???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tede.ufam.edu.br/handle/tede/4551
Tipo do documento: Dissertação
Título: O problema da quadratura do círculo: uma abordagem histórica sob a perspectiva atual
Autor: Santana, Erivaldo Ribeiro 
Primeiro orientador: Oliveira, Disney Douglas de Lima
Primeiro membro da banca: Oliveira, Disney Douglas de Lima
Segundo membro da banca: Pinto, Alfredo Wagner Martins
Terceiro membro da banca: Cruz Neto, João Xavier da
Resumo: Este trabalho tem o intuito de traçar o percurso das tentativas de solução da quadratura do círculo, bem como citar suas influências, contribuições para o desenvolvimento da matemática até os dias de hoje e incentivar o uso da geometria dinâmica. Nele apresentamos uma possível explicação de como surgiu a geometria, além de um breve estudo sobre o número , seguido de uma apresentação do software GeoGebra, ferramenta que utilizamos para construção das figuras e das implementações do trabalho. Utilizaremos a equivalência de áreas baseada na obra dos elementos de Euclides para resolvermos um problema inicial: o de construir um quadrilátero equivalente a um pentágono dado e, para isso, será necessária a demonstração de algumas proposições. Utilizaremos o quadrado para relacionarmos a sua área com as das demais figuras poligonais pelo método da "quadratura". Com isso, executaremos as quadraturas do retângulo, triângulo, pentágono e do polígono convexo de n lados. Utilizaremos o Teorema de Pitágoras para somarmos áreas de quadrados, tecendo breves comentários acerca de seu uso. Posteriormente esse método também foi utilizado na tentativa de quadrar-se áreas de figuras curvilíneas, como o círculo, no que mais tarde originou o problema da quadratura do círculo. Para a exposição deste problema mostraremos a construção geométrica e a demonstração de dois métodos para obtermos a quadratura do círculo e seus respectivos resultados e comparações. Em seguida, definiremos o que são números construtíveis, algébricos e transcendentes, o que nos possibilitará chegar a uma classificação do número e sua relação com o problema da quadratura do círculo, chegando à resposta do nosso problema. Ao definirmos a média geométrica, mostraremos como obter algumas quadraturas utilizando essa média nas atividades propostas. Em outras palavras, podemos dizer que este trabalho objetiva apresentar o problema da quadratura do círculo, a investigação de métodos desenvolvidos por matemáticos para resolução deste problema ao longo da história e finalmente uma constatação acerca da resposta que estes métodos nos apontam.
Abstract: This work bears the purpose of setting up the course of the circle quadrature solution attempts, as well as to mention its influences, contributions for the mathematics development until now and to incentive the geometry dynamics use. In it we produce a possible explanation of how geometry has been created besides of a brief study on the number followed of the production GeoGebra software, the too we have utilized to build up the figures and the work implementations. We will utilize the areas equivalence based on Euclides elements to solve an initial problem: that of constructing a quadrilateral equivalent to a given pentagon and, for such, it will be necessary the demonstration of some propositions. We will utilize the square to relate its areas with those of the polygonal figures through the âquadratureâ method. With such we will execute the rectangle, triangle, pentagon quadrature, and that of the convex n sides polygon. We will utilize Pitagoras theorem to sum up the squares areas by bringing up brief comments about its use. Afterward this method will also the utilized in the attempt of squaring the curvelin figures such as the circle which has later on originated the problem of the circle quadrature. For explain such a problem we will utilize the geometric construction along with the demonstration of two methods for obtaining the circle quadrature and its respective results and comparisons. In the sequence, we will know what the are constructive numbers, algebraic and transcendent, which will enable us to reach to a classification of the number and its relation to the circle quadrature problem, reaching out the answer to our problem. While defining the geometrical average we will demonstrate how to obtain some quadrature utilized in such an average in the proposed activities. In other words, we can say that this work aims to produce the circle quadrature problem, the investigation of the methods developed by mathematicians for the solution of this problem in the course of history and, finally, an ascertainment on the answer these methods point us.
Palavras-chave: Quadratura do círculo
Quadraturas de áreas poligonais
Equivalências de áreas
Números construtíveis
Números algébricos
Números transcendentes
Circle quadrature
Polygonal areas quadrature
Areas equivalences
Constructive numbers
Algebraic numbers
Transcendent numbers
Área(s) do CNPq: CIÊNCIAS EXATAS E DA TERRA: MATEMÁTICA
Idioma: por
País: Brasil
Instituição: Universidade Federal do Amazonas
Sigla da instituição: UFAM
Departamento: Instituto de Ciências Exatas
Programa: Programa de Pós-graduação em Matemática
Citação: SANTANA, Erivaldo Ribeiro. O problema da quadratura do círculo: uma abordagem histórica sob a perspectiva atual. 2015. 74 f. Dissertação (Mestrado em Matemática) - Universidade Federal do Amazonas, Manaus, 2015.
Tipo de acesso: Acesso Aberto
URI: http://tede.ufam.edu.br/handle/tede/4551
Data de defesa: 30-Apr-2015
Appears in Collections:Mestrado Profissional em Matemática - PROFMAT

Files in This Item:
File Description SizeFormat 
Dissertação - Erivaldo Ribeiro Santana.pdfDissertação - Erivaldo Ribeiro Santana.pdf3,22 MBAdobe PDFThumbnail

Download/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.