???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tede.ufam.edu.br/handle/tede/3292
Tipo do documento: Dissertação
Título: Reconhecimento e segmentação do mycobacterium tuberculosis em imagens de microscopia de campo claro utilizando as características de cor e o algoritmo backpropagation
Autor: Levy, Pamela Campos 
Primeiro orientador: Costa, Marly Guimarães Fernandes
Primeiro coorientador: Costa Filho, Cícero Ferreira
Resumo: A tuberculose (TB) é uma doença infectocontagiosa, transmitida pelo bacilo de Koch, ou Mycobacterium tuberculosis. Estima-se que 1,4 milhões de pessoas morreram de tuberculose em 2010. Cerca de 95% dessas mortes ocorreram em países subdesenvolvidos ou em desenvolvimento. No Brasil, a cada ano são registrados mais de 68 mil novos casos. Atualmente, o Amazonas é o estado brasileiro com a maior taxa de incidência da doença. Um dos métodos de diagnóstico da TB, adotado pelo Ministério da Saúde, é o exame de baciloscopia de campo claro. A baciloscopia consiste na contagem dos bacilos em lâminas contendo amostras de escarro do paciente, preparadas e coradas de acordo com metodologia padronizada. Nos últimos cinco anos, pesquisas relacionadas ao reconhecimento de bacilos da tuberculose, utilizando imagens obtidas por microscopia de campo claro, tem sido realizadas com vistas a automatização desse método diagnóstico, em face do fato de que o número elevado de exames de baciloscopia realizado pelos profissionais induzirem a fadiga visual e em consequência a erros diagnósticos. Esse trabalho apresenta um novo método de reconhecimento e segmentação de bacilos da tuberculose em imagens de campos de lâminas, contendo secreção pulmonar do paciente, coradas pelo método de Kinyoun. A partir dessas imagens foram extraídas amostras de pixels de bacilos e de fundo para treinamento do classificador. As imagens foram automaticamente discriminadas em dois grupos, de acordo com o conteúdo de fundo. O método desenvolvido seleciona um conjunto ótimo de características de cor do bacilo e do fundo da imagem, empregando o método de seleção escalar de características. Essas características foram utilizadas em um classificador de pixels, um perceptron multicamada, treinado pelo algoritmo backpropagation. O conjunto ótimo de características selecionadas, {G-I, Y-Cr, L-a, R-G, a}, proveniente dos espaços de cores RGB, HSI, YCbCr e Lab, combinado com a rede perceptron com 18 (dezoito) neurônios na primeira camada, 3 (três) na segunda e 1 (um) na terceira (18-3-1), resultou em uma acurácia de 92,47% na segmentação dos bacilos. O método de discriminação de imagens em relação ao conteúdo de fundo automatizado contribuiu para afirmar que o método descrito neste trabalho é mais adequado para segmentar bacilos em imagens com baixa densidade de conteúdo de fundo (fundo mais uniforme). Para os trabalhos futuros, novas técnicas para remover os ruídos presentes em imagens com alta densidade de conteúdo de fundo (fundo contendo muitos artefatos) devem ser desenvolvidas.
Abstract: Tuberculosis (TB) is an infectious disease transmitted by Koch's bacillus, or Mycobacterium tuberculosis. An estimated 1.4 million people died of tuberculosis in 2010. About 95% of these deaths occurred in developing countries, or development. In Brazil, each year are registered more than 68,000 new cases. Currently, Amazon is the Brazilian state with the highest incidence rate of the disease. a of TB diagnostic methods, adopted by the Ministry of Health is examining smear of bright field. The smear is the count of bacilli in slides containing sputum samples of the patient, prepared and stained according to the methodology standard. Over the past five years, research related to the recognition of bacilli tuberculosis, using images obtained by microscopy bright field, has been carried out with a view to automating this diagnostic method, given the fact that the number high smear tests performed by professional induce eyestrain and due to diagnostic errors. This paper presents a new method of recognition and targeting of tubercle bacilli in slides fields of images, containing pulmonary secretions of the patient, stained by Kinyoun method. From these bacilli images of pixels and background samples were extracted for training classifier. Images were automatically broken down into two groups, according with substantial content. The developed method selects an optimal set of color characteristics of the bacillus and of the background, using the method of selection climbing characteristics. These features were used in a pixel classifier, a multilayer perceptron, trained by backpropagation algorithm. The optimal set of features selected, {GI, Y-Cr, La, RG, a}, from the RGB color spaces, HSI, YCbCr and Lab, combined with the network perceptron with eighteen (18) neurons in first layer three (3) and the second one (1) in the third (18-3-1), resulted in an accuracy of 92.47% in the segmentation of bacilli. The image discrimination method in relation to automated background content contributed to affirm that the method described in this paper it is more appropriate to target bacilli images with low content density background (more uniform background). For future work, new techniques to remove noise present in images with high density of background content (containing background many artifacts) should be developed.
Palavras-chave: Segmentação de bacilos da tuberculose
Reconhecimento de bacilos da tuberculose
Mycobacterium tuberculosis
Algoritmo backpropagation
Tuberculosis bacillus segmentation
Tuberculosis bacillus recognition
Mycobacterium tuberculosis
Back propagation algorithm
Área(s) do CNPq: ENGENHARIAS: ENGENHARIA ELÉTRICA
Idioma: por
País: BR
Instituição: Universidade Federal do Amazonas
Sigla da instituição: UFAM
Departamento: Faculdade de Tecnologia
Programa: Programa de Pós-graduação em Engenharia Elétrica
Citação: LEVY, Pamela Campos. Reconhecimento e segmentação do mycobacterium tuberculosis em imagens de microscopia de campo claro utilizando as características de cor e o algoritmo backpropagation. 2012. 132 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal do Amazonas, Manaus, 2012.
Tipo de acesso: Acesso Aberto
URI: http://tede.ufam.edu.br/handle/tede/3292
Data de defesa: 24-Aug-2012
Appears in Collections:Mestrado em Engenharia Elétrica

Files in This Item:
File Description SizeFormat 
PAMELA CAMPOS LEVY.pdfDissertação4,84 MBAdobe PDFThumbnail

Download/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.