@MASTERSTHESIS{ 2008:977690034, title = {Convergência completa do método do gradiente com busca linear exata e inexata}, year = {2008}, url = "http://tede.ufam.edu.br/handle/tede/3682", abstract = "Neste trabalho utilizamos o método do gradiente para minimizar, sem restrições, funções continuamente diferenciáveis pseudo-convexas e convexas. Um termo considerado importante é o cálculo do comprimento do passo. Na minimização de funções pseudo-convexas a busca linear é exata. Neste caso, apresentamos o primeiro algoritmo para o cálculo do comprimento do passo, onde é acrescentado um termo de regularização quadrático no sentido do método do ponto proximal. Posteriormente, na minimização de funções convexas, a busca linear é inexata. Para o cálculo do comprimento do passo apresentamos dois algoritmos: um necessita que o gradiente da função objetivo satisfaça uma condição de Lipschitz com constante L > 0 conhecida, e o outro é baseado no trabalho desenvolvido por Dennis-Schnabel (ver [4]). Os três processos baseiam-se na noção da quase-Fejér convergência. Embora os métodos de descida necessitem que a função objetivo a ser minimizada possua conjuntos de níveis limitados a fim de estabelecer que os pontos de acumulação sejam estacionários, nesta abordagem é garantida a convergência completa de toda sequência para um minimizador da função sem a hipótese de limitação do conjunto de nível.", publisher = {Universidade Federal do Amazonas}, scholl = {Programa de Pós-graduação em Matemática}, note = {Instituto de Ciências Exatas} }