —n)udV +2 ; THoudA . (1.33)
M M

where u := (47t’c)_%e_f . Using Proposition 1.15, we have the following evolution of W.

Proposition 1.20. Let M be an n(> 3)-dimensional compact smooth manifold with boundary
OM, and consider the Wa-type entropy on met(M) x C*(M) x R, defined in (1.33). Its

evolution is given by

SWw(v,h,é):/M[(g‘gaﬁ—waﬁ)( ap+VaVpf—5 gaﬁ)+7<%— —2—§> (R —|VfI?
IRTW IR AR )] uav+ / &(2H +eof) — T(ATvi; +vPeof)
21 (%—h——i)eo]H—NH(g zv” h—z—gﬂudA.

Proof. Observe that the functional in (1.33) can be decomposed as

Iw(g7f)+%/M(f—n)e_de.

T
Welg f,7) = (4mt)2 (4r7)2

Moreover, we can calculate the variation Wk at (g, f, 7) in the direction of (v,h,&) as follows

W (1,11, E) = 5Wer(0,0,E) + SWea (v, 1,0).
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So,

T

Wl £) = 8 ,l)(o,o,5)1w+5((41

(4mt)2 ntT)2

T 1 »
+(47:1);5100(\/,}1)%—(47m_)35</M(f—n)e dV)(v,h).

Now, we compute some terms of this equation. The first one of them is

)©0.0.8) [ (f=me/av

) 0,080 = (1= =

Lo
(4rmt)2

= [ =D)ewe+1viPuav2 [ (1-D)eruan.

0 ( (4%1)%

The second one is (see Proposition 1.15)

o

L (v,h) = /M [ — 0% (Ryp +VaVp )+ 7( 5% — 1) (R~ IV F P+ 280 f) uadV

(4mt)2

o

y ij
+ ) T[2<v_a—h)eof—A”vij—vooeof-l-ZH(g Vij
M

2

The third one is

5( ! )(o,o,g)/M(f—n)e—de:—@ (f —n)udv.

(4mt)2 2T Ju

The fourth one is

amr (Lo me @ )wm = [ (e (-m( ) uav.

By a combination of all these terms, we get

5W°°(v7ha§)
= | [~ 0" (Rap + VaVps) + (5~ ) (R~ [V +244)
n& n vy
=5 =)+ SR V) = SE R+ [T ot () (57 =)V
+/aM [25H+21(v7“—h)eof—rAifVij—fv00e0f+27:H<gl]2vij —h— 2%5)]udA.

Now absorb (f —n) (% — h) into the third bracket of the terms on the first line to get

OWa(v,h, &)

B /M [(—Tvaﬁ)(Raﬁ —|—Vavﬁf)—|—f<% —h) (Rg— |Vf|2—|—2Agf+ f_;n)
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5o (=) &R+ VFP) = FE R+ VS P) + h|udv

Ya N i 00 2H<@_ g
+/(9M[2§H+27:(2 h)eof TAYvij—tvTeof +21 5 h 27:6 udA.

Now, use & g% into the first bracket of the terms on the first line to get

OWaw(v,h, &)
—/ (—v® +86%P) (Rag +Vanf>+r(% —h) (Rg— VAT +24ef + f—;”)
S () + E-A VD) - E Ry +|Vf|2)+h]ud\’

+/ 2§H+27(7—h)60f ‘L'.AJVU Tv00e0f+21H( 5 h——é)]

21’

Regrouping the terms on the first and second lines, we obtain

OWeo (v, 1, &)

= [ [0 £ ag + V) 4 (5 = 52) (R V1P + 28, + 127

+E(=Af +[VIP) = nEIV 2+ nEAS + | uaV

—l—/ 2§H+2’C(T—h)eof TAY v —Tvooeof+21:H<

o g8

Using — 2—1T 8o p 1nto the second bracket of the terms on the first line together with the fact that

1

1 n
— _ %P afy — o 4
2T8a[3( ™ +Eg"F) 7Y a+2T€
and simplifying, one has
Weo(v,1,8)
= @B 4 £ g%B)(Ryg + VoV f — — Yo Y (R~ VP 424
= [ (o +6") (Ru + VaVipsf — 5-sap) +7( 5% — =52 ) (Re— VS + 281

HLEEED) e )8 (8~ VP |uav

+/ [2§H+21(T —h)eof — TAY v — TVOO€0f+ZTH( 2 —h= _§>]

Since [y, (|Vf|> —Agf)e T dV = [}, Age ™ dV = [5,,e0 e/ dA we get

Weo (v, 1, E)

1 a
I/M[(—TV“BJrég“ﬁ)(Raﬁ +VaVﬁf—Egaﬁ)+r<vT—h—g) (Rg—ny12+2Agf
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+f__z_1) udV+/ [2§H—(n—1)J§e0f+2r(%_h)eof_mijvij_wooeof

con(F5 - L)

Simplifying the terms on the boundary integrand we get the result of the proposition. U

We observe that —% V —h— 5 vanishes identically on M if and only if the measure dn = udV

remains fixed on M, since 5(udV) = (T‘x — 5)ud\/ In particular, as v% = g"/v;; +v% we
get
g7vij né v ng 1 1 00
_p Ve, NS Z 00 200 1.34
2 2t 2 20 20 T2 (139

Corollary 1.21. Let M be an n(> 3)-dimensional compact smooth manifold with boundary oM,
and consider the Wa-type entropy on met(M) x C*(M) x R defined in (1.33). If % —h—
% =0on M, then
Wl &) = [ (68 ~0v) (R + ViV f 5 -gapucV +7 [ (St +eor) 4,
Ity v of B 27 of o \ T J
— 00(H+eof)>udA

Corollary 1.22 ([Per02, Sect. 3]). Let M be an n(> 3)-dimensional compact smooth manifold
without boundary, and consider the Wa-type entropy on met(M) x C*(M) x R defined as
in (1.33). If %3¢ —h— "2 = 0 on M, then

1
W1 8) = [ (£8P = 0vP) (Rap +VaVpf = 5-gapudV
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Chapter 2

Mean curvature flow in an extended Ricci
flow background

Let M be an n(> 3)-dimensional smooth manifold and let (g(¢),w(z)) be a solution to the

{

in M x [0,T), for some initial value (g,w). Here @, = (n—1)/(n—2) and dw(¢) ® dw(z) denotes
the tensor product of the 1-form dw(t) by itself, which is metrically dual to gradient vector field

extended Ricci flow

g(t) = —2Ricy() +2a, dw(t) @ dw(t),

(2.1)
W<t) = Ag(t)w<t),

Yoyv

Vw(t) computed on g(z) of a scalar smooth function w(z) on M. For an account of extended
Ricci flows, including proof of short-time existence of solutions to (2.1) on complete manifolds,
we refer to List [LisO8, Thm. 4.1]. In this paper, List also showed that Hamilton’s Ricci flow
and the static Einstein vacuum equations are closely connected by extended Ricci flow, which
justifies the value of the constant ;. So, he provided an interesting and useful link from
problems in low-dimensional topology and geometry to physical questions in general relativity
(see [Lis08, p. 1010-1013] for details).

Associated to (2.1), List defined the F-type functional on & (M) := met(M) x C*(M) X
C*(M) by

1% (g, f,w) = /M (Reo — 0| VW|?)e T aVv . (2.2)

As mentioned before, Lott approached mean curvature flow in a Ricci flow background by
introducing an analogue of Perelman’s F-functional for a manifold M with boundary dM, and
then he obtained a weighted version /. of the Gibbons-Hawking-York action.

In this chapter, we work in the setting of List by means of Lott’s approach. The first step is
to introduce the proper extension of (2.2) for manifolds with boundary.

Suppose M is an n(> 3)-dimensional compact smooth manifold with boundary dM. We
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define the weighted extended GHY-action on & (M) given by
120(g, fiw) = / (Reo — 0y |VW|?)e ™/ AV +2 /a He.e/dA. (2.3)
M M

Our background is closely related to special solutions to (2.1), which we will study in detail

now.

2.1 Gradient solitons to the extended Ricci flow

Special solutions to the extended Ricci flow come from gradient solitons. We describe such
solutions on a background geometry, we follow as in Ph.D. thesis by List [Lis06, Sect. 2.2] in
the line of Lott and Kleiner [KLOS, Appx. C].

A gradient soliton to the extended Ricci flow is a self-similar solution (g(¢),w(z)) of (2.1)
given by

gl) =0o()ve, (2.4a)
w(t) = y'w, (2.4b)
for some initial value (g,w), where y; is a smooth one-parameter family of diffeomorphisms of

M generated from the flow of V, /o () computed on g, for some f € C*(M), and o is a smooth

positive function on 7. Gradient solitons to the extended Ricci flow are obtained as follows.

Proposition 2.1. Let M be an n(> 3)-dimensional smooth manifold. Suppose there exists a
triple (g, f,w) satisfying

Ric, +Hess, f — 0, dw @ dw = A g, (2.5a)
Agw = (Vo f, Vew), (2.5b)
forsome A € Rand a, = (n—1)/(n—2). Take y, the one-parameter family of diffeomorphisms
generated by Y; = %, with Wy =1Id and o(t) = 1 —2At > 0, where t € (—oo, ﬁ), for A > 0;

teR, forA=0;andt € (%, +o0), for A < 0. Then, (g(t),w(t)) = (o(t)y;"g, Wiw) is a gradient
soliton to the extended Ricci flow on M.

Proof. Setting g(t) = o(t)y; g and w(z) = y*w, one has

a * * * *
580 =0 Oy g+ o)y (Lyg) = ¥ (—2Ag+2Hessy f) = —2y; (g — Hess, f)
= —2y; (Ricy — 0, dw ® dw) = —2Ricg() +20, & (t) @ diw (t)

and

1

5 7() = v (Lyw) = 0N Ly, w= 0N (Vof ,Vew)e = 0N Agw = Ag(ryW(1).
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This completes the proof. 0J

We observe that a gradient soliton to the extended Ricci flow on M can be characterized by
means Proposition 2.1. Indeed, if (g(¢),w(t)) is given by (2.4a) (as well (2.4b)) and satisfies (2.1),
then by a straightforward computation it satisfies (2.5a) (as well (2.5b)). Thus, we can assume
that a gradient soliton on M is a triple (g, f,w) as in Proposition 2.1. It is steady if A = 0,
shrinking if A > 0 and expanding if A < 0. The function f is called the potential function.

Now, by setting f(t) = " f, using (2.5a), (2.5b) and conformal theory, we obtain

Ricg + Hessg]_‘ — o, dw R dw = %?,

Moreover, by scaling g one can normalize A = 1/2 in the shrinking case and, A = —1/2 in the
expanding case. For A =1/2, o(t) =1—¢ > 0 implies t < 1. Settings =¢— 1, we have s+ 1 =
t <1,ie., s <0, and then, g(s) = o(s)y; g, with o(s) = —s and y_; =1d. For A = —1/2,
o(t)=1+1>0impliest > —1. Setting s =7+ 1, we have s— 1 =7 > —1, i.e., s > 0, and then,
g(s) =o(s)y;g, with o(s) = s and y; =Id. So, we immediately obtain the next proposition.

Proposition 2.2. Consider an n(> 3)-dimensional smooth manifold M, and let (g(t),w(t)) be
a gradient soliton to the extended Ricci flow in M. The following identities hold for all time t:

Rng+Hessgf— o, dw @ dw = 2%?, (2.6a)
Agw = <V§]_‘, Vaw)g (2.6b)
where ¢ = 0 in the steady case (for t € R and yy = 1d), ¢ = —1 in the shrinking case (for

t € (—e0,0) and y_y =1d) and ¢ = —1 in the expanding case (fort € (0,+o) and y; =1d),
besides

Jd— _
5/ = IV fIl2. (2.7)

The function f is still called the potential function.

2.2 Evolution of weighted extended GHY-action

In this subsection, we obtain a variational formula for the weighted extended GHY-action 1%
on & (M), where M is an n(> 3)-dimensional smooth manifold with boundary dM. In the next
subsection, we apply this formula to derive the evolution equations of /% under the Perelman’s
modified extended Ricci flow in M x [0,T).

Recall the following notations 6g = v and & f = h, and denote dw = ¥, where 6 := % ’ Y
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The variation of I% in direction (v,h,¥) € S?(M) x C*(M) x C*(M), is defined to be

d
SIZ (v h, 0) (8, fow) = 5| _ I (@1, f +1h,w+19).

Moreover, recall that % — h vanishes identically on M if and only if the measure dn = e~/ dV
remains fixed on M, since §(e~/ dV) = (% —h)e~/av.

Proposition 2.3. Let I%" be the weighted extended GHY-action on &? (M) defined in (2.3). Then,
the following equality holds:

o

5Ign(v,h,l9):/M[v“ﬁ(—Raﬁ—Vavﬁf+anvawvﬁw)+(%"—h)(R — |V +2Af
[V ) 4 2000 (Agw — (Y, V1)) de+/ 2(5 ——h Jeaf ~viA
iy
— W0 f+ 20 Beqw + 2H(ﬂ _ hﬂ e dA.
2
In addition, lf% —h=00nM, then
I (v,h,¥) = /Mv“ﬁ(—Raﬁ —VaVpf+0,VawVgw) +2(xn19(Agw— (Vw, Vf>)e_de
+/ <2ocn19eow—viinj—vOO(H+e0f))e*fdA.

oM

Proof. Notice that
12 (g, f,w) = / (Roo — Oc,1|Vw|§)e_de—|—2/a Hee T dA = L.(g, ) — a1 (g, f,w),
M M

where 11 (g, f,w) := [, |Vw|§,e*f dV. Hence, it is enough to compute 8/, (v, h, 9) since we know
0l (v,h) from Proposition 1.15. First, we have

o
ol = / [6(|VW|2) + |Vw|2<v—a —hﬂ e av.
M 2
A straightforward computation gives us
o (]Vw|2) = —gayvyggBCVawVﬁw + ZgaBVaﬁVﬁw.
So,

o
5l = / [— VPV ¥ gwe ! + 28V o0V gwe ! + |V (VT‘” - h) e_f} dv.
M
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Integration by parts implies
ol = / [— vaﬁvawvﬁwe_f + 2gaBVa (ﬁVﬁwe_f) — Zgaﬁ 19VaVBwe_f
M
_ _ ve _
—2g%P ﬁvywréﬁe f40g%h VVgwVgfe I+ vw)? <Ta — h)e f} dv.
Since
div(de ' Vw) = gaﬁva(ﬁvﬁwe_f) —gaﬁﬁvywl"gﬁe_f,

by Stokes’ theorem, we get

o
ol = /M [—vo‘ﬁvawvﬁw—Zﬁgaﬁvavﬁwe_f+219gaﬁVﬁWVaf—|— |Vw]2<v7a —hﬂe—de

-2 Vegw e TdA.

The proposition is then a consequence of the previous equation and Proposition 1.15. 0

Remark 2.4. If M has no boundary, then Proposition 2.3 appears in [LisO8, Sect. 3] as follows

o

513”(v,h,0):/ VB (—Ro = VoV + 0V awVpw) + (52— ) (R — |V

M
£ 20 f — 0| VW [?) + 206,09 (Agw — (Vi Vf>)] el dv.

In addition, if 2% —/ = 0 on M, then

SI% (v, h, §) = /

" [v(xﬁ (_Raﬁ - Vavﬁf+ OCnVaWVﬁW) + 2an19(Agw —(Vw,Vf)) e fav.

In the same line of Remark 1.12, List showed that

g(t) = —2(Ricg(t) +HCSSg(I) f(t) — Oy, dw(t) ®dw(t)),
) = Ag(t)w<t> - <Vw(t)vvf(t)>g(t)a (2.8)
t) = _Ag(t)f(t) _Rg(t) + O‘n’VW(t)@(I),

SERPNEREISS Y
~ =
-~

has a solution in M X [a,b] (see List [Lis06, Sect. 2.1] for details), so that one can also think

that I has a gradient-like structure on
% = {(v, 8) € (M) x C*(M) :v=8g , © = Swand 8(e~ dV) = o}.

We call system (2.8) a Perelman’s modified extended Ricci flow in M X [a, D).

The next corollary provides boundary conditions to couple in (2.8).
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Corollary 2.5. Let I% be the weighted extended GHY-action on &2 (M) defined in (2.3). If the
induced metric on M is fixed, then the critical points of I%" constraint to 6\ are gradient steady
solitons on M that satisfy H+ eof = 0 and eow = 0 on dM.

Proof. First, note that
(@) = VP (e D €b)ap = v le0. ) 0, 0p) = .

By hypotheses we have ”(XT‘" —h=0o0nM and v;; = 0 on dM which allows us to use Proposition 2.3
to obtain

/M (<v, —Ric, —Hess, f+ o, dw @ dw> +20,,% (Agw —(Vw, Vf)))e_de
+/8M (2(xn19€0w—<v, (H+e0f)e%®eg>)effdA:07 2.9)
for all (v,9) € %,. We first start assuming (v, %) € %.. Then
/M <<v, 0, dw ® dw — Ricy —Hess, ) + 20,0 (Agw — (Vw, Vf>)>e_fdv —0.
Therefore (g, w, f) must be a gradient steady soliton. So, again by (2.9) we get
/aM (20£n19€ow — (v (H+eof)ey® eg>> eTdA =0,

for all (v,%) € €1. Hence H +eof = 0 and egw = 0 on JM. O

Corollary 2.6. Let I be the weighted extended GHY-action on (M) defined in (2.3). The
critical points of I% constraint to € are gradient steady solitons on M with totally geodesic

boundary satisfying the conditions ey f = 0 and eow = 0 on dM.

Proof. The argument is very similar to the proof of Corollary 2.5. Suppose that it has already

been proven that (g, w, f) is a gradient steady soliton, then
/a (Zanﬁeow— <v,A+(H+eof)e(b)®e%>>e*fdA:0, (2.10)
M

for all (v, %) € %) from which we obtain that the critical points are gradient steady solitons on

M with totally geodesic boundary satisfying the conditions ey f = 0 and egw = 0 on IM. 0

Remark 2.7. If w is constant, then we recover Remark 1.19.
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2.2.1 Time-derivative of the weighted extended GHY-action under Perelman’s
modified extended Ricci flow

We begin with a general result from Gauss and Weingarten formulas. For it, assume that
holds H + ¢p f = 0 on dM, then one has

ViVif=ViV,f+HA; (2.11)
and
ViVof = —V;H + A5V, f. (2.12)
Indeed, Gauss formula (see [DT19, p. 3]) implies
ViV,f = 0i0;f = (V3,0;) f = 0i0;f — (Voo + Aijeo) f = ViV i f + HA,.
Since g(Vieo, V.f) = g(Vieo, V.f +eofe) = —V f Ay, we get
ViVof = didof — (Vae0) f = —ViH + A5V, f.

This finishes our claim.

Next, we compute the time-derivative of /% under Perelman’s modified extended Ricci flow.

Proposition 2.8. Let M be an n(> 3)-dimensional compact smooth manifold with boundary
OM, and let IS be the weighted extended GHY-action on (M) defined in (2.3). If (g(t),w(t)) €
met(M) x C*(M), t € [0,T) evolves by

%g = —2(Ric+Hess f — o, dw @ dw), (2.13a)
%w = Agw —(Vf,Vw), (2.13b)
and
J 2
gf = —Agf — Rg + 0,y [V (2.14)

in M x [0,T) satisfying H+ eof = 0 and egw = 0 on dM. Then the following equality holds:

d
a]gﬂ = 2/ (lRiC+HeSSf— (Xndw®dw|2 + an(AgW— <VW,Vf>)2)e_de
M
+2 /aM (KH 2V, VH) + AVEVF) + AT A H + AR+ 2ROV, f — ViR
— o, A(Vw, %w))e—f dA.
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In particular, if both R;j+V;V jf — a,, ViwV jw and Rio + V;Vo f vanish on dM, then
AH —2(Vf,VH) + A(Vf,Vf) — o A(Vw,Vw) + AT A;iH + AVR;; + 2RV, f — V,RY = 0.
Proof. By (2.13a) and (2.13b) we have Vap = 2(anVawVﬁw—Raﬁ — VaVﬁf) and 19 Agw—

(Vw, V), respectively. Tracing the previous equation and using (2.14), we obtain % —h =0
on M, which allows us to use Proposition 2.3 to get

d
alg" :2/ <| Ric -+ Hess f — o, dw @ dw|* + o, (Agw — (Vw, Vf))z) e fav
M
+2/8M (.Aij(Rij + V,-ij— OCnViWVjW))e_fdA.
We claim that if egw = 0 on dM, then
AT (Rij+ ViV i f — ayVewV w)e ™ — ¥, ((R"O L VIVt ) (2.15)
= (Rt —2(V £, VH) + AV, V) + ATAGH + AR+ 2ROV, £~V iR i, A(Vw, V) ) e/
Indeed, as A’J(§ % ife” =V, (Aij(§jf)e_f> —e/ (%iAij> §jf+.,4(§f, %f)e‘f, we have
Al (R,'j +ViVf— (XnViWVjW> e/
(Ainij + Aij§,~§jf + HAiinj — O%A(%w, %w)) e/
= (AR~ (Vi )V, f + HAT A+ ALV ) = apA (Vo Yw) ) f
4V (Al’f vV, f)e—f>.

Adding 0 = (KH —(Vf, §H>> e~/ — V(e /ViH) together with (1.12) leads

AT (Rij 4+ ViV i = 0 ViV jw) e

- (AH (Vf,VH)+ AUR;; — (V A”)V S+HAIA+ AV V) — o A(Vw, Vw)) ~f
V,-((AUV S ViH) e )

- ( —(Vf,VH) +AR;; +Ro/V i f —VIHV ,f +H AT Ai; + AV £, f) =0, A(Vw, vw)> -f
Vi( (A99,1 - ViH)e )

- (ZH —2(VF,VH) + AR, + Ry/V ;,f + HATA;; + AV, VE) — o A(Vw, VW)) ~f
Vi (4997 -VH)e ). (2.16)
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By equation (2.12), we get
v ( (Al’ﬁ if - %’H) et ) _V, (vovi fe! ) _V, ( (Rol' VOV f) et ) _v, (ROie_f )
—V, ( (ROi VOV f) et ) + ( _V:RY + RUV, f) e
We substitute this into (2.16) to establish our claim. Hence, the first part of the proposition

follows from divergence theorem. In particular, if both (Ri_,- +V,V,f— Och,-ijw) lop and
(Rio +VVof ) |gas vanish, then from Eq. (2.15) the boundary integrand vanishes. U

Corollary 2.9 ([Lot12, Thm. 2]). Let M be an n(> 3)-dimensional compact smooth manifold
with boundary M, and let I, be the weighted GHY-action on met(M) x C* (M) defined in (1.27).
If (g(t)) € met(M), t € [0,T) evolves by Perelman’s modified Ricci flow in M x [0,T) (1.22)
satisfying H + eof = 0 on dM. Then the following equality holds:

d ~ ~ o~ ~ o~ iy iy
3= 2/ | Ricg + Hess, f|%e ™/ dv+2/(9 (Ah—2(Vf,VH) + A(VF,Vf)+ AV A H+ AVR;
M M

+ 2R0i§\7if - €7,'R0i)e_f dA.

2.2.2 Evolution equations for the boundary geometry under a Perelman’s
modified extended Ricci flow

In our next result, we establish the evolution equations of the geometric quantities of dM
under Perelman’s modified extended Ricci flow.

Proposition 2.10. Let M be an n(> 3)-dimensional compact smooth manifold with boundary
OM, and let IS be the weighted extended GHY-action on (M) defined in (2.3). If (g(t),w(t)) €
met(M) x C*(M),t € [0,T) evolves by

%g = —2(Ric+Hess f — o, dw @ dw), (2.17a)
%W =Agw —(Vf,Vw), (2.17b)

and
d 2
—atfz—Agf—Rg+Otn|VW| (2.18)

in M x [0,T) satisfying H+ eof = 0 and eow = 0 on M. Then, the following hold:

d

5817 = —(Lg )i = 2(Rij = auViwV jw) —2H Ay (2.19)
d -~
Ew =Aw+VoVow — ngw, (2.20)
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0 ~
Aij = (AA)ij— (Lo, A)ij — ASRy — AR i+ 2 AN Ry — 2H Ay A

o
2.21)

+ AM Ay Aij + VoRoi

and
(2.22)

d ~ ~ o~ . . ~  ~
EH =AH — <Vf, VH) + ZAUR,']' + Al]Ain + VoRgo — ZOCHA(VW, VW).

Proof. The proof is analogous to the one given for Theorem 3 in [Lot12]. Nevertheless, we

shall present it here for the reader’s convenience.
We start by substituting V;V;f = V,;V,;f +HA,;; (2.11) into equation (2.17a) to get

0 ~ o~ ~ o~
ggij = —Z(R,'j —+ Viij—f—H.A,'j — OCnViWij)
= —(ngg)ij — 2(Rij — OCn%iW%jw) — 2H.Aij,

which is equation (2.19). Likewise, equation (2.20) follows from Proposition 1.5.

To prove equation (2.21) we first observe that by (2.17a)

1
Evaﬁ = _(Raﬁ + V(xvﬁf— OCnVaWVﬁW).

It has already been calculated %Ai j to arbitrary variation (see (1.28))
1 1
0Aij = 5(Vivjo+V vio = Vovij) + 5vo0Aij.

Since eqgw = 0 implies vog = Rop + Vo Vo f, the previous equation is rewritten as
i(RjO +V,;Vof — OCanWV()W) -V; (Rio+ ViVof — 0, ViwVow)
(Rij+ViVf —anViwV jw) — A;j(Roo + Vo Vo f).
Now we will compute some terms of this equation. The first one of them is

ViViVof =ViViVof — AiVoVof + AV V. f.
Replacing V;Vof = —§jH + .Akj%kf (see (2.12)), we obtain
ViViVof = Vi ( - %H + Akﬁkf) — AijVoVof + A <§j§kf + HAjk)

=V, ( — @H +Akj§kf> - AijVOV0f+Aki§j§kf‘|’H~AkiAjk
= V;V;H+ <§iv4kj) Vif + A ViVif = AyVoVof + AV Vi f + HAS A
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The second one of them is due to Symmetry Lemma (see (1.1))
VoViV,if —V;ViVof =VoV;Vif =V, VoVif = —Ro;jaiV*f = —RojuiV* f — RojoiVof-
The third one of them is

VO (V,‘WVjW) = 80(V,-ijw) - <VW, Vaoai>VjW - V,‘W(VW, Vaoaj>
= <V0V,'W + <VW, Vao 8,)) VjW +Viw <V0ij + <VW, Vaoaj>>
— <VW, Vaoa,-ij - V,’W<VW, V308j>
= V,‘VQWV]'W + V,‘WVjVOW.
By interchanging 0 and j we also obtain
v; (V,-wvow> = V.V wVow+ ViwVoV jw.

All this implies that

%AU = —ViRjo—VRjy+ VoR;; — Aij(ROO +VoVof) — ViViVof =V,;ViVof+VoV,V,f
+ 0, Vi(VjwVow) + 0,V ;(ViwVow) — o, Vo (ViwV jw)
= —ViRjo— V jRio + VoRij — Aij(Roo + VoVof) + ViV ,H — (61'/4](;) Vif
— AE ViV f 4+ AijVoVof — ANV Vi f — HAF iAj— Ro,‘kﬁkf + RojoiH
= ViV;H — (Vidij — Rojic) VEf — AV Vi f — A Vi f + RoioH
—ViRjo— VRio + VoRij — AijRoo — HA" i Ajy.

Using Codazzi-Mainardi equation Ry i = %iA k— §kAi ; (see (1.11)) gives

B . N _ N .

gAl-j = V,’VjH — (Vk.Aij) ka — .Ak ,‘Vjka - A"jV,-ka —f-R(),'()jH — Vl'Rj() — VJ'R,'() + V()R,'j
— AjjRoo —HA* A

Making T = A in (1.3) to obtain

9 _
EAU =V,V,H — (E@NA) y —ViRjo—VRjp+VoR;j — .Ain()() + RoiojH — HA* iAjk'

From Simons’ identity (see (1.10)) we get

)

gAij — (AA);;— <£§f«4> 0 (ViR jo — §iRjO) —(VjRio — %Rio) —2A;iRo0 + A" iRoko

+ A* iRokoi + 2A Ry j — 2HA* (A ji + AX Ay Ajj + VoRoio;-
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Since ViR jo = ViR jo — AijRoo + AR i (see (1.2)), we conclude (2.21).
For finishing our proof, we will show equation (2.22). For it, note that
SH = —vi; AY + g8 A;
and by (1.4) applied to T = A to obtain
g (Lg A)ij —2AY ViVif = %,c(gij Aij) = (Vf,VH).
So,

EH = Z(Rij—l-Viij— OCnViWVjW+HAij)AJ —|—g]<§.»4,‘j>

= 2(Rij+ ViV f + HA; ) AV + ¢ ((ZA)U - (56 f‘A) = AGR g = AR i
+2AM Ry — 2H AR (A + A A Asj + VoRoio j> — 20¢nv4(§w7 §W)
= 2 ARy + 2H AT Ay + AH — (8(Lg A = 249V ) = 245 Ay + A A
+ VoRoo
— AH — (Vf,VH) +2AR;j+ AY A;jH + VoRoo — 20, A(Vw, V).
This finishes the proof. U

As a consequence of Proposition 2.10, we have the following refinement of the formula

obtained in Proposition 2.8.

Corollary 2.11. Let M be an n(> 3)-dimensional compact smooth manifold with boundary dM,
and let I% be the weighted extended GHY-action on & (M) defined in (2.3). If (g(t),w(t)) €
met(M) x C*(M),t € [0,T) evolves by

%g — —2(Ric+Hess f — 0t dw  dw), (2.23)
EW = AgW - <Vf7 VW>
and
0 2
o) = 7Bef — Rt 0| V| (229

in M x [0,T) satisfying H+ e f and eow = 0 on dM. Then the following identity holds:
d , : 2 2\ _f
&Iwn =2 <|R1c—|—Hessf— 0 dw @ dw|” + ot (Agw — (YW, V ) >e dav
M
d ~ = ~ = ~ 1 ~ =
oL /a (;H — (V£,VH) + AV £,V F) 12RVif —5VoR —HRoo +0, AV, Vw))e_fdA.
M
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In particular, if both R;j+V;V ; f — 0, ViwV jw and Rio+ V; Vo f vanish on dM, then the integrand
of OM vanishes.

Proof. From equation (2.22) of Proposition 2.10, the boundary integrand term of Proposition 2.8
can be rewritten as

~

AH —2(Vf,VH) + A(VF,Vf)+ AY A H + AR;j+ 2ROV, f — V;RY — 0, A(Vw, Vw)

p) o~ o~ o 1 PN
== H -~ (VF,VH)+ AV, V) 42ROV, f — 5 VoR — HRoo + L A(Vw,Vw).
The second contracted Bianchi identity and the fact that VR o = %iR jo—AijRoo + A%R jk (see
(1.2)) imply

1 Iy A~ o ..
EVOR = ViR® +VoRoo = ViR + AYR;; — HRoo + VoRoo.

The required integral formula follows from these two latter equations. If, in addition, both
Rij+ViV,f—0,ViwV;wand Rjp+ V,;V f vanish on dM, then by Proposition 2.8 the integrand
of dM, namely

%H —(V£,VH)+ AVF,Vf) + 2ROV, f — %VOR — HRoo + 04, A(Vw, Vi)

vanishes. O

2.3 Hypersurfaces in an extended Ricci flow background

In this section, we consider mean curvature flow in an extended Ricci flow background (see
definition in Subsection 2.3.1). In particular, we recover the mean curvature flow in a Ricci
flow background (or Ricci-mean curvature flow) by Lott. For explicit examples of Ricci-mean
curvature flows, see Yamamoto [Yam18].

In Subsection 2.3.1, we translate to an evolving hypersurface ¥ in an extended Ricci flow
solution the results of the previous sections from a fixed manifold with boundary equipped with
a Perelman’s modified extended Ricci flow (g(¢),w(t)).

In Subsection 2.3.2, we show that the differential Harnack-type expression vanishes on mean
curvature solitons with additional assumption egw =0 on X.

In Subsection 2.3.3, we study the mean curvature solitons more closely. For instance, in
Theorem 2.23 we give a characterization of such solitons.

In Subsection 2.3.4, we give proof of the monotonicity of a Huisken-type functional under

extended Ricci flow.
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2.3.1 Mean curvature flow in an extended Ricci flow background

In this subsection, we shall consider mean curvature flows in the following context: let M
be an n(> 3)-dimensional smooth manifold and let (g(¢),w(z)) be an extended Ricci flow in
M x [0,T). Given an (n— 1)-dimensional smooth compact manifold £ without boundary, and
let {x(-,7);t €[0,T)} be a smooth one-parameter family of immersions of X into M. For each
t€10,T), set x; = x(-,¢) and X, for the hypersurface x;(X) of (M,g(1)), i.e.,

L= (u(X),8(t), 1 €[0,7),

and suppose that the family .% := {¥,;;¢ € [0,T) } evolves under mean curvature flow, that is,

%X(p,t) =H(p,t)e(p,t),
X(p,O) :X()(p),

where H(p,t) and e(p,t) are the mean curvature and the unit normal of ¥, at the point p € X,
respectively. In this setting, we say that .# is the mean curvature flow in the (g(t),w(t))-
extended Ricci flow background. In the particular case (g(¢),w(t)) = (g(¢),w(z)) is a gradient
soliton to the extended Ricci flow on M with potential function f, a hypersurface ¥, € .% is a

mean curvature soliton, if
H(p,t)+e(p,t)f=0VpeX.

Here, e( -,#) must be the inward unit normal vector field on X,.

Remark 2.12. We highlight that the coupling of mean curvature flow with Ricci flow also was
considered by Magni, Mantegazza and Tsatis (see [MMT13]). Moreover, Lott observed that
mean curvature solitons for the mean curvature flow evolving in gradient Ricci soliton solutions

arise quite naturally as f-minimal hypersurfaces.
Now we are working to prove the main results of this thesis.

Proposition 2.13. Suppose that the family .7 := {¥,;t € [0,T)} is a mean curvature flow in a
(g(t),w(t))-extended Ricci flow background which satisfies eow = 0 on Xy, where e is the unit

normal vector field on ¥y. Then, the following evolution equations hold:

d

= 8ii = —2(Rij - 0, ViwV jw) —2HAjj, (2.25)
0 —~
§W = Aw+ VoVow, (2.26)
p) N
EAi i = (AA);; — ARy — AR+ 2AY Ry — 2H AR A (2.27)

+ AM Ay Aij + VoRoi
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and

0 —~ .. . ~ o~
EH =AH + 2.,4URl'j + .AU.AUH + VoRoo — 206,1./4<VW, VW). (2.28)
Proof. In this proof, we follow [Lot12, Prop. 4] closely. First assume that ¥, = dX; with each
X, compact. Given a time interval [a, b], we can find a positive solution u = e~/ on Urelap) (Xe x
{t}) C M x |a,b] of the conjugate heat equation
J 2
Eu(t) = =Dy u() + Rg(ryu(t) — 0| V(1) u(r) (2.29)
satisfying the boundary condition e(-,7)u = Hu, by solving it backwards in time from ¢t = b.
(Choosing diffeomorphisms from {X;} to X,, we can reduce the problem of solving (2.29) to a
parabolic equation on a fixed domain with egw = 0 on X).
Let {9 };c[4,5 e the one-parameter family of diffeomorphisms generated by {—V,)f(?)}.

with ¢, =Id. Then ¢ (X,) = X; for all z. By setting g(¢t) = ¢,°g(z), w(t) = ¢;/w(z) and f(r) =

" () we have that g(z), w(r) and f(¢) are defined on X,. We claim that
{ 58(1) = —2(Ricg(,) +Hessg() f(1) — 06 d¥(r) © (1)),

935 = Agioyw(t) — (Vi(0), V()0

and

d ~ -
Ef(f) = —Ag( [ (1) = Rgy + 00| V(1) 3
in X, X [a,b] with eof + H = 0 and egw = 0 on dX, = X. Indeed,

a~ * ) * * . *
Eg = ¢ (Eg) + ¢ Ed%(l)tg = ¢ (_ Z(Rlcg _andw®dw)) — ¢, L(ngf([))g

= —2(Ricz+ Hess§f— o, dw @ dw),

in X,,. For the second item, we have

J w )W = Agljt;— <VW, Vf>§.

57 =0 (%W> O Lgpw =9/ (Aw> - ¢’*£(Vg<r>f(’>

Now, we use that Au = (|Vf|> — Af)e™/ and (2.29) to obtain
2 Tt (S )40 g 1=00 (VI P-ATREITWP) 0L (o F=AGT — Re o VT2
o’ T \or?) T e T " ) K g Yl Y Wig-

The boundary conditions follow from the fact that egu = Hu and eow = 0 on Xy. Thus, (g(¢),w(t))
evolves by Perelman’s modified extended Ricci flow in X, X [a, b], and then we are in a position
to use Proposition 2.10 for the compact manifold X, with boundary dX,. So, from equation (2.19)
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we have on X,

0 0 [ o 1x 0/ v o 1/0 - B R
=873, (4’; )9 giJ)ZE (fl)r ) lgij):<¢t Tl<§gij+(£d%¢;lg)i )Z—Q(Rij— 0, ViwV jw)=2H Ayj,

which is (2.25). Likewise, from equation (2.20) one has

?J
&tW

Jd _ 5 —~
= (97)" (S 5+ L gy 17) = Bw+VoVow

which is (2.26). Next, equation (2.21) implies
d /9 ~ o
A= (01 (S A+ (Lgg 1 A),)
= (AA);; — ANRY ; — ANRY; + 2 A8 Ry s — 2H A A+ AY A Aij + VoRoio.
Finally, from equation (2.22) we get

J Jd ~ . . ~ o~
EH = ((]),*)71 <§H§+ ﬁdgq);ng) =AH+ 2-/41‘]Rij + Al]Ain + VoRgo — Z(Xn.A(VW, VW),

which finishes the proof. ]

Remark 2.14. We point out that equations (2.25) and (2.26) hold regardless the assumption
eow = 0 on X.

Remark 2.15. If M is the Euclidean space with its standard metric go, g(t) = go and w(t) = w
is a constant, then Egs. (2.25), (2.27) and (2.28) are the same as in Proposition 1.8.

Corollary 2.16 ([Lot12, Prop. 4]). Suppose that the family % = {¥,;t € [0,T)} is a mean

curvature flow in a g(t)-Ricci flow background. Then, the following evolution equations hold:

d
581/ = —2Rij — 2H Ay,

B N
5 A= (AA); — A iRy j — AR i+ 2 A8 Ry — 2H Ay A 4+ A Ay Aij + VoRoi;
0 ~ iy iy
EH = AH + ZAUR,']' + AUAU’H + VoRoo.

We can now show how the weighted extended GHY-action I%' change under a mean curvature
flow {dM,} in an (g(r),w(r))-extended Ricci flow background with egw = 0 on IM.

Theorem 2.17. Let M be an n(> 3)-dimensional compact smooth manifold with boundary dM,
and let IZ" be the weighted extended GHY-action on & (M) defined as in (2.3). Suppose that
the family {dM,;t € [0,T)} is a MCF in a (g(t),w(t))-extended Ricci flow background which
satisfies egpw = 0 on IM, where e is the inward unit normal vector field on dM. Under these
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conditions, if u = e~/ is a solution to the conjugate heat equation

1= —Agu+ Rou— 0| Vw|u (2.30)
in M x [0,T), with egu = Hu on M, then
d%lo‘i‘” = 2/ |Ric+Hessf— 0ty dw @ dw|” 4 0t (Agw — <Vw,Vf))2>e*de
+2/ H 2VF,VH) + AV, V) + 2RV, f—lvoR — HRy

+ OCnA(Vw, Vw)) e dA.

In particular, if both (Rij+VV;f — a,ViwV jw)| oy = 0 and (Rio+ ViVof)|om = 0 vanish on
dM, then the boundary integrand vanishes.

Proof. The hypotheses on {dM,; € [0,T)} and on u allow us to use g(¢), f(¢) and Ww(r)
on M = X, as in the proof of Proposition 2.13, so that (g(z),w(z)) evolves by Perelman’s
modified extended Ricci flow in M x [0,7). In this way, the result follows immediately from
Corollary 2.11 and the fact that the identity

9, _ 9,

holds on dM; forallz € [0,T). O

Remark 2.18. As we pointed out in the introduction, Theorem 2.17 extends Theorem 1 in
[Lot12]. Also, when M is compact without boundary, Theorem 2.17 coincides with [Lis08,
Lemma 3.4].

We finish this subsection by recovering the results by Ecker [Eck07, Props. 3.2 and 3.4] and
List [Lis08, Thm. 6.1].

Let Q be a bounded domain with smooth boundary dQ in Euclidean space R” with its
standard metric go, and suppose {dQ;; ¢ € [0,T)} evolves by mean curvature flow in (R",g¢)
with £y = dQ. Let f : Q — R be a smooth function and consider the functional given by

W(Q, f,7) = /Q (T|Vf|2+f—n)vdV+2/aQrHvdA.

on R" x C*(Q) x R, where v = (477)~2¢/, and the function u = ¢~/ is the positive solution
on Uyejo,r)(Q x {t}) CR"x[0,T) of

d
Su=—Au+5-u,
dr— 1.
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satisfying the boundary condition e(-,#)u = Hu. Let {¢},c[o,r) be the one-parameter family
of diffeomorphisms generated by {—V £ () };cjo,r)> With ¢o = Id, and &, := ¢,(Q). By setting
80p 0 ¢r and f o ¢ we have that are defined on Q and plugging %(Saﬁ o) = <(££¢t8)“ﬁ> oy,
%(fo ¢) = (—Af —5z) o ¢ and & = —1 in the variation of WV (see Corollary 1.21) since
%((vdV) o ¢) =0 we have

2v> o ¢, dV

d 1
EW = /QZT(’VOCV[}]C_ 2—T§aﬁ

ERRP -~ H
+2’c/89<(§H—<VH,Vf>+A(Vf,Vf)—Z)v) oy dA.

Since %(H ofy) = (%H — <§ f, VH )) o ¢;, we recover the following result.
Proposition 2.19 ([Eck(07, Props. 3.2 and 3.4]).

d

1
W (0. 7(0)= | Hess f——golPvav+2e]

J S S < o H
dt (SH-2VH )+ AV f,9f) 5 Jvda.

1

2.3.2 Extension of Hamilton’s differential Harnack expression

Here, we will see as the boundary integrand term of the time-derivative of weighted extended
GHY-action provides an extension of Hamilton’s differential Harnack expression for mean
curvature flow in Euclidean space to the more general context of mean curvature flow in an
extended Ricci flow background.

Let . := {%;} be a family of mean curvature solitons in a (g,w)-extended Ricci flow
background. Recall that a hypersurface X; € .% is said to be a mean curvature soliton if

H(p,t)+e(p,t)f=0VpeXx,.
Thus, the equations for the steady case
Rij+ViVif—,ViwV,w=0 and Rio+VVof —a,ViwVow =0
on X; become
Rij+ ViV f+HgAij — 0, VoV ;v = 0, (2.31)

and

Rio — ViHg + AV F — 04,e0wV i = 0. (2.32)
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Example 2.20. For instance, consider M = R", g(t) = 84 and w(¢) = w constant, and let L be
a linear function on R”. Defining f = L+ ¢|VL|?, we have that f satisfies (2.7). Changing f to
—f, equations (2.31) and (2.32) then become

6,'%]']( =HA;; and 61'[‘1 —l—.Akl'%kf =0,
respectively, which appear in [Ham95, p. 219] as equations for a translating soliton.

Consider a bounded domain Q with smooth boundary dQ in Euclidean space R", and take
a solution u = e~/ to conjugate heat equation (2.30) in Q x [0,T) with equ = Hu on 0Q. If
{0Q;;1t €]0,T)} is a mean curvature flow in a (g(z),w(r))-extended Ricci flow background
with g(¢) Ricci flat and egw = 0 on dQ, then the boundary integrand in Theorem 2.17 becomes

Z(V)+ O%A(%W, %w),

where V = —Vf and Z (V) := %H +2(V, VH ) +.A(V,V) is Hamilton’s differential Harnack
expression for the case of mean curvature flow in Euclidean space, which vanishes in the
particular case .% is a translating solitons (cf. [Ham95, Def. 4.1 and Lem. 3.2]).

The next result suggests an extension Zg'lw of Z for the more general case of mean curvature
flow in an extended Ricci flow background, whose characterization of nullity should be on the
steady case. For this, we observe that, if (g(z),w(z)) is a gradient steady soliton on a smooth
manifold M with potential function 7, and X is a mean curvature soliton at # = 0, then its ensuing
mean curvature flow {Z;} consists of mean curvature solitons, and {X;} differs from {y;(X)}
by hypersurface diffeomorphisms. In Subsection 2.3.3, we give a more general description that

includes the shrinking and expanding soliton cases.

Corollary 2.21. Let M be an n(> 3)-dimensional smooth manifold, and let (g(t),w(t)) be a
gradient steady soliton to the extended Ricci flow on M with potential function f. Assume that
F :={%;;t € [0,T)} is a mean curvature flow in a (g, w)-extended Ricci flow background
which satisfies H 4 ey f = 0 and eqgw = 0 on X, where e is the unit normal vector field on ¥.

Under these conditions, the differential expression

d S =S = — o = —0is—= 1o — S o
vanishes on ¥, for all t € [0,T), where A and and §§ are as in Theorem 2.17.

Proof. If (g(t),w(t)) is a gradient steady soliton to the extended Ricci flow in M x [0,T), then
the positive function u = ¢~/ on Urejo,r) (X x {t}) C M x [0,T) satisfies the conjugated heat
equation (2.29) with equ = Hu and eyw = 0 on X = X, where the boundary conditions follows
from the assumptions on Y. To see this, first observe that Agu = (\ng_f% — Agf)u. Now taking
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traces in (2.6a) and using (2.7), we obtain

u= —u]Vgﬂ% = —Agu+ Rgu — an|V§W\§u.

v

Thus, we can define g(¢), w(r) and f(¢) on Xp as in the proof of Proposition 2.13, so that
(g(t),w(t)) evolves by Perelman’s modified extended Ricci flow in Xy x [0,7). Besides, again
we use that (g(7),w(z)) is a gradient steady soliton and that epw = 0 on X, to get

(ﬁij + %igjf— oc,ﬁ,ﬁ%v?) |ZO =0 and (ﬁio + 6160]?) |ZO =0.
As in the proof of Theorem 2.17, the result follows from Corollary 2.11 and the identity

9y 9y S FV
or 8 o

This completes the proof. ]

Remark 2.22. Suppose M = R", g(t) = O4p, W(t) = w constant. Let L be a linear function on
R" and define f = L+ ¢|VL|>. Letting V(t) = —Vf, Corollary 2.21 coincides with [Ham95,
Lem. 3.2].

2.3.3 Characterization of mean curvature solitons

Here, we will show how to construct a family of mean curvature solitons and establish a
characterization of such a family. For it, let M be an n(> 3)-dimensional smooth manifold,
and let (g(¢),w(z)) be a gradient soliton to the extended Ricci flow on M for some initial value
(g,w) and with potential function f = v f, where {y;} is the smooth one-parameter family
of diffeomorphisms of M generated by ¥; = V,f/o(t), with 6(t) = —«t and y_ = Id, where
kK = 1 in the shrinking case (for t € (—o0,0)), Kk = —1 in the expanding case (for ¢ € (0, 4o0))
and o (¢) = 1 in the steady case (for r € R) with yy = Id (see Proposition 2.2).

Given an (n — 1)-dimensional smooth compact manifold £ without boundary, let {x(-,7)}
be a smooth one-parameter family of immersions of ¥ into M, given by x(-,t) := y(-,—t — 2K)
and x(-,¢) := y(-,—t) in the steady case. Note that x(-,—k) = y(-,—k) =1Id and x(-,0) =
y(+,0) =1d. Moreover, when considering x(+,#) := y/(-, —t — 2k), we are assuming ¢ € (—2,0)
in the shrinking case, ¢ € (0,2) in the expanding case, and ¢ € R in the steady case. For each 7,
setx; = x(-,1), X, for the hypersurface x;(X) of (M,3g(t)), i.e., X := (% (X),g(¢)), and ¢ := {¥; }.
In this setting, we prove the next two propositions. In particular, if ¢ evolves by MCF in the
(g,w)-extended Ricci flow background on M, then it is a family of mean curvature solitons.

Indeed, since (1) = o(t)y;'g, we have V f = 6(1) Vg, f, and then
)

H(p.0) =2(0) (53001, e(p)) =210) (-~ ()
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= —5(1) (Vo (p)re(ps1)) = —e(p,1)F(p),

it proves our claim. A sufficient condition for ensuring that ¢ is a family of mean curvature
solitons is that the hypersurface ¥ should be f-minimal. Besides, we will see that any family .7

of mean curvature solitons is given by the family ¢ up to reparametrization, as stated below.

Theorem 2.23. If X is the f-minimal hypersurface of (M,g), then ¢ is a family of mean
curvature solitons. Moreover, any family ¥ of mean curvature solitons is given by & up to

reparametrlzatlon.

Proof. Let X be a hypersurface of (M, g) satisfying H +e,f = 0 on X, where ¢, is the unit
normal vector field on X. Take ¢ = {X;} the smooth one-parameter family of isometric imm-
ersions of ¥ into M as above, so that ¢, = \/ 0 (t)e(-,t), and then A, (p) = /0 (1) A,y that

implies H(p) = \/o(¢t)H(p,t). Hence,
0=H(p)+eof(p) =/ 0(t)H(p,t)+/0(t)e(p,t)f =~/o(t)(H(p,t)+e(p,t)f).

Thus,

0 Ve

(2xp.)) =20 (ox(p.0).ep.n))elp) =50 (~ L o) )elp.1)

o(r)

= —3(0) (Ve F(p)-e(p.1) )e(p.t) = —e(p.1) (Fe(p.r) = H(p.1)e(p.1).

Now, we affirm that if a smooth family of hypersurfaces ¥, = x,(X) satisfies ( x(p,t),e(p,t)) =
H(p,t), then it can be everywhere locally reparametrized to a mean curvature flow. Indeed, if
%x(p,t) = H(p,t)e(p,t)+X(p,t), where X(p,t) € dy(TpZX) Vp € £, take {¢;} the smooth
one-parameter family of diffeomorphisms of ¥ generated by Y (p,t) = —[dx,]~'(X(p,t)) and
then consider the reparametrization x(p,t) = x(¢;(p),t). By a straightforward computation
{%, :=%(X)} evolves by MCF in the (g,w)-extended Ricci flow background on M. Finally,
by a simple analysis of this proof, we also show that any family .% of mean curvature solitons

is given by ¢ up to reparametrization. 0

2.3.4 Huisken-type monotonicity

It is not surprise that monotonicity formulas play an fundamental role in geometric analysis.
For instance, some well-known are: Huisken’s integral for the mean curvature flow (see [Hui90]),
Perelman entropy formula for the Ricci flow (see [Per02]), and List entropy formula for the
extended Ricci flow (cf. [LisO8]). More recently, Lott and Magni, Mantegazza and Tsatis
showed monotonicity formulas for mean curvature flow when the ambient manifold moving
by Ricci flow, known also as Ricci flow background (see [Lot12] and [MMT13]).

In [MMT13], Magni et al. showed some computations related to the motion by mean

curvature flow of a submanifold inside an ambient Riemannian manifold evolving by Ricci
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or backward Ricci flow (i.e., %g(t) = 2Ricg(;)). Special emphasis was given to the possible
generalization of Huisken’s monotonicity formula and its connection with the validity of some
Li-Yau-Hamilton differential Harnack-type inequalities in a moving Riemannian manifold, as
stated below.

Theorem 2.24 (Huisken’s Monotonicity-type Formula [MMT13]). Consider a smooth compact

submanifold N™ of a Riemannian manifold (M", g(t)) evolving by the Ricci flow (or the backward
Ricciflow), and u: M" x [0,T) — R is a positive smooth solution of the backward heat equation

%u = —Agu+ Ku, for some smooth function K on M x [0,T). If N moving by mean curvature

in the time interval [0,T), then the quantity [4m(T —1)]"2 [yudA is non increasing during the

flowin [0,T).

For the proof of the previous result was essential the nonpositivity of the Li-Yau-Hamilton
quantity for the Ricci flow, namely, let (M, g(¢)) be an n-dimensional Riemannian manifold
evolving by the Ricci flow % g = —2Ric,, and let u : M x [0,T) — R be a positive solution of
%u = —Au+ Ru. Under these assumptions, considering a compact m-submanifold ¥ moving by
mean curvature flow, then it is true the so called Hamilton’s matrix Li-Yau Harnack differential
inequality

1
g (VaVof +Rap — —_I)gab) <0, (2.33)

2(T
where f = —logu, for all indices a, b associated with the coordinates which are normal to X.
Inspired by this work, we establish analogous results to the motion by mean curvature flow
of a submanifold inside an ambient Riemannian manifold moving by extended Ricci flow.
In order to establish the main result of this section (see Theorem 2.26), we first determine
how the area (i.e., the (n — 1)-dimensional Riemannian measure) of a mean curvature flow in

an extended Ricci flow background evolves.

Lemma 2.25. Consider an n(> 3)-dimensional smooth manifold M and let (g(t),w(t)) be a
gradient soliton to the extended Ricci flow on M with potential function f. Assume that F :=
{X} is a mean curvature flow in the (g, w)-extended Ricci flow background, and denote by dAg
the (n — 1)-dimensional Riemannian measure on ¥, induced by g(t). Under these conditions,

the following equation holds on X, for all t

d

2 (@g) = — (Rl H2 — o V[2) .

Proof. The lemma follows by using the well-known formula

0 1 d_
5 (dAg) = St ) (Eg,-,-) dAg
and equation (2.25) in Proposition 2.13 (see also Remark 2.14). [
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We restrict ourselves in the special case of a special solution of extended Ricci flow and

hypersurfaces, more generally, see Remark 2.34.

Theorem 2.26. Let M be an n(> 3)-dimensional smooth manifold. Let (g(t),w(t)) be a gradient
soliton to the extended Ricci flow on M with potential function f. Assume that F := {¥,} is a
MCF in the (g, w)-extended Ricci flow background, denote by dAg the (n — 1)-dimensional
Riemannian measure on ¥; induced by g(t), and set Areaz(¥;) := [5, e~/ dAg Under these
conditions, the function ®(t) given by:

(i) R >t Areap(X,) in the steady case;
(ii) (—o0,0) 31 (—1)~(n=1/2 Areaz(Xy) in the shrinking case;
(iii) (0,00) 31+~ (=1)/2 Areap(X;) in the expanding case;

is nonincreasing. Moreover, ®(t) is constant if and only if F is a family of mean curvature

solitons.

Proof. Lemma 2.25 and a straightforward computation yields

d d_ ~ -
aAreaf(Z,) = _/Z, (af—}—Rli—{—ng—antw%)e T dA.

By Chain rule dﬂf %fdi —I—g(t)(Vg(l)f, %x) that implies

d
aAreaf(Zt):—/Z< T+ Haer T+ R H2 — 0| Vw2 ) e 7 dag.

t

First, assume (g(z),w(z)) is a gradient steady soliton. In this case, we can take traces in (2.6a)
on X, to get

0=I_€i,~—|—vivif—an|§§w%:R +VIV.f—H Hge f — Ocn\ng|g
Then, using (2.7), we obtain
EAreaf(Z,) = —/ (|V77|
dt ! % ¢
-/ (Va5 + (e = AT+ 2Hger T+ Hg ) drg

—_ /Z (Hg+e,?>2e—fdAg,

t

— ng + 2H§€[7+ H§2> 67? dAg

TN

where in the second line we have used the equality



and Stokes’ theorem. Since the boundary integrand in the right-hand side is nonnegative, we
have immediately the result of the theorem for the steady case.
For the shrinking case, we claim that the function

t € (—00,0) — T*("*l)/zArea?(Z,)

is non increasing in ¢, where T = —¢. Indeed, as above, we take traces in (2.6a) on X, to obtain

= =R+ V'Vif — 0,[Vgi|2 = Ri + VIV, f — Hge, f — 0| Vgw]2.

Then,

d 1)/2 —(n—1)/2 d— Hl 2 o —2\ —f
dt(r (n=1)/ Areaf(z,)>_ _g =1/ /Z <af+Ri+H§—ocn|V§w|g,>e T dAg

-1 (n—1) 7
LD [
L

2

_1 —
——f‘("‘”/ﬂ F+Hge [+ R +H2— 01| V|2 — nz,c )e‘fdAg

t

= (-2 /E | (HWJ) e dAg.

This proves the claim, and so the theorem for the shrinking case.

Finally, in a similar way, for the expanding case, we claim that the function
t € (0,+00) — t_(”_l)/zArea?(Z,)

is non increasing in ¢. Indeed, as above, we take traces in (2.6a) on X; to obtain

n—1

— 2 = Ril' +vl617 — an’§§W|§ = 6 6 7 ngl‘?_ (Xn|§§W|§
Then,
d —(n—1)/2 _—(n—1)/2 d— =i 2 Voiil2) e f
_ (n— 1)1‘7("%1)7 / *fdA,
2 Y,

a_ . ~ _
—(n—1)/2 1 2 2\ —
—t ( )/ /Zt (gf—Fng;f—FR,—i—Hg—Ocn|ng|§>e fdAg
_ (=12 / (H te, f) 7 dA,.

%

This completes the proof of the theorem. U
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Remark 2.27. For the shrinking case in Theorem 2.26, we can recover Huisken’s monotonicity
_ kP

formula [Hui90, Thm. 3.1], by taking M = R", g,p(7) = 8qp. f(x,T) = - and w(1) = w
constant.

To obtain a generalization of Theorem 2.26 it is enough to prove an analogue of Li-Yau-
Hamilton Harnack differential inequality (2.33) in a moving ambient space. More precisely, we
need of an extension of Li-Yau-Hamilton Harnack differential inequality for the extended Ricci
flow case, namely, let (M, g(¢),w(t)) be an n(> 3)-dimensional Riemannian manifold evolving
by the extended Ricci flow 4 g = —2Ric, +2at, dw @ dw with $w = Agw, and letu: M x [0,T) —
R be a positive solution of %u = —Au+ Ru — &t,|Vw|?>u. Under these assumptions, considering
a compact m-submanifold £ moving by mean curvature flow, we are assuming that

8 (Rup + VoV f — 0, VawVipw — gap) <O (2.34)

1
2(T —1)
where f = —logu, for all indices a, b associated with the coordinates which are normal to X, so

that we can obtain the following generalization of Theorem 2.26.

Theorem 2.28. Consider an n(> 3)-dimensional smooth manifold M and let (g(t),w(t)) be
an extended Ricci flow on M x [0,T), and u : M x [0,T) — R is a positive smooth solution of
the backward heat equation %u = —Agu+ Ku, where K = Ry — a,|Vw|?. Assume that F :=
{%;t €[0,T)} is a mean curvature flow in the (g(t),w(t))-extended Ricci flow background
and holds an extension of Li-Yau-Hamilton Harnack differential inequality (2.34). Under these

conditions, the function

1€ (0,T] — [4n(T —1)]"" / udA ),
X

is non increasing.

Proof. Indeed, consider Q = Ricy —0y,dw @ dw and 7 =T — ¢ in [MMT13, Sect. 2] so that

d n—m N n—m L2 —f
5{12 /ZudA}——”L'2 /Z|H+V flre™/dA

n—m 1 _
+72 /Zgab(vavbf-i-Qab—z—Tgab)e S A

+17 /(K—trQ)e—fdA.
X

Consequently, the required generalization follows from (2.34) and K = tr Q. So, inequality (2.34)
is clearly a stronger property, and then, worthy of a future work. 0
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2.4 Examples of solitons solution to the extended Ricci flow

In this section, we show how to obtain a gradient soliton solution to the extended Ricci
flow, and then we are obtaining its corresponding extended Ricci flow and explicit examples of
mean curvature flow in an extended Ricci flow background (see Propositions 2.1 and 2.2 and
Theorem 2.23).

Let g = [%go be a Riemannian metric on R”, where go stands for the Euclidean metric and

F is a nonzero smooth function on R”, and consider

Ric, +Hess, f — 0, dw @ dw = A g, (2.35a)
Agw = (Vo f, Vow)s. (2.35b)

Since the metric g is conformal to g, we have

1
Ric, = — ((n—2)FHessF+ (FAF — (n— 1)]VF]2)g0)

and the following equations are valid

ij in . .

(HCSSg h)lj = hxixj + thi + thj' for 1 7&_],

F. Fx;

(Hessg h)ij = hye, +2—="hye — ) —=
F i &F

hy, for 1=j,

for any smooth function 4 on R", see e.g. Besse [Bes07]. Hence,
1
Agh = FZ(thkxk +(2 _n)FZkahxk)'
k k

We find solutions of Eq. (2.35a) (as well (2.35b)) of the form f(&) and w(&), that is, they
only dependon & =YY" | aix; with oy € Rand Y, Ociz = 1. The following proposition provides
the system of ordinary differential equations that must be satisfied by such solutions, and then
we can obtain all parameters necessary to construct gradient soliton solutions to extended Ricci
flow on R”.

Proposition 2.29. Let R", with n > 3, be an Euclidean space with coordinates x = (xy,...,x,)
and metric g = F+@g0, where F(&) € C*(R"), & =Y, aix; with o; € R. We can obtain
smooth functions f (&) and w(&) satisfying (2.35a) (as well (2.35b)) by means of the equation

7 (2.36)

F" F/\2 1 2 w' f! A
R =

O R T T T
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Proof. We need to analyze Eq. (2.35a) in two cases. For i # j, it rewrites as

inxj

F

F, F,
(l’l - 2) +fxixj' + fo,‘ + foj - aaninj = 0, (2.37)

and fori = j,

F.... F. x n—1 F, F,
(n—2)=2 +; - ;in + fo + 27 i — Z — o= oWy, = 7 (238
On the other hand, equation (2.35b) becomes
1
F2(Y wyw, +(2—n) = Y Fowy) =F2Y fowy,. (2.39)
k k k

We now assume that the argument & of the functions F(§), f(&) and w(§) is of the form
&E=Y" | oix;. Hence, we have Fy, = F'o; and Fou, =F " a;or; where the superscript’ denotes the
derivative with respect to &. Using the same reasoning for f and w, equations (2.37) and (2.38)

become
F// 2
(n=2)= +f”+2 f o' =0 (2.40)
and
F” FHZ n—1 ) 02 AF F 22
(n— 2)705 +Z _WZF G+ "o +2- o —foock—ocnw 0%
k k
A
:ﬁ' (2.41)

Since n > 3, we can choose this invariance so that at least two indices i, j are such that ¢;or; # 0
and )1, oc = 1, and then equations (2.40) and (2.41) become

F" F' )
(n— 2)? + "+ 2F f—oaw =0 (2.42)
and
(n— 2)%”05 + F?” —(n—1) (I;/) + 1o+ 2%]"05,-2 - %/f’ — oo} = % (2.43)
Plugging (2.42) into (2.43), one has
%—(n—l)(%)z—%’f’:%. (2.44)
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Eq. (2.39) provides w" — (n — 2)%w’ = f'w’. Assuming w' # 0 and using (2.44), we obtain

" F'\2 1 1 gl A
P (B el WA
F F n—?2 (n—2)w' F?
This finishes the proof of the proposition. 0

We also find radial solutions of Eq. (2.35a) (as well (2.35b)) of the form f(r) and w(r), that
is, they only depend on r = ||x||?> with x € R".

Proposition 2.30. Let R", with n > 3, be an Euclidean space with coordinates x = (x1,...,X,)
and metric g = F+(r)go, where F(r) € C*(R"), r = ||x||>. We can obtain smooth functions f(r)
and w(r) satisfying (2.35a) (as well (2.35b)) by means of the equation

7

2f'+4[(n—1)FF/+FFUr—(n—1)<FF/>2—|— (n12) (f’r—4%—2n>f’] :%. (2.45)

Proof. Since r = ||x||?, we have F,, = 2F'x; and Fy, ; = 4F"x;x; where the superscript * denotes
the derivative with respect to r, for all i # j. Besides, Fy, = 2F'x; and Fy,, = 4F"x? +2F’, for
all i = j. Using the same reasoning for f and w, equations (2.37) and (2.38) become

F// F/ 2
Axix; [(n —2) =+ S+ 2 f — o ] —0 (2.46)
and

"

F F F'F" F'\2 F
4x? (n—2)7+f”+2ff’—anw’2]+2f’+4[(n—1)—+—r—(n—1)(—) —Ff’r]

F F F
A
— =5 (2.47)
Plugging (2.46) into (2.47), one has
F'F" F'\2 F’ A
/ /

Eq. (2.39) provides 4w +2nw’ — (n—2)+F'w'r = f'w'r. Assuming w’ # 0 and using (2.44),
we obtain

/ i / /!

2f’+4[(n—1)F+7r—(n—1)(%)2+ (niZ) <f’r—4%—2n>f’] A

Remark 2.31. For constructing a family of mean curvature solitons ¢ in the (g, w)-extended
Ricci flow background on (R”, I%go), it is enough to consider a f-minimal hypersurface ¥ in
this geometric ambient space. Indeed, it follows immediately from Propositions 2.1 and 2.2,
Theorem 2.23 and Propositions 2.29 and 2.30.
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In what follows, we are using Propositions 2.29 and 2.30 to show how to obtain explicit

parameter functions for constructing gradient soliton solutions to the extended Ricci flow.

[}

r

Example 2.32. We consider the conformal factor F(r), where r = ||x||?, given by F(r) = e~ 2
and the potential of the gaussian soliton, f(r) = cr, ¢ # 0. From equation (2.45) we obtain

1 w' 2
2 2 r
20+4[—(n—1)r+r —1—(n—1)r +(n—2) <cr—4W—2n)c} =Ae".
Therefore
/! 2 1
%: n4c {2c+4[ (n—l)r+r2—1—(n—1)r2—|— (n—2) (cr—Zn)c} —le’z},
whence
5 2 3 3 1
Inw' =" . {2cr+4[—(n—1)%+%—1—(n—1)%4—(”_2) (c——an l/ —i—Cl,

for some constant ¢;. Hence

n—-2 23 I 1 2 2
W — 6{46 |:2cr+4 (f(n71)7+7717(n71)?+(,172> (C772nr)c> —AJe dr] +cy }

and then

/ 2cr+4 —(n— 1)% é—l—(n—l)é—i-(nlz) (crzz—an)c)_lferzdr]—&—cl}dr

Example 2.33. For f(£) = ¢® and F (&) = =%, from equation (2.36) we have

e w b

_ — 2626
n—-2 (n=2)w he.

I—(n—1)+

Therefore
/!
= —(n—2)% 5 —A(n—2)e°+¢5, andthen Inw =(n—2)% °—A(n—2)e°+e°+c,

W/

for some constant c. Hence
W= e[(n72)2e_§ —A(n—2)e5+e5+c] and then w — / e[(an)Ze_’:f/l(an)e_5+eé +] dE.
Example 2.34. For f(§) =tg& and F(&) = cotgg, with 0 < & < 7, from equation (2.36) we

have

4n—1) sec*é  w'sec’é
sin?2é n—2  (n—2)w

= Atg?E.

2cossecE —
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Therefore,

wsec? & 4(n—1) sec*é
—2 =2 — —Atg?
2w cossecE E v g &
Hence,
w' n-=2 4n—1) sec*é& )
— = 2 - — At )
w sec?& ( cossecs sin?2E  n—2 gé
=2(n—2)cotgé — (n—1)(n—2)cossecé +sec?&E — A (n—2)sin’&.
Whence,

Inw' = / <2(n —2)cotgé — (n—1)(n— 2)cossecé +sec’ & — A(n —2)sin’ é) d +c,

for some constant c. Thus,

w' = exp {/ (2(71 —2)cotgé — (n—1)(n— 2)cossecé +sec> & —A(n—2) sin2§> dg +c}

:exp{2(n—2)lnsin§—(n—1)(n—2)(1nsin%—lncos%)—i—tgé—)L(n—Z)(%ﬁ
—%sin&cos§)+c}.
So,
_ 2V Insing — (n— 1)(n—2)(Insin 2 — Incos Am—2) (L
w—/exp{2(n 2)Insiné — (n—1)(n 2)(1ns1n2 lncosz)—i—tg& An 2)(25
—%sinécosé)-i—c}dé.

Example 2.35. Let B C R",n > 3, be a unitary upper half ball with metric g = m 80-
Note that its boundary is the standard unitary sphere (S"!,go), & = x, and F(x,) = 1 + x,.
Moreover, the mean curvature of (S"~!, gy) with respect to ey = —e, is Hy, = n— 1, so that we
can take f(x) = (n—1)(x,e,) = (n— 1)xy, since Hy, + ¢ f = 0. By Proposition 2.29,

F" F'\2 1 2 W”f’ B A
o) s e

Since F' =1 and F” =0, we get

(n—1)w" n—1 (n—1)? A

=2 (ol a2 (4x)
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So,

w' n—2
p—— n— i
w! (14 x,)?
Whence,
n—2
Inw = +(n—1)x,+
14+ x, ( ) .
for some constant c, that implies
,_ {# e
w —e
and then
"2 4 (n—1)x,+
T+xn nT

oo [el
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Chapter 3
Perelman’s Entropy-type

Let M an n(> 3)-dimensional compact smooth manifold without boundary. In [Lis08], List
defined the WW-type functional on (M) x R by

W (g, f,w,T) = /M[T(Roo—an\VwF)—l—f—n]udV,

where u := (4n7) " 2e /.
Suppose now M is an n(> 3)-dimensional compact smooth manifold with boundary dM, and
consider a Perelman’s Entropy-type on (M) x R given by

Wgn(g,f,w,r)=/Q[T(Rm—ocnwa\Z)+f—n]uw+2[90rﬂmudA. 3.1

In this chapter, we deal specifically with this functional.

Theorem 3.1. Let M be an n(> 3)-dimensional compact smooth manifold with boundary oM,
and let W2 be the Perelman’s Entropy-type on &?(M) x R defined in (3.1). Its evolution is
given by

SWar (v, h,9,8)

1
= [ (68" = 1) (Ra + V¥ pf = 0V eV g — —gap) + 270, (A — (V. V)

V9%, né ) f—n—1 2
ij 00 va ng
(§2H +eof) + 20 T0e0w) —T(Alvij+1 o) +2(5F —h =5 Jeof

_|_

where u:= (4wt) " 2e /.

Proof. The proof is very similar to the proof of the corresponding proposition of Chapter 1, see
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Proposition 1.20. Observe that the functional in (3.1) can be decomposed as

Wg"(&fawﬂ):Woo(g,f,f)—%/ Otn|Vw|2e_de.
(4rt)2 Jm

Moreover, we can calculate the variation §W% at (g, f,w, T) in the direction of (v,h,9¥,&) as
follows

OW2r(v,h, 8, &) = SW2 (v,h,0,&) + WS (0,0, 8,0).

So,

®n () = v — v wl?e™ ! \%
SWE (v, 1, 8, E) = SWea (v, 1, E) 5((47”)3/Man\v 2e~ V) (11,0,€)
T

- e 5 (/Ma,,|vw|2e—fdv> 0,0, 9).

We will now compute each of the terms in the previous equality. The first one of them is (see
Proposition 1.20)

6Wm(v,h,§):/ (égaﬁ—fvaﬁ)( Rop +Vavﬁf__gaﬁ)+7<£_h__§> (R —|VfP

2 2
o <%—h—2—€>eof+zm<g‘; I

The second one is

6< t /Man]Vw|2e_de)(v,h,O,§)

(477)2

= <1_g>ﬁ/ 0| Vw|2e ™/ dv +

(471:1-)2/ (Xn( ﬁvawvﬁw+ |VW|2<%—h>>e_de

_/ 1——)§ocn|Vw]2udV+/ 20 (VBT + [Vl (——h)) av.

The third one is

T 2, f _/ _
(4ﬂr),216</Man\Vw| e av)(0,0,0) = Mroc,,( 20800+ 20(V£, V) JudV
—206,;5/ VegwudA .
oM

Putting this together gives the variation

WS (v,h, 8,€)
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(04

1 o
- /M [(5g0‘ﬁ — rvaﬁ)(Raﬁ +VaVpf— Ego‘ﬁ) +270, 0 (Agw — (Vf,VW)) + r(% —h

—n—1
B E) (Rg B |Vf|2 +2Agf+ f I‘Z ) N (1 N g)éan|VW|2 + TanVaBVaWVBW

a ..
- Ocn’c\Vw|2<vTa —h)]udV—i—/aM [§(2H+eof) +20,T0egw — T(v’J.Aij—i—vOOeof)

+21<%—h—%)eof+2rH<@—h—%ﬂudA.

Absorb ‘L'anv“B VowV W into the second bracket of the terms on the first line to get

SWE (v,h, 0, &)
1
N /M [@gaﬁ — ) (Rap +VaVpf = 0 VawVpw = 5-gap) + 270,03 (Agw — (Vf, VW)
Vaa I’l& 2 f —n—1
+o(St =52 (Re— VP4 28+ 22 —)

a ..
- Och|Vw]2(vTa —h)]udV—F/aM [6(2H+eof) +20,T0eow — ’C(v’]A,’j—f—vOOeof)

n
—|—§§Otn|Vw|2

o

v, né g né
(o E20 1
+27 > h o eof +21 7 e udA

The required integral formula follows from absorbing —anT\VwP(% - h) into the second

bracket of the terms on the second line. O

Corollary 3.2. Let M be an n(> 3)-dimensional compact smooth manifold with boundary oM,
and let W2 be Perelman’s Entropy-type on (M) x R defined in (3.1). If % —h— % =0

on M, then its evolution is given by

W (v,h, 0, )
1
= /M [(ég“ﬁ— ) (Rop +VaVpf — 0uVawVgw — 5-8ap) T 273 (Aw — (VS Vw>)] udv

+/8M [5(2H+e0f) +2anweow} udA—/aMr<A"fv,~,- +v°°(H+eof))udA.

Proof. Follows from Theorem 3.1 and equation (1.34). ]

Corollary 3.3 ([Lis08, Sect. 6]). Let M be an n(> 3)-dimensional compact smooth manifold
without boundary, and let W2 be Perelman’s Entropy-type on (M) x Ry defined as in (3.1).
If% —h— % = 0on M, then its evolution is given by

1
SWZr(v,h,0,8) = /M [(ggaﬁ - fvaﬁ) (RocB +Vavﬁf_ anVaWVﬁW_ Egaﬁ)

+ 270, (Agw — (V, Vw>)] udv.
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In the line of Corollary 3.3, List [Lis08, Thm. 6.1] showed that the system

2 2(t) = —2(Ricy(;) + Hessg(y) (1) — o dw(r) @ dw(t))

Gw(t) = Agyw(t) — (Yw(t), V£ (1)) g0),

2 o aa B ) " (3.2)
GF@) =h="+ 2 = —Ay)f = Ro) + 0u| VW(O)[3) + 22,

d

ET = —1,

has a solution in M x [0, 7). To find a solution to (3.2) we consider a solution of the backward
heat equation %f(t) = —Ayn f(t) + IV£(t)]? — Ry + Ocn|Vw(t)|§(t) + 57 along the extended
Ricci flow in M x [a,b], which is obtained as follows. Let [a,b] be a sub-interval of [0,7) and
(g(r),w(t)) satisfying the extended Ricci flow equation %g(t) = —2Ricy () +20, dw(t) @ dw(t)
with %W(l) = Ag(yw(t) and 47 =—11in [a,b]. Take z(t) := (4rt(r))"2e /) and define s =
T —1. Since Agz = (|Vf|> — Agf)z, one has

d n d

2
5= Ty —l—Z f—Z( Agf +|Vof|” — +Ocn|Vw|) Agz— Rgz+an|Vw|gz

which is a parabolic equation in M X [a, b]. It guarantees the existence of f(¢) along the extended
Ricci flow in M X [a,b]. Now, let {¢},c[q5) be the one-parameter family of diffeomorphisms

generated by {—V()f (1) }icfap), With 9o = 1d. By setting g(r) := ¢/g(1), w(r) := ¢/w(),
f(t):= ¢ f(t), we have

d

d ~ - .
S8l = 97 (5:8(0)) + 97 £ 3,,8(0) = —2(Ricg + Hessg 7(t) — o d(r) ©67)

as well

J _ * J * * * ~ ~ 7 7
G0 (G) T 0L ggw= 07 (Aw) =07 Lig vw= A (VL Vg

Moreover,

d ~ ) s W
Ef(t) = q)t*(gf(t)) + (pl*ﬁd%(btf(t) = —Ag(z)f(l‘) _R’g“(z) + Oﬂn\Vig“W!z + %

S5

g 25 ~ ~
The first and third equations imply £ g faf _ % f+5%z=0.Hence, (g(t), f(¢),w(t)) is a solution

to (3.2).
Now, observe that

Eg*P — v = P (2R 4 VOVP f — 0, VEWVFw))

1
= 20(R £ VOVP f — 0, VOuVPw - ),
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and then by Corollary 3.3 we obtain

9. 9-0_ | .
_fo (atg, f’&t % ):2T/M[’R1C§+Hess§f—an () @ dw(t) — g‘

+ 0 (g — (Vin, V) )2 iV,
where u = (4%1)_%6"]? . So, W% is constant in time if and only if (g(z),w(¢)) is a gradient

shrinking soliton to the extended Ricci flow on M with potential function f(z).
The variation of YW% under preserving-measure vdV (see Corollary 3.2) from which one has

W (v,h,8,8)
1
:/M[(égaﬁ - ’L'va'B)(Raﬁ +VaVpf—,VawVgw — Egaﬁ) +270, 0 (Agw — (Vf,Vw)) vdV

+/6M [6(2H—|—eof) +20,T0eow — T(Aijvij—i—vOO(H—i—eof))]vdA

g

satisfying the boundary condition egu = Hu with u = ¢/, then we proceed as in the proof of

Now changing (2.30) to

= —Aguu+ Ru— 04 |Vw[*u+ F-u,

i (3.3)

Q-Ia&lm

Proposition 2.19 in order to obtain by Corollary 3.2
d. « : 1 2 2
EW‘X’” = 2/ T ‘R1c+Hessf— o, dw @ dw — —g| +an(AgW_ (VW,Vf>) }VdV
1 H
+2/ —H 2VF,VH) + A(VF. V) +2R"Vif = SVoR - HR00—2—T> dA.

In particular, by considering M compact without boundary, we recover the result by List [LisOS,
Thm. 6.1].
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