@MASTERSTHESIS{ 2011:1513981711, title = {Um Descritor baseado em análise local de cor para busca de imagens em grandes cole ções}, year = {2011}, url = "http://tede.ufam.edu.br/handle/tede/4850", abstract = "Os avanços em tecnologia multimídia ocasionou um grande crescimento da quantidade de imagens digitais, em consequência disso, cresceu também a necessidade de métodos mais eficazes e eficientes para armazenar e recuperar esse conteúdo multimídia. A maioria dos métodos propostos na literatura alcançam altos níveis de eficiência e eficácia (a cima de 70% de precisão), entretanto grande parte delas executam experimentos usando bases de imagens pequenas (menos de 10.000 imagens), previamente classificadas em categorias bem de nidas, facilitando assim a tarefa de busca e, consequentemente aumentando os níveis de precisão dos descritores avaliados. Por outro lado, quando esses métodos são avaliados em grandes coleções heterogêneas, o nível de precisão e relativamente baixo. Pensando nesse problema, esta dissertação propõe o descritor Local Color Pixel Classication (LCPC), um método baseado em análise local para busca em grandes bases de imagens. A abordagem proposta extrai características de cor, classificando os pixels como borda ou interior, usando o mesmo esquema de classificação do método Border/Interior Pixel Classication (BIC), através de um esquema de particionamento simples, mas muito eficiente e eficaz para incorporar informações espaciais sobre o conteúdo visual da imagem. Experimentos foram conduzidos usando três bases de imagens, incluindo uma com mais de 100.000 imagens coletadas da Web. Os resultados obtidos mostram que a abordagem proposta e bastante superior quando comparado com outros descritores visuais previamente apresentados na literatura, com ganhos em precisão média de 51% até 105%", publisher = {Universidade Federal do Amazonas}, scholl = {Programa de Pós-graduação em Informática}, note = {Instituto de Computação} }