???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tede.ufam.edu.br/handle/tede/4931
Tipo do documento: Dissertação
Título: Rigidez de hipersuperfícies mínimas em Sn com curvatura de Ricci Constante
Autor: Ribeiro, Adrian Vinícius Castro 
Primeiro orientador: Martins, José Kenedy
Primeiro membro da banca: Martins, José Kenedy
Segundo membro da banca: Oliveira, Inês da Silva
Terceiro membro da banca: Pacelli, Gregório
Resumo: Seja M uma hipersuperfície mínima compacta orientada da esfera unitária Euclideana n-dimensional. Neste trabalho vamos destacar a situação em que a curvatura de Ricci da hipersuperfície é constante, neste caso, devemos ter a curvatura de Ricci constante igual a 1 n−3 n−2 e a hipersuperfície isométrica a um equador, ou n é ímpar, a curvatura de Ricci igual a e √−√− n−1 a hipersuperfície isométrica ao produto de esferas S 2 n−1 ×−S 2 destacar que existe um número positivo (n) tal que se a curvatura de Ricci de uma hipersu- . A seguir, vamos 2 2 2 2 n−3 n−2 n−3 n−2 perfície mínima imersa pelas primeiras autofunções satisfaz que − (n) ≤−Ric ≤−− (n) n−3 n−2 e a média da curvatura escalar é , então, a curvatura de Ricci da hipersuperfície deve ser √−√− n−1 ×−S 2 n−1 constante e, portanto, esta deve ser isométrica a S 2 .
Abstract: Let M be a compact oriented minimal hypersurface of the unit n-dimensional sphere S . n In this paper we will point out that if the Ricci curvature of M is constant, then, we have n−3 n−2 that either Ric ≡−1 and M is isometric to an equator or, n is odd, Ric ≡−and M is √−√− isometric to S . Next, we will prove that there exists a positive number (n) 2 2 ×−S 2 2 such that if the Ricci curvature of a minimal hypersurface immersed by the rst eigenfunc- n−3 n−2 n−3 n−2 tions M satis es that −− (n) ≤−Ric ≤−−− (n) and the average of the scalar curvature n−3 n−2 is , then, the Ricci curvature of M must be constant and therefore M must be isometric √−√− .
Palavras-chave: urvatura Escalar
Esfera euclideana
Curvatutra de Ricci
Área(s) do CNPq: CIÊNCIAS EXATAS E DA TERRA: MATEMÁTICA: GEOMETRIA E TOPOLOGIA
Idioma: por
País: Brasil
Instituição: Universidade Federal do Amazonas
Sigla da instituição: UFAM
Departamento: Instituto de Ciências Exatas
Programa: Programa de Pós-graduação em Matemática
Citação: RIBEIRO, Adrian Vinícius Castro. Rigidez de hipersuperfícies mínimas em Sn com curvatura de Ricci Constante. 2012. 66 f. Dissertação (Mestrado em Matemática) - Universidade Federal do Amazonas, Manaus, 2012.
Tipo de acesso: Acesso Aberto
URI: http://tede.ufam.edu.br/handle/tede/4931
Data de defesa: 14-May-2012
Appears in Collections:Mestrado em Matemática

Files in This Item:
File Description SizeFormat 
Adrian Vinicius Castro Ribeiro.pdfDissertação710,91 kBAdobe PDFThumbnail

Download/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.