???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tede.ufam.edu.br/handle/tede/2925
Tipo do documento: Dissertação
Título: Aprendendo funções de ranking baseadas em blocos usando programação genética
Autor: Sanchez, Pedro Antonio Gonzales 
Primeiro orientador: Oliveira, David Braga Fernandes de
Resumo: Na atualidade, a Internet é considerada uma poderosa ferramenta de comunicação e informação. Seu impacto na sociedade está aumentando cada vez mais, o que significa que está se tornando indispensável. Neste contexto, sistemas de busca por informação tornam-se cada vez mais importantes. Neste trabalho, propomos um novo método de busca capaz de aprender funções de ranking que exploram a estrutura em bloco das páginas Web, usando programação genética. Diferentemente de trabalhos anteriores, nosso método permite combinar evidências tradicionais em recuperação de informação com evidências derivadas da estrutura das páginas. Para validar o método proposto, utilizamos três coleções reais de páginas (IG, CNN e BLOG). Os resultados experimentais mostram que nossa abordagem é capaz de superar os resultados de um baseline que usa informações de blocos sem aprendizagem de máquina, apresentando ganhos de precisão (MAP) de 9,38% na coleção IG, de 7,13% na CNN, e 25,87% na coleção de BLOG. Em relação a nosso segundo baseline, que usa programação genética a partir de evidências tradicionais de recuperação de informação, nosso método conseguiu ganhos de 5,25% na coleção IG, 10,37% na CNN e 4,37% na coleção de BLOG.
Abstract: Today, the Internet is considered a powerful tool of communication and information. Its impact on society is increasing more and more, which means that it is becoming indispensable. In this context information searching systems are becoming increasingly important. In this paper, we propose a new search method capable of learning ranking functions that explore Web pages structure in blocks, using genetic programming. Different from previous works, our method allows combining traditional evidence in information retrieval with evidence derived from the structure of Web pages. To validate the proposed method, we use three real collections of pages (IG, CNN and BLOG). Experimental results show that our approach is able to overcome the results of a baseline of information which uses blocks information without learning machine, presenting precision benefits (MAP) of 9.38% in the IG collection, from 7.13% in CNN, and 25.87% in collection BLOG. Regarding our second baseline, which uses genetic programming out of traditional evidence in information retrieval, our method achieved benefits of 5.25% in the IG collection, 10.37% and 4.37% on CNN in collection BLOG.
Palavras-chave: Programação genética
Estrutura de bloco das páginas Web
Funções de ranking
Genetic programming
Block structure of the Web pages
Ranking functions
Área(s) do CNPq: CIÊNCIAS EXATAS E DA TERRA: CIÊNCIA DA COMPUTAÇÃO
Idioma: por
País: BR
Instituição: Universidade Federal do Amazonas
Sigla da instituição: UFAM
Departamento: Instituto de Computação
Programa: Programa de Pós-graduação em Informática
Citação: SANCHEZ, Pedro Antonio Gonzales. Aprendendo funções de ranking baseadas em blocos usando programação genética. 2013. 50 f. Dissertação (Mestrado em Informática) - Universidade Federal do Amazonas, Manaus, 2013.
Tipo de acesso: Acesso Aberto
URI: http://tede.ufam.edu.br/handle/tede/2925
Data de defesa: 17-Jul-2013
Appears in Collections:Mestrado em Informática

Files in This Item:
File Description SizeFormat 
Dissertação - Pedro Antonio Gonzales Sanchez.pdfDissertação - Pedro Antonio Gonzales Sanchez.pdf1,28 MBAdobe PDFThumbnail

Download/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.