???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tede.ufam.edu.br/handle/tede/7151
Tipo do documento: Dissertação
Título: Aplicação de Gauss hiperbólica e superfícies CMC em H2xR
Autor: Santos, José Luís Tavares dos 
Primeiro orientador: Padilha, Ines Silva de Oliveira
Primeiro membro da banca: Tribuzy, Renato de Azevedo
Segundo membro da banca: Ponciano, João Batista
Resumo: Neste trabalho estudamos propriedades geométricas de superfícies com projeção vertical regular e curvatura média constante em H^2xR. Para o caso especial em que a curvatura média constante é igual 1/2, é construída uma certa aplicação sobre o plano hiperbólico H^2 chamada Aplicação de Gauss Hiperbólica e posteriormente é obtida a harmonicidade da mesma. Outro ponto chave abordado é que sob certas condições impostas à superfície, sempre é possível a partir de uma aplicação harmônica G dada, recuperar uma superfície de curvatura média H = 1/2, tal que G é a sua Aplicação de Gauss Hiperbólica e cuja parametrização é dada em termos de G. Tais resultados foram obtidos por Isabel Fernández e Pablo Mira em "Harmonic Maps and Constant Mean Curvature Surfaces in H^2xR". As demonstrações destes resultados fazem uso de parâmetros conformes e da utilização de técnicas conhecidas na teoria de superfícies de curvatura média constante. Isso permite encontrarmos condições iniciais para recuperar uma superfície a partir de um sistema de equações diferenciais parciais.
Abstract: In this work we studied geometric properties of surfaces with regular vertical projection and constant mean curvature in H^2xR. For the special case in which the constant mean curvature is 1/2, a certain map is constructed on the hyperbolic plane H^2, called Hyperbolic Gauss Map and the harmonicity of it is subsequently obtained. Another key point is that under certain conditions imposed on the surface, it is always possible from a given harmonic map G to recover a mean curvature surface H=1/2, such that G is its Hyperbolic Gauss Map and whose parameterization is given in terms of G. These results were obtained by Isabel Fernández and Pablo Mira in "Harmonic Maps and Constant Mean Curvature Surfaces in H^2xR". The demonstrations of these results make use of conformal parameters and the use of techniques known in the theory of constant mean curvature surfaces. This allows you to find initial conditions for recovering a surface from a system of partial differential equations.
Palavras-chave: Aplicação de Gauss Hiperbólica, Imersões, Curvatura Média Constante, Superfícies CMC
Área(s) do CNPq: CIÊNCIAS EXATAS E DA TERRA: MATEMÁTICA: GEOMETRIA E TOPOLOGIA: GEOMETRIA DIFERENCIAL
Idioma: por
País: Brasil
Instituição: Universidade Federal do Amazonas
Sigla da instituição: UFAM
Departamento: Instituto de Ciências Exatas
Programa: Programa de Pós-graduação em Matemática
Citação: SANTOS, José Luís Tavares dos. Aplicação de Gauss hiperbólica e superfícies CMC em H2xR. 2019. 83 f. Dissertação (Mestrado em Matemática) - Universidade Federal do Amazonas, Manaus, 2019.
Tipo de acesso: Acesso Aberto
Endereço da licença: http://creativecommons.org/licenses/by-sa/4.0/
URI: https://tede.ufam.edu.br/handle/tede/7151
Data de defesa: 5-Apr-2019
Appears in Collections:Mestrado em Matemática

Files in This Item:
File Description SizeFormat 
Dissertação_JoséLuísSantos_PPGM.pdf1,09 MBAdobe PDFThumbnail

Download/Open Preview


This item is licensed under a Creative Commons License Creative Commons